
TOWARDS AUTOMATED CONTEXT-AWARE
VULNERABILITY RISK MANAGEMENT

Vida Ahmadi Mehri

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2023:07

Department of Computer Science

Towards Automated Context-aware
Vulnerability Risk Management

Vida Ahmadi Mehri

Blekinge Institute of Technology Doctoral Dissertation Series
No 2023:07

Towards Automated Context-aware
Vulnerability Risk Management

Vida Ahmadi Mehri

Doctoral Dissertation in Computer Science

Department of Computer Science

Blekinge Institute of Technology

SWEDEN

2023 Vida Ahmadi Mehri

Department of Computer Science

Publisher: Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Printed by Media-Tryck, Lund, Sweden, 2023

ISBN: 978-91-7295-459-5
ISSN: 1653-2090

urn:nbn:se:bth-24468

“The more I learn, the more I realize how much I don’t know.”

Albert Einstein

Abstract

The information security landscape continually evolves with increasing pub-
licly known vulnerabilities (e.g., 25064 new vulnerabilities in 2022). Vul-
nerabilities play a prominent role in all types of security related attacks,
including ransomware and data breaches. Vulnerability Risk Management
(VRM) is an essential cyber defense mechanism to eliminate or reduce attack
surfaces in information technology. VRM is a continuous procedure of iden-
tification, classification, evaluation, and remediation of vulnerabilities. The
traditional VRM procedure is time-consuming as classification, evaluation,
and remediation require skills and knowledge of specific computer systems,
software, network, and security policies. Activities requiring human input
slow down the VRM process, increasing the risk of exploiting a vulnerability.

The thesis introduces the Automated Context-aware Vulnerability Risk
Management (ACVRM) methodology to improve VRM procedures by au-
tomating the entire VRM cycle and reducing the procedure time and experts’
intervention. ACVRM focuses on the challenging stages (i.e., classification,
evaluation, and remediation) of VRM to support security experts in promptly
prioritizing and patching the vulnerabilities.

ACVRM concept is designed and implemented in a test environment
for proof of concept. The e�ciency of patch prioritization by ACVRM
compared against a commercial vulnerability management tool (i.e., Rudder).
ACVRM prioritized the vulnerability based on the patch score (i.e., the
numeric representation of the vulnerability characteristic and the risk), the
historical data, and dependencies. The experiments indicate that ACVRM
could rank the vulnerabilities in the organization’s context by weighting the
criteria used in patch score calculation. The automated patch deployment
is implemented with three use cases to investigate the impact of learning
from historical events and dependencies on the success rate of the patch and
human intervention. Our finding shows that ACVRM reduced the need for
human actions, increased the ratio of successfully patched vulnerabilities,
and decreased the cycle time of VRM process.

i

to my dear family and brave Women of Iran
Woman Life Freedom

iii

Preface

This thesis consists of an introductory part (Chapters 1-6), one peer-reviewed
journal article, and three peer-reviewed conference papers (Chapters 7-10).
I have been the main contributor to all the publications in the thesis. The
studies in all papers have been developed and designed under the supervisors’
guidance and co-authored with supervisors. The formatting of included
papers has been changed to maintain a consistent style throughout the thesis,
but the content is unchanged.

Included Papers

Paper I Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Normal-
ization of Severity Rating for Automated Context-aware
Vulnerability Risk Management", 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing
Systems Companion (ACSOS-C), Washington, DC, USA,
2020, pp. 200-205, ©2020 IEEE. doi: 10.1109/ACSOS-
C51401.2020.00056.

Paper II Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Normal-
ization Framework for Vulnerability Risk Management in
Cloud", 2021 8th International Conference on Future Inter-
net of Things and Cloud (FiCloud), Rome, Italy, 2021, pp.
99-106, ©2021 IEEE. doi: 10.1109/FiCloud49777.2021.00022.

Paper III Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Au-
tomated Context-Aware Vulnerability Risk Management
for Patch Prioritization", Electronics 2022, 11, 3580.
https://doi.org/10.3390/electronics11213580

Paper IV Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Automated
Patch Management: An Empirical Evaluation Study", Ac-
cepted in 2023 IEEE International Conference on Cyber
Security and Resilience (CSR), Venice, Italy. ©2023 IEEE.

v

Related Papers

Paper V Tutschku, K. Ahmadi Mehri, V., Carlsson, A., Chivukula,
K. V., Christenson, J. "On Resource Description Capa-
bilities of on-board Tools for Resource Management in
Cloud Networking and NFV Infrastructures". 2016 IEEE
International Conference on Communications Workshops
(ICC), Kuala Lumpur, Malaysia, 2016, pp. 442-447, doi:
10.1109/ICCW.2016.7503827.

Paper VI Tutschku, K.Ahmadi Mehri, V., Carlsson, A. "Towards Multi-
layer Resource Management in Cloud Networking and NFV
Infrastructures". In 12th Swedish National Computer Net-
working Workshop (SNCNW), 2016.

Paper VII Ahmadi Mehri, V., Tutschku, K. "Flexible Privacy and High
Trust in the Next Generation Internet: The Use Case of
Cloud-based Marketplace for AI". In 13th Swedish National
Computer Networking Workshop(SNCNW), 2017.

Paper VIII Ahmadi Mehri, V., Ilie, D., Tutschku, K. "Privacy and DRM
Requirements for Collaborative Development of AI Appli-
cation". In 13th International Conference on Availabil-
ity, Reliability and Security, ARES 2018: Workshop On
Interdisciplinary Privacy and Trust., 2018. https://doi-
org.miman.bib.bth.se/10.1145/3230833.3233268

Paper IX Ahmadi Mehri, V., Tutschku, K. "Privacy and Trust in
Cloud-Based Marketplaces for AI and Data Resources".
In 11th IFIP International Conference on Trust Manage-
ment(TM), Springer International Publishing, 2017.

Paper X Ahmadi Mehri, V., Ilie, D., Tutschku, K. "Towards Privacy
Requirements for Collaborative Development of AI Appli-
cations". In 14th Swedish National Computer Networking
Workshop (SNCNW), 2018.

Paper XI KOYYADA, S., Deshmukh, D., Badampudi,
D.,Ahmadi Mehri, V., Usman, M. "Towards automated
open source assessment–An empirical study.". In arXiv
preprint, 2022.

vi

Acknowledgements

I want to thank the people who have supported me in my research education
and without whom this thesis would not have been possible. First and
foremost, I would like to express my deepest and most sincere gratitude to
my main supervisor Dr. Emiliano Casalicchio for his invaluable guidance,
encouragement, patience, and continuous support throughout my research
adventure.
I would like to extend my sincere gratitude to my second supervisor Dr.
Patrik Arlos for providing full-time support, sharing deep experiences, in-
spiring and encouraging me during my research education.
I would like to thank all my friends and colleagues in the department of
Computer Science who have helped me through discussions and sharing their
knowledge.

I thank Rudder.io for allowing me to test their tool in my research. I
would like to acknowledge Celura for their Cloud infrastructure access.

I would like to thank Denim Deshmukh and Sai Pranav Koyyada for their
help in collecting the vulnerability Data from RedHat Security Advisory.

I am thankful to my wonderful family for their never-ending support and
motivation. Special thanks to my loving husband Mohammad, who never
gave up on me and has been my best friend and the source of inspiration. I
am grateful to my children, Sina and Sarina, who always forgive my absence
in favor of my job.

Stockholm, May 2023
Vida Ahmadi Mehri

vii

Contents

Abstract . i
Preface . v
Acknowledgements . vii

1 Introduction 3
1.1 Aim and Objectives . 5
1.2 Contribution . 5

2 Background 9
2.1 Vulnerability Risk Management (VRM) 10
2.2 Common Vulnerabilities and Exposures 14
2.3 Common Vulnerability Scoring System 15
2.4 Vulnerability Database . 17
2.5 Automation . 18

3 Scientific Approach 21
3.1 Research Methodology . 21
3.2 Research Questions . 23
3.3 Validation Method . 25

4 Automated Contex-aware Vulnerability Risk Management 27

5 Summary of Papers 31
5.1 Normalization of Severity Rating for Automated Context-

aware Vulnerability Risk Management 31
5.2 Normalization Framework for Vulnerability Risk Management

in Cloud . 32

ix

5.3 Automated Context-aware Vulnerability Risk Management
for Patch Prioritization . 33

5.4 Automated Patch Management: An Empirical Evaluation Study 34

6 Conclusion and Future Work 37
References . 39

7 Normalization of Severity Rating for Automated Context-
aware Vulnerability Risk Managemen 45
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio
7.1 Introduction . 46
7.2 Related Work . 48
7.3 Vulnerability Risk Management (VRM) 50
7.4 Proposed Solution . 53
7.5 Conclusion . 58
References . 58

8 Normalization Framework for Vulnerability Risk Manage-
ment in Cloud 63
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio
8.1 Introduction . 64
8.2 Related works . 66
8.3 The role of Vulnerability Databases in Vulnerability Risk

Management . 67
8.4 The VDs Normalisation Framework 69
8.5 Validation Case study . 72
8.6 Analysis Result . 73
8.7 Conclusion . 76
References . 78

9 Automated Context-aware Vulnerability Risk Management
for Patch Prioritization 81
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio
9.1 Introduction . 82
9.2 Related Work . 84

x

9.3 Automated Context Aware Vulnerability Risk Management
(ACVRM) . 87

9.4 Prioritization . 90
9.5 Evaluation criteria and patch score 93
9.6 Design and Implementation 99
9.7 Experimental Validation of PoC 100
9.8 Results and discussions . 106
9.9 Conclusion . 110
References . 112

10 Automated Patch Management: An Empirical Evaluation
Study 117
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio
10.1 Introduction . 118
10.2 Background and related work 120
10.3 Contribution . 121
10.4 ACVRM Phase 3: Patch Management 122
10.5 Design and implementation 124
10.6 Experiment . 127
10.7 Results and Discussion . 129
10.8 Conclusion and future work 132
References . 133

xi

List of Abbreviation

A Availability
AC Attack Complexity
ACVRM Automated Context-aware Vulnerability Risk Management
AUS Application/Unit/Service
AV Attack Vector
C Confidentiality
CIS Center of Internet Security
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DSA Debian Security Advisories
I Integrity
NVD Natinal Vulnerability Database
OC Organization Context
PoC Proof of Concept
PS Patch Score
RHSA RedHat Security Advisory
SC Severity Score
USN Ubuntu Security Notice
VD Vulnerability Database
VMM Vulnerability Management Mode
VRM Vulnerability Risk Management

1

1
Introduction

Over the last few years, digital transformation and remote work accelerated,
exposing more information to the public. Protecting data from unauthorized
access becomes essential in Information Technology (IT) as traditional
network perimeters and firewalls are insu�cient. In addition, an increasing
number of sophisticated attack tools evolved, which support bad actors for
financial gain. Cybercrime causes significant economic losses and reputational
damage in IT each year [1]. Hence, information security must advance its
technique and method to deal with growing cyber-attacks.

The information security landscape changed quickly in recent years due to
the increased number of publicly known vulnerabilities (i.e., 40% from 2019
to 2022), the COVID-19 pandemic (i.e., Since 2019), and Russia’s invasion
of Ukraine (i.e., since February 2022). Attackers rapidly exploit unpatched
vulnerabilities (i.e., weaknesses in an IT system) to steal sensitive data or
disrupt the operation of the targeted system [1, 2]. Recently, a global ran-
somware attack launched by exploiting VMware ESXi servers vulnerability
CVE-2021-21974 and targeted thousands of servers in Italy, France, Finland,
the United States, and Canada as reported by Reuters1. The COVID-19 pan-
demic increased the speed of digital transformation and changed the IT work
model from on-site to remote. The remote work model expands the attack
surface (i.e., the entry point of a system or an environment that the attacker
can try to enter) by increasing the number of public-facing IT (i.e., intended
for access by the general public) services and infrastructures [2]. Russian
state actors launched a massive destructive cyberattack against the Ukrainian
government, technology, and financial sectors hours before the missiles were
launched [2]. Exploiting vulnerabilities in public-facing applications such as
VPN (e.g., CVE-2020-4006, CVE-2019-19781, CVE-2019-11510, CVE-2019-

1 https://www.reuters.com/world/europe/italy-sounds-alarm-large-scale-computer-
hacking-attack-2023-02-05/

3

1. Introduction

9670, and CVE-2018-13379) and Microsoft SQL Server (CVE-2021-1636)
are common intrusion methods used to initiate attacks by Russian [3, 4].
Hence, Vulnerability Risk Management (VRM) is part of a defense mech-
anism in information security and a robust method for cybersecurity hygiene.

VRM is a cyclic procedure consisting of four tasks; 1)identification, 2)
classification, 3) evaluation, and 4) remediation of the security vulnera-
bilities in the system and software [5]. Security scanning tools such as
OpenVAS [6] and Nessus[7] can detect the vulnerabilities in a system, and
patch management tools such as ManageEngine and NinjaOne could re-
mediate the vulnerabilities. However, classification and evaluation require
skill and knowledge about the system design and IT policy because, in
practice, it is impossible to patch all detected vulnerabilities. A security
expert might leave some vulnerabilities unpatched due to limited attack
surface or the higher remediation cost than exploitation [8–17]. There is a
lack of tools that can classify vulnerabilities based on the exploit implication
to an organization’s business and initiate e�cient patching for the specific
organization [18]. Therefore, security experts play a vital role in VRM to
protect organizations’ assets and remain compliant with local and interna-
tional regulations. Some regulations include binding operational directive
19-02 2 and Cyber essentials 3 define an explicit deadline (e.g., 15 days
for critical vulnerabilities) for patching the vulnerability in public-facing
services. Hence, human involvement introduces a compliance challenge as it
increases the time and cost of VRM procedure[8, 12]. The patch deadline is
counting from the day the remediation is released. According to [19], the
mean time to remediation the vulnerability varies in di�erent industries
(e.g., 44 days in healthcare and 92 days in public administration). Since
4282 critical vulnerabilities were just published in 2022, there is a need for
improvement in the VRM procedure to reduce human intervention, improve
patch times, and prioritize remediation based on the organization’s context.

The organization context is a set of data that defines assets, the organiza-
tion intends to protect and the rules, (e.g., asset inventory lists, asset priority
list, and access policy). The organization context is essential in VRM to

2 https://www.cisa.gov/binding-operational-directive-19-02
3 https://www.ncsc.gov.uk/cyberessentials/overview

4

1.1. Aim and Objectives

provide e�cient patch planning. For instance, a vulnerability a�ecting an
asset in the priority list is critical for the organization and must be patched
within a specific time (i.e., the time defined by the organization’s information
security framework).

1.1 Aim and Objectives

This study aims to answer the main research question: How can we
automate the VRM process to make it time-e�cient, context-
aware, and with enhanced patch prioritization decisions? We
introduced the Automated Context-aware Vulnerability Risk Management
(ACVRM) framework to answer the research question.

• Customise the VRM process for a given organization by learning the
organization’s assets and policy

• Automate the VRM procedure by applying predefined decision criteria

• Develop learning from past VRM experience for automated error
handling

The thesis was implemented in a public cloud to investigate the time and
cost savings in the VRM procedure. The cost saving is based on reducing
human intervention and VRM process time.

1.2 Contribution

Figure 1.1 maps the contribution of each paper into the VRM stages. The
summary of the contribution in the papers briefly describe as follows:

1.2.1 Papers outline

• Paper I reviewed the literature on VRM and existing vulnerability
management tools. The study discovered the lack of tools and method-
ology to cover all VRM stages and the lack of consistency in scoring the
vulnerabilities in di�erent vulnerability databases. The first ACVRM
workflow is proposed to maintain all stages of VRM and evaluate the
vulnerability in the context of an organization. It also introduced using

5

1. Introduction

multiple Vulnerability Databases (VD) in the identification stage to
widen the knowledge of published vulnerabilities.

• Paper II introduced and implemented a normalization framework to
normalize obtained severity scores from multiple VDs. It discovered
the role of VDs in VRM and highlighted the need for using multiple
VDs to generalize the severity score of each vulnerability. The risk
and impact of exploiting vulnerabilities are determined to depend on
the organization’s assets, security requirements, and security policies.
Thus, the framework allowed organizations to select the vulnerability
management mode. Hence, the study improved the identification and
classification stages in VRM.

• Paper III designed and implemented a PoC of ACVRM to classify and
evaluate vulnerabilities in an organization’s context. The literature
review and security experts interview are conducted to determine the
criteria for selecting the order in patch prioritization. The defined cri-
teria could be weighted based on the organizational context. The patch
score (i.e., the score is calculated by weighting the selected criteria in
the organization’s context for each vulnerability)is a metric to rank the
vulnerability in an evaluation stage. The patch prioritization derived
from ACVRM was compared with the Rudder vulnerability manage-
ment tool (CVE-plugin) and showed the e�ciency of the proposed
solution. This paper improved classification and evaluation stages in
VRM by reducing evaluation time and experts’ intervention.

• Paper IV designed and implemented a PoC of the remediation stage
of VRM. It also improved the evaluation stage by adding a feedback
loop (i.e., the output of the patch deployment) to the ACVRM process.
The benefit of a feedback loop is discovered to improve the success
rate of patches based on the lesson learned from historical events. This
paper enhanced the evaluation and remediation stages of VRM by
decreasing the patch failure and experts’ intervention in the process.

1.2.2 Thesis Outline

The remainder of this thesis is structured as follows:

6

1.2. Contribution

Figure 1.1: Maps included papers to VRM steps

• Chapter 2: Background provides necessary background knowledge
to this study, including Vulnerability Risk Management (VRM), Com-
mon Vulnerabilities and Exposures (CVE), Common Vulnerability
Scoring System (CVSS), Vulnerability databases, and automation.
This section also presents the related work to address the challenge in
VRM.

• Chapter 3: Scientific Approach presents the research methodology
and research questions used in this thesis. In addition, it describes the
validation of the results of the thesis.

• Chapter 4: Automated Context-aware Vulnerability Risk
Management presents our method, ACVRM, and its design method-
ology.

• Chapter 5: Summary of Papers outlines the main contribution to
the studies included in the thesis. It also highlights the contribution
to the research community by answering the research questions.

• Chapter 6: Conclusion and future work concludes the thesis by
summarizing contributions and discussing possible future directions.

7

1. Introduction

• Chapters 7-10 are Papers I-IV included in the thesis.

8

2
Background

A security vulnerability (hereafter vulnerability) is a weakness, flaw, or error
found within a computer system (e.g., Operating System (OS), software, or
hardware) that has the potential to be leveraged by threat actors, a person or
group of people that intentionally causes harm by exploiting vulnerabilities in
the cyber sphere, to compromise a computer system. Typical vulnerabilities
are misconfiguration, broken authentication, cross-site scripting, remote
code execution, or SQL injection. The result of a successfully exploited
vulnerability might cause Denial of Service (DoS), bu�er overflow, malware
injection, or data breach [20].

Security experts should proactively monitor their environments to iden-
tify and mitigate vulnerabilities before threat actors. Security controls
and configuration monitoring could remediate misconfiguration, such as the
default admin password. However, OS, software, and hardware vulnera-
bilities require patches released from the vendors. Security experts must
also regularly monitor relevant vendors’ security advisory websites to be
informed about the latest identified vulnerabilities and remediation solutions.

Some vendors (e.g., RedHat, Microsoft, and Google) communicate crit-
ical vulnerabilities identified in their products with their VIP customers
before the information becomes publicly available on their security advisory
websites or VDs. But this is not the case for all vendors. In addition, each
vendor might have a di�erent method of ranking the vulnerabilities that
resulted in di�erent severity scores for the same vulnerability (e.g., CVE-
2020-8130 has a severity score "8.1" in NVD [21], "Medium" in USN [22], "9"
in DSA [23], and "Moderate" in RHSA [24]).

9

2. Background

With over 25064 new vulnerabilities reported in 2022, it is challenging
to remediate all publicly known vulnerabilities with the experts’ constraint
in IT [9, 13, 15–17, 25]. Hence, security experts must assess vulnerabilities
based on the risk of exploitation and their implications on the business.
Most organizations assess the vulnerabilities based on the severity score [26,
27] because some regulations have an explicit deadline for patching vulnera-
bilities with high and critical severity scores. Vulnerability assessment (i.e.,
evaluation stage in VRM) is time-consuming and labor-intensive, especially
when the number of critical vulnerabilities increased 60% in 2022 compared
with 2019 (i.e., 4282 vulnerabilities were reported critical in 2022, while 2640
in 2019, 2720 in 2020, and 2677 in 2021) [21]. One vulnerability might be
found in hundreds of systems.
There is a need for methodologies to support security experts in making bet-
ter decisions on vulnerability handling (remediate or not). To help with this,
vulnerability risk management standards and frameworks have been intro-
duced in ISO 27002, ISO 62443, and NIST Cybersecurity framework [28–30].
Some vulnerability management tools were developed using the standard
framework to address the mentioned challenges. Moreover, some studies
develop methods to predict which vulnerability must be remediated based
on the organization’s resources availability [8, 12, 31, 32]. However, the con-
ducted studies are domain specific with scoping part of the VRM procedure
(e.g., identification and remediation) [33–35].

This chapter provides an overview of the concepts and technologies
adopted in this work.

2.1 Vulnerability Risk Management (VRM)

VRM is a continuous and proactive process to protect computer systems,
networks, and applications from cyberattacks and data breaches. It has been
listed as one of the top ten critical security controls by the Center of Internet
Security [36]. Furthermore, the information security standards and legislation
(e.g., ISO 27002, EU Cybersecurity act [37], USA homeland security act [38])
mandate organizations to establish a VRM procedure to be compliant. The
increased number of known vulnerabilities forced the computer security
industry towards a risk-based approach. Only vulnerabilities that exceed
the organization’s acceptable risk level will be remediated in this approach.

10

2.1. Vulnerability Risk Management (VRM)

Identifying which vulnerability should be remediated first is a challenge
that requires a deep understanding of the unique combination of software,
hardware, system and network configuration, and the organization’s security
policy. VRM consists of four stages that are presented in Figure 2.1 and
described as follows:

1. Identification: the first step in VRM process is to identify the vulner-
abilities that may exist in organizations’ environments. Vulnerability
scanner tools can detect open ports, vulnerable versions of software
or hardware, and outdated services. Vulnerability scanners rely on a
database of known vulnerabilities and provide reports based on the
information in their database. Hence, they are not able to detect
unknown or zero-day vulnerabilities. For example, OpenVAS depends
on NVD [21] description of vulnerabilities and severity scores in its
report. However, relying on one source of information (e.g., one VD)
is ine�cient in the identification stage based on [39] findings.

2. Classification: the discovered vulnerabilities should be categorized
into groups to ease prioritization. The classification can be based
on the nodes or group of nodes, the type of vulnerabilities, access
level (i.e., access through an internal network or external network), or
the criticality of the vulnerable service/software to the organization.
Vulnerability scanner tools classify the vulnerabilities in their report
node-based and score based. However, the external access and criti-
cality of the service or software to the business are essential metrics
in the risk assessment. The vulnerabilities in a public-facing (i.e.,
external access) service have a higher risk of exploitation than those
only available via an internal network. Hence, the classification stage
needs experts’ knowledge of the system and services.

3. Evaluation: the classified vulnerabilities must be evaluated based
on the organization’s risk management strategy. Some vulnerabilities
with a low risk of exploitation and limited attack surface (e.g., a
vulnerability in Adobe Flash Player while it is entirely disabled from
being used in web browsers and other client applications) could remain
unpatched if the cost of mitigation is substantially higher than the cost
of the vulnerability being exploited. Vulnerability scanners reported
the severity score of the vulnerabilities based on the score in their
reference VDs. However, the severity score from VDs considers an

11

2. Background

out-of-the-box risk rating that evaluates each vulnerability’s risk in a
silo.
The risk evaluation depends on other factors, such as the likelihood
of exploitation, attack complexity, attack vector, and the age of the
vulnerability. The evaluation stage decides on a patch prioritization
for each node or group of nodes in the organization. The decision
might be based on the risk and availability of the resources to patch
the vulnerabilities. This time-consuming and labor intense stage is
the bottleneck in the VRM procedure as domain experts constrain
increase the time to patch for each identified vulnerability [8, 12, 31,
32]

4. Remediation: is a corrective action that aims to prevent exploitation
by removing or mitigating a threat’s capability to exploit a specific
vulnerability in the system. The patch method is the system or service
dependent. Vendors provide patch instruction, but it needs to be
customized for each organization based on their unique system setups
and concerning the other vulnerabilities. In addition, the instructions
might di�er based on the operating system type, server or desktop
edition, and the installation method (e.g., software source code, package
repository).
The remediation process includes verification of the patch and any
side e�ects it can cause. Patch verification could be done through the
vulnerability scanner or version control. However, there is a need for
knowledge of organizational context and services to verify the side
e�ect or define test cases. For example, after patching OS on a server
that hosts multiple virtual instances, the test could verify the status
of each virtual instance. The organization should have a rollback
plan if the side e�ect is detected. The rollback plan must return the
system or software to a stable version before the patch, and the expert
should execute troubleshooting. If patching the vulnerability cause
a breakage in the system and services, the security expert should
produce a mitigation plan. Therefore, the remediation stage requires
expert intervention for customizing the patch instruction, creating a
rollback plan, defining a verification method, troubleshooting in case
of an error, and creating a potential mitigation plan.

As described above, stages 2-4 of the VRM require experts’ involvement,

12

2.1. Vulnerability Risk Management (VRM)

Figure 2.1: Vulnerability Risk Management procedure

increasing the VRM process time. Automating stages 2-4 in the VRM
procedure could decrease the processing time for each vulnerability. However,
e�cient automated VRM requires learning organizational contexts such as
service policy, inventory of assets, and access policy.

2.1.1 Patch VS. Update

Patch and update are often used interchangeably in system and software
contexts. However, there is a big di�erence in terms of the implementation
approach. Software or system updates generally include bug fixes and
functional improvement. At the same time, the patch is an update to
address a specific vulnerability in the system or software. Some vendors
like Microsoft, Adobe, and Oracle regularly release a patch on the second
Tuesday of each month (i.e., a patch Tuesday) that addresses some bugs and
vulnerabilities with low and medium severity scores in their products and
services during their life cycle. However, patches for critical vulnerabilities
are released outside the regular patch Tuesday cycle 1. Regular system
update does not necessarily address remediation of the vulnerability and is

1 https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-
updates-primer/ba-p/2569385

13

2. Background

not intended to eliminate the need for VRM procedure. In addition, some
services or applications depend on specific versions of libraries or databases,
or other software [40]. Therefore, regular system updates might not be
used for a complex system (e.g., IaaS) as the cost of system or software
failure is unpredictable in such a system. For instance, updating software A
may change its functionality or behavior, which causes issues in software B
that depend on software A’s functionality. Hence, software A should not
be updated until software B is capable of working with the new version of
software A.

2.2 Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) was launched in 1999 and
maintained by the US National Cybersecurity Federally Funded Research and
Development Center operated by the MITRE Corporation [41]. The primary
purpose of CVEs is to set a standard identification reference for publicly
known vulnerabilities and exposures. Before CVE, each vendor maintained
their identification system and di�erent attributes for each vulnerability,
making collaboration and information exchange challenging. CVE ensures
the availability of vulnerabilities ID for anyone to use.

The CVE identifier (CVE ID) is a unique number assigned to one software,
hardware, or firmware vulnerability. Security professionals use the CVE ID
to track information about a particular vulnerability. CVE ID provides a
reliable way for vendors, enterprises, academics, and other interested parties
to exchange information about security issues. Moreover, CVE ID facilitates
sharing across the security industry and helps the mitigation speed.

CVE ID consists of three parts separated with a dash (e.g., CVE-Year-
Number). The first part is a CVE prefix. The second part is the year when
the vulnerability was reported. A third part is a sequential number assigned
by CVE Numbering Authorities (CNA). For example, CVE-2022-31705 is a
vulnerability reported in 2022, and CNA assigned number 31705.

The vulnerability is commonly reported by researchers, white hat hackers,
and vendors to the CNAs. Some vendors (e.g., Microsoft2) also o�er bug
bounties to encourage the community to seek out the security flaws of their
products and services and report them. The CNAs will assign the CVE ID

2 https://www.microsoft.com/en-us/msrc/bounty

14

2.3. Common Vulnerability Scoring System

to the vulnerability acknowledged by the vendor as a security flaw a�ecting
only one codebase [42]. The details of CVE are disclosed to the public
45 days after the initial report is confirmed, regardless of the existence or
availability of patches or workarounds from a�ected vendors. The 45 days
are the deadline for the corresponding vendor to issue a patch or other fix
to ensure protection once the information is made public.

CVE creates an entry for each publicly known vulnerability that includes
the CVE ID, a brief description, and a reference to NVD or vendors’ security
advisory for more information about CVE. CVE is not a vulnerability
database and does not contain any information (e.g., risk, impact, severity
score, or technical information) needed for VRM. Therefore, it should only be
used for reference CVE ID that links information about specific vulnerabilities
in di�erent sources.

2.3 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is an open framework
maintained by the Forum of Incident Response and Security Teams (FIRST),
a US-based nonprofit with over 500 member organizations globally [43].
CVSS provides a method to capture the characteristics and severity of
software, hardware, and firmware vulnerabilities to a numeric score from
0 to 10. The numerical score can then be translated into a qualitative
representation (e.g., low, medium, high, and critical) to help organizations
in their VRM program.

CVSS comprises three metric groups: Base, Temporal, and Environmen-
tal, each consisting of metrics, as shown in Table 2.1. The base metrics
reflect the severity of a vulnerability based on its characteristics, which are
consistent over time across di�erent deployed environments. The temporal
metrics adapt the severity of base metrics of a vulnerability according to the
criteria that changed over time (e.g., the availability of the exploit code).
The environmental metrics adjust the severity of base and temporal metrics
for the specific environment (e.g., existing mitigations in the environment).
CVSS assigned a value to each metric and translated them to a numeric
value to calculate the severity score of each vulnerability. The numeric
representation of the base metric is described in Table 9.4. The CVSS vector
is a text string that represents the CVSS metrics. The CVSS vector is used

15

2. Background

Table 2.1: CVSS version 3.1 metrics
Group Metric Metric Name Possible Value Description

Base

Confidentiality
(C)

High(H)/Low
(L)/None (N)

C measures the impact on the
confidentiality of asset due to
a successfully exploited vul-
nerability

Integrity (I) High (H)/Low
(L)/None (N)

I refers to the trustworthiness
and veracity of information.

Availability (A) High (H)/Low
(L)/None (N)

metric refers to the loss of
availability of the impacted
component due to success-
fully exploited vulnerability.

Attack Vector
(AV)

Network
(N)/Adjacent
(A)/Local (L)/
Physical (P)

AV reflects the access context
required for vulnerability ex-
ploitation.

Attack Complex-
ity (AC)

Low (L)/ High
(H)

AC refers to conditions that
must exist to exploit the vul-
nerability.

Privileges Re-
quired (PR)

High (H)/Low
(L)/None (N)

PR describes the level of priv-
ileges an attacker must pos-
sess before successfully ex-
ploiting the vulnerability.

User Interaction
(UI)

None (N)/ Re-
quired (R)

UI captures the requirement
for human user participation
in the successful compromise
of the vulnerability.

Scope (S) Unchanged (U)/
Changed (C)

S captures whether a vulner-
ability in one vulnerable com-
ponent impacts resources in
components beyond its secu-
rity scope.

Temporal
Exploit Code
Maturity (E)

Not Defined
(X)/High
(H)/Functional
(F)/Proof-
of-Concept
(P)/Unproven
(U)

E measures the likelihood of
exploit based on the current
state of exploit techniques,
exploit code availability, or
active exploitation.

Remediation
Level (RL)

Not Defined
(X)/ Unavail-
able (U)/
Workaround
(W)/Temporary
Fix (T)/O�cial
Fix (O)

RL refers to the maturity of
the remediation for the vul-
nerability.

Report Confi-
dence (RC)

Not Defined
(X)/Confirmed
(C)/Reasonable
(R)/Unknown
(U)

measures the degree of confi-
dence in the existence of the
vulnerability and the credi-
bility of the known technical
details.

Environmental

Confidentiality
Requirements
(CR)

Not Defined
(X)/High
(H)/Medium
(M)/Low (L)

CR customize the CVSS
score depending on the im-
portance of the confidential-
ity of a�ected asset to an or-
ganization.

Integrity Re-
quirements (IR)

Not Defined
(X)/High
(H)/Medium
(M)/Low (L)

IR customize the CVSS score
depending on the importance
of the integrity of a�ected as-
set to an organization

Availability Re-
quirements (AR)

Not Defined
(X)/High
(H)/Medium
(M)/Low (L)

AR customize the CVSS
score depending on the im-
portance of the availability
of a�ected asset to an organi-
zation

Modified Base
Metrics

same values as
the correspond-
ing Base Metric

It enables the analyst to over-
ride individual Base metrics
based on specific characteris-
tics of environments.

16

2.4. Vulnerability Database

to record or transfer CVSS metric information in a concise form. The colon is
used between the abbreviated metric name and its value, and a forward slash
is a delimiter between each metric. The CVSS vector string begins with the
CVSS label and version (e.g., CVSS:3.1 refers to CVSS version 3.1). The met-
ric name and value are slightly di�erent in the major version update (i.e., The
privileges Required metric is called Authentication in CVSS version 2, and its
possible values are Multiple, Single, and None). For example, the CVSS vec-
tor CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N/E:F/RL:X shows
a CVSS version 3.1 is used to generate a CVSS score. It is also repre-
senting each metric with its value. For instance, an example vector above
depicting a vulnerability with metrics value of Attack Vector: Network,
Attack Complexity: Low, Privileges Required: High, User Interaction: None,
Scope: Unchanged, Confidentiality: Low, Integrity: Low, Availability: None,
Exploit Code Maturity: Functional, Remediation Level: Not Defined. Ta-
ble 2.1 presents the metrics’ name and their abbreviation, possible value
and abbreviation, and a brief description of each metric.

The CVSS score reported by vendors or third parties is produced from
base metrics since they do not change over time and are environment
independent. However, each organization should supplement the Base Score
with Temporal and Environmental Scores to produce an accurate severity
score of a vulnerability for their organization’s environments. Moreover,
the CVSS score is not the risk score and should consider as an input into
the VRM process. But to rank a vulnerability and make an informed
remediation decision, other criteria should be considered, including the
financial implication of the exploit, the number of vulnerable systems or
services, and the criticality of the vulnerable asset for the organization’s
business.

2.4 Vulnerability Database

A Vulnerability Database (VD) is a platform that collects, maintains, and
disseminates information about publicly known vulnerabilities. VDs gather
the generated data from di�erent sources, such as vendors, vulnerability
researchers, and other interested parties for each CVE ID. It is an essential
tool in VRM procedure to track vulnerabilities. VDs support the organiza-
tion to address the vulnerability promptly before the exploitation and during
cybersecurity incidents [44]. Organizations with a specific area of interest

17

2. Background

usually host the VDs. For example, national VDs are general-purpose VDs
that aim to support the computer security community national wide (e.g., US
National Vulnerability Database (NVD) [45], Chinese National Vulnerability
Database (CNNVD) [46]). Vendor VDs are subject-specific for tracking vul-
nerabilities that a�ect vendors’ specific products and services (e.g., Ubuntu
Security Notice (USN) [22], RedHat Security Advisory (RHSA) [24]).

National VDs create an entry for each published CVE ID and collect
and analyze the relevant information about CVE ID, such as published
date, patch instruction, impact metrics, technical assessment, link to other
sources, and severity score. Vendor VDs create an entry for each publicly
known CVE ID related to their specific scope. Vendors usually use their
internal naming system in VDs and are responsible for providing the patch
instructions, which might di�er based on the products and services. Vendors
also apply their method for severity rating and reporting in VDs.

Some VDs use the CVSS framework to rate the vulnerability’s severity,
and some are developing their rating system. The VD might report severity
ratings in numeric or qualitative scores or both (e.g., NVD reports numeric
and qualitative scores, and USN reports only qualitative scores). The sever-
ity score might di�er for a CVE ID in various VDs due to di�erent rating
methods. In addition, vulnerability scanner tools use the VD’s severity score
in their identification report, and reference VD could not be customized for
the organization. Therefore, security experts must map the severity score in
the identification stage to the relevant VDs.

The severity score is one of the vital criteria in the classification and eval-
uation stages of VRM. It also impacts the remediation decision. Therefore,
selecting proper VD as a reference is essential in the VRM procedure. The
thesis investigates the role of VD in VRM procedure and shows the need
to use at least one general-purpose and one subject-specific VDs in VRM
procedure.

2.5 Automation

In general, automation uses technology to minimize human intervention
less frequently, aiming for productivity, consistency, and e�ciency in the

18

2.5. Automation

computing system. With a large number of new vulnerabilities (i.e., an
average of 68 per day in 2022), automation is the only way to arm security
experts to deal with it. VRM naturally is a subjective, manual process,
time-consuming and error-prone which relies on individual knowledge and
experience [47–49]. Automation in the concept of VRM could reduce the
procedure time, time to patch, and expert involvement.

Some studies and tools developed automation solutions in some stages
of the VRM, but they can only be used separately in each stage to sup-
port security experts[48]. Aota et al. in [50] introduced automation to
classify vulnerabilities to address scalability issues in the VRM process for
software vulnerabilities due to the shortage of security experts. They use
a machine learning scheme to identify the vulnerability type based on the
description’s information. They achieved 96.92% classification accuracy with
their proposed automation in the classification stage of VRM.

Dempsey et al. in [47] provided an operational approach for automating
the assessment for software vulnerability management to reduce the assess-
ment time. The capability aims to help the organization to detect vulnerable
software in an IT environment faster. The study provides a framework to
automate the identification stage of VRM.

Nora et al. in [49] identified the lack of standard tools and knowledge
about automating the whole VRM procedure as a cultural challenge in
organizations. They also determined transferring security expert knowledge
into the automated process is essential for e�cient VRM.

Devaux et al. in [51] proposed automation to integrate risk and vulnera-
bility management. Their method addressed the identification stage of the
VRM and o�ered a re-assessment of the Vulnerabilities based on the CVSS
score.

ACVRM, unlike mentioned studies, proposed an automation approach
for the whole VRM procedure that brings organizational context and knowl-
edge into the automated process. ACVRM reduces the time to patch by
automating the entire procedure, decreases human intervention by transfer-
ring the knowledge into an automated process, improves identification by
automatically collecting vulnerability information from multiple VDs, and
adapts organization context by learning security policy automatically.

19

3
Scientific Approach

3.1 Research Methodology

This thesis aims to answer the main research question; How can we automate
the VRM process to make it time-e�cient, context-aware, and with enhanced
patch prioritization decisions? We approach this by Automated Context-
aware Vulnerability Risk Management (ACVRM) methodology. ACVRM is
designed and implemented in a test environment for proof of concept. The
research domain, cybersecurity, is multidisciplinary of social science, com-
puter science, and information technology. Therefore, the research method
adapted from other scientific disciplines [52]. The four general research
methods that are widely used in cybersecurity research are summarised as
follows:

• Observational research method is a way to understand the behavior
of a real cyber system. For instance, the research study on adversary
behavior in a system under attack to understand the target and tactics
the advisory used (e.g., intrusion study). It includes; i)exploratory
studies that collect and analyze known system design to determine a
general theory of behavior, ii)descriptive study, which focuses on the
specific subset of the system in detail, and iii)machine learning that
uses applied mathematical techniques to detect correlations in large
volumes of data.

• Theoretical research method is a logical exploration of a system
that investigates the condition and state of the cyber system. For
instance, theoretical research could examine cyber system reactions
under specific conditions. This type of research is valuable to generate
theories about the system’s behavior under study, while experimental

21

3. Scientific Approach

validation is impossible due to the complexity or cost. Theoretical
research consists of formal theory, using mathematics or other logical
languages to model and define the possible behavior of the system, and
simulation, exploring the complex system to understand the theoretical
model with enough confidence.

• Experimental research method is a type of research where hypothe-
ses are defined for a study and experiments are carried out to obtain
evidence. Experimental research could be qualitative or qualitative, de-
pending on the hypothesis objectives. If the researchers have complete
control over the experimental setups and configurations, the method
is called hypothetico-deductive; otherwise, it is called quasi-experiment.
The second approach required a validity threat analysis to determine
potential sources of error.

• Applied research method is a method to process the e�ectiveness
of research solutions. It includes designing, implementing, and test-
ing the proposed solution to understand the system’s performance.
This method could be used in combination with the above-mentioned
methods. For instance, applied experimentation is used to compare
the performance of di�erent solutions, and applied observational study
studies the system behavior in di�erent situations or scenarios.

Cybersecurity science is a relatively new discipline and not a well-
established science domain. Most of the research in this domain is qualitative
due to the lack of a method to measure the quantity of all security attributes
(e.g., confidentiality, availability, integrity) [52, 53]. The thesis research
method is adapted from Experimental research and applied experimentation
methods in Cybersecurity science. The conducted studies used both qual-
itative and quantitative research whenever possible. The methodological
approach of this study is described in the next section.

3.1.1 Methodological Approach

The method has been used in the thesis depicted in Figure 3.1. The method-
ological approach is defined based on a continuous improvement approach
where the outcome of each paper is assessed and adjusted based on the
obtained result. The thesis proposed ACVRM aiming to improve the existing
VRM procedure. The research in each included paper started by studying

22

3.2. Research Questions

each stage of VRM to identify the current gap or challenge. The research
question is formulated to define the objective of each study. Next, a technical
solution is proposed to address the research question. Then, the experiment
is designed to verify the e�ciency of the proposed solution in each paper.
The design was according to state-of-art tools and literature and also experts
interview. Later, the experiment was implemented for collecting data and
PoC. The result of each implementation is evaluated in comparison with
the existing tools and processes. Therefore, some of the results in included
papers were quantitative and some qualitative.

Figure 3.1: Thesis research method and process

3.2 Research Questions

The research work summarized in the thesis is addressed by the papers
outlined in the upcoming chapters. The following research questions are
derived from the main research question in 1.1.

23

3. Scientific Approach

• Question 1: What are the challenges in VRM? and how to improve
VRM to address the challenges in the organization context?
Answering this question helped us to identify the gap in a research topic
and formulate a research problem. Paper I, in Chapter 7, highlighted
a general view of the complex challenges that IT is facing, including
the increasing number of known vulnerabilities, patch deadlines, VRM
labor-intensive tasks, and the limitation of supported tools. Paper I
also introduced the first vision of ACVRM, providing evidence that
VRM could be automated based on the organization context and be
classified as a self-protecting system approach.

• Question 2: What is the role of a vulnerability database in the VRM
process? Which criteria should be considered in selecting reference
VD in VRM? How to reflect on the di�erent severity scores obtained
from various VDs?
These research questions are addressed in Paper II, Chapter 8, by
describing the role of VD in the VRM procedure. It highlighted that
the VDs are the source of providing severity scores for each CVE ID. It
also investigates the impact of selected reference VD by comparing the
severity score obtained from di�erent VDs. A framework to normalize
severity scores was introduced to reflect the lack of a unified way of
calculating the severity score by VDs.

• Question 3: How can the VRM process be time-e�cient, cost-e�ective,
and organization oriented?
Paper III, Chapter 9, answers this research question by automat-
ing the classification and evaluation stages of VRM into the process
and workflow described in ACVRM Phase 2. It defines criteria for
patch score calculation, a metric for automated ranking vulnerabilities.
The criteria could be weighted based on the organization’s context.
Paper III adapts organizational context by learning security policy
automatically. It also transfers the knowledge into an automated
process to reduce the processing time. The PoC implementation is
used to evaluate the time and cost e�ciency of the proposed solution.
Paper III also validates the patch prioritization of ACVRM against
the prioritization obtained by Rudder, a vulnerability management
tool.

• Question 4: How to design patch management to increase the patch

24

3.3. Validation Method

success rate and reduce expert intervention in the process?
To answer this question, Paper IV, Chapter 10, determines the criteria
that positively impact the patch’s success rate, such as dependencies
and feedback. Automated patch management is designed and imple-
mented with respect to the discovered criteria in Paper IV to address
this research question. It also introduces initial ideas about learning
from historical patch events and patch feedback loops. The learning
facilitates automated error handling during the process thus reducing
human intervention.

3.3 Validation Method

The validation method is adapted from [54] in this thesis. The overview of
construct validity, internal validity, external validity, and reliability related
to this work is summarised in this section.

Construct validity

It is referred to determine if the measurements are according to the research
questions. Construct validity reflects that inappropriate definitions of the
variables to be measured might impact the experimental results [54]. In
paper I-IV, the variables and the tools have a clear definition in their field
(e.g., severity score, patch priority).

Internal validity

Internal validity is vital in a quantitative study, where the measurement
concerns the casual relationship. This stipulates that the dependent variables
are not a�ected by confounding variables [54]. In this work, paper II
collected the severity score from three VDs and compared the VDs scores.
The study focuses on the score’s distribution and normalization’s impact.
To remove the impact from other factors, the data has been collected for all
CVE IDs in the study during the same period from the selected VDs.

External validity

External validity refers to the generalization of findings and to what extent
the result would be applied in other cases [54]. ACVRM design is generalized
for VRM procedure in any organization regardless of the domain, focusing

25

3. Scientific Approach

on the vulnerability published in CVE. However, the implementation in
Paper III and Paper IV were for a test organization that utilized its
services in a public cloud. Paper IV investigated the patch management for
the vulnerabilities of the software packages installed on Ubuntu 18.04 LTS
(i.e., close to its End Of Life (EOL 2023-04-30) is chosen in the experiment
as it likely has more vulnerability to be patched compared with a newer
version) from Ubunutu’s package repository. Therefore, the obtained results
are too specific for the selected use cases.

Reliability

Reliability addresses the consistency of the result, which considers the
result of each test should not be biased and dependant on the specific
researchers [54]. In other words, the result should be repeatable regardless
of who conducts the study. Paper I-IV provide the details setup of the
research and experiment. In the Paper II, Python script is used to process
the data, executed multiple times to ensure the result is identical. In the
Paper III, vulnerabilities are added manually in a controlled manner, and
the scripts to calculate the patch score and patch prioritization are executed
50 times for each case. The patch deployment in Paper IV was a controlled
experiment where the vulnerable version was installed manually on the node.
The experiment for each case in Paper IV was repeated multiple times to
ensure the reliability of the result. Moreover, the reason for describing the
details system setup and processes is to address the repetition and reliability
of the finding in each paper.

26

4
Automated Contex-aware Vulnerability Risk

Management

We introduce the ACVRM method to answer the main research question
highlighted in Section 1.1. ACVRM aims to improve VRM procedures by
reducing execution time and cost. ACVRM focuses on automating the entire
cycle of VRM to support security experts in their battle against threat actors.
It leverages multiple VDs and organization inventory to identify broader
concepts’ vulnerabilities and severity scores. It allows security experts to use
multiple criteria in risk evaluation based on the organization’s risk appetite.
The design methodology is domain independent and could be used to manage
OS, software, and network vulnerabilities.

ACVRM design consists of three phases; Phase 1: retrieval and pre-
processing, Phase 2: prioritization, and Phase 3: patch management. The
phases are divided conceptually and could be used by any organization
regardless of its specific domain. Figure 4.1 indicates the ACVRM phases
and their corresponding VRM stages. ACVRM Phase 1 and two steps of
Phase 2 map the identification stage of VRM. The filter step in ACVRM
Phase 2 matches the classification stage of VRM. Evaluation, Sort, and
Review prioritization of ACVRM Phase 2 are equivalent to the evaluation
stage in VRM. ACVRM Phase 3 matches with the remediation stage of
VRM. ACVRM phases are briefly described as follows:

• Phase 1 is collected data from multiple VDs. Each organization
could select relevant VDs as part of the identification stage of VRM.
The collected data are pre-processed to build a unified data structure.
The preprocess also converts the qualitative severity score from VD
to the numeric score. A normalization framework was introduced to
aggregate the severity score from multiple VDs and provide a single

27

4. Automated Contex-aware Vulnerability Risk Management

severity score for each CVE ID.

• Phase 2 consists of the processes for complementing the identification,
classification, and evaluation stages of VRM. The processes are based
on the organizational context. For instance, a vulnerability scanner
report and host inventory are used to identify the vulnerability that
a�ected the organization’s environment. The organization selects
Vulnerability Management Mode (VMM) (e.g., Basic, Standard, and
Restrictive) and defines the process’s mode. The VMM impacted
the Normalized severity score calculation. The filter step created a
list of the vulnerabilities a�ecting the organization’s environment and
classified them based on the node. Evaluation, Sort, and Review
prioritization steps assess each vulnerability’s risk in the organization’s
context and provide a patch prioritization list for each node. ACVRM
uses a Patch Score (PS) (i.e., a mathematical approach to calculating
the priority of each vulnerability from the evaluation criteria and their
weight based on the organizational context) for ranking a vulnerability.

• Phase 3 consists of patching the selected vulnerabilities. Verifying a
patch and its impact on an organization’s environment are essential
steps in patch management. ACVRM enables the feedback from patch
verification to the Review prioritization step. The feedback loop aims
to build a learning process based on historical events and improve the
patch prioritization decision.

The details of each ACVRM phase and their implementations are described
in Chapters 7-10. The experiment results in Paper I-IV show that ACVRM
reduces the VRM process time and expert intervention in a test environment.
However, data on the VRM process time is not available to be used as a
reference to measure the improvement o�ered by ACVRM quantitatively.

28

Figure 4.1: Map ACVRM phases to VRM stages

29

5
Summary of Papers

This chapter summarizes the research findings and highlights the main results
of included papers in a related subsection below. The relationship between
the obtained results in each paper and the overall context of the thesis is
explained in this section.

5.1 Normalization of Severity Rating for Automated

Context-aware Vulnerability Risk Management

In this study, Paper I, we reviewed the literature and tools to understand the
challenges in VRM. We observed the lack of studies on self-vulnerabilities
assessment and treatment to remediate a vulnerability based on the orga-
nization’s preference. Comparing existing tools based on their capabilities
to scan networks, identify existing vulnerabilities, analyze the vulnerability,
evaluate, and remediate detected vulnerabilities automatically, indicated the
absence of a tool that covered all stages of VRM procedure.

The first version of ACVRM was introduced to leverage organization
knowledge to support security experts in prioritizing vulnerability patching.
One of the identified challenges in the VRM procedure was inconsistency
in reporting the severity score of each vulnerability. We observed each VD
has its method to calculate severity score and is not necessarily aligned with
CVSS metrics. Therefore, a CVE ID could have di�erent severity scores in
various vulnerability databases. The drawback of using a single VD in the
VRM procedure is discussed in Paper I, and we proposed multiple VDs to
have better coverage on known vulnerabilities [55].

A framework to normalize severity scores was introduced to aggregate
severity scores from multiple VDs and obtain a single numeric severity score
for each CVE ID based on the organization’s preference. The normalization

31

5. Summary of Papers

Figure 5.1: Distribution of the severity score in selected VDs and VDNF in 2019

framework o�ers three Vulnerability Management Modes (VMM); basic,
standard, and restrictive to convert the qualitative severity score to a numeric
value.

5.2 Normalization Framework for Vulnerability Risk

Management in Cloud

The proposed VD Normalization Framework (VDNF) is improved in Pa-
per II, where we integrate VDNF into the VRM procedure. VDNF aims
to advance the identification, classification, and evaluation stages in VRM
while dealing with multiple VDs. This study suggests the selection of VD
based on the organization’s asset inventory. For instance, organizations with
RedHat, Debian, Apache, and Canonical assets should use all relevant VDs
as references in the VRM procedure.

In Paper II, we analyzed the distribution of severity scores in the di�er-

32

5.3. Automated Context-aware Vulnerability Risk Management for Patch
Prioritization

Before After Normalization
VD NA NA Low Medium High Critical

USN 122 0 10 90 21 1
DSA 21 0 4 17 0 0
NVD 19 0 4 15 0 0

Table 5.1: The change in severity score of Not Available (NA) 2019 after normaliza-
tion

ent VDs and the impact of VDNF on generalizing the severity score of the
various VDs. Figure 5.1 from Paper II, presented in this section to highlight
our research findings. We observed that the severity score None is reported
only by USN, possibly because others do not report any vulnerability with
a severity score of zero. We also observed that USN has a more significant
number of CVE IDs without severity scores (i.e., Not Available (NA)) than
other VDs in our experiment. However, the number of NA decreased to zero
after normalization, regardless of the VMM.

In addition, Table 5.1 shows the number of NA severity scores in VDs
before and after normalization. Despite data collected from VDs on February
4th, 2021, the VDs do not have information on some CVE IDs registered
in 2019. It is due to the VD’s procedure and policy to publish the severity
score and remediation for CVE IDs which is not transparent. We strongly
recommend selecting multiple VDs in the VRM procedure for better coverage
of publicly known vulnerabilities.

Based on the result achieved from the experiment in this paper, the
positive impact on VDNF is proved in the large sample of CVE IDs. In
addition, the role of VD in the VRM procedure is visualized by statistics
analyzing the severity score from multiple VDs.

5.3 Automated Context-aware Vulnerability Risk

Management for Patch Prioritization

In Paper III, we focus on automating the classification and evaluation stages
of VRM in the organization’s context, ACVRM Phase 2, to reduce process
time and human intervention in patch prioritization. Our approach facilitates
learning the organization’s policy, service priority, and assets inventory which
enables the customization in the classification stage of the VRM procedure.
The evaluation criteria (hereafter criteria) must be defined to automate the

33

5. Summary of Papers

evaluation stages of VRM. This paper defines criteria from the literature
review and security expert interview. We proposed Patch Score (PS) as a
numeric representation of the vulnerability’s severity in the organization’s
context. The PS is calculated based on the score of selected criteria; severity,
confidentiality, integrity, availability, attack vector, and attack complexity.
The security experts could influence the PS by weighting the criteria. We
use the PS score to rank the vulnerabilities in the evaluation stage.
In this study, we design and implement a proof of concept experiment to
validate our proposed patch prioritization method in ACVRM Phase 2. The
data collected by the method described in Paper I and Paper II are used to
identify vulnerabilities in a test environment. The experiment is designed
and implemented for four cases with di�erent criteria weights. We installed
24 random CVE IDs in test nodes for a controlled experiment. The result of
ACVRM patch prioritization compared with the one obtained from Rudder,
a vulnerability management tool, to validate our experiments. We observed
that the CVE IDs that could be exploited from networks with a low attack
complexity gain higher priority in ACVRM cases than Rudder. We noticed
the CVE ID with the same PS value ranked based on age (i.e., the age of
vulnerability is calculated based on the date it has been known publicly) by
ACVRM, while Rudder randomly generates their position. The result shows
the ACVRM improved VRM procedure by reducing the processing time in
the classification and evaluation stages with less expert intervention.

5.4 Automated Patch Management: An Empirical

Evaluation Study

In this study, Papper IV, ACVRM Phase 3 is proposed to address the chal-
lenges in patch management, the last stage of VRM. It provides an overview
of the patch management issues and identifies the essential criteria that
ensure the successful remediation of vulnerabilities. For instance, we dis-
covered an organization’s historical patch data and practical experience are
inevitable factors in increasing the success rate of a patch. Some patch fail-
ures could be avoided by applying the knowledge from past patch experiences.

This paper challenged the patch prioritization method in Paper III as
only the patch score indicates the patch order. It argues the deficiency of
prioritization where the dependencies and patch histories are not considered.

34

5.4. Automated Patch Management: An Empirical Evaluation Study

Three use cases of automated patch management are studied in Paper VI to
investigate the impact of 1) usage of historical patch events, 2) automated
review to adjust patch prioritization lists, and 3) dependencies on the success
rate of the patch. In the experiment, 21 random vulnerabilities are installed
in test nodes. Figure 5.2 shows the result of implementing patch management
in a test environment for cases 1-3. The patch prioritization is based on the
patch score in Case 1, which assumes historical data (i.e., the outcome of
the patch deployment in the past) are unavailable. Seven out of twenty-one
(33%) vulnerabilities were patched successfully in case 1, and ten out of
twenty-one vulnerabilities (47.6%) required expert intervention due to error.

In case 2, the patch prioritization is automatically reviewed to remove
the multiple cumulative patches of software or application from the list. It
assumes the dependencies are not available for the vulnerability in the list.
In our test nodes, the number of CVE IDs in the patch priority list decreased
to 10, a reduction of 11 after review. Six out of ten (60%) vulnerabilities
were successfully patched, as shown in Figure 5.2. One out of ten (10%)
vulnerabilities escalate to the expert due to the error.

In case 3, the patch prioritization is automatically reviewed to remove
unnecessary patches and adjust the list based on dependencies. The number
of CVE IDs remains the same as Case 2, but the patch order has been
changed due to identified dependencies. Eight out of ten (80%) vulnera-
bilities were patched successfully, as presented in Figure 5.2. None of the
CVE IDs escalates to the expert as no error is reported in patch deployment.
Thus, the expert involvement reaches zero in case 3.

This study enhanced the ACVRM Phase 2 by adding patch feedback,
automated review, and dependencies. The patch feedback provides the
output of the patch deployment in a node, which can be used for error han-
dling. Automated review assesses the patch priority list based on predefined
conditions, such as sorting and grouping all vulnerabilities for each software
or application, selecting the latest patch release, checking the existing history
of the patch, and inspecting the current dependency tree. The result shows
that the proposed method improved the patch prioritization list leading
to less expert intervention and a higher success rate in automated patch
management.

35

5. Summary of Papers

Figure 5.2: The status of patch management for cases 1-3

36

6
Conclusion and Future Work

This thesis proposed a method (ACVRM) to automate organization-oriented
VRM procedures to reduce patch and expert intervention time. Decreasing
the cost of VRM procedure encourages more organizations to patch the
vulnerability proactively and protect their asset from cyber attacks. The
main contributions of this thesis are as follows:

1. We proposed and implemented a method to normalize the severity score.
The normalization framework facilitates identification and classification
stages in VRM when dealing with multiple VDs. We integrated
our method into VRM procedure to generalize the severity score
from multiple VDs based on the organization’s selected Vulnerability
Management Mode (VMM). The proposed method is examined on a
large set of CVE IDs for PoC. The result indicates the advantage of
using multiple VDs based on the organization’s assets to cover publicly
known vulnerabilities accurately.

2. We learned experts’ intervention increases the processing time and the
cost of VRM. We proposed a method to automate the classification
and evaluation stages of VRM to reduce experts’ intervention. We
conducted a literature study and interviewed experts to learn which
criteria play a role in evaluating vulnerability by experts. We mathe-
matically formulated finding criteria (e.g., security score, attack vector,
attack complexity, confidentiality, integrity, availability, and exposure
level) to achieve a numeric value (Patch Score) that the automated
script could use to create patch orders. There is a possibility to add
more criteria to the Patch Score formula if desired. We designed
and implemented automated context-aware patch prioritization in a
test environment where weighting criteria customized the patch score.
The experiment was executed for four cases with di�erently weighted

37

6. Conclusion and Future Work

criteria. The patch priority list obtained by our method, ACVRM, was
compared with Rudder’s vulnerability management tool to validate the
experiment. The execution time of the classification and evaluation
stages of VRM was seven minutes in our test environment without
expert intervention (i.e., experts only define a weight vector before
starting the process). To generalize the time e�ciency of the proposed
solution, further study needs to be done. Currently, there is no public
information regarding the VRM processing time, and it is di�cult to
get volunteer organizations to allow us to publish the result.

3. Despite the impact of VRM on compliance and business implications
caused by cyber-attacks, many organizations do not patch vulnera-
bilities proactively for various reasons, including experts’ availability,
cost, system downtime, and dependencies [56]. We proposed a method
to automate patch management to reduce expert intervention while
increasing the success rate of the patch. We designed and implemented
ACVRM Phase 3, which consists of automated tests, patch deployment,
verifying the impact of vulnerability patches on the system function-
ality, and a feedback loop of the error. The experiment performs in
a test environment for three cases with di�erent patch orders. The
case studies are developed to investigate the impact of the feedback
loop, historical patch data, and automatic review of dependencies.
The result shows the feedback loop, dependencies, and historical data
reduce the expert intervention in patch management to zero while
increasing the success rate. Our method could help more organizations
become compliant and secure themselves from bad actors by patching
known vulnerabilities promptly.

The thesis presented the design and implementation of our proposed
method. The obtained result from studies proves the e�ciency of the
ACVRM methodology. All experiments were performed in the public cloud
and focused on the vulnerabilities publicly known in CVE. The zero-day
vulnerability was beyond the scope of this study. We expect our method to
be used in any domain, such as IoT, IaaS, and critical infrastructure.

In the future, we could collect vulnerability data from social media and
the cybersecurity community blogs and add them to ACVRM Phase 1 to
enhance the coverage of our solution. Another future direction could be
investigating the time and cost e�ciency of ACVRM in di�erent domains and

38

References

compared with the recently published state-of-the-art approaches. Another
possible future work could be using a machine learning algorithm, such as
a decision tree in the Learning module in ACVRM Phase 2, or OpenAI to
improve error handling.

References

[1] Vulnerability and Threat Trends Report 2022. Tech. rep. SkyBox Secu-
rity, 2022.

[2] Microsoft Digital Defense Report 2022. https://www.microsoft.
com/en- us/security/business/microsoft- digital- defense-
report-2022. [Online; accessed 12-April-2023].

[3] Understanding and Mitigating Russian State-Sponsored Cyber Threats
to U.S. Critical Infrastructure. https : / / www . cisa . gov / news -
events/cybersecurity-advisories/aa22-011a. [Online; accessed
11-April-2023].

[4] Ukraine: Disk-wiping Attacks Precede Russian Invasion. https://
symantec-enterprise-blogs.security.com/blogs/threat-intelligence/
ukraine-wiper-malware-russia. [Online; accessed 11-April-2023].

[5] P. Foreman. Vulnerability management. Auerbach Publications, 2019.
isbn: 9781439801512.

[6] Open Vulnerability Assessment Scanner(OpenVAS). https://www.
openvas.org/. [Online; accessed 12-Apr-2023].

[7] Nessus Vulnerability Scanner. https://www.tenable.com/products/
nessus. [Online; accessed 12-April-2023].

[8] G. Post and A. Kagan. “Computer security and operating system up-
dates”. In: Information and Software Technology 45.8 (2003), pp. 461–
467.

[9] B. Marx and D. Oosthuizen. “Risk Assessment and Mitigation at the
Information Technology Companies”. In: Risk Governance & Control:
Financial markets and institutions 6.02 (2016), pp. 44–51.

[10] J. Dunagan, R. Roussev, B. Daniels, A. Johnson, C. Verbowski, and
Y.-M. Wang. “Towards a self-managing software patching process using
black-box persistent-state manifests”. In: International Conference on
Autonomic Computing, 2004. Proceedings. IEEE. 2004, pp. 106–113.

39

https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-011a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-011a
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/ukraine-wiper-malware-russia
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/ukraine-wiper-malware-russia
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/ukraine-wiper-malware-russia
https://www.openvas.org/
https://www.openvas.org/
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus

6. Conclusion and Future Work

[11] C. Tiefenau, M. Häring, K. Krombholz, and E. Von Zezschwitz. “Secu-
rity, availability, and multiple information sources: Exploring update
behavior of system administrators”. In: Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020). 2020, pp. 239–258.

[12] H. Huang, S. Baset, C. Tang, A. Gupta, K. M. Sudhan, F. Feroze,
R. Garg, and S. Ravichandran. “Patch management automation for
enterprise cloud”. In: 2012 IEEE Network Operations and Management
Symposium. IEEE. 2012, pp. 691–705.

[13] S. Midtrapanon and G. Wills. “Linux patch management: with security
assessment features”. In: 4th International Conference on Internet of
Things, Big Data and Security (IoTBDS). 2019.

[14] F. Zhang, P. Hu�, K. McClanahan, and Q. Li. “A machine learning-
based approach for automated vulnerability remediation analysis”.
In: 2020 IEEE Conference on Communications and Network Security
(CNS). IEEE. 2020, pp. 1–9.

[15] C.-W. Chang, D.-R. Tsai, and J.-M. Tsai. “A cross-site patch man-
agement model and architecture design for large scale heterogeneous
environment”. In: Proceedings 39th Annual 2005 International Carna-
han Conference on Security Technology. IEEE. 2005, pp. 41–46.

[16] M. Procházka, D. Kouril, R. Wartel, C. Kanellopoulos, and C. Tri-
antafyllidis. “A Race for Security: Identifying Vulnerabilities on 50
000 Hosts Faster than Attackers”. In: Proceedings of Science (PoS).
International Symposium on Grid and Clouds. 2011.

[17] J.-H. Lee, S.-G. Sohn, B.-H. Chang, and T.-M. Chung. “PKG-VUL:
Security Vulnerability Evaluation and Patch Framework for Package-
Based Systems”. In: ETRI journal (2009).

[18] K. Kritikos, K. Magoutis, M. Papoutsakis, and S. Ioannidis. “A survey
on vulnerability assessment tools and databases for cloud-based web
applications”. In: Array 3 (2019), p. 100011.

[19] 2022 Vulnerability statistics report. https://www.edgescan.com/
2022-vulnerability-statistics-report-lp/. [Online; accessed
12-April-2023].

[20] Common Weakness Enumeration Specification. https://nvd.nist.
gov/vuln/categories. [Online; accessed 12-April-2023].

40

https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories

References

[21] NIST National Vulnerability Database search. https://nvd.nist.
gov/vuln/. [Online; accessed 10-Jan-2023].

[22] Ubuntu Security Notice. https://usn.ubuntu.com/. [Online; accessed
12-April-2023].

[23] Debian Security Tracker. https://www.debian.org/security/DSAS.
[Online; accessed 12-April-2023].

[24] RedHat Security Advisories. https://access.redhat.com/security/
security-updates/. [Online; accessed 12-April-2023].

[25] R. Schwarzkopf, M. Schmidt, C. Strack, and B. Freisleben. “Checking
running and dormant virtual machines for the necessity of security
updates in cloud environments”. In: 2011 IEEE Third International
Conference on Cloud Computing Technology and Science. IEEE. 2011,
pp. 239–246.

[26] T. Duy Le, M. Ge, P. The Duy, H. Do Hoang, A. Anwar, S. W. Loke,
R. Beuran, and Y. Tan. “CVSS based attack analysis using a graphical
security model: Review and smart grid case study”. In: Smart Grid
and Internet of Things: 4th EAI International Conference, SGIoT
2020, TaiChung, Taiwan, December 5–6, 2020, Proceedings. Springer.
2021, pp. 116–134.

[27] A. Tripathi and U. K. Singh. “On prioritization of vulnerability cate-
gories based on CVSS scores”. In: 2011 6th International Conference on
Computer Sciences and Convergence Information Technology (ICCIT).
IEEE. 2011, pp. 692–697.

[28] C. Fruhwirth and T. Mannisto. “Improving CVSS-based vulnerabil-
ity prioritization and response with context information”. In: 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE. 2009.

[29] G. Spanos, A. Sioziou, and L. Angelis. “WIVSS: a new methodology
for scoring information systems vulnerabilities”. In: Proceedings of the
17th panhellenic conference on informatics. ACM. 2013.

[30] U. Gentile and L. Serio. “Survey on international standards and best
practices for patch management of complex industrial control systems:
the critical infrastructure of particle accelerators case study”. In: In-
ternational Journal of Critical Computer-Based Systems 9.1-2 (2019),
pp. 115–132.

41

https://nvd.nist.gov/vuln/
https://nvd.nist.gov/vuln/
https://usn.ubuntu.com/
https://www.debian.org/security/DSAS
https://access.redhat.com/security/security-updates/
https://access.redhat.com/security/security-updates/

6. Conclusion and Future Work

[31] F. Li, L. Rogers, A. Mathur, N. Malkin, and M. Chetty. “Keepers of
the machines: Examining how system administrators manage software
updates for multiple machines”. In: Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019). 2019, pp. 273–288.

[32] A. Shah, K. A. Farris, R. Ganesan, and S. Jajodia. “Vulnerability
selection for remediation: An empirical analysis”. In: The Journal of
Defense Modeling and Simulation 19.1 (2022), pp. 13–22.

[33] M. Walkowski, M. Krakowiak, M. Jaroszewski, J. Oko, and S. Sujecki.
“Automatic CVSS-based vulnerability prioritization and response with
context information”. In: 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). IEEE. 2021.

[34] G. Yadav, P. Gauravaram, A. K. Jindal, and K. Paul. “SmartPatch:
A patch prioritization framework”. In: Computers in Industry (2022).

[35] Y. Jiang and Y. Atif. “Towards automatic discovery and assessment
of vulnerability severity in cyber–physical systems”. In: Array (2022).

[36] CIS Controls. http://www.cisecurity.org/controls/. [Online;
accessed 12-April-2023].

[37] EU Cybersecurity Act. https://eur-lex.europa.eu/eli/reg/2019/
881/oj. [Online; accessed 12-April-2023].

[38] Homland Security Act 2002. https : / / www . dhs . gov / homeland -
security-act-2002. [Online; accessed 12-April-2023].

[39] D. Dey, A. Lahiri, and G. Zhang. “Optimal policies for security patch
management”. In: INFORMS Journal on Computing 27.3 (2015),
pp. 462–477.

[40] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. “The
attack of the clones: A study of the impact of shared code on vulnera-
bility patching”. In: 2015 IEEE symposium on security and privacy.
IEEE. 2015, pp. 692–708.

[41] Common Vulnerabilities and Exposures(CVE). https://cve.mitre.
org/. [Online; accessed 12-April-2023].

[42] CVE Numbering Authorities. https://www.cve.org/ProgramOrganization/
CNAs. [Online; accessed 12-April-2023].

[43] Common Vulnerability Scoring System(CVSS). https://www.first.
org/cvss/. [Online; accessed 12-April-2023].

42

http://%20www.cisecurity.org/controls/
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://www.dhs.gov/homeland-security-act-2002
https://www.dhs.gov/homeland-security-act-2002
https://cve.mitre.org/
https://cve.mitre.org/
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/ProgramOrganization/CNAs
https://www.first.org/cvss/
https://www.first.org/cvss/

References

[44] V. M. Vilches, L. U. S. Juan, B. Dieber, U. A. Carbajo, and E. Gil-
Uriarte. “Introducing the robot vulnerability database (rvd)”. In: arXiv
preprint arXiv:1912.11299 (2019).

[45] H. Booth, D. Rike, and G. Witte. The National Vulnerability Database
(NVD): Overview. en. 2013. url: https : / / tsapps . nist . gov /
publication/get_pdf.cfm?pub_id=915172.

[46] Chinese National Vulnerability Database. https://www.cnvd.org.
cn/. [Online; accessed 12-April-2023].

[47] K. Dempsey, E. Takamura, P. Eavy, and G. Moore. Automation support
for security control assessments: Software vulnerability management.
Tech. rep. National Institute of Standards and Technology, 2020.

[48] H. Tian, L. Huang, Z. Zhou, and Y. Luo. “Arm up administrators: au-
tomated vulnerability management”. In: 7th International Symposium
on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.
IEEE. 2004, pp. 587–593.

[49] N. Tomas, J. Li, and H. Huang. “An empirical study on culture,
automation, measurement, and sharing of devsecops”. In: 2019 In-
ternational Conference on Cyber Security and Protection of Digital
Services (Cyber Security). IEEE. 2019, pp. 1–8.

[50] M. Aota, H. Kanehara, M. Kubo, N. Murata, B. Sun, and T. Takahashi.
“Automation of vulnerability classification from its description using
machine learning”. In: 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE. 2020, pp. 1–7.

[51] T. Devaux, T. Massip, A. Ulliac, J.-L. Simoni, and P. Varela. “Automa-
tion of Risk-Based Vulnerability Management Based on a Cyber Kill
Chain Model”. In: Proceedings of the 28th C&ESAR (2021), p. 233.

[52] B. Bailey. Case studies: A security science research methodology. secau
Security Research Centre, Edith Cowan University, Perth, Western
Australia, 2011.

[53] T. Edgar and D. Manz. Research methods for cyber security. Syngress,
2017. isbn: 9780128129302.

[54] P. Runeson and M. Höst. “Guidelines for conducting and reporting
case study research in software engineering”. In: Empirical software
engineering 14.2 (2009), p. 131.

43

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172
https://www.cnvd.org.cn/
https://www.cnvd.org.cn/

6. Conclusion and Future Work

[55] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization of Severity
Rating for Automated Context-aware Vulnerability Risk Management”.
In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). IEEE. 2020,
pp. 200–205.

[56] Costs and Consequences of Gaps in Vulnerability Response. https:
//www.servicenow.com/lpayr/ponemon-vulnerability-survey.
html. [Online; accessed 12-April-2023].

44

https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html

7
Normalization of Severity Rating for

Automated Context-aware Vulnerability Risk
Managemen

Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio

Published as:

Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Normalization
of Severity Rating for Automated Context-aware Vulnerability Risk Man-
agement", 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C), Washington,
DC, USA, 2020, pp. 200-205, ©2020 IEEE. doi: 10.1109/ACSOS-
C51401.2020.00056.

Abstract: In the last three years, the unprecedented increase in discovered
vulnerabilities ranked with critical and high severity raise new challenges
in Vulnerability Risk Management (VRM). Indeed, identifying, analyzing
and remediating this high rate of vulnerabilities is labour intensive, espe-
cially for enterprises dealing with complex computing infrastructures such as
Infrastructure-as-a-Service providers. Hence there is a demand for new crite-
ria to prioritize vulnerabilities remediation and new automated/autonomic
approaches to VRM.

In this paper, we address the above challenge proposing an Automated
Context-aware Vulnerability Risk Management (AC-VRM) methodology
that aims: to reduce the labour intensive tasks of security experts; to pri-
oritize vulnerability remediation on the basis of the organization context
rather than risk severity only. The proposed solution considers multiple

45

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

vulnerabilities databases to have a great coverage on known vulnerabilities
and to determine the vulnerability rank. After the description of the new
VRM methodology, we focus on the problem of obtaining a single vulner-
ability score by normalization and fusion of ranks obtained from multiple
vulnerabilities databases. Our solution is a parametric normalization that
accounts for organization needs/specifications.

7.1 Introduction

VRM is a method to reduce the probability of exploitation and severity of
damage in a system. Continuous VRM is ranked third of among critical
security controls by the Center for Internet Security (CIS) [1]. Today, VRM
is facing new complex challenges to remediate vulnerabilities, that are most
critical for a specific organization context, on the proper time and sequence.
The number of new vulnerabilities have increased enormously during the last
three years, from 6,447 in 2016 to 17,306 unique vulnerabilities in 2019 [2].
According to the NIST National Vulnerability Database (NVD) [2], 57.17% of
the new vulnerabilities reported in 2019 ranked with critical and high severity
(41.82% high severity and 15.35% critical severity). Vulnerabilities with a
higher probability of exploit need to be patched in a certain time-window
regarding the organization context. For example, the federal agencies in U.S.
have to patch the critical vulnerabilities within 15 days and the vulnerability
with high severity within 30 days due to binding operational directive 1.
Hence, an autonomic VRM is vital to support decision makers by reducing
labour intensive tasks and to address the large number of vulnerabilities
within the specific deadlines.

Current VRM methods, used in production environments, prioritize
vulnerability patching based on the severity score, thus vulnerabilities with
critical and high severity are patched first. D. Dey et al. [3] compares several
practical patch policies and concludes that patch policies relying on a single
metric such as severity level are not optimal. Indeed, if the severity level of a
vulnerability is high but the risk of exploitation is low, it can be patched in a
later time. V. Katos et al. [4] reports that 8.65% of known vulnerabilities are
exploitable, hence the current VRM practices should be changed to account
for the exploitation probability, when prioritize patching.

1 https://cyber.dhs.gov/bod/19-02/

46

7.1. Introduction

Figure 7.1: (a) The self-response & mitigation manager; and (b) the self-vulnerability
assessment & remediation manager.

Furthermore, the risk and impact of exploit of vulnerabilities depends
on the organization’s assets, security requirements and security policies (the
organization context hereafter). Hence the vulnerabilities should not be
analyzed in an isolated manner, but within the organization context; and also
the risk of exploitation should be evaluated in the context of the organization
to e�ciently plan and to prioritize the vulnerability patching [5].

In this study, we address the aforementioned challenges by proposing AC-
VRM. AC-VRM leverages knowledge about organization context to support a
security decision-maker in prioritizing vulnerability patching. AC-VRM aims:
1) to reduce the labour intensive tasks of security experts; 2) to prioritize
vulnerability remediation on the basis of the organization context rather
than risk severity only; 3) it considers multiple vulnerabilities databases

47

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

to have a great coverage on known vulnerabilities and to determine the
vulnerability rank. AC-VRM is the first step towards the development of a
self vulnerabilities assessment and remediation manager. The self assessment
and remediation manager is shown in Fig. 7.1(b) and is compared with the
self-protecting system manager for response and mitigation of cyber-attacks
(widely investigated in literature [6]). A self-protecting system manager
is a complex software that autonomously: monitor a system to collect
information on its status; analyze the monitored data to detect anomalies
(e.g. cyber-attacks or vulnerabilities); plan actions to bring the system
back to normal operating conditions (e.g. attack response or mitigation
actions, or vulnerabilities remediation actions); execute the planned actions.
In this paper, we describe AC-VRM and we propose a normalization of
vulnerability severity score based on the chosen vulnerability management
mode by organization. That is we focus on the analysis phase in Fig. 7.1(b).

The remaining of this paper is organized as in what follows. Section 7.2
describes related scientific work and vulnerability management tools. The
insight to VRM is described in Section 7.3. Our proposed solution for an
AC-VRM is presented in Section 7.4. Finally, Section 10.8 concludes the
paper.

7.2 Related Work

In this section: firstly, we briefly review the literature about automated VRM
and self-protection. Then, we describe the widely used tools for vulnerability
management and we compare their features

7.2.1 Literature review

According with the taxonomy proposed in [6] AC-VRM could be classified
as a self-protecting system that: 1) o�ers the planning and prevention self-
protection level; 2) it is independent from the system layer to protect; 3) it
addresses the confidentiality, integrity, and availability goals; and it focuses
on development and deployment time.

Today, most research on self protecting systems mainly proposed solutions
for self response and mitigation, e.g. [7, 8]. Only a few work has focused on
self-vulnerability assessment and remediation [9].

48

7.2. Related Work

Most of the literature on automated VRM address the problem of auto-
mated penetration testing (e.g. [10] [11]) or other form of automated vulner-
ability discovery (e.g. [12] [13] [14] [15]). In this work we assume that the
organization has its own well tested methodology to discover vulnerabilities.
Moreover, in complex production environments, like a Infrastructure-as-a-
Service cloud provider, it is almost impossible to apply active vulnerability
discovery methods [16].

In [17] the authors propose the Cyber Risk Scoring and Mitigation
(CRISM) tool to estimate cyber-attack probabilities. CRISM directly moni-
tors and scores cyber risk based on assets at risk and continuously updated
software vulnerabilities. CRISM also produces risk scores that allows orga-
nizations to optimally choose mitigation policies that can potentially reduce
insurance premiums. The approach used in CRISM is similar to the context-
aware assessment proposed in our AC-VRM. However, CRISM uses only
one database (NVD) as a source for known vulnerabilities. Moreover, the
scoring is determined on the basis of a Byesian attack graph, that in case of
a IaaS cloud provider could be extremely complex to generate and analyze.

In [18] the authors propose a framework for automated risk assessment
and mitigation, that accounts for the user perceived risk. That proposed
framework is tailored to a smart home system and does not take into
account the problem of ranking and prioritizing vulnerabilities patching, like
AC-VRM does.

In [15] the authors address the problem of zero-day vulnerabilities by
proposing a method for risk assessment of zero-day vulnerabilities and attack
vectors. Their method builds on a zero-day attack graph, analysis of pre-
and post-conditions, and on the attack complexity score, and impact score
obtained from the NVD database. As mentioned in the introduction and
explained later in the paper, using only a single vulnerability database is a
limitation. On the contrary, the limitation of the AC-VRM approach is to
not consider explicitly zero-day vulnerabilities.

In [9] the authors propose a predictive machine learning model that can
identify exploitable vulnerabilities, and that allows prioritization of patching
by leveraging coverage (of vulnerabilities discovered) and e�ciency (i.e.
patching only what is at high exploitation risk for the organization). The
machine learning model is trained on the vulnerabilities extracted from the
CVE [19] database, while the NVD database is used to determine severity

49

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

score. As we argue in this paper, considering only a single database to
extract vulnerability score pose some risks, hence AC-VRM proposes to use
di�erent score and to normalize them on the basis of organization preferences
(Vulnerability Management Mode, cf. Section IV).

7.2.2 Vulnerability Management Tools (VMT)

VMTs are used to discover vulnerabilities in network, software and hardware.
Most of the VMTs are network vulnerability scanners [20–24]. However,
some tools, cf. [25], rely on identification of vulnerabilities based on the
system documentation. The output of VMT varies, but most generate a
report. This report lists the detected vulnerabilities, and prioritizes based on
their Common Vulnerability Scoring System (CVSS) score. Some of the more
advanced VMTs include suggestions for mitigation, in the report [20–22].

Table 7.1 summarizes features of (some) common VMTs. That features
are the following: scan network, i.e. the capability to scan the computer
network of the organization; identification, that is the capability to detect
existing vulnerabilities; analysis, i.e. the ability to rank the vulnerabilities
by security score; evaluation, i.e. patching prioritization capacity; and
treatment, that is the ability of patching the vulnerabilities (automatically
or providing remediation plans). Supported features by tools are marked
with a X, and the ⇤ sign represents missing or limited support for a feature
in Table 7.1. From the table it is clear, that none of the tools provide a
treatment that would immunize the systems by patching them. Furthermore,
from our experience there is a lack of tools that can operate in a context of
an organization and cover all aforementioned features.

Table 7.1: The vulnerability management tools and supported features
Vulnerability Management Features

Name Scan Network Identification Analysis Evaluation Treatment

OpenVAS [20] X X X ⇤ ⇤
Rapid7 Nexpose[22] X X X X ⇤
Vulnerability Manager Plus[24] X X X ⇤ ⇤
Tripwire IP360[23] X X X ⇤ ⇤
Qualys Vulnerability Management [21] X X X ⇤ ⇤
Skybox Vulnerability Management [25] ⇤ X X X ⇤

7.3 Vulnerability Risk Management (VRM)

VRM is a procedure each organization should practice to maintain proactive
cyber defence. Step one is identifying the vulnerability in the organization.

50

7.3. Vulnerability Risk Management (VRM)

The security team in an organization should regularly execute penetration
testing (e.g. nmap) and vulnerability scanning (e.g. OpenVAS) on their
systems to detect vulnerabilities and flaw in a system configuration, e.g. open
ports and outdated software. The result of such a test is a list of detected
vulnerabilities and their severity score, which is calculated by Vulnerability
Database (VD). Therefore, VDs are a key components in any VRM method.
The second step is analysing and ranking the detected vulnerabilities by
using the security score obtained from the VD.

However, to properly and e�ectively analyze the detected vulnerabilities,
we need knowledge about the organization’s security policy, exploitation
probabilities, and impact of exploit on the system to plan the appropriate
response. Considering only CVSS score to prioritize the patching misleads
the security decision-maker. For example, a vulnerability with a medium
severity score, being actively exploited in the wild, should be marked with a
higher priority. As it might pose a greater risk compared to a vulnerability
with a critical score that has no known exploit [26]. Hence, the VRM process
should be enhanced by adding a third step that prioritizes the patching and
resolution of analyzed vulnerabilities based on the organization’s context.
Analyses and evaluation steps often rely on domain experts, who manually
develop the protection mechanisms and define the time and order for patch-
ing. The evaluation of domain experts might leave unpatched some of the
detected vulnerabilities due to the limited attack vector in the organization
context or the high cost of patching compared to the exploit’s cost. The
aforementioned VRM process is resource intensive and slow due to the num-
ber of published and the rate that new vulnerabilities are discovered [27, 28].
Hence, the urgent demand for AC-VRM (or self vulnerability assessment
and remediation controller).

The last step in VRM is patching the right vulnerabilities and verification
of the procedure. As mentioned, the commonly used criteria in VRMs are the
severity score of the vulnerability, CVSS described in the section 7.3.2. The
VDs are repositories that record the Common Vulnerabilities and Exposures
(CVE) ID and provide a CVSS score for each CVE. Some of the VDs provide
the remediation or workarounds to address that vulnerabilities.

51

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

7.3.1 Vulnerability Database (VD)

VDs are repositories that contain lists of publicly known vulnerabilities.
VDs are usually hosted by organizations with certain regions of interests.
For example, RedHat hosts a VD for tracking vulnerabilities a�ecting their
products. However, thanks to CVE [19], each publicly known vulnerability
is assigned an Identification Number (ID), the CVE ID. VDs creates entries
in their internal system corresponding to the CVE IDs, based on the VDs’
naming system, severity rating, and patch instruction. Therefore, the
severity score might be di�erent for a CVE ID in di�erent VDs. Some of
the commonly used VDs are described in what follows:

i) NIST National Vulnerability Database (NVD) is one of the largest
vulnerability databases that contains all published CVEs. NVD oper-
ated by NIST as a part of the US Department of Commerce. NVD
provides the security-related software flaw, e�ected products name,
impact metrics and CVSS for each CVE [2].

ii) Ubuntu Security Notice (USN) collects all CVEs that a�ect di�erent
releases of Ubuntu. USN has its own naming method that uses four
digits after USN as main ID followed by the version (i.e. USN-4295-1).
The USN database provides a patch instruction, security score and
CVE ID reference or references [29].

iii) RedHat Security Advisories (RHSA) reports the vulnerabilities that
a�ect Redhat releases. Their naming system is the database name
followed the year that vulnerability was published and four digits
identifying the vulnerability in the database (i.e. RHSA-2020:2404).
RHSA database describes each vulnerability, the a�ected release or
releases, patch instruction, severity score, and the reference CVE [30].

iv) Cisco Security Advisories provides information about a�ected Cisco
products by di�erent CVEs. Cisco names each vulnerability by their
product name and type of the exploit (i.e. Cisco IOS and IOS XE
Software Tcl Denial of Service Vulnerability). Cisco Security Advisories
describes each vulnerability and provides patch instruction, severity
score, and reference CVE [31].

52

7.4. Proposed Solution

Table 7.2: Mapping CVSS score to the qualitative rating in some vulnerability
databases [2, 29–31, 33]

CVSS Score Qualitative rating

0.0 None
0.1-3.9 Low
4.0-6.9 Medium/Moderate
7.0-8.9 High/Important

9.0-10.0 Critical

7.3.2 Severity Score

The Common Vulnerability Scoring System (CVSS) was created by FIRST.org,
Inc. [32] and it aims to transfer the vulnerability characteristics to a numeric
score, and help with the quantitative analysis in vulnerability management.
CVSS is an open framework to communicate attributes and the severity
for each vulnerability. The current version of CVSS is 3.1 and has three
metrics; Base, Temporal and Environmental. The base metric consists of
attributes that remains unchanged over time, while the temporal metric
contains characteristics that change over time. Environmental metrics are
attributes which are unique to the environment. All metrics have a score
range from 0 to 10. Out of the metrics, the base metric is considered as the
primary score, while the other two are optional in the scoring process.
Table 7.2 gives an example of how a CVSS score can be mapped to a qual-
itative rating used in some VDs. Due to the di�erence in scoring/ratings
among VDs, the same vulnerability can obtain a di�erent score depending
on the used VD. Table 7.3 provides an example for CVE-2020-8130 in some
VDs which describes in section 7.4.1 in details.

7.4 Proposed Solution

We think a vulnerability should not analyse in isolation. Therefore, orga-
nizational knowledge plays a vital role during the analysis, evaluation and
treatment steps in a VRM. The VMTs in Table 7.1 provide reports that
are based on the severity rating of each detected vulnerability, possible
remediation method and reference to the CVE ID. Those reports provide
general view of vulnerabilities, and need a domain expert to review and pri-
oritize patching (within the organization). Hence, existing solutions lack the
capability to adjust for organizational requirements and automatic patching.

The proposed AC-VRM is aware of the organizational context, and thus

53

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

provides more relevant (risk) metrics to the organization. Our solution
aims to address the complete VRM method in in an automated manner to
minimize the time between vulnerability detection and patching. This will be
achieved by more e�cient vulnerability detection, evaluation, prioritization
and automatic patching.

Fig. 9.2 presents the AC-VRM workflow. The left box labeled Generic
is related with the process of collection, organization and adaptation of
information from multiple VDs. The box labeled Organization deals with
tasks that are organizational aware, i.e. the self-vulnerability assessment and
remediation part of AC-VRM. A short description of AC-VRM workflow
follows:

• Collect data: this task collects and updates the information of known
vulnerabilities from multiple VDs. This to have as wide knowledge
base as possible.

• Pre-process: the information from each VD needs to be adapted into
an internal format. Since each VD has its own naming format, we use
this step to list the vulnerabilities based on the CVE ID.

• Normalization: this task normalizes the ratings obtained from the used
VDs. Depending on VMM setting (basic, standard or restrictive), the
normalization from a VD rating to a numeric value can be influenced.

• Vulnerability Management Mode (VMM): is used when translating
a VDs qualitative rating to a numeric CVSS score. There are three
levels; basic, standard and restrictive. For basic, the lower value in the
range is used, standard uses the center value, while restrictive uses the
upper range value cf. 7.2.

• Filter: this step is identified the vulnerabilities that e�ect the orga-
nization. The vulnerability will be filtered based on organizational
assets.

• Evaluation: vulnerabilities that influences systems in the organization
are evaluated according to the organizational knowledge and normalized
score (usually done by security experts). The evaluation will generate
an initial patch prioritization. AC-VRM uses four priority levels; 0, 1,
2, and 3 which correspond to: ignore vulnerability, immediate patching
(within 7 days), patch within 30 days and mitigate with other action.

54

7.4. Proposed Solution

• Organization knowledge: is the core source of inputs for the workflow.
It includes organization system management documents such as in-
formation system policies, infrastructure setup, asset inventory and
installed software inventory. It could even include reports from VMTs.
This information is usually obtained from databases or text files.

• Sort for organization: this task schedule the patching in an order
that is as time e�cient as possible. It identifies patches for each
asset (i.e. infrastructure) and group them together. It could recognize
patches that may influence each other, and sequence them in the least
disruptive order.

• Patching prioritization: assign due date for each vulnerability in sched-
uled patching. For example vulnerability X with priority 1 should be
patched in asset Y within 7 days. This step sets a patching deadline
for each priority, which is the main criteria in automated patching. It
also activates the notification alert for each vulnerability in case the
patch deadline passed (e.g. the patching fails or is delayed).

• Automated patching: this task is in charge of patching the vulnerable
assets in the organization. The asset under patch will be taken out of
production.

• Verification: in this phase, the e�ected assets are verified to be im-
mune against vulnerabilities (priority 1, and 2). This is done using
a verification script or a scanner. If the patch failed to address the
vulnerability, the patch priority component is notified and the asset
will not be back to production.

• Update: this task in the feedback loop allows to learn the new published
vulnerabilities that e�ects organization. Update step is used to revise
the patch priority list when the vulnerability with higher impact are
detected or new update of listed vulnerability arrived.

As show in Fig. 9.2, the major contribution of our solution is additional
steps introduced into a VRM, i.e normalization, evaluation, patch priority
and automated patching. This paper focuses on the normalization phase as
an important prerequisite for comprehensive scoring of vulnerability when
using multiple VDs.

55

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

Figure 7.2: The AC-VRM workflow. The tasks in the Organization specific part are
mapped, using the same colour code, on phases of the self-vulnerability assessment
and remediation controller presented in Fig. 7.1.

7.4.1 Normalization

As we mentioned when describing VDs in Sec. 7.3.1, CVE ID is used as
a reference by VDs and each VD is updated when new vulnerabilities are
published. Furthermore, each VD has its own method to name vulnerabilities,
describes the impact and qualitative rating.

To be proactive in protection, we need to collect the updated information
from the VDs. This cause some issues, c.f. di�erent CVSS score for the same
CVE ID or di�erent scoring method. As an example the CVE-2020-8130,
see Table 7.3, scored 8.1 in NVD and medium in USN. The reason for this
di�erence is that USN calculates CVSS qualitative rating of the vulnera-
bility in Ubuntu releases (average of base and environment metrics) while
NVD considers CVSS numerical score of the base metrics in its calculation.
Therefore, we need to normalize the severity rate of vulnerabilities.

The normalization procedure is provided in Algorithm 2. The normal-
izeScore procedure gets as input the CVE_ID of a vulnerability, the set of
VDs used and the value of VMM. Then, for each VD in the set it extracts
the severity score for the vulnerability (lines 4 - 7) and finally it returns the
average value (line 8). The severity score for a vulnerability given the VMM
is computed by the getSeverityValue procedure. getSeverityValue extracts
the severity score for the vulnerability, using getSecScore, from V Di (line
11) and check if it is qualitative or quantitative. In the first case the score
is mapped into a numeric value as defined in Table 7.2 and, depending on
the value of VMM, is taken the lower bound, the center value or the upper
bound of the CVSS score range (lines 12 - 17). The function CVSSmap()
is responsible for the mapping and implement also the lower bound, center
and upper bound methods. In case the vulnerability score is numeric, it is
returned directly without any mapping operated by CVSSmap. For example

56

7.4. Proposed Solution

Algorithm 1 Normalization Algorithm
1: procedure normalizeScore(CVE_ID, VMM, VDset)
2: /* VDset is the set of VDs considered */
3: score = 0;
4: for each V Di in VDset do
5: sv = getSeverityValue(CVE_ID, V Di, VMM);
6: score += sv;
7: end for
8: return (score = score / VDset.numVDs);
9: end procedure

10:
11: procedure getSeverityValue(CVE_ID, V Di, VMM)
12: ss = getSecScore(CVE_ID, V Di,)
13: if isString(ss) then
14: switch VMM do
15: case basic: ss = CVSSmap.lower(ss);
16: case standard: ss = CVSSmap.center(ss);
17: case restricted: ss = CVSSmap.upper(ss);
18: end if
19: return (ss); /* in case ss is numeric it is returned directly */
20: end procedure

Table 7.3: Compare CVSS score of CVE-2020-8130 in di�erent VDs [2, 29, 30, 34]
Database Name CVSS Score/Qualitative rating

NVD 8.1
USN Medium

RHSA Moderate
DSA 9

Table 7.4: The output of normalization step for given vulnerability ID in basic
setting

Vulnerability ID Normalization Score Normalization Setting

CVE-2020-8130 6.3 Basic

high qualitative rating corresponds the interval [7.0-8.9] in CVSS score,
hence the lower boundary is 7.0 as shows in the Table 7.2.

Table 7.3 shows the information retrieves for CVE-2020-8130 in di�erent
VDs and Table 7.4 represents the output of normalization step in our
solution for the same vulnerability ID.

57

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

7.5 Conclusion

In this paper we presented the AC-VRM method. This augments the
current state-of-the-art of VRM, by adding support for organizational
knowledge that directs its behavior to generate patching priorities opti-
mal for the organization. AC-VRM operates automatically, thus reducing
the discovery/identification-remediation time. Furthermore, as to maximize
AC-VRM’s coverage, we propose to use input from multiple VDs that is
normalized to a VD independent format, while retaining links back to the
VD’s and the CVE ID. During the normalization process, an organization
can choose what level it want to operate via VMM parameter. This gives
the method maximum flexibility and adaptability, to find solutions suitable
to the organization.

References

[1] CIS Controls. http://www.cisecurity.org/controls/. [Online;
accessed 5-April-2020].

[2] NIST National Vulnerability Database. https://nvd.nist.gov/.
[Online; accessed 8-March-2020].

[3] D. Dey, A. Lahiri, and G. Zhang. “Optimal policies for security patch
management”. In: INFORMS Journal on Computing 27.3 (2015),
pp. 462–477.

[4] V. Katos, S. Rostami, P. Bellonias, N. Davies, A. Kleszcz, S. Faily,
A. Spyros, A. Papanikolaou, C. Ilioudis, and K. Rantos. STATE OF
VULNERABILITIES 2018/2019. Tech. rep. ENISA(European Union
Agency for Cybersecurity), 2020.

[5] G. L. Guzie. Vulnerability risk assessment. Tech. rep. ARMY RE-
SEARCH LAB WHITE SANDS MISSILE RANGE NM, 2000.

[6] E. Yuan, N. Esfahani, and S. Malek. “A Systematic Survey of Self-
Protecting Software Systems”. In: ACM Trans. Auton. Adapt. Syst.
8.4 (2014).

58

http://%20www.cisecurity.org/controls/
https://nvd.nist.gov/

References

[7] E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari. “Architecture-
based self-protecting software systems”. In: Proceedings of the 9th inter-
national ACM Sigsoft conference on Quality of software architectures.
2013, pp. 33–42.

[8] A. H. Celdrán, M. G. Pérez, F. J. G. Clemente, and G. M. Pérez.
“Towards the autonomous provision of self-protection capabilities in
5G networks”. In: Journal of Ambient Intelligence and Humanized
Computing 10.12 (2019), pp. 4707–4720.

[9] J. Jacobs, S. Romanosky, I. Adjerid, and W. Baker. “Improving vul-
nerability remediation through better exploit prediction”. In: 2019
Workshop on the Economics of Information Security. Oxford University
Press, 2019.

[10] S. Lee, J. Kim, S. Woo, C. Yoon, S. Scott-Hayward, V. Yegneswaran, P.
Porras, and S. Shin. “A comprehensive security assessment framework
for software-defined networks”. In: Computers & Security 91 (2020).

[11] R. Vibhandik and A. K. Bose. “Vulnerability assessment of web appli-
cations - a testing approach”. In: 2015 Forth International Conference
on e-Technologies and Networks for Development (ICeND). IEEE.
2015, pp. 1–6.

[12] Y. Tatarinova. “Avia: Automatic vulnerability impact assessment on
the target system”. In: 2018 IEEE Second International Conference on
Data Stream Mining & Processing (DSMP). IEEE. 2018, pp. 364–368.

[13] Z. Liang and R. Sekar. “Fast and automated generation of attack
signatures: A basis for building self-protecting servers”. In: Proceedings
of the 12th ACM conference on Computer and communications security.
2005, pp. 213–222.

[14] S. Khan and S. Parkinson. “Review into state of the art of vulnerability
assessment using artificial intelligence”. In: Guide to Vulnerability
Analysis for Computer Networks and Systems. Springer, 2018, pp. 3–
32.

[15] Z. Ye, Y. Guo, and A. Ju. “Zero-day vulnerability risk assessment and
attack path analysis using security metric”. In: Artificial Intelligence
and Security: 5th International Conference, ICAIS 2019, New York,
NY, USA, July 26–28, 2019, Proceedings, Part IV 5. Springer. 2019,
pp. 266–278.

59

7. Normalization of Severity Rating for Automated Context-aware
Vulnerability Risk Managemen

[16] R. Negi, P. Kumar, S. Ghosh, S. K. Shukla, and A. Gahlot. “Vulnera-
bility assessment and mitigation for industrial critical infrastructures
with cyber physical test bed”. In: 2019 IEEE International Conference
on Industrial Cyber Physical Systems (ICPS). IEEE. 2019, pp. 145–
152.

[17] S. Shetty, M. McShane, L. Zhang, J. P. Kesan, C. A. Kamhoua, K.
Kwiat, and L. L. Njilla. “Reducing informational disadvantages to
improve cyber risk management”. In: The Geneva Papers on Risk and
Insurance-Issues and Practice 43.2 (2018), pp. 224–238.

[18] P. Pandey, A. Collen, N. Nijdam, M. Anagnostopoulos, S. Katsikas,
and D. Konstantas. “Towards automated threat-based risk assessment
for cyber security in smarthomes”. In: Proceedings of the 18th European
Conference on Cyber Warfare and Security (ECCWS 2019), Coimbra,
Portugal. 2019, pp. 4–5.

[19] Common Vulnerabilities and Exposures(CVE). https://cve.mitre.
org/. [Online; accessed 1-June-2020].

[20] Open Vulnerability Assessment Scanner(OpenVAS). https://www.
openvas.org/. [Online; accessed 12-May-2020].

[21] Qualys Vulnerability Management. https://community.qualys.com/
vulnerability-management/. [Online; accessed 12-May-2020].

[22] Rapid7 Nexpose Vulnerability scanner. https://www.rapid7.com/
products/nexpose/. [Online; accessed 12-May-2020].

[23] Tripwire Vulnerability Management. https://www.tripwire.com/
products/tripwire-ip360. [Online; accessed 12-May-2020].

[24] Vulnerability Manager Plus. https : / / www . manageengine . com /
vulnerability-management/. [Online; accessed 12-May-2020].

[25] SkyBox Vulnerability Management. https://www.skyboxsecurity.
com/vulnerability-management/. [Online; accessed 12-May-2020].

[26] 2020 VULNERABILITY AND THREAT TRENDS. Tech. rep. SkyBox
Security, 2020.

[27] S. Khan and S. Parkinson. “Towards automated vulnerability assess-
ment”. In: 11th International Scheduling and Planning Applications
woRKshop (SPARK). 2017, pp. 33–44.

60

https://cve.mitre.org/
https://cve.mitre.org/
https://www.openvas.org/
https://www.openvas.org/
https://community.qualys.com/vulnerability-management/
https://community.qualys.com/vulnerability-management/
https://www.rapid7.com/products/nexpose/
https://www.rapid7.com/products/nexpose/
https://www.tripwire.com/products/tripwire-ip360
https://www.tripwire.com/products/tripwire-ip360
https://www.manageengine.com/vulnerability-management/
https://www.manageengine.com/vulnerability-management/
https://www.skyboxsecurity.com/vulnerability-management/
https://www.skyboxsecurity.com/vulnerability-management/

References

[28] J. A. Kupsch and B. P. Miller. “Manual vs. automated vulnerabil-
ity assessment: A case study”. In: First International Workshop on
Managing Insider Security Threats (MIST). 2009, pp. 83–97.

[29] Ubuntu Security Notice. https://usn.ubuntu.com/. [Online; accessed
8-March-2020].

[30] RedHat Security Advisories. https://access.redhat.com/security/
security-updates/. [Online; accessed 8-March-2020].

[31] Cisco Security Advisories. https://tools.cisco.com/security/
center/mpublicationListingDetails.x?docType=CiscoSecurityAdvisory.
[Online; accessed 8-March-2020].

[32] Common Vulnerability Scoring System(CVSS). https://www.first.
org/cvss/. [Online; accessed 9-March-2020].

[33] F. Inc. “Common Vulnerability Scoring System v3.1: Specification
Document”. In: (2019).

[34] Debian Security Tracker. https://www.debian.org/security/DSAS.
[Online; accessed 29-April-2020].

61

https://usn.ubuntu.com/
https://access.redhat.com/security/security-updates/
https://access.redhat.com/security/security-updates/
https://tools.cisco.com/security/center/mpublicationListingDetails.x?docType=CiscoSecurityAdvisory
https://tools.cisco.com/security/center/mpublicationListingDetails.x?docType=CiscoSecurityAdvisory
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.debian.org/security/DSAS

8
Normalization Framework for Vulnerability

Risk Management in Cloud
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio

Published as:

Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Normalization
Framework for Vulnerability Risk Management in Cloud", 2021 8th
International Conference on Future Internet of Things and Cloud
(FiCloud), Rome, Italy, 2021, pp. 99-106, ©2021 IEEE. doi: 10.1109/Fi-
Cloud49777.2021.00022.

Abstract: Vulnerability Risk Management (VRM) is a critical element
in cloud security that directly impacts cloud providers’ security assurance
levels. Today, VRM is a challenging process because the dramatic increase
of known vulnerabilities (+26% in the last five years), and because it is even
more dependent on the organization’s context. Moreover, the vulnerability’s
severity score depends on the Vulnerability Database (VD) selected as a
reference in VRM. All these factors introduce a new challenge for security
specialists in evaluating and patching the vulnerabilities. This study provides
a framework to improve the classification and evaluation phases in vulner-
ability risk management while using multiple vulnerability databases as a
reference. Our solution normalizes the severity score of each vulnerability
based on the selected security assurance level. The results of our study
highlighted the role of the vulnerability databases in patch prioritization,
showing the advantage of using multiple VDs.

63

8. Normalization Framework for Vulnerability Risk Management in
Cloud

8.1 Introduction

Vulnerability identification, classification, and evaluation are listed as the
vital criteria in the Cloud Risk Assessment models [1]. Vulnerability Risk
Management (VRM) is the methodology used to identify, classify, evaluate,
and remediate vulnerabilities. VRM usually involves operations that require
IT security specialists intervention which is time-consuming and costly.
Security specialists use vulnerability scanning tools (e.g., OpenVAS, Nexpose,
and Nessus are examples of vulnerability scanners) to identify known system
vulnerabilities. Vulnerability scanners rely on Vulnerability Databases (VDs),
which are repositories that list the vulnerabilities, each having a unique
identification number, a severity score, and patch instructions (used in the
remediation phase). Because VDs are maintained by di�erent institutions
they use di�erent severity scoring systems and could cover di�erent sets
of vulnerabilities. Hence, for security experts, is challenging to select the
appropriate VD and eventually they need to rely multiple VDs. In this
paper, we address the aforementioned problem. We consider vulnerabilities
that are documented in the Common Vulnerabilities and Exposures (CVE)
referencing system and are identified by a unique CVE-ID. Some of the
VDs, such as the National Vulnerability Database (NVD), use the Common
Vulnerability Scoring System (CVSS) framework to rank the severity of the
CVE-ID, and others develop their own scoring system frameworks. Therefore,
the same CVE-ID could have di�erent severity score depending on what
VD is used. For instance, CVE-2020-8130 has a severity score "8.1" in NVD
[2], "Medium" in USN [3], "9" in DSA [4], and "Moderate" in RHSA [5].
Additionally, the time when VDs publish their ratings also di�er, some are
fast, some take a bit more time. The patching instructions and remediation
strategy may also di�er between the VDs.

Hence the variety of scoring systems available, which results in di�erent
severity scores and remediation instructions, could a�ect the outcome of
the VRM process and, as the authors in [6–8] point out, it legitimates the
following research questions:

1. Is one VD enough to use in a VRM?

2. What criteria should be considered to select the reference VD in VRM?

3. What would we gain by using multiple VDs in a VRM?

64

8.1. Introduction

Answering the above research question is important for two reasons.
Firstly, VRM is key to guarantee a desired security assurance level in cloud
services as described in the European Cybersecurity Certification Scheme for
Cloud Services (EUCS) [9] and in the NIST guidelines for Cloud security [10,
11]. Therefore, the security expert should be provided with guidelines on
which VDs to use and if and how the VD selection impact the results of
the vulnerability analysis and patch prioritization. Secondly, the number
of published CVE-IDs has increased enormously during the last five years,
from 6447 in 2016 to 18356 in 2020 [2], resulting in a wider di�erentiation
among the VDs and introducing additional challenges when VRM is applied
to complex system such as IaaS [12].

The main contributions of this study are outlined in what follows. Firstly,
we proposed a VDs Normalization Framework (VDNF) that could be inte-
grated in the vulnerability management process. The VDNF is a refinement
and implementation of what envisioned in [13]. VDNF is intended as a tool
to improve the classification and evaluation phases in VRM while dealing
with multiple VDs as a source. For example, VDNF could be used by IaaS
security specialist dealing with the challenge of selecting the VDs more
appropriate for the specific context of their organization [8].

Secondly, we implemented our VDNF and we validated the VDNF on a
large set of sampled CVE-IDs. We chose the CVE-IDs that a�ected Ubuntu’s
releases from 2017 to 2020 as Ubuntu is the most used Linux distribution
in Cloud computing [14]. We collected the severity score of the sampled
CVE-IDs from NVD, USN, and DSA databases to cover multiple VDs.

Finally, we analyzed the distribution of severity scores in the di�erent VDs
and we analyzed the impact of the normalization framework on generalizing
the severity score of the various VDs. Results confirm that using a single VD
do not allow to properly analyze vulnerabilities in a complex organization
context. Indeed, VDs normalization allows to cover a larger number of
CVE-IDs (e.g., USN does not consider a not negligible set of CVE-IDs that
are considered in DSA and NVD). Hence, in complex contexts VRM benefits
of VDs normalization.

This paper is organised as in what follows. Related works are analyzed in
Section 8.2. Section 8.3 firstly describes the issues in current approaches to
VRM and then it describes how the proposed solution could improve VRM.
Section 8.5 presents the normalisation framework and our sampling method.

65

8. Normalization Framework for Vulnerability Risk Management in
Cloud

The analyses of the result of our solution are presented in Section 10.7.
Finally, Section 10.8 concludes the paper.

8.2 Related works

As mentioned before, the research community have recently raised the chal-
lenges introduced by the existence of multiple VDs. For example, the authors
in [6] provided a comprehensive survey on the vulnerability scanning tools
and databases to support security specialists in selecting the right vulnera-
bility scanning tools and VDs. They point out the need for orchestration
in vulnerability scanning tools for obtaining the highest vulnerability cov-
erage. However, their study is limited to the vulnerability scanning tools
and VDs based using the vulnerability taxonomy defined by the Open Web
Application Security Project (OWASP) [15]. Moreover their study covered
only the web application vulnerability detection tools [6]. The study by Dey
et al. [7] concluded that patch prioritisation based on the single metric such
as severity score from one VD is not an optimal patch policy.

Furthermore, the risk and impact of exploiting vulnerabilities depend
on the organization’s assets, security requirements, and security policies.
Thus, the exploitation risk should be evaluated in the context of the orga-
nization [8]. Therefore, security specialists need to define their asset-based
criteria using multiple VDs and vulnerability scanning tools. The lack of
proper classification of vulnerabilities in VDs leads to some knowledge-based
VDs where vulnerabilities are divided into multiple classes based on the
impact of vulnerabilities’ exploit [16]. Unfortunately, such VDs only use
one VD as a source of truth for their classification, which does not provide
the proper coverage. The state of vulnerability in 2020 shows only 84%
of the vulnerabilities are registered in CVE [17] registry with an assigned
CVE-ID. However, most of those unregistered vulnerabilities are related to
the software patched by the software community. The security specialist
should check the software’s status in their organization besides the VDs,
which is a time-consuming task [18].

The authors in [19] described the time factor corresponding to vul-
nerability risk management and patch management. They proposed the
vulnerability management center where the data collected from organization
inventory and NVD database are integrated with the vulnerability scanner.
Their paper aims to reduce the time of vulnerability risk management proce-

66

8.3. The role of Vulnerability Databases in Vulnerability Risk Management

dures. However, they used one generic VD as a reference, and calculated the
environmental metrics based on the CVSS v2.0 standard. Such an approach
required verifying the obtained score with the subject-specific VDs, which
was missing in the paper.

From our literature study emerge that although the research community
recognized the limitation of considering only a single VD in VRM, no work
provides a clear answer to the research questions addressed by our paper.

8.3 The role of Vulnerability Databases in

Vulnerability Risk Management

VDs are the repositories of publicly known vulnerabilities usually maintained
by a community or organization with a specific area of interest, i.e. the
subject-specific VDs. For instance, NIST National Vulnerability Database
(NVD) hosts all published CVE-IDs to support the US Department of
Commerce. Canonical hosts USN, a VD for tracking the vulnerabilities
that a�ect Ubuntu releases. Debian maintains a VD containing the Debian
Security Advisories (DSAs), i.e., security vulnerability that a�ects a Debian
package. NVD is the largest VD available, it stores CVE-IDs record since
1988, and it is used as a reference VD in most of the vulnerability scanners.
NVD applies the based score of the CVSS framework to rank the CVE-IDs,
while Canonical developed their framework for ranking the CVE-IDs that
a�ected their releases. The criteria and the method for calculating a severity
score by Canonical are not publicly available. However, Canonical claims
that their scoring system considers the impact of the vulnerability in their
environments. DSA relies on NVD scores.

VRM consists of four phases: i) identification; ii) classification and
analysis; iii) evaluation; and iv) remediation. The vulnerability identification
phase and the vulnerability classification and analysis phase rely on VDs;
phases iii) and iv) use the results from phase ii). Hence the results of VRM
are e�ected by the selected VD, as detailed in what follow.

The first phase identifies the system’s vulnerability by using vulnerability
scanners. Those tools report the detected vulnerabilities and a severity score.
The severity score they report is calculated by the VD used by the selected
tool, either by design or by configuration. That VD, may or may not use
the criteria listed in the CVSS framework, to calculate the severity score.

67

8. Normalization Framework for Vulnerability Risk Management in
Cloud

Therefore, the VD and its scoring system play a vital role in VRM.

The second phase is the classification and analysis of detected vulner-
abilities. Most security specialists use the severity score to classify the
vulnerabilities (e.g., detected CVE-ID with a critical severity score). Some
experts use the type of exploit (e.g., detected CVE-ID that a remote attacker
could exploit). The classification of the vulnerabilities impacted the evalua-
tion for patch prioritization in the next phase. Which raises the question,
which VD’s severity score should consider?

The third phase is the evaluation of the impact that the vulnerabilities
have, and define a patch priority. This requires in-depth knowledge about
the security policy, probability of exploitation, and impact of the exploit on
the system to plan a proper response and remediation. For example, the
vulnerability that can exploit by the remote attacker have a higher risk than
the one required local access; hence the first get a higher priority than the
second.

Remediation is the last step in VRM, which patches the detected vulner-
abilities, based on their priority. The remediation phase mostly relies on the
software or hardware vendor (e.g., patch intel-microcode vulnerability should
install the software’s minimum safe version). However, some vulnerabilities
might remain unpatched in a system due to the limited attack vector.

Our VRM approach relies on the organization’s knowledge, to help
security decision-makers analyze and evaluate vulnerabilities within the
organization’s context, rather than purely relying on severity scores. Or-
ganizational knowledge refers to system management documents, such as
security policy, system configuration, asset inventory, and software inventory.
A context-aware VRM mitigates the challenge with di�erent severity scores
from VDs, c.f. [13].

The proposed VRM approach encourages the selection of VD based
on the organization’s asset inventory. For instance, the Canonical severity
score should use for patch prioritization in the organization with only the
Ubuntu releases in asset inventory. For the organization with various vendors,
multiple VDs should use as a reference. As we mentioned in Section 10.1,
some VDs provide a numerical score while the others give a qualitative score.
Hence obtaining a single severity score for each CVE-ID is a new challenge
in VRM. The proposed VRM approach introduce a normalization framework
to support security experts and decision-makers in phases I and II.

68

8.4. The VDs Normalisation Framework

8.4 The VDs Normalisation Framework

The Normalization framework proposes a method to obtain a single severity
score for each CVE-ID by aggregating scores from multiple VDs. The
framework o�ers three working modes, hereafter Vulnerability Management
Mode (VMM): Basic, Standard, and Restrictive. The proposed VMM are
inline with the three assurance levels proposed in the ENISA cybersecurity
certification framework [9]. A Basic VMM is the minimum acceptable
baseline for a VRM process to cover a system’s vulnerability identification,
and with a limited public exposure scope. A Standard VMM is suitable to
serve a system with medium to a high security risk, while the Restrictive
mode should be used for VRM in compliant systems (i.e., the particular
system that should comply with the local or international regulatory and
standards) and critical infrastructure. Hence, it should be easy to select a
VMM meeting the required organizations’ assurance level.

The core components of the normalization framework are described in
Algorithm 2. Inputs to the normalization framework are: a list of CVE-IDs,
a list of the desired VDs, and the VMM. The framework produces as output,
a normalized severity score per CVE-ID.

Table 8.1: Severity Score range in CVSS v3.x and the normalisation framework
CVSS v3.x Score Qualitative Rate Basic VMM Standard VMM Restrictive VMM

0.0 None 0 0 0
0.1-3.9 Low 0.1 2 3.9
4.0-6.9 Medium 4.0 5.45 6.9
7.0-8.9 High 7.0 7.95 8.9

9.0-10.0 Critical 9.0 9.5 10.0

The getSeverityValue procedure, obtains the severity score for the iden-
tified CVE-ID and selected VD. If the severity score ("ss") is qualitative,
the framework converts ss to the numeric value based on the severity score
range in Table 8.1. For example if ss=Low and VMM=standard, then ss is
turned into the value of 2. If the severity score is numeric, it is not altered.
The second procedure, normalizeScore, calculates the average severity score
for the CVE-ID.

As each organization behind a VD operates di�erently, there are scenarios
when some VDs might not have a score for all the published CVE-ID. Using
the normalization framework, we can facilitate better coverage, as it relies
on input from multiple VDs. In this way, reducing the probability of having
a CVE-ID without a score.

69

8. Normalization Framework for Vulnerability Risk Management in
Cloud

Algorithm 2 Normalization Algorithm
1: procedure getSeverityValue(CVE-ID, V Di, VMM)
2: ss = getSecScore(CVE-ID, V Di,)
3: if isString(ss) then
4: switch VMM do
5: case basic: ss = CVSS.basic(ss);
6: case standard: ss = CVSS.standard(ss);
7: case restrictive: ss = CVSS.restrictive(ss);
8: end if
9: return (ss); /* in case ss is numeric it is returned directly */

10: end procedure
11: procedure normalizeScore(CVE-ID, VMM, VDset)
12: /* VDset is the set of VDs considered */
13: norm_score = 0;
14: VDCnt = 0;
15: for each V Di in VDset do
16: sv = getSeverityValue(CVE-ID, V Di, VMM);
17: if isValue (sv) then
18: norm_score += sv;
19: VDcnt += 1;
20: else
21: norm_score += 0;
22: VDcnt += 0;
23: end if
24: end for
25: norm = norm_score / VDcnt;
26: if isValue (norm) then
27: return norm;
28: else
29: return NA;
30: end if
31: end procedure

70

8.4. The VDs Normalisation Framework

Figure 8.1: CVSS v2.0 metrics [20]

Figure 8.2: CVSS v3.x metrics [21]

The normalization framework uses the CVSS v3.x (i.e. version 3 and
above) scoring system [21] as a reference, when converting a qualitative score
to a numeric value. We use CVSS v3.x because it provides a more accurate
view of the security impact on the system by expanding the basic metrics
group. For instance, the authentication metrics are divided into two exploit-
ability metrics, the privileges required and the user interaction, to provide
a better evaluation on authenticity impacts, c.f. Figure 8.1 and Figure 8.2.
Furthermore, a scope metric has been added to the basic metrics, capturing
whether a vulnerability in one component a�ects resources managed by one
or multiple security authorities. In cloud computing, this scope plays a vital
role as it addresses vulnerabilities in the guest (virtual) entities that could
compromise the host (Cloud infrastructure), i.e. hypervisor attacks [21].

The CVSS v2.0 and v3.x metrics are presented in Figure 8.1 and Fig-
ure 8.2. CVSS v3 provides a fine grain scale in a score by dividing the
high range in CVSS v2.0 into two ranges 7.0-8.9 and 9.0-10.0. The new
scale provides better visibility on vulnerabilities that have a higher risk of
exploitation.

71

8. Normalization Framework for Vulnerability Risk Management in
Cloud

Table 8.2: Registered CVE-IDs VS. Sample CVE-IDs
Year Registered CVE-ID Sample CVE-ID
2017 14646 4043
2018 16511 3179
2019 17305 2952
2020 18355 2387

8.5 Validation Case study

To validate the proposed normalization framework, we apply the VDNF to
three VDs that use di�erent scoring mechanisms:

• National Vulnerability Database, NVD

• Debian Security Advisories, DSA

• Ubuntu Security Notices, USN

We chose NVD as it calculates a base score for CVSS v2.0 and v3.x, and
records both numeric and qualitative score for each CVE-ID. We picked
DSA as it reports a qualitative score which relies on NVD score but does
not clarified the version of CVSS. The last, USN provides a qualitative
score where the criteria and calculation method is not available. Hence, the
severity scores from DSA and USN are qualitative and need to be converted
to a numeric value by the normalization procedure in Algorithm 2.

To validate the framework, we have selected CVE-IDs that has a�ected
Ubuntu’s releases from 2017 to 2020. We collected the information for those
CVE-IDs on February 4th, 2021 from the selected VDs. For each VD we
recorded the CVE-ID, severity score, description of the vulnerability, date of
publishing CVE-ID, and a reference link. The data (available in GitHub)1

was saved in a CSV file, one for each year. Table 10.2 presents the number
of the registered CVE-IDs, and the number of sample CVE-IDs, per year.

We use a Python script to process the data and implement the normal-
ization framework, described in Algorithm 2.

1 DVNF data repository https://github.com/vidaAhmadi/sample-CVE

72

8.6. Analysis Result

USN
DSA

NVD v2

NVD v3

Base VMM

Standard VMM

Restric
tive VMM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f
C

V
E

-I
D

s

None(0)
Low(0.1-3.9)
Medium(4.0-6.9)
High(7.0-8.9)
Critical(9.0-10)
NA

Figure 8.3: Distribution of the severity
scores in VDs
and normalisation framework in 2017.

USN
DSA

NVD v2

NVD v3

Base VMM

Standard VMM

Restric
tive VMM

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f
C

V
E

-I
D

s

None(0)
Low(0.1-3.9)
Medium(4.0-6.9)
High(7.0-8.9)
Critical(9.0-10)
NA

Figure 8.4: Distribution of severity
scores in VDs
and normalisation framework in 2018.

USN
DSA

NVD v2

NVD v3

Base VMM

Standard VMM

Restric
tive VMM

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f
C

V
E

-I
D

s

None(0)
Low(0.1-3.9)
Medium(4.0-6.9)
High(7.0-8.9)
Critical(9.0-10)
NA

Figure 8.5: Distribution of the severity
scores in VDs
and normalisation framework in 2019.

USN
DSA

NVD v2

NVD v3

Base VMM

Standard VMM

Restric
tive VMM

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f
C

V
E

-I
D

s

None(0)
Low(0.1-3.9)
Medium(4.0-6.9)
High(7.0-8.9)
Critical(9.0-10)
NA

Figure 8.6: Distribution of the severity
scores in VDs
and normalisation framework in 2020.

8.6 Analysis Result

First, we analyze the distribution of severity scores for each of VDs. Then,
we compare the distributions between the VDs. Finally, we analyze the
impact that the normalization framework has on the distribution of severity
scores.

8.6.1 Distribution of Severity Scores

8.6.1.1 USN

The severity score is reported as a priority in USN VD. Hence, severity
score none is ranked negligible in USN. The majority of the CVE-IDs have

73

8. Normalization Framework for Vulnerability Risk Management in
Cloud

a medium score, and only three CVE-IDs ranked critical in our samples
space. The NA in the Figures 8.3 to 8.6 refers to the number of CVE-
ID that does not have any score. USN has the highest number of NA in
our samples. Furthermore, the number of registered CVE-IDs that a�ected
Ubuntu releases decreased by 15.2% from 2017 to 2020 as shown in Table 10.2.

8.6.1.2 DSA

Our result shows that DSA scores matches quite well with NVD v2. There
is no critical score in our sample CVE-IDs, this proves that the scores
are calculated with CVSS v2.0, or similar, because the critical range was
introduced in CVSS v3.x. Furthermore, We did not find any evidence of
independently calculated severity scores in the DSA VD or any reference to
the framework used for calculating scores.

8.6.1.3 NVD

NVD uses the CVSS framework to calculate the severity score mentioned
in its general documentation 2. Most of the CVE-IDs have a severity score,
from both CVSS v2.0 and v3.x, since 2016. The NVD score consists of the
base metric group only, while the temporal metric and environment metric
are excluded in the value. Therefore, we consider NVD as a general-purpose
VD.

Figures 8.3 to 8.6 visualized the NVD has the lowest number of NA in
each year comparing with the other two VDs. We also see most CVE-IDs in
NVD v2 are in the medium range. Furthermore, NVD reported the least
number of CVE-IDs in the low range per year in our samples.

8.6.2 Comparison of Distributions

We selected USN and DSA as they are product-specific VDs. Ubuntu and
Debian are both Linux distributions, one can expect a similar severity score
in those databases. Furthermore, Ubuntu is built on-top of the Debian
distribution. However, Table 8.3 and Figures 8.3 to 8.6 show no similarity
between severity scores in DSA and USN. Nevertheless, the severity score
reported by NVD v2 is similar to the one reported by DSA. Another finding
is that the range None only exists in USN.

2 NVD documentation https://nvd.nist.gov/general

74

8.6. Analysis Result

Table 8.3: Severity Score distribution in VDs and the normalisation framework
2017-2020

VD VMM
Year Score USN DSA NVD CVSS v2.0 NVD CVSS v3.x Basic Standard Restrictive

2017

0.0 (None) 131 0 0 0 0 0 0
0.1-3.9 (Low) 1071 253 253 42 932 673 270

4.0-6.9 (Medium) 2611 2700 2700 1562 2811 3018 2912
7.0-8.9 (High) 139 1085 1085 1803 279 331 811

9.0-10.0 (Critical) 3 0 0 631 21 21 50
Not Available 88 5 5 5 0 0 0

2018

0.0 (None) 75 0 0 0 0 0 0
0.1-3.9 (Low) 656 215 215 26 723 531 206

4.0-6.9 (Medium) 2205 2466 2466 1455 2366 2538 2531
7.0-8.9 (High) 60 478 478 1296 85 105 437

9.0-10.0 (Critical) 0 0 0 382 3 3 3
Not Available 183 20 20 20 2 2 2

2019

0.0 (None) 69 0 0 0 0 0 0
0.1-3.9 (Low) 611 257 257 79 640 449 236

4.0-6.9 (Medium) 2127 2151 2153 1282 2212 2362 2276
7.0-8.9 (High) 23 523 523 1151 96 137 435

9.0-10.0 (Critical) 0 0 0 421 4 4 5
Not Available 122 21 19 19 0 0 0

2020

0.0 (None) 18 0 0 0 0 0 0
0.1-3.9 (Low) 440 330 330 109 604 433 287

4.0-6.9 (Medium) 1801 1687 1689 1105 1688 1841 1837
7.0-8.9 (High) 30 292 293 891 85 103 252

9.0-10.0 (Critical) 0 0 0 208 3 3 4
Not Available 98 78 75 74 7 7 7

We also see that USN has the largest number of CVE-IDs in the low
range, and lowest number of CVE-IDs in the High range comparing with
other VDs in each year.

As mentioned before, it may be that some CVE-IDs do not have a
score in a VD, this is represented as "Not Available" in table 8.3, and NA
in Figures 8.3 to 8.6. The NA scores for 2020 are all related to recently
published CVE-IDs, and it usually takes some time for the score be updated
in VDs. However, USN reported the largest NA scores in 2018 for the
vulnerable packages with an unknown impact on Ubuntu releases.

8.6.3 Impact of Normalization

Figures 8.3 to 8.6 shows the distribution of the severity score range in VDs
and normalisation framework. The normalisation score is distributed in
the four ranges Low, Medium, High, and Critical and the number of CVE-
ID in the range None is zero in 2017-2020. We also identify the number
of CVE-IDs without a score (cf., NA): in 2017 and 2019 it is zero after
normalization regardless of the VMM, while the number on CVE-IDs with
NA score are two (0.06%) and seven (0.33%) in 2018 and 2020 relatively.
Hence, after normalization the number of the CVE-IDs with not available
score is negligible.

75

8. Normalization Framework for Vulnerability Risk Management in
Cloud

USN
DSA

NVD v2

NVD v3

Norm
alisatio

n
0

20

40

60

80

100

120

140

160

180

200

N
u
m

b
e
r

o
f
N

o
t
A

va
ila

b
le

2017
2018
2019
2020

Figure 8.7: Distribution of Not Available Score in 2017-2020

We observe the benefits of normalization on the better coverage on CVE-
IDs score. Table 8.5 presentes the number of CVE-IDs that does not have a
score in each VDs and the changes on the score after applying normalization
framework. We find the change in the score range for CVE-IDs with NA,
does not depend on the VMM. Hence, the result in Table 8.5 is the same for
Basic, Standard, and Restrictive mode.

We visualized the change in not available score in VDs and normalisation
in Figure 8.7. We noticed the most of the CVE-IDs ranked NA in VDs,
moved to the medium range after applying normalization framework.

To have a fair comparison of the normalization impact, we calculate the
percentage of the CVE-IDs, which does not change its range after applying
the normalization framework. Table 8.4 presents the percentage of the
changed and unchanged severity score range in 2017-2020. We noticed that
USN reported a higher percentage of unchanged severity score range in the
basic VMM, while the restrictive VMM provides the higher unchanged range
in NVD and DSA.

8.7 Conclusion

We proposed and implemented a normalization framework to facilitate
classification and evaluation phases in VRM when dealing with multiple

76

8.7. Conclusion

Table 8.4: The percentage of the CVE-ID with changed and unchanged severity
score range after normalization 2017-2020

Year 2017 2018 2019 2020
VMM VD % unchanged % changed % unchanged % changed % unchanged % changed % unchanged % changed

Basic
USN 75,2 24,8 81,5 18,5 78,4 21,6 78,2 21,8
DSA 62,8 37,2 71,1 28,9 72 28 77,5 22,5

NVD v2.0 62,8 37,2 71 29 72,1 27,9 77,3 22,7

Standard
USN 71 29 79,1 20,9 75,9 24,1 77,4 22,6
DSA 66,9 33,1 73,4 26,6 74,7 25,3 78,3 21,7

NVD v2.0 66,9 33,1 73,3 26,7 74,8 25,2 78,1 21,9

Restrictive
USN 49,2 50,8 59,5 40,5 59,5 40,5 66,3 33,7
DSA 87,6 12,4 93,1 6,9 91,2 8,8 89,3 10,7

NVD v2.0 87,6 12,4 93 7 91,3 8,7 89,1 10,9

Table 8.5: The change in severity score of Not Available in VDs after normalisation
2017-2020

Year VD Not Available(NA) NA‘ NA NA ‘ Low NA‘ Medium NA‘ High NA‘ Critical

2017
USN 88 0 4 55 17 12
DSA 5 0 2 2 1 0
NVD 5 0 2 2 1 0

2018
USN 183 2 8 149 21 3
DSA 20 2 0 18 0 0
NVD 20 2 0 18 0 0

2019
USN 122 0 10 90 21 1
DSA 21 0 4 17 0 0
NVD 19 0 4 15 0 0

2020
USN 98 7 18 64 8 1
DSA 78 7 19 52 0 0
NVD 75 7 19 49 0 0

VDs. Our solution provides a numeric security score for each CVE-ID by
applying a normalization algorithm. The same type of score (i.e., numeric
score) from multiple VDs helps the security decision-maker to generalize the
severity score. In this study, we evaluated the normalization framework’s
impact on a large set of sampled CVE-IDs and analyzed the distribution of
severity scores.

This study shows the significant impact of the VDs’ severity score on
classification, evaluation, and patch prioritization in VRM. Hence, selecting
one general scoped VD to use in VRM would not be su�cient for patch
prioritization as environmental metrics are not considered in the score
calculation. Based on our result, we recommend security expert to select at
least one subject-specific and one general VD, and to use the normalized
scores for decision making in the organizations’s VRM.

Our study declares that we need multiple VDs as a reference in VRM
to get better severity score coverage of the known CVE-IDs. Our result
indicates the organization assets should be used as essential criteria for the
selection of reference VDs. For example, suppose the organization used the
Dell servers and Debian’s operating system. In that case, they have to use
Dell’s and Debian’s VD as reference VDs in VRM.

77

8. Normalization Framework for Vulnerability Risk Management in
Cloud

In the future, we will add another subject-specific VD, such as RedHat, to
our sample VDs for expanding our study on the impact of the normalization
framework. We also will classify, evaluate and prioritize the patch based on
normalized score.

References

[1] A. Amini and N. Jamil. “A comprehensive review of existing risk assess-
ment models in cloud computing”. In: Journal of Physics: Conference
Series. Vol. 1018. 1. IOP Publishing. 2018, p. 012004.

[2] NIST National Vulnerability Database. https://nvd.nist.gov/.
[Online; accessed 30-January-2021].

[3] Ubuntu Security Notice. https://usn.ubuntu.com/. [Online; accessed
8-March-2020].

[4] Debian Security Tracker. https : / / www . debian . org / security /
#DSAS. [Online; accessed 29-April-2020].

[5] RedHat Security Advisories. https://access.redhat.com/security/
security-updates/#/. [Online; accessed 8-March-2020].

[6] K. Kritikos, K. Magoutis, M. Papoutsakis, and S. Ioannidis. “A survey
on vulnerability assessment tools and databases for cloud-based web
applications”. In: Array 3 (2019), p. 100011.

[7] D. Dey, A. Lahiri, and G. Zhang. “Optimal policies for security patch
management”. In: INFORMS Journal on Computing 27.3 (2015),
pp. 462–477.

[8] G. L. Guzie. Vulnerability risk assessment. Tech. rep. ARMY RE-
SEARCH LAB WHITE SANDS MISSILE RANGE NM, 2000.

[9] European Cybersecurity Certification Scheme for Cloud Services. https:
//www.enisa.europa.eu/publications/eucs- cloud- service-
scheme. [Online; accessed 11-February-2021].

[10] W. Jansen and T. Grance. Sp 800-144. guidelines on security and
privacy in public cloud computing. 2011.

[11] M. Hogan, F. Liu, A. Sokol, and J. Tong. “Nist cloud computing
standards roadmap”. In: NIST Special Publication 35 (2011), pp. 6–11.

78

https://nvd.nist.gov/
https://usn.ubuntu.com/
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme

References

[12] V. Singh and S. Pandey. “Cloud Computing: Vulnerability and Threat
Indications”. In: Performance Management of Integrated Systems and
its Applications in Software Engineering. Springer, 2020, pp. 11–20.

[13] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization of Severity
Rating for Automated Context-aware Vulnerability Risk Management”.
In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). IEEE. 2020,
pp. 200–205.

[14] Best Linux distributions for DevOps. https://cloudacademy.com/
blog/linux- and- devops- the- most- suitable- distribution/.
[Online; accessed 23-January-2021].

[15] Open Web Application Security Project. https://www.owasp.org.
[Online; accessed 07-March-2021].

[16] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal.
“Vulcan: Vulnerability assessment framework for cloud computing”.
In: 2013 IEEE 7th International Conference on Software Security and
Reliability. IEEE. 2013, pp. 218–226.

[17] The State of Open Source Security VULNERABILITIES. https :
//www.whitesourcesoftware.com/open-source-vulnerability-
management-report/. [Online; accessed 23-January-2021].

[18] M. J. Haber and B. Hibbert. “Vulnerability Management Architecture”.
In: Asset Attack Vectors. Springer, 2018, pp. 213–216.

[19] M. Walkowski, M. Krakowiak, J. Oko, and S. Sujecki. “Distributed
Analysis Tool for Vulnerability Prioritization in Corporate Networks”.
In: 2020 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). IEEE. 2020, pp. 1–6.

[20] Common Vulnerability Scoring System(CVSS v2.0: User Guide). https:
//www.first.org/cvss/v2/guide. [Online; accessed 2-February-
2021].

[21] Common Vulnerability Scoring System(CVSS v3.0: User Guide). https:
//www.first.org/cvss/v3.0/user- guide. [Online; accessed 2-
February-2021].

79

https://cloudacademy.com/blog/linux-and-devops-the-most-suitable-distribution/
https://cloudacademy.com/blog/linux-and-devops-the-most-suitable-distribution/
https://www.owasp.org
https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/user-guide
https://www.first.org/cvss/v3.0/user-guide

9
Automated Context-aware Vulnerability Risk

Management for Patch Prioritization
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio

Published as:

Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Automated
Context-Aware Vulnerability Risk Management for Patch Prioritization",
Electronics 2022, 11, 3580. https://doi.org/10.3390/electronics11213580

Abstract: The information security landscape continuously evolves by
discovering new vulnerabilities daily and sophisticated exploit tools. Vul-
nerability Risk Management (VRM) is the most crucial cyber defense to
eliminate attack surfaces in IT environments. VRM is a cyclical practice
of identifying, classifying, evaluating, and remediating vulnerabilities. The
evaluation stage of VRM is neither automated nor cost-e�ective, demanding
great manual administrative e�orts to prioritize the patch. Therefore, there
is an urgent need to improve the VRM procedure by automating the entire
VRM cycle in the context of the given organization. The authors propose
automated Context-aware VRM (ACVRM) to address the above challenges.
This study defines the criteria to consider in the evaluation stage of ACVRM
to prioritize the patching. Moreover, patch prioritization is customized in
the organization’s context by allowing the organization to select the vulner-
ability management mode and weigh the selected criteria. Specifically, this
study considers four vulnerability evaluation cases: i) evaluation criteria
are weighted homogeneously; ii) attack complexity and availability are not
considered important criteria; iii) the security score is the only important
criteria considered, and; iv) criteria are weighted based on the organiza-

81

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

tion’s risk appetite. The result verifies the proposed solution’s e�ciency
compared with the Rudder vulnerability management tool (CVE-plugin).
While Rudder produces a ranking independent from the scenario, ACVRM
can sort vulnerabilities according to the organization’s criteria and context.
Moreover, while Rudder randomly sorts vulnerabilities with the same patch
score, ACVRM sorts them according to their age, giving a higher security
score to older publicly known vulnerabilities.

9.1 Introduction

Vulnerability Risk Management (VRM) is one of the critical aspects of
information security. Many of today’s cyberattacks exploit systems’ vul-
nerabilities (e.g., CVE-2021-40444, CVE-2021-44228, CVE-2021-3156) [1].
Unpatched vulnerabilities caused 60% of the known data breaches, according
to to [2]. Hence, VRM is a fundamental part of information security manage-
ment in each organization. It consists of identifying, classifying, evaluating,
and remediation of vulnerabilities.

According to [3], identification of vulnerabilities by vulnerability scanner
tools (like OpenVAS [4] and Nessus [5]) is only a small part of the VRM
process. Security experts use these scanners to inspect their systems regularly.
In addition, security experts’ knowledge of the organization is crucial to
evaluating the risk of exploits and prioritizing the order of patches. The
evaluation and prioritizing of remediation are the challenging parts of the
VRM process. The requirement to involve security experts and the dramatic
increase of known vulnerabilities in the last five years (+26%) (2016-2021)
have made the VRM process time-consuming and expensive. The research
question is, therefore: How to make the VRM process time-e�cient, cost-
e�ective, and organization oriented?

To answer the above research question, we have introduced the concept
of Automated Context-aware Vulnerability Risk Management (ACVRM) [6,
7]. ACVRM facilitates the customization of the VRM process for a given or-
ganization by learning about the organization’s assets and the vulnerabilities
that a�ect the assets. ACVRM automates the VRM process by applying
predefined decision criteria and related activities, thus saving time and cost.

In our previous studies [6, 7], we identified that the selection of what
Vulnerability Database (VD) to use plays an essential role in the VRM

82

9.1. Introduction

procedure and the information on the organization’s assets should support
the VD choice. Indeed, the vulnerability severity score comes from a VD, and
there are several types of VD, from national [8] to vendor [9, 10], and even
application-specific [11]. Vendors’ VD, such as RedHat [9], usually list their
a�ected releases, severity score in their environments, and patch instructions
for the vulnerabilities that a�ected their products. In contrast, national
VD’s provide general information about the vulnerability and a severity
score. Unfortunately, existing vulnerability scanner tools do not allow the
selection of the VD to use. Moreover, all of them rely on a single VD. In
addition, scanners do not know the system architecture and organization’s
configuration policy to identify the actual exposure of the vulnerability in
the organization. Therefore, security experts should define criteria in the
evaluation step in VRM to prioritize the remediation of the vulnerabilities.
This research enhances our previous work [6, 7] focusing on the VDs selection
problem and the challenge of defining evaluation criteria for context-aware
patch prioritization. Our contribution is summarized as follows:

• We present the Prioritization phase workflow of the ACVRM framework
describing the details of the Filter, Evaluation, and Patch Prioritization
stages.

• We define a Patch Score criteria to prioritize patching that could adapt
to the organization’s context. The criteria build on security experts’
interviews and a literature study.

• We implement a Proof of Concept (PoC) of the ACVRM framework.

• We validate the ACVRM PoC against the prioritization obtained using
the Rudder tool. In the evaluation, we consider four case studies for
the organizational context which impact the Patch Score. Results show
the capability of ACVRM in customizing patch prioritization.

Figure 9.1: Relationship between our current work (Phase 2) and previous work
(Phase 1), and how they address the ACVRM phases

83

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

Figure 9.1 shows the relationship between our previous work and the
current work. The initial idea for ACVRM was presented in [6], and in that
study, the focus was on calculating a normalized vulnerability score based
on multiple vulnerabilities. This work was then augmented in [7] where we
investigated the impact that the selection of VD or VD’s has on the obtained
score. These two works are centered around the first phase, Retrieval and
pre-processing in the ACVRM, see Figure 9.2. This work focuses on the
second phase, Prioritization. The third phase, patch management is left out
for the time, as most organizations use tools to apply patches.

The paper is organized as in what follows. Section 10.2 provides back-
ground on VRM and analyzes the related literature. Section 10.4 introduces
the ACVRM framework, and Section 9.4 describes the ACVRM’s prioriti-
zation phase, where the paper’s core contribution is. Section 9.5 presents
the selection of the evaluation criteria and the definition of the patch score.
Section 9.5 describes the design and implementation of a proof of concept for
the prioritization phase. Experiments and results are reported in Sections 9.7
and 10.7 , respectively. Section 10.8 concludes the paper.

9.2 Related Work

Continuous VRM is in the top 10 critical security controls defined by the
Center of Internet Security (CIS) [12]. VRM is one of the vital criteria to
guarantee system compliance. Most information security standards (e. g.,
ISO 27002, PCI, SOC2) and legislation (e.g., EU Cybersecurity act [13],
EU Cybersecurity Certificate (EUCS) [14], USA homeland security act [15])
include VRM as a critical control. Hence, organizations must establish a
VRM process to remediate the identified vulnerabilities.

Keeping up with assessing hundreds of vulnerabilities daily is a big chal-
lenge for the security team in each organization. It is impossible to patch
all detected vulnerabilities due to resources and time limitations. Therefore,
most tools and security analysts prioritized the remediation based on the
severity score. The severity score could be calculated using the Common
Vulnerability Scoring System (CVSS). CVSS is an open framework that
transfers the vulnerability characteristic to a numeric score [16]. The score
obtained from CVSS is static, and the numeric value of each metric does
not change over time. To overcome this problem, researchers proposed a
methodology to change the numeric value of impact metrics (i.e., Confiden-

84

9.2. Related Work

tiality, Integrity, and Availability (CIA)) in the CVSS version 2.0 in favor of
improving the CVSS scoring [17]. The authors found that the violation of
confidentiality is more severe than integrity and availability, hence should not
weigh equally. Another approach proposed to improve patch prioritization
in the VRM process is to add temporal and environmental metrics to the
CVSS score [18]. Rather than adding new metrics to the CVSS or changing
CVSS information over time, we propose to feed the VRM process with the
Organization Context (OC) data. Indeed, in ACVRM, the organization con-
text data complements the CVSS information in evaluating the vulnerability
ranking. The OC is the set of data that defines the assets the organization
intends to protect and the rules. The OC data we propose to use in ACVRM
are described in Section 9.4.1 and 9.4.2.

According to the Ponemon Institute [2], 32% of the survey’s participants
made a remediation decision based on the CVSS score. 59% of participants
in the survey disclosed that their organizations were not performing the
complete VRM’s life cycle. A gap in the VRM life cycle is seen as an
opportunity for adversaries to leverage vulnerabilities. The 2021 Check
Point Cyber Security Report [19] reveals that 80% of attacks in 2020 took
advantage of the vulnerabilities reported in 2017 or earlier. Furthermore,
around 50% of the participants in the Ponemon survey [2] recognized that
automation is a key to responding to a vulnerability promptly. To address
the above-mentioned issue, we designed ACVRM to adapt its behavior based
on the organization context to prioritize the remediation.

Many studies have applied machine learning-based solutions to predict
remediation decisions and classify the type of vulnerability in di�erent
domains such as power grid and software development. For example, authors
in [20] built their decision tree based on data of the asset and vulnerability
features for a power grid and reached 97% accuracy. However, their solution
is domain-specific and requires manual verification on the small prediction
portion to reduce false negatives. On the contrary, in ACVRM, we propose to
improve patch prioritization over time based on the historical organizational
data from the feedback loop.

Vulnerability categorization is also helpful in automating VRM and in the
software development life cycle. In [21], the authors propose using multiple
machine learning algorithms to classify the vulnerabilities into vulnerability
categories, as understanding vulnerability types is crucial in the software

85

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

development life cycle. Similarly, a machine learning algorithm allows the
classification of vulnerability types in a security patching of open-source
software [22]. In our solution, we foreseen to apply, as future work, a
machine learning algorithm to improve patch prioritization based on the
patch verification feedback.

In [23], the authors proposed the automated CVSS-based vulnerability
prioritization. Their solution uses only the vulnerability scanner report of the
environment and prioritizes the patch based on the confidentiality, integrity,
and availability score. The authors concluded that using a CVSS-base score is
insu�cient, and they should consider other metrics in a prioritization step in
the future. SmartPatch is a patch prioritization method for Industrial Control
Systems [24]. SmartPatch uses the network topology of the environments
and the vulnerability scanner report to address patch sequencing in an
interdependent and complex network. SmartPatch proposed a security metric
called Residual Impact Score (RIS) by utilizing the score of the impact metrics
and exploitability metrics of CVSS exported from the National VD (NVD).
The authors in [25] used a mathematical approach to select the vulnerability
from the scan report for remediation concerning the available experts. They
used the CVSS score from NVD, the available hours of security experts, the
vulnerability’s age, and its persistence in the monthly scan in their approach.
They concluded that the number of unpatched vulnerabilities was the lowest
using multiple attributes. In [26], the authors proposed the machine learning-
based method to address the inconsistency of CVSS scores across multiple
VDs. They trained their algorithm with a di�erent version of CVSS scores
in NVD and validated their result with crawled vulnerability reports from
SecurityFocus. Then they implemented the case study in cyber-physical
systems to assess the severity of the vulnerability. The result of their case
study indicated the diversity of vulnerability scores on di�erent data sources
that mislead the experts in patch prioritization. Compared to the above
research work ([23, 24, 26]), ACVRM facilitates the patch prioritization for
organizations independently of the domain. It utilized multiple VDs, host
inventory, and scan reports to detect the existing vulnerabilities. ACVRM
also customized the VRM procedure for the organization by enabling them
to select the Vulnerability Management Mode (VMM) and to weigh the
criteria used in patch prioritization.

Table 9.1 summarizes the comparison between our solution and the most
recent state-of-the-art works on vulnerability prioritization. The comparison

86

9.3. Automated Context Aware Vulnerability Risk Management (ACVRM)

Table 9.1: Comparison of our approach to most recent related work. For acronym
cf. Section 5 and the Abbreviations section

Reference VD Identification ap-
proach

Evaluation crite-
ria Contribution

Walkowski et al. [23] NVD Vulnerability
scan

SC, C, I, A,
CDP

Proposed VRM improvement
by prioritizing the patch
based on the CDP value for
monitored IT sources and the
ratio of detected vulnerabil-
ities to the number of moni-
tored resources

Yadav et al. [24] NVD
Vulnerability
scan and net-
work topology

SC, C, I, A,
ER, functional
and topological
dependencies

Defined security metric
Residual Impact Score (RIS)
to prioritised the patch based
on cost of defence, cost of
attack, and impact of attack

Jiang et al. [26] NVD and securi-
tyFocus

Vulnerability
scan and system
configuration

SC

Proposed machine learning
based structure to correlate
SC from multiple sources
to overcome inconsistency in
CVSS score

Shah et al. [25] NVD Vulnerability
scan

SC, age, and per-
sistence

Defined mathematical model
for optimizing remediation
priority with respect to eval-
uation criteria

Our work NVD, DSA,
RHSA, and USN

Vulnerability
scan, asset
inventory, and
VDs data

SC, C, I, A, AV,
AC, and Access
level

Proposed the criteria for
patch prioritization and cus-
tomised the patch in the or-
ganization’s context

performs along the following features: the VD used as reference (Reference
VD), the vulnerability identification approach, the vulnerability evaluation
criteria, and the contribution provided. The comparison highlights what
follows: our solution is the only one that allows multiple VDs as input for
vulnerability identification; there is a shared consensus on using multiple
sources of information to identify vulnerabilities and to use multiple eval-
uation criteria. Concerning evaluation criteria, while the majority of the
proposed solutions use the security score (SC), confidentiality (C), integrity
(I), and availability (A), ACVRM also adopts the attack vector (AV) and
attack complexity (AC) along with the access level (Internal or external AUS)
metrics. The complexity of attacks is also addressed by other works using
Exploitation Rate (ER) or Collateral Damage Potential (CDP) metrics.

9.3 Automated Context Aware Vulnerability Risk

Management (ACVRM)

ACVRM aims to improve the VRM as follows: (1) it uses multiple VDs for
retrieving Common Vulnerabilities and Exposures (CVE) [27] data; (2) it

87

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

automates the classification of vulnerabilities and (3) the patch prioritization
process based on the organization’s requirements. ACVRM is structured
in three phases, as shown in Figure 9.2. Phase 1 has been addressed in
our previous works [6, 7], phase 2 design and implementation is the main
contribution of this paper; and phase 3 is considered to be future work.

During phase 1, ACVRM retrieves CVE data from multiple VDs. From
each VD, we collect CVE-IDs, their publication date, description, severity
score, a�ected releases, and safe version. We also store a timestamp to
know when we collected or updated the data in our local database. To keep
the local database updated, ACVRM periodically checks for changes in the
source VD. If changes are detected, the local database is updated while
keeping the old version of CVE-ID data in an archive for future reference.
The pre-process stage converts the quantitative severity score of CVE-ID (if
any) to an internal numeric score using the conversion algorithm described
in [7]. Our internal score is based on CVSS 3.x score. Pre-process stage
makes the CVE-ID data ready for the normalization stage. The main task
in the Normalization stage is calculating a severity score for each CVE-ID.
ACVRM o�ers three VMM: Basic, Standard, and Restrictive. These are in
line with the three assurance levels proposed by EUCS[14]. A Basic VMM
is the minimum acceptable baseline for a VRM process suggested for an
organization with a limited risk of exploitation (e.g., an organization with
a limited system exposed to the Internet). Standard VMM is suitable to
serve an organization with medium to high-security risks. At the same
time, the Restrictive VMM should be used in the compliant organization
(i.e., an organization or governmental agency that should comply with local
and international regulations or standards and critical infrastructure). The
normalization stage calculates the normalized score for each CVE-ID by
averaging the severity scores concerning VMM mode.

In phase 2, ACVRM determines the patch prioritization for the organi-
zation’s needs, specified by the organization’s context. Phase 2 is the core
part of ACVRM and is described in detail in Section 9.4.

In the third phase, Patch management, ACVRM patches the detected
vulnerabilities and verifies that the system functionalities are not compro-
mised.

In the first stage of patch management, the automated patching com-
ponent executes patch prioritization on vulnerable hosts. Then ACVRM

88

9.3. Automated Context Aware Vulnerability Risk Management (ACVRM)

Figure 9.2: The ACVRM phases

verifies if the patch was successful. If the error occurs for an item in the patch
prioritization list, it will jump to the next item in the list and record the one

89

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

in an error state. If an error appears due to the patch order (e.g., patching
microcode vulnerability in Ubuntu requires the Kernel to be patched in
advance), it will re-execute the patch at the end. For the persistent error,
the report with the error state will submit to the patch prioritization stage
in phase 2 for review. The final stage in phase 3, verification, consists of
evaluating the impact of the patch on the Application/Unit/Service’s (AUS)
functionality. The functional tests refer to the series of predefined tests by
experts to investigate the health of AUS. In case of unexpected behavior,
the issue reports to the experts.

9.4 Prioritization

Prioritization is the second phase of ACVRM, which determines the order
of CVE-IDs to be patched in each host. Figure 9.3 shows the stages in
prioritization phase. In the following sections, we will briefly describe these
stages.

Figure 9.3: The Phase 2 – Prioritization process

9.4.1 Filter

The task of the Filter stage is to identify vulnerabilities that a�ect the
organization’s assets (i.e., application, software, servers). The inputs are the
data from the normalization stage, the Host Inventory, and the Vulnerability
Scan reports provided with the OC, cf. Figure 9.3. The output is the list of
vulnerabilities a�ecting the organization’s assets. The list includes CVE-IDs,
hostname, name of vulnerable AUS, and normalized score. In more detail,
the OC data used in the Filter stage are:

90

9.4. Prioritization

• Host Inventory (HI): consisting of the hosts and assets belonging to the
organization. The host inventory provides the list of hosts, hardware
specifications, and installed software. Examples are asset management
tools (e.g., Device42, NinjaRRM, Solarwinds) or custom tools.

• Vulnerability Scanner Report (VSR): is a source used by security
specialists for patch prioritization. The best security practices for the
cloud, such as C5 [28] suggest monthly vulnerability scanning, which
leads to thirty days of patch planning.

• Vulnerability Management Mode (VMM): defines in which mode
ACVRM should operate. The organization sets a default VMM mode
for the whole organization, but this can override with host-based VMM,
e.g., VMM basic for host A, VMM restricted for host B, while the
default is standard.

The Filter identifies the CVE-IDs that impact the organization by com-
paring the vulnerable software and their existence in the HI and V SR. For
example, a vulnerability scanner might report faulty configurations with no
CVE-ID reference (i.e., Nessus ID 153953: SSH server configured to allow
weak key exchange algorithms). We might also find vulnerable software
installed in the hosts in the organization’s environment but not detected
by the vulnerability scanner(i.e., the vulnerability in sudo before 1.9.5p2
(CVE-2021-3156) that the Nessus scanner has not discovered in our test
environment). Therefore, we obtain better coverage of the potential vulnera-
bilities by considering both the HI and VSR. Let C represent all collected
vulnerabilities; then, the filter will produce a list of vulnerabilities (V ULN)
that are a�ected by the V SR and/or HI

V ULN = (C fl CV SR) fi �(C, HI)

where CV SR is the set of vulnerabilities contained in the VSR; and �(C, HI)
is a filter function that returns only the vulnerabilities that a�ect the hosts.

9.4.2 Evaluation

The task in the Evaluation stage is to examine the risk of each vulnerability
and provide the patch prioritization. The input for the evaluation stage is
the list of a�ected vulnerabilities from the Filter stage, the access policy and
group host-based services, and the weight from the OC.

91

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

The access policy and group-based services describe conceptual infor-
mation to enforce business requirements. It defines access to applica-
tions/services based on the host group, locations, and time. The access
policy provides information on how accessible di�erent AUS are, i.e., AUS
exposed to the public are probably more likely to be compromised than AUS
that are not. The group-based services simplify the patch process as the
same patching and verification instructions will apply.

In the evaluation stage, we divide the list of a�ected vulnerabilities based
on the access policy into external and internal groups. The external refers
to the AUS being exposed to the Internet, thus having a higher risk of
exploitation. On the other hand, internal indicates the AUS with limited
access levels, i.e., authorized users with defined IP addresses in the Access
Control List (ACL).

In this stage, we also check the criteria that impacted the patch sequence.
The organization could customize the criteria by weighting them based on
the impact on its business cf. 9.5.

9.4.3 Sort

The task for the Sort stage is to update the order of the CVE in each evaluated
list (i.e., external list). The inputs are the output from the evaluation stage
and the service policy. The service policy is optional information to influence
the order in the patch list for the vital services for the organization. The
services listed in service priority grant a higher position in the patch list. If
the organization does not provide service priority, the sort will be based on
the PS score cf. 9.5.4. The outputs are two sorted lists of vulnerabilities for
internal and external AUS. Each list includes CVE-IDs, hostname, name of
vulnerable AUS, PS, and priority number.

9.4.4 Patching Prioritization

The main task for patching prioritization is to adjust the patch order based
on learning. This stage receives the error feedback from patch verification.
It builds the knowledge to map situations to actions over time. The patch
prioritization input is the sort stage output and the feedback loop from
the phase 3 of ACVRM. In the first round, the patch prioritization stage
provides the same output as the sort stage, as it is not yet received any
feedback from phase 3.

92

9.5. Evaluation criteria and patch score

9.5 Evaluation criteria and patch score

Finding a suitable criteria for evaluating vulnerabilities is a challenge as
demonstrated by the multiple research studies on this subject [18, 23, 24,
29–38]. As we mentioned earlier in Section 10.1, the Evaluation stage de-
pends on expert and organizational knowledge. Automating the vulnerability
evaluation procedure is crucial for each organization because some vulnera-
bilities might remain unpatched in a system due to many vulnerabilities and
the limited number of available security experts. We applied the following
methods to define evaluation criteria and automate the evaluation stage to
address the challenges mentioned earlier:

1. We reviewed the scientific papers on vulnerability patch prioritization
to find evaluation criteria for ranking the vulnerabilities.

2. We interviewed security experts with di�erent seniority levels in VRM
to manually rank the criteria they are using to prioritize the vulnera-
bility patch.

3. We analyzed the obtained criteria from items 1 and 2 to introduce a
Patch Score(PS). PS is a mathematical approach to calculating the
priority of each vulnerability from the evaluation criteria and their
weight based on the organizational context.

In this section, we described our methods of finding the criteria in detail
and how we can customize the PS in the organization’s context.

9.5.1 Analysis of Vulnerability Evaluation Criteria in Literature

We conducted our search in google scholar because it is a comprehensive aca-
demic search engine with 389 million records [39]. The selected search string
"vulnerability patch priority" was applied to identify the patch prioritization
criteria in the relevant literature. The search query indicates that the string
should include the title and abstract of a peer-reviewed publication. Then
we excluded the papers that were not relevant to the goal of this paper based
on the title and abstract. Finally, we did a full-text assessment of the fifteen
selected papers.

From these fifteen papers, we identified nine criteria, reported in Table 9.2:
a Xsign means the criterion is considered in the paper. The related work

93

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

review shows that the severity score is a common criterion. In addition, ten
of fifteen (66.7%) studies recognize the CVSS impact metrics, confidentiality,
integrity, and availability as critical metrics in priority decisions. We also
observed that eleven of fifteen (73.3%) papers identify the Exploitation
Rate(similar to attack complexity in CVSS v3) as an essential criterion. The
considered criteria in the related papers are described as follows:

• Severity Score (SC) is a transferring of the vulnerability characteristics
to a numeric score between 0 to 10.

• Confidentiality (C) measures the impact of disclosure of the information
to an unauthorized one due to a successfully exploited vulnerability.

• Integrity (I) refers to the impact of altering information by an unautho-
rized user on the trustworthiness of data due to a successfully exploited
vulnerability.

• Availability (A) measures the impact of a successfully exploited vul-
nerability on the system and data accessibility.

• Age/time is a time di�erence between the CVE-ID published date and
the current date.

• Common Configuration Enumeration (CCE) [40] is a unique identifier
for system configuration issues and provides accurate configuration
data across multiple tools and sources of information. CCE serves as
a configuration best practice.

• Collateral Damage Potential (CDP) is an environmental metric in
CVSS v.2 and refers to loss of life, physical assets, productivity, or
revenue. Modified base metrics replaced CDP in CVSS v3 to reduce
the impact of successfully exploiting the vulnerability by enforcing a
change on the default configuration of a vulnerable component.

• Exploitation Rate (ER) provides the rate on how likely the vulnerability
could be exploited. CVSS v3 addresses ER in the Attack Complexity
(AC) metric, which evaluates the amount of e�ort to exploit the
vulnerable component.

• Vulnerability Type (VT) refers to the attacker’s activity as a result of
successfully exploiting vulnerabilities such as Denial of Services (DoS),
code execution, privilege escalation, and bu�er overflow.

94

9.5. Evaluation criteria and patch score

Table 9.2: The evaluation criteria in related work
Literature Severity Score C I A Age/time CCE CDP ER VT

Al-Ayed et al. [29] X X X
Walkowski et al. [23] X X X X X
Kamongi et al. [33] X X X X X X

Araujo and Taylor [34] X X X X
Fruhwirth and Mannisto [18] X X X X X

Patil and Modi [35] X X X X X X
Lee et al. [36] X X X X X X

Angelini et al. [37] X X X
Lin et al. [38] X X X X X X
Li et al. [30] X X X X X

Torkura et al. [31] X X
Yadav et al. [24] X X X X X

Olswang et al. [32] X X X
Jiang et al. [26] X X X X X X
Shah et al. [25] X X X X X X

9.5.2 Experts’ Interview

We interviewed nine vulnerability management experts from governmental
and private sectors located in USA and EU. The experts who participated in
the study worked in the Information Technology domain with di�erent levels
of experience; a) three juniors who have less than two years of experience in
VRM; b) three middle level who have from two to five years of experience in
VRM; and c) three seniors who have more than five years of experience in
VRM. We chose three di�erent seniority levels as the response depends on
knowledge and experience level [41]. The interview included two parts. In
the first part, we interviewed the experts regarding the process they used to
evaluate patch prioritization in their organization. In the second part, we
asked the experts to rank the metrics in CVSS V3 and the accessibility level
of the vulnerable AUS. The VRM experts have ranked the following criteria
in the second part of the interview:

• Attack Vector (AV) is a CVSS V3 exploitability metric that refers to
the context of the possibility of vulnerability exploitation(i.e., exploit
vulnerability component from a network or locally)

• Attack Complexity (AC) is a CVSS V3 exploitability metric that
defines the condition that must be existed in the environment to
exploit the vulnerability. For example, if any security controls do
not protect the vulnerable component, the attacker could successfully
exploit the vulnerability with less e�ort.

• Privilege Requirements (PR) is a CVSS V3 exploitability metric that

95

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

describes the level of privilege an attacker must have to exploit the
vulnerability successfully.

• User Interaction (UI) is a CVSS V3 exploitability metric that expresses
the human intervention in the successful comprise of the vulnerable
component.

• Confidentiality (C) is a CVSS V3 impact metric that measures the
impact on the confidentiality of the source after a successful attack.

• Integrity (I) is a CVSS V3 impact metric that measures the impact on
the integrity of the source after a successful attack.

• Availability (A) is a CVSS V3 impact metric that measures the impact
on the availability of the source after successful exploitation.

• Severity Score (SC) is an output of CVSS that captures the technical
characteristics of a component to a numeric score indicating the severity
of the vulnerability.

• Internal AUS refers to the services that are not exposed to the public.

• External AUS refers to the services that are exposed to the public.

The interview was conducted in a virtual session on Microsoft Teams for
around 60 minutes. Naturally, the number of experts in any domain is
limited, which a�ects the number of available expert participants. Therefore,
experts’ participation in any study is lower than non-experts participants.
Isenberg et al. [42] found the median number of expert participants in the
study is nine in the survey of 113 papers.

The interviewees’ ranked the criteria from one to five, where one is the
lowest and five is the highest. From the interview, we calculate the statistics,
including the minimum, maximum, average, and standard deviation of the
expert’s score in Table 9.3. In Figure 9.4 we show the individual experts’
feedback. Looking at the statistics, we see that External AUS is the criterion
with the highest average rating of 4.67. However, C, AV, I, A, and SC are
also rated above 4.

96

9.5. Evaluation criteria and patch score

Figure 9.4: Ranking of the criteria by security experts

Table 9.3: Statistics of the criteria ranked by security experts
Internal External

Statistics AV AC PR UI C I A SC AUS AUS
Minimum 3 3 2 2 4 4 3 3 1 4
Maximum 5 4 3 4 5 5 5 5 3 5
Average 4.56 3.33 2.78 2.89 4.67 4.44 4.33 4.33 2.11 4.78

Standard Deviation 0.68 0.47 0.42 0.74 0.47 0.50 0.67 0.67 0.57 0.42

9.5.3 Selected Criteria

We analyze the related work and expert interview results to identify criteria
with an average score above 3 (e.g., above 60% of maximum scores by
experts and above 60% of literature). Based on the results in Table 9.2
and Table 9.3, we chose the SC, C, I, A, AV, AC, and External AUS.
The selected criteria, except External AUS, have defined metrics in the
CVSS framework. Therefore, we can retrieve from the CVSS vector or the
vulnerability description reported by VDs. Some VDs, such as NVD and
RHSA, report the CVSS vector, and some, such as USN and DSA, use

97

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

similar keywords in the vulnerability description. In this study, we use the
CVSSv3.1 vector to retrieve the score of selected criteria and calculate the
patch score cf.9.5.4. The External AUS information the OC provides in
access policy and group-based services.

9.5.4 Patch Score (PS)

ACVRM uses a Patch Score (PS) to determine the patch priority. PS is a
scaling factor that could amplify the severity score of each CVE, and it is a
function of the evaluation criteria as defined in Equation 9.1

PSk =
nÿ

i=1
wiFk,i +

Y
__]

__[

2 for AV=N and AC=L
1 for AV=N and AC=H
0 otherwise

(9.1)

where: PSk is the PS for vulnerability k; n is the number of evaluation
criteria considered; wi is a weight such that wi œ [0, 1], and

qn
i=1 wi = 1;

Fk = [Fk,1, ..., Fk,n] is the impact vector for vulnerability k. In this paper, we
use n = 6 and Fk = [SCk, AVk, ACk, Ck, Ik, Ak]. Fk can be easily expanded
or reduced depending on the criteria considered.

Equation 9.1 is that it amplifies the PS for the vulnerabilities that could
be exploited from network AVk = N . The PSk increases by additive factor
+2 for the vulnerability k with the low complexity (ACk = L). The PSk

raises by the additive factor +1 when the ACk = H is high. In all the other
cases, i.e., the attack is not exposed from a network, no amplification is
added.

To calculate a PS, we need to retrieve the weight vector from OC and the
criteria vector from the CVSS vector in our local record. The organization
could weight each criterion based on its importance and influence the PS
value. The CVSS vector has been available since 2000 in NVD, and the
chance of not having CVSS vector information is negligible. CVSS vector is
a data string that captures the corresponding value for each CVSS metric.
The CVSS vector, e.g.,

CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N
starts with CVSS as a key and the version of CVSS (here:3.1) as a value.
The forward slash is a delimiter between each metric. The abbreviation

98

9.6. Design and Implementation

Table 9.4: CVSS v3.1 metric and the value used in ACVRM patch score[16]
Metric Name Metric Value Numeric Value

Attack Vector (AV)
Network (N) 0.85
Adjacent (A) 0.62

Local (L) 0.55
Physical (P) 0.2

Attack Complexity (AC) Low (L) 0.77
High (H) 0.44

Confidentiality (C)
None (N) 0
Low (L) 0.22
High (H) 0.56

Integrity (I)
None (N) 0
Low (L) 0.22
High (H) 0.56

Availability (A)
None (N) 0
Low (L) 0.22
High (H) 0.56

of each base metric is used as a key and separated from the abbreviated
metric’s value with a colon.

Table 9.4 presents the metrics’ name and metrics’ value and their ab-
breviation from CVSS v3.1 document[16]. The CVSS base metric groups
consist of AV, AC, PR, UI, Scope (S), C, I, and A. We have excluded PR,
UI, and S metrics as they have not been selected to consider in this study.

By expanding Equation 9.1 into the form used in this paper we get:

PSk = w1SCk + w2AVk + w3ACk + w4Ck + w5Ik + w6Ak +

Y
__]

__[

2 for AVk = N and ACk = L

1 for AVk = N and ACk = H

0 otherwise
(9.2)

The PS value will be between 0 to 12. The maximum PS value could achieve
when SC = 10 and w1 = 1 and AV=N and AC=L. The PS score could be
zero when the highest weight is given to the metric that happens to be none.

9.6 Design and Implementation

This section describes the implementation of a PoC for the Prioritization
phase (phase 2) of ACVRM, shown in Figure 9.5. It is designed as a group of
functions split into four modules. Each module represents the implementation
of each stage in the phase 2, and the output of each module is the input for
the next one. We chose JSON as the internal data representation in this
implementation since it is a supported format for most VDs and inventory
tools.

Phase 1 PoC was described in [7]; hence we do not repeat it here.
The output from it is a file NF_output.json. This contains the CVE-ID,

99

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

normalized scores for CVE, name of vulnerable AUS, safe version of AUS,
and the severity score from one or multiple VDs.

The filter module matches the name of vulnerable AUS in the NF_output.json
and the AUS information in the host inventory (host_inventory.json) to
detect the organization’s vulnerabilities. It also adds the vulnerabilities re-
ported by the vulnerability scanner (vunerability_scanner_report.json)
if that is not already identified in host_inventory.json. The organization
could set a VMM in the VMM file as a default. The host-based VMM is an al-
ternative for the organization if needed, and the VMM value should be added
to the host inventory. The output of the filter stage is the filter.json that
consists of CVE-ID, a normalized score for the CVE-ID, hosts name, and
the vulnerable AUS.

The evaluation module assesses each entry (i.e., CVE-ID) in the filter.json
based on the access policy and group host-based services to separate internal
AUS and external AUS. Then, we implement the check on the selected crite-
ria and their weight to calculate the PS for each CVE-ID. If the organization
does not provide the weight vector, ACVRM will weight all criteria equally.
The evaluation output is the external_lst.json and internal_lst.json,
which refer to the vulnerabilities a�ecting internal and external AUS. Each
list provides the CVE-ID, normalization score, CVSS vector, PS, host name
and group (if applicable), the name of AUS, and the original severity score
from VDs for each CVE-ID.

The sort module provides patch prioritization influenced by service
priority. The servicepriority.json is a list of critical services for an
organization’s business. Hence, vulnerability remediation on those services
should get the highest priority. If the organization does not have preferences,
the patch prioritization will be based on the PS value computed from Eq. 9.1.

The output of phase 2 of ACVRM is the patch priority for each host in
the inventory. The internal and external AUS are sorted separately, as the
patch time might di�er for each group. This output feeds into the patch
management tool in the phase 3 of ACVRM.

9.7 Experimental Validation of PoC

The setup of the experimental environment to deploy and validate the
ACVRM’s PoC organize into four parts.

100

9.7. Experimental Validation of PoC

Figure 9.5: High level software architecture of Phase 2 – Prioritization

First, we collect the CVE-IDs data from VDs corresponding to phase 1,
described in section 9.7.1. In the second stage, we create a virtual company.
This company’s organizational environment is characterized by a network
of virtual servers deployed on a public cloud platform. This setup is shown
in Figure 10.4; it consists of nine virtual servers (Ubuntu1-3, Debian1-3,
CentOS1-3), one storage node (Local Storage), and one Rudder node, and
one Nessus node. All nodes are connected to a switch. The servers are
organized into three groups of three nodes each, where each group runs a
di�erent Linux distribution. Rudder node is a host running the Rudder.io
manager version 6.2 [43] as an inventory tool. The Rudder manager receives
the nodes’ data through the installed Rudder agent on the nine virtual servers.
Nessus node is a host running the Nessus [5] vulnerability scanner community
edition, version 8.14.0-ubuntu110_amd64. The community edition of Nessus
does not provide the CVE-ID of the detected vulnerabilities but instead
reports the vulnerability with the Nessus ID. The report is generated in a
limited format, such as HTML and CSV, and does not support Rest API.
The report should be converted to JSON with the corresponding CVE-ID.

The nodes are created using the OS image provided by the cloud provider
and then updated to the latest stable version. Table 9.5 describes the nodes
specifications.

In the third stage, we deploy the Prioritization stage of ACVRM in our
test environments to obtain the patch priority list for a given organization
with four cases; each has di�erent weight vectors. Finally, the fourth
stage compares the output of ACVRM prioritization of each case with
the Rudder.io’s CVE plugin[44] results. CVE plugin is a VRM software
developed by Rudder.io to identify and prioritize the vulnerabilities in

101

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

Figure 9.6: The test environments

installed software on each node managed by Rudder.

Table 9.5: The specifications for the virtual servers in the test environment.
Specification Ubuntu Debian Centos Rudder Nessus Storage

CPU 2 8 4 4
RAM 2GB 16GB 4GB 4GB
Storage 20GB 50GB 20GB 1TB
Distribution 18.04.4 LTS 9.1.1 8.1.1911 18.04.4 LTS 18.04.4 LTS 18.04.4 LTS
Kernel 4.15.0-158-generic 4.9.272-2 4.18.0-305.10.2.el8_4 4.15.0-158-generic 4.15.0-158-generic 4.15.0-158-generic
Nodes 3 3 3 1 1 1

9.7.1 Phase 1: Data collection and pre-processing

We collect CVE-IDs data from the four VDs described below, this is based
on the existing OS in our experiment, and we add NVD as a reference:

• RedHat Security Advisory (RHSA) [9] is a subject-specific VD
that provides the severity score based on the base and environmental
metrics of CVSS v3.x. RHSA records the severity score for the CVE-
IDs that e�ects RedHat’s releases. RHSA reports the quantitative
score and the severity rating based on the impact of the vulnerability
in the RedHat environments.

• Ubuntu Security Notices (USN) [10] is a subject-specific VD that
reports the CVE-IDs a�ected by Ubuntu’s releases. USN developed its
framework for calculating severity scores that are not publicly available.
USN provides a qualitative severity score for each CVE-ID.

102

9.7. Experimental Validation of PoC

• Debian Security Advisories (DSA) [45] is a subject-specific VD
that records the CVE-IDs a�ected by Debian’s releases. DSA delivers
a qualitative severity score, which relies on the NVD’s score. It is not
clear which version of CVSS applied to the DSA score.

• National Vulnerability Database (NVD) [8] provides a severity
score based on base metric of CVSS v2.0 and v3.x framework. NVD
is a generic VD and does not consider the environmental metrics in
severity scores. NVD is one of the largest VD that records almost all
existing CVE-IDs.

The data collected from the four VDs mentioned above are related to the
CVEs a�ected Linux distributions from 2017 to 2021 for this study. These
raw data are kept in our storage node in JSON format as a reference. The
data is collected daily and archived in our local storage node, independent of
other stages. This study is based on the information collected in June 2022.

9.7.2 Phase 2: Prioritization

Phase 2 implements the identification, classification, and evaluation processes
of VRM. This phase automatically processed the data from phase 1 of
ACVRM regarding OC. In our experiment, the Rudder node provides host
inventory data, and the Nessus node generates the vulnerability scan report
of the nine virtual servers. Then, we create a group of host-based services
for the organization regarding the operating systems. One host from each
host group is configured as an external AUS and exposed to the Internet.
The rest virtual servers were set up as internal AUS. Finally, we assigned
public IP addresses to the external AUS and configured an SMTP server
on them. Our test organization does not prioritize services and operates
on standard VMM but four di�erent weight vectors. After preparing our
test organization, we updated all nine virtual servers to patch all existing
vulnerabilities via the Rudder CVE plugin. We scan with Nessus and run the
CVE plugin in check mode to validate that vulnerabilities are successfully
patched in servers.

We randomly selected 24 CVE-IDs (relevant to our virtual servers) and
installed the vulnerable version on our nine virtual servers (Ubuntu1-3,
Debian1-3, and CentOS1-3). Table 9.6 shows the selected CVE-IDs, the
name of AUS, the severity score in each selected VDs in our experiment, the

103

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

CVSS vector for each CVE-ID, and the normalized score for each CVE-ID
with standard VMM. We started our experiment by manually executing the
Rudder and Nessus to determine the detected installed vulnerabilities. Then
we run the code for phase 2 PoC. The stages in phase 2 are implemented
in Python and comprise a group of functions. The functions’ execution
should be in order according to Figure 9.5 because the output of each stage
is an input for the next one in the group. We keep the state of the virtual
servers (e.g., with 24 installed vulnerabilities) unchanged and review the
patch prioritization list provided by our tool for each case. We repeated
the execution with standard VMM 50 times to verify that our codes gave
the identical result. The execution time for phase 2 PoC was 7 minutes in
our test environment. However, our focus in this experiment was on the
accuracy of the patch prioritization rather than the execution time. In the
future, we should investigate the relationship between execution time and
the number of nodes.

104

9.7. Experimental Validation of PoC

Ta
bl

e
9.

6:
T

he
sa

m
pl

e
of

vu
ln

er
ab

ili
tie

s
th

at
a�

ec
ts

ou
r

te
st

en
vi

ro
nm

en
ts

C
V

E
-I

D
A

U
S

na
m

e
SC

R
H

SA
SC

D
SA

SC
U

SN
SC

N
V

D
C

V
SS

ve
ct

or
N

or
m

al
iz

ed
Sc

or
e

C
V

E
-2

02
1-

33
57

4
gl

ib
c

5.
9

hi
gh

lo
w

9.
8

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:N

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:H
6.

41
25

C
V

E
-2

02
1-

37
96

vi
m

7.
3

m
ed

iu
m

m
ed

iu
m

7.
3

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:N

/U
I:

R
/S

:U
/C

:H
/I

:L
/A

:H
6.

75
00

C
V

E
-2

02
1-

41
92

vi
m

7.
8

m
ed

iu
m

m
ed

iu
m

7.
8

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:N

/U
I:

R
/S

:U
/C

:H
/I

:H
/A

:H
6.

62
50

C
V

E
-2

02
1-

37
78

vi
m

7.
8

m
ed

iu
m

m
ed

iu
m

7.
8

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:N

/U
I:

R
/S

:U
/C

:H
/I

:H
/A

:H
6.

62
50

C
V

E
-2

02
1-

22
55

5
ke

rn
el

7.
8

m
ed

iu
m

hi
gh

7.
8

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:L

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:H
7.

25
00

C
V

E
-2

02
0-

28
37

4
ke

rn
el

8.
1

m
ed

iu
m

hi
gh

8.
1

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:L

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:N
7.

40
00

C
V

E
-2

02
1-

40
34

po
lk

it
7.

8
hi

gh
hi

gh
7.

8
C

V
SS

:3
.1

/A
V

:L
/A

C
:L

/P
R

:L
/U

I:
N

/S
:U

/C
:H

/I
:H

/A
:H

7.
25

00
C

V
E

-2
02

1-
22

94
6

cu
rl

7.
5

m
ed

iu
m

m
ed

iu
m

7.
5

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:N

/U
I:

N
/S

:U
/C

:H
/I

:N
/A

:N
7.

10
00

C
V

E
-2

02
1-

37
12

op
en

ss
l

7.
4

m
ed

iu
m

m
ed

iu
m

7.
4

C
V

SS
:3

.1
/A

V
:N

/A
C

:H
/P

R
:N

/U
I:

N
/S

:U
/C

:H
/I

:N
/A

:H
6.

42
50

C
V

E
-2

02
1-

34
49

op
en

ss
l

5.
9

m
ed

iu
m

hi
gh

5.
9

C
V

SS
:3

.1
/A

V
:N

/A
C

:H
/P

R
:N

/U
I:

N
/S

:U
/C

:N
/I

:N
/A

:H
6.

30
00

C
V

E
-2

02
1-

41
61

7
op

en
ss

h
7.

0
m

ed
iu

m
lo

w
7.

0
C

V
SS

:3
.1

/A
V

:L
/A

C
:H

/P
R

:L
/U

I:
N

/S
:U

/C
:H

/I
:H

/A
:H

5.
36

25
C

V
E

-2
02

0-
13

77
6

sy
st

em
d

6.
7

m
ed

iu
m

lo
w

6.
7

C
V

SS
:3

.1
/A

V
:L

/A
C

:H
/P

R
:L

/U
I:

R
/S

:U
/C

:H
/I

:H
/A

:H
5.

21
25

C
V

E
-2

02
1-

33
91

0
sy

st
em

d
5.

5
m

ed
iu

m
hi

gh
5.

5
C

V
SS

:3
.1

/A
V

:L
/A

C
:L

/P
R

:L
/U

I:
N

/S
:U

/C
:N

/I
:N

/A
:H

5.
23

75
C

V
E

-2
02

0-
14

30
8

gr
ub

2
6.

4
m

ed
iu

m
hi

gh
6.

4
C

V
SS

:3
.1

/A
V

:L
/A

C
:H

/P
R

:H
/U

I:
N

/S
:U

/C
:H

/I
:H

/A
:H

6.
55

00
C

V
E

-2
02

1-
30

46
5

ru
nc

7.
5

m
ed

iu
m

hi
gh

8.
5

C
V

SS
:3

.1
/A

V
:N

/A
C

:H
/P

R
:L

/U
I:

N
/S

:C
/C

:H
/I

:H
/A

:H
7.

35
00

C
V

E
-2

02
1-

20
27

7
lib

ld
b

7.
1

m
ed

iu
m

hi
gh

7.
5

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:N

/U
I:

N
/S

:U
/C

:N
/I

:N
/A

:H
7.

00
00

C
V

E
-2

02
0-

88
31

ap
po

rt
N

on
e

lo
w

hi
gh

5.
5

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:L

/U
I:

N
/S

:U
/C

:N
/I

:H
/A

:N
5.

15
00

C
V

E
-2

02
0-

87
94

op
en

SM
T

P
D

N
on

e
hi

gh
hi

gh
9.

8
C

V
SS

:3
.1

/A
V

:N
/A

C
:L

/P
R

:N
/U

I:
N

/S
:U

/C
:H

/I
:H

/A
:H

8.
56

67
C

V
E

-2
02

1-
31

77
py

th
on

5.
9

hi
gh

m
ed

iu
m

9.
8

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:N

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:H
7.

27
50

C
V

E
-2

02
1-

20
17

9
do

gt
ag

-p
ki

8.
1

m
ed

iu
m

hi
gh

8.
1

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:L

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:N
7.

40
00

C
V

E
-2

02
1-

27
13

5
xt

er
m

9.
6

hi
gh

m
ed

iu
m

9.
8

C
V

SS
:3

.1
/A

V
:N

/A
C

:L
/P

R
:N

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:H
8.

20
00

C
V

E
-2

02
1-

31
56

su
do

7.
8

hi
gh

hi
gh

7.
8

C
V

SS
:3

.1
/A

V
:L

/A
C

:L
/P

R
:L

/U
I:

N
/S

:U
/C

:H
/I

:H
/A

:H
7.

87
50

C
V

E
-2

02
0-

11
65

1
sa

lt
9.

8
hi

gh
m

ed
iu

m
9.

8
C

V
SS

:3
.1

/A
V

:N
/A

C
:L

/P
R

:N
/U

I:
N

/S
:U

/C
:H

/I
:H

/A
:H

8.
25

00
C

V
E

-2
02

1-
32

76
0

co
nt

ai
ne

rd
5.

5
m

ed
iu

m
hi

gh
6.

3
C

V
SS

:3
.1

/A
V

:N
/A

C
:L

/P
R

:N
/U

I:
R

/S
:U

/C
:L

/I
:L

/A
:L

6.
30

00

105

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

Table 9.7: Comparing the PS value in di�erent cases with Rudder
CVE-ID Rudder SC AV AC C I A Add Factor PS 1 PS 2 PS 3 PS 4

CVE-2021-33574 9.8 6.4125 0.85 0.77 0.56 0.56 0.56 2 3.6191 4.0956 8.4125 4.6874
CVE-2021-27135 9.8 8.2000 0.85 0.77 0.56 0.56 0.56 2 3.9171 4.5425 10.2000 5.3130
CVE-2021-3177 9.8 7.2750 0.85 0.77 0.56 0.56 0.56 2 3.7629 4.3113 9.2750 4.9893

CVE-2020-11651 9.8 8.2500 0.85 0.77 0.56 0.56 0.56 2 3.9254 4.5550 10.2500 5.3305
CVE-2020-8794 9.8 8.5667 0.85 0.77 0.56 0.56 0.56 2 3.9782 4.6342 10.5667 5.4413
CVE-2021-3796 8.8 6.7500 0.55 0.77 0.56 0.22 0.56 0 1.5686 2.0200 6.7500 2.6945

CVE-2021-30465 8.5 7.3500 0.85 0.44 0.56 0.56 0.56 1 2.7203 3.3300 8.3500 3.9825
CVE-2021-20179 8.1 7.4000 0.85 0.77 0.56 0.56 0 2 3.6903 4.3425 9.4000 4.9770
CVE-2020-28374 8.1 7.4000 0.85 0.77 0.56 0.56 0 0 3.6903 4.3425 9.4000 4.9770
CVE-2021-22555 7.8 7.2500 0.55 0.77 0.56 0.56 0.56 0 1.7087 2.2300 7.2500 2.9205
CVE-2021-4192 7.8 6.6250 0.55 0.77 0.56 0.56 0.56 0 1.6045 2.0738 6.6250 2.7018
CVE-2021-4034 7.8 7.2500 0.55 0.77 0.56 0.56 0.56 0 1.7087 2.2300 7.2500 2.9205
CVE-2021-3778 7.8 6.6250 0.55 0.77 0.56 0.56 0.56 0 1.6045 2.0738 6.6250 2.7018
CVE-2021-3156 7.8 7.8750 0.55 0.77 0.56 0.56 0.56 0 1.8129 2.3863 7.8750 3.1393

CVE-2021-22946 7.5 7.1000 0.85 0.77 0.56 0 0 2 3.5470 4.1275 9.1000 4.7880
CVE-2021-20277 7.5 7.0000 0.85 0.77 0 0 0.56 2 3.5303 3.9625 9.0000 4.7530
CVE-2021-3712 7.4 6.4250 0.85 0.44 0.56 0 0.56 1 2.4728 1.9588 7.4250 3.5748

CVE-2021-41617 7 5.3625 0.55 0.44 0.56 0.56 0.56 0 1.3390 1.7581 5.3625 2.2269
CVE-2020-13776 6.7 5.2125 0.55 0.44 0.56 0.56 0.56 0 1.3140 1.7206 5.2125 2.1744
CVE-2020-14308 6.4 6.5500 0.55 0.44 0.56 0.56 0.56 0 1.5370 2.0550 6.5500 2.6425
CVE-2021-32760 6.3 6.3000 0.85 0.77 0.22 0.22 0.22 2 3.4303 3.8975 8.3000 4.5290
CVE-2021-3449 5.9 6.3000 0.85 0.44 0 0 0.56 0 1.3586 1.7875 6.3000 2.4750

CVE-2021-33910 5.5 5.2375 0.55 0.77 0 0 0.56 0 1.1865 1.4469 5.2375 2.0761
CVE-2020-8831 5.5 5.1500 0.55 0.77 0 0.56 0 0 1.1719 1.5650 5.1500 2.0735

9.8 Results and discussions

This section analyzes the patch prioritization result generated by our tool
for each case and Rudder CVE-Plugin. We used the PS value to prioritize
the patch order. As described in Section 9.5.4, the PS value captures the
important criteria in ranking the vulnerabilities. The organization could
weight the criteria based on risk appetite to customize the patch prioritization.
This study considers four cases with di�erent weighting criteria to study
patch prioritization with di�erent risk appetites. Table 10.3 represents the
numeric value of each criterion that involves in our PS calculation. The
SC column is the normalized score for each CVE-ID where the VMM is
standard. The Add Factor column in Table 10.3 represents the additive value
in Equation 9.1. The PS1-4 in Table 10.3 are the PS value for the case1-4
respectively. The corresponding value of AV, AC, C, I, and A are from
CVSS v3.1 and has two decimals. The result of our calculation, including
SC, PS1, PS2, PS3, and PS4, are rounded with four decimals.

• Case 1: in this case, the organization weighs the criteria homogeneously
in PS calculation as all six items are equally important for its business,
i.e., wi = 1/N , ’i. The Equation 9.3 is expanded from Equation 9.2
for each CVE-ID, i.e., k.

PSk = 0.1667(SCk + AVk + ACk + Ck + Ik + Ak) +

Y
__]

__[

2 for AVk = N and ACk = L

1 for AVk = N and ACk = H

0 otherwise
(9.3)

106

9.8. Results and discussions

For example, the PS for k = CV E ≠ 2021 ≠ 33574 is calculated as:

PSCV E≠2021≠33574 = 0.1667(6.4125+0.85+0.77+0.56+0.56+0.56)+2

The PS1 column in Table 10.3 shows the result for case 1 by ACVRM
for each CVE-ID that a�ected our test environments.

• Case 2: The organization does not consider AC and A as important
criteria in this case. Hence, w3 = w6 = 0. However, organization
weights the rest of criteria homogeneously in PS calculation, i.e.,
w1 = w2 = w4 = w5 = w6 = 0.25 and

q6
i=1 wi = 1. The Equa-

tion 9.4 derived from Equation 9.2 for each CVE-ID, i.e., k in case 2.

PSk = 0.25(SCk + AVk) + 0 ú ACk + 0.25(Ck + Ik) + 0 ú Ak +

Y
__]

__[

2 for AVk = N and ACk = L

1 for AVk = N and ACk = H

0 otherwise
(9.4)

For example, the PS for CVE-2021-33574 is calculated as:

PSCV E≠2021≠33574 = 0.25(6.4125+0.85)+0ú0.77+0.25(0.56+0.56)+0ú0.56+2

The result for case 2 by ACVRM presets in PS2 column in Table 10.3.

• Case 3: organization only considers the SC value for prioritizing the
patch. Hence, the weight is distributed as w1 = 1 and w2 = w3 =
w4 = w5 = w6 = 0. The Equation 9.8 is obtained from Equation 9.2
for each CVE-ID, i.e., k in case 3.

PSk = 1 ú SCk + 0 ú (AVk + ACk + Ck + Ik + Ak) +

Y
__]

__[

2 for AVk = N and ACk = L

1 for AVk = N and ACk = H

0 otherwise

(9.5)

For example, the PS for k = CV E ≠ 2021 ≠ 33574 is calculated as:

PSCV E≠2021≠33574 = 1ú6.4125+0ú(0.85+0.77+0.56+0.56+0.56)+2

107

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

Table 10.3 shows the outcome of case 3 for each CVE-ID in the PS3
column.

• Case 4: in this case organization weights all criteria based on its
risk appetite. The weight distributed as w1 = 0.35, w2 = 0.2,
w3 = w4 = w6 = 0.1, and w5 = 0.15 in PS calculation. The Equa-
tion 9.8 drives from equation 9.2 for each CVE-ID, i.e., k in case 4.

PSk = 0.35 ú SCk + 0.2 ú AVk + 0.1(ACk + Ck) + 0.15 ú Ik + 0.1 ú Ak +

Y
__]

__[

2 for AVk = N and ACk = L

1 for AVk = N and ACk = H

0 otherwise
(9.6)

For example, the PS for k = CV E ≠ 2021 ≠ 33574 is calculated as:
PSCV E≠2021≠33574 = 0.35 ú 6.4125 + 0.2 ú 0.85 + 0.1(0.77 + 0.56) + 0.15 ú 0.56 + 0.1 ú 0.56 + 2
The result of PS for case 4 presented in column PS4 in Table 10.3 for
the CVE-IDs a�ected our test environments.

9.8.1 Analysing the patch prioritization

In this section, we compare the patch prioritization o�ered by Rudder’s
CVE-plugin and four cases of ACVRM. Table 9.8 presents the patch order
for di�erent cases. Rudder CVE-plugin provided patch prioritization based
on the SC from general purpose VD and NVD and does not reflect the
organization’s context.

We define � as the di�erence between the position in patch priority
(Pk,*) between Rudder and ACVRM cases as:

�k = Pk,rudder ≠ Pk,ACVRM (9.7)

where k is CVE-ID. The � column after each case in Table 9.8 shows the
changes in the CVE-ID position compared with the Rudder CVE-plugin. For
example, the CVE-2021-33574 has a priority 1 by Rudder while it becomes
priority seven in case 1 and priority eight in case 2. The � value with a
negative sign means the position of the CVE-ID moves down (lower priority).
In contrast, the positive value means the place of CVE-ID moves up (higher
priority) in the priority list. The � is zero when the position of the CVE-ID
is the same in the priority list provided by Rudder and ACVRM case. The
CVE-ID with priority one will be patched first, and the CVE-ID with priority
twenty-four in our list will be the last to patch.

We observed that the CVE-IDs that could be exploited from networks
with a low attack complexity gain higher priority (e.g., priority 1-11) by

108

9.8. Results and discussions

Table 9.8: Patch priority list in test environments by Rudder CVE-plugin and
ACVRM

Rudder Case 1 Case 2 Case 3 Case 4
Priority CVE-ID CVE-ID � CVE-ID � CVE-ID � CVE-ID �

1 CVE-2021-33574 CVE-2020-8794 4 CVE-2020-8794 4 CVE-2020-8794 4 CVE-2020-8794 4
2 CVE-2021-27135 CVE-2020-11651 2 CVE-2020-11651 2 CVE-2020-11651 2 CVE-2020-11651 2
3 CVE-2021-3177 CVE-2021-27135 -1 CVE-2021-27135 -1 CVE-2021-27135 -1 CVE-2021-27135 -1
4 CVE-2020-11651 CVE-2021-3177 -1 CVE-2020-28374 5 CVE-2020-28374 5 CVE-2021-3177 -1
5 CVE-2020-8794 CVE-2020-28374 4 CVE-2021-20179 3 CVE-2021-20179 3 CVE-2020-28374 4
6 CVE-2021-3796 CVE-2021-20179 2 CVE-2021-3177 -3 CVE-2021-3177 -3 CVE-2021-20179 2
7 CVE-2021-30465 CVE-2021-33574 -6 CVE-2021-22946 8 CVE-2021-22946 8 CVE-2021-22946 8
8 CVE-2021-20179 CVE-2021-22946 7 CVE-2021-33574 -7 CVE-2021-20277 8 CVE-2021-20277 8
9 CVE-2020-28374 CVE-2021-20277 7 CVE-2021-20277 7 CVE-2021-33574 -8 CVE-2021-33574 -8

10 CVE-2021-22555 CVE-2021-32760 11 CVE-2021-32760 11 CVE-2021-30465 -3 CVE-2021-32760 11
11 CVE-2021-4192 CVE-2021-30465 -4 CVE-2021-30465 -4 CVE-2021-32760 10 CVE-2021-30465 -4
12 CVE-2021-4034 CVE-2021-3712 5 CVE-2021-3156 2 CVE-2021-3156 2 CVE-2021-3712 5
13 CVE-2021-3778 CVE-2021-3156 1 CVE-2021-4034 -1 CVE-2021-3712 4 CVE-2021-3156 1
14 CVE-2021-3156 CVE-2021-4034 -2 CVE-2021-22555 -4 CVE-2021-4034 -2 CVE-2021-4034 -2
15 CVE-2021-22946 CVE-2021-22555 -5 CVE-2021-3778 -2 CVE-2021-22555 -5 CVE-2021-22555 -5
16 CVE-2021-20277 CVE-2021-3778 -3 CVE-2021-4192 -5 CVE-2021-3796 -10 CVE-2021-3778 -3
17 CVE-2021-3712 CVE-2021-4192 -6 CVE-2020-14308 3 CVE-2021-3778 -4 CVE-2021-4192 -6
18 CVE-2021-41617 CVE-2021-3796 -12 CVE-2021-3796 -12 CVE-2021-4192 -7 CVE-2021-3796 -12
19 CVE-2020-13776 CVE-2020-14308 1 CVE-2021-3712 -2 CVE-2020-14308 1 CVE-2020-14308 1
20 CVE-2020-14308 CVE-2021-3449 2 CVE-2021-3449 2 CVE-2021-3449 2 CVE-2021-3449 2
21 CVE-2021-32760 CVE-2021-41617 -3 CVE-2021-41617 -3 CVE-2021-41617 -3 CVE-2021-41617 -3
22 CVE-2021-3449 CVE-2020-13776 -3 CVE-2020-13776 -3 CVE-2021-33910 1 CVE-2020-13776 -3
23 CVE-2021-33910 CVE-2021-33910 0 CVE-2020-8831 1 CVE-2020-13776 -4 CVE-2021-33910 0
24 CVE-2020-8831 CVE-2020-8831 0 CVE-2021-33910 -1 CVE-2020-8831 0 CVE-2020-8831 0

ACVRM compared with Rudder (e.g., priority 1-21). The priority position
in Table 9.8 shows that only five CVE-IDs (e.g., CVE-2020-8794, CVE-2020-
11651, CVE-2021-27135, CVE-2021-3449, CVE-2021-41617) got the same
priority in ACVRM cases.

After reviewing the � value, we found that CVE-2020-8831 obtains
priority twenty-four in Rudder and ACVRM cases 1, 3, and 4. Case 2 of
ACVRM does not have any similar priority position compared with Rudder.
We also noticed that thirteen CVE-IDs achieved a lower priority position
in Case 2 of ACVRM, while the number of CVE-IDs is eleven in other
cases. In addition, we visualized the change in each vulnerability position
for all cases in Figure 9.7. As shown in the Figure 9.7, the position of five
vulnerabilities (e.g., CVE-2021-33574, CVE-2021-27135, CVE-2020-8794,
CVE-2021-4034, CVE-2020-14308) rise for all four cases where three of
them (e.g., CVE-2021-33574, CVE-2021-27135, CVE-2020-14308) increased
the same order. We also observed that the position of six vulnerabilities
(e.g., CVE-2021-3177, CVE-2021-3156, CVE-2021-22946, CVE-2021-20277,
CVE-2021-41617, CVE-2021-32760) decreased in the priority list in all four
cases while two of them (e.g., CVE-2021-32760, CVE-2021-3177) dropped
exact the same order.

We also noticed that Rudder listed the CVE-IDs with the same SC
randomly (e.g., the priority 1 to 5 have a SC = 9.8, and the position is
not related to the age of the CVE-IDs). However, ACVRM considered

109

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

the age of the CVE-IDs in prioritization when the PS value is equal (e.g.,
CVE-2020-28374 and CVE-2021-20179 in case 1 have the same PS value but
the CVE-2020-28374 gains the higher priority as it has been known publicly
for a longer time).

Figure 9.7: The � value of patch priority orders in Rudder CVE-plugin and Case
1-4 of ACVRM

9.9 Conclusion

The increasing number of publicly known vulnerabilities introduces the
challenge in VRM as classification and evaluation phases need experts’
intervention. The security experts should evaluate the vulnerability risk for
the organization and define patch prioritization, which is time-consuming
and resource-intensive. Therefore, we need to improve VRM to address the
challenges mentioned earlier. We introduce ACVRM to automate the VRM
procedure and reduce the experts’ intervention. Hence, we need to learn
how experts evaluate and prioritize the patch. In this study, we focus on

110

9.9. Conclusion

the classification and evaluation process of VRM in the context of a given
organization. We performed an analysis in three phases as follows:

1. We conducted a literature study and experts interview to learn which
criteria play a role in patch prioritization. We defined selected criteria
for patch prioritization based on the result obtained in our study.
We found that the security score, attack vector, attack complexity,
confidentiality, integrity, and availability values and exposing the level
of the AUS are essential in deciding the patch order. Therefore, we
define the PS based on the selected criteria and the possibility of
weighting each criterion in the organization’s context.

2. We designed and implemented phase 2 of ACVRM, which consists of
four modules; filter, evaluation, sort, and patch prioritization. We
created the environments of the test organization in the public cloud.
The experiment was executed for four cases where each case’s criteria
were weighted di�erently.

3. We verified the result of our phase 2 implementation by analyzing the
outcome of each case. We also compared the patch prioritization of our
tool with the Rudder CVE-plugin. Our result shows that the ACVRM
could adjust the patch prioritization for each organization with less
e�ort from security experts. The security experts only set the VMM
and weight the selected criteria. Our solution also allows the security
experts to add more criteria to the evaluation module if needed.

Our study showed how the organization could customize the patch priority
based on its context by selecting VMM mode and weighting the criteria.
We have presented the improvement in the VRM procedure by reducing
evaluation time and experts’ intervention. The execution time of the phase 2
was seven minutes in our test environment, including four modules(e.g.,
filter, evaluation, sort, and patch prioritization). However, the execution
time needs to be studied further.

In the future, we want to continue the implementation of phase 3 of
ACVRM and address the challenges in patch management, including auto-
mated validation of the patch deployment, verification of the side e�ects
of patching vulnerabilities, and the possibility of a generalized verification
process. Another possible future direction could be using a machine learning

111

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

algorithm to improve patch prioritization based on the patch verification
feedback. Finally, we could investigate the time e�ciency of our solution and
compare the patch prioritization of our proposed solution with the recently
published state of art approaches.

References

[1] Top Routinely Exploited Vulnerabilities. https://www.cisa.gov/
uscert/ncas/alerts/aa22-117a. [Online; accessed 12-June-2022].

[2] Costs and Consequences of Gaps in Vulnerability Response. https:
//www.servicenow.com/lpayr/ponemon-vulnerability-survey.
html. [Online; accessed 26-August-2022].

[3] VULNERABILITY AND THREAT TRENDS Report 2021. Tech. rep.
SkyBox Security, 2021.

[4] Open Vulnerability Assessment Scanner(OpenVAS). https://www.
openvas.org/. [Online; accessed 18-October-2022].

[5] Nessus Vulnerability Scanner. https://www.tenable.com/products/
nessus. [Online; accessed 18-October-2022].

[6] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization of Severity
Rating for Automated Context-aware Vulnerability Risk Management”.
In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). IEEE. 2020,
pp. 200–205.

[7] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization Framework for
Vulnerability Risk Management in Cloud”. In: 2021 IEEE International
Conference on Future Internet of Things and Cloud (FiCloud). IEEE.
2021.

[8] NIST National Vulnerability Database. https://nvd.nist.gov/.
[Online; accessed 15-October-2022].

[9] RedHat Security Advisories. https://access.redhat.com/security/
security-updates/. [Online; accessed 10-October-2022].

[10] Ubuntu Security Notice. https://usn.ubuntu.com/. [Online; accessed
8-September-2022].

[11] Apache Security Information. https://www.apache.org/security/
projects.html. [Online; accessed 16-September-2022].

112

https://www.cisa.gov/uscert/ncas/alerts/aa22-117a
https://www.cisa.gov/uscert/ncas/alerts/aa22-117a
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.openvas.org/
https://www.openvas.org/
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://nvd.nist.gov/
https://access.redhat.com/security/security-updates/
https://access.redhat.com/security/security-updates/
https://usn.ubuntu.com/
https://www.apache.org/security/projects.html
https://www.apache.org/security/projects.html

References

[12] CIS Controls. http://www.cisecurity.org/controls/. [Online;
accessed 5-April-2020].

[13] EU Cybersecurity Act. https://eur-lex.europa.eu/eli/reg/2019/
881/oj. [Online; accessed 11-October-2022].

[14] European Cybersecurity Certification Scheme for Cloud Services. https:
//www.enisa.europa.eu/publications/eucs- cloud- service-
scheme. [Online; accessed 11-February-2021].

[15] Homland Security Act 2002. https : / / www . dhs . gov / homeland -
security-act-2002. [Online; accessed 15-October-2022].

[16] F. Inc. “Common Vulnerability Scoring System v3.1: Specification
Document”. In: (2019).

[17] G. Spanos, A. Sioziou, and L. Angelis. “WIVSS: a new methodology
for scoring information systems vulnerabilities”. In: Proceedings of the
17th panhellenic conference on informatics. ACM. 2013.

[18] C. Fruhwirth and T. Mannisto. “Improving CVSS-based vulnerabil-
ity prioritization and response with context information”. In: 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE. 2009.

[19] Cyber Security Report 2021 by check point research. https://www.
checkpoint.com/downloads/resources/cyber-security-report-
2021.pdf. [Online; accessed 16-October-2022].

[20] F. Zhang, P. Hu�, K. McClanahan, and Q. Li. “A Machine Learning-
based Approach for Automated Vulnerability Remediation Analysis”.
In: 2020 IEEE Conference on Communications and Network Security
(CNS). IEEE. 2020.

[21] M. Aota, H. Kanehara, M. Kubo, N. Murata, B. Sun, and T. Takahashi.
“Automation of Vulnerability Classification from its Description using
Machine Learning”. In: 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE. 2020.

[22] X. Wang, S. Wang, K. Sun, A. Batcheller, and S. Jajodia. “A Machine
Learning Approach to Classify Security Patches into Vulnerability
Types”. In: 2020 IEEE Conference on Communications and Network
Security (CNS). IEEE. 2020.

113

http://%20www.cisecurity.org/controls/
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.dhs.gov/homeland-security-act-2002
https://www.dhs.gov/homeland-security-act-2002
https://www.checkpoint.com/downloads/resources/cyber-security-report-2021.pdf
https://www.checkpoint.com/downloads/resources/cyber-security-report-2021.pdf
https://www.checkpoint.com/downloads/resources/cyber-security-report-2021.pdf

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

[23] M. Walkowski, M. Krakowiak, M. Jaroszewski, J. Oko, and S. Sujecki.
“Automatic CVSS-based vulnerability prioritization and response with
context information”. In: 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). IEEE. 2021.

[24] G. Yadav, P. Gauravaram, A. K. Jindal, and K. Paul. “SmartPatch:
A patch prioritization framework”. In: Computers in Industry (2022).

[25] A. Shah, K. A. Farris, R. Ganesan, and S. Jajodia. “Vulnerability
selection for remediation: An empirical analysis”. In: The Journal of
Defense Modeling and Simulation 19.1 (2022), pp. 13–22.

[26] Y. Jiang and Y. Atif. “Towards automatic discovery and assessment
of vulnerability severity in cyber–physical systems”. In: Array (2022).

[27] Common Vulnerabilities and Exposures(CVE). https://cve.mitre.
org/. [Online; accessed 18-October-2022].

[28] Cloud Computing Compliance Criteria Catalogue (C5). https://www.
bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_
Catalogue/Compliance_Criteria_Catalogue_node.html. [Online;
accessed 18-October-2022].

[29] A. Al-Ayed, S. Furnell, D. Zhao, and P. Dowland. “An automated
framework for managing security vulnerabilities”. In: Information
management & computer security (2005).

[30] Z. Li, C. Tang, J. Hu, and Z. Chen. “Vulnerabilities Scoring Approach
for Cloud SaaS”. In: 2015 IEEE 12th Intl Conf on Ubiquitous Intelli-
gence and Computing and 2015 IEEE 12th Intl Conf on Autonomic
and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable
Computing and Communications and Its Associated Workshops (UIC-
ATC-ScalCom). IEEE. 2015.

[31] K. A. Torkura, F. Cheng, and C. Meinel. “A proposed framework for
proactive vulnerability assessments in cloud deployments”. In: 2015
10th International Conference for Internet Technology and Secured
Transactions (ICITST). IEEE. 2015.

[32] A. Olswang, T. Gonda, R. Puzis, G. Shani, B. Shapira, and N. Tractin-
sky. “Prioritizing vulnerability patches in large networks”. In: Expert
Systems with Applications (2022).

114

https://cve.mitre.org/
https://cve.mitre.org/
https://www.bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html
https://www.bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html
https://www.bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html

References

[33] F. Zhang and Q. Li. “Dynamic Risk-Aware Patch Scheduling”. In: 2020
IEEE Conference on Communications and Network Security (CNS).
IEEE. 2020.

[34] F. Araujo and T. Taylor. “Improving cybersecurity hygiene through
JIT patching”. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM. 2020.

[35] R. Patil and C. Modi. “Designing an e�cient framework for vulnera-
bility assessment and patching (VAP) in virtual environment of cloud
computing”. In: The Journal of Supercomputing (2019).

[36] J.-H. Lee, S.-G. Sohn, B.-H. Chang, and T.-M. Chung. “PKG-VUL:
Security Vulnerability Evaluation and Patch Framework for Package-
Based Systems”. In: ETRI journal (2009).

[37] M. Angelini, G. Blasilli, T. Catarci, S. Lenti, and G. Santucci. “Vul-
nus: Visual vulnerability analysis for network security”. In: IEEE
transactions on visualization and computer graphics (2018).

[38] C.-H. Lin, C.-H. Chen, and C.-S. Laih. “A study and implementation
of vulnerability assessment and misconfiguration detection”. In: 2008
IEEE Asia-Pacific Services Computing Conference. IEEE. 2008.

[39] M. Gusenbauer. “Google Scholar to overshadow them all? Comparing
the sizes of 12 academic search engines and bibliographic databases”.
In: Scientometrics (2019).

[40] Common Configuration Enumeration(CCE). https://ncp.nist.gov/
cce/index. [Online; accessed 8-September-2022].

[41] D. C. Zhang and Y. Wang. “An empirical approach to identifying
subject matter experts for the development of situational judgment
tests.” In: Journal of Personnel Psychology (2021).

[42] T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair, and T. Möller. “A
systematic review on the practice of evaluating visualization”. In: IEEE
Transactions on Visualization and Computer Graphics (2013).

[43] Rudder. https://www.rudder.io/. [Online; accessed 2-September-
2022].

[44] Rudder CVE Plugin. https://docs.rudder.io/reference/6.2/
plugins/cve.html. [Online; accessed 16-October-2022].

115

https://ncp.nist.gov/cce/index
https://ncp.nist.gov/cce/index
https://www.rudder.io/
https://docs.rudder.io/reference/6.2/plugins/cve.html
https://docs.rudder.io/reference/6.2/plugins/cve.html

9. Automated Context-aware Vulnerability Risk Management for
Patch Prioritization

[45] Debian Security Tracker. https : / / www . debian . org / security /
#DSAS. [Online; accessed 29-September-2022].

116

10
Automated Patch Management: An

Empirical Evaluation Study
Vida Ahmadi Mehri, Patrik Arlos, Emiliano Casalicchio

Accepted to publish as:

Ahmadi Mehri, V., Arlos, P., and Casalicchio, E. "Automated
Patch Management: An Empirical Evaluation Study", 2023 IEEE
International Conference on Cyber Security and Resilience (CSR),
Venice, Italy, 2023. ©2023 IEEE.

Abstract: Vulnerability patch management is one of IT organizations’
most complex issues due to the increasing number of publicly known vul-
nerabilities and explicit patch deadlines for compliance. Patch management
requires human involvement in testing, deploying, and verifying the patch
and its potential side e�ects. Hence, there is a need to automate the patch
management procedure to keep the patch deadline with a limited number
of available experts. This study proposed and implemented an automated
patch management procedure to address mentioned challenges. The method
also includes logic to automatically handle errors that might occur in patch
deployment and verification. Moreover, the authors added an automated
review step before patch management to adjust the patch prioritization list
if multiple cumulative patches or dependencies are detected. The result indi-
cated that our method reduced the need for human intervention, increased
the ratio of successfully patched vulnerabilities, and decreased the execution
time of vulnerability risk management.

117

10. Automated Patch Management: An Empirical Evaluation Study

10.1 Introduction

Vulnerability Risk Management (VRM) is one of the critical aspects of
information security that has been ranked in the top 10 by CIS [1]. Unpatched
vulnerabilities expose organizations and individuals to cyber attacks. One
well-known example is the Log4j (i.e., CVE-2021-44228, CVE-2021-45046,
CVE-2021-45105, and CVE-2021-44832) which was one of the most severe
threats in recent years due to the number of vulnerable systems and the
ease of exploit (i.e., ten million attempts per hour [2]). VRM is a cyclic
process that aims to identify, classify, evaluate, and remediate vulnerabilities
and reduce an organization’s attack surface. Currently, VRM is challenging
due to the dramatic increase of known vulnerabilities (i.e., 40% in 2019-
2022) and the explicit patch deadline enforced by regulation for public
sectors. For instance, the patch deadline for federal agencies in the U.S. is
15 days for critical vulnerabilities and 30 days for vulnerabilities with high
severity. For UK o�cials, 14 days for critical vulnerabilities1,2. According
to the NIST National Vulnerability Database (NVD) [3], 57.69% of the
new vulnerabilities reported in 2022 ranked with critical and high severity
(40.61% high severity and 17.08% critical severity). Hence, automated VRM
is vital to support security specialists in keeping the patch deadline. Today,
we lack the tools that automatically conduct the four stages, identification,
classification, evaluation, and remediation in the VRM process. In [4–6],
we proposed Automated Context-aware Vulnerability Risk Management
(ACVRM) to improve the VRM procedure by 1) reducing the labor-intensive
tasks of security experts in patch prioritization; 2) customizing the patch
prioritization for a given organization by learning about the organization’s
assets and the vulnerabilities that a�ect these assets; 3) automating VRM
procedure to reduce processing time.

ACVRM consists of three phases, cf. Figure 10.1. In phase 1, described
in [4, 6], we collected the publicly known vulnerabilities from multiple
Vulnerability Databases (VD) and normalized the severity score for each
vulnerability based on the selected vulnerability management mode by the
organization. The collected data identifies existing vulnerabilities in the
organization’s assets. In phase 2 described in [5], we automatically scan
the organization’s asset inventory against the collected data to detect the

1 https://www.ncsc.gov.uk/cyberessentials/overview
2 https://www.cisa.gov/binding-operational-directive-19-02

118

10.1. Introduction

Figure 10.1: Relationship between our current work (Phase 3 and feedback loop to
phase 2) and previous work (Phase 1 & 2)

vulnerabilities that a�ect the organization. We defined the criteria to be
considered in patch prioritization via literature study and experts interview.
The criteria weighted by security experts are based on the organization’s
policy and risk appetite to calculate the patch score. We use the patch score
to determine the patched vulnerability’s order.

This study focuses on the third phase, patch management, and the
feedback loop to improve patch prioritization. Patch management is a
process to mitigate the vulnerability in the organizations’ assets by deploying
and verifying the patch. Patch Management (PM) is one of the most complex
processes in information technology, as it requires a strong understanding of
the system components and the potential patch. It is also challenging due to
the uncertainty of the system’s reaction to the patch and the problem with
the patch released by vendors (i.e., the patched version of one vulnerability
introduces another vulnerability) [7]. For example, Microsoft’s security
patch addressed Meltdown and Spectre vulnerabilities, which are hardware
vulnerabilities that a�ect nearly every computer processor, causing some
computers to become unbootable [8].

In this paper, we design and implement phase 3 of ACVRM, PM, and
show the capability of the patch feedback loop to improve prioritization for
the given organization. Our solution was deployed on a test environment
where we applied our method to patch software vulnerabilities.

The paper is organized as in what follows. Section 10.2 provides
background on patch management and analyzes the related literature.
Section 10.3 describes our contribution, and Section 10.4 introduces the
ACVRM’s patch management phase, where the paper’s core contribution is.

119

10. Automated Patch Management: An Empirical Evaluation Study

Section 10.5 describes the design and implementation of a proof of concept
for patch management and feedback loop. Experiments and results are
reported in Sections 10.6 and 10.7, respectively. Section 10.8 concludes the
paper.

10.2 Background and related work

Patch Management (PM) helps organizations keep their assets secure, reliable,
and up-to-date with the required features and functionality. It is also
essential for ensuring compliance with security and privacy regulations such
as EU Cybersecurity act [9], EU Cybersecurity Certificate (EUCS) [10], USA
homeland security act [11]. Security patches (hereafter patch) are released by
hardware or software vendors to address the identified vulnerabilities in their
products. PM procedure is responsible to remediate the vulnerabilities in the
organization’s environment. The PM generally consists of three steps [12] to
address vulnerabilities in the organization:

• Patch testing tests the patch on an isolated system similar to the
production to verify the impact on system/software performance or
instability.

• Patch deployment is applying a patch in production environments.

• Post-deployment or patch verification is an activity to detect malfunc-
tions or instability on the system/software post-patching vulnerability.

One of the complex issues in PM is verifying the vulnerability patches in an
organization environment as each organization has its unique combination of
system and configuration [12]. The patch verification answers two questions
1) Does the patch remediate the vulnerability? 2) Does the patch have side
e�ects (i.g., does not break any other software, application, or system)? The
first could be verified with vulnerability scanning or checking the version of
the software or application, or system. However, the second one required a
deep understanding of the architectural design of environments (e.g., system,
application, software) to evaluate the impact of the patch and prepare a
rollback plan [13].

Some studies [14–19] have reported the need for human expertise in PM
due to the increased complexity of security patching and the limitations

120

10.3. Contribution

of the current technologies to provide solutions covering the entire process.
However, the authors in [14, 18, 20–23] highlighted the significant gap in
the required skills and knowledge expertise in PM. The experts’ involvement
in the PM procedure increases the time to patch [14]. Therefore, keeping
up with the time to patch became a challenge in IT due to the increasing
number of publicly known vulnerabilities. For example, the number of
vulnerabilities in 2022 is 25064 (i.e., average 68 vulnerabilities per day)
where 14461 (i.e., average 40 vulnerabilities per day) of them ranked as
critical and high presented in Table 10.1. Given that each vulnerability
might a�ect N number of assets in the organization, the time required
for patching each vulnerability depends on the availability of the security
resources [14, 17, 24, 25]. According to [26], the mean time to remediation of
the vulnerability varies in di�erent industries (e.g., 44 days in healthcare and
92 days in public administration). An automated PM facilitates the learning
of organizational context, which is an inevitable need for each organization
to remain secure and compliant. Our proposed solution, ACVRM, addresses
this need. ACVRM introduced the feedback loop and learned from the
historical event in PM.

The authors in [16] determined that the downtime of the business critical
system is a major obstacle in vulnerability patching. It also identified the
struggle of the system administrators to verify the dependencies in complex
applications and systems. ACVRM facilitates the creation of a dependency
tree for each software and service in an organization. The dependency
reflects the patch prioritization list to support the system administrator.
Midtrapanon and Wills proposed automated patch management for Linux-
based servers. They orchestrated the existing open-source tools to deploy
the patch automatically and simultaneously for many servers. The authors
claimed the set-up time was reduced and the tool was cost-e�cient [18].
Our work proposed automating the entire VRM procedure for organizations
independently of the platform. We improve time to patch by automated vul-
nerability assessment and patch prioritization in the organization’s context.
We also address the patch verification.

10.3 Contribution

In our previous work [5], we designed and implemented phase 2 of ACVRM,
patch prioritization without a feedback loop from the patch verification task

121

10. Automated Patch Management: An Empirical Evaluation Study

Table 10.1: Statistic report on the number of reported Vulnerabilities in NVD [27]
Year No. vulnerability Critical High

2019 17305 2640 7243
2020 18351 (+6%) 2720 (+3%) 7708 (+6%)
2021 20158 (+10%) 2677 (-2%) 8553 (+11%)
2022 25064 (+24%) 4282 (+60%) 10179 (+19%)

in phase 3. Moreover, the review prioritization block (cf. Figure 10.2) used
only the patch score (i.e., the score is calculated by weighting the selected
criteria in the context of the organization for each vulnerability) to determine
the patch order. We discovered our method in [5] needs improvement because
historical data and practical experience are the inevitable factors to increase
the success rate of patch[28]. We also learned from the practical experience
shared in the patch management community of experts3, some patch failures
could be avoided by prioritization (e.g., patching a microcode vulnerability
in Ubuntu requires the kernel to be patched in advance; otherwise, the
mitigation failed). In this study, therefore, we design and implement a
proof of concept of phase 3 and improve patch prioritization in phase 2. We
enhance the task for review prioritization in phase 2 through a feedback loop,
which facilitates review and error handling capability based on the history
of events. The feedback loop introduced a learning opportunity to adjust
the prioritization to reduce the patch failure rate. The feedback loop helps
the organization to capture the knowledge in the organization. Hence, it
reduces the experts’ intervention by automating the response to the known
patch failure, which is one of the goals for ACVRM.

10.4 ACVRM Phase 3: Patch Management

Phase 3 and its coordination with phase 2 in handling the patches present
in Figure 10.2. The stages in phase 3 are divided into two parts. First,
patch prioritization applies in test environments similar to production. If
the patch is successful, the second part will be initiated. The stages in the
phase 3 describe briefly as follows:

• Patch testing is the first stage in PM, where the patch priority list will
be deployed in a test environment. This stage aims to determine if a
patch will cause problems for an organization’s unique combination of

3 http://patchmanagement.org/

122

10.4. ACVRM Phase 3: Patch Management

Figure 10.2: ACVRM Phase 2 and 3

hardware, software, and configuration settings. The test environment
should be created similarly to the production environments. In this
stage, the vulnerabilities in the patch prioritization list for the selected
host will be patched sequentially in a test host for better visibility of
potential issues.

• Verify testing is a stage to identify if the patches were successful in a
test environment. The output of the patch testing will be captured
and reviewed for success or failure. In case of an error, the output of
patch execution will be sent to the Review Prioritization stage. If no
error is reported by executing the patch in the test host, it verifies
the remediation of the vulnerability. If the patch does not mitigate
the vulnerability in a tested host, an alert will be sent to the Review
Prioritization stage.

• Verify patch impact aims at detecting any side e�ect of the patch on
the functionality of the services or applications in the organization.
This stage consists of predefined functional tests to identify unexpected
behavior of the organization systems or applications. If all tests were
successful, the process is documented as successfully done.

123

10. Automated Patch Management: An Empirical Evaluation Study

• Rollback patch is a stage for returning the system to the prior state of
patching. If the vulnerability patch causes an issue in the system or
application functionality or behavior, the first response to address the
issue is to roll back the patch. It brings the system or application to
the latest working state before patch deployment.

• Report issue is an alert to experts for unexpected behavior. The report
is sent to the Review Prioritization stage in phase 2, where the security
and system experts should investigate the root cause and apply the
lesson learned to the next patch prioritization. The report includes
the CVE-ID, name of vulnerable software or service, hostname, error
message, and time stamp.

• Success test is a step in the production environment to ensure all the
vulnerabilities have been tested successfully in a test environment.

• Deploy patch is a stage similar to patch testing for patching vulnerabil-
ities in a production environment. This stage depends on the output
of the previous stage, test verification. If the patch is successful in a
test environment, it will deploy automatically in production.

• Verify patch is a stage similar to the verify testing for the host in
production environments. It verifies the status of the remediation in a
production environment.

As we described above, all the errors or feedback loops return to the Review
Prioritization stage in the phase 2, where the patch prioritization list is
reviewed for the organization. All the stages could be automated for the
organization, but any error needs experts’ involvement. We consider the
feedback loop a learning opportunity as the reported issues are recorded in a
database for organizations to identify the challenges in their unique system
and address them automatically. We expected the learning to improve the
patch prioritization decision over time and reduce the number of errors,
decreasing the patch failure rate and experts’ intervention.

10.5 Design and implementation

The implementation of a PoC for the PM phase (phase 3) and Review
Prioritization of phase 2, shown in Figure 10.3, is designed as a group of

124

10.5. Design and implementation

Figure 10.3: ACVRM Phase 3 process including feedback loop to Phase 2 for test
and production environments

functions split into five modules; Deploy patch,Verify patch, Verify patch
impact, Learning, and Automated Review. Each module represents the
implementation of each stage and the output of each module is the input for
the next one. Phase 2 PoC implementation was described in [5]; hence is
omitted in this paper. The output of phase 2 is a patch prioritization list
(patch_prioritization.json) for each host in the organization, and it is
the input to phase 3. The PM process is responsible for testing the patch
in the test environment before patching it in production. The PM process,
presented in Figure 10.3, starts with executing Deploy patch,Verify patch,
and Verify patch impact modules in a test environment. If patches were
successful in a test environment, the Deploy patch module is initiated for a
selected host in production.

The Deploy patch process is iterated for each item (vulnerability) in the
file until the stop signal is generated. ACVRM will stop patch execution if
the acceptance rate of a failure [28] (i.e., the percentage of the unsuccessful
patch accepted by security experts in the organization) is exceeded. The
default acceptance rate in our design is up to 10% failure of patches in
patch_prioritization.json for each host. The rate could be customized
based on the organization’s desires. The deploy patch module allows the
second execution of the patch for each item if the first execution encounters

125

10. Automated Patch Management: An Empirical Evaluation Study

an error. Sometimes, the error resolves in a second run based on the patch
management community practices. This module generates an error report
for each persistent error (an error occurred after two tries), and sends it to
the Learning module, within the Review Prioritization.

The Verify patch module begins if no error is detected in the Deploy patch
module. This module verifies the remediation by examining the running
version of vulnerable software or using a vulnerability scanner. In our PoC,
we use version control, where the running software version must be the same
as the version installed by patch execution. If remediation fails, the system or
service restart condition would examine. Some vulnerability patches require
a system or service restart to be e�ected (e.g., Linux Kernel vulnerability
requires a system restart because the installed version is loaded into memory
when a system starts). In case of an error, report the error to the Learning
module. If remediation is confirmed, ACVRM moves to the next stage.

The Verify patch impact module initiates when remediation is validated.
This module verifies the patch’s impact on the system or application func-
tionality by running predefined functional tests. The test depends on the
organization’s unique services and applications and should be defined by
the organization’s experts (e.g., the impact of the patch in a node hosting
the organization’s website, could be verified by the status of the web server,
and website response). ACVRM could automate the test and verify the
expected result. If the side e�ect is detected, ACVRM will rollback the
patch and report the impact to the Learning module. Otherwise, it jumps to
the next item in the patch_prioritization.json until the last item. The
Learning module is the enhancement in the Review prioritization stage. This
module builds knowledge from the organization’s past experiences and the
current one to improve patch prioritization decisions. The knowledge.json
is created from the historical events data and the data provided by a feedback
loop in JSON format. Security experts could feed organizational historical
data into the Learning module. If the historical data are not available, the
module builds the knowledge based on the feedback loop only. The Learning
module helps the organization handle known errors automatically without
the expert’s involvement. In our design, the learning module will check
three conditions before escalating the error to the security expert. First, it
inspects the existence of errors in knowledge.json. Second, it checks the
dependencies in the error report. Finally, it searches for a proven solution in
knowledge.json. If knowledge data matches the condition, it updates the

126

10.6. Experiment

patch prioritization. Otherwise, it sends a report to the experts for review
and response.

Moreover, we introduce Automated Review (AR) in our design to improve
the patch prioritization list before PM cf. yellow box in Figure 10.3. We
find that there is a possibility of having multiple CVE-IDs for each software
or application in the patch prioritization list of the host. AR reviews and
sorts the CVE-IDs in the patch list based on the name of the vulnerable
software or application and the patch version. If AR finds multiple patches
of the same software or application, which is cumulative, it removes the
older patches from the priority list. AR also checks the dependency for
each vulnerability in the list because dependency is a common reason for
patch failure[15, 16, 29, 30]. The dependencies are considered prerequisites,
which directly impact the outcome of PM. If the organization provides a
dependency tree for each software or application, AR inspects and reflects
them in the prioritization list.

10.6 Experiment

We plan to test our PM PoC by executing a controlled experiment. In the
experiment, we set up a test organization by creating some nodes, injecting
random vulnerabilities into nodes, verifying the vulnerabilities are detected,
and a patch prioritization list is created for each node. Then, we apply the
PM process to patch the detected vulnerabilities and verify the remediation
and patch impact in a test organization based on the process presented in
Figure 10.3. In our experiment, we assumed that the patch testing and
verification were successful for a test organization. The test organization is
created by a network of virtual servers deployed on a public cloud platform.
Figure 10.4 shows our test organization setup; it consists of eight virtual
servers (Host 1-8), one storage node (Local Storage), one Rudder node [31],
and one Nessus node [32]. All nodes are connected to a switch. The servers
are running Ubuntu as an Operating System (OS). Rudder node is a host
running the Rudder.io manager version 6.2 as an inventory tool. The Rudder
manager receives the nodes’ data through the installed Rudder agent on the
eight virtual servers. Nessus node is a host running the Nessus vulnerability
scanner community edition, version 8.14.0-ubuntu110_amd64. The nodes
are created using the OS image provided by the cloud provider and then
updated to the latest stable version available at the testing time (December

127

10. Automated Patch Management: An Empirical Evaluation Study

Figure 10.4: Test environments

2022). Each node has 1 CPU core, 1GB RAM, and OS version 18.04.4 LTS.

After initiating the test organization, we randomly select 21 CVE-IDs
(relevant to our virtual servers) and install their vulnerable version on our
eight virtual servers (Host 1-8). We deploy phase 1 and phase 2 of ACVRM to
identify the installed vulnerability and obtain a patch prioritization for each
host. In our experiment, we weight the prioritization criteria homogeneously,
i.e., wi = 0.1667 in Patch Score (PS) calculation. Table 10.2 shows the patch
priority list for Hosts 1-8, the selected CVE-IDs, the name of the software,
the Severity Score (SC), PS, and the patched version of the software. SC is
a normalized score with a standard vulnerability management module [6].

We implement a PM PoC, our core contribution in this study, in our test
organization according to our defined process. The aim is to investigate the
impact of the patch review and feedback loop on the success of automated
patching and reducing expert intervention. Hence, we define three cases:

128

10.7. Results and Discussion

• Case 1: PM based on the patch prioritization list in our previous
work [5], where the PS determines the patch order. In this case, there
is no automated review of the patch prioritization. We also consider
the organization does not have any historical data from its previous
patch. Moreover, we allowed the patch execution without interruption
until the end of the priority list (i.e., do not check the error percentage
for a test host).

• Case 2: PM based on the updated patch_prioritization.json by
adding an AR in the process. In this case, the organization does not
provide dependencies. Therefore, the update is based on removing
unnecessary patches (e.g., multiple cumulative patches of software or
application) from the list.

• Case 3: PM based on an improved priority list by automatically
checking dependencies of the vulnerabilities. In this case, we consider
the test organization has a record of dependencies, and AR will update
the patch_prioritization.json accordingly.

For each case, we keep the state of the virtual servers (e.g., with 21
installed vulnerabilities) unchanged and review the PM output for each case.
We also disabled the check percentage of error for stop execution in our
experiment as we wanted to capture all errors without interruption.

10.7 Results and Discussion

In this study, we used the success rate of the patch as a metric to evaluate the
proposed PM approach. We verified the patch impact in our test organization
through a GET request to the website of the test organization and the state
of the system (up and running) after the patch.

The result of Case 1 in Figure 10.5 shows that 48% of the patches
escalate to the expert because of the errors in patch execution. We also
observed that 19% of the patches failed in verification because they required
a system or service restart after the patch. We noticed the success rate of
the patch was 33% without a feedback loop and 52% with a feedback loop
(i.e., the condition of 19% of verification failure resolved after system or
service restart). Moreover, we identify the majority of the errors in Case 1
belong to software with a di�erent version in the priority list, but the error

129

10. Automated Patch Management: An Empirical Evaluation Study

Table 10.2: The sample of patch prioritization list for Host 1-4 with Ubuntu
operating system

Priority CVE-ID Name SC PS Patched version

1 CVE-2021-3711 openssl 9.1833 4.0810 1.1.1-1ubuntu2.1≥18.04.13
2 CVE-2021-44790 apache 8.3500 3.9421 2.4.29-1ubuntu4.21
3 CVE-2022-2526 systemd 8.3500 3.9421 237-3ubuntu10.56
4 CVE-2021-39275 apache 7.7833 3.8476 2.4.29-1ubuntu4.17
5 CVE-2022-23943 apache 7.7833 3.8476 2.4.29-1ubuntu4.22
6 CVE-2022-31813 apache 7.5167 3.8031 2.4.29-1ubuntu4.24
7 CVE-2022-2068 openssl 7.3167 3.7698 1.1.1-1ubuntu2.1 18.04.19
8 CVE-2022-32221 curl 6.6833 3.6642 7.58.0-2ubuntu3.21
9 CVE-2022-22576 curl 7.2167 3.6598 7.58.0-2ubuntu3.17

10 CVE-2022-23219 glibc 6.2667 3.5948 2.27-3ubuntu1.5
11 CVE-2022-45061 python 6.8167 3.4997 3.6.9-1≥18.04ubuntu1.9
12 CVE-2020-24489 intel-microcode 8.5167 1.9198 3.20210608.0ubuntu0.18.04.1
13 CVE-2022-42896 Linux Kernel 7.8500 1.8204 4.15.0-202.213
14 CVE-2021-4034 policykit-1 7.8500 1.8087 0.105-20ubuntu0.18.04.6
15 CVE-2022-34918 Linux Kernel 7.8500 1.8087 4.15.0-191.202
16 CVE-2022-0392 vim 7.0167 1.6698 2:8.0.1453-1ubuntu1.10
17 CVE-2022-1621 vim 6.8500 1.6420 2:8.0.1453-1ubuntu1.9
18 CVE-2021-0146 intel-microcode 6.4500 1.5170 3.20220510.0ubuntu0.18.04.1
19 CVE-2021-33910 systemd 6.3167 1.3664 237-3ubuntu10.49
20 CVE-2020-24513 intel-microcode 5.8500 1.2886 3.20210608.0ubuntu0.18.04.1
21 CVE-2022-21233 intel-microcode 5.6500 1.2553 3.20220809.0ubuntu0.18.04.1

messages are not the same. The column Case 1 Result in Table 10.3 presents
the patch result for Case 1.

The PM results of Case 2 in Figure 10.5 show the improvement in the
success rate of the patch by 60% without the feedback loop and by 90% with
a feedback loop. Also, the expert intervention decreased from 48% to 10%
comparing Case 1. 30% of the patch failed in verification has been resolved
by feedback loop condition as all required system or service restart. We
noticed that the number of CVE-IDs in our sample list decreased from 21
to 10 with AR.

The Case 3 result in Figure 10.5 shows the 80% success rate without
a feedback loop and 0% unknown error to escalate to the expert. 20% of
verification failures were addressed by feedback loop as they required system
restart.

Table 10.3 presents the patch result without a feedback loop to visualize
the impact of the feedback loop for three cases (e.g., Case 1 Result, Case 2
Result, and Case 3 Result). The patch priority has been changed for Case 2
and Case 3 compared to Case 1. We define � as the di�erence between the
position in patch priority (Pk,*) between Case 1 and other cases as:

�k,j = Pk,Case 1 ≠ Pk,Case j j = 2, 3 (10.1)

130

10.7. Results and Discussion

where k is CVE-ID in the list. A positive value of � indicates that the
CVE-ID got a higher priority concerning Case 1. The negative value of �
refers to lower priority compared with Case 1, while the zero value of � marks
no changes in the priority. The Case 2/3 priority (�) column in Table 10.3
shows the priority of Case 2/3, and the � value in parenthesis indicates
changes in the CVE-ID position compared with Case 1. For example, the
CVE-2022-2526 has a priority 3 by Case 1 while it becomes a priority 1 in
Case 2 and Case 3. The lack of values for the Case 2 and 3 priority (�)
column means that the CVE-ID has been removed from the priority list.
We only see the Delta with a positive value as the number of the CVE-IDs
decreases 52% for Case 2 and Case 3. For example, Case 1 consists of four
patches for apache (CVE-2021-44790, CVE-2021-39275, CEV-2022-23943,
and CVE-2022-31813), which is reduced to one in Case 2 and Case 3.

We observe that Case 2 and Case 3 have the same CVE-IDs in the patch
list, but the prioritization is di�erent. For example, CVE-2022-31813 has a
priority 2 in Case 2 and a priority 4 in Case 3. The di�erences in Case 2 and
Case 3 prioritization are due to the impact of the dependencies. In Case 3,
the organization provides a dependency tree of each vulnerability, and AR
verifies dependencies and adjusts the priority order accordingly. In our
test organization, three CVE-IDs (CVE-2022-31813, CVE-2022-2068, and
CVE-2022-32221) have the libc6 in their dependencies tree. The position of
libc6 vulnerability (CVE-2022-23219) is after those three CVE-IDs based
on PS. As described in 10.5, dependencies are prerequisites. The dependence
got a higher priority despite having a lower PS. Hence, the position of
CVE-2022-23219 was adjusted to be patched before the software, depending
on it. The result from all three case studies shows the impact of automation
on reducing the expert intervention in patch vulnerabilities. We also verify
the improvement in the patch prioritization by adding a feedback loop and
learning from patch history.

Furthermore, we observe that AR improved e�ciency in patch prioritiza-
tion and PM in Case 1 and 2 because AR removes the unnecessary patch
from the list and adjusts the list based on dependencies. Moreover, the
verification of patch impact for all three cases was positive, and the patches
did not break the system functionality.

131

10. Automated Patch Management: An Empirical Evaluation Study

Table 10.3: The patch result of Case 1-3; the empty cells indicate the CVE-ID
removed from the patch priority

Priority CVE-IDs Name Case 1 Result Case 2 Priority (�) Case 2 Result Case 3 Priority (�) Case 3 Result

1 CVE-2021-3711 openssl Verification fail
2 CVE-2021-44790 apache Error escalate to expert
3 CVE-2022-2526 systemd Successful 1 (2) Successful 1 (2) Successful
4 CVE-2021-39275 apache Error escalate to expert
5 CVE-2022-23943 apache Error escalate to expert
6 CVE-2022-31813 apache Error escalate to expert 2 (4) Error escalate to expert 4 (2) Successful
7 CVE-2022-2068 openssl Error escalate to expert 3 (4) Verification fail 3 (4) Successful
8 CVE-2022-32221 curl Successful 4 (4) Successful 5 (3) Successful
9 CVE-2022-22576 curl Error escalate to expert

10 CVE-2022-23219 libc6 Successful 5 (5) Successful 2 (8) Successful
11 CVE-2022-45061 python Successful 6 (5) Successful 6 (5) Successful
12 CVE-2020-24489 intel-microcode Error escalate to expert
13 CVE-2022-42896 Linux Verification fail 7 (6) Verification fail 7 (6) Verification fail
14 CVE-2021-4034 policykit-1 Successful 8 (6) Successful 8 (6) Successful
15 CVE-2022-34918 Linux Verification fail
16 CVE-2022-0392 vim Successful
17 CVE-2022-1621 vim Error secalate to expert 9 (8) Successful 9 (8) Successful
18 CVE-2021-0146 intel-microcode Verification fail
19 CVE-2021-33910 systemd Successful
20 CVE-2020-24513 intel-microcode Error escalate to expert
21 CVE-2022-21233 intel-microcode Error escalate to expert 10 (11) Verification fail 10 (11) Verification fail

Figure 10.5: The status of the patch management for cases 1-3

10.8 Conclusion and future work

The increasing number of publicly known vulnerabilities introduces the
challenge in VRM as it requires experts’ intervention. The average number
of vulnerabilities with critical and high scores was 40 per day in 2022,
according to NVD[27], which forced the organizations to improve their VRM
procedure to remain secure and compliant. In this study, we introduced the
PM of ACVRM to automate patching, reduce experts’ intervention, and
improve the success rate of the patch. We performed an analysis as follows:

1. We learned the challenges in PM and the criteria that should be con-
sidered from the literature review and patch management community
best practices. We determined that time to patch, expert availability,
system downtime, and dependencies are important criteria in patching
vulnerabilities. Therefore, we define our automated patching process
to reduce expert intervention while increasing the success rate of the
patch.

2. We designed and implemented phase 3 of ACVRM, which consists
of testing and verifying the vulnerability patches and the impact

132

References

of patches on the system functionality. We learned that reviewing
prioritization based on the history of the patch will improve the patch
prioritization in the organization’s context.

3. We verified the result of our proposed PM by analyzing the outcome of
each case. Our result shows that the ACVRM could adjust the patch
prioritization for each organization with less e�ort from security experts.
Automated Review has been introduced to remove unnecessary patches
and reduce errors due to dependencies. Our solution allows security
experts to set the patch failure rate and stop the execution of the
error-prone patch prioritization.

Our study shows how the organization could automate VRM based on
its context. ACVRM facilitates improvement in the VRM procedure by
patch prioritization in the organization’s context and reducing experts’
intervention. The feedback loop provides an opportunity of learning from
historical data and enhances the organization’s knowledge which increases
the success rate of patching. In the future, we could add the learning from
the patch management community, social media, and threat intelligence into
the review prioritization to support better decisions on the vulnerability
ranking. Hence, the success rate of patching will improve. Another possible
future direction could be using a machine learning algorithm such as a
decision tree in the Learning module to improve error handling.

References

[1] CIS Controls. http://www.cisecurity.org/controls/. [Online;
accessed 10-Jan-2023].

[2] The Log4j Vulnerability. https://www.wsj.com/articles/what-
is-the-log4j-vulnerability-11639446180. [Online; accessed 16-
November-2022].

[3] NIST National Vulnerability Database. https://nvd.nist.gov/.
[Online; accessed 10-Jan-2023].

133

http://%20www.cisecurity.org/controls/
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://nvd.nist.gov/

10. Automated Patch Management: An Empirical Evaluation Study

[4] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization of Severity
Rating for Automated Context-aware Vulnerability Risk Management”.
In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). IEEE. 2020,
pp. 200–205.

[5] V. Ahmadi Mehri, P. Arlos, and E. Casalicchio. “Automated Context-
Aware Vulnerability Risk Management for Patch Prioritization”. In:
Electronics 11.21 (2022), p. 3580.

[6] V. Ahmadi, P. Arlos, and E. Casalicchio. “Normalization Framework for
Vulnerability Risk Management in Cloud”. In: 2021 IEEE International
Conference on Future Internet of Things and Cloud (FiCloud). IEEE.
2021.

[7] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack.
“Timing the Application of Security Patches for Optimal Uptime.” In:
LISA. Vol. 2. 2002, pp. 233–242.

[8] Microsoft halts AMD meltdown and spectre patches after reports of
unbootable pcs. https://www.theverge.com/2018/1/9/16867068/
microsoft-meltdown-spectre-security-updates-amd-pcs-issues.
[Online; accessed 10-Jan-2023].

[9] EU Cybersecurity Act. https://eur-lex.europa.eu/eli/reg/2019/
881/oj. [Online; accessed 11-January-2023].

[10] European Cybersecurity Certification Scheme for Cloud Services. https:
//www.enisa.europa.eu/publications/eucs- cloud- service-
scheme. [Online; accessed 11-January-2023].

[11] Homland Security Act 2002. https : / / www . dhs . gov / homeland -
security-act-2002. [Online; accessed 11-January-2023].

[12] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar. “Software
security patch management-A systematic literature review of chal-
lenges, approaches, tools and practices”. In: Information and Software
Technology 144 (2022), p. 106771.

[13] U. Gentile and L. Serio. “Survey on international standards and best
practices for patch management of complex industrial control systems:
the critical infrastructure of particle accelerators case study”. In: In-
ternational Journal of Critical Computer-Based Systems 9.1-2 (2019),
pp. 115–132.

134

https://www.theverge.com/2018/1/9/16867068/microsoft-meltdown-spectre-security-updates-amd-pcs-issues
https://www.theverge.com/2018/1/9/16867068/microsoft-meltdown-spectre-security-updates-amd-pcs-issues
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.dhs.gov/homeland-security-act-2002
https://www.dhs.gov/homeland-security-act-2002

References

[14] G. Post and A. Kagan. “Computer security and operating system up-
dates”. In: Information and Software Technology 45.8 (2003), pp. 461–
467.

[15] J. Dunagan, R. Roussev, B. Daniels, A. Johnson, C. Verbowski, and
Y.-M. Wang. “Towards a self-managing software patching process using
black-box persistent-state manifests”. In: International Conference on
Autonomic Computing, 2004. Proceedings. IEEE. 2004, pp. 106–113.

[16] C. Tiefenau, M. Häring, K. Krombholz, and E. Von Zezschwitz. “Secu-
rity, availability, and multiple information sources: Exploring update
behavior of system administrators”. In: Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020). 2020, pp. 239–258.

[17] H. Huang, S. Baset, C. Tang, A. Gupta, K. M. Sudhan, F. Feroze,
R. Garg, and S. Ravichandran. “Patch management automation for
enterprise cloud”. In: 2012 IEEE Network Operations and Management
Symposium. IEEE. 2012, pp. 691–705.

[18] S. Midtrapanon and G. Wills. “Linux patch management: with security
assessment features”. In: 4th International Conference on Internet of
Things, Big Data and Security (IoTBDS). 2019.

[19] F. Zhang, P. Hu�, K. McClanahan, and Q. Li. “A machine learning-
based approach for automated vulnerability remediation analysis”.
In: 2020 IEEE Conference on Communications and Network Security
(CNS). IEEE. 2020, pp. 1–9.

[20] C.-W. Chang, D.-R. Tsai, and J.-M. Tsai. “A cross-site patch man-
agement model and architecture design for large scale heterogeneous
environment”. In: Proceedings 39th Annual 2005 International Carna-
han Conference on Security Technology. IEEE. 2005, pp. 41–46.

[21] M. Procházka, D. Kouril, R. Wartel, C. Kanellopoulos, and C. Tri-
antafyllidis. “A Race for Security: Identifying Vulnerabilities on 50
000 Hosts Faster than Attackers”. In: Proceedings of Science (PoS).
International Symposium on Grid and Clouds. 2011.

[22] J.-H. Lee, S.-G. Sohn, B.-H. Chang, and T.-M. Chung. “PKG-VUL:
Security Vulnerability Evaluation and Patch Framework for Package-
Based Systems”. In: ETRI journal (2009).

135

10. Automated Patch Management: An Empirical Evaluation Study

[23] B. Marx and D. Oosthuizen. “Risk Assessment and Mitigation at the
Information Technology Companies”. In: Risk Governance & Control:
Financial markets and institutions 6.02 (2016), pp. 44–51.

[24] F. Li, L. Rogers, A. Mathur, N. Malkin, and M. Chetty. “Keepers of
the machines: Examining how system administrators manage software
updates for multiple machines”. In: Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019). 2019, pp. 273–288.

[25] A. Shah, K. A. Farris, R. Ganesan, and S. Jajodia. “Vulnerability
selection for remediation: An empirical analysis”. In: The Journal of
Defense Modeling and Simulation 19.1 (2022), pp. 13–22.

[26] 2022 Vulnerability statistics report. https://www.edgescan.com/
2022-vulnerability-statistics-report-lp/. [Online; accessed
11-Jan-2023].

[27] NIST National Vulnerability Database search. https://nvd.nist.
gov/vuln/. [Online; accessed 10-Jan-2023].

[28] Y. Kansal, D. Kumar, and P. Kapur. “Vulnerability patch modeling”.
In: International Journal of Reliability, Quality and Safety Engineering
23.06 (2016), p. 1640013.

[29] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. “The
attack of the clones: A study of the impact of shared code on vulnera-
bility patching”. In: 2015 IEEE symposium on security and privacy.
IEEE. 2015, pp. 692–708.

[30] R. Schwarzkopf, M. Schmidt, C. Strack, and B. Freisleben. “Checking
running and dormant virtual machines for the necessity of security
updates in cloud environments”. In: 2011 IEEE Third International
Conference on Cloud Computing Technology and Science. IEEE. 2011,
pp. 239–246.

[31] Rudder. https://www.rudder.io/. [Online; accessed 14-January-
2023].

[32] Nessus Vulnerability Scanner. https://www.tenable.com/products/
nessus. [Online; accessed 12-January-2023].

136

https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://nvd.nist.gov/vuln/
https://nvd.nist.gov/vuln/
https://www.rudder.io/
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus

ABSTRACT

2023:07
ISSN 1653-2090

ISBN 978-91-7295-459-5

2023:07
V

ida A
hm

adi M
ehri

The information security landscape continually
evolves with increasing publicly known vulnera-
bilities (e.g., 25064 new vulnerabilities in 2022).
Vulnerabilities play a prominent role in all types
of security related attacks, including ransomware
and data breaches. Vulnerability Risk Management
(VRM) is an essential cyber defense mechanism
to eliminate or reduce attack surfaces in informa-
tion technology. VRM is a continuous procedure of
identification, classification, evaluation, and remedi-
ation of vulnerabilities. The traditional VRM proce-
dure is time-consuming as classification, evaluation,
and remediation require skills and knowledge of
specific computer systems, software, network, and
security policies. Activities requiring human input
slow down the VRM process, increasing the risk of
exploiting a vulnerability.

The thesis introduces the Automated Context-
aware Vulnerability Risk Management (ACVRM)
methodology to improve VRM procedures by
automating the entire VRM cycle and reducing
the procedure time and experts’ intervention.
ACVRM focuses on the challenging stages (i.e.,

classification, evaluation, and remediation) of VRM
to support security experts in promptly prioritiz-
ing and patching the vulnerabilities.

ACVRM concept is designed and implemented
in a test environment for proof of concept. The
efficiency of patch prioritization by ACVRM com-
pared against a commercial vulnerability man-
agement tool (i.e., Rudder). ACVRM prioritized
the vulnerability based on the patch score (i.e.,
the numeric representation of the vulnerability
characteristic and the risk), the historical data,
and dependencies. The experiments indicate that
ACVRM could rank the vulnerabilities in the or-
ganization’s context by weighting the criteria used
in patch score calculation. The automated patch
deployment is implemented with three use cas-
es to investigate the impact of learning from his-
torical events and dependencies on the success
rate of the patch and human intervention. Our
finding shows that ACVRM reduced the need for
human actions, increased the ratio of successfully
patched vulnerabilities, and decreased the cycle
time of VRM process.

	343947_2_B5_Vida AM.pdf
	Abstract
	Preface
	Acknowledgements
	Introduction
	Aim and Objectives
	Contribution

	Background
	Vulnerability Risk Management (VRM)
	Common Vulnerabilities and Exposures
	Common Vulnerability Scoring System
	Vulnerability Database
	Automation

	Scientific Approach
	Research Methodology
	Research Questions
	Validation Method

	Automated Contex-aware Vulnerability Risk Management
	Summary of Papers
	Normalization of Severity Rating for Automated Context-aware Vulnerability Risk Management
	Normalization Framework for Vulnerability Risk Management in Cloud
	Automated Context-aware Vulnerability Risk Management for Patch Prioritization
	Automated Patch Management: An Empirical Evaluation Study

	Conclusion and Future Work
	References

	Normalization of Severity Rating for Automated Context-aware Vulnerability Risk Managemen
	Introduction
	Related Work
	Vulnerability Risk Management (VRM)
	Proposed Solution
	Conclusion
	References

	Normalization Framework for Vulnerability Risk Management in Cloud
	Introduction
	Related works
	The role of Vulnerability Databases in Vulnerability Risk Management
	The VDs Normalisation Framework
	Validation Case study
	Analysis Result
	Conclusion
	References

	Automated Context-aware Vulnerability Risk Management for Patch Prioritization
	Introduction
	Related Work
	Automated Context Aware Vulnerability Risk Management (ACVRM)
	Prioritization
	Evaluation criteria and patch score
	Design and Implementation
	Experimental Validation of PoC
	Results and discussions
	Conclusion
	References

	Automated Patch Management: An Empirical Evaluation Study
	Introduction
	Background and related work
	Contribution
	ACVRM Phase 3: Patch Management
	Design and implementation
	Experiment
	Results and Discussion
	Conclusion and future work
	References

	Tom sida

