
Taxonomic Trace Links Recommender: Context Aware
Hierarchical Classification
Waleed Abdeen1,*,†

1 Blekinge Institute of Technology, Karlskrona, Sweden.

Abstract
In the taxonomic trace links concept, the source and target artifacts are connected through knowledge
organization structure (e.g., taxonomy). We introduce in this paper a recommender system that rec-
ommends labels to requirements artifacts from domain-specific taxonomy to establish taxonomic trace
links. The tool exploits the hierarchical nature of taxonomies and uses requirements text and context
information as input to the recommender.

Keywords
Requirements traceability, Taxonomy, Hierarchical classification, Recommender system

1. Introduction

Requirements traceability is the capability of tracing the requirement life in a backward and
forward manner [1]. The adoption of requirements traceability has proven to lead to lesser
defects in the produced software [2]. Traditional trace links connect the source and target
artifacts using a direct link. An alternative approach is the taxonomic trace links, in which
the source and target artifacts are traced through a knowledge organization structure (e.g.,
taxonomy or ontology) [3]. The taxonomic trace link approach has three main advantages over
traditional techniques: tracing artifacts with different abstractions, better structure of artifacts
used in the development process, and early establishment of trace links.

Unterkalmsteiner [3] introduced the concept of taxonomic trace links in a trace links rec-
ommender system. The initial evaluation [4] showed that the tool had low confidence in the
recommended labels. In this paper, we present a tool implementation of the taxonomic trace
links with adaptation by using hierarchical text classification and adding the context information
of a requirement to the tool inputs.

In: A. Ferrari, B. Penzenstadler, I. Hadar, S. Oyedeji, S. Abualhaija, A. Vogelsang, G. Deshpande, A. Rachmann, J. Gulden,
A. Wohlgemuth, A. Hess, S. Fricker, R. Guizzardi, J. Horkoff, A. Perini, A. Susi, O. Karras, A. Moreira, F. Dalpiaz, P.
Spoletini, D. Amyot. Joint Proceedings of REFSQ-2023 Workshops, Doctoral Symposium, Posters & Tools Track, and
Journal Early Feedback Track. Co-located with REFSQ 2023. Barcelona, Catalunya, Spain, April 17, 2023.
*Corresponding author.
$ waleed.abdeen@bth.com (W. Abdeen)
� https://waleedabdeen.com (W. Abdeen)
� 0000-0001-8142-9631 (W. Abdeen)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:waleed.abdeen@bth.com
https://waleedabdeen.com
https://orcid.org/0000-0001-8142-9631
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

R1: Superstructure thickness shall be selected
to meet the requirements of Table 19-1 and
Table 19- 2 while meeting the dimensions of
the gravel wear layer and support layer shown
in Figure 19-1.

R3:

R2:

Building componentsTitle: Road superstructure, Dimensioning and design

19 Gravel Superstructure

19.2 Superstructure thickness gravel road

31BL: Road superstructure,
support layer

31B: Superstructures
for roads and flat areas

31: Superstructures

3: Superstructures and
ancillary structures

31BJ: Road superstructure
wear layer/pavement

- - - -

31B

31BJ

31BL

Requirements Specifications SB11 Taxonomy

labelLegend:

node

RX

Requirement

Selected Nodes

31B

...

...

Design Model

Figure 1: Taxonomic Trace Links Example

2. Background

We explain in this section the taxonomic trace link and the hierarchical classification concepts,
which are important for the reader to understand the tool process.

Taxonomic trace links concept was introduced earlier by Unterkalmsteiner [3]. The main
idea is to label the traced source and target artifacts with nodes from a domain-specific taxonomy
in order to trace these artifacts. In the same study, the author presented a prototype that
materializes the taxonomic trace links concept. The prototype finds relevant labels for a
requirement from a taxonomy. The early evaluation of the tool showed that the approach of
taxonomic trace links is attractive for practitioners. However, better recommendations are
required [4].

Figure 1 illustrates an example of taxonomic trace links in the context of the construction
domain. Assuming that we want to create trace links from the requirements specifications to
the design model using SB11 taxonomy, which is used to classify objects in the construction
domain and contains 2074 nodes. The yellow boxes (31B, 31BJ, 31BL) are labels that we set on
the requirement R1. These labels are nodes from the taxonomy, highlighted in green. Similarly,
an object of the design model is labeled with 31B. In conclusion, a trace link is created between
the requirement R1 and the highlighted object in the design model because both are labeled
with the same node (31B).

Hierarchical text classification is the use of hierarchical classification space to classify a
document using one or more classes [5]. The topic was studied by many researchers and showed
to improve the performance of the classification [5, 6, 7, 8, 9, 10]. Song et al. [9] have proposed
an approach of dateless hierarchical text classification, where the training of the model does
not require any labeled data. They classify newsgroups messages and newswire stories using a
taxonomy with a depth level of two. Their problem is similar to ours, where they use taxonomy
to classify text with no training data. Furthermore, the evaluation of the algorithm showed
that its performance is comparable with those of the supervised learning algorithms [9]. Thus,

we implement the algorithm presented by the authors in our tool, with some adaptations, to
classify requirements text. We explain the adaptations in Section 4.

The novelty of our tool over the previous implementation [3] lies in:

1. The use of hierarchical text classification: we argue that using hierarchical text classifica-
tion in the taxonomic trace link implementation could yield better results. In the previous
studies of taxonomic trace links [3, 4] a flat classifier was adopted where all nodes in the
taxonomy are treated as if they were on one level. On the contrary, we use a hierarchical
classifier that considers the hierarchy of the taxonomy.

2. The use of context information: when labeling requirements using a domain-specific
taxonomy, the participants used context information (document and section titles) to
choose the true label from the taxonomy [4], the previous classifier did not use this
information as input. Furthermore, the use of context information is proven to improve
the performance of text classification methods [11].

3. Tool Development Context

This tool was developed as a part of the project D-CAT in collaboration with Trafikverket,
Swedish Transport Authority. In construction projects, a 3D presentation of the physical system
is first produced before building the actual system. It is important that the produced design
models adhere to the specified requirements, known as rules and regulations, as it is much
cheaper to redraw a design model than rebuild a bridge. The verification of these requirements
in the design models becomes tedious when traceability is missing between requirements and
design models. At the time of writing this paper, traceability was not practiced in Trafikverket
due to the lack of digitization.

We aim in this tool to implement traceability that is usable in a similar context, where the
software or system must adhere to a list of requirements. During the tool development, we used
natural language requirements from the construction domain and the SB11 taxonomy. The tool
implementation makes it possible to replace the taxonomy with one from a different domain.

4. The Taxonomic Trace Links Recommender System

The source code of the tool and the required data are available online in the replication package 1.
The tool recommends 𝐾 labels from a domain-specific taxonomy to requirements artifacts. We
present a screenshot of the tool’s user interface in Figure 2. The following steps need to be
followed when using the tool:

1. The user inputs the requirement text and any relevant context information, currently
the user can input the document title of the software requirements specification (SRS)
and section title(s) under which the requirement is listed. Then, the user clicks on
classify.

1https://zenodo.org/record/7638518

https://zenodo.org/record/7638518

Figure 2: Recommender Interface

2. The tool processes the input from the user and identifies the most relevant labels based on
the text similarity between the requirement and the labels of the taxonomy (we explain
how the similarity is calculated later in this section).

3. The recommended labels are retrieved and shown, in a descending order based on the
similarity score, under the section recommender classification results. A recom-
mended label is displayed using the label code, label description, and a similarity score.A
recommended label could be either correct or incorrect.

4. The user makes the final decision by choosing the best recommendations as they see fit
from the list of results.

Figure 3, depicts the internal recommender process, which consists of three main steps: 1)
taxonomy conceptualization, 2) requirement conceptualization, and 3) requirement classification.
Each main step consists of several sub-steps represented with yellow-filled rectangles.

4.1. Taxonomy Conceptualization

In this step, the domain-specific taxonomy nodes are preprocessed, by removing the stop-words
from each node description. Then, labels are aggregated to achieve a hierarchical classification

User

Preprocessing Labels
Aggregation ConceptualizationTaxonomy

Conceptualized
Taxonomy

Taxonomy Conceptualization

Preprocessing Input
Aggregation Conceptualization

Conceptualized
Requirement

Requirement Conceptualization

Similarity
Calculation

Requirement with
Context Information

Top 5 Labels
Wikipedia

Index

Admin

Requirement Classification

Label
Selection

Artifact sub step
Step

Legend:

Actor

Figure 3: The Recommender Process

using the top-down approach, the description of each node in the taxonomy is brought up to
the parent node. Consequently, a node description contains its own node description and the
description of all its child nodes. Finally, conceptualization is performed on the taxonomy. A
concept vector is created for every node using explicit semantic analysis (ESA) [9], which uses
indexed Wikipedia articles as an external knowledge base to find relevant concepts for a given
text by calculating TFIDF score for words. The output is conceptualized taxonomy nodes, each
presented using a vector of concepts.

4.2. Requirements Conceptualization

The user enters a requirement text and the relevant context information (document and section
titles). First, the tool preprocesses the data by removing stop words. Then the requirement text
is aggregated with the context information (input aggregation). Finally, a conceptualization
of the aggregated input is performed, similar to the conceptualization sub-step in taxonomy
conceptualization in Section 4.1. The output is a conceptualized requirement presented as a
vector of concepts.

4.3. Requirements Classification

The outputs of the two previous steps (conceptualized taxonomy and conceptualized require-
ment) are taken as inputs to the requirement classification step. A similarity calculation is
performed between both inputs as follows:

𝑠𝑐𝑜𝑟𝑒 = 𝑐𝑜𝑠(𝜑𝑥(𝑙𝑖), 𝜑𝑥(𝑟)) (1)

where 𝜑𝑥 is the ESA representation of a text, 𝑟 is the aggregated requirement text, and (𝑙𝑖) is
node 𝑖 in the taxonomy. The similarity score is normalized in the range 0-1. Finally, in label
selection, we choose not to report the top labels at each level as done by Song et al. [9], but
rather we chose to select the top labels from all nodes. The reason behind this decision is that we

are interested in recommending the most relevant label at the deepest level, which represents
the most concrete label. The output of the tool is the top K recommended labels to classify the
requirement entered by the user. We refer the reader to Song et al. [9] paper for more details
about the algorithm used for classification.

5. Planned Evaluation

We plan to conduct lab experiments to evaluate the recommender system performance (pre-
sented in this paper) and compare it with the recommender system that was developed by
Unterkalmsteiner [3]. The planned experiments will be conducted by manipulating two inde-
pendent variables, namely the taxonomy and the classifier (hierarchical and flat). We chose
the taxonomy as an independent variable to understand: if and to what the use of different
taxonomy could affect the performance of the recommender system. The dependent variable
is the recommender performance and will be presented by the set of metrics, precision, recall,
and F1 score. A dataset of natural language requirements that are labeled with nodes from
domain-specific taxonomy is needed to measure the performance of the recommender. We are
currently working, with domain experts, on developing a ground truth of 129 requirements
sampled from the construction domain.

After conducting the lab experiments and fine-tuning the tool, the next step is to pilot the
tool in a real project with practitioners to evaluate it in natural settings.

6. Conclusion

We have presented the recommender system, which uses a domain-specific taxonomy to rec-
ommend labels to requirements artifacts. This classification aims to establish taxonomic trace
links between requirements artifacts and other software artifacts. This is the first version
of the tool, and we are working on improving the tool in an iterative manner using a design
science framework. We have developed and demonstrated the tool in the context of construction
projects. The implementation of the tool makes it possible to use in software projects as 1) the
recommender classifies natural language requirements, and 2) the taxonomy can be replaced
with one from a different domain during the setup of the tool. However, the tool needs to be
evaluated in controlled and natural settings in the context of software projects and adapted
based on the outcome of the evaluation.

The planned future work is to 1) improve the tool in terms of calculating the similarity score
between a requirement artifact and the nodes from the domain-specific taxonomy, 2) integrate
the tool with existing requirements management tools, e.g., DOORS, 3) evaluate the performance
of the recommender system on a set of software requirements and further evaluate the retrieval
of trace links.

Acknowledgement

This research was funded by DCAT project. Thanks to Dr. Michael Unterkalmsteiner and Dr.
Krzysztof Wnuk for their support and feedback.

References

[1] O. Gotel, C. Finkelstein, An analysis of the requirements traceability problem, in: Proceed-
ings of IEEE International Conference on Requirements Engineering, 1994, pp. 94–101.
doi:10.1109/ICRE.1994.292398.

[2] P. Rempel, P. Mäder, Preventing defects: The impact of requirements traceability complete-
ness on software quality, IEEE Transactions on Software Engineering 43 (2017) 777–797.
doi:10.1109/TSE.2016.2622264, conference Name: IEEE Transactions on Software
Engineering.

[3] M. Unterkalmsteiner, TT-RecS: The taxonomic trace recommender system, in: 2020 IEEE
Seventh International Workshop on Artificial Intelligence for Requirements Engineering
(AIRE), 2020, pp. 18–21. doi:10.1109/AIRE51212.2020.00009.

[4] M. Unterkalmsteiner, Early requirements traceability with domain-specific taxonomies - a
pilot experiment, in: 2020 IEEE 28th International Requirements Engineering Conference
(RE), 2020, pp. 322–327. doi:10.1109/RE48521.2020.00042, ISSN: 2332-6441.

[5] A. Sun, E.-P. Lim, Hierarchical text classification and evaluation, in: Proceedings 2001
IEEE International Conference on Data Mining, 2001, pp. 521–528. doi:10.1109/ICDM.
2001.989560.

[6] L. Cai, T. Hofmann, Hierarchical document categorization with support vector machines,
in: Proceedings of the thirteenth ACM international conference on Information and
knowledge management, CIKM ’04, Association for Computing Machinery, 2004, pp.
78–87. URL: https://doi.org/10.1145/1031171.1031186. doi:10.1145/1031171.1031186.

[7] S. Gopal, Y. Yang, Recursive regularization for large-scale classification with hierar-
chical and graphical dependencies, in: Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’13, Association for
Computing Machinery, 2013, pp. 257–265. URL: https://doi.org/10.1145/2487575.2487644.
doi:10.1145/2487575.2487644.

[8] L. Xiao, D. Zhou, M. Wu, Hierarchical classification via orthogonal transfer, in: L. Getoor,
T. Scheffer (Eds.), Proceedings of the 28th International Conference on Machine Learning
(ICML-11), ICML ’11, ACM, 2011, pp. 801–808. Event-place: Bellevue, Washington, USA.

[9] Y. Song, D. Roth, On dataless hierarchical text classification, in: Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28, 2014.

[10] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, Q. Yang, Large-scale hierarchical
text classification with recursively regularized deep graph-CNN, in: Proceedings of the
2018 World Wide Web Conference on World Wide Web - WWW ’18, ACM Press, 2018,
pp. 1063–1072. URL: http://dl.acm.org/citation.cfm?doid=3178876.3186005. doi:10.1145/
3178876.3186005.

[11] Y. Wang, C. Wang, J. Zhan, W. Ma, Y. Jiang, Text FCG: Fusing contextual information via
graph learning for text classification, Expert Systems with Applications (2023) 119658. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0957417423001598. doi:10.1016/j.eswa.
2023.119658.

http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1109/TSE.2016.2622264
http://dx.doi.org/10.1109/AIRE51212.2020.00009
http://dx.doi.org/10.1109/RE48521.2020.00042
http://dx.doi.org/10.1109/ICDM.2001.989560
http://dx.doi.org/10.1109/ICDM.2001.989560
https://doi.org/10.1145/1031171.1031186
http://dx.doi.org/10.1145/1031171.1031186
https://doi.org/10.1145/2487575.2487644
http://dx.doi.org/10.1145/2487575.2487644
http://dl.acm.org/citation.cfm?doid=3178876.3186005
http://dx.doi.org/10.1145/3178876.3186005
http://dx.doi.org/10.1145/3178876.3186005
https://linkinghub.elsevier.com/retrieve/pii/S0957417423001598
http://dx.doi.org/10.1016/j.eswa.2023.119658
http://dx.doi.org/10.1016/j.eswa.2023.119658

	1 Introduction
	2 Background
	3 Tool Development Context
	4 The Taxonomic Trace Links Recommender System
	4.1 Taxonomy Conceptualization
	4.2 Requirements Conceptualization
	4.3 Requirements Classification

	5 Planned Evaluation
	6 Conclusion

