
Mapping Drainage Ditches in Forested Landscapes
Using Deep Learning and Aerial Laser Scanning
William Lidberg, Ph.D.1; Siddhartho Shekhar Paul, Ph.D.2; Florian Westphal, Ph.D.3;

Kai Florian Richter, Ph.D.4; Niklas Lavesson, Ph.D.5; Raitis Melniks, Ph.D.6; Janis Ivanovs, Ph.D.7;
Mariusz Ciesielski, Ph.D.8; Antti Leinonen, Ph.D.9; and Anneli M. Ågren, Ph.D.10

Abstract: Extensive use of drainage ditches in European boreal forests and in some parts of North America has resulted in a major change in
wetland and soil hydrology and impacted the overall ecosystem functions of these regions. An increasing understanding of the environmental
risks associated with forest ditches makes mapping these ditches a priority for sustainable forest and land use management. Here, we present the
first rigorous deep learning–based methodology to map forest ditches at regional scale. A deep neural network was trained on airborne laser
scanning data (ALS) and 1,607 km of manually digitized ditch channels from 10 regions spread across Sweden. The model correctly mapped
86% of all ditch channels in the test data, with a Matthews correlation coefficient of 0.78. Further, the model proved to be accurate when
evaluated on ALS data from other heavily ditched countries in the Baltic Sea Region. This study leads the way in using deep learning
and airborne laser scanning for mapping fine-resolution drainage ditches over large areas. This technique requires only one topographical index,
which makes it possible to implement on national scales with limited computational resources. It thus provides a significant contribution to the
assessment of regional hydrology and ecosystem dynamics in forested landscapes. DOI: 10.1061/JIDEDH.IRENG-9796. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Digging drainage ditches is common forestry practice across north-
ern European boreal forests and in some parts of North America

(Lõhmus et al. 2015). Ditching helps with lowering the groundwater
level in the wet parts of the forest to improve soil aeration and support
tree growth (Laurén et al. 2021; Sikström and Hökkä 2016). Some of
the most drained countries include Finland, the Baltic States, and
parts of Sweden, where the drained forest stands comprise 20%–25%
of the total forest area (Nieminen et al. 2018). However, the extensive
use of ditches over a long period of time has resulted in a major
change in wetland and soil hydrology and impacted the overall eco-
system functions of these regions (Kuglerová et al. 2020).

Recently, the intensive ditching practice has been identified as
posing multiple environmental risks, particularly for degradation of
wetland and soil, greenhouse gas emissions (Audet et al. 2017;
Peacock et al. 2021), increased nutrient and sediment loadings to
water bodies, and biodiversity loss (Holden et al. 2004; Lepistö
et al. 2021; Lidman et al. 2017; Lõhmus et al. 2015; Nieminen
et al. 2018). Research and actions were set up to minimize envi-
ronmental loss and restore degraded land in the ditched forest land-
scape. However, such initiatives are significantly constrained by the
lack of accurate and site-specific information of ditch networks. For
example, a comparison between a national field inventory (Ståhl
et al. 2011) and the best available high-resolution map of Sweden
suggests that only 9% of the ditches that were inventoried by the
national field inventory are mapped on current maps. In addition,
68% of the field-mapped channels were ditches, highlighting
the scale of this lack of knowledge. A study in northern Sweden
documented that accounting for all ditches nearly doubled the
size of the stream network within a 68-km2 catchment (Hasselquist
et al. 2018). These findings are a clear indication that there is a
discrepancy between the potential significance of artificial water
bodies, such as drainage ditches, and their low representation in
scientific research and policy (Koschorreck et al. 2020). The in-
creasing understanding of the environmental risks associated with
forest ditches, together with the poor representation of ditch net-
works in existing maps of many forest landscapes, makes detailed
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mapping of these ditches a priority for sustainable land and hydro-
logical management.

The availability of high-quality remote sensing data has enabled
successful mapping of different landscape features; accordingly,
satellite-based hydrological analysis has become an effective tool
for the assessment of water resources across the globe (McCabe
et al. 2017). In open landscapes, such as agricultural lands or open
peatlands, ditches can be detected from satellite images or aerial
photos (Ayana et al. 2017). But mapping ditches in a forest land-
scape remains a significant challenge, given that such features are
obscured by the tree canopy cover (Benstead and Leigh 2012;
Hasselquist et al. 2018). A common solution for mapping small-
scale watercourses in such landscapes (Benstead and Leigh 2012)
is to model the accumulated flow from a digital terrain model and
set a stream initiation threshold for extracting the stream networks.
The stream initiation threshold refers to how large a drainage area is
required to initiate a stream. However, the formation of stream heads
varies depending on climate, topography, and soil conditions (Elmore
et al. 2013; Jensen et al. 2017; Julian et al. 2012; Russell et al. 2015).
Moreover, in landscapes where channels have been altered by hu-
mans, such as in the case of ditches, channel formation is no longer
controlled by natural erosion. Hence, the flow accumulation–based
hydrological modeling approach does not adequately capture a
heavily modified ditch network in forested landscapes.

More recently, deep learning approaches have emerged as a
mainstay of data processing and analysis in the field of water re-
sources (Sit et al. 2020). Airborne laser scanning (ALS) data of
high point density are being integrated with powerful machine
learning and statistical tools to map ditches. Most ditch detection
studies used ALS-derived digital elevation models (DEMs) but fo-
cused only on smaller study areas of up to 150 ha (Cazorzi et al.
2013; Rapinel et al. 2015; Roelens et al. 2018a, b). In addition,
those ditch detection studies were predominantly performed in
open areas, such as French marshes (Rapinel et al. 2015) and vine-
yards (Bailly et al. 2008), Belgian grasslands and peri-urban areas
(Roelens et al. 2018b), Italian and US agrarian landscapes (Cazorzi
et al. 2013; Passalacqua et al. 2012), Chinese rice fields (Qian et al.
2018), or near roads in Finland (Kiss et al. 2015). In such open
landscapes, ditch detection is comparatively less complex, as tree
cover is rare, and ditches are usually well maintained in these popu-
lated, easily accessed, managed landscapes.

These ditch detection methods using ALS data in open land-
scapes generally use data filtering to highlight ditches: for example,
wavelet transformation (Bailly et al. 2008), relative elevation attrib-
ute (Cazorzi et al. 2013; Roelens et al. 2018b), geometric and
Laplacian curvature (Passalacqua et al. 2012), linear filter (Rapinel
et al. 2015), or topographic position index and standardized ele-
vation index (Kiss et al. 2015). Data filtering follows a binary
classification of raster layers into ditches and nonditches, while
the classification can be performed on ALS point clouds, pixels,
or linear objects depending on the chosen method. Different clas-
sification approaches have been used for binary classification,
such as manual setting of thresholds using expert knowledge
(Kiss et al. 2015; Passalacqua et al. 2012), logistic regression
(Roelens et al. 2018b), and application of machine learning models
(Bailly et al. 2011; Roelens et al. 2018a).

Deep learning presents a new avenue for data-driven hydrol-
ogical analysis and modeling, especially with high-resolution
imagery. Semantic image segmentation using deep learning is
on the rise for many applications, from autonomous driving to vir-
tual or augmented reality systems (Garcia-Garcia et al. 2017). How-
ever, the use of deep learning for image analysis in hydrological
research remains limited. Deep learning techniques use multilayer
models that can effectively capture the underlying complexity in

heterogeneous hydrological systems (Sit et al. 2020). Deep learning
can be effective for extracting small-scale hydrological features and
can reduce prediction uncertainty by being insusceptible to raw and
noisy data (Shen et al. 2018). Here, we developed a novel meth-
odology by combining two state-of-the-art technologies—ALS and
deep learning—for detecting drainage ditches in forested land-
scapes. We then validated the methodology using data from multi-
ple countries in Northern Europe. To the best of our knowledge,
this approach to detecting ditches has not been reported in the lit-
erature previously.

Method

We trained a deep neural network on high-density ALS data
and manually digitized ditches from 10 regions across Sweden.
We set aside 20% of the data for testing the final model. In addi-
tion to this testing data, the model was applied to four additional
test areas spread across Sweden, Finland, Latvia, and Poland
[Fig. 1(a)].

Training Dataset

The 10 digitized forest-dominated regions were selected to achieve
a broad representation of different landscape properties concerning
topography, soil conditions, runoff, land use, and tree species. A
compact laser-based system (Leica ALS80-HP-8236) was used
to collect the ALS data from an aircraft flying at 2,888–3,000 m.
The ALS point clouds had a point density of one to two points per
m2 and were divided into 55 tiles with a size of 2.5 × 2.5 km
each. Combined, the tiles cover an area of 344 km2. DEMs with
0.5-m resolution were created from the ALS point clouds using
a tin-gridding approach implemented in Whitebox tools 1.4.0
(Lindsay 2018). A high-pass median filter (HPMF) was applied to
the DEMs to emphasize short-range variability in the topography.
The HPMF algorithm, implemented in Whitebox tools (Lindsay
2018), operates by subtracting the value at the grid cell at the center
of the window from the median value in the surrounding neighbor-
hood with a kernel of 11 cells. Negative values indicate depres-
sions, and positive values indicate ridges.

Labels

Ditches were manually digitized as vector lines by trained experts
who were calibrated among themselves with regular meetings and
discussions of “edge cases”. Multidirectional hill-shaded DEMs
and a HPMF were used to visually separate local ridges from local
depressions (e.g., ditch channels). Current and historical ortho-
photos and maps were used to corroborate edge cases to digitize
the ditch network. Of the 55 tiles, 20% (n ¼ 11) were randomly
selected for model testing and were not used to train the model
[Fig. 1(b)]. The digitized vector lines have no width, so we used
average ditch width from a field inventory during which 2,188 ditch
channels were visited across Sweden (Ståhl et al. 2011). The aver-
age ditch width was 2 m, with a standard deviation of 1.3 m. Instead
of flagging all pixels within ∼3 m of a vector line as ditch, we used
the HPMF to create more natural ditch labels. Pixels within 3 m of a
vector line and with a HPMF value less than −0.075 were flagged
as ditch pixels. The threshold value of −0.075 was selected based
on visual observations of ditch channels during digitalization of the
ditches. Spurious pixels that were not connected to a ditch were
removed using a majority filter with a three-cell kernel. In total
1,607 km of ditch channels were mapped in this manner (Ågren
et al. 2022).
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Deep Learning Model

The HPMF and labeled data from each of the 55 tiles were split into
pairs of image chips with 512 × 512 pixels in each chip [Fig. 1(c)].
Image chips in which ditches made up less than 0.1% of all pixels
in the chip were removed to combat the highly imbalanced class
distribution: clearly, most pixels in the data are nonditch. This re-
sulted in 2,367 pairs of image chips. We used TensorFlow 2.6 to

build an encoder-decoder style deep neural network, shown in
Fig. 2, to transform the filtered HPMF images into images high-
lighting the detected ditches. On the encoding path, the network
learns a series of filters, organized in layers, that express larger and
larger neighborhoods of pixels in fewer and fewer vectors of fea-
tures. This downsampling forces the network to ignore noise and
extract features relevant for ditch detection. In contrast to normal

Fig. 1. (Color) Training and testing data. (a) Blue squares indicate locations of the digitized regions with training/testing data, and red points indicate
locations of the additional international test areas (not drawn to scale). (b) Close-up of one digitized region. Each region consisted of tiles with
the size 2.5 × 2.5 km. These tiles were split into smaller 512 × 512-pixel image chips that were used to train and test the model. Image chips from
the blue tiles were used for training, and image chips from the green tiles were used for testing. (c) Example of an HPMF image chip and
corresponding label chip. (Base maps created using the SRTM30+ Global 1-km Digital Elevation Model.)

Fig. 2. (Color) Overall network architecture. Its structure consists of a downsampling path, which learns the compact representation of input data, and
an upsampling path, which decompresses it to reconstruct the input data. The intermediate blocks show the number and size of the created feature
maps. The input is a high-pass median filter from an ALS DEM, and the output is an image in which each pixel represents the probability of the
corresponding pixel being classified as a ditch.
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convolutional neural networks, which apply a filter to all feature
vectors in a certain spatial neighborhood at once, we use Xception
blocks (Chollet 2017). These blocks decouple the filtering of the
spatial neighborhood within each feature dimension from the filter-
ing across feature dimensions. This simplifies the learning problem
for ditch detection, since there is no strong coupling between the
two dimensions.

After encoding the HPMF image into a spatially more compact
representation, it was again decoded by a series of learned filters
performing transposed convolutions into the final classification
map. This map contains, for every pixel in the input image, the
probability that the pixel belongs to a ditch. Although the neural
network considers the neighborhood of the pixel to label that pixel,
the procedure still leads to label discontinuities, either in the form
of ditches disrupted by mislabeled nonditch pixels or in the form of
areas of nonditch pixels in which single pixels are labeled as ditch
pixels. To smooth out this type of noise, we use a conditional ran-
dom field layer proposed by Zheng et al. (2015), which learns to
penalize undue label discontinuities. This neural network model is
trained using weighted cross-entropy loss to deal with the large
class imbalance between ditch and nonditch pixels.

Evaluation

We evaluated the trained model on the set-aside test tiles (n ¼ 11)
as well as on four additional test areas in Sweden (a 68-km2 area
scanned with 20 points per m2), Finland (a 70-km2 area scanned
with five points per m2), Latvia (a 25-km2 area scanned with four
points per m2), and Poland (a 44-km2 area scanned with four points
per m2) [Fig. 1(a)]. Note that the test sites outside of Sweden were
not digitized by the same team of experts that digitized the Swedish
training and testing data.

The datasets are highly imbalanced. Therefore, we used several
metrics, such as Cohen’s κ and the Matthews correlation coefficient
(MCC), to assess the accuracy of the model. Additional metrics
were extracted to compare the performance of our model with 13
other ditch-mapping studies published between 2008 and 2020.

Most of the previous studies reported inadequate accuracy measures
for highly imbalanced binary prediction. Therefore, we included a
large number of accuracy measures to enhance the confidence in
our prediction.

Results

Performance on Test Tiles

The performance of the model was evaluated by comparing pre-
dicted pixels with labeled pixels in the test data using a confusion
matrix (Table 1). The model correctly predicted 99% of all pixels in
the test data and achieved an MCC and κ of 0.78. Visual inspec-
tions of false-positive classifications indicated that the model inter-
preted most channels in the landscape as ditch channels and failed
to distinguish natural stream channels from drainage ditches.

Although it was difficult to compare these results with models
developed and tested in different landscapes and on different ALS
data, the metrics were on par with or better than previous studies.
Different studies presented different metrics, and the most com-
monly used metrics are summarized in Table 2.

Performance on Additional Test Sites

In addition to evaluating the model on the test tiles, we applied the
model on ALS data from four additional study areas spread across
the Baltic Sea region. The model achieved the highest MCC in
Poland and the lowest MCC in Latvia (Fig. 3).

Discussion

Most previous ditch detection studies focused only on study areas
smaller than 100 km2 within predominantly open areas. Here, we
introduce a large dataset with 1,607 km of mapped ditch channels
spread across 344 km2 in a landscape mainly dominated by forest.
We demonstrate that our approach of combining deep learning with
high-density ALS data to map drainage ditches has accuracy equal
to or higher than that of previous studies. However, the studies by
Graves et al. (2020), Kiss et al. (2015), Larson and Trivedi (2011),
Rapinel et al. (2015), Stanislawski et al. (2018) reported only recall,
which made them difficult to evaluate. Additional metrics on false
positives would be helpful for a comparison with our results. It
needs to be emphasized that we used only one topographical index

Table 1. Confusion matrix showing the number of true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) predictions

Confusion matrix Labeled positive Labeled negative

Predicted positive TP: 1,518,628 FP: 616,484
Predicted negative F: 248,361 TN: 127,902,095

Table 2. A comparison of the performance of the deep-learning model developed in this study and other published approaches of mapping drainage ditches

Study
Recall
(%)

Overall
accuracy (%) Precision κ MCC

Error of
omission (%)

Error of
commission (%)

Present study 86 99 0.71 0.78 0.78 14 29
Flykt et al. (2022) 70 91–99 0.77 0.73 — — —
Roelens et al. (2018a) — — — 0.73–0.77 — 29–33 11–18
Broersen et al. (2017) 75–98 — — — — 2–24 8–17
Roelens et al. (2018b) — — — — — 8 5
Bailly et al. (2008) — 70 — — — 50 15
Qian et al. (2018) — — — 0.77 — 10 30
Ayana et al. (2017) — — — — — 31–38 3
Balado et al. (2019) — 50–65 — — — — —
Kiss et al. (2015) 60–80 — — — — — —
Larson and Trivedi (2011) 31–89 — — — — — —
Stanislawski et al. (2018) 90 — — — — — —
Graves et al. (2020) 67–78 — — — — — —
Rapinel et al. (2015) 50–60 — — — — — —

Note: Balado et al. (2019) reported values of low overall accuracy, which appears unlikely and might thus refer to recall instead.
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to achieve this high accuracy, while other studies, such as Roelens
et al. (2018a), relied on multiple indices for mapping drainage
ditches in a smaller landscape (i.e., 68 km2). This substantially en-
hances the utility of our methodology, especially for implementing
it at large spatial scales with limited computational resources. The
model could map an area of 1 km2 in 8.6 s using a GeForce GTX
1080 Ti Graphics Card. Still, it will be worth exploring whether
adding more indices besides HPMF can improve the prediction ac-
curacy. For example, a recent study in Finland by Bhattacharjee
et al. (2021) demonstrated that aerial photos may contain important
information for mapping drainage ditches on peatlands. However,
in areas hidden beneath canopy, it might be better to include topo-
graphical indices such as impoundment size index implemented in

Whitebox tools 1.4.0 (Lindsay 2018), which can be included as
multiband images. Thus, it seems worthwhile to explore these in-
dices as additional covariates in the deep neural network model for
future analysis.

Considering the inherent challenges of the study region’s gla-
ciated and forested landscape, the performance of our ditch map-
ping approach was highly successful. For instance, the landscape
presented substantial challenges due to landscape features that ap-
pear similar to ditch channels in the ALS data. These include natu-
ral streams, historical channels from the latest deglaciation, ravines
on sediment soils, and variability in larger-scale topography from
steep mountains to flat mires or smaller agricultural areas inter-
spersed in the forest landscape. Although our model produced a
fair amount of false positives in the sedimentary deposits in the
Swedish test catchment, the overall performance of the model was
notably better than the previous ditch mapping studies that were
conducted in relatively less challenging, more homogeneous land-
scapes. Some of the false positives in our prediction might even be
actual ditches that are missing or misplaced in the ground-truth
digitized data [blue lines in Figs. 3(d and f)]. This is likely because
of the differences in digitization approaches in the international
datasets. Hence, the accuracy measures calculated from the interna-
tional validation datasets should be interpreted cautiously. The high
MCC and recall values of ditch prediction in the international test
sites indicate that the developed methodology performs well in all
countries around the Baltic Sea, although the model was developed
based on training data from Sweden. The trained model can be ad-
justed for local conditions with transfer learning using local data.

Visual inspection of the test sites revealed that some of the false
positives were natural stream channels, as demonstrated in Fig. 3(b).
This suggests that it could be possible to train a deep neural network
to detect natural stream channels in addition to drainage ditches. This
needs to be explored in the future with additional ground-truth data
on natural stream channels. A model that can map natural stream
channels would complement traditional topographical modeling of
accumulated flows from digital terrain models, especially if the
model can map headwater stream channels, as these are often miss-
ing on current maps (Benstead and Leigh 2012), and deal with road
embankments, which make small streams difficult to map using
traditional topographical modeling of low accumulation (Lidberg
et al. 2017).

The management of water systems is key to sustainable devel-
opment, but headwater streams (Bishop et al. 2008) and artificial
drainage ditches are often not included in monitoring programs
(Koschorreck et al. 2020). This has large implications for future
research and practical land-use management, as the ditch networks
have legacy effects on greenhouse gas balance, water resources, and
biodiversity. Ditches possess particular characteristics that often
make them emit large amounts of greenhouse gases (Peacock et al.
2021). Specifically, the accumulation of sediment and the develop-
ment of anoxia result in favorable conditions for the production
of the potent greenhouse gas methane (Roulet and Moore 1995).
Emissions of nitrous oxide (N2O) and carbon dioxide (CO2) can
be disproportionately large compared with the small areal extent
of ditch surfaces (Audet et al. 2017; Peacock et al. 2019). In coun-
tries such as Sweden and Finland, which have significant areas of
land drained for agriculture or forestry, these greenhouse gas emis-
sions can make nonnegligible contributions to national greenhouse
gas budgets (Koschorreck et al. 2020). Further, it is unclear whether
peatland restoration or ditch cleaning to maintain forest growth is the
best strategy to avoid negative environmental outcomes in the future.
Mapping the drainage ditches in the forest landscape is necessary to
address these important sustainability questions.

Fig. 3. (Color) Predicted ditch pixels from the international test
areas: (a) labeled ditches in Sweden; (b) predicted ditches in Sweden;
(c) labeled ditches in Finland; (d) predicted ditches in Finland;
(e) labeled ditches in Latvia; (f) predicted ditches in Latvia; (g) labeled
ditches in Poland; and (h) predicted ditches in Poland. The statistical
evaluation was based on the whole study regions, while the maps in this
figure highlight details in small areas.
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Conclusions

Mapping drainage ditches is an important first step in finding
effective landscape and hydrology management strategies. We
showed that semantic image segmentation with deep learning from
high-resolution ALS data can be used to detect previously un-
mapped drainage ditches in forested landscapes in the Baltic Sea
region with an overall accuracy of 99% and an MCC of 0.78. This
novel technique requires only one topographical index, which
makes it possible to implement on large scales with limited com-
putational resources. Our method performs better on most of the
metrics than previous ditch detection studies and at least equally
well on all others, despite a more varied and challenging landscape
in our test data dominated by forests. Visual inspection indicated
that this method also classifies natural stream channels as ditches,
which suggests that a deep neural network can be trained to detect
natural stream channels in addition to drainage ditches.
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