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Abstract—Vulnerability patch management is one of IT orga-
nizations’ most complex issues due to the increasing number of
publicly known vulnerabilities and explicit patch deadlines for
compliance. Patch management requires human involvement in
testing, deploying, and verifying the patch and its potential side
effects. Hence, there is a need to automate the patch management
procedure to keep the patch deadline with a limited number
of available experts. This study proposed and implemented an
automated patch management procedure to address mentioned
challenges. The method also includes logic to automatically
handle errors that might occur in patch deployment and ver-
ification. Moreover, the authors added an automated review step
before patch management to adjust the patch prioritization list
if multiple cumulative patches or dependencies are detected.
The result indicated that our method reduced the need for
human intervention, increased the ratio of successfully patched
vulnerabilities, and decreased the execution time of vulnerability
risk management.

Index Terms—Vulnerability, Risk Management, Cybersecurity,
Patch Management

I. INTRODUCTION

Vulnerability Risk Management (VRM) is one of the critical
aspects of information security that has been ranked in the top
10 by CIS [1]. Unpatched vulnerabilities expose organizations
and individuals to cyber attacks. One well-known example is
the Log4j (i.e., CVE-2021-44228, CVE-2021-45046, CVE-
2021-45105, and CVE-2021-44832) which was one of the
most severe threats in recent years due to the number of
vulnerable systems and the ease of exploit (i.e., ten million
attempts per hour [2]). VRM is a cyclic process that aims to
identify, classify, evaluate, and remediate vulnerabilities and
reduce an organization’s attack surface. Currently, VRM is
challenging due to the dramatic increase of known vulnerabil-
ities (i.e., 40% in 2019-2022) and the explicit patch deadline
enforced by regulation for public sectors. For instance, the
patch deadline for federal agencies in the U.S. is 15 days
for critical vulnerabilities and 30 days for vulnerabilities with
high severity. For UK officials, 14 days for critical vulnerabili-
ties12. According to the NIST National Vulnerability Database
(NVD) [3], 57.69% of the new vulnerabilities reported in 2022
ranked with critical and high severity (40.61% high severity

1https://www.ncsc.gov.uk/cyberessentials/overview
2https://www.cisa.gov/binding-operational-directive-19-02

Fig. 1. Relationship between our current work (Phase 3 and feedback loop
to phase 2) and previous work (Phase 1 & 2)

and 17.08% critical severity). Hence, automated VRM is vital
to support security specialists in keeping the patch deadline.
Today, we lack the tools that automatically conduct the four
stages, identification, classification, evaluation, and remedia-
tion in the VRM process. In [4]–[6], we proposed Automated
Context-aware Vulnerability Risk Management (ACVRM) to
improve the VRM procedure by 1) reducing the labor-intensive
tasks of security experts in patch prioritization; 2) customizing
the patch prioritization for a given organization by learning
about the organization’s assets and the vulnerabilities that
affect these assets; 3) automating VRM procedure to reduce
processing time.

ACVRM consists of three phases, cf. Figure 1. In phase 1,
described in [4], [6], we collected the publicly known vul-
nerabilities from multiple Vulnerability Databases (VD) and
normalized the severity score for each vulnerability based on
the selected vulnerability management mode by the organi-
zation. The collected data identifies existing vulnerabilities
in the organization’s assets. In phase 2 described in [5], we
automatically scan the organization’s asset inventory against
the collected data to detect the vulnerabilities that affect the
organization. We defined the criteria to be considered in patch
prioritization via literature study and experts interview. The
criteria weighted by security experts are based on the organi-
zation’s policy and risk appetite to calculate the patch score.
We use the patch score to determine the patched vulnerability’s
order.

This study focuses on the third phase, patch management,
and the feedback loop to improve patch prioritization. Patch
management is a process to mitigate the vulnerability in the
organizations’ assets by deploying and verifying the patch.



Patch Management (PM) is one of the most complex processes
in information technology, as it requires a strong understanding
of the system components and the potential patch. It is also
challenging due to the uncertainty of the system’s reaction to
the patch and the problem with the patch released by ven-
dors (i.e., the patched version of one vulnerability introduces
another vulnerability) [7]. For example, Microsoft’s security
patch addressed Meltdown and Spectre vulnerabilities, which
are hardware vulnerabilities that affect nearly every computer
processor, causing some computers to become unbootable [8].

In this paper, we design and implement phase 3 of ACVRM,
PM, and show the capability of the patch feedback loop to
improve prioritization for the given organization. Our solution
was deployed on a test environment where we applied our
method to patch software vulnerabilities.

The paper is organized as in what follows. Section II
provides background on patch management and analyzes the
related literature. Section III describes our contribution, and
Section IV introduces the ACVRM’s patch management phase,
where the paper’s core contribution is. Section V describes
the design and implementation of a proof of concept for patch
management and feedback loop. Experiments and results are
reported in Sections VI and VII, respectively. Section VIII
concludes the paper.

II. BACKGROUND AND RELATED WORK

Patch Management (PM) helps organizations keep their as-
sets secure, reliable, and up-to-date with the required features
and functionality. It is also essential for ensuring compliance
with security and privacy regulations such as EU Cybersecurity
act [9], EU Cybersecurity Certificate (EUCS) [10], USA
homeland security act [11]. Security patches (hereafter patch)
are released by hardware or software vendors to address the
identified vulnerabilities in their products. PM procedure is re-
sponsible to remediate the vulnerabilities in the organization’s
environment. The PM generally consists of three steps [12] to
address vulnerabilities in the organization:

• Patch testing tests the patch on an isolated system similar
to the production to verify the impact on system/software
performance or instability.

• Patch deployment is applying a patch in production
environments.

• Post-deployment or patch verification is an activity to
detect malfunctions or instability on the system/software
post-patching vulnerability.

One of the complex issues in PM is verifying the vulnerability
patches in an organization environment as each organization
has its unique combination of system and configuration [12].
The patch verification answers two questions 1) Does the patch
remediate the vulnerability? 2) Does the patch have side effects
(i.g., does not break any other software, application, or sys-
tem)? The first could be verified with vulnerability scanning or
checking the version of the software or application, or system.
However, the second one required a deep understanding of the
architectural design of environments (e.g., system, application,

TABLE I
STATISTIC REPORT ON THE NUMBER OF REPORTED VULNERABILITIES IN

NVD [27]

Year No. vulnerability Critical High
2019 17305 2640 7243
2020 18351 (+6%) 2720 (+3%) 7708 (+6%)
2021 20158 (+10%) 2677 (-2%) 8553 (+11%)
2022 25064 (+24%) 4282 (+60%) 10179 (+19%)

software) to evaluate the impact of the patch and prepare a
rollback plan [13].

Some studies [14]–[19] have reported the need for human
expertise in PM due to the increased complexity of security
patching and the limitations of the current technologies to
provide solutions covering the entire process. However, the
authors in [14], [18], [20]–[23] highlighted the significant gap
in the required skills and knowledge expertise in PM. The
experts’ involvement in the PM procedure increases the time
to patch [14]. Therefore, keeping up with the time to patch
became a challenge in IT due to the increasing number of
publicly known vulnerabilities. For example, the number of
vulnerabilities in 2022 is 25064 (i.e., average 68 vulnerabil-
ities per day) where 14461 (i.e., average 40 vulnerabilities
per day) of them ranked as critical and high presented in
Table I. Given that each vulnerability might affect N number
of assets in the organization, the time required for patching
each vulnerability depends on the availability of the security
resources [14], [17], [24], [25]. According to [26], the mean
time to remediation of the vulnerability varies in different
industries (e.g., 44 days in healthcare and 92 days in public
administration). An automated PM facilitates the learning of
organizational context, which is an inevitable need for each
organization to remain secure and compliant. Our proposed
solution, ACVRM, addresses this need. ACVRM introduced
the feedback loop and learned from the historical event in PM.

The authors in [16] determined that the downtime of the
business critical system is a major obstacle in vulnerability
patching. It also identified the struggle of the system admin-
istrators to verify the dependencies in complex applications
and systems. ACVRM facilitates the creation of a dependency
tree for each software and service in an organization. The
dependency reflects the patch prioritization list to support
the system administrator. Midtrapanon and Wills proposed
automated patch management for Linux-based servers. They
orchestrated the existing open-source tools to deploy the
patch automatically and simultaneously for many servers. The
authors claimed the set-up time was reduced and the tool
was cost-efficient [18]. Our work proposed automating the
entire VRM procedure for organizations independently of the
platform. We improve time to patch by automated vulnera-
bility assessment and patch prioritization in the organization’s
context. We also address the patch verification.

III. CONTRIBUTION

In our previous work [5], we designed and implemented
phase 2 of ACVRM, patch prioritization without a feedback



Fig. 2. ACVRM Phase 2 and 3

loop from the patch verification task in phase 3. Moreover,
the review prioritization block (cf. Figure 2) used only the
patch score (i.e., the score is calculated by weighting the
selected criteria in the context of the organization for each
vulnerability) to determine the patch order. We discovered our
method in [5] needs improvement because historical data and
practical experience are the inevitable factors to increase the
success rate of patch [28]. We also learned from the practical
experience shared in the patch management community of
experts3, some patch failures could be avoided by prioritization
(e.g., patching a microcode vulnerability in Ubuntu requires
the kernel to be patched in advance; otherwise, the mitigation
failed). In this study, therefore, we design and implement a
proof of concept of phase 3 and improve patch prioritization
in phase 2. We enhance the task for review prioritization in
phase 2 through a feedback loop, which facilitates review and
error handling capability based on the history of events. The
feedback loop introduced a learning opportunity to adjust the
prioritization to reduce the patch failure rate. The feedback
loop helps the organization to capture the knowledge in the
organization. Hence, it reduces the experts’ intervention by
automating the response to the known patch failure, which is
one of the goals for ACVRM.

IV. ACVRM PHASE 3: PATCH MANAGEMENT

Phase 3 and its coordination with phase 2 in handling
the patches present in Figure 2. The stages in phase 3 are
divided into two parts. First, patch prioritization applies in test
environments similar to production. If the patch is successful,
the second part will be initiated. The stages in the phase 3
describe briefly as follows:

• Patch testing is the first stage in PM, where the patch
priority list will be deployed in a test environment.
This stage aims to determine if a patch will cause
problems for an organization’s unique combination of
hardware, software, and configuration settings. The test
environment should be created similarly to the production
environments. In this stage, the vulnerabilities in the patch
prioritization list for the selected host will be patched

3http://patchmanagement.org/

sequentially in a test host for better visibility of potential
issues.

• Verify testing is a stage to identify if the patches were
successful in a test environment. The output of the patch
testing will be captured and reviewed for success or
failure. In case of an error, the output of patch execution
will be sent to the Review Prioritization stage. If no error
is reported by executing the patch in the test host, it
verifies the remediation of the vulnerability. If the patch
does not mitigate the vulnerability in a tested host, an
alert will be sent to the Review Prioritization stage.

• Verify patch impact aims at detecting any side effect of
the patch on the functionality of the services or applica-
tions in the organization. This stage consists of predefined
functional tests to identify unexpected behavior of the
organization systems or applications. If all tests were
successful, the process is documented as successfully
done.

• Rollback patch is a stage for returning the system to the
prior state of patching. If the vulnerability patch causes
an issue in the system or application functionality or
behavior, the first response to address the issue is to roll
back the patch. It brings the system or application to the
latest working state before patch deployment.

• Report issue is an alert to experts for unexpected behav-
ior. The report is sent to the Review Prioritization stage
in phase 2, where the security and system experts should
investigate the root cause and apply the lesson learned
to the next patch prioritization. The report includes the
CVE-ID, name of vulnerable software or service, host-
name, error message, and time stamp.

• Success test is a step in the production environment to
ensure all the vulnerabilities have been tested successfully
in a test environment.

• Deploy patch is a stage similar to patch testing for
patching vulnerabilities in a production environment. This
stage depends on the output of the previous stage, test ver-
ification. If the patch is successful in a test environment,
it will deploy automatically in production.

• Verify patch is a stage similar to the verify testing for the
host in production environments. It verifies the status of
the remediation in a production environment.

As we described above, all the errors or feedback loops return
to the Review Prioritization stage in the phase 2, where the
patch prioritization list is reviewed for the organization. All the
stages could be automated for the organization, but any error
needs experts’ involvement. We consider the feedback loop a
learning opportunity as the reported issues are recorded in a
database for organizations to identify the challenges in their
unique system and address them automatically. We expected
the learning to improve the patch prioritization decision over
time and reduce the number of errors, decreasing the patch
failure rate and experts’ intervention.



V. DESIGN AND IMPLEMENTATION

The implementation of a PoC for the PM phase (phase 3)
and Review Prioritization of phase 2, shown in Figure 3,
is designed as a group of functions split into five modules;
Deploy patch,Verify patch, Verify patch impact, Learning, and
Automated Review. Each module represents the implementa-
tion of each stage and the output of each module is the input
for the next one. Phase 2 PoC implementation was described
in [5]; hence is omitted in this paper. The output of phase 2 is a
patch prioritization list (patch_prioritization.json)
for each host in the organization, and it is the input to phase 3.
The PM process is responsible for testing the patch in the
test environment before patching it in production. The PM
process, presented in Figure 3, starts with executing Deploy
patch,Verify patch, and Verify patch impact modules in a test
environment. If patches were successful in a test environment,
the Deploy patch module is initiated for a selected host in
production.

The Deploy patch process is iterated for each item (vulner-
ability) in the file until the stop signal is generated. ACVRM
will stop patch execution if the acceptance rate of a failure [28]
(i.e., the percentage of the unsuccessful patch accepted by
security experts in the organization) is exceeded. The default
acceptance rate in our design is up to 10% failure of patches
in patch_prioritization.json for each host. The
rate could be customized based on the organization’s desires.
The deploy patch module allows the second execution of
the patch for each item if the first execution encounters an
error. Sometimes, the error resolves in a second run based
on the patch management community practices. This module
generates an error report for each persistent error (an error
occurred after two tries), and sends it to the Learning module,
within the Review Prioritization.

The Verify patch module begins if no error is detected in the
Deploy patch module. This module verifies the remediation
by examining the running version of vulnerable software or
using a vulnerability scanner. In our PoC, we use version
control, where the running software version must be the same
as the version installed by patch execution. If remediation fails,
the system or service restart condition would examine. Some
vulnerability patches require a system or service restart to be
effected (e.g., Linux Kernel vulnerability requires a system
restart because the installed version is loaded into memory
when a system starts). In case of an error, report the error to
the Learning module. If remediation is confirmed, ACVRM
moves to the next stage.

The Verify patch impact module initiates when remediation
is validated. This module verifies the patch’s impact on the
system or application functionality by running predefined
functional tests. The test depends on the organization’s unique
services and applications and should be defined by the or-
ganization’s experts (e.g., the impact of the patch in a node
hosting the organization’s website, could be verified by the
status of the web server, and website response). ACVRM
could automate the test and verify the expected result. If the

side effect is detected, ACVRM will rollback the patch and
report the impact to the Learning module. Otherwise, it jumps
to the next item in the patch_prioritization.json
until the last item. The Learning module is the enhance-
ment in the Review prioritization stage. This module builds
knowledge from the organization’s past experiences and the
current one to improve patch prioritization decisions. The
knowledge.json is created from the historical events data
and the data provided by a feedback loop in JSON format. Se-
curity experts could feed organizational historical data into the
Learning module. If the historical data are not available, the
module builds the knowledge based on the feedback loop only.
The Learning module helps the organization handle known
errors automatically without the expert’s involvement. In our
design, the learning module will check three conditions before
escalating the error to the security expert. First, it inspects
the existence of errors in knowledge.json. Second, it
checks the dependencies in the error report. Finally, it searches
for a proven solution in knowledge.json. If knowledge
data matches the condition, it updates the patch prioritization.
Otherwise, it sends a report to the experts for review and
response.

Moreover, we introduce Automated Review (AR) in our
design to improve the patch prioritization list before PM cf.
yellow box in Figure 3. We find that there is a possibility of
having multiple CVE-IDs for each software or application in
the patch prioritization list of the host. AR reviews and sorts
the CVE-IDs in the patch list based on the name of the vulner-
able software or application and the patch version. If AR finds
multiple patches of the same software or application, which
is cumulative, it removes the older patches from the priority
list. AR also checks the dependency for each vulnerability in
the list because dependency is a common reason for patch
failure [15], [16], [29], [30]. The dependencies are considered
prerequisites, which directly impact the outcome of PM. If the
organization provides a dependency tree for each software or
application, AR inspects and reflects them in the prioritization
list.

VI. EXPERIMENT

We plan to test our PM PoC by executing a controlled
experiment. In the experiment, we set up a test organization
by creating some nodes, injecting random vulnerabilities into
nodes, verifying the vulnerabilities are detected, and a patch
prioritization list is created for each node. Then, we apply the
PM process to patch the detected vulnerabilities and verify
the remediation and patch impact in a test organization based
on the process presented in Figure 3. In our experiment, we
assumed that the patch testing and verification were successful
for a test organization. The test organization is created by a
network of virtual servers deployed on a public cloud platform.
Figure 4 shows our test organization setup; it consists of eight
virtual servers (Host 1-8), one storage node (Local Storage),
one Rudder node [31], and one Nessus node [32]. All nodes
are connected to a switch. The servers are running Ubuntu
as an Operating System (OS). Rudder node is a host running



Fig. 3. ACVRM Phase 3 process including feedback loop to Phase 2 for test and production environments

the Rudder.io manager version 6.2 as an inventory tool. The
Rudder manager receives the nodes’ data through the installed
Rudder agent on the eight virtual servers. Nessus node is a host
running the Nessus vulnerability scanner community edition,
version 8.14.0-ubuntu110 amd64. The nodes are created using
the OS image provided by the cloud provider and then
updated to the latest stable version available at the testing time
(December 2022). Each node has 1 CPU core, 1GB RAM, and
OS version 18.04.4 LTS.

After initiating the test organization, we randomly select
21 CVE-IDs (relevant to our virtual servers) and install their
vulnerable version on our eight virtual servers (Host 1-8).
We deploy phase 1 and phase 2 of ACVRM to identify the
installed vulnerability and obtain a patch prioritization for
each host. In our experiment, we weight the prioritization
criteria homogeneously, i.e., wi = 0.1667 in Patch Score (PS)
calculation. Table II shows the patch priority list for Hosts 1-8,
the selected CVE-IDs, the name of the software, the Severity
Score (SC), PS, and the patched version of the software. SC is
a normalized score with a standard vulnerability management
module [6].

We implement a PM PoC, our core contribution in this
study, in our test organization according to our defined process.
The aim is to investigate the impact of the patch review
and feedback loop on the success of automated patching and
reducing expert intervention. Hence, we define three cases:

• Case 1: PM based on the patch prioritization list in our
previous work [5], where the PS determines the patch
order. In this case, there is no automated review of the
patch prioritization. We also consider the organization

Fig. 4. Test environments

does not have any historical data from its previous
patch. Moreover, we allowed the patch execution without
interruption until the end of the priority list (i.e., do not
check the error percentage for a test host).

• Case 2: PM based on the updated
patch_prioritization.json by adding an
AR in the process. In this case, the organization does not
provide dependencies. Therefore, the update is based on
removing unnecessary patches (e.g., multiple cumulative
patches of software or application) from the list.

• Case 3: PM based on an improved priority list by



automatically checking dependencies of the vulnerabil-
ities. In this case, we consider the test organization
has a record of dependencies, and AR will update the
patch_prioritization.json accordingly.

For each case, we keep the state of the virtual servers (e.g.,
with 21 installed vulnerabilities) unchanged and review the PM
output for each case. We also disabled the check percentage
of error for stop execution in our experiment as we wanted to
capture all errors without interruption.

VII. RESULTS AND DISCUSSION

In this study, we used the success rate of the patch as a
metric to evaluate the proposed PM approach. We verified the
patch impact in our test organization through a GET request to
the website of the test organization and the state of the system
(up and running) after the patch.

The result of Case 1 in Figure 5 shows that 48% of the
patches escalate to the expert because of the errors in patch
execution. We also observed that 19% of the patches failed in
verification because they required a system or service restart
after the patch. We noticed the success rate of the patch was
33% without a feedback loop and 52% with a feedback loop
(i.e., the condition of 19% of verification failure resolved after
system or service restart). Moreover, we identify the majority
of the errors in Case 1 belong to software with a different
version in the priority list, but the error messages are not the
same. The column Case 1 Result in Table III presents the patch
result for Case 1.

The PM results of Case 2 in Figure 5 show the improvement
in the success rate of the patch by 60% without the feedback
loop and by 90% with a feedback loop. Also, the expert
intervention decreased from 48% to 10% comparing Case 1.
30% of the patch failed in verification has been resolved
by feedback loop condition as all required system or service
restart. We noticed that the number of CVE-IDs in our sample
list decreased from 21 to 10 with AR.

The Case 3 result in Figure 5 shows the 80% success rate
without a feedback loop and 0% unknown error to escalate
to the expert. 20% of verification failures were addressed by
feedback loop as they required system restart.

Table III presents the patch result without a feedback loop to
visualize the impact of the feedback loop for three cases (e.g.,
Case 1 Result, Case 2 Result, and Case 3 Result). The patch
priority has been changed for Case 2 and Case 3 compared to
Case 1. We define ∆ as the difference between the position
in patch priority (Pk,*) between Case 1 and other cases as:

∆k,j = Pk,Case 1 − Pk,Case j j = 2, 3 (1)

where k is CVE-ID in the list. A positive value of ∆
indicates that the CVE-ID got a higher priority concerning
Case 1. The negative value of ∆ refers to lower priority
compared with Case 1, while the zero value of ∆ marks no
changes in the priority. The Case 2/3 priority (∆) column
in Table III shows the priority of Case 2/3, and the ∆
value in parenthesis indicates changes in the CVE-ID position
compared with Case 1. For example, the CVE-2022-2526 has

a priority 3 by Case 1 while it becomes a priority 1 in Case 2
and Case 3. The lack of values for the Case 2 and 3 priority
(∆) column means that the CVE-ID has been removed from
the priority list. We only see the Delta with a positive value
as the number of the CVE-IDs decreases 52% for Case 2
and Case 3. For example, Case 1 consists of four patches
for apache (CVE-2021-44790, CVE-2021-39275, CEV-2022-
23943, and CVE-2022-31813), which is reduced to one in
Case 2 and Case 3.

We observe that Case 2 and Case 3 have the same CVE-IDs
in the patch list, but the prioritization is different. For example,
CVE-2022-31813 has a priority 2 in Case 2 and a priority 4
in Case 3. The differences in Case 2 and Case 3 prioritization
are due to the impact of the dependencies. In Case 3, the
organization provides a dependency tree of each vulnerabil-
ity, and AR verifies dependencies and adjusts the priority
order accordingly. In our test organization, three CVE-IDs
(CVE-2022-31813, CVE-2022-2068, and CVE-2022-32221)
have the libc6 in their dependencies tree. The position of
libc6 vulnerability (CVE-2022-23219) is after those three
CVE-IDs based on PS. As described in V, dependencies are
prerequisites. The dependence got a higher priority despite
having a lower PS. Hence, the position of CVE-2022-23219
was adjusted to be patched before the software, depending on
it. The result from all three case studies shows the impact
of automation on reducing the expert intervention in patch
vulnerabilities. We also verify the improvement in the patch
prioritization by adding a feedback loop and learning from
patch history.

Furthermore, we observe that AR improved efficiency in
patch prioritization and PM in Case 1 and 2 because AR
removes the unnecessary patch from the list and adjusts the
list based on dependencies. Moreover, the verification of patch
impact for all three cases was positive, and the patches did not
break the system functionality.

VIII. CONCLUSION AND FUTURE WORK

The increasing number of publicly known vulnerabilities
introduces the challenge in VRM as it requires experts’ in-
tervention. The average number of vulnerabilities with critical
and high scores was 40 per day in 2022, according to NVD
[27], which forced the organizations to improve their VRM
procedure to remain secure and compliant. In this study, we
introduced the PM of ACVRM to automate patching, reduce
experts’ intervention, and improve the success rate of the
patch. We performed an analysis as follows:

1) We learned the challenges in PM and the criteria that
should be considered from the literature review and
patch management community best practices. We de-
termined that time to patch, expert availability, system
downtime, and dependencies are important criteria in
patching vulnerabilities. Therefore, we define our au-
tomated patching process to reduce expert intervention
while increasing the success rate of the patch.

2) We designed and implemented phase 3 of ACVRM,
which consists of testing and verifying the vulnerabil-



TABLE II
THE SAMPLE OF PATCH PRIORITIZATION LIST FOR HOST 1-4 WITH UBUNTU OPERATING SYSTEM

Priority CVE-ID Name SC PS Patched version
1 CVE-2021-3711 openssl 9.1833 4.0810 1.1.1-1ubuntu2.1∼18.04.13
2 CVE-2021-44790 apache 8.3500 3.9421 2.4.29-1ubuntu4.21
3 CVE-2022-2526 systemd 8.3500 3.9421 237-3ubuntu10.56
4 CVE-2021-39275 apache 7.7833 3.8476 2.4.29-1ubuntu4.17
5 CVE-2022-23943 apache 7.7833 3.8476 2.4.29-1ubuntu4.22
6 CVE-2022-31813 apache 7.5167 3.8031 2.4.29-1ubuntu4.24
7 CVE-2022-2068 openssl 7.3167 3.7698 1.1.1-1ubuntu2.1 18.04.19
8 CVE-2022-32221 curl 6.6833 3.6642 7.58.0-2ubuntu3.21
9 CVE-2022-22576 curl 7.2167 3.6598 7.58.0-2ubuntu3.17
10 CVE-2022-23219 glibc 6.2667 3.5948 2.27-3ubuntu1.5
11 CVE-2022-45061 python 6.8167 3.4997 3.6.9-1∼18.04ubuntu1.9
12 CVE-2020-24489 intel-microcode 8.5167 1.9198 3.20210608.0ubuntu0.18.04.1
13 CVE-2022-42896 Linux Kernel 7.8500 1.8204 4.15.0-202.213
14 CVE-2021-4034 policykit-1 7.8500 1.8087 0.105-20ubuntu0.18.04.6
15 CVE-2022-34918 Linux Kernel 7.8500 1.8087 4.15.0-191.202
16 CVE-2022-0392 vim 7.0167 1.6698 2:8.0.1453-1ubuntu1.10
17 CVE-2022-1621 vim 6.8500 1.6420 2:8.0.1453-1ubuntu1.9
18 CVE-2021-0146 intel-microcode 6.4500 1.5170 3.20220510.0ubuntu0.18.04.1
19 CVE-2021-33910 systemd 6.3167 1.3664 237-3ubuntu10.49
20 CVE-2020-24513 intel-microcode 5.8500 1.2886 3.20210608.0ubuntu0.18.04.1
21 CVE-2022-21233 intel-microcode 5.6500 1.2553 3.20220809.0ubuntu0.18.04.1

TABLE III
THE PATCH RESULT OF CASE 1-3; THE EMPTY CELLS INDICATE THE CVE-ID REMOVED FROM THE PATCH PRIORITY

Priority CVE-IDs Name Case 1 Result Case 2 Priority (∆) Case 2 Result Case 3 Priority (∆) Case 3 Result
1 CVE-2021-3711 openssl Verification fail
2 CVE-2021-44790 apache Error escalate to expert
3 CVE-2022-2526 systemd Successful 1 (2) Successful 1 (2) Successful
4 CVE-2021-39275 apache Error escalate to expert
5 CVE-2022-23943 apache Error escalate to expert
6 CVE-2022-31813 apache Error escalate to expert 2 (4) Error escalate to expert 4 (2) Successful
7 CVE-2022-2068 openssl Error escalate to expert 3 (4) Verification fail 3 (4) Successful
8 CVE-2022-32221 curl Successful 4 (4) Successful 5 (3) Successful
9 CVE-2022-22576 curl Error escalate to expert
10 CVE-2022-23219 libc6 Successful 5 (5) Successful 2 (8) Successful
11 CVE-2022-45061 python Successful 6 (5) Successful 6 (5) Successful
12 CVE-2020-24489 intel-microcode Error escalate to expert
13 CVE-2022-42896 Linux Verification fail 7 (6) Verification fail 7 (6) Verification fail
14 CVE-2021-4034 policykit-1 Successful 8 (6) Successful 8 (6) Successful
15 CVE-2022-34918 Linux Verification fail
16 CVE-2022-0392 vim Successful
17 CVE-2022-1621 vim Error secalate to expert 9 (8) Successful 9 (8) Successful
18 CVE-2021-0146 intel-microcode Verification fail
19 CVE-2021-33910 systemd Successful
20 CVE-2020-24513 intel-microcode Error escalate to expert
21 CVE-2022-21233 intel-microcode Error escalate to expert 10 (11) Verification fail 10 (11) Verification fail

ity patches and the impact of patches on the system
functionality. We learned that reviewing prioritization
based on the history of the patch will improve the patch
prioritization in the organization’s context.

3) We verified the result of our proposed PM by analyzing
the outcome of each case. Our result shows that the
ACVRM could adjust the patch prioritization for each
organization with less effort from security experts. Au-
tomated Review has been introduced to remove unnec-
essary patches and reduce errors due to dependencies.
Our solution allows security experts to set the patch
failure rate and stop the execution of the error-prone
patch prioritization.

Our study shows how the organization could automate VRM
based on its context. ACVRM facilitates improvement in the

VRM procedure by patch prioritization in the organization’s
context and reducing experts’ intervention. The feedback loop
provides an opportunity of learning from historical data and
enhances the organization’s knowledge which increases the
success rate of patching. In the future, we could add the
learning from the patch management community, social me-
dia, and threat intelligence into the review prioritization to
support better decisions on the vulnerability ranking. Hence,
the success rate of patching will improve. Another possible
future direction could be using a machine learning algorithm
such as a decision tree in the Learning module to improve
error handling.
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