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A B S T R A C T

This study presents a new criterion (MMFC2) for predicting the forming limit curve (FLC) of sheet metal. The
strain path evolution of a critical element examined in a uniaxial tensile test is elaborated by incorporating the
results of experimental measurement, finite element simulation, and theoretical prediction via the Modified
Maximum Force Criterion (MMFC). A scaling factor is introduced to mimic the theoretical evaluation with the
simulated one. It is believed that the rotation of the principal axes of the theoretically considering material
point, which is initially co-axial with the external load coordinate, implicates the macro track of the strain
path change. Furthermore, an optimal event of the second derivative of the axial rotations is proposed to
indicate the strain localization and formulate the FLC. The performance of the proposed criterion is compared
with that of the original MMFC in predicting the FLC of three automotive sheet metals, of which all related
data were published in the Benchmark of Numisheet 2014 conference. The use of three different hardening
laws and three yield functions is examined in the analogy. The comparison reveals that the results of MMFC2
are more sensitive to the employed constitutive model than that of MMFC. Furthermore, the proposed MMFC2
presents concordant results with the experimental data. Nakajima tests are conducted for CR4 mild steel sheets
to validate the capacity of the proposed criterion. Well agreement between the experimentally measured data
and theoretical prediction based on the Yld2k yield function verifies its usefulness in practice.
1. Introduction

In the vast majority of sheet metal forming, evaluation of the
material’s formability is essential for designing new parts and testing
formed products. For this purpose, the forming limit diagram (FLD)
has been widely accepted in the community. This method establishes
a forming limit curve (FLC) to graphically indicate the material’s lo-
calization in various strain paths, ranging from uniaxial to equi-biaxial
tension. For decades, standard testing methods such as Nakajima tests
and Marciniak tests (Marciniak and Kuczyński, 1967) have been con-
structed to provide guidance for obtaining experimentally reliable FLC.
However, high costs, involved uncertainties, and shortages are the
main disadvantages of these experimental methods. Therefore, numer-
ous methods have been proposed to predict the FLC of sheet metal
theoretically.

In the same year, Swift (1952) and Hill (1952) proposed pioneering
criteria for necking initiation. The former assumed that the necking
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phenomenon occurs when the loading force gains its maximum. In the
latter one, the necking occurrence is stated at the instance of maximum
force per unit width in the major direction. Nowadays, the phenomenon
indicated due to Swift (1952) is known as the diffuse neck, whereas
the phenomenon observed due to Hill (1952) is known as the localized
neck. Because of their theoretical assumptions, Swift’s model can pre-
dict the entire range of FLC, but Hill’s criterion is only available for
the left side. However, the prediction of Hill’s model is agreed with
experimental measurements of various materials better than that of
Swift’s. Therefore, several studies combined the predictions of Hill’s
and Swift’s models for the left and right parts of FLC prediction (Bleck
et al., 1998; Djavanroodi and Derogar, 2010; Ganjiani and Assempour,
2007).

Based on an assumption of material’s imperfection, Marciniak and
Kuczynski proposed a numerical method well-known as the MK model
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(Marciniak and Kuczyński, 1967) for predicting the right side of FLC.
The model was extended to the left-side of FLC by Hutchinson and
Neale (1978). Nowadays, this model is the most widely used for the
theoretical prediction of sheet metal’s FLC. In the literature, the perfor-
mance of this model has been examined with various constitutive equa-
tions (Kuroda and Tvergaard, 2000; Butuc et al., 2002; Yoshida et al.,
2007), polycrystalline models (Butuc et al., 2021; Zhang et al., 2014;
Schwindt et al., 2015), as well as damage models (Kim et al., 2003; Son
and Kim, 2003). The MK model has been further extended to consider
the effect of material parameters (Mohammadi et al., 2014), process
parameters (Aretz, 2007; Chu et al., 2014), and three-dimensional stress
states (Eyckens et al., 2009; Allwood and Shouler, 2009). An interesting
and comprehensive review of the development of the MK model can be
found in Banabic et al. (2021).

Stören and Rice (1975) presented an alternative theoretical ap-
proach for FLC prediction by coupling the bifurcation analysis of defor-
mation velocity with the deformation theory. This method presents two
solutions corresponding to two possibilities of neck orientation: either
parallel to one of the principal strain axes or aligned along the direction
of zero extension (Zhu et al., 2001). Although this model was originally
proposed for isotropic material, it was then extended for anisotropic
material in Li et al. (2014), coupling with perturbation analysis (Hu
et al., 2018).

Recently, material deformation histories have been traceable by
using optical measurement techniques. Consequently, experimental val-
idation for the assumptions adopted in these theoretical methods can
be provided. Furthermore, knowledge of material behavior before and
after the necking stage is exposed. Measured results in the past demon-
strated that the strain path of a material point would be changed
gradually at the onset of the diffuse neck toward the plane-strain
tension mode, no matter its initial forming mode (Wang et al., 2014;
Vysochinskiy et al., 2016; Roatta et al., 2020). Based on the ob-
servation, Hora et al. (1996, 2013) proposed a theoretical method,
named modified maximum force criterion (MMFC), by taking into
account the transition of strain path beyond the diffuse neck. This
method was further extended to consider the effects of different phe-
nomena on the derived FLC, such as temperature and strain-induced
martensite transformation (Krauer et al., 2007), curvature and thick-
ness (Hora and Tong, 2006), and distortional hardening (Manopulo
et al., 2015), post-necking behavior (Pham et al., 2018). In addi-
tion, Paraianu et al. (2010) suggested adding two parameters to the
MMFC model to improve its predictability, which was validated for
DC01 steel sheets. Pham et al. (2019a) investigated the MMFC for-
mulation under a special case of constitutive equations based on a
power hardening law with the von Mises yield function. Lian et al.
(2018) successfully implemented the MMFC using a non-associated
flow rule. Zajkani and Bandizaki (2017) corporate the MMFC with
vertex model to determine the diffuse and localized necks.

The summaries reveal that these theoretical models provide good
predictions for the FLC of some particular materials. However, no
existing model can be applied to any metallic sheets (Abed-Meraim
et al., 2014; Banabic et al., 2020). Each one has its own advantages and
limitations. The MMFC model is attractive currently because it provides
the prediction of strain path evolution, which is able to be validated
experimentally. A previous comparative study (Pham et al., 2021b)
pointed out that the MMFC provides excellent predictions for the right
side of FLC of a large set of aluminum and steel sheets. However, this
model exhibits restrictions in practical use. Aretz (2004) reported a
singularity issue of this model when it is employed with a yield criterion
with plane facets. Pham et al. (2018) pointed out that its prediction for
the forming limit at the plane-strain mode (𝐹𝐿𝐶0) is strongly sensitive
to the selection of hardening law. Moreover, the theoretical assumption
of plane-strain state behaved as a sufficient condition of forming limits
in this model is considered ‘‘too strong’’ even unrealistic, as discussed
2

later on.
This study presents a new criterion (MMFC2) for predicting the
FLC of sheet metal based on the MMFC. Details on the formulation, as
well as the numerical implementation of the MMFC, are revisited. The
reliability of theoretical assumptions requested in MMFC is discussed.
Based on these discussions, a new equation for governing the strain
path change beyond the diffuse neck is introduced. Moreover, a new
criterion for detecting strain localization under plane-stress conditions
is proposed. The performance of the proposed criterion is compared
with that of the original MMFC in predicting the FLC of three automo-
tive sheet metals. The related data that are needed to predict their FLC
were published in the Benchmark of Numisheet 2014 conference. The
use of three different hardening laws and three yield functions is ex-
amined in the analogy. Experimental validation of MMFC2 predictions
for FLC of CR4 mild steel sheets is provided. In addition, a comparison
between the performance of MMFC2 and MK model is presented.

2. Modified maximum force criterion

2.1. Formulation

There is a well-established assumption for ductile sheet metals that
the state of the material’s deformation gradually changes toward the
plane-strain tension at the onset of the diffuse neck. The reality of the
assumption has been discussed early by Sowerby and Duncan (1971)
even under an unchanged loading condition. Nowadays, the history
of deformations can be traced, for example, using the digital image
correlation (DIC) method. That is a validation for the assumption of
strain path change after the diffuse neck.

Based on the observation, Hora et al. (1996) introduced MMFC, a
theoretical approach to estimating the FLC of sheet metals, in the form

𝜕𝜎1
𝜕𝜀1

+
𝜕𝜎1
𝜕𝛽

𝜕𝛽
𝜕𝜀1

≥ 𝜎1. (1)

Here, 𝜎1 is the major Cauchy stress; 𝛽 = 𝑑𝜀2∕𝑑𝜀1 is the ratio of
principal strain increments; 𝜀1 and 𝜀2 are the major and minor principal
strains, respectively. In the stages of homogeneous deformation, 𝛽 is
a constant depended on the forming mode, and the second term in
the left-hand side of Eq. (1) vanished. The equation is simplified to
the maximum force criterion, proposed by Swift (1952). As soon as
the diffuse neck initiation, the deformation is inhomogeneous, and the
strain path change is taken into account. Rearranging the equation
leads to the evolution

𝜕𝛽
𝜕𝜀1

=
𝜎1 −

𝜕𝜎1
𝜕𝜀1

𝜕𝜎1
𝜕𝛽

(2)

The equality condition in Eq. (2) indicates an assumption proposed
by Hora et al. (2013) that the strain path should change to keep the
force unchanged until the localized neck is formulated. The sufficient
condition for localized neck occurrence is assumed that the forming
mode reaches the plane-strain tension. In other words, the forming limit
is reached as soon as

𝛽 = 0 (3)

That means Eq. (1) is a necessary condition rather than a criterion for
necking detection. Eq. (3) is the sufficient condition for determining
the forming limits.

2.2. Implementation

2.2.1. Isotropic hardening
Under the associated flow rule, both yield and potential surfaces can

be described by a convex function 𝐹 (𝝈, 𝜀̄) = 𝜎̄(𝝈)−𝐻(𝜀̄) ≤ 0, where 𝜎̄(𝝈)
and 𝐻(𝜀̄) are the equivalent and reference stresses of the current stress
tate. Here, 𝛼 = 𝜎2∕𝜎1 is the stress ratio. Hence, 𝜎̄(𝝈) = 𝜎̄(𝜎11, 𝜎22, 𝜎12) =
𝜎 𝜎̄(1, 𝛼) since the shear component, 𝜎 is omitted for FLC calculation.
1 12
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The equivalent plastic strain increment, 𝑑𝜀̄ can be defined as the plastic
ultiplier of the corresponding stress state, for example

𝜀̄ = 𝑑𝜆, and 𝑑𝜀1,2 = 𝑑𝜆 𝜕𝐹
𝜕𝜎1,2

(4)

umerical implementation of MMFC requires two auxiliary functions
(𝛼) = 𝜎̄∕𝜎1 = 𝜎̄(1, 𝛼) and 𝑔(𝛽) = 𝛥𝜀̄∕𝛥𝜀1 to describe relationships
etween the equivalent parts and the first principal components. It is
orth noticing that 𝑓 (𝛼) here is the reciprocal of the one presented

n Hora et al. (2013).
For a given yield function, the strain increment ratio can be calcu-

ated as

=
𝑑𝜀2
𝑑𝜀1

=
𝜕𝐹∕𝜕𝜎2
𝜕𝐹∕𝜕𝜎1

=
𝜕𝜎̄∕𝜕𝜎2
𝜕𝜎̄∕𝜕𝜎1

(5)

Theory of equivalent plastic work states

𝑑𝑊 = 𝜎̄𝑑𝜀̄ = 𝜎1𝑑𝜀1 + 𝜎2𝑑𝜀2 (6)

ence, an explicit expression of 𝑔(𝛽) is achieved, for example

(𝛽) =
1 + 𝛼𝛽
𝑓 (𝛼)

(7)

Therefore, the terms 𝜕𝜎1∕𝜕𝜀1 and 𝜕𝜎1∕𝜕𝛽 of Eq. (2) can be calculated
as follows
𝜕𝜎1
𝜕𝜀1

=
𝜕𝜎1
𝜕𝜎̄

𝜕𝜎̄
𝜕𝜀̄

𝜕𝜀̄
𝜕𝜀1

= 𝑔(𝛽)𝐻 ′∕𝑓 (𝛼), (8)

𝜕𝜎1
𝜕𝛽

=
𝜕𝜎1
𝜕𝛼

𝜕𝛼
𝜕𝛽

= −𝜎̄
𝑓 ′(𝛼)
[𝑓 (𝛼)]2

𝜕𝛼
𝜕𝛽

= −𝐻
𝑓 ′(𝛼)
[𝑓 (𝛼)]2

∕𝛽′(𝛼). (9)

In these equations, 𝐻 = 𝐻(𝜀̄) for short explanation denotes the
hardening law, and the operator (′) denotes the first derivative of the
function. Noted that the yield condition, i.e. 𝜎̄(𝝈) = 𝐻(𝜀̄) is adopted in
Eq. (8). Substituting these equations into Eq. (2) yields

𝜕𝛽
𝜕𝜀1

=
(

𝑔(𝛽)
𝐻 ′(𝜀̄)
𝐻(𝜀̄)

− 1
)

𝑓 (𝛼)
𝑓 ′(𝛼)

𝛽′(𝛼) (10)

Eq. (10) is used to update 𝛽 iteratively until the condition expressed in
Eq. (3) is reached.

2.2.2. Distortional hardening
Experimental results of several materials (Pham et al., 2019b; Lee

et al., 2019) exhibit the distortion of yield surface during plastic
deformation. For such materials, the value of 𝑓 (𝛼) is dependent on the
value of the equivalent plastic strain as well. Thus, the aforementioned
implementation of MMFC can be cumbersome. Manopulo et al. (2015)
introduced an alternative method for implementing MMFC by using
first and second derivatives of 𝜎̄(𝝈). The implementation method can
take the distortional hardening behavior into account. In this method,
the luxury function 𝑓 (𝛼) can be evaluated as

𝑓 (𝛼) = 𝑑𝜎̄
𝑑𝜎1

= 𝜕𝜎̄
𝜕𝝈

𝜕𝝈
𝜕𝜎1

+ 𝜕𝜎̄
𝜕𝝈

𝜕𝝈
𝜕𝜎2

𝜕𝜎2
𝜕𝜎1

= 𝒒 ∶
(

𝜕𝝈
𝜕𝜎1

+ 𝛼 𝜕𝝈
𝜕𝜎2

)

(11)

where 𝒒 = 𝜕𝜎̄
𝜕𝝈 is the normal vector of yield locus. While the strain

ncrement ratio can be calculated as

=
𝜕𝜎̄∕𝜕𝜎2
𝜕𝜎̄∕𝜕𝜎1

=
(

𝒒 ∶ 𝜕𝝈
𝜕𝜎2

)(

𝒒 ∶ 𝜕𝝈
𝜕𝜎1

)−1
(12)

Their derivatives can be calculated as

𝑓 ′(𝛼) =
𝜕𝑓
𝜕𝝈

∶ 𝜕𝝈
𝜕𝛼

(13)

′(𝛼) =
𝜕𝛽
𝜕𝝈

∶ 𝜕𝝈
𝜕𝛼

(14)

here
𝜕𝑓
𝜕𝝈

= 1
𝜎1

(

𝒒 − 𝑓
𝜕𝜎1
𝜕𝝈

)

(15)

𝜕𝝈 = 𝜎1

(

𝜕𝝈 − 1 𝜕𝝈
)

(16)
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𝜕𝛼 𝜕𝜎2 𝛼 𝜕𝜎1
𝜕𝛽
𝜕𝝈

=
(

𝒒 ∶ 𝜕𝝈
𝜕𝜎1

)−1 [ 𝜕𝒒
𝜕𝝈

∶
(

𝜕𝝈
𝜕𝜎2

− 𝛽 𝜕𝝈
𝜕𝜎1

)]

(17)

Substituting Eqs. (11)–(17) into Eq. (10) derives the increment of 𝛽 in
the post-necking region. The expression is interpreted with the equiv-
alent stress and its derivatives, which allowed the use of a distortional
yield function, as discussed in Manopulo et al. (2015).

3. New criterion for localized neck prediction

This section proposes a new criterion, the so-called MMFC2, for
FLC prediction. The motivation of the proposed criterion is hinged on
the strain path change beyond the diffuse neck, which was originally
discussed in the MMFC by Hora and co-workers (Hora et al., 1996,
2013). Additionally, an implementation scheme for the new criterion
is detailed with the use of an isotropic hardening law.

3.1. Proposal of MMFC2

The originality of MMFC rests on the reality of these assumptions
made in Eqs. (2) and (3), no matter how it was implemented numer-
ically. With a given forming mode, these assumptions relate to the
necessary and sufficient conditions for determining the forming limit
or strain localization. The reliability of these conditions is revisited
and discussed. Based on these discussions, new criteria for governing
the strain path change and detecting the initiation localization are
suggested.

3.1.1. Strain path evolution
As discussed before, Eq. (2) requests an unchanged force acting

on the material’s cross-section from the initiation of the diffuse neck
to the formation of the localized neck. However, the assumption is
rarely true, even though in the case of the uniaxial tensile test. In
such a case, the loading force estimated at the instance of a localized
neck may be less than that of the uniform elongation. As discussed
in Manopulo et al. (2015), Pham et al. (2021c), Pham and Kim (2022),
the difference may be up to 10% for many steel and aluminum sheets.
It is suggested that Eq. (2) enforces a faster changing-rate 𝜕𝛽∕𝜕𝜀1 than
the reality. Experimental validation of this changing rate is difficult
even with DIC due to inevitable noises contained in the measured data.
Moreover, the noises blow up the data, which is calculated by the ratio
of small quantities, like 𝛽 in this study. Fortunately, simulation results
achieved from a finite element analysis (FEA) can help to understand
the behavior in detail.

For this purpose, a finite element (FE) model is developed in
Abaqus/Explicit version 2020 to simulate a uniaxial tensile test of
the DP780 sheet. The reasons for selecting this material are twofold.
At first, this material was investigated in the previous study of the
authors (Pham et al., 2021c). As so, the material model can be used
directly without calibration. Secondly, this material exhibits weak
anisotropy (Ha et al., 2013), which allows using the von Mises yield
function in the plasticity description to reduce the computational time.
In the FE model, solid elements C3D8R are adopted to model the
one-eight of the specimen due to the symmetry. Details on boundary
conditions applied in these simulations can be found elsewhere (Pham
et al., 2021c; Lou and Huh, 2013). In order to investigate the mesh-size
effect on the simulated results, four different mesh cases are generated
on the specimen. In the fine mesh case, the smallest element size is 0.1
× 0.1 × 0.1 𝑚𝑚3, which is small enough to capture the material behavior
under necking conditions. Fig. 1 presents details on these mesh cases.

Fig. 2 shows the contour comparison of the equivalent plastic strain
distribution on the simulated tensile specimens, whereas, Fig. 3 com-
pares their force predictions. The comparisons reveal the sensitivity of
the simulated results on the adopted mesh size. Decreasing the element
size refines the strain localization observed in the center area and
presents a lower prediction for the loading force after the maximum.
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Fig. 1. Four mesh cases used in simulations of the uniaxial tensile test of DP780 sheet.
Fig. 2. Mesh size effect on the equivalent plastic strain distribution of the simulated DP780 tensile specimens.
Moreover, the same material model is adopted into the MMFC code
4

developed in Pham et al. (2018) to predict the necking strain of the

DP780 sheet under the uniaxial tension. Fig. 4 shows a comparison be-

tween the predictions of the 𝛽 evolution of the center elements located
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Fig. 3. Comparison of force predictions of four mesh cases.
Fig. 4. Comparison between 𝛽 evolution predicted by MMFC and FE simulations for DP780 sheet.
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at either the specimen’s outer or middle surfaces. In this figure, the
value of 𝛽 estimated at the 𝑖𝑡ℎ step is approximated via the maximum
and middle principal plastic strain components (denoted by 𝜀1𝑝 and 𝜀2𝑝)
as follows

𝛽𝑖 =
𝜀𝑖2𝑝 − 𝜀𝑖−12𝑝

𝜀𝑖1𝑝 − 𝜀𝑖−11𝑝

(18)

In addition, the 𝛽 evolution estimated based on the MMFC code is
lso plotted in this figure for comparison. As seen in this figure, the
esh size presents a significant effect on the 𝛽 evolution observed in

he element located at the outer surface of the specimen. However,
he effect is negligible in the element located on the middle surface.
urthermore, the evolution evaluated by MMFC is remarkably faster
han that of FE simulations, either for the outer or middle elements.

The difference is believed to be due to the coarse assumption made
y Eq. (10) that requests an unchanged loading force from the diffuse
eck to the localized neck. Back to Fig. 3, the mesh size has no
ffect on the force prediction before the maximum. However, after the
aximum force, the higher force is predicted as the larger element size
5

i

is employed. The observation is consistent with the result of 𝛽 change
presented in Fig. 4b, whereas the faster 𝛽 change is observed as the
larger mesh is used. The 𝛽 evolution derived in MMFC is considered
as the boundary of the FEA results, which may be achieved when an
infinite element size is imposed.

To refine the assumption and make it closer to reality, a scaling
factor, 𝜉, is suggested to update 𝛽 as follows

𝛥𝛽 = 𝜉
(

𝑔(𝛽)
𝐻 ′(𝜀̄)
𝐻(𝜀̄)

− 1
)

𝑓 (𝛼)
𝑓 ′(𝛼)

𝛽′(𝛼)𝛥𝜀1. (19)

s a result, this factor controls the changing rate of 𝛽 beyond the diffuse
eck. If 𝜉 = 1, the procedure secures the original scheme proposed
y Hora et al. (2013). When 𝜉 < 1, the factor slows down the 𝛽 change
nd postpones the strain localization.

Fig. 5a compares the 𝛽 evolution estimated by several scaling factors
ith that derived from the middle-surface element of the FEA with the

ine mesh. For a more detailed comparison, Fig. 5b presents the slope
f 𝛽 − 𝜀̄ curves.

As seen in these figures, the higher value of the scaling factor is

mposed, the faster evolution of 𝛽 is achieved. With 𝜉 = 0.5, the
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Fig. 5. Effect of the scaling factor on the prediction of 𝛽 evolution.
Fig. 6. Experimental observation of strain path change in uniaxial tension of DP780 sheet.
calculated 𝛽 evolution agreed well with the FEA prediction, up to a
value of 𝜀̄ = 0.5. Afterward, the FEA simulated 𝛽 is extremely smaller
than the calculated one based on the MMFC2.

Despite many numerical noises contained in the early stage of the
calculated slope of the FEA result, a prediction with 𝜉 = 0.5 is preserved
in the FEA curve. Remarkably, the deviation is started at 𝜀̄ = 0.3. Thus,
it is suggested that 𝜉 should be a function of 𝜀̄ to capture the evolution
of 𝛽 in the entire range of 𝜀̄ presented in Fig. 5. However, 𝜉 = 0.5 would
be a good enough approximation for the neck detection purpose.

3.1.2. Strain localization
In the original MMFC, the forming limit was determined by the

condition expressed in Eq. (3). The stage of deformation at the forming
limit haves to appear somewhat before the failure or fracture of the
tested specimen. The forming limit is commonly represented by the
initiation of the localized neck or strain localization. Therefore, the
requirement of Eq. (3) in MMFC seems to be overreached and has no
physical meaning.

Fig. 6a shows the strain history of several necking points observed
in the uniaxial tensile test of the aforementioned DP780 sheet (Pham
6

et al., 2021c). In order to track the 𝛽 evolution of these points, their
strain histories are approximated by fifth-order polynomials, as shown
in this figure. Based on these fitting functions, 𝛽 can be calculated
analytically and illustrated in Fig. 6b. It is worth mentioning that com-
paring the 𝛽− 𝜀̄ curves presented in Fig. 4 with that plotted in Fig. 6b is
not straightforward. Because the simulated curves are derived with an
assumption of the isotropic von Mises yield function, meanwhile, the
experimental curves cover a somewhat degree of material’s anisotropy.

According to this figure, 𝛽 keeps almost a constant of −0.42 in
the early stages of deformation, i.e., before diffuse neck. After diffuse
neck or in the post-necking range, the value of 𝛽 increases gradually.
In other words, the forming mode of these examined material points
transits gradually from the uniaxial tension (i.e., 𝛽 ≈ −0.5) toward
the plane-strain tension (i.e., 𝛽 = 0). At the last recorded stage, 𝛽
has a value of 0.265, which indicates a forming mode in between
these before-mentioned. Thus, the experimental forming limit should
be determined at a certain deformation stage, which is prior to the
plane-strain tension.

During the uniaxial tensile test, on the one hand, deformation
beyond the diffuse neck is non-homogeneous leading to the 𝛽 change.
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Fig. 7. Velocity and acceleration of 𝛽 change predicted by MMFC for DP780 sheet observed in different forming modes.
Fig. 8. Illustration of diffuse and localized necks formulated in sheet metals.
On the other hand, the deformation at the onset of strain localization
is concentrated in narrow regions leading to a significant reduction in
the thickness of these areas. For example, in the MK method (Banabic
et al., 2021), the localization is determined by comparing the thickness
strain increments of the inside necking region and its outside. However,
the MMFC model is developed based on the stress and strain states of
a single material point. Therefore, a new criterion is needed to detect
the localization.

A 𝛽 value represents a well-defined strain path under proportional
loads. For instance, the uniaxial tension exposes 𝛽 = −0.5 while 𝛽 = 1.0
is well-known for equi-biaxial tension of an isotropic material. The
amount of 𝛽 increment or 𝛥𝛽 along the strain path is considered as
the ‘‘velocity’’ of the strain path change. Fig. 7 presents the evolution
of 𝛥𝛽 calculated by the original MMFC for the uniaxial and equi-
biaxial tension forming modes of the DP780 sheet. It is noted that the
𝑦-axis of this figure is re-scaled to focus on the necking ranges. As
seen in this figure, the velocity increases gradually and non-linearly
in the post-necking range (e.g., beyond the diffuse neck). Hence, the 𝛽
‘‘acceleration’’ or 𝑑(𝛥𝛽)∕𝑑𝜀̄ is examined in this figure for comparison.
At the onset of the diffuse neck, the 𝛽 acceleration reaches a local
minimum/maximum before an extreme diversion. The phenomenon is
only observed in the results of MMFC calculation but cannot be verified
in the experimental measurements. As so, reasons for the phenomenon
can be explained conceptually as shown in Fig. 8.
7

Experimentally, non-homogeneous deformation in the post-necking
range yields a rotation of the principal axes of the material point
located inside the neck. Prior to the strain localization, the thickness
strain is increased as gradually as before. That leads to an in-plane
rotation of the principal axes, i.e., the thickness direction of the ma-
terial point is assumed to be unchanged. However, after the strain
localization is established, the deformation is concentrated in a narrow
area, well-known as the necking band. Within this area, the out-of-
plane deformation is suggested to dominate the rotation of the principal
axes. That leads to a significant change in the thickness direction of the
material point.

In MMFC, 𝛽 regards the rotation of the principal axes of the material
point. At the instance of the diffuse neck, the value of 𝛽 is changed
with the highest magnitude of acceleration. Thereafter, 𝛥𝛽 increases as
deformation continue, as shown in Fig. 7. Nevertheless, the acceleration
should decrease gently, and the 𝛥𝛽 should reach saturation, similar to
the FEA result shown in Fig. 4b. However, only in-plane deformation
is modeled in MMFC due to the plane-stress assumption, despite the
occurrence of the out-of-plane rotation in reality. Therefore, the 𝛽
acceleration is increased again to keep the equilibrium equation in
MMFC and speed up the 𝛽 change again. Remind that the diffuse neck
in MMFC is formulated at the instance of the in-plane rotation start.
Similarly, it is suggested that the strain localization is established at
the moment when the out-of-plane rotation begins. Therefore, it is
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Fig. 9. Schematic diagram of the proposed MMFC2.
assumed elementally that the strain localization happens as soon as the
𝛽 acceleration reaches its minimum magnitude.

Based on the discussion, the initiation of the localized neck is
suggested to achieve at the moment when a local minimum/maximum
of 𝛽 acceleration is reached. Numerically, the criterion for detecting the
localization in MMFC is proposed as follows:

min
𝜀̄

|

|

|

|

𝑑(𝛥𝛽)
𝑑𝜀̄

|

|

|

|

(20)

3.2. Implementation of MMFC2

A diagram of MMFC2 implementation is depicted in Fig. 9, which is
similar to the one presented in Hora et al. (2013). The procedure starts
with a given forming mode, determined by a given strain increment
ratio 𝛽. Noticed that the forming mode is examined in a range from
the uniaxial tension to equi-biaxial tension, which results in a well-
defined range 𝛽 ∈ [−0.5, 1]. The corresponding stress ratio 𝛼 is obtained
8

by solving the following equation numerically
𝜕𝐹 (1, 𝛼)
𝜕𝜎2

= 𝛽
𝜕𝐹 (1, 𝛼)
𝜕𝜎1

(21)

Subsequently, the auxiliary functions 𝑓 (𝛼) and 𝑔(𝛽) are calculated
straightforwardly. The first derivative functions can be calculated using
the finite difference method, such as

𝑓 ′(𝛼) =
𝑓 (𝛼 + 𝛥𝛼) − 𝑓 (𝛼)

𝛥𝛼
(22)

𝛽′(𝛼) = 1
𝛥𝛼

[

𝜕𝐹 (1, 𝛼 + 𝛥𝛼)∕𝜕𝜎2
𝜕𝐹 (1, 𝛼 + 𝛥𝛼)∕𝜕𝜎1

−
𝜕𝐹 (1, 𝛼)∕𝜕𝜎2
𝜕𝐹 (1, 𝛼)∕𝜕𝜎1

]

(23)

where 𝛥𝛼 = 1𝐸 − 5 is the finite increment of the stress ratio. The value
is determined following the recommendation in Choi and Yoon (2019).

With a small increment of the equivalent plastic strain, the incre-
ments of the major and minor strains are calculated accordingly. Under
the yield condition, the equivalent stress is assigned as 𝜎̄ = 𝐻(𝜀̄). Hence,
the condition for the diffuse neck is checked, leading to an update of 𝛽
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Table 1
Calibrated parameters of hardening laws for the tested materials.

Swift Voce Pham & Kim

𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3 𝑐4
(MPa) (MPa) (MPa) (MPa) (MPa)

DP600 1097.0 0.00192 0.182 771.5 360.8 21.174 400.0 789.66 84.29 0.391
TRIP780 1503.6 0.0083 0.273 989.8 557.2 12.424 456.0 899.17 33.15 0.383
AA5182-O 615.3 0.00761 0.363 376.7 260.9 9.781 125.0 459.83 32.95 0.465
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increment if necessary. Eq. (19) is used for this purpose with a constant
value of 𝜉 (e.g., 𝜉 = 0.5 in this study). Again, the finite difference

ethod is adopted to estimate the 𝛽 acceleration. If the condition for
ocalized neck expressed in Eq. (20) is satisfied, the forming limit of the
urrent forming mode is documented. Then, the procedure is repeated
or the next forming mode.

Similar to the MMFC, the implementation of MMFC2 suffers a sin-
ularity in predicting the limit strain of a perfect plane-strain forming
ode where 𝛽 = 0. In such a case, the strain path change does not

ake place. The singularity is due to the numerical errors in calculating
𝛽∕𝑑𝛼 and can be avoided technically by excluding the case of 𝛽 = 0

from the set of given forming modes. In this study, initial values of 𝛽 are
determined by 42 consecutive points in the range [-0.5,1]. So, the two
closest points to the zero are −0.024 and 0.012, which clearly indicate
the strain path change in calculation.

4. Verification with published materials

This section verifies the potential of MMFC2 with the published
material data reported in the benchmark section of the Numisheet
2014 conference (Stoughton et al., 2013; Wu, 2013). This benchmark
conducted experimental tests for three automotive materials, including
DP600, TRIP780, and AA5182-O sheets. For each material, stress–strain
data obtained from the uniaxial tensile tests conducted in seven orien-
tations and bulge tests were provided. In addition, experimental FLCs
determined from Nakajima tests were also reported for comparison.

4.1. Constitutive equations

Constitutive equations govern the material behavior under multi-
axial stress states, which requires a flow rule, a hardening law, and
a yield function. Since the associated flow rule is adopted in this
study, several hardening laws and yield functions are examined. A
hardening law reproduces the relation between the equivalent plastic
strain and the reference stress. Within the published experimental data
for each tested material, the benchmarking committee recommended
several hardening laws with their calibrated parameters. Among them,
Swift and Voce models, which were widely used in automotive sheet
metal forming simulations, are adopted in this section to cope with the
demand. In addition, the application of a new hardening law proposed
in Pham and Kim (2017) is examined in this study. Formulations of
these hardening laws are expressed as follows:

Swift: 𝐻(𝜀̄) = 𝑐1(𝑐2 + 𝜀̄)𝑐3 (24)

Voce: 𝐻(𝜀̄) = 𝑐1 − 𝑐2 exp(−𝑐3𝜀̄) (25)

Pham & Kim: 𝐻(𝜀̄) = 𝑐1 + 𝑐2(1 − exp(−𝑐3𝜀̄)).(𝜀̄ + 0.002)𝑐4 (26)

where 𝑐1 ∼ 𝑐4 are parameters of these functions. These parameters were
calibrated in the previous work (Pham et al., 2021a) and be reported
in Table 1.

For each tested material, stress–strain data and Lankford coefficients
obtained from uniaxial tensile tests in each 15◦ from the rolling di-
rection were covered by the benchmarking committee. In addition,
equi-biaxial stress–strain data were derived from bulge tests. Due to
the anisotropy of the tested materials, three yield criteria including
9

H

Table 2
Calibrated parameters of yield functions for the tested materials.

Hill48 Yld2k

DP600 TRIP780 AL5182-O DP600 TRIP780 AL5182-O

ℎ1 0.5514 0.5761 0.5202 𝛼1 1.0546 1.0097 0.9416
ℎ2 0.5423 0.5282 0.5459 𝛼2 0.9400 0.9407 1.0329
ℎ3 0.4486 0.4239 0.4798 𝛼3 0.9899 1.0660 1.0611
ℎ4 1.5951 1.4889 1.6548 𝛼4 1.0059 1.0069 1.0320

𝛼5 1.0325 1.0425 1.0230
𝛼6 1.1837 1.1327 1.0220
𝛼7 1.0697 1.0098 1.0229
𝛼8 0.9427 0.9713 1.0992
𝑚 6 6 8

von Mises (labeled by ‘‘Mises’’), Hill’s quadratic (Hill, 1948) (labeled by
‘‘Hill48’’), and Yld2000-2d (Barlat et al., 2003) (labeled by ‘‘Yld2k’’) are
adopted to describe their yield surface. The equivalent stress defined in
these functions is given under the plane stress condition as follows

von Mises: 𝜎̄ =
√

𝜎211 + 𝜎222 − 𝜎11𝜎22 + 3𝜎212 (27)

Hill48: 𝜎̄ =
√

ℎ1𝜎211 + ℎ2𝜎222 + ℎ3(𝜎11 − 𝜎22)2 + 2ℎ4𝜎212 (28)

Yld2k: 𝜎̄ =
{1
2
[

|𝑋′
1 −𝑋′

2|
𝑚 + |2𝑋′′

1 −𝑋′′
2 |

𝑚 + |2𝑋′′
2 −𝑋′′

1 |
𝑚]
}1∕𝑚

(29)

here ℎ1 ∼ ℎ4 are parameters of the Hill48 function; 𝑚 is the exponent
oefficient and 𝑋′

1,2 and 𝑋′′
1,2 are the principal values of the two stress

inear transformations of the Yld2k function. In total, Yld2k function
equires the exponent 𝑚 and eight anisotropic parameters 𝛼1 ∼ 𝛼8
see Barlat et al. (2003)). The detail in the calibration of these param-
ters was discussed in the previous works (Pham et al., 2018, 2021a)
nd is not repeated here. Table 2 presents the calibrated parameters
or each examined material. The derived yield functions and hardening
aws are employed to calculate the FLC for the tested materials based
n the original MMFC and proposed MMFC2. The predicted results are
ompared to the measured data reported from the benchmark.

Fig. 10 compares the measured data on the yield locus of the tested
aterials with the predictions based on the three mentioned yield

unctions. In addition, their predictions for the relationship between
he stress ratio, 𝛼, and the strain increment ratio, 𝛽, are also plotted in
his figure. For a comprehensive comparison of these material’s models,
heir predictions of normalized yield stress and Lankford coefficient are
resented in Appendix. According to Fig. 10, von Mises and Hill48
unctions present similar yield loci for each material. However, the
esults derived from the Yld2k functions show a more flattened shape
han the others, especially in the plane-strain regions. The differences in
he yield loci predictions lead to significant differences in the estimated
− 𝛼 curves. Similar to the yield loci prediction, the Hill48 functions
rovide similar curves to the one of the von Mises. However, the results
f the Yld2k function appear with dissimilar shapes that contain a
ostly linear line observed in the plane-strain region (i.e., 𝛼 ∼ 0.5).
he linear lines in the predicted 𝛽 − 𝛼 curves of the Yld2k functions
ay lead to singular predictions of FLC, as discussed in Aretz (2007),

ora et al. (2013).
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Fig. 10. Calibrated yield loci and their corresponding predictions of 𝛽 − 𝛼 relationship of the tested materials.
4.2. Comparison

Figs. 11–13 show comparison results of FLC predictions for DP600,
TRIP780, and AA5182-O sheets, respectively, based on differences in
constitutive equations as well as the calculation frameworks. Within
the same constitutive model, MMFC and MMFC2 provide the same
prediction for the forming limit at the plane-strain region for each
examined material.
10
For all tested materials, the MMFC2 presents lower predicted FLCs
than that of MMFC when the von Mises and Hill48 yield functions are
adopted. Compared to the experimental data, the MMFC2 improves the
predictions by these yield functions, obviously.

However, the performance of the Yld2k yield function does not
improve in the current implementation of the MMFC2. Compared to
the predictions of MMFC, the MMFC2 lowers down the left side of FLCs
but higher up the right side of two steel materials. Especially, MMFC2
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Fig. 11. FLC prediction of DP600 sheets based on different criteria.
presents a singularity in the FLC prediction of AA5182-O material,
whereas the singularity is not observed in the forecast of MMFC. It
is suggested that the MMFC2 is more sensitive to the adopted yield
function than the MMFC. Therefore, a proper material model should
be used in MMFC2 to predict sheet metal’s FLC.

Nowadays, the Yld2k yield function is widely used in sheet metal
forming simulations due to its excellent ability to capture material’s
anisotropy by means of either normalized yield stress or Lankford
11
coefficient. In this manner, this model outperforms the von Mises and
Hill48 yield functions. The advantage of the Yld2k criterion is owing to
its formula, which takes the shear stress component, 𝜎12, into account
with two parameters. However, the shear stress component is totally
ignored in the computational framework of MMFC and MMFC2. In
these approaches, the yield loci and 𝛽 − 𝛼 relationship formulated
with the principal stresses are the most important characteristics of
a selected yield function. In this manner, excluding the shear stress
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Fig. 12. FLC prediction of TRIP780 sheets based on different criteria.
in the Yld2k yield function presents flatter 𝛽 − 𝛼 curves than one of
ither von Mises or Hill48 yield functions, as shown in Fig. 10. That
aises unexpected errors in calculating the 𝛽′(𝛼) numerically, even the
ingularity as discussed in Aretz (2007), Hora et al. (2013). Thus,
sing Yld2k in conjunction with either MMFC or MMFC2 frameworks is
ecommended for materials that show a more ‘‘curvature’’ 𝛽 − 𝛼 curve.
12
It is not recommended to use this yield function for materials that show
a ‘‘flattened’’ curve.

The comparison demonstrates the potential of the proposed MMFC2
approach, especially when it is used with von Mises and Hill48 yield
functions. Further validation is needed to evaluate the performance of
the proposed MMFC2.
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Fig. 13. FLC prediction of AA5182-O sheets based on different criteria.
4.3. Effect of the scaling factor 𝜉

Recall the results of the von Mises yield function and Swift hard-
ning law shown in Figs. 11b for DP600 sheets, the prediction was
btained with a scaling factor of 𝜉 = 0.5. The calculation process
ith several values of 𝜉 is repeated, and the achieved results are
lotted in Fig. 14 to clarify its effect on the calculated FLC based on
MFC2. As seen in this figure, the level of FLC is strongly dependent
13
on the imposed scaling factor, except for the 𝐹𝐿𝐶0. The higher value
of the scaling factor is employed, the lower FLC is derived. The same
observation is expected with other constitutive models.

The scaling factor regards the rotation rate of the principal axes
of the considered material point. Since the left and right sides of
an FLC represent different forming processes, i.e., deep drawing and
pure stretching, respectively, different scaling factors can be applied in
calculating the corresponding forming limits, as suggested empirically
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Fig. 14. Sensitivity of the scaling factor on the predicted FLC of DP600 sheets based
on MMFC2.

in Mu et al. (2020). However, it is preferable theoretically to adopt a
constant scaling factor in calculating each side of FLC. A numerical ap-
proach, as done in Section 3.1.1, is an efficient approach to estimating
the value of these scaling factors.

5. Validation

This section presents a validation of the proposed MMFC2 frame-
work in predicting the FLC of CR4 mild steel sheets. This material
is widely used in manufacturing car body parts. The thickness of the
tested material is 0.9 mm.

5.1. Experiment procedure

A series of experimental tests are performed to calibrate the consti-
tutive equations of the tested material and estimate the experimental
FLC.

Uniaxial tensile tests are conducted to examine the material behav-
ior under uniaxial tension. Following the ISO 6892-1:2009 standard,
specimens are prepared in different orientations, including the rolling
(RD), diagonal (DD), and transversal (TD) directions. These tests are
carried out at 12 mm/min up to a strain level of 0.2% followed by
38 mm/min up to fracture. The strain evolution during these tests is
captured with a 2D ARAMIS digital image correlation (DIC) system.
The forces are measured by a load cell mounted on the cross-head of the
testing machine. Fig. 15a presents the engineering stress–strain curves
obtained from these tests. In addition, the ultimate tensile strength
(UTS) determined for each specimen is also plotted in this figure.
Table 3 presents the material properties of the CR4 material obtained
from uniaxial tensile tests. It can be seen that the difference between
these stress–strain curves is minor. Moreover, beyond the diffuse neck
indicated by the UTS, the material is deformed significantly before frac-
ture. This comparison emphasizes the importance of the post-necking
behavior of the investigated material.

Additionally, a viscous bulge test is performed to characterize the
material behavior under the equi-biaxial stress state. Details on the
testing conditions for the bulge test were described in previous stud-
ies (Sigvant et al., 2009; Pilthammar et al., 2021) and are not repeated
here. The strain evolution during the test is measured with a 3D
ARAMIS DIC system. A comparison between the hardening curves ob-
tained from the uniaxial tensile and bulge tests is provided in Fig. 15b.
14
Table 3
Material properties obtained from uniaxial tests of CR4 sheets.

Orientation RD DD TD
Young modulus (GPa) 190 193 191
Yield stress (MPa) 154.8 154.0 150.8
Ultimate tensile strength (MPa) 295.4 298.2 290.3
Maximum uniform deformation 0.239 0.247 0.241
Elongation (%) 54.7 49.6 52.5
Lankford coefficient 2.1 1.876 2.577

Table 4
Inputs and calibrated parameters of hardening law and yield functions for CR4 sheets

Input 𝑘0 𝑘45 𝑘90 𝑘𝑏 𝑅0 𝑅45 𝑅90 𝑅𝑏
1.0 1.037 1.015 1.278 2.1 1.876 2.577 1.054

Hill48 ℎ1 ℎ2 ℎ3 ℎ4

0.3208 0.6792 0.2915 1.5537

Yld2k 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 m

1.0115 1.0540 0.6823 0.8525 0.8692 0.5654 0.9897 1.0882 6

Pham & Kim 𝑐1 𝑐2 𝑐3 𝑐4
155.0 420.15 55.68 0.47

As seen in this figure, the flow stresses and strains from the bulge test
are significantly higher than the uniaxial tensile tests.

The experimental stress–strain data obtained from the uniaxial ten-
sile test of the RD specimen are used as the reference or effective stress–
strain relationship. Hence, the bulge stress–strain data are converted
into effective data under the theory of equivalent plastic work (Sigvant
et al., 2009; Pham et al., 2019b). These effective stress–strain data
are used to characterize the hardening behavior of the investigated
material in a wide strain range. The hardening law expressed in Eq. (26)
is adopted to describe the hardening behavior. Hence, a curve fitting
method, which is implemented internally in Matlab by a fit func-
tion, is employed to identify the hardening law’s parameters. Fig. 16
shows the good agreement between the identified hardening law and
experimental effective data.

Besides the hardening law, the yield functions expressed in Eqs. (27)–
(29) are adopted to describe the yield surface of the tested material. In
order to calibrate the parameters of the yield function, the stress–strain
data obtained from uniaxial tensile and bulge tests are normalized by
the flow stresses obtained from the uniaxial tensile test of the RD
specimen. Fig. 17 shows the variation of these normalized stresses.
Although the normalized stresses of the bulge test vary remarkably,
the shape of the yield surface is commonly assumed to be undistorted
during the FLC calculation. As so, the average values of these scatters
are computed to evaluate the stress ratios, i.e., 𝑘45, 𝑘90, and 𝑘𝑏,
respectively. These stress ratios, along with the Lankford coefficients,
are used to determine the parameters of these functions. The inputs of
the calibration procedure, as well as the calibrated parameters of these
functions, are reported in Table 4. Fig. 18 compares the derived results
of these yield functions with the experimental data of normalized
yield stresses, Lankford values, and yield loci. In addition, the 𝛼 − 𝛽
relationships calculated from these functions are plotted in Fig. 18d.
The comparisons reveal the anisotropies of the tested material. In such
a case, the results of the von Mises function deviate significantly from
the measurements, while both Hill48 and Yld2k functions capture quite
well the experimental data.

Based on the ISO 12004-2 standard, a series of Nakajima tests are
conducted to determine the experimental FLC of the tested material.
These tests are conducted with a ram speed of 25 mm/s to reduce the
effect of friction on the deformed specimens (Pilthammar et al., 2021).
Within different specimen geometries, different forming modes, ranging

from uniaxial to equi-biaxial tension, are observed at the center of the
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Fig. 15. Hardening curves obtained from uniaxial tensile and bulge tests of CR4 mild steel sheets.
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Fig. 16. Experimental data and calibrated hardening law for CR4 mild steel sheets.

eformed specimens. The strain history of a critical element, located
n the surface of each specimen, is recorded using the 3D ARAMIS
IC system, as shown in Fig. 19. For this purpose, a camera frame rate
f 60 Hz is adopted to capture the deformation. Moreover, the strain
aths determined from uniaxial tensile (UT) and bulge (BT) tests are
lso illustrated in this figure for comparison. It is noted that texts with
‘W’’ in this figure denote the width of the corresponding Nakajima
pecimens.

In addition to the strain histories, the DIC measurements provide
he strain rate histories of the area of interest. Sigvant et al. (2008)
roposed a method to detect the necking stage of a deformed specimen
sing these strain rate histories. This study adopts this method to
etermine the limit strains of the CR4 sheets. Connecting these limit
trains produces the experimental FLC of the tested material.

It is seen in Fig. 19, an abnormal strain history is observed in the
ase of W25 specimen. As a consequence, the necking strain of this
pecimen is significantly lower than that of two neighbor specimens,
.e., the UT and W50. That may be due to an unwanted event that
ccurred during the test. So, the necking strain of this specimen is
xcluded from the experimental FLC.
15

p

Fig. 17. Normalized yield stress of CR4 mild steel sheets.

5.2. Formability prediction

The developed material models are employed in the framework of
MMFC2 to estimate the FLC of the CR4 sheets. Although the hardening
behavior of the CR4 sheet is strongly sensitive to the strain rate, the
strain rate effect is not included in this model because all experimental
tests were conducted at low strain rates, i.e., 𝜀̇ < 0.1. The difference
etween the hardening curves identified at the quasi-static and this par-
icular strain rate can be considered marginal, as indicated by Sigvant
t al. (2019).

In order to determine the value of the scaling factor, three sim-
lations of the uniaxial tensile test are conducted in Abaqus/Explicit
ackage using three calibrated yield functions coupled with the identi-
ied hardening law. In these simulations, four-node reduced integration
hell elements (S4R) are used to model one-quarter of the specimen
sing the intermediate mesh showed in Fig. 1b. Consequently, the 𝛽
volution obtained from these simulations is compared to the corre-
ponding theoretical predictions of MMFC2 with 𝜉 = 0.5, as shown
n Fig. 20 for CR4 sheets. Within each yield function, the predicted 𝛽
volution agreed well with the FEA until an extreme value of equivalent
lastic strain of 1.0, which is significantly larger than that of the diffuse
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Fig. 18. Calibrated yield functions of CR4 mild steel sheets.
r
f

Fig. 19. Strain path evolution of deformed specimens obtained from experimental tests.
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p

neck. Thereafter, these curves deviated from each other. Therefore, a
constant scaling factor 𝜉 = 0.5 is sufficient to capture the strain path
change during the uniaxial tensile test of CR4 sheets. This value is
adopted to predict the FLC of the tested material.

Fig. 21 shows a comparison between the predicted and measured
FLC of CR4 sheets. The difference between the predicted results demon-
strates the constitutive model’s effect on the calculated FLC. In the
plane-strain tension and surrounding regions, all of these functions
slightly underestimate the measured data. In this region, Hill48 and
Yld2k yield functions give similar predictions, which are a little higher
than that of the von Mise function, even though their predictions
for yield locus are significantly different. As discussed in Pham et al.
(2018), the authors suggested that post-necking prediction of the hard-
ening law dominates the predicted level of 𝐹𝐿𝐶0. However, the selec-
tion of yield function strongly affects the estimated left and right sides
of FLC, as shown in Fig. 21.

For the left side of the FLC of the CR4 sheet, the predictions of von
Mises and Hill48 functions are close together and underestimate the
experimental data. In contrast, their prediction for the right side of FLC
is significantly higher than the measurements. The overestimation of
the von Mises function is explainable by its underestimation of the equi-
biaxial stress, as manifested in Fig. 18c. The mismatch of the Hill48
function is believed to be due to their unsatisfying in capturing the 𝛽−𝛼
elation, focused on the range 𝛽 > 0. Within this range, the Yld2k yield
unction presents higher estimations for 𝛼, which leads to its excellent

rediction for the right side of the FLC. However, the Yld2k function
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Fig. 20. Determined scaling factor, 𝜉 = 0.5, for CR4 mild steel sheets.

Fig. 21. Comparison between experimental FLC and the predictions of MMFC2 for CR4
mild steel sheets.

overestimates the measurement on the left side. The observation is
related to the 𝛽 − 𝛼 estimation in the range 𝛽 < 0. Particularly, the
yld2k presents a lower prediction for 𝛼 than the Hill48 in this range.
As a result, the former predicts a higher FLC than the latter in the
left branch, where the experimental measurement is in between their
predictions. It may request a higher curvature yield loci to correct
the misalignment, achieved with a smaller exponent parameter m of
he Yld2k. The suggestion agrees well with the value of the exponent
arameter 𝑚 = 4.51, identified in the previous study for a same grade
R4 material (Pilthammar et al., 2021).

The performance of the MMFC2 with Yld2k yield function is eval-
ated against the computed curves based on the original MMFC and
he MK model. For this purpose, the Fortran code of the MK model
eveloped in Bandyopadhyay et al. (2019) is used in this study with a
ixed value of the material imperfection, i.e., 𝑓0 = 0.996. This value is

adopted following the recommendation in Barlat and Richmond (2003).
Fig. 22 presents a comparison of these models. As seen in this figure, the
prediction of MMFC is significantly higher than the experimental data.
17
Fig. 22. Comparison of MMFC, MMFC2 and MK models for predicting the FLC of CR4
sheets.

Other models, such as MMFC2 and MK model, present mostly identical
predictions for the right side of FLC, which are agreed well with the
measured data of the tested material. Moreover, the MK model provides
an excellent prediction for the left side of the experimental curve.
The comparison highlights the advantage of the proposed MMFC2, at
least again the MMFC. Furthermore, the computational time of the
MMFC2 is about five times faster than that of the MK model. The
advantage is more attractive when either a more complex material,
such as a distortional hardening model, is adopted or a huge number
of simulations is inquired, for example, in a data-driven application.

6. Discussion and conclusion

6.1. Discussion

The originality of strain path change after the diffuse neck is the
significance of the MMFC. Under the plane stress condition, the second
term on the left side of Eq. (1) takes the change into account. In this
framework, the value of 𝛥𝛽 relates to the in-plane rotation of the prin-
cipal axes of the considering material point. An additional term, which
governs the out-of-plane rotation, should be considered to formulate
the criterion under three-dimensional stress states. Otherwise, the shear
stress component should be involved in this framework somehow to
solidify its physical means. The effect of out-of-plane deformation or
shear stress component on the formability of sheet metals has been
investigated and discussed in several studies (Eyckens et al., 2009;
Zhang et al., 2014; Mirfalah-Nasiri et al., 2016).

In the principal strain space, the forming modes regarding the FLC
can be separated into deep drawing on the left side and pure stretching
on the right side. Therefore, different scaling factors can be applied
in calculating their limits due to their difference in the mechanism of
necking initiation. Using two scaling factors may increase the flexibility
of the calculation framework and provide more feasible results (Mu
et al., 2020). However, the act may also increase the number of
parameters to be calibrated. The scaling factor should be a function of
the equivalent plastic strain 𝜀̄, as discussed before. Furthermore, this
factor seems to be dependent on the employed constitutive models,
such as yield function, hardening law (especially in the post-necking
ranges), and strain rate. Without any calibration, a value of 𝜉 = 0.5 is
recommended for sheet metals. The reliability of this recommendation
for use with an anisotropic yield function was validated for CR4 sheets.
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Comparing the deformation inside the neck with that of the out-
side is widely used to detect the instance of strain localization. The
technique, however, may involve uncertainties of neck geometries and
the pattern variations, as discussed in Martínez-Donaire et al. (2014),
Roatta et al. (2020). Using an optimal event of a single variable that
correlates the deformation histories of the necking regime provides
the benefit of removing investigator interpretations and prejudices.
Moreover, the deformation history determined by the theoretical model
can be compared to the experimental tracks, which increases the reli-
ability of the computed results. In the literature, the necking detection
methods proposed by Merklein et al. (2010) and Hotz et al. (2013)
consider strain acceleration as the quantifying variable. In this study,
Eq. (20) is an alternative that uses the acceleration of the principal axis
rotation as an indicator for neck detection.

The results of MMFC2 derived for all examined materials are promis-
ing, even though isotropic hardening laws were incorporated in these
calculations. Using a kinematic hardening law coupling with a distor-
tional yield function may improve the accuracy of numerical predic-
tions. That would deserve further study.

6.2. Conclusion

This study details the numerical implementation of MMFC proposed
by Hora et al. (1996, 2013). The strain path evolution and condition
of localization were revisited in the new version of MMFC2. A scaling
factor was proposed to provide a better description of the principal
axes’ rotation beyond the diffuse neck. Moreover, a new criterion for
localized neck initiation was proposed. A detailed numerical framework
of the proposed MMFC2 within these improvements was developed to
calculate the FLCs of different automotive sheet metals. The following
conclusions can be made after this work:

1. Performance of the original MMFC and the proposed MMFC2 is
evaluated by comparing their predictions for the FLC of pub-
lished materials reported in Benchmarks 1 and 2 of Numisheet
2014 conference (Stoughton et al., 2013; Wu, 2013). Using a
given constitutive model, the MMFC2 presents the same pre-
diction as the one of MMFC for the forming limits under the
plane-strain tension and its surroundings. However, the former
predicts lower limits than the latter for other forming modes,
such as uniaxial tensions and biaxial tensions, when a quadratic
yield function is adopted.
18
2. Comparing their predictions with different constitutive models
reveal that the proposed MMFC2 is more sensitive to the im-
posed constitutive model than the original MMFC. Using an
advanced yield function like Yld2k does not always improve the
accuracy of the predictions. The reason for this drawback is due
to the exclusion of the shear stress component from the calcula-
tion framework. The Yld2k yield function is recommended to use
in materials that display a weak anisotropy. Care should be taken
to select a proper constitutive model in predicting FLC with the
proposed criterion.

3. Furthermore, the FLC predictions of MMFC2 for three published
materials, i.e., DP600, TRIP780, and AA5182-O sheets, are more
concordant with the experimental data than that of the original
MMFC. Compared to the MMFC results, the MMFC2 improves
the predictions by von Mises and Hill48 yield functions clearly.
Further studies should clarify the application of the proposed
MMFC2 for different automotive sheet metals.

4. Uniaxial tensile and bulge tests were conducted to calibrate
several material models for CR4 mild steel sheets. Adopting
these models into the MMFC2 framework yields several FLC
predictions of CR4 sheets, which are compared with the experi-
mental measurement of Nakajima tests. The prediction resulting
from the Yld2k yield function coupling with Pham & Kim hard-
ening law agreed well with the measured data. This verifies the
potential of the proposed MMFC2 in predicting the FLC of sheet
metals.
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Fig. A.1. Comparison of the experimental data and predicted anisotropy of DP600 sheet.
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Fig. A.2. Comparison of the experimental data and predicted anisotropy of TRIP780 sheet.
Fig. A.3. Comparison of the experimental data and predicted anisotropy of AA5182-O sheet.
ppendix

This appendix presents the predictions of the three mentioned yield
unctions in the main text for the normalized yield stress and Lankford
oefficient of three tested sheet metals (see Figs. A.1–A.3).
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