
A Method to Assess and Argue for Practical
Significance in Software Engineering

Richard Torkar , Carlo A. Furia , Robert Feldt, Francisco Gomes de Oliveira Neto , Lucas Gren ,

Per Lenberg , and Neil A. Ernst

Abstract—A key goal of empirical research in software engineering is to assess practical significance, which answers the question

whether the observed effects of some compared treatments showa relevant difference in practice in realistic scenarios. Even though

plenty of standard techniques exist to assess statistical significance, connecting it to practical significance is not straightforward or

routinely done; indeed, only a few empirical studies in software engineering assess practical significance in a principled and systematic

way. In this paper, we argue that Bayesian data analysis provides suitable tools to assess practical significance rigorously. We

demonstrate our claims in a case study comparing different test techniques. The case study’s data was previously analyzed (Afzal et al.,

2015) using standard techniques focusing on statistical significance. Here, we build amultilevel model of the same data, which we fit and

validate using Bayesian techniques. Our method is to apply cumulative prospect theory on top of the statistical model to quantitatively

connect our statistical analysis output to a practically meaningful context. This is then the basis both for assessing and arguing for

practical significance. Our study demonstrates that Bayesian analysis provides a technically rigorous yet practical framework for

empirical software engineering. A substantial side effect is that any uncertainty in the underlying data will be propagated through the

statistical model, and its effects on practical significance aremade clear. Thus, in combination with cumulative prospect theory, Bayesian

analysis supports seamlessly assessing practical significance in an empirical software engineering context, thus potentially clarifying and

extending the relevance of research for practitioners.

Index Terms—Practical significance, statistical significance, Bayesian analysis, empirical software engineering
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1 INTRODUCTION

Amain goal of research in empirical software engineer-
ing (ESE) is assessing practical significance: what is

the impact of the research findings in realistic scenarios?
To this end, statistical analysis has been used extensively
in ESE for decades. Nonetheless, the bulk of research has
focused on defining and implementing guidelines for
experimental design (from case studies [1] to grounded
theory [2] and experiments [3]) and statistical analysis
(from statistical testing [4] to Bayesian modeling [5]). In

contrast, practical significance is rarely discussed explicitly
or quantitatively [6].

The most common approach to assessing the signifi-
cance of findings is built on top of statistical significance,
which is extended in a quantitative way. A common
example are effect size measures (such as Cohen’s d, or
the size of coefficients in a regression model): if the effect
size of a technique A is markedly bigger than the one of
another technique B, this is taken as an indication that A
performs better than B in practice. This common approach
overlooks the issue that assessing practical significance on
statistical measures such as effect sizes makes it hard to
ensure that the statistics accurately reflect expert knowl-
edge. In particular, practitioners (who are the experts)
may not be familiar with the nuances of the various statis-
tical techniques and how they are used.

Furthermore, showing statistically that one technique per-
forms better than another one does not automatically mean
that this makes a difference in practice. Using effect sizes
frames practical significance as a general property [7]; how-
ever, it is much more likely to be a context-dependent prop-
erty, as whether a technique will be better than another in
practice depends on the context where those techniques will
be deployed. Therefore, a quantitative assessment of practical
significance should be expressible in terms of (or, at least,
clearly connected to) measures in the application domain that
are used by the domain experts. For example, return on
investment, time, and personnel costs are all measures that
are appropriate for an evaluation of economic impact.

Grounding practical significance in domain-specific met-
rics also supports a clear communication of the expected
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impact of the solutions that have been empirically assessed;
in other words, how each solution would help practi-
tioners [8], and how they could choose the one most appro-
priate for their needs [9], [10]. Establishing such a clear
communication would ultimately enhance research’s long-
term impact [9], [11].

In this paper, we demonstrate how a combination of
Bayesian analysis [5], [12], [13] and cumulative prospect
theory [14], [15] provides a serviceable means of assessing
practical significance in ESE. Using data from a case study
of testing practices [16] (comparing exploratory testing to
testing based on predefined test cases), we illustrate how
one can formulate and assess different measures of practical
significance, all expressed in terms of metrics that make
sense in the application domain (such as the hourly cost
and seniority of programmers).

We use Bayesian statistics to design and fit a model of the
empirical data. Themodel is quantitative, incorporates expert
knowledge in the domain metrics of interest, and can be used
to perform predictions. We then use cumulative prospect the-
ory to connect probabilities in the Bayesian model to utility
metrics of possible outcomes. The connection is actionable, in
that it supports decision making based on the applicability,
risks, and costs of different scenarios. If one would take this
one step further, these costs per scenario could greatly reduce
the need for human subjects for validating research results as
cumulative prospect theory will provide us with strong indi-
cations ofwhat decision a humanwill take.

1.1 Cumulative Prospect Theory

Cumulative prospect theory (CPT) is a framework devel-
oped in behavioral economics to model decisions under risk
and uncertainty [14] and has been applied for practical deci-
sion making, e.g., in medicine [17]. CPT models several
aspects of human decision making, such as sensitivity to
how options are framed, non-linear sensitivity to risk, and
loss aversion; based on these factors, a CPT model defines
the utility of a certain decision’s outcome.

Software engineering practitioners are faced with deci-
sion making under uncertainty, so CPT is also a useful
framework in this domain. As a simple example, consider a
manager who is organizing a code review. Two options are
available to them: approach A, which guarantees a value of
$940; and approach B, which gives a value of $1000 with
95 percent probability, and no value ($0) with 5 percent
probability. CPT indicates that most managers will choose
A given its certainty, even though the expected utility of B

is slightly better (as 0:95� 1000 ¼ $950 > $940). This
behavior is a manifestation of risk aversion, which may also
depend on how the problem is framed.

CPT can provide a suitable model of how decisions are
made in software engineering practice as well. As we
show in this paper, empirical data can be used to fit proba-
bilistic models of different outcomes; the probabilities cor-
respond to risks in a CPT model. The latter also acts as a
sort of “high-level interface” for the practitioners and deci-
sion makers, who do not have to understand the statistical
model but can reason in the more familiar terms of risks
and utility values of each possible outcome. Domain exper-
tise remains crucial to build a suitable CPT model: in the
previous example of code review approaches A and B,
domain experts would estimate the profits and costs asso-
ciated with each option.

1.2 Proposed Solution

We combine cumulative prospect theory and Bayesian statis-
tics to assess practical significance of ESE data. Fig. 1 gives
an overview of our approach. We use CPT to model the pos-
sible decisions, how they are framed, and the risks associated
with them. Then, we use Bayesian statistical analysis to infer
the probabilities that quantify the risk of each decision. While
in principle any statistical approach could work, Bayesian
models are better suited because they provide a detailed pos-
terior distribution of the possible outcomes (instead of just
point or interval estimates), which can be seamlessly com-
bined with CPT models. In addition, Bayesian models are
easy to interpret [5] and naturally incorporate expert knowl-
edge and assumptions through the use of priors.

Our approach is applicable to many ESE topics and sub-
ject areas, as long as the investigation is suitable for a quan-
titative analysis based on statistical methods. In this paper,
we do not investigate the connection between our proposed
framework and qualitative analysis in empirical software
engineering, as both approaches are complementary. In
other words, we assume that there are strategies to identify
and measure values that can be translated into decisions
framed as weighting functions.

As an illustration (Fig. 2), consider that we investigate
whether to favour the execution of a bigger, costlier, but
more thorough test suite versus smaller, cheaper, and rela-
tively superficial test suites. Using data collected from min-
ing software repositories and an expert’s opinion, we can
create a generalized linear model (GLM) to analyze how the
different sizes of test suites affect executions costs, as well

Fig. 1. Assessing practical significance using a combination of Bayesian analysis and cumulative prospect theory.
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as the number of failures that are revealed and must be
fixed. Ultimately, the model provides input to calculate the
utility of both types of test suites in connection to different
probable scenarios, such as the test execution costs based on
the unlikely situation of revealing too many failures.

We evaluate the feasibility of this approach in three steps.
First, we reanalyze a previously published empirical study [16]
using Bayesian techniques. Second, we combine the Bayesian
model with CPT under plausible practical application scenar-
ios. Third,we ask practitioners to compare the information pro-
vided by the original study [16] to that derived by our
combination of Bayesian statistics and CPT, and to indicate
which better supports their decisions. Overall, we demonstrate
how to build a rigorousmodel of practical significance, and the
advantages of reporting significance results in a way that is
grounded in concrete decision-making scenarios—in contrast
to the traditional approach that presents general statistics in a
more abstract form.

In summary, the contributions of this paper are:

� An approach that connects statistical inference and
practical significance to frame empirical findings in a
way that supports practitioners in making decisions.

� A case study of applying cumulative prospect theory
in ESE.

� A reanalyses of previously published data [16],
which revisits the original findings and extends
them to a context of practical significance. Our analy-
sis is reproducible and available online.1

This paper is structured as follows. Section 2 presents the
background for both Bayesian analysis and CPT, so as to
introduce readers to the essential terminology and steps of
both techniques. We present our analysis in Section 3, fol-
lowed by the application of CPT in Section 4. The results
from the validation of our approach with practitioners are
presented in Section 5. In Section 6 we discuss the implica-
tions of our work, while in Sections 7 and 8 we present
threats to validity and conclude the paper.

2 BACKGROUND AND RELATED WORK

In order to present the background of our research, we
introduce the essential terminology and techniques of
Bayesian statistical analysis and CPT. We also discuss
related work in ESE literature that also targets the practical
impact of research findings.

2.1 Bayesian Analysis

Data analysis relies on statistical analysis to infer properties
of a population that follows an underlying probability

distribution. Since the actual underlying distribution is
often unknown, statistical inference estimates probabilities
by generalizing the frequencies observed in finite samples of
the population.

There exist different families of probability distributions,
such as uniform, normal, binomial, Poisson, Beta, etc. Each
distribution in a certain family is characterized by the val-
ues of one or more parameters u1; . . . ; un, which fix the dis-
tribution’s shape. For instance, a normal (also called
Gaussian) distribution has two parameters: mean m and
standard deviation s. The key goal of statistical analysis is
to estimate a distribution parameter u from sampled data D
that was drawn from the population. In Bayesian statistics,
this is expressed as estimating the probability P ðu jDÞ of the
parameters given the data, which obeys Bayes’ theorem

P ðu jDÞ ¼ P ðD j uÞ � P ðuÞ
P ðDÞ , where: (1)

� P ðu jDÞ is the posterior distribution and is what we
want to estimate.

� P ðD j uÞ is the likelihood that the data was drawn from
a distribution with parameters u.

� P ðuÞ is the prior, which encodes prior knowledge by
constraining plausible values for the parameters u

independent of the data.
� P ðDÞ is simply a normalizing constant.
As a concrete example, imagine that we are investigating

the number of tests failing during a build of a certain proj-
ect.2 We would like to infer the failure rate, i.e., the probabil-
ity pi of a test failing in an arbitrary build. The binomial
distribution family represents sequences of n events each
with a fixed probability of success p. In our example, the n
events are the tests that are executed in each build, and pi is
the probability of failure for test i. Thus, draws from the dis-
tribution Binomial ðn; pÞ capture the likelihood of observing
a certain number of tests failing given parameters n and p.

The case study in Section 3 demonstrates these concepts
in greater detail. For additional technical details about how
Bayesian analysis is applied, we refer to [5] and [12]. The
key features of a Bayesian approach, which makes it best
suited to analyze practical significance are:

1) It can incorporate prior knowledge.
2) It produces a posterior predictive distribution (PPD).

a) The PPD is conditioned on the observed data.
b) The conditioning allows us to update our beliefs

of the unknowns.
c) The variation indicates any remaining uncer-

tainty in our beliefs about the unknowns.

Fig. 2. An illustration of our approach using BDA and CPTapplied to the decision between bigger or smaller test suites for cost-effective testing. The
GLM enables the prediction of failures based on the test suite sizes via a Binomial likelihood. The expert (senior test manager) provides the cost
model of running a test suite (e.g., including costs for both size and fault fixing) that is then framed as choices between test suite sizes with corre-
sponding utility values. Practitioners then choose the outcome with higher prospect utility.

1. https://github.com/torkar/docker-b3
2. For the sake of simplicity, we assume that a test either passes or

fails (no flaky behavior or timeouts are possible).
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d) It produces estimates of the standard deviation
of the marginal posterior distributions.

3) It produces Bayesian uncertainty intervals, which quan-
titativelymeasure degree of belief after seeing the data.

2.2 Cumulative Prospect Theory

A fitted Bayesian model can be used to simulate new scenar-
ios that generalize those in the observed data. Each scenario
is associated with different outcomes, costs, and potential
benefits. In the example of testing outlined in the previous
section, different testing practices lead to different failure
rates and have different application costs (for example
because they require more developers); on the other hand,
failing tests have to be fixed, which introduces additional
costs. We use cumulative prospect theory [14] to support a
decision-making process, which is based on scenarios that
are modeled statistically.

CPT is a widely used decision-making modeling frame-
work, which accounts for experimentally demonstrated fea-
tures of human behavior when making a decision:

� Loss aversion is the preference for avoiding losses
over gaining advantages—even when the latter
would outweigh the former.

� Framing effects refer to the widespread psychological
phenomenon that the same data may lead to very
different choices according to how (in which sce-
nario) the data is presented.

� Nonlinear preferences: humans associate risk to the
0–100 percent probability scale in a way that is not
uniform. For example, the difference between a 99
and 100 percent risk is considered more significant
than the difference between a 10 and 11 percent risk.

� People tend to be risk averse, except in specific scenar-
ios where they are more likely to actively seek risks:
when there is a small probability of winning a large
prize and when choosing between a sure loss and a
substantial probability of an even larger loss.

� Source dependence refers to the influence of domain
expertise on preferences. Decision makers usually
feel more confident within their area of expertise
even when they have limited and noisy data—often
even more confident than when they have detailed
data about an area they are not familiar with [18].

Concretely, CPT represents a decision using a function n :
X ! R that maps each possible outcome x 2 X of the deci-
sion to its value nðxÞ. A positive value is a gain, and a nega-
tive one is a loss. We associate each outcome x with a
weight that reflects the outcome’s probability corrected to
account for how it is subjectively perceived (according to
the phenomena listed above). More precisely, CPT provides
standard weighting functions that can be applied to any
probability distributions of outcomes to derive the
“subjective” probability associated with any outcome. The
subjective expected utility value EUðXÞ of the decision is
the weighted average of the value of all possible out-
comes—each weighted by its subjective probability, which
in turn is based on the outcome’s “objective” probability
(from a statistical model).

Continuing the example of the failing tests, we imag-
ine a manager choosing between two testing approaches

A and B. Each approach leads to a series of outcomes
with different probabilities. The probabilities come from
a statistical analysis of the available data from using A
and B in the past. For instance, we may learn that
approach A: 1) fails to produce bug-revealing tests in 3
percent of its applications; 2) generates too many redun-
dant failing tests in another 3 percent of applications; 3)
and works fairly successfully in the remaining applica-
tions. According to CPT, each outcome’s probability is
weighted so as to reflect loss aversion or other subjective
phenomena. For instance, if the losses associated with
outcomes 1 and 2 above are very large, the overall
expected value of testing approach A should be small
because the person in charge of the decision is more
likely to avoid any risk of large losses.

An additional advantage of using CPT on top of a pure
probabilistic model is that the notion of subjective expected
value of a decision is intuitive and understandable by deci-
sion makers—building a kind of abstraction layer on top of
a harder-to-interpret probabilistic model.

2.3 Practical Significance in ESE

Practical significance is important in an engineering discipline
where research should inform “solutions to practical prob-
lems” [19].3 Indeed, the emergence of empirical software engi-
neering was driven in part by the desire to identify
effectiveness and significance in practice. For example, one of
the early guides to ESE research [20] highlights the need to
“differentiate between practical and statistical significance”.

Despite this early agenda, practical significance is rarely
explicitly discussed in software engineering research publi-
cations [6]. When it is, there is a tendency to conflate it with
statistical measures of strength of evidence. Unfortunately,
even when rigorous statistics are applied to carefully con-
trolled experiments, they may not generalize to realistic
conditions [21], [22], [23].

Other kinds of evidence (besides controlled experiments)
may also support claims of practical significance. For exam-
ple, case studies support generalization by providing
instances that probe the boundaries of the applicability
domain [24]. Another approach is framing software engi-
neering as a design science [8], [25], which focuses on the
feedback loop between problem space and solution space.
Then, practical significance can be tested when a solution is
deployed in a practical setting.

Another important aspect of generalizability, and hence
practical significance, that can be evaluated empirically is
scalability to realistic settings [25]. Even more fundamental
is that the investigated problem must be important to indus-
try practitioners. This is tricky because the practitioner’s
view is typically tied to a specific problem context. For
example, [7] mentions the example of a defect prediction
study that focuses on predicting defects. Most of the value
for practitioners does not lie in defect prediction per se but
rather in how this information can guide decisions and
explain the origin of defects. In this paper, we use CPT to
model such connections between a technique’s raw perfor-
mance and its value in terms of decision making.

3. Still, one’s definition of “practical” may differ from another’s.
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Effect sizes and replications are the main tools of statisti-
cal analysis that can support assessing practical significance.
Effect size measures connect the outcomes of statistical tests
to a measure of real-world impact. There are numerous
effect size approaches, including R2 in regression models
(portion of variance explained), regression coefficients,
Cohen’s d (standardized mean difference), Hedge’s g, Cliff’s
d (differences for ordinal data), and odds-ratios to capture
relative effects.4

When researchers translate a raw effect size number into
practical terms (moving from the estimate to population
effects), they often use Cohen’s t-shirt sizing approach
(S, M, L). Correll [26] describes in detail the problems with
this categorical approach to effect size, including inconsistent
bin thresholds, and Cohen himself said binning was a last
resort: “contextual, subjective judgment of observed effect
sizes must be made and a ritualized interpretation avoided
(emphasis ours, as quoted in [27])”. The effect size is impor-
tant, because frequentist analysis uses estimates of expected
effect size to determine the appropriate sample size, given a
particular power threshold (typically 80 percent). Notwith-
standing these existing and well-investigated effect size met-
rics, in empirical software engineering research reporting
effect sizes is not widespread [27], albeit, as can be seen from
[6], a positive trend is visible (when not controlling for the
possibility that journals publish more papers on a yearly
basis). More importantly, effect size ignores the context of
decision making. A raw number reflecting (for example) the
standardized difference of means is hard for practitioners to
interpret and must be contextualized. Decision analysis is the
use of results from statistical inference to support decision-
making in a specific context, for which effect size or, as in this
paper, posterior predictive distributions, serve as inputs.

3 CONNECTING STATISTICAL SIGNIFICANCE WITH

PRACTICAL SIGNIFICANCE

Statistical significance in itself does not imply that an effect
has practical value or utility. Rather, practical significance is
assessed on top of a statistical model that summarizes the
data and its variability. As a concrete case, to show how
such an analysis can be performed, we first analyze a previ-
ously published study on testing practices [16], following
the first four steps in Fig. 1. Below, we provide further
details on this case study, its statistical modeling and signifi-
cance, as well as noting differences between different statis-
tical approaches.

3.1 The Case Study

The study described in [16] compares exploratory testing
and testing based on documented test cases. In exploratory
testing, developers are free to experiment with the system in
an interactive fashion. In test-case based testing, developers
are required to document their work by writing test cases
and oracles, which can be re-executed at any later time.

The experiment we consider here involved 35 developers,
classified into two categories according to their experience
(years spent as software developers): 12 less experienced

testers, and 23 more experienced ones. The developers
included both industrial practitioners and software engineer-
ing students. Unsurprisingly, on average, members of the for-
mer group had more experience than members of the latter;
but some students were still classified as “more experienced”
and some practitioners as “less experienced”.

Following a 2� 2 cross-over experimental design, each
developer was randomly assigned to one of the two testing
approaches (exploratory or test-case based), so that each
combination of approach and experience included a similar
number of developers. After the first session the developers
switched techniques.

During the experiment, developers had to apply their
assigned testing approach to find as many faults as possible
when testing an integrated development environment
(jEdit). The number of faults found during the allotted
time (two 90-minute sessions) measured each developer’s
effectiveness—which should reflect, thanks to randomization
and experimental design, the intrinsic effectiveness of dif-
ferent testing techniques. Table 1 summarizes the experi-
mental data.

3.2 Statistical Modeling

The main goal of our statistical analysis is inferring a proba-
bility distribution of the number of faults detected by devel-
opers testing the system. Thus, the outcome is a natural
number (N) faults, which depends on two categorical pre-
dictors capturing the testing approach (exploratory or test-
case based) and the developer’s experience (low or high) in
each trial.

Population-Level Effects Model. Let us first consider a gen-
eral linear model M1. Since faults is a non-negative integer
variable representing a count, a Poisson distribution is a
suitable likelihood distribution [12] relating predictors and
outcome, as shown in Eq. (2) in M1’s definition below. Both
faults and � have a subscript i, which makes it explicit that
we evaluate the model for each subject i among all 35 devel-
opers (the dependence on the subject is usually left implicit;
we make it explicit so that it is clear what depends on the
subject and what does not). The Poisson distribution’s rate
� is the log-linear function (Eq. (3)) of the predictors
approach and experience—each modeled as a binary indicator
variable for the two possible approaches and experience
levels. Finally, to apply Bayes’ theorem we need to define
priors for M1’s parameters a, ba, and be. A standard choice,
which works well in most cases, is a weakly-informative
prior such as a normal distribution with zero mean and
moderate standard deviation, as shown in Eq. (4). This prior
does not bias the effect that the predictors may have

TABLE 1
Summary Statistics About the Experimental Data

faults found through testing

experience n median mean sd min max

low 12 3 4.3 4.3 0 20
high 23 5 6.0 5.3 0 18
any 35 4 4.9 4.7 0 20

For each category of developers (low or high): the number of developers, and the
median, mean, standard deviation, minimum, and maximum number of faults
each of them found during the experiments.

4. See https://rpsychologist.com/cohend/ for an interesting visual
tool for exploring effect sizes using Cohen’s d.
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towards positive or negative values, and it still allows for a
large range of possible parameter values—even though
extreme values (corresponding to very large effects) are
increasingly unlikely.5 Here is the overall definition ofM1.

faultsi � Poissonð�iÞ (2)

log ð�iÞ ¼ aþ ba � approachi þ be � experiencei (3)

a;ba;be � Normalð0; 1:5Þ: (4)

Fitting M1 using the data gives a joint probability distri-
bution on the parameters a;ba;be, which together identify a
posterior probability distribution of faults given the data.
According to Eq. (3), the parameters connecting predictors
to outcome are the same for every subject in the experiment
(that is, they do not depend on i); thus M1 is a population-
level effectsmodel.6

Varying Effects Model. Bayesian analysis stresses the
importance of modeling data under different assumptions.
Therefore, let us consider ways of extending M1 into a
finer-grained M2, which may capture additional character-
istics of the data under analysis.

By looking into the data more closely, we note that over
18 percent of the developers found no faults during the
experiments; that is, outcome faults ¼ 0 occurs more fre-
quently than what a Poisson distribution predicts. To
account for this, we use a zero-inflated Poisson distribution
as likelihood inM2. As shown in Eq. (5), such a distribution
depends on a rate �, like in a regular Poisson, but it may
produce a count of zero with probability p in each draw.
However, unlike �, for parameter p we use a logit function.
As shown in Eq. (8), we assume that only variable approach
may affect p since all cases of developers finding zero faults
occurred when using test-case based testing.

The other modeling assumption of M1 that we want to
reconsider are the population-level effects. To account for
the possibility that each subject i may have different intrin-
sic skills at finding faults, we add an intercept term
aSUBJECTSi to our linear regression (Eq. (7)). This term repre-
sents the “baseline” contribution of each subject to the num-
ber of faults that are detected. In summary, this makesM2 a
varying effectsmodel.7

As in M1, M2’s priors are weakly informative; the stan-
dard deviation ss, for the subject-specific intercept
aSUBJECTSi , follows a half Cauchy distribution (Eq. (9)), which
is a common choice [28] for a standard deviation (a non-neg-
ative real value). Here is the overall definition of M2

faultsi � ZIPoissonðpi; �iÞ (5)

log ð�iÞ ¼ aþ ba � approachi þ be � experiencei (6)

þaSUBJECTSi (7)

logitðpiÞ ¼ ap þ bp � approachi (8)

aSUBJECTS � Normalðms; ssÞ (9)

a;ba;be � Normalð0; 1:5Þ (10)

ap;bp;ms � Normalð0; 1:5Þ (11)

ss � Cauchyþð0; 1Þ: (12)

As forM1, fittingM2 using the data gives a joint probability
distribution on the parameters a;ba;be;aSUBJECTS;ap;bp,
which together identify a posterior probability distribution of
faults given the data.

More precisely, the posterior is derived using statistical
frameworks such as Stan [29], which work by sampling
numerical approximations. Therefore, in practice, the poste-
rior is not an analytical expression but rather a computa-
tional object.

Model Comparison. We introduced M2 as a refinement of
M1 based on some features of the data under analysis. This
should make M2 fit the data better, but it may also increase
the risk of overfitting. Fortunately, Bayesian analysis offers
techniques to quantitatively compare models selecting those
that achieve the “best” trade-off between fitting the data
accurately while avoiding overfitting.8 To this end, we use
an information criterion. An information criterion is a rela-
tive measure of how well a model performs out-of-sample
predictions compared to other competing models.

In our case, the PSIS-LOO state-of-the-art information
criterion [30] indicates that M2 outperforms M1 in out-of-
sample prediction (see the replication package for a thor-
ough explanation of this part of the analysis). Therefore, we
useM2 in the rest of our analysis, since it captures trends in
the data better, while avoiding overfitting.

3.3 Statistical Significance

The posterior is a probability distribution over the parame-
ter space, which quantifies the degree of belief in each possi-
ble combination of parameter values. Therefore, it captures
probabilistic features of the process we are analyzing,
namely how fault detection is affected by the chosen testing
approach and the developer’s experience.

From the posterior’s joint probability distribution we can
compute the marginals for the parameters of interest. For
example, Fig. 3 displays the marginals of coefficients ba and
be. Parameter ba models the effects of the testing approach
used by each developer (named ‘Technique’ in the figure).9

Since ba is estimated to be very clearly negative, it means
that the chosen testing approach consistently correlates
with the number of faults that are found. Since approach is a
binary variable, with 0 corresponding to exploratory testing
and 1 corresponding to test-case based testing, a negative
coefficient ba means that exploratory testing is associated

5. Choosing even weaker priors, such as completely flat ones, would
not affect the overall inference but may make sampling less efficient.

6. Population-level effects are often known as “fixed” effects.
7. Varying effects are often known as “random” effects.

8. Posterior predictive checks were conducted for each model to
judge the degree of fit.

9. Note that we use 94 percent rather than 95 percent intervals in the
figure since the former is customary in the field of CPT.
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with more faults being detected. In contrast, parameter be is
likely positive. Since it models the effects of developer expe-
rience (another binary variable with 0 corresponding to low
experience) it means that more experienced developers
tend to find more faults. However, be’s distribution in Fig. 3
has a non-negligible overlap with zero. Hence, we have
weaker confidence in the significance of experience than we
have in the significance of the testing approach.

Table 2 summarizes the posterior of all population-level
parameters ofM2. Through them, we can analyze other fea-
tures of our fitted model. For instance, bp is clearly positive,
which means that test-case based testing is associated with
a higher probability of detecting no faults.

Towards Practical Significance. By analyzing a posterior
probability distribution we can move from statistical signifi-
cance to practical significance. Since a full distribution is
available, we are not limited to measuring probability inter-
vals of the model’s parameters, but we can also calculate
probabilities of outcomes—that is what is the expected num-
ber of detected faults in different scenarios.

Concretely, we derive different marginal distributions
from the posterior according to specific usage scenarios that
we may want to analyze. For example, to estimate the
expected number of faults that would be detected by a
developer using exploratory testing (approach ¼ 0) or by
one using test-case based testing (approach ¼ 1). Fig. 4 (left
figure) shows the ranges spanning a 94 percent probability
interval, which not only confirm that exploratory testing is
expected to be more effective but quantify the expected dif-
ference (roughly three times as many faults found).

A similar analysis comparing developers with different
experience, in Fig. 4 (right figure), suggests instead that the
fault-detection performance of developers with different
experience can still be very similar as the two intervals have
a large overlapping—even though more experienced devel-
opers are slightly more effective on average.

Table 3 reports the same information numerically, and
extends the analysis to other scenarios such as comparing
the effects of developer experience on the number of faults
detected using exploratory testing. In Section 4 we will
show these probabilities buttress a rigorous analysis of prac-
tical significance.

3.4 Bayesian Versus Frequentist
Analysis of Significance

Overall, the high-level results of our Bayesian reanalysis
are consistent with those of the original study [16]: explor-
atory testing performs significantly better than test-case
based testing when looking at the number of faults found;
the impact of experience is ’clearly’ significant in the origi-
nal study, while in the reanalysis one can question that.
Unlike our reanalysis, the original study used frequentist
statistics—similarly to previous analyses of the same pro-
cesses [31], [32].

Even though the big picture does not change—and there
is no reason it should—the distinctive features of Bayesian
statistics make our reanalysis results more directly useful to
assess practical significance in a robust and insightful way.
The Bayesian emphasis on modeling entails that we could
consider and compare different competing statistical

Fig. 3. Posterior marginal probability distributions of be (experience, top)
and ba (approach, bottom named ‘Technique’). The thick lines mark the
medians, and the yellow areas cover 94 percent of probability mass.

TABLE 2
Summary Statistics of all Population-Level

Parameters inM2: Mean (estimate), Standard
Deviation (error), and Lower and Upper Endpoint
of the 94 percent Probability Interval (credibility

interval) of the Parameter’s Posterior

parameter mean std. dev. 94% CI

a 1.95 0.10 1.75, 2.13
ba �1.47 0.18 �1.83, �1.13
be 0.33 0.15 0.03, 0.63
ap �4.61 1.35 �7.75, �2.56
bp 3.39 1.61 0.56, 6.80
ss 0.29 0.09 0.10, 0.45

Fig. 4. Left: expected number of detected faults with 94 percent probabil-
ity for developers using exploratory testing and test-case based testing.
Right: expected number of detected faults with 94 percent probability for
developers with low experience and high experience.

TABLE 3
Expected Number of Faults Detected for Different

Combinations of Predictors inM2

Each row reports the range of faults corresponding to 94 percent probability
and the mean on the posterior.
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models on the grounds of their characteristics and perfor-
mance. More important, features of the chosen model M2

strengthen our understanding of the studied phenomenon:
zero-inflation indicates that a significant portion of the trials
found no faults; a varying-effects term accounts for the sig-
nificant individual differences among developers. These
model features do not affect the conclusion that one testing
approach performs significantly better than the other; but
they help quantify the relative weight of different factors
more precisely and in terms of phenomena in the actual
problem domain.

The other key feature of Bayesian analysis that strength-
ens our understanding of the studied phenomena is the
capability of deriving probability distributions of the out-
come variables. In our case, we derived the expected num-
ber of faults a pool of developers with certain characteristics
would find. This expresses the “significance” of a certain
difference between treatments in terms of measures that are
relevant in practice in the domain of testing processes.

As we show in the next section, this feature is also the
basis to combine a statistical model of the data with features
of how humans assess probabilities and make decisions—
leading to an all-round assessment of practical significance.

4 ARGUING PRACTICAL SIGNIFICANCE

We want to frame practical significance in a way that it sup-
ports choices between alternatives. Based on our case study,
we imagine a manager who can select a testing approach
(exploratory or test-case based) and developers with lower
or higher experience. To support the manager’s choices, we
quantify the expected utility of each choice: a monetary
value that approximates the gains (if positive) or losses (if
negatives) that are likely to derive from that choice.

Even though our example can be seen as simplistic, it is
grounded on a need that partners in industry had, when
deciding between two test techniques [16]. However, more
complex decisions can also be made, in particular when
involving multiple stakeholders with conflicting views. But,
in those cases one would need to look at game theory as the
underlying decision-making framework [33]. In our case,
one could rather see an alternative, and if you will, more
straightforward, approach.

4.1 Value and Weight Functions

A simple approach would just use the probabilities of differ-
ent outcomes (computed from M2) to average the value
nðxÞ of each possible outcome x of decision X. Instead, we
use cumulative prospect theory to “adjust” the probabilities
so that they reflect how humans are likely to perceive alter-
natives. The expected “subjective” utility EUðXÞ of decision
X is given by the weighted average,10

EUðXÞ ¼
X

x2X
wðP ðxÞÞ � nðxÞ: (13)

where w is a weight function that adjusts the probability P ðxÞ
of each outcome.

In Eq. (13), P can be computed from our posterior proba-
bility distribution. As weight function we can use a stan-
dard function proposed by Tversky and Kahneman [14].
The idea of this function is that intermediate probabilities
are flattened as if they were similar, whereas probabilities
closer to the extremes are accentuated. This reflects the
human perception that tends to conflate small probabilities
with impossibility, and large probabilities with certainty.

We are left with providing a definition of nðxÞ for each
possible outcome x. In our case study, outcome x corre-
sponds to faults ¼ x, that is x faults detected during a test-
ing session. We can associate a monetary value to each
outcome based on the costs and benefits that come with it

nðfaults ¼ xÞ ¼ ðS � xÞ � ðC � hÞ; (14)

where S are the savings for each fault found, C is the hourly
pay of a developer, and h is the number of hours of a testing
session. Since our study’s experiment involved 2� 90 min-
ute sessions, we set h ¼ 3. The manager of a company could
suggest values for S and C. In this section, we take S ¼
$150, C� ¼ $100 for low-experience developers, and Cþ ¼
$200 for high-experience developers. These values are real-
istic values for a small software company in Sweden.

4.2 Utility of Different Choices

Consider three possible choices a manager has to make, and
compute the expected utility according to Eq. (13).

approach: the manager chooses whether developers use explor-
atory testing or test-case based testing; the available devel-
opers are a mix of low-experience and high-experience

experience: the manager chooses whether to hire low-experi-
ence or high-experience developers to do testing; they
will use a mix of exploratory and test-case based testing

exploratory: the manager chooses whether to hire low-expe-
rience or high-experience developers to do exploratory
testing

Whenever there is a mix of options, we assume it reflects
averages in our data (i.e., the sample is representative of the
population).

4.2.1 Choosing the Approach

In this scenario, approach is the choice is between using
exploratory testing or test-case based testing. We use C�¼
$134:38 as hourly developer cost. This is the average per-
person cost in a pool of 35 developers—23 with low experi-
ence and 12 with high experience as in the dataset.

According to Eq. (13), the expected utility of choosing
exploratory testing is EUðexploratoryÞ ¼ $454:3; the
expected utility of choosing test-case based testing is
EUðtest� caseÞ ¼ $8:0. Hence, it is clear exploratory testing
is likely to bring a much higher value.

In addition to expected utility, we can compute the utility
value associated with outcomes with a certain probability. As
is customary in CPT, we split the probability unit interval into
three parts 3, 94, 3 percent and compute utility for each sub-
interval.11 Fig. 5 shows the results for the scenario’s approach:

10. If the outcomes are a continuum, the average should be com-
puted using an integral and cumulative probabilities.

11. We like to present the tails of a distribution, and the tails should
be much smaller than the bulk of the distribution.
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using test-case based testing would lead to significant gains
($315:71) with 3 percent probability; to significant losses
(�$134:29) also with 3 percent probability; and to modest
gains ($15:71) in the vast majority of cases (94 percent proba-
bility). In contrast, using exploratory test-case based testing
makes any losses vanishingly unlikely to happen.

4.2.2 Choosing the Experience

In this scenario, experience is the choice between using devel-
opers with low or high experience. According to Eq. (13), the
expected utility of hiring low-experience developers is
EUðlowÞ ¼ $304:50, and the expected utility of hiring high-
experience developers is EUðhighÞ ¼ $18. This means that,
with the combination of exploratory and test-case based
testing seen in the case study, high-experience developers
are not worth what they cost; low-experience developers
achieve a more favorable trade-off. Fig. 6 shows the break-
down of utility for different ranges of probability in the sce-
nario regarding experience.

Remember that these results depend on the assump-
tions about the cost of undetected faults and the hourly
cost of developers. If, for example, each detected fault
would bring a gain of $1000—rather than $150 as we
have assumed so far—the expected utility of hiring low-
experience developers would become $6700, smaller than
the expected utility $9400 of hiring high-experience
developers. In other words, if finding as many faults as
possible is critical, even the modest performance advan-
tage of high-experience developers may be worth the
higher costs.

4.2.3 Choosing the Experience, Given Exploratory

Testing

In this scenario, exploratory is the choice, again, between using
developers with low or high experience, but all of them use
exploratory testing. In this case, the expected utility of hiring
low-experience developers is EUðlowþ exploratoryÞ ¼ $750;
the expected utility of hiring high-experience developers is
EUðhighþ exploratoryÞ ¼ $900. More experienced developers
are worth their higher pay in this scenario; but the difference
is small, and hence a manager may also include low-experi-
ence developers if high-experience ones turn out to be hard
to find or unavailable. Fig. 7 shows the breakdown of utility
for different ranges of probability in the scenario of experience.

4.3 Usage of CPT to Foster Practical Significance

In summary, we used CPT to evaluate the practical impact of
our investigation with respect to both the testing approach and
the experience of testers. We designed three choice problems
related to the factors investigated in our experiment, and pro-
vided different outcomes for each choice problem, alongwith a
suggested decision based on the utility of those choices.

Cumulative prospect theory allows us to explicitly discuss
and present practical significance by creating choice problems
based on Bayesian analysis. The original study did not
include a discussion about the practical impact of its results
in connection to the costs of a fault or other contextual data
from industry. Using our approach in a hypothetical context
with costs for faults and salaries, we could instead illustrate
how statistical predictions and CPT support decision making.

We should be clear that our values for costs of faults and
salaries are arbitrarily chosen—though based on estimates
of the Swedish job market—and could change dramatically
according to the software’s domain, the characteristics of
the company, and many other factors [34]. Our only
assumption is that it is somewhat possible to estimate such
costs by collecting the necessary information from research,
practitioners, and common knowledge.12 Whenever this
assumption is satisfied, this approach is applicable.

Fig. 5. Utility for different choices in scenario approach: the manager
chooses whether developers use exploratory testing (ET) or test-case
based testing (TCT).

Fig. 6. Utility for different choices in the scenario for experience: the
manager chooses whether to hire developers with low (LE) or high (ME)
experience.

Fig. 7. Utility for different choices in the scenario exploratory: the man-
ager chooses whether to hire developers with low (LE) or high experi-
ence (ME) to perform exploratory testing.

12. When a precise estimate is unavailable, the model could also
incorporate uncertainty in the estimates as probability intervals, and cal-
culate how the uncertainty in the estimates translates to uncertainty in
the outcomes. Interested readers can try this out in our analysis using
the supplementary material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2020.3048991.
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5 VALIDATION WITH PRACTITIONERS

Section 4 demonstrated our approach of applying cumula-
tive prospect theory on a posterior probability distribution
to argue significance in terms of costs and benefits in prac-
tice. On the other hand, statistics alone can—and often is—
used to discuss significance from a statistical perspective.
To ascertain whether practitioners and domain experts do
indeed find a presentation of significance in terms of utility
clearer than a traditional statistical analysis, we conducted a
qualitative empirical validation. The rest of this section
describes its design and results.

5.1 Validation Design

The overall goal of the validation is to compare two differ-
ent ways of framing significance results: 1) using standard
(frequentist) statistical techniques; and 2) using our combi-
nation of Bayesian analysis and CPT. The comparison is
from the point of view of stakeholders using statistically sig-
nificant results to make a decision.

Participants. We contacted 22 managers working at two
large companies in Sweden who agreed to participate in
this validation. The participants are a convenience sam-
pling, and come from both middle (15 participants) and
upper (7 participants) management positions. None of the
participants were involved in this research or in the original
analysis of testing approaches [16].

Instruments. We provided all participants with two sum-
maries of the comparison between exploratory and test-case
based testing: 1) a summary based on the statistics and
results of the original study [16] (using frequentist statis-
tics); 2) a summary based on the statistics and results of the
present paper’s re-analysis (using Bayesian statistics and
CPT). Participants were asked to read the summaries and
answer two yes/no questions about each of the summaries:

approach: Based on the presented information, would you
use exploratory testing?

experience: Based on the presented information, would you
use more experienced testers?

After answering each question with yes or no, participants
also rated, on a 1–5 Likert scale, how confident they were in
their answer (1: not confident at all; 5: completely confident),
i.e., the construct used to assess which approach was better.

The questionnaire material was prepared by two of the
authors and validated by two other authors.13 The hourly costs
for junior/senior developers and the costs for a bug was set

according to the participating companies’ input, i.e., $60, $70,
and $10,000, respectively. The questionnaire was then used at
two workshops. One of the authors was available to answer
any questions about the questions or the summaries.

We only retained 18 questionnaires out of 22—those that
had all required information filled in.

5.2 Validation Results

The results of the questionnaires are summarized using
diverging bar charts in Figs. 8 and 9. Each horizontal bar is
centered on the middle point of the Likert scale (value 3)
and spans the percentage of participants answering with
low (values 1 and 2 on the Likert scale spanning the left of
the middle point) or high (values 4 and 5 on the Likert scale
spanning the right of the middle point).

Fig. 8 summarizes the results concerning approach. In this
case, the decisions made by participants do not depend on
how the data is presented. However, the summary based on
our approach combining Bayesian models and CPT tends to
increase the confidence in the decision: 61 percent of partici-
pants were fairly or completely confident—instead of 39
percent with the “traditional” summary.

Fig. 9 summarizes the results concerning experience. In
this case, the summary based on our approach convinced
all participants to choose more experienced testers, whereas
the “traditional” statistical summary convinced only 78 per-
cent of them. As in the answer to the other question, Bayes-
ian models and CPT tend to increase the confidence in the
decision: 39 percent of participants were completely confi-
dent—instead of 6 percent with the “traditional” summary.
In both cases, confidence in answering this question was
higher than in answering question approach.

By analyzing the recorded discussions after the session
we received a qualitative, richer, view on the perception the
subjects had concerning the two approaches, which we
define as Case 1 (the original study’s results) and Case 2
(the results we propose in this paper).

First, it is worthwhile to note that the subjects were only
asked, in a group session, two questions to start the discus-
sions concerning Case 1 and 2: How do you make sense of
the results in [Case 1 or Case 2]? Second, the subjects spent
approximately twice as much time discussing Case 2. Quite
simply, the subjects exhausted Case 1 much sooner. If we
consider two very representatives quotes concerning Case
1, we will see why this could be the case:

Quite difficult to understand. In particular the difference
between more or less experienced developers was very
unclear in [Case 1].

Fig. 8. Responses from 18 subjects about question approach: “Would
you use exploratory testing?”.

Fig. 9. Responses from 18 subjects about question experience: “Would
you use more experienced testers?”.

13. The questionnaire is available in the replication package.
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and,

I was more looking into the summary [the conclusion] ...it
said it was no significant difference [between more or less
experienced developers].

The first quote, which is representative of many com-
ments, indicates that Case 1 is more difficult to understand.
The second quote could be an indication that Case 1’s use of
frequentist statistics, where we fall back on the arbitrary
95 percent significance level, did not encourage them to
look further.

Concerning Case 2 the following quotes paint another
picture:

Very clear. It becomes so easy [...] makes me instead think
about other things [...] how was data collected?

,

The example [Case 2] made me start thinking more about
other things that could affect the effectiveness [of the two
techniques].

, and

We can look at a research paper and interpret it from our
[the company’s] perspective.

This validation provides some preliminary evidence that
presenting significance results using a combination of
Bayesian statistics and cumulative prospect theory might
help increase the confidence in a decision between alterna-
tives—even when the outcome of a decision is not greatly
affected since the underlying data remains the same.

6 DISCUSSION

We have presented a method for how to assess and argue
for the practical significance of empirical software engineer-
ing results. By combining Bayesian Data Analysis (BDA)
with systematic evaluation of outcomes, using Cumulative
Prospect Theory, different scenarios can be simulated and
compared. While the posterior probability distribution from
BDA summarizes the (scientific) knowledge gained by the
research, the scenario simulation can help practitioners con-
nect to concrete situations and, thus, increases the practical
significance of the research while also informing decisions.
This is supported by our evaluation with managers at two
companies in the software industry.

Applying this approach in other settings is straightfor-
ward. It applies anywhere there is a quantifiable outcome
for a technique, e.g., effort estimation or bug detection. The
caveat is that measurements are only as good as their con-
struct validity and the precision of the measurement. In sit-
uations where it is very hard to quantify the value of
different outcomes it will be hard to apply the technique.

To apply the approach, we follow the steps outlined in
Fig. 1. To choose value and weighting functions, an initial
approach is to choose a function that is a simple linear/expo-
nential/sigmoid, as these three categories capture most of the
valuation functions we have seen. Asking practitioners for
three or four values and selecting between these three catego-
ries should then allow a suitable value function to be fitted.
Other approaches are beyond the scope of this article but
could include fuzzy logic, for example [35].

In situations where the data and/or model is more com-
plex than the case we re-analyzed here, e.g., when there are
more factors or they interact in affecting the dependent vari-
able(s), we argue that the proposed methodology should be
relatively more valuable. This is because humans would
have a relatively harder time judging the scenarios or
understanding the effects if there are complex or non-linear
interactions. Simulation and concrete metrics as a basis for
comparison thus will be more important.

There is a risk that the simplicity encouraged by the use
of CPT or, really, any method that considers few factors and
assigns them simple numerical values, would lead software
engineers and managers to not consider the many factors
that are critical to real-world decision making [36]. For an
obvious example, in the case studied here, it would not be
wise for a manager to simply prefer a more experienced
engineer over a less experienced, without considering how
they would fit into the development team. However, we
argue that practitioners understand this and do not expect
research to fully cater to their everyday situation. Also, we
argue that this is a risk with the underlying study itself
regardless of the way the collected data is then analyzed.
However, we still advise caution in the claims that one
makes based on the type of analyses proposed here; the
additional clarity offered by summarizing specific outcomes
in simple numerical values should not be misused.

In closing, we note that there is research on how to pres-
ent probabilities and research results for better effect [37]
and that there has also been several criticisms of CPT [36],
[38]. We leave it to future work to explore alternatives to
CPT, in this regard.

7 THREATS TO VALIDITY

The canonical structure used to discuss threats to validity
mainly targets experimental design and sub-sequence statis-
tical analysis; hence it does not fit this work very well.
Instead, we present our analysis of threats to validity as
“bad smells” of analysis work [39].

1) Not interesting. (Research that has negligible software
engineering impact.) The problem of analyzing prac-
tical significance is itself relevant and significant in
practice, as demonstrated by previous work on sta-
tistical analysis that we summarize in Section 2.

2) Not using related work. (Unawareness of related work
concerning RQs and SOA.) Section 2 also discusses
the previous approaches to arguing practical signifi-
cance, and their limitations.

3) Using deprecated and suspect data. (Using data out of
convenience.) Our case study is a reanalysis of exist-
ing data, which was recently analyzed in a peer-
reviewed publication [16].

4) Inadequate reporting. (Partial reporting, e.g., only
means.) One of the key features of Bayesian statistics,
which we propose as a basis for a more thorough
analysis of practical significance, is its focus on
modeling complete probability distributions instead
of only point estimates.

5) Under-powered experiments. (Small effect sizes and lit-
tle theory.) While we did not perform power analysis
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explicitly, model comparison and other diagnostic
techniques of Bayesian data analysis are useful to
choose models based on their effectiveness in prac-
tice and in theory.

6) p < 0:05p < 0:05 and all that. (Abuse of null hypothesis test-
ing.) Null-hypothesis testing is manifestly in contrast
to the statistical modeling approach we propose.

7) Assumptions of normality and equal variances. (Impact
of outliers and heteroscedasticity.) In our case study,
we use a (multi-level) generalized linear model with
a Poisson likelihood. Additionally, we employed
multi-level modelling, which helps avoid overfitting
and handle outliers appropriately.

8) Not exploring stability.We did not discuss them in the
paper for brevity, but we ran all recommended diag-
nostics of Bayesian analysis to ensure that there are
no stability problems in the fitted models used in
our study, this includes prior predictive checks.

9) No data visualization. We used data visualization to
complement numeric data—focusing on the key
measures of interest.

10) Not tuning, not exploring simplicity, and not justifying
choice of learner (overfitting). In our case study,
we explored two competing models, and chose one
based on both theoretical considerations and the
information criterion concerning out-of-sample pre-
dictive performance. Thus, when tuning our models,
we considered models of different complexity, and
we employed techniques to reduce the risk of
overfitting.

8 CONCLUSION

We presented an approach to argue practical significance in
empirical software engineering. Our approach develops a
Bayesian model of the data, then it applies cumulative pros-
pect theory on top of the model to incorporate a quantitative
notion of utility and how probabilities are subjectively per-
ceived by humans facing a decision. We demonstrated the
approach on data from a previously published study com-
paring exploratory testing to test-case based testing [16].

To ascertain whether our presentation of statistically sig-
nificant results is indeed accessible to practitioners, we con-
ducted a small-scale empirical validation where we asked
managers to report their confidence in decisions concerning
the study’s results. More precisely, we compared decisions
informed by our presentation of practical significance to
decisions based on the original frequentist statistical analy-
sis [16]. Our combination of Bayesian statistics and cumula-
tive prospect theory tends to increase the decision makers’
confidence.

In future work, we plan to demonstrate our approach on
larger case studies, and to perform more extensive valida-
tions of its usefulness in practice.

REPLICATION PACKAGE

A replication package—including all data analyzed in the
paper, scripts used to perform the analysis, and a Docker
image with the tools to run the scripts—is available at:

https://github.com/torkar/docker-b3
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