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Abstract

Suppose that R is an associative unital ring and that E = (E0, E1, r, s) is a directed graph. Using results
from graded ring theory, we show that the associated Leavitt path algebra LR(E) is simple if and only if R
is simple, E0 has no nontrivial hereditary and saturated subset, and every cycle in E has an exit. We also
give a complete description of the centre of a simple Leavitt path algebra.
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1. Introduction

The Leavitt path algebra of a row-finite graph, over a field, was introduced in [2, 5] and
has since then been successively generalised (see, for example, [3, 20]). The Leavitt
path algebra of an arbitrary directed graph, over a unital ring, was introduced in [12].
For an account of the development of the field of Leavitt path algebras, we refer the
reader to [1]. Here is our first main result.

THEOREM 1.1. Suppose that R is an associative unital ring and that E = (E0, E1, r, s)
is a directed graph. The Leavitt path algebra LR(E) is simple if and only if R is simple,
E0 has no nontrivial hereditary and saturated subset, and every cycle in E has an exit.

Characterisations of simple Leavitt path algebras over fields have previously
been established in [19, Theorem 6.18], [3, Theorem 3.1] and [11, Theorem 3.5].
Theorem 1.1 generalises all of those results, and also partially generalises [20,
Theorem 7.20]. Our second main result, stated below, completely describes the centre
of a simple Leavitt path algebra. It generalises [6, Theorem 4.2] from the case where
R is a field and E is a row-finite graph.
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2 P. Lundström and J. Öinert [2]

THEOREM 1.2. Suppose that R is an associative unital ring and that E = (E0, E1, r, s)
is a directed graph. Furthermore, suppose that LR(E) is a simple Leavitt path algebra.
The following assertions hold.

(a) If LR(E) is not unital, then Z(LR(E)) = {0}.
(b) If LR(E) is unital, then Z(LR(E)) = Z(R) · 1LR(E).

Whereas earlier proofs of Theorems 1.1 and 1.2 (when R is a field) use ad hoc
arguments, specifically designed for graph algebras, we use the general theory of
graded rings to obtain our results. This makes our proofs shorter and, we believe,
clearer. Indeed, we show that LR(E) is graded simple if and only if R is simple and E0

has no nontrivial hereditary and saturated subset (see Proposition 3.6). We also show
that every cycle in E has an exit if and only if the centre of each corner subring of
LR(E) at a vertex has degree zero (see Proposition 3.14).

We point out that there are various generalisations of Leavitt path algebras in the
literature (see, for example, [1, Section 5] and [9, 18]). A simplicity result for Steinberg
algebras was obtained in [8], and when translated to Leavitt path algebras, one recovers
Theorem 1.1 in the special case where R is a commutative unital ring. Note that [6,
Theorem 4.2] was generalised to Kumjian–Pask algebras in [7], and in [10], Steinberg
algebra techniques were used to give a complete description of the centre of a general
(not necessarily simple) Leavitt path algebra LR(E), where R is a commutative unital
ring.

2. Simple Z-graded rings

Let Z denote the rational integers and write N := {1, 2, 3, . . .}. Suppose that S is a
ring. By this, we mean that S is associative but not necessarily unital. If S is unital,
then we let 1S denote the multiplicative identity of S. Furthermore, we let Z(S) denote
the centre of S, that is, the set of all s ∈ S satisfying st = ts for every t ∈ S. Recall that
S is said to be Z-graded if, for each n ∈ Z, there is an additive subgroup Sn of S such
that S = ⊕n∈ZSn and SnSm ⊆ Sn+m, for all n, m ∈ Z. In that case, each element s ∈ S
may be written as s =

∑
n∈Z sn, where sn ∈ Sn is zero for all but finitely many n ∈ Z.

The support of s is defined as the finite set Supp(s) := {n ∈ Z | sn � 0}. An ideal I of
a Z-graded ring S is said to be graded if I = ⊕n∈Z(I ∩ Sn). If {0} and S are the only
graded ideals of S, then S is said to be graded simple.

We recall some properties of graded rings.

LEMMA 2.1. Suppose that S is a unital Z-graded ring.

(a) The ring Z(S) is Z-graded with respect to the grading Z(S)n which is defined by
Z(S)n := Z(S) ∩ Sn for n ∈ Z.

(b) If S is a field, then S = S0.

PROOF. Item (a) is [15, page 15, Exercise 8] and item (b) is [15, Remark 1.3.10]. �
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[3] Simplicity of Leavitt path algebras 3

Next, we state a special case of [17, Theorem 1.2] and [13, Theorem 5]. For the
convenience of the reader, we include a shortened version of the proof from these
sources adapted to the situation at hand.

PROPOSITION 2.2. Suppose that S is a unital Z-graded ring. Then, the following
assertions are equivalent:

(i) S is simple;
(ii) S is graded simple and Z(S) is a field;
(iii) S is graded simple and Z(S) ⊆ S0.

PROOF. (i)⇒(ii) is clear and (ii)⇒(iii) follows from Lemma 2.1. Now we show that
(iii)⇒(i). Suppose that S is graded simple and that Z(S) ⊆ S0. Let I be a nonzero ideal
of S. We wish to show that 1S ∈ I. Amongst all nonzero elements of I, choose s such
that |Supp(s)| is minimal. Take m ∈ Supp(s). Since S is graded simple, there are n ∈ N
and homogeneous elements p1, . . . , pn, q1, . . . , qn ∈ S, such that

∑n
i=1 pismqi = 1S

and pismqi ∈ S0 \ {0} for every i ∈ {1, . . . , n}. Write t :=
∑n

i=1 pisqi. Note that t ∈ I,
t0 = 1S and |Supp(t)| ≤ |Supp(s)|. Take z ∈ Z and x ∈ Sz. Then, tx − xt ∈ I and, since
t0 = 1S, it follows that |Supp(tx − xt)| < |Supp(t)|. By the assumptions on s, we get
|Supp(tx − xt)| = 0 and hence xt = tx. Thus, t ∈ Z(S) ⊆ S0. We conclude that 1S = t0 =
t ∈ I. �

Let S be a ring. Recall from [4] (see also [16]) that a set U of idempotents in S is
called a set of local units for S if for every n ∈ N and all s1, . . . , sn ∈ S, there is some
e ∈ U such that esi = sie = si for every i ∈ {1, . . . , n}.

REMARK 2.3. Suppose that S is a Z-graded ring. If e ∈ S0 is an idempotent, then the
corner subring eSe inherits a natural Z-grading defined by (eSe)n := eSne for n ∈ Z.

For future reference, we recall the following two results.

PROPOSITION 2.4. Suppose that S is a Z-graded ring equipped with a set of local
units U ⊆ S0. Then, S is (graded) simple if and only if, for every f ∈ U, the ring f S f
is (graded) simple.

PROOF. First we show the ‘only if’ statement. Suppose that S is (graded) simple and
that f ∈ U. Let J be a nonzero (graded) ideal of f S f . By (graded) simplicity of S,
it follows that SJS = S. Thus, f S f = f SJS f = ( f S f )J( f S f ) ⊆ J and hence J = f S f .
Next, we show the ‘if’ statement. Suppose that f S f is (graded) simple for every
f ∈ U. Let I be a nonzero (graded) ideal of S. Take a nonzero (homogeneous) x ∈ S.
Take a nonzero (homogeneous) y ∈ I and f ∈ U with f x = x f = x and f y = y f = y.
By (graded) simplicity of f S f , it follows that I ⊇ f SyS f = f S f 
 x. Thus, I = S. �

PROPOSITION 2.5. Suppose that S is a Z-graded ring equipped with a set of local units
and that f ∈ S0 is a nonzero idempotent. If S is graded simple and f S f is simple, then
S is simple.
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4 P. Lundström and J. Öinert [4]

PROOF. Suppose that S is graded simple and that f S f is simple. Let I be a nonzero
ideal of S. Take a nonzero s ∈ I and write s =

∑
n∈Supp(s) sn. Fix m ∈ Supp(s) and define

J := SsmS. Then, J is a nonzero graded ideal of S. By graded simplicity of S, it follows
that J = S and, in particular, that f ∈ J. Note that f ∈ f J f . Since f � 0, it follows that
there exist nonzero homogeneous y, z ∈ S such that f ysmz f is nonzero and deg(y) +
deg(z) = −m. Now, define s′ := f ysz f . By the construction of s′, it follows that
s′ ∈ I ∩ f S f and that s′ is nonzero. In particular, I ∩ f S f � {0}. Hence, by simplicity
of f S f , we see that I ∩ f S f = f S f . Thus, f ∈ I. Note that S f S is a nonzero graded
ideal of S. Hence, by graded simplicity of S, we have I ⊇ S f S = S. This shows
that I = S. �

3. Simple Leavitt path algebras

Let R be an associative unital ring and let E = (E0, E1, r, s) be a directed graph.
Recall that r (range) and s (source) are maps E1 → E0. The elements of E0 are called
vertices and the elements of E1 are called edges. The elements of E1 are called real
edges, while for f ∈ E1, we call f ∗ a ghost edge. The set { f ∗ | f ∈ E1} will be denoted
by (E1)∗. A path μ in E is a sequence of edges μ = μ1 . . . μn such that r(μi) = s(μi+1)
for i ∈ {1, . . . , n − 1}. In that case, s(μ) := s(μ1) is the source of μ, r(μ) := r(μn) is the
range of μ and |μ| := n is the length of μ. If μ = μ1 . . . μn is a (real) path in E, then
we let μ∗ := μ∗n . . . μ

∗
1 denote the corresponding ghost path. For any vertex v ∈ E0, we

put s(v) := v and r(v) := v. We let r( f ∗) denote s( f ) and we let s( f ∗) denote r( f ). For
n ≥ 2, we define En to be the set of paths of length n and E∗ :=

⋃
n≥0 En the set of all

finite paths.
Following Hazrat [12], we make the following definition.

DEFINITION 3.1. The Leavitt path algebra of E with coefficients in R, denoted by
LR(E), is the algebra generated by the sets {v | v ∈ E0}, { f | f ∈ E1} and { f ∗ | f ∈ E1}
with the coefficients in R, subject to the relations:

(1) uv = δu,vv for all u, v ∈ E0;
(2) s( f ) f = f r( f ) = f and r( f ) f ∗ = f ∗s( f ) = f ∗ for all f ∈ E1;
(3) f ∗ f ′ = δ f , f ′r( f ) for all f , f ′ ∈ E1;
(4)
∑

f∈E1,s( f )=v f f ∗ = v for every v ∈ E0 for which s−1(v) is nonempty and finite.

Here, elements of the ring R commute with the generators.

REMARK 3.2. (a) The Leavitt path algebra LR(E) carries a natural Z-grading.
Indeed, put deg(v) := 0 for each v ∈ E0. For each f ∈ E1, we put deg( f ) := 1 and
deg( f ∗) := −1. By assigning degrees to the generators in this way, we obtain a
Z-grading on the free algebra FR(E) = R〈v, f , f ∗ | v ∈ E0, f ∈ E1〉. Moreover, the ideal
coming from relations (1)–(4) in Definition 3.1 is graded. Using this, it is easy to see
that the natural Z-grading on FR(E) carries over to a Z-grading on the quotient algebra
LR(E).
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[5] Simplicity of Leavitt path algebras 5

(b) The set {∑v∈F v | F is a finite subset of E0} is a set of local units for LR(E). If E0

is finite, then LR(E) is unital and 1LR(E) =
∑

v∈E0 v.
(c) Motivated by Definition 3.1(2), for u ∈ E0, we write u∗ := u.

DEFINITION 3.3. Let E = (E0, E1, r, s) be a directed graph. A subset H ⊆ E0 is said
to be hereditary if s( f ) ∈ H implies r( f ) ∈ H for any f ∈ E1. A hereditary subset
H ⊆ E0 is called saturated if {r( f ) ∈ H | f ∈ E1 and s( f ) = v} ⊆ H implies v ∈ H
whenever v ∈ E0 satisfies 0 < |s−1(v)| < ∞.

REMARK 3.4. Note that ∅ and E0 are always hereditary and saturated subsets of E0.
They are referred to as trivial.

LEMMA 3.5. Every element in E0 ∪ E1 ∪ (E1)∗ is nonzero in LR(E), and the set of real
(respectively ghost) paths is linearly independent in the left R-module LR(E) and in the
right R-module LR(E).

PROOF. The proof of [20, Proposition 4.9] immediately carries over to the case
where R is a noncommutative unital ring. The same holds for the proof of [20,
Proposition 3.4] in case E0 and E1 are countable sets. Otherwise, the proof may be
adapted by taking ℵ to be an infinite cardinal at least as large as card(E0 ∪ E1) and
defining Z := ⊕ℵR (with the notation of [20, Proposition 3.4]). �

PROPOSITION 3.6. The Leavitt path algebra LR(E) is graded simple if and only if R is
simple and E0 has no nontrivial hereditary and saturated subset.

PROOF. First we show the ‘if’ statement. Suppose that R is simple and that E0 has no
nontrivial hereditary and saturated subset. Let I be a nonzero graded ideal of LR(E).
Consider the set HI := {v ∈ E0 | kv ∈ I for some nonzero k ∈ R}. By the same argument
as in [20, Lemma 5.1], HI is nonempty. Furthermore, since R is simple, it follows
that HI = {v ∈ E0 | v ∈ I}. We wish to show that HI is hereditary and saturated. To
this end, take v ∈ HI . Suppose that e ∈ E1 with s(e) = v. Then, r(e) = e∗e = e∗ve ∈ I.
Thus, HI is hereditary. Now, take v ∈ E0 such that 0 < |s−1(v)| < ∞, and suppose that
r(s−1(v)) ⊆ HI . For each e ∈ s−1(v), we have r(e) ∈ HI and hence ee∗ = er(e)e∗ ∈ I.
Thus, v =

∑
e∈s−1(v) ee∗ ∈ I and v ∈ HI . Therefore, HI is saturated. By our assumption,

HI = E0. This shows that I must contain all the local units of LR(E) and thus I = LR(E).
Hence, LR(E) is graded simple.

Now, we show the ‘only if’ statement. Suppose that LR(E) is graded simple. Let J
be a proper ideal of R. We wish to show that J = {0}. To this end, let LJ(E) denote
the graded ideal of LR(E) consisting of all elements of LR(E) with coefficients coming
from J. Consider the natural ring homomorphism ϕ : LR(E)→ LR/J(E). Clearly, ϕ is
well defined. Note that LJ(E) ⊆ ker(ϕ). Choose some u ∈ E0. By Lemma 3.5, applied to
LR/J(E), it follows that u � ker(ϕ) and hence u � LJ(E). Thus, LJ(E) is a proper graded
ideal of LR(E). By graded simplicity of LR(E), it follows that LJ(E) = {0}. Thus, in
particular, Ju = {0}. By Lemma 3.5 applied to LR(E), we see that J = {0}.

Let H be a proper hereditary and saturated subset of E0. Following [2, 3], we let F :=
(F0, F1, r, s) be the graph consisting of all vertices not in H and all edges whose range
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6 P. Lundström and J. Öinert [6]

is not in H. For v ∈ E0, define Ψ(v) := v if v ∈ F0, and Ψ(v) := 0 otherwise. For e ∈ E1,
define Ψ(e) := e if e ∈ F1, and Ψ(e) := 0 otherwise. Furthermore, define Ψ(e∗) := e∗ if
e∗ ∈ (F1)∗, and Ψ(e∗) := 0 otherwise. The argument in [2, 3] shows that this yields a
well-defined ring homomorphism Ψ : LR(E)→ LR(F). Clearly, Ψ is graded. Thus, the
ideal I := ker(Ψ) of LR(E) is graded. Note that F0 is nonempty, because H is proper,
and hence I � LR(E). By our assumption, I = {0}. By the construction of Ψ, it follows
that H ⊆ I. Thus, H = ∅. �

DEFINITION 3.7. Define an additive map L : LR(E)→ LR(E) by requiring that
L(λαβ∗) = λβα∗ for all λ ∈ R and α, β ∈ E∗.

REMARK 3.8. The map L is an isomorphism of additive groups such that
L((LR(E))N) = (LR(E))−N for every N ∈ Z.

LEMMA 3.9. Suppose that u ∈ E0. The map L restricts to an isomorphism of
additive groups L|Z(uLR(E)u): Z(uLR(E)u)→ Z(uLR(E)u). In particular, the equality
L((Z(uLR(E)u))N) = (Z(uLR(E)u))−N holds for every N ∈ Z.

PROOF. Let x =
∑m

j=1 λjαjβ
∗
j ∈ Z(uLR(E)u), where λj ∈ R, αj, βj ∈ E∗ and s(αj) =

s(βj) = u for j ∈ {1, . . . , m}. Take r ∈ R. Then, 0 = xru − rux =
∑m

j=1(λjr − rλj)αjβ
∗
j .

Therefore, we have 0 = L(0) =
∑m

j=1(λjr − rλj)L(αjβ
∗
j ) =
∑m

j=1(λjr − rλj)βjα
∗
j =

L(x)ru − ruL(x). Thus, L(x)ru = ruL(x). Take γ, δ ∈ E∗ with s(γ) = s(δ) = u.
Then, 0 = xγδ∗ − γδ∗x = ∑m

j=1 λj(αjβ
∗
j γδ
∗ − γδ∗αjβ

∗
j ). Therefore, we have 0 = L(0) =

∑m
j=1 λjL(αjβ

∗
j γδ
∗ −γδ∗αjβ

∗
j )=
∑m

j=1 λj(δγ∗βjα
∗
j −βjα

∗
j δγ
∗)=δγ∗L(x)−L(x)δγ∗. Thus,

L(x)δγ∗ = δγ∗L(x). Finally, L(x)rδγ∗ = L(x)ruδγ∗ = ruL(x)δγ∗ = ruδγ∗L(x) =
rδγ∗L(x). This shows that L(x) ∈ Z(uLR(E)u). �

LEMMA 3.10. Suppose that u, v ∈ E0 and that α ∈ E∗ is such that s(α) = u and
r(α) = v. If x ∈ Z(uLR(E)u), then α∗xα ∈ Z(vLR(E)v).

PROOF. Let x ∈ Z(uLR(E)u). Take y ∈ vLR(E)v. Since αyα∗ ∈ uLR(E)u, it follows
that yα∗xα = vyα∗xα = α∗αyα∗xα = α∗xαyα∗α = α∗xαyv = α∗xαy. Thus, α∗xα ∈
Z(vLR(E)v). �

DEFINITION 3.11 [20]. Let E = (E0, E1, r, s) be a directed graph. A cycle in E is a
path μ ∈ E∗ \ E0 such that s(μ) = r(μ). An edge f ∈ E1 is said to be an exit for the
cycle μ = μ1 . . . μn if s( f ) = s(μi) but f � μi for some i ∈ {1, 2, . . . , n}.

REMARK 3.12. The definition of a cycle in a directed graph varies in the literature
on Leavitt path algebras. In contrast to the most common definition of a cycle (see
[2, page 320], following [20], we allow a cycle to ‘intersect’ itself. In Theorem 1.1,
the condition that ‘every cycle in E has an exit’ appears. That condition is commonly
known as Condition (L). It is easy to see that Condition (L) is satisfied with the first
definition of a cycle [2] if and only if it is satisfied with the second definition of a
cycle [20].
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[7] Simplicity of Leavitt path algebras 7

REMARK 3.13. Let x be a nonzero element of LR(E). It is clear from the definition
of LR(E) that x can be represented as a finite sum x =

∑n
i=1 riαiβ

∗
i , where ri ∈ R \ {0}

and αi, βi ∈ E∗. Following [20, Definition 4.8], we define the real degree (respec-
tively ghost degree) of this representation as max{deg(αi) | 1 ≤ i ≤ n} (respectively
max{deg(βi) | 1 ≤ i ≤ n}). Note that, in general, the real degree and ghost degree of
x depend on the particular choice of representation. If, however, x has a represen-
tation in only real (respectively ghost) edges, that is, if x =

∑n
i=1 riαi (respectively

x =
∑n

i=1 riβ
∗
i ), then, by Lemma 3.5, the real (respectively ghost) degree is independent

of the choice of representation of x in real (respectively ghost) edges.

PROPOSITION 3.14. Every cycle in E has an exit if and only if for every u ∈ E0, the
inclusion Z(uLR(E)u) ⊆ (uLR(E)u)0 holds.

PROOF. First, we show the ‘if’ statement by contrapositivity. Suppose that there
is a cycle p ∈ E∗ \ E0 without any exit. Set u := s(p) and write p0 := u. Take
r ∈ R and α, β ∈ E∗ with s(α) = s(β) = u and r(α) = r(β). Since p has no exit,
there are m, n ∈ N ∪ {0} and γ ∈ E∗ such that α = pmγ and β = pnγ. Note that
γγ∗ = u = pp∗. This yields prαβ∗ = prpmγγ∗(p∗)n = rpm+1(p∗)n and rαβ∗p =
rpmγγ∗(p∗)n p = rpm(p∗)n p. If n = 0, then pm+1(p∗)n = pm+1 = pm(p∗)n p, and if n > 0,
then pm+1(p∗)n = pm pp∗(p∗)n−1 = pm(p∗)n−1 p∗p = pm(p∗)n p. In either case, we get
prαβ∗ = rαβ∗p. Thus, p ∈ Z(uLR(E)u) \ (uLR(E)u)0.

Now we show the ‘only if’ statement. Suppose that every cycle in E has an exit.
Take u ∈ E0. We wish to show that Z(uLR(E)u) ⊆ (uLR(E)u)0. By Lemma 2.1(a) and
Lemma 3.9, it is enough to show that (Z(uLR(E)u))N = {0} for every negative integer N.

We now adapt parts of the proof of [3, Theorem 3.1] to our situation. Take N < 0.
Seeking a contradiction, suppose that the set

M := {(u, x) | u ∈ E0 and x ∈ (Z(uLR(E)u))N \ {0}}

is nonempty. If (u, x), (v, y) ∈ M, then we write (u, x) ≤ (v, y) if x has a representation
in LR(E) of real degree less than or equal to all real degrees of representations of y
in LR(E). We write (u, x) = (v, y) whenever (u, x) ≤ (v, y) and (v, y) ≤ (u, x). Clearly,
≤ is a total order on M which therefore has a minimal element (u, x). Choose a
minimising representation x =

∑n
i=1 eiai + b, where e1, . . . , en ∈ E1 are all distinct, each

ai ∈ LR(E) is either zero or nonzero and representable as an element of smaller real
degree than that of x, and b is a polynomial (possibly zero) in only ghost paths whose
source and range equals u. Take i ∈ {1, . . . , n}. Write vi := r(ei). By Lemma 3.10,
e∗i xei ∈ (Z(viLR(E)vi))N . Since e∗i xei is of smaller real degree than x, it follows that
e∗i xei = 0. Further, since x ∈ (Z(uLR(E)u))N , it follows that e∗i x = e∗i eie∗i x = e∗i xeie∗i = 0.
Thus, 0 = e∗i x = ai + e∗i b and hence ai = −e∗i b.

Now, 0 � x = (u −∑n
i=1 eie∗i )b. Thus, u �

∑n
i=1 eie∗i and b � 0. This implies that

there is some f ∈ E1 \ {e1, . . . , en} with s( f ) = u. Furthermore, f ∗x = f ∗b, and, by
Lemma 3.5, f ∗b � 0 since it is a sum of distinct ghost paths. Write v := r( f ).
By Lemma 3.10, it follows that f ∗x f ∈ (Z(vLR(E)v))N . Observing that 0 � f ∗x =
f ∗ f f ∗x = f ∗x f f ∗, we get f ∗x f � 0. Note that the real degree of f ∗x f is less than or
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8 P. Lundström and J. Öinert [8]

equal to the real degree of x. Hence, by the assumption made on (u, x), and possibly
after replacing (u, x) by (v, f ∗x f ), we may assume that ai = 0 for every i ∈ {1, . . . , n}.
Therefore, suppose that x =

∑m
j=1 rjβ

∗
j for some nonzero rj ∈ R and some distinct paths

βj ∈ E−N with s(βj) = r(βj) = u. Take k ∈ {1, . . . , m}. By Lemma 3.10, it follows that
rkβ
∗
k = β

∗
kxβk ∈ Z(uLR(E)u). By assumption, the cycle βk has an exit at some w ∈ E0.

Thus, there are γ, δ ∈ E∗ and ε ∈ E1 such that βk = γδ, r(γ) = s(ε) = w and ε∗δ = 0.
By Lemma 3.10, it follows that rk(δγ)∗ = rkγ

∗δ∗γ∗γ = γ∗rkβ
∗
kγ ∈ Z(wLR(E)w). We now

reach a contradiction, because 0 � εε∗rk(δγ)∗ = rk(δγ)∗εε∗ = 0. �

Now, we prove our main result.

PROOF OF THEOREM 1.1. First, we show the ‘only if’ statement. Suppose that LR(E) is
simple. Then LR(E) is graded simple and hence, by Proposition 3.6, it follows that R is
simple and that E0 has no nontrivial hereditary and saturated subset. Furthermore,
Proposition 2.4 implies that uLR(E)u is simple for every u ∈ E0, and hence, by
Proposition 2.2, Z(uLR(E)u) ⊆ (uLR(E)u)0 for every u ∈ E0. Thus, by Proposition 3.14,
every cycle in E has an exit.

Now we show the ‘if’ statement. Suppose that R is simple, E0 has no nontrivial
hereditary and saturated subset, and every cycle in E has an exit. By Proposition 3.6,
LR(E) is graded simple. Take u ∈ E0. It follows from Proposition 3.14 that
Z(uLR(E)u) ⊆ (uLR(E)u)0. Furthermore, by Proposition 2.4, uLR(E)u is graded simple.
Thus, by Proposition 2.2, uLR(E)u is simple. Hence, by Proposition 2.5, LR(E) is
simple. �

4. The centre of a simple Leavitt path algebra

In this section, we prove Theorem 1.2 using results from the previous sections
together with some auxiliary observations.

REMARK 4.1. Let E = (E0, E1, r, s) be a directed graph.
(a) Take v ∈ E0. We write w ≤ v, for w ∈ E0, if there is μ ∈ E∗ with s(μ) = v and

r(μ) = w. The set T(v) := {w ∈ E0 | w ≤ v} is the smallest hereditary subset of E0

containing v.
(b) Suppose that X ⊆ E0. Put T(X) :=

⋃
x∈X T(x). The hereditary saturated closure

X of X is defined as the smallest hereditary and saturated subset of E0 containing X.
One can show (see [6, page 626] and the references therein) that X =

⋃∞
n=0 Xn, where

X0 := T(X) and Xn := {y ∈ E0 | 0 < |s−1(y)| < ∞ and r(s−1(y)) ⊆ Xn−1} ∪ Xn−1 for
n ≥ 1.

The following result can be proved by induction (see [14, Proposition 14.11] and
[20, Lemma 5.2]).

PROPOSITION 4.2. Suppose that R is an associative unital ring and that E =
(E0, E1, r, s) is a directed graph. If a ∈ (LR(E))0 is nonzero, then there exist α, β ∈ E∗,
v ∈ E0 and a nonzero k ∈ R such that α∗aβ = kv.

Now, we prove our second main result.
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PROOF OF THEOREM 1.2. Write S := LR(E). If S is not unital, then it follows
immediately from [21, Ch. 1, Section 3.3] that Z(S) = {0}. This proves item (a). Now,
we show item (b). Suppose that S is unital, that is, E0 is finite. Take a nonzero x ∈ Z(S).
By Proposition 2.2, it follows that x ∈ S0. Therefore, by Proposition 4.2, there are
α, β ∈ E∗, v ∈ E0 and a nonzero k ∈ R such that α∗xβ = kv. From this equality, the
grading and the fact that x ∈ Z(S), it follows that α = β and r(α) = v. Hence, vx =
α∗αx = α∗xα = α∗xβ = kv. The equality vx = kv implies that k ∈ Z(R). Put X := {v}.
Then, X is a nonempty hereditary and saturated subset of E0. By Theorem 1.1, X = E0.
We claim that this implies that wx = kw for every w ∈ E0. Let us assume, for a moment,
that this claim holds. Then, x = 1S · x =

∑
w∈E0 wx =

∑
w∈E0 kw = k ·∑w∈E0 w = k · 1S ∈

Z(R) · 1S. Thus, Z(S) ⊆ Z(R) · 1S. Clearly, Z(R) · 1S ⊆ Z(S) holds.
Now we show the claim. We will use induction to prove that for every n ≥ 0,

the implication w ∈ Xn ⇒ wx = kw holds. From this, the claim follows. Base
case: n = 0. Suppose that w ∈ X0, that is, w ≤ v. Then, there is a path δ from v
to w. This gives wx = δ∗δx = δ∗vδx = δ∗vxδ = δ∗kvδ = kδ∗vδ = kδ∗δ = kw. Induction
step: Suppose that wx = kw for every w ∈ Xn−1. Take y ∈ Xn \ Xn−1 and note that
0 < |s−1(y)| < ∞ and r(s−1(y)) ⊆ Xn−1. Then, yx =

∑
e∈s−1(y) ee∗x =

∑
e∈s−1(y) er(e)xe∗ =

∑
e∈s−1(y) ekr(e)e∗ = k

∑
e∈s−1(y) ee∗ = ky. �
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