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Abstract: This paper presents a statistical analysis of intensity wavelength-resolution synthetic
aperture radar (SAR) difference images. In this analysis, Anderson Darling goodness-of-fit tests
are performed, considering two different statistical distributions as candidates for modeling the
clutter-plus-noise, i.e., the background statistics. The results show that the Gamma distribution is a
good fit for the background of the tested SAR images, especially when compared with the Exponential
distribution. Based on the results of this statistical analysis, a change detection application for the
detection of concealed targets is presented. The adequate selection of the background distribution
allows for the evaluated change detection method to achieve a better performance in terms of
probability of detection and false alarm rate, even when compared with competitive performance
change detection methods in the literature. For instance, in an experimental evaluation considering
a data set obtained by the Coherent All Radio Band Sensing (CARABAS) II UWB SAR system, the
evaluated change detection method reached a detection probability of 0.981 for a false alarm rate of
1/km2.

Keywords: background statistics; CARABAS-II; change detection method; SAR; UWB

1. Introduction

In recent decades, many civil and military applications have considered radar systems,
e.g., forest area imagery [1], weather monitoring [2], vehicle traffic [3], remote areas imag-
ing [4], air traffic control [5], and defense applications [6]. Given the efficiency of radar
systems, some variants have been proposed aiming to monitor larger areas, highlighting
the synthetic aperture radar (SAR) [7]. Such systems exploit the relative movement between
the platform and the target to synthesize a larger antenna aperture. Thus, it is possible
to obtain high-resolution images, similar to other systems with larger effective antenna
apertures [8].

SAR systems have other advantages when compared to optical systems, which justifies
their use in different monitoring applications [9–11]. Among them, their low sensitivity
to weather conditions and the possibility of penetration into some structures to obtain
specific frequencies stand out, e.g., SAR systems operating at frequencies below 1 GHz are
capable of detecting concealed targets in forest regions. The systems used for this type of
application are known as foliage-penetration (FOPEN) radars [12].

A widely used FOPEN SAR system is the Coherent All Radio Band Sensing (CARABAS)
II SAR system [13–17], which operates in the lower range of the very high-frequency band
(VHF). It is characterized by its large fractional bandwidth, e.g., ultra-wideband (UWB) and
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wide antenna bandwidth [18]; such characteristics make the CARABAS-II a wavelength-
resolution SAR system, since the resolution of the system is of the order of the wavelength
of the radar signal [19].

Since SAR images with wavelength resolution generally have a single scatter in the
resolution cell of the system, these images tend not to suffer significantly from speckle
noise [20]. Furthermore, during its scattering process, the dimension of the scatterer
is related to the dimensions of the signal’s wavelength. Therefore, objects detected in
these images mainly relate to large scatterers, such as trunks and human-made structures.
These unique characteristics make wavelength-resolution SAR images suitable for FOPEN
applications, especially for target detection [20].

Change detection (CD) methods are one of the most-used techniques in applications us-
ing wavelength-resolution SAR images [14,16,17,21]. Traditionally, change detection meth-
ods consider the use of SAR amplitude images [13,18]. Even when high performances are
obtained in terms of probability of detection and low occurrence of false alarms [15,22,23],
the mitigation of false alarms in such applications remains a research problem [24–26]. This
problem can be solved based on the intensity of the SAR image, which results in a higher
differentiation between target-related pixels and background-related pixels [27]. This fea-
ture transforms the statistical characteristics of the original amplitude SAR images [28].
Intensity SAR images are often used in traditional SAR systems operating in microwave
frequency bands [29–31]. However, the study of VHF wavelength-resolution intensity SAR
images for FOPEN applications is lacking.

A common type of CD used in FOPEN applications is based on the likelihood-ratio
test (LRT) [15,32,33]. These methods consist of a hypothesis test based on the ratio between
the target statistics plus background and the background statistics. For CD applications,
little information about the targets is generally expected, which leads to targets usually
being modeled as a constant [15,32,33]. Thus, background statistics play an essential role in
the performance of the CD method, as stated in [32]. Different background statistics have
been evaluated using wavelength-resolution SAR amplitude images, e.g., Gaussian distri-
bution [32], Rayleigh distribution [15], K-distribution [15], and Gamma distribution [33].
However, to the best of our knowledge, there is no published study related to the study
and evaluation of background statistics for wavelength-resolution intensity SAR images.

Motivated by the possible performance gains that could be obtained with the use of
wavelength-resolution intensity SAR images in detecting concealed targets in forestry areas,
this work presents a statistical analysis of these images. The statistical analysis is based
on goodness-of-fit (GoF) testing using the Anderson Darling (AD) [34–37] test under the
assumption of different distribution candidates. This paper considers the bivariate gamma
distribution and bivariate exponential distribution. Considering the time stability of VHF
wavelength-resolution intensity SAR images, difference images are used in our analysis to
reduce the heterogeneity of the background of the evaluated scenarios. Finally, a change
detection method based on the likelihood ratio test is presented and assessed, considering
CARABAS-II data to exemplify the impact of the background statistics. The studied CD
method is compared with other recently published results in terms of the probability of
detection and the false alarm rate.

The remainder of this paper is organized as follows. The UWB wavelength-resolution
SAR image characteristics and the data set used in this paper are presented in Section 2.
Section 3 exhibits the statistical test performed over difference-intensity SAR images using
the Anderson–Darling GoF test. Section 4 provides the CD algorithm using difference-
intensity SAR images as input and the bivariate gamma distribution on the likelihood-ratio
test. Section 4 presents an experimental evaluation of the studied change detection method.
The performance of the evaluated technique is compared with amplitude change detection
methods from the literature with a good performance. Section 5 discusses bivariate gamma
distribution on the difference-intensity SAR images’ scheme. Finally, Section 6 presents
some concluding remarks.
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2. Materials and Methods

In this article, we focus on VHF UWB wavelength-resolution SAR systems with a
resolution in the order of a few meters, herein denoted as low-frequency wavelength-
resolution SAR systems. We describe in detail the wavelength-resolution SAR images. Our
aim is to express some unique characteristics of this type of image, paying extra attention to
their background and statistical aspects. The data set used in this paper is also presented.

2.1. Wavelength-Resolution SAR Images

Low-frequency wavelength-resolution SAR systems are not very sensitive to small
scatterers present in the area of interest on the ground [8]. Thus, the scattering process in
wavelength-resolution images is mainly related to scatterers with dimensions in the order
of the signal wavelengths. Based on this backscattering phenomenology, it is very likely
that the resolution cell contains a single scatter, resulting in images containing very little
speckle noise, which usually degrades the quality of traditional microwave SAR images.

Another relevant characteristic of this kind of image is that large scatterers tend to be
stable over time and less affected by weather conditions. This characteristic results in high
similarity between images from the same ground scene when the same flight geometry
is considered. Thus, wavelength-resolution SAR images can be used in change detection
methods without clutter-reduction techniques [20]. One example of a system capable of
generating low-frequency wavelength-resolution SAR images is CARABAS-II. This paper
validates the statistical analyses and discussions using the available public CARABAS-
II SAR images data set, made public by Air Force Research Laboratory (AFRL) [38]. A
discussion regarding the CARABAS-II data set is presented in Section 2.2.

2.2. CARABAS-II System

The CARABAS-II is a VHF UWB SAR system developed by the Swedish Defence
Research Agency (FOI) and the Swedish company SAAB. The CARABAS-II operates on
the 20–90 MHz frequency band, resulting in a 15–3.3 m wavelength range [39], obtaining
resolution cells of approximately 3 × 3 m. The data set comprises 24 incoherent amplitude
SAR images, which are already calibrated, pre-processed, and geocoded. Those images
cover the same ground area of 6 km2 (2 × 3 km), with a pixel size of 1 × 1 m. The data set
was divided into four target deployments (Missions), measured using six flight geometries
(passes). Each target deployment contains 25 testing targets in different configurations.
Figure 1 presents one example of an image of each mission. For the sake of simplicity, an
image classification similar to the one used in the FOI challenge paper [18] was considered.
Additionally, more information related to the data set can be found in [18]. The intensity
images studied in this paper were obtained using the original amplitude SAR data [38].
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(c (d)

Figure 1. CARABAS-II image samples for (a) Mission 2 and Pass 1 (b) Mission 3 and Pass 2 (c) Mission
4 and Pass 5 (d) Mission 5 and Pass 1. The target deployments of each image are highlighted.
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3. Statistical Test

An analysis based on GoF tests is presented to study the statistical characteristics of
intensity wavelength-resolution SAR images. As target amplitudes tend to be stronger than
background amplitudes, wavelength-resolution SAR images are known to have a heavy-
tailed amplitude distribution pattern [18]. Considering that the AD GoF is well-suited to
analyzing tailed distributions compared to other GoF tests [40], this paper uses the AD GoF
test to investigate whether a given probability distribution null hypothesis (H0) should be
rejected for a given data sample [41].

The AD test is based on the distance An between the empirical distribution function
(FY(y)) and cumulative distribution function (F0(y)) of H0. The distance An is defined
by [40] and can be described by

An , n
∫ ∞

−∞
(FY(y)− F0(y))

2θ(F0(y))dF0(y), (1)

where Y = {Yi}n
i=1 for the n tested samples and θ(t) = 1

t(1−t) is a weight function defined
for 0 ≤ t ≤ 1. By sorting the observations Y1, Y2, . . . Yi in ascending order, it is possible to
simplify (1) as

An = −
n

∑
i=1

(2i− 1)[ln Zi + ln Zn+1−i]

n
− n, (2)

where Zi = F0(Yi).
The AD test consists of a comparison between An and a critical value τ, where the

critical value can be selected based on the following criterion

Pr(An ≥ τ|H0) = 1− Pr(An < τ|H0) = α, (3)

where α is the significance level. The Anderson–Darling rejects the null hypothesis H0 If
An > τ; Otherwise, the AD test fails to reject the null hypothesis.

In our analysis, the exact solution for the test presented in (3) is not achievable since
the distribution Pr(An < τ|H0) is unknown. However, for n ≥ 5, a good approximation
for this unknown distribution is given by [42]

lim
n→∞

Pr(An < τ|H0) =

√
2π

τ

∞

∑
j=0

(
− 1

2
j

)
(4j + 1)e

−(4j+1)2π2
8τ

∫ ∞

0
e

τ
8(1+ω2)

− ω2(4j+1)2π2
8τ dω. (4)

Finally, we use the numerical approximation for (4) presented in [42] to perform the
AD test. This approximation is used to reduce the test’s computational complexity.

As previously mentioned, the selection of the clutter-plus-noise statistical model
greatly influences the performance of several applications using wavelength-resolution
SAR images [15,32,33]. The association of a better-matched clutter-plus-noise statistical
model with better CD performances was previously observed in [32]. In [15,32,33], different
clutter-plus-noise statistical models were used for amplitude low-frequency wavelength-
resolution SAR images, e.g., Gaussian distribution, Rayleigh distribution, K-distribution,
and Gamma distribution. However, in [15,32,33], the clutter-plus-noise statistical models
were selected based on the simplicity of the statistical models and a visual inspection
between the model and the data histogram. This selection does not consider the background
heterogeneity that this type of SAR image may contain. This leads to a mismatch between
the data and model, which can jeopardize the performance of applications using this
information, e.g., change detection applications [32].

An alternative approach to achieve a better performance in terms of probability of
detection is analyzed using intensity images [43]. In this scenario, the targets tend to be
highlighted due to the intensity image’s nature. Usually, the clutter-plus-noise statistics
for traditional microwave SAR images are modeled by an exponential distribution [43].
However, this selection may be inaccurate due to the scattering characteristics of the
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low-frequency wavelength-resolution SAR images due to the expected background hetero-
geneity of low-frequency wavelength-resolution SAR images.

Due to the time stability of low-frequency wavelength-resolution intensity images, it is
possible to analyze only one image in the data set and extend this analysis to the others. For
this initial evaluation, we performed the AD test considering an exponential distribution as
the null hypothesis for α = 0.05, which is a typical significance level value for this kind of
test [44]. Additionally, the tested image was divided into multiple cells of 50 × 50 pixels,
aiming to obtain a good analysis of the statistical test. This selection was made to guarantee
a better visualization, an equal division in the whole image, and a window covering a
much higher region than a target footprint. The AD test results for this initial evaluation
are presented in Figure 2.

Figure 2. Anderson–Darling test results for the exponential distribution null hypothesis. The cells in
red represent samples where the AD rejects the exponential distribution, and the green cells represent
samples where the AD fails to reject the exponential distribution.

Each cell of the matrix represented in Figure 2 represents a block of 50 × 50 pixels.
The cells highlighted in green indicate that the AD test fails to reject the null hypothesis,
i.e., the exponential distribution yields a good fit for the tested sample. Otherwise, the cells
highlighted by the red color indicate that the AD test rejects the null hypothesis, i.e., the
exponential distribution does not yield a good fit for the tested sample. As seen in Figure 2,
the exponential distribution does not fit most of the tested cells well. This can mainly be
observed in the lower fraction of the image, characterized by a forest area.

As previously mentioned, low-frequency wavelength-resolution SAR images present
some unique characteristics compared to traditional microwave SAR images. More specifi-
cally, CARABAS-II intensity images tend to have a heterogeneous background. We used
the following considerations to better select an adequate clutter-plus-noise statistical model.
According to [20], the clutter-plus-noise statistical distribution of images obtained from the
difference between two low-frequency wavelength-resolution amplitude SAR images with
the same flight characteristics can be modeled as Gaussian. Additionally, the absolute value
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of a Gaussian random variable with non-zero mean has a folded normal distribution [45]. In
the case of zero mean (µ = 0), this can be modeled by a half-normal distribution [46]. Based
on these considerations, the absolute value of the difference between two CARABAS-II
images can be described with a half-normal distribution, assuming that the resulting image
has zero mean. Finally, if a random variable described by a half-normal distribution is
squared, this variable turns into a Chi-squared distribution with one degree of freedom,
i.e., Gamma distribution [47]. Thus, based on this analysis, the intensity difference images
from the CARABAS-II system can be modeled using a Gamma distribution.

To evaluate the selection of the Gamma distribution for modeling the clutter-plus-noise
of low-frequency wavelength-resolution intensity SAR difference images, we performed
a similar analysis considering the previous AD test but a different input type, i.e., differ-
ence images. For the study, the difference intensity image was obtained using a pair of
CARABAS-II amplitude images with the same flight geometries, named Image 1 and Im-
age 3. A simple subtraction in each pixel was performed to create the difference amplitude
image, i.e., Images 1–3. Then, this difference amplitude image was submitted to a simple
modulus-square operation, i.e., |.|2. The experimental evaluation was performed using the
AD test under the assumption of the Gamma distribution null hypothesis. The results of
this experimental evaluation are presented in Figure 3, where the same color system shown
in Figure 2 is used.

Figure 3. Anderson–Darling test results for the Gamma distribution null hypothesis. The cells in
red represent samples where the AD rejects the Gamma distribution, and the green cells represent
samples where the AD fails to reject the Gamma distribution.

As shown in Figure 3, the Gamma distribution yields a good fit for most of the
evaluated cells. It is possible to observe that the cells in which the AD test rejects the
Gamma null hypothesis are mainly related to isolated cells or changes, i.e., targets. The
rejection of isolated cells may be related to false negatives, since no Type I error control
technique was used in this initial evaluation. The option of not using this type of technique
is based on the same considerations as made in [22] and can be evaluated in future studies.



Remote Sens. 2023, 15, 2401 8 of 18

Additionally, it is observable that, for a pair of regions, the AD test rejects the Gamma null
hypothesis. The upper region is the target region related to Image 1, and the other is the
target region related to Image 3.

A CD algorithm is presented and evaluated in the next section to assess the Gamma
distribution for the clutter-plus-noise statistical model. Further discussions can be found
in Section 5.

4. Change Detection

The change detection method for low-frequency difference intensity wavelength-
resolution SAR images studied in this paper consists of a hypothesis test to evaluate
whether a pixel position is target-related or background-related. Thus, the test determines
if a target is present or absent in the evaluated pixel position. The hypothesis considered in
the test can be expressed as

H0 : z = q (no target), (5)

H1 : z = s + q (target), (6)

where H0 is the hypothesis that the pixel under test is background-related, H1 is the

hypothesis that the pixel under test is target-related, s =

[
s1
s2

]
is the target signal vector,

and q = c + n, in which c =

[
c1
c2

]
and n =

[
n1
n2

]
represent the clutter vector and noise

vector, respectively, and indexes 1 and 2 refer to the surveillance and reference SAR images.
Generally, no target is expected in the reference image; thus, it is reasonable to assume that

s =

[
s1
0

]
. The evaluated change detection method is the LRT presented in the next section.

4.1. Likelihood-Ratio Test

The development of a likelihood-ratio test with bivariate Gamma distribution for
intensity SAR images is similar to the one investigated for amplitude SAR images in [33],
where a CD method is proposed for VHF UWB SAR amplitude images considering the
Bivariate Gamma distribution.

The probability density function (pdf) of the Bivariate Gamma distribution can be
written as [33]

f (x1, x2) =
1

Γ(k2)Γ(k1 − k2)θ1θ2(1− η)η(k2−1)/2

×
(

x1

θ1

)k1−k2
(

x1

θ1

x2

θ2

)(k2−1)/2
exp

[
− 1

1− η

(
x1

θ1
+

x2

θ2

)]
×
∫ 1

0
(1− t)(k2−1)/2t(k1−k2−1) exp

[
η

1− η

(
x1

θ1

)
t
]

× Ik2−1

[
2

1− η

√
η

(
x1

θ1

x2

θ2

)
(1− t)

]
dt, (7)

where I(.)[.] denotes the modified Bessel function of the first kind, ki and θi are the shape
and scale parameter, respectively, where i ∈ {1, 2}, and η is the association parameter
between X1 and X2 under the assumption of k2 ≥ k1, obtained as

η = ρ

√
k1

k2
, 0 ≤ ρ < 1, 0 ≤ η < 1, (8)
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where ρ is the Pearson’s product-moment correlation coefficient. If k1 > k2, the association
parameter between X1 and X2 can be calculated by

η = ρ

√
k2

k1
, 0 ≤ ρ < 1, 0 ≤ η < 1. (9)

The correlation coefficient is estimated from the original sample data by

ρ =
E[(X1 − µ1)(X2 − µ2)]

σ1σ2
, (10)

where µ(.) and σ(.) are the means and standard deviations of random variables, respectively.
The likelihood-ratio test can be written as

Λ(z) =
P(z|H1)

P(z|H0)
, (11)

where both P(z|H1) and P(z|H0) are modeled as Bivariate Gamma distributions, z = (x, y),
and x and y are the pixel intensity in the pixel position under test, respectively, in the
reference and surveillance images. In our evaluation, the reference image is used to
compute the shape parameter k2 under the condition k2 ≥ k1.

The method chosen to estimate the shape k(.) and scale θ(.) parameters is the maximum
likelihood estimator, for the sake of simplicity. These parameters are estimated as [33]

k =
3− ζ +

√
(ζ − 3)2 + 24ζ

12ζ
, (12)

where

ζ = ln

(
1
N

N

∑
1
|z|
)
− 1

N

N

∑
1
|z|, (13)

and

θ =
1

kN

N

∑
1
|z|. (14)

These estimations can be computed using MATLAB’s gamfit(.) function with the
Newton–Raphson update.

The statistical hypothesis test under the assumption k2 ≥ k1 is derived in the following
form [33]

Λ(z) =
(
|z1 − s1|
|z1|

)k1−(k2+1)/2

× exp
[
− 1

1− η

(
|z1 − s1| − |z1|

θ1

)]
χ(|z1|, |z2|), (15)

where s1 is the signal intensity from the interest image, z1 is the sum s1 + c1, and χ(|z1|, |z2|),
which can be approximated as [33]

χ(|z1|, |z2|) ≈ exp
[

η

1− η

(
|z1 − s1| − |z1|

θ1

)]

×

∫ 1
0 exp

(
− η

1−η
|z1−s1|

θ1
t2
)

In−1

(
2

1−η

√
η |z1−s1|

θ1

|z2|
θ2

)
dt∫ 1

0 exp
(
− η

1−η
|z1|
θ1

t2
)

In−1

(
2

1−η

√
η |z1|

θ1

|z2|
θ2

)
dt

.
(16)

Otherwise, i.e., if k1 > k2, then the statistical hypothesis test can be written as

Λ(z) =
(
|z1 − s1|
|z1|

)(k1−1)/2

exp
[
− 1

1− η

(
|z1 − s1| − |z1|

θ1

)]
χ(|z1|, |z2|), (17)
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4.2. Implementation Aspects

The chain processing used to evaluate the proposed CD method is performed in
three steps. First, the difference images are obtained by two subtractions using three
intensity SAR images. Then, the described LRT is realized. Finally, as an optional step,
morphological operations can be performed. The output of this processing chain is a binary
image named the detection image. A basic block diagram of the described processing chain
is presented in Figure 4, where Image 1 represents the original surveillance image, Image 2
represents the original reference image, and Image 3 represents a common image to both
subtractions. These difference-intensity images are obtained, respectively, by using the
operations |Images 1–3|2 and |Images 2–3|2 in each pixel position of the original amplitude
images. Based on (5) and (6), it is not possible that a target-related pixel contains a negative
pixel amplitude after the subtraction Images 1–3. Thus, if the difference Images 1–3 is
positive, then the proposed test performs a thresholding operation that consists of assigning
1 when Λ(z) ≥ Th and assigning 0 when Λ(z) < Th, resulting in a binary image; otherwise,
the output pixel is always assigned to 0. To ensure a fair comparison with other published
results, the statistics were obtained considering a window of 100 × 100 pixels with a step
of 10 pixels [48].

Figure 4. Block diagram of the proposed change detection method. All SAR images illustrated in the
block diagram are part of the CARABAS-II data set.

This paper uses morphological operations similar to those considered in [14,49], i.e.,
one erosion a 3 × 3 m erosion cell and one dilatation, using square structuring elements
whose sizes enable the merging of any detected samples that are separated by 10 m or
less. It is essential to highlight that these operations should be selected according to the
method’s application specificity.

In our study, several combinations of the intensity constant s1 and the threshold have
been empirically evaluated. The experimental tests were performed considering the CD
method using all 24 images provided in the CARABAS-II data set. This method is assessed
in terms of the probability of detection (Pd) and false-alarm rate (FAR), i.e., the number of
false alarms per square kilometer. In our evaluation, detection is defined as any detected
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object on the binary output matrix after morphological operations. Thus, correct target
detection is any detected object lying in a range of, at maximum, 10 m from the original
target position. Any other detected object is declared as a false alarm.

4.3. CD Results

Tables 1 and 2 present the Pd and FAR performances obtained by the CD method for
two different thresholds and a fixed-intensity constant s1 = 0.25. In Table 1, the threshold
value was empirically established to obtain a high Pd performance, i.e., Pd = 0.98. In this
scenario, the chosen threshold value is Th = 0.05. Additionally, in Table 2, the threshold
value selection was empirically established to obtain a high FAR performance, i.e., FAR ≤ 1.
For simplicity, the name of the images was shortened using the notation MxPy, where Mx
means mission x, where x ∈ {2, 3, 4, 5}, and Py represents pass y, where y ∈ {1, 2, 3, 4, 5, 6}.

Table 1. Performance results of the proposed method for a threshold Th = 0.05 and s1 = 0.25.
Herein, the images are represented using the notation MxPy, where Mx means mission x, where
x ∈ {2, 3, 4, 5}, and Py represents pass y, where y ∈ {1, 2, 3, 4, 5, 6}.

Experiments

Surveillance
Image

(Image A – Image C)

Reference
Image

(Image B – Image C)
Detected
Targets

Probability of
Detection

False
Alarm

False Alarm
Rate (km−2)

Image A Image B Image C

1 M2P1 M4P1 M3P1 25 1 5 0.83

2 M3P1 M5P1 M4P1 25 1 12 2

3 M4P1 M2P1 M5P1 25 1 1 0.16

4 M5P1 M3P1 M2P1 24 0.96 2 0.33

5 M2P2 M4P2 M3P2 25 1 5 0.83

6 M3P2 M5P2 M4P2 25 1 3 0.5

7 M4P2 M2P2 M5P2 25 1 6 1

8 M5P2 M3P2 M2P2 22 0.88 1 0.16

9 M2P3 M4P3 M3P3 25 1 11 1.83

10 M3P3 M5P3 M4P3 25 1 6 1

11 M4P3 M2P3 M4P3 25 1 5 0.83

12 M5P3 M3P3 M2P3 25 1 5 0.83

13 M2P4 M4P4 M3P4 25 1 5 0.83

14 M3P4 M5P4 M4P4 25 1 1 0.16

15 M4P4 M2P4 M5P4 25 1 2 0.33

16 M5P4 M3P4 M2P4 22 0.88 2 0.33

17 M2P5 M4P5 M3P5 25 1 9 1.5

18 M3P5 M5P5 M4P5 22 0.88 92 15.33

19 M4P5 M2P5 M5P5 25 1 1 0.16

20 M5P5 M3P5 M2P5 25 1 17 2.83

21 M2P6 M4P6 M3P6 25 1 4 0.66

22 M3P6 M5P6 M4P6 25 1 4 0.66

23 M4P6 M2P6 M5P6 25 1 10 1.66

24 M5P6 M3P6 M2P6 25 1 0 0

Total 590 0.98 209 1.45

From the results presented in Tables 1 and 2, it is observable that experiment 18 has
a significant impact on the performance of the studied technique, i.e., the majority of
the non-detections and false alarms results from this experiment. This pattern was also
observed in several other methods proposed in the literature [14,32,33,48]. To extend our
discussion, Figures 5 and 6 present the output detection image of the studied technique
for experiments 1 and 18, considering the parameters from Tables 1 and 2, respectively. It
is important to highlight that the ground truth from experiment 1 comes from the target
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deployment presented in Figure 1a. In contrast, the ground truth from experiment 18 comes
from the target deployment shown in Figure 1b.

Table 2. Performance results of the proposed method for a Threshold Th = 2.5 and s1 = 0.25.
Herein, the images are represented using the notation MxPy where Mx means mission x, where
x ∈ {2, 3, 4, 5}, and Py represents pass y, where y ∈ {1, 2, 3, 4, 5, 6}.

Experiments

Surveillance
Image

(Image A – Image C)

Reference
Image

(Image B – Image C)
Detected
Targets

Probability of
Detection

False
Alarm

False Alarm
Rate (km−2)

Image A Image B Image C

1 M2P1 M4P1 M3P1 25 1 0 0

2 M3P1 M5P1 M4P1 25 1 3 0.5

3 M4P1 M2P1 M5P1 25 1 0 0

4 M5P1 M3P1 M2P1 23 0.92 2 0.33

5 M2P2 M4P2 M3P2 25 1 1 0.16

6 M3P2 M5P2 M4P2 25 1 0 0

7 M4P2 M2P2 M5P2 25 1 0 0

8 M5P2 M3P2 M2P2 21 0.84 1 0.16

9 M2P3 M4P3 M3P3 25 1 1 0.16

10 M3P3 M5P3 M4P3 21 0.84 0 0

11 M4P3 M2P3 M4P3 25 1 1 0.16

12 M5P3 M3P3 M2P3 24 0.96 1 0.16

13 M2P4 M4P4 M3P4 24 0.96 1 0.16

14 M3P4 M5P4 M4P4 25 1 0 0

15 M4P4 M2P4 M5P4 25 1 0 0

16 M5P4 M3P4 M2P4 20 0.8 0 0

17 M2P5 M4P5 M3P5 25 1 0 0

18 M3P5 M5P5 M4P5 16 0.64 10 1.66

19 M4P5 M2P5 M5P5 25 1 0 0

20 M5P5 M3P5 M2P5 24 0.96 1 0.16

21 M2P6 M4P6 M3P6 25 1 0 0

22 M3P6 M5P6 M4P6 24 0.96 0 0

23 M4P6 M2P6 M5P6 25 1 0 0

24 M5P6 M3P6 M2P6 24 0.96 0 0

Total 571 0.95 22 0.15

As can be observed in Figures 5a and 6a, the proposed method performs well for both
scenarios, resulting in the detection of all targets in both cases. Note that the false alarms
observed in Figure 5a mainly derive from the small threshold value, which was an expected
pattern. However, the results observed in Figures 5b and 6b show that several false alarms
are observed for a low threshold scenario, and several non-detections are present in the
case with a higher threshold value, which is an expected pattern. However, the proposed
method detects an unexpected structure on the left side of the image in both evaluated cases.
This structure is generated from some image-formation issues observed in the images used
in experiment 18. Additional processing techniques are required to improve the detection
performance for this type of evaluated scenario, as demonstrated in [23]. However, to
guarantee a fair comparison with the other methods discussed throughout this section,
these additional processing steps are not considered.
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Figure 5. Output detection binary image for experiments 1 and 18 presented in (a,b), respectively,
for Th = 0.05 and s1 = 0.25. The original target deployments for the evaluated experiments are
presented in Figure 1a,b, respectively.

Figure 6. Output detection binary image for experiments 1 and 18 presented in (a,b), respectively, for
Th = 2.5 and s1 = 0.25. The original target deployments for the evaluated experiments are presented
in Figure 1a,b, respectively.

To conclude the performance analysis based on Tables 1 and 2, a comparison with
the LRT-based methods shown in [15] is presented. In [15], the authors proposed two
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LRT change detection methods based on Rayleigh and K-distributed background statistics,
where points with Pd ≈ 0.95 are highlighted. For the evaluated CARABAS-II data set, the
Rayleigh-based method detected 568 targets with 3594 false alarms, i.e., FAR = 24.96. The
K-distributed-based technique detected 570 targets with 100 false alarms, i.e., FAR = 0.69.
These results show that a better-selected background statistics distribution improves the
change detection performance of the application. From Table 2, the method using the
Gamma background statistics for difference intensity images detected 571 targets with
22 false alarms, i.e., FAR = 0.15, which corroborates the analysis regarding the background
statistics’ distribution fit provided in Section 3.

The second presented evaluation is based on the variation in the intensity constant
s1, and presented in terms of Receiver Operating Characteristic (ROC) curves in Figure 7.
Additionally, Figure 7 shows ROC curves from other change detection methods in the
literature, i.e., [32,33], which are used for performance comparison and further discussed
throughout this section. For this evaluation, different values of s1 were considered when
evaluating several different threshold values, e.g., Th ∈ {0, 1, 2, 3, . . . , 10, 100, 1000}. The
analysis related to the influence of the selection of s1 can be carried out in a very high-
detection-probability scenario, i.e., Pd ≥ 0.99, and for a low-FAR scenario, i.e., FAR ≤ 1.
Considering the high-detection-probability scenario, for instance, when FAR = 10, the
following detection probabilities are observed: Pd = 0.997 for s1 = 0.2, Pd = 0.994 for
s1 = 0.25, and Pd = 0.991 for s1 = 0.3. Thus, for low s1 values, the proposed method
tends to perform better. Additionally, it is possible to observe that, for s1 = 0.3, it is not
possible to detect some targets, resulting in a saturation pattern in the ROC curve. When
considering the low-FAR scenario, a different behavior is observed. Using low values of
s1 tends to produce false alarms related to objects with an almost target-like statistical
behavior. These false alarm detections are directly related to the specificities of the data
set. Frequently, these detections are mitigated by amplitude constraints [14,33]. Thus, the
criterion selection of s1 is directly related to the specificities of the application, prioritizing
lower values for situations where a very high Pd is required and prioritizing higher values
of s1 for situations where a low false alarm occurrence is needed.

To conclude our experimental evaluation, the studied change detection performance is
compared with other published change detection methods from the literature. This analysis
is also based on the ROC curves in Figure 7. The assessment compares the proposed
intensity-target detection method and other LRT-based techniques using amplitude SAR
images. The first method, presented in [32], was one of the first LRT-based change detection
methods using the CARABAS-II data. In this technique, the background statistics are
modeled as Gaussian-distributed. The second method from the literature used in our
performance comparison is presented in [33]. To the best of the authors’ knowledge, this
technique is the LRT-based change detection method that provides the best performance for
amplitude pairs using this data set and adopting similar constraints. The notation used in
the original articles was maintained. Analyzing the results, considering an FAR = 10, for the
reference method [32], the following probability of detection is observed: Pd = 0.985. For
the reference method [33], the following probabilities of detection are observed: Pd = 0.993
using |s1| = 0.3 and Pd = 0.986 using |s1| = 0.4. For the proposed method, the following
probabilities of detection are observed: Pd = 0.997 for s1 = 0.2, Pd = 0.994 for s1 = 0.25, and
Pd = 0.991 for s1 = 0.3. Similarly, considering an FAR = 1, for the reference method [32],
the following probability of detection is observable: Pd = 0.9. For the reference method [33],
the following probabilities of detection are observable: Pd = 0.978 using |s1| = 0.3 and
Pd = 0.975 using |s1| = 0.4. For the proposed method, the following probabilities of
detection are observed: Pd = 0.981 for the three evaluated values of s1. As shown in
Figure 7, the proposed method outperforms the other LRT-based change detection methods
for most of the evaluated points presented in the ROC curve. It is suitable to relate these
performance gains to the better selection of the clutter-plus-noise statistics, i.e., background
statistics. Further discussion regarding these observations is presented in Section 5.
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Figure 7. ROC curves performance comparison of the performances obtained from the studied
change detection method under different intensity constraints s1 and reference methods from the
literature. The compared performances were the best ROC curves extracted from [32,33], referred to
as reference methods 01 and 02, respectively.

5. Discussions

The results presented in Figure 2 show that the exponential distribution does not
provide a good fit for the background statistics of low-frequency difference intensity
wavelength-resolution SAR images. Different conclusions can be derived from the results
presented in Figure 3, which provided a good fit for most of the evaluated regions. The
regions where the AD test rejected the Gamma distribution are mainly related to the target
regions from the original images. Additionally, the isolated rejected cells could possibly be
associated with isolated target-like patterns from the background, showing high-intensity
pixels or Type I error, as discussed in [22]. Thus, according to the AD GoF test, the Gamma
distribution provides a better statistical fit for the clutter-plus-noise of low-frequency
difference intensity wavelength-resolution SAR images.

Two main patterns could be verified from the results observed in Tables 1 and 2
from the visual inspection made considering Figures 5 and 6 and the comparison with
the LRT methods presented in [15]. The first pattern was verified when the target-related
pixels showed an amplitude signature with high differentiation of the background-related
pixels. This situation is observed in Figure 6a. Since intensity images tend to increase this
differentiation, fewer false alarms are expected in this scenario than when using amplitude
images. The second pattern is verified when the target-related pixels have an amplitude
signature with low differentiation from the background-related pixels. This situation is
observed in Figure 6b. In this scenario, these targets become more difficult to detect when
using intensity images than when using amplitude images. Thus, fewer false alarms are
expected in change detection methods using low-frequency difference intensity wavelength-
resolution SAR images than in the amplitude ones. However, some targets tend to be more
challenging to detect. Finally, these two patterns can also be verified using Figure 7, where
low FAR values are observed for Pd < 0.96. However, a larger FAR increase was observed
to detect all targets in the low-frequency difference-intensity wavelength-resolution SAR
images than the increase noted for the amplitude techniques.

The results presented in Figure 7 show that the studied technique provides better
results regarding the probability of detection of an FAR for most of the evaluated cases,
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i.e., for lower levels of FAR, the Gamma distribution for low-frequency difference-intensity
wavelength-resolution SAR images yields to a higher probability of detection. Thus, based
on these results, we observe that using intensity-difference wavelength-resolution SAR
images in CD applications with an adequate background statistics model tends to provide
gains in both Pd and FAR compared with other methods in the literature.

6. Conclusions

Statistical analysis for difference wavelength-resolution intensity SAR images was
presented in this article. Two statistical distributions were evaluated. The first considered
distribution was the bivariate Exponential distribution, frequently used for microwave
intensity SAR images. The second distribution was the bivariate Gamma distribution,
selected based on previous observations on amplitude VHF wavelength-resolution SAR
images. The results of the goodness-of-fit tests show that the bivariate Gamma distribution
provides a better fit for the background statistics for low-frequency difference intensity
wavelength-resolution SAR images.

A CD method for detecting concealed targets in forestry areas was evaluated consid-
ering the background statistics of difference intensity VHF wavelength-resolution SAR
images, modeled as Gamma distribution. The good fit of the Gamma distribution for
the background statistics in low-frequency wavelength-resolution SAR images results in
good performances in the experimental evaluation using the CD technique. Additionally,
the CD under evaluation presents a competitive performance compared to other recently
published approaches.
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