
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 6th International Conference on
Technical Debt, TechDebt 2023, Melbourne, Australia, 14 May 2023 through 15 May 2023.

Citation for the original published paper:

Silva, L., Unterkalmsteiner, M., Wnuk, K. (2023)
Towards identifying and minimizing customer-facing documentation debt
In: Proceedings - 2023 ACM/IEEE International Conference on Technical Debt,
TechDebt 2023 (pp. 72-81). Institute of Electrical and Electronics Engineers (IEEE)
https://doi.org/10.1109/TechDebt59074.2023.00015

N.B. When citing this work, cite the original published paper.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-24654

Towards identifying and minimizing
customer-facing documentation debt

Lakmal Silva Michael Unterkalmsteiner Krzysztof Wnuk
Department of Software Engineering Department of Software Engineering Department of Software Engineering

Blekinge Institute of Technology and Ericsson AB Blekinge Institute of Technology Blekinge Institute of Technology
Karlskrona, Sweden Karlskrona, Sweden Karlskrona, Sweden
lakmal.silva@bth.se michael.unterkalmsteiner@bth.se krzysztof.wnuk@bth.se

Abstract—Background: Software documentation often strug-
gles to catch up with the pace of software evolution. The lack
of correct, complete, and up-to-date documentation results in
an increasing number of documentation defects which could
introduce delays in integrating software systems. In our previous
study on a bug analysis tool called MultiDimEr, we provided
evidence that documentation-related defects contribute to a
significant number of bug reports. Aims: First, we want to iden-
tify documentation defect types contributing to documentation
defects and thereby identifying documentation debt. Secondly,
we aim to find pragmatic solutions to minimize most common
documentation defects to pay off the documentation debt in
the long run. Method: We investigated documentation defects
related to an industrial software system. First, we looked at the
types of different documentation and associated bug reports. We
categorized the defects according to an existing documentation
defect taxonomy. Results: Based on a sample of 101 defects, we
found that a majority of defects are caused by documentation
defects falling into the Information Content (What) category (86).
Within this category, the documentation defect types Erroneous
code examples (23), Missing documentation (35), and Outdated
content (19) contributed to most of the documentation defects.
We propose to adapt two solutions to mitigate these types of
documentation defects. Conclusions: In practice, documentation
debt can easily go undetected since a large share of resources and
focus is dedicated to deliver high-quality software. This study
provides evidence that documentation debt can contribute to
increase in maintenance costs due to the number of documen-
tation defects. We suggest to adapt two main solutions to tackle
documentation debt by implementing (i) Dynamic Documentation
Generation (DDG) and/or (ii) Automated Documentation Testing
(ADT), which are both based on defining a single and robust
information source for documentation.

Index Terms—Documentation Debt, Technical Debt, Automa-
tion

I. INTRODUCTION

As software development is a human oriented task [1],
the documentation of software becomes a vital interface be-

tween the software system and its user and developers. A
well documented and an up-to-date documentation provides
a better understanding of the system in various phases of the
software development and maintenance cycles [1]. However,
prior research [2], [3] and our industry experience show that
maintaining high-quality documentation is seldom prioritized.
Software documentation is often treated as a second class

Ericsson AB, KKS foundation

artifact and is managed as an afterthought within the software
development process [4].

Different types of software documentation are produced
during software development, such as requirements docu-

ments, test documents, developer documents, code comments,
and end-user documents [2] to name a few. The end user
documents or the customer facing-documents, the focus in
this paper, are a crucial set of documents that are produced
to be used by users internal or external to the product
development organization. Customer-facing documentation is
usually the entry point to understand, install, and manage
a software system. As opposed to requirements documents,
test documents, developer documentation, and code comments,
these documents are an integral part of a software system and
are version controlled and delivered together with a software
system. Therefore, customer facing-documents can contribute
to defects and technical debt accumulation, which deserves
attention similar to the technical debt management of software
artifacts.

Software defects consume a significant amount of time
and money [5] for both the development organizations as
well the end users. In an effort to identify Technical Debt
(TD), we implemented a bug analysis tool called MultiDimEr,
a Multi-Dimensional bug analyzEr [6] that analyzes and
categorizes bug reports into different dimensions such as
architectural components, source code files, and customer-

facing documents. The analysis tool revealed that most of
the reported defects resulted in updates to customer-facing
software documents such as configuration guides, deploy-

ment guides and user guides. This revelation prompted us
to investigate documentation debt, which has never been a
focused area in the software development organization that we
worked with at Ericsson. We identified two main causes for
documentation updates due to defects. The first one is related
to insufficient and inadequate content and obsolete, ambiguous
information, as also pointed out by a survey conducted by
Aghajani et al. [4]. The second cause are source code defect
fixes such as installation, upgrade/migration scripts that require
documentation updates.

The goal of our research is to identify causes for documen-

tation debt in customer-facing documents and find solutions
to minimize such debt. Certain types of customer-facing

documents such as Deployment Guides, Installation Guides,
and API References consist of a combination of natural
language text and command syntax, whereas documents such
as User Manuals and Getting Started Guides vastly consist of
descriptive natural language text. Hence, the documentation
defect types and thereby the solutions to tackle documentation
debt can vary.

We narrowed down our solutions to cover the defect
types Erroneous code examples, Missing documentation and
Outdated content, as our analysis showed that these types
caused most of the documentation bug reports. The main
contributions of this research are:

• A method for identifying documentation debt from bug
reports with the help of a documentation defect taxonomy.

• Further empirical validation of the documentation defect
taxonomy in the context of documentation debt.

• A description of solutions to the most common documen-

tation defects contributing to documentation debt.
The rest of this paper is structured as follows. Section II

provides an overview of prior research on documentation debt
and proposed solutions. We describe our research design in
Section III, including the Research Questions (RQs). Sec-

tion IV reports the results from our investigation, followed
by adapting two solution proposals in Section V to mitigate
the identified common documentation defects. We discuss the
results of our investigation in Section VI. We conclude our
paper and provide directions for future work in Section VII.

II. RELATED WORK

Technical Debt (TD) in Software Engineering is a widely
researched area that has even expanded to more fine grained
TD types [7] such as architectural debt [8], [9], code debt [10],
[11], test debt [12], [13], and documentation debt [14]. The
term TD was coined by Cunningham [15] in 1992 referring
to sub-optimal decisions/implementations taken to meet short
term benefits that contribute to costs in the long run due to
limitations in evolving and maintaining the system.

Documentation debt, which is the focus of this study, refers
to missing, inadequate or incomplete documentation [7], [16],
[17]. A characteristic of TD is that it is usually visible in
the quality aspects of a product, but mostly invisible in the
artifacts of a product, like design, source code and tests [14].
The software industry has progressed in identifying certain
types of TD such as the source code and test debt by adding
instrumentation to analyze source code [18] through tools such
as SonarQube1 and PMD2 that can expose the hidden TD to
developers. However, we have not encountered similar tools
for identifying documentation debt in practice. One way to
overcome this limitation is to study defect reports associated
with documentation artifacts. They can be a signal of docu-

mentation debt and analysing their distribution and frequency
can provide insights on where the debt occurs. Furthermore, an
analysis would allow to make informed decisions on whether

1https://www.sonarsource.com/products/sonarqube/
2https://pmd.github.io/

it would make sense to attempt to prevent the debt instead
of paying the principal in form of fixing defects and the
impression of low product quality at the customer.

Codabux et al. [19] studied TD in scientific software. They
analyzed peer-review comments of packages that were sub-

mitted to a repository collecting scientific R packages3. They
manually classified 358 comments originating from 157 pack-

ages and created a taxonomy of ten technical debt types. They
found that documentation debt was the most prominent, with
close to 30% of all found instances of TD. The predominance
of documentation debt was further substantiated by Khan and
Uddin [20] who automated the classification and analyzed
13.500 comments originating from 1297 packages. Looking
at the taxonomy proposed by Codabux et al. [19], they define
documentation debt as deficits in code documentation, as well
as build and end-user documentation. In this paper, we focus
on customer-facing documentation as we found that this type
of documentation contains the most defects in the system we
studied [6], further substantiating that documentation debt is
the most frequently encountered type of TD.

Aghajani et al. [21] focused their investigation on develop-

ing a more differentiated categorisation of documentation debt.
They mined a large collection of documentation related data
sourced from discussions on StackOverflow, issues and pull re-

quests on GitHub, and mailing lists from the Apache Software
Foundation. The resulting hierarchical taxonomy, which we
also use in this research, contains 162 documentation defect
types that are relevant for software developers.

To address absent or outdated documentation, prior research
has proposed the auto generation of documentation through
source code summarization methods [22]–[24], and more
recently, to produce on-demand documentation [25]. However,
most of these solutions are targeting developer documentation,
which is different to customer-facing documentation in terms
of the target audience, the documentation content and how
they have been produced. For instance, developer documen-

tation is internal raw documentation whereas customer-facing
documentation is external and formatted to be used by the
external users of the system [26]. Developer documentation
is usually maintained by developers whereas customer-facing
documentation is written and maintained by technical writ-

ers [26] that follows different tools and processes compared
to loosely managed developer documentation.

Another interesting approach is executable documenta-

tion [27] where domain-specific notations are turned into fully-

fledged modelling/programming languages, or more specifi-

cally, domain specific languages (DSLs). There is a relation
between documentation with software models as argued by
Stevens [28], where models can be used to document software
while in some cases, the documentation can be used to gener-

ate models. However, these approaches are still in their initial
stages and require further research to be used in practice [27].

Another related approach to minimize documentation
defects is automatic documentation testing/verification.

3https://www.r-project.org/

https://3https://www.r-project.org
https://2https://pmd.github.io
https://1https://www.sonarsource.com/products/sonarqube

The DASE (Document-Assisted Symbolic Execution)
approach [29] suggests the use of program documentation
to extract input constrains for testing. Another tool called
DScribe uses a mechanism to combine unit tests and
documentation through templates that are used to generate
documentation and unit tests [30]. A software verification
and a functional testing method for machine interpreted
documentation was introduced by Friedman-Hill et al. [31],
by incorporating documentation testing to a test framework.

We were unable to find prior studies targeted at systemati-

cally identifying customer-facing documentation debt. Hence,
we aim to fill this gap by proposing and testing a customer-

facing documentation debt identification method using bug
reports and a documentation taxonomy in an empirical context.
We also aim to contribute with adapting pragmatic solutions
based on the identified debt in the customer-facing documen-

tation context.

III. RESEARCH DESIGN

The aim of this research is to identify the causes of
documentation debt and to investigate possible solutions to
minimize documentation defects in the future. We embed
this aim in the context of a particular product (referred to
as System A), developed at Ericsson. System A is currently
under active development and has already been released in
multiple versions to the market. The current version of the
product is built on a microservices architecture and is deployed
on the cloud native platform Kubernetes 4. The life-cycle of
the application is managed by Helm 5, which is a package
management system and a life-cycle management system for
Kubernetes.

Our analysis provides a chain of evidence related to docu-

mentation defects, which can be used to motivate the required
investments in documentation improvement solutions.

A. Research Questions
We define the following research questions (RQs) to guide

our investigation.
RQ1 What are the types of customer-facing documents that

contain most of the defects?
We are interested in understanding whether certain types
of documents contain more defects than others. This
would allow us to narrow down the design of a solu-

tion, which likely needs to be adapted to the particular
document type.

RQ2 What type of customer-facing documentation defects can
be observed in bug reports?
The goal of this RQ is to understand if defects are due to
accumulated documentation debt or due to random and
ad-hoc documentation defects. To identify and quantify
documentation debt, we use bug reports and a docu-

mentation defect taxonomy introduced by Aghajani et
al. [21] to group related defects. Even though Aghajani

4https://kubernetes.io/
5https://helm.sh/

et al. validated the documentation defect taxonomy with
practitioners [4], the results can be subjective due to
personal opinions since the study was conducted through
surveys. We complement the taxonomy by validating it
with further empirical data.
To the best of our knowledge, Aghajani et al.’s taxonomy
has not been used for documentation debt analysis before.
Hence, a related sub question is:

RQ2.1 To what extent does the taxonomy support the clas-

sification of customer-facing documentation defects in
industry?
We believe that the taxonomy is useful for documen-

tation defect classification and quantification, which
is a key element in identifying documentation debt.
Since the taxonomy is being used for the first time to
identify documentation debt, we reflect on how well
the taxonomy fits for this purpose.

RQ3 What is the cost of the customer-facing documentation
defects?
It is necessary to estimate the cost of documentation de-

fects to motivate the benefits of paying off documentation
debt by implementing the proposed solutions.

RQ4 How can we minimize the customer-facing documenta-

tion defects through automation?
Based on the quantification of documentation defects
identified as part of RQ2, we are identifying and describ-

ing solutions to mitigate the most common defect causes.

B. Data collection

We utilized MultiDimEr to collect and classify bug re-

ports submitted between March 2019 and September 2022,
belonging to System A that are stored in a central bug
management system. The first bug report of the cloud native
version of System A was reported in March 2019, hence we
used it as the starting point for data collection. This data
set contains a total of 1663 resolved bug reports where 438
bug reports resulted in documentation updates according to
MultiDimEr’s classification. Out of the 438 bug reports, 120
bug reports resulted in documentation updates due to source
code changes. The remaining 318 bug reports targeted issues
purely originating in documentation defects. Hence, we focus
our analysis on this set of defects.

C. Data Analysis

We used a sample study strategy, as suggested by Stol et
al. [32], to achieve generalizability of documentation defect
types in the context of System A from a sample of bug reports.
The overall bug reports analysis consists of three steps as
outlined below.

The first step is to understand the distribution of bug reports
over different documents for answering RQ1. The bug reports
distribution was obtained via the classification results from
MultiDimEr. We observed documentation updates as part of
software defects. However, for the scope of this study, we only
considered pure documentation defects.

https://5https://helm.sh
https://4https://kubernetes.io

In the second step, we classified documentation defects to
one or more documentation defect categories from Aghajani
et al.’s taxonomy. A sample of 101 from a total of 318 bug
reports related to 67 customer-facing documents was used.
We selected a representative bug report sample by including at
least one bug report from each document. From the documents
that contained the majority of bug reports, we included at least
half of the bug reports into the sample. The outcome from this
analysis helps us to answer RQ2. The protocol that we used
for the classification is described below:

1) Select a bug report.
2) Read the observation and the answer sections of the bug

report.
3) Based on the information from the observation and the

answer sections, classify the defect to one or more sub
categories within the main information content types
“What” and/or “How” of the taxonomy. The defects
within information content type “What” refer to “issues
arising from what is written in the documentation” [21]
and the defects within information content type “How”
refer to “how the content is written and organized” [21].

Although the taxonomy introduced by Aghajani et al.
contains four top level categories (“What”, “How”, “Process
Related” and “Tools Related”), we decided to use only the
“What” and “How” categories. Aghajani et al. [21] reported
that “What” (485 defects), “How” (255) type defects are
more frequent compared to “Process Related” (81) and “Tools
Related” (134) defects, so we conjectured that the majority
of the bug reports can be covered by these two categories.
Too many categories makes the classification difficult, as
defects may get distributed into overlapping defect categories,
making the defect frequency distribution less useful to derive
conclusions.

The third step involved the analysis of the most frequent
documentation defect categories, motivated by the rationale
that the development and application of a solution should ad-

dress the most frequently encountered defects. The description
of the identified solutions answers RQ4.

D. Piloting the bug report classification
We conducted a pilot classification to test the accuracy

and the efficiency of the classification protocol. We selected
10 bug reports from a document called “Configuration Man-

agement” belonging to System A, which contained most of
the documentation bug reports. The lead author classified 10
bug reports while the second and the third authors classified
five each. Eight out of the 10 bug reports were classified to
the same documentation defect category by two persons. We
extended the pilot classification with five more bug reports on
the “Installation Guide” of System A. This extension of the
pilot was to get an affirmation that the classification protocol
can be applied independently of the documentation types.
From the extended pilot we observed that four out of the
five bug reports were classified to the same documentation
categories. The agreement between the three authors provides
us confidence on the repeatability of the classification results

on any documentation type. On average we spent around three
minutes per bug report analysis, which is reasonable enough
to scale the classification to a larger sample.

E. Defect prioritization and Cost estimates
Unlike source code bug reports, the documentation bug

reports are in most circumstances registered with a lower
severity, as they usually do not affect the core business func-

tionality. However, certain defects can be of a high priority, for
example the defects detected by the external users, defects on
documents such as application programming interfaces (APIs),
installation and configuration guides.

We calculated the time between the bug report registration
and assignment to a developer. This can be used as a defect
severity and a prioritization indicator. The time period between
registration and assignment indicates relative priority.

Like any other defect, documentation defects also incur sig-

nificant costs on different levels. Hence we need a mechanism
to estimate such costs. To start with, the users of documents
spend time troubleshooting the issues when things do not work
as they are documented, and report them by creating bug
reports. Once a bug report is received by the development
organization, costs incur as part of management activities
such as bug assignment, documentation fixes, documentation
verification and sending out correction packages for document
collections. Since System A did not have a cost estimation
framework within defect management, we use three defect
report variables to approximate the documentation defect cost:

• The proportion of internally to externally detected de-

fects. The rationale is that defects detected by customers
are more costly to fix and have also detrimental side
effects, like loss of confidence in the product.

• The severity of defects assigned by the bug reporter.
• The time between a bug report assignment until the bug

fix was accepted, approximating the cost of resolution. A
longer time period between bug registration and solution
acceptance is an indicator that the defect may be complex
to be handled and may incur higher costs.

We updated the MultiDimEr tool to collect this extra
information.

F. Threats to validity
There can be a variety of threats to validity when conducting

empirical research. However, we have taken steps to minimize
those treats to the best of our ability, which are outline below.

Manual classification by humans can be subjected to bias.
We mitigated this threat by piloting the classification of bug
reports into documentation defect categories among the three
authors to understand how reliably the classification can be
conducted independently and how much of agreement exists
between independent classifications. To minimise subjectivity
in the classification, we also annotated the text from the bug
reports that led to the chosen classification, allowing us to
identify the root causes for potential disagreement and align
our common understanding of the defect categories.

When dealing with empirical studies, there may be threats
to external validity as different companies have different
ways of working, different development processes and more
importantly, how the customer-facing documentation is named,
structured and managed. To minimize external validity, re-

garding documentation naming, we mapped the Ericsson
documentation into more generic and already used naming
conventions [4] from prior research.

We have studied documentation defects in a specific indus-

try context. Hence, we took precaution to describe first the
concepts behind the solutions so they can be adapted and
implemented in different contexts. In addition, we provide
technology specific implementation details according to our
chosen industrial system, that can be beneficial for practition-

ers that use similar technologies.
The industrial system that we investigated is a cloud native

system that is deployed in Kubernetes environments. The doc-

umentation that contained most of the defects is thematically
connected to the platform. However, our findings and solutions
are not platform dependent.

IV. RESULTS

We answer RQ1, i.e. the bug report distribution among
different document types, with the results from the analysis
performed by the MultiDimEr. The exact naming of the
documents is irrelevant outside the Ericsson context and use
therefore the documentation categories introduced by Aghajani
et al. [4]. A total of 67 customer-facing documents from Sys-

tem A were grouped into six categories: API References, Get-

ting Started Guides, Installation Guides, Deployment Guides,
Release Notes/Change Logs and User Manuals. Table III
illustrates the distribution of the bug reports. From the results
we see that just over half of the issues were reported on
the Deployment Guides (129) and the Installation Guides
(53). It is worth highlighting that the dynamically generated
Release Notes only contained eight issues. Over the years,
the management decided to invest in dynamically generat-

ing the Release Notes to shorten delivery preparation time
and support continuous deliveries. This document contains
information such as added new features, corrected bug report
information, and microservices version information. We could
conjecture that the lower number of bugs is due to the dynamic
documentation generation from a robust information source.

TABLE I
BUG REPORTS DISTRIBUTION AMONG VARIOUS DOCUMENT TYPES

Document Type No. of bug reports

Deployment Guides 129
Installation Guides 53
API References 51
User Manuals 50
Getting Started Guides 27
Release Note/Change Log 8

Total documentation bugs 318

Next, we report results from our classification of the bug re-

ports to the documentation defect taxonomy, answering RQ2.
From the results in Table II, we can observe that 85% (86 out
of 101) of the defects fall into the Information Content (What)
category. These 86 issues are distributed among the second
level of issues: Completeness (37), Correctness (30), and
Up-to-dateness (19). On the third level of defect categories,
the defects were mostly distributed between on Erroneous
code examples (23), Missing configuration instructions (14),
Missing/Poor documentation (15), and Outdated content (14)
in relation to system evolution.

A commonality of these third level categories is that they
are related to step by step instructions and/or command syntax
that were either missing, incorrect or outdated. Following are
some examples of defects that we found from the investigated
bug reports:

E.g.1 “We need add a ”–reuse-values” flag for the command to
work”

E.g.2 “service names are incorrect”
E.g.3 “The configuration to enable the external IP for REST is

not described”
E.g.4 “The Configuration Management and Deployment Guide

lacks detailed step-by-step instructions on how to both
properly configure service-x”

The most obvious implication from the above defects is the
management overhead (defect identification, assignment, and
acceptance of the solution) of the documentation bug reports.
However there are other implications that are hidden, such as
introducing delays to the projects, the cost of troubleshooting
and in some cases (in E.g.3 and E.g.4 above) the need to call
for emergency support which is a very costly activity.

In relation to RQ2.1, the taxonomy indeed helped us to
categorize the documentation defects to the first and the second
level categories easily. However, the third level categories in
the taxonomy by Aghajani et al. [4] are highly influenced by
source code related or developer documentation. This led to
some uncertainty in categorization. For example, we observed
many bug reports due to incorrect/outdated commands. How-

ever, there is no adequate category in the taxonomy for such
defects. The closest was the Erroneous code examples category
and the Outdated example category.

Only around 15% (15 out of 101) of issues were related
to Information Content (How) category. Therefore, we only
focused on solutions that address issues related to the Infor-

mation Content (What) category in this study.
We report the results related to the cost of documentation

defects. As we pointed out in Section III-E, System A did not
have defect cost estimation framework. Hence, we use three
quantitative dimensions, derived from the bug report data, to
approximate the documentation defect cost: (a) the proportion
of internally to externally detected defects, (b) defect severity
and (c) time period between bug assignment and bug fix
acceptance. Table III summarizes the results of (a) and (b).

The result shows that 40% of the defects are externally
reported (126 out of 318). However, none of the documentation
defects was assigned a high severity (A). This is explainable

111 11111 rn

T
A

B
L

E II
D

O
C

U
M

E
N

T
A

T
IO

N
 D

E
F

E
C

T
S (

N
O

T
E

 T
H

A
T

 O
N

E
 D

E
F

E
C

T
 R

E
P

O
R

T
 C

A
N

 B
E

 C
L

A
S

S
IF

IE
D

 IN
T

O
 S

E
V

E
R

A
L

 D
E

F
E

C
T

 C
A

T
E

G
O

R
IE

S
)

D
efect categ

o
ries

F
req

u
en

cy
S

o
lu

tio
n ty

p
e

I
n
f
o
r
m
a
t
i
o
n

C
o
n
t
e
n
t

(
W
h
a
t
)

C
o
r
r
e
c
t
n
e
s
s

E
r
r
o
n
e
o
u
s

c
o
d
e

e
x
a
m
p
l
e
s

F
a
u
l
t
y

t
u
t
o
r
i
a
l

I
n
a
p
p
r
o
p
r
i
a
t
e

i
n
s
t
a
l
l
a
t
i
o
n

i
n
s
t
r
u
c
t
i
o
n
s

C
o
m
p
l
e
t
e
n
e
s
s

M
i
s
s
i
n
g

c
o
n
f
i
g
u
r
a
t
i
o
n

i
n
s
t
r
u
c
t
i
o
n
s

M
i
s
s
i
n
g

u
n
r
e
c
o
m
m
e
n
d
e
d

u
s
a
g
e

I
n
s
t
a
l
l
a
t
i
o
n
,

d
e
p
l
o
y
m
e
n
t
,

&
r
e
l
e
a
s
e

M
i
s
s
i
n
g

c
o
d
e

b
e
h
a
v
i
o
r

c
l
a
r
i
f
i
c
a
t
i
o
n
s

O
t
h
e
r

M
i
s
s
i
n
g
/
P
o
o
r

d
o
c
u
m
e
n
t
a
t
i
o
n

U
p
-
t
o
-
d
a
t
e
n
e
s
s

M
i
s
s
i
n
g

d
o
c
u
m
e
n
t
a
t
i
o
n

f
o
r

n
e
w

f
e
a
t
u
r
e
/
c
o
m
p
o
n
e
n
t

O
u
t
d
a
t
e
d

e
x
a
m
p
l
e

O
t
h
e
r

U
p
-
t
o
-
d
a
t
e
n
e
s
s

I
n
f
o
r
m
a
t
i
o
n

C
o
n
t
e
n
t

(
H
o
w
)

M
a
i
n
t
a
i
n
a
b
i
l
i
t
y

R
e
a
d
a
b
i
l
i
t
y

U
s
a
b
i
l
i
t
y

u
s
e
f
u
l
n
e
s
s

i
s
s
u
e
s

8
6

3
0

2
3

433
7

1
4

4221
5

1
9

7751
5

1473

--a
u
t
o
m
a
t
i
o
n

a
u
t
o
m
a
t
i
o
n

a
u
t
o
m
a
t
i
o
n

-a
u
t
o
m
a
t
i
o
n

-a
u
t
o
m
a
t
i
o
n

---a
u
t
o
m
a
t
i
o
n

a
u
t
o
m
a
t
i
o
n

T
A

B
L

E III
D

O
C

U
M

E
N

T
 B

U
G

 R
E

P
O

R
T

 C
O

S
T

 A
P

P
R

O
X

IM
A

T
IO

N

B
u
g rep

o
rt d

im
en

sio
n

N
o
. o

f b
u
g rep

o
rts

In
tern

al
1
9
2

E
x
tern

al
1
2
6

S
ev

erity C

2
9
9

S
ev

erity B

1
9

S
ev

erity A

0

T
o
tal d

o
cu

m
en

tatio
n b

u
g
s

318

b
y co

n
sid

erin
g th

at o
n
ly d

efects th
at d

irectly affect b
u
sin

ess
o
p
eratio

n
s are assig

n
ed a h

ig
h sev

erity.
T

h
e

m
ean

tim
e

fo
r

assig
n
in

g
an

in
tern

al
d
o
cu

m
en

tatio
n

d
efect

to
a

team

is
aro

u
n
d

5
d
ay

s,
w

h
ereas

assig
n
in

g
an

ex
tern

al
d
o
cu

m
en

tatio
n

d
efect

tak
es

aro
u
n
d

7
d
ay

s.
W

h
en

an
ex

tern
al

b
u
g

is
reg

istered
at

E
ricsso

n
,

it
n
eed

s
to

b
e

ro
u
ted b

etw
een at least tw

o o
rg

an
izatio

n
s. T

h
is ro

u
tin

g creates
ad

d
itio

n
al d

elay
s in reach

in
g th

e d
ev

elo
p
m

en
t o

rg
an

izatio
n
.

T
h
e

m
ean

tim
e

fo
r

reso
lv

in
g

an
in

tern
al

d
o
cu

m
en

tatio
n

d
efect is aro

u
n
d 1

0 d
ay

s w
h
ereas reso

lv
in

g an ex
tern

al d
o
c-

u
m

en
tatio

n d
efect is aro

u
n
d sev

en d
ay

s. T
h
is in

d
icates th

at
w

e m
ay b

e fi
x
in

g ex
tern

al b
u
g
s at a h

ig
h
er p

rio
rity o

n
ce th

ey
are b

ein
g assig

n
ed

. H
o
w

ev
er, w

ith
o
u
t k

n
o
w

in
g th

e effo
rt th

at
w

en
t in

to ad
d
ressin

g a d
efect, th

is tim
e-b

ased m
easu

re is o
n
ly

a w
eak in

d
icato

r o
f d

efect co
st.

T
h
e m

ean tim
e o

f so
lv

in
g th

e d
o
cu

m
en

tatio
n d

efects th
at

co
u
ld h

av
e b

een d
etected w

ith th
e p

ro
p
o
sed tw

o au
to

m
atio

n

so
lu

tio
n
s (d

iscu
ssed n

ex
t in S

ectio
n V

) is aro
u
n
d 1

1 d
ay

s. A
s

w
e

h
av

e
rep

o
rted

in
T

ab
le

II,
th

is
co

v
ers

5
9
%

o
f

th
e

d
o
c-

u
m

en
tatio

n d
efects. E

v
en th

o
u
g
h w

e can
n
o
t ex

actly calcu
late

th
e co

st o
f th

e d
efects o

r th
e am

o
u
n
t o

f sav
in

g
s, w

e can g
et an

in
d
icatio

n o
f th

e relativ
e co

st sav
in

g th
at au

to
m

ated so
lu

tio
n
s

to av
o
id d

o
cu

m
en

tatio
n d

eb
t w

o
u
ld p

ro
v
id

e: 5
9
%

 o
f 3

1
8 are

1
8
8 b

u
g rep

o
rts, w

h
ich is 1

1
%

 o
f th

e b
u
g rep

o
rts (1

6
6
3
) fi

x
ed

b
etw

een M
arch 2

0
1
9 an

d S
ep

tem
b
er 2

0
2
2 in S

y
stem

 A
.

V
.

S
O

L
U

T
IO

N
S

F
ro

m
 o

u
r an

aly
sis o

f d
o
cu

m
en

tatio
n d

efects, w
e o

b
serv

ed
th

at th
e m

ajo
rity o

f th
e rep

o
rted d

efects (5
9
%

) w
ere d

u
e to

in
co

rrect co
m

m
an

d sy
n
tax

, co
m

m
an

d
s related to th

e p
ro

d
u
ct

an
d th

e p
latfo

rm
 n

o
t b

ein
g u

p to d
ate w

ith th
e so

ftw
are v

er-

sio
n
s, an

d in
co

rrect ex
ecu

tio
n step

s (see T
ab

le II). M
in

im
izin

g
su

ch d
efects w

o
u
ld co

n
trib

u
te to th

e red
u
ctio

n o
f m

ain
ten

an
ce

co
sts.

T
h
erefo

re,
w

e
lim

ited
o
u
r

so
lu

tio
n

sco
p
e

to
ad

d
ress

th
e co

m
m

an
d
-related an

d ex
ecu

tio
n step

s related fau
lts. W

e
co

n
sid

er
th

e
fo

llo
w

in
g

k
ey

d
esig

n
criteria

w
h
en

id
en

tify
in

g
th

e so
lu

tio
n
s:

1
) R

obust inform
ation source of the system

s behavior. O
n
e

o
f

th
e

ro
o
t

cau
ses

fo
r

th
e

d
o
cu

m
en

tatio
n

d
efects

w
e

o
b
serv

ed is th
e lack o

f a ro
b
u
st in

fo
rm

atio
n so

u
rce fo

r
d
o
cu

m
en

tatio
n
.

C
u
rren

tly,
th

e
in

p
u
t

fo
r

d
o
cu

m
en

tatio
n

co
m

es fro
m

 so
ftw

are d
ev

elo
p
ers, w

h
o ex

ecu
te co

m
m

an
d
s

to test th
em

 an
d fo

rw
ard th

ese to th
e d

o
cu

m
en

tatio
n team

.
In th

is m
an

u
al p

ro
cess, m

istak
es (w

ro
n
g assu

m
p
tio

n
s o

n
env

iro
n
m

en
t setu

p
, ty

p
o
s) can p

ro
p
ag

ate u
n
n
o
ticed to th

e
d
o
cu

m
en

tatio
n

as
th

ere
m

ig
h
t

b
e

a
d
ifferen

ce
b
etw

een
th

e co
m

m
an

d
s, ex

ecu
ted an

d v
erifi

ed b
y th

e d
ev

elo
p
ers,

11 CoofigocaHoo i,;a, n
Topic 1 Topic 2 Topic 3 Topic n

I I I I
Topic 1 content Topic 2 content Topic 3 content Topic n content

Ansible test framework Java test framework

Installation of Configuration {
System "A" of System "A"

Java test framework

Non-Functional
Testing of System "A-

Upgrade of - RollBack of
System "A" Sytem "A"

Ansible test framework

and the documented commands. Additionally, the lack of
automated documentation testing makes the information
outdated very quickly, since detecting documentation
discrepancies is a manual process.

2) Automation. The correctness of documentation needs
to be verified automatically as the systems evolve and
documentation tends to be outdated quickly.

3) Developer friendliness. Ericsson has adopted the shift-left
concept, which is to move the development, testing and
operations of the software system towards production-like
systems. Automation in early development phases allows
to detect and fix issues as early as possible [33]. This
entails that the development teams have a greater respon-

sibility to safe guard the quality of the delivered features,
including the customer-facing documents. Hence, it is
vital to consider the developers when proposing solutions
for preventing documentation defects.

The outlined design criteria have led us to the identification
of two solutions that can be adapted: Dynamic Documentation
Generation (DDG) and Automated Documentation Testing
(ADT). DDG has already been used for summary generation of
methods in the source code [22], [24] and API generation [34]
whereas ADT has been proposed as test-enabled documenta-

tion [30], [31].
In the remainder of this section, we first describe the doc-

umentation system, Darwin Information Typing Architecture
(DITA), currently used at Ericsson (Section V-A). Then, we
describe how both DDG (Section V-B) and ADT (Section V-C)
can be realized with DITA. Based on the requirements at
different organizations, a suitable approach can be adapted.
In the Ericsson context we chose to adapt DDG, and describe
the design in Section V-B.

A. Darwin Information Typing Architecture (DITA)
The customer-facing documents throughout Ericsson are

structured and developed according to the Darwin Informa-

tion Typing Architecture 6. DITA is an open standard that
specifies a set of document types for authoring, organizing
topic-oriented information. The documents are stored in a
format based on the Extensible Markup Language (XML).
A key characteristic of DITA based documents is the topic
orientation, i.e., a document is composed of smaller sections
called topics. A DITA map is used to structure the topics nec-

essary for the document. Figure 1 illustrates how a document
called “Configuration Guide” consists of multiple topics, while
Listing 1 shows an example of the XML based DITA topic.
Lines 7-10 render the following command.

kubectl get configmap
<customized_configmap_name>
-o yaml -n <namespace>
<customized_configmap_name>-<namespace>.yaml

The parameters within 〈〉are to be replaced by actual values
based on the site specifications and user requirements.

6https://www.oasis-open.org/committees/tc home.php?wg abbrev=dita

Fig. 1. Topic-based organization of DITA documents.

The department that develops System A has used customer-

facing documents as input when developing the system tests.
However, there is no connection between the documentation
and the test implementation after the initial development.
A high level overview of the testing phases and the test
frameworks being used are shown in Figure 2.

There are two main frameworks to test System A: an Ansi-

ble based framework and a Java based framework. The Ansible
framework uses the Installation Guides (which also covers the
upgrades and rollback procedures). A key characteristic of
these documents is that they contain step-wise instructions to
execute commands and verify outputs of commands. Ansible
is a better fit for Command Line Interface (CLI) based testing.
Currently, there are two teams that are keeping track on the
required documentation updates by manually reviewing the
source code changes. Additionally, when closer to the releases
(three-week cycles), one team is required to manually test the
Installation Guides, causing additional one week delay.

On the other hand, the Java framework is influenced by
the Deployment Guides, User Manuals and API References,
which contain instructions and commands to configure the
system in preparation for sending different types traffic. These
commands are more complex compared to the CLI commands,
hence the use of Java framework. Since its initial imple-

mentation using the documentation, there is no monitoring
in place to make sure the implemented procedures and the
documentation are in sync.

Fig. 2. High level overview of testing phases and frameworks.

B. Dynamic Documentation Generation (DDG)
Software development organizations nowadays rely on Con-

tinuous Integration (CI) and Continuous Delivery (CD) to
efficiently deliver software. The CI/CD pipelines use test
frameworks that verify different aspects of the software sys-

tem, such as install/update/upgrade and system configuration.

https://6https://www.oasis-open.org/committees/tc

TestConfigGuide {
BeforeTest (

Test Suite

extract commands

--{__

getCommands = parse([topic x, topic y])

Test Installation{
for commands(i= 1 to commands.size() {

respose "' execute.command(i)
assert(response, noErrors)

DITA Topic x

DITA Topic y

The test code is always evolving and needs to be aligned with
the system behaviour. Hence, the test code can be considered a
robust information source of the system, fulfilling criterion 1.
Criterion 2 is fulfilled as the test code automatically runs on
a daily basis.

The idea with the DDG approach is to embed meta data in
the test code, which can be used to generate the documenta-

tion. The test code is closer to the developers so that makes it
is easier for them to make the required code changes, which
fulfils criterion 3.

The installation/update/upgrade of System A is based on
Ansible7 playbooks, so in this study we focused on how
Ansible can be used to generate the documentation. Though
there exist Ansible modules for generating documentation,
they do not fulfill our required criterion of a single robust
information source. For instance, the ansible-autodoc8 package
uses annotation based document generation but the annotations
used for the documentation generation are not used in testing
the system. Since the annotations are written as comments, the
developers manually still need to keep the comments and the
actual commands in sync.

Listing 2 shows a mock-up of an Ansible playbook code
snippet for a new module called dita generator that generates
the DITA topic snippet shown in Listing 1. When executing
this playbook, the commands are executed towards the system
under test, while generating the DITA topic snippets required
for producing the documentation.

1
2
3

4
5
6
7

8
9

10
11
12
13
14
15

16
17

18
19
20

1
2
3
4
5
6

7
8
9

10
11
12

13

<section id="section_uzl_2p2_4rb">
<title>Backup Customized Configmaps and Secrets</title>
<p>Cluster secrets and configmaps backup are needed if customized configuration

was done after installation.</p>

<p>For configmaps, use the following command:</p>
<userinput>kubectl get configmap <varname>customized_configmap_name</

varname> -o yaml -n
<varname>namespace</varname>
> <varname>customized_configmap_name</varname>-<varname>namespace</

varname>.yaml
</userinput>
</p>

<p>For secrets, use the following command:</p>
<userinput>kubectl get secret <varname>customized_secret_name</varname>

-o yaml -n
<varname>namespace</varname>
> <varname>customized_secret_name</varname>-<varname>namespace</varname

>.yaml
</userinput>

Listing 1: Generated DITA topic from dita generator Ansible module .

- name: Test and generate section 2.2 of Config Guide
dita_generator:

sectionid: section_uzl_2p2_4rb
title: Backup Customized Configmaps and Secrets
text: Cluster secrets and configmaps backup are needed if customized

configuration was done after installation.
list:
text: For configmaps, use the following command:
userinput: kubectl get configmap {{customized_configmap_name}} -o yaml -n

{{namespace}} > {{customized_configmap_name}}-{{namespace}}.yaml

text: For secrets, use the following command:
userinput: kubectl get secret {{customized_secret_name}} -o yaml -n

namespace}} > {{customized_secret_name}}-{{namespace}}.yaml

Listing 2: An Ansible playbook snippet illustrating the usage of
dita generator.

7https://www.ansible.com/
8https://pypi.org/project/ansible-autodoc/

Implementing a documentation generator for Ansible play-

books which fulfils criterion 1 requires that the Ansible
code written in the playbook is used for both documentation
generation as well as generating the commands to be sent
towards the System Under Test (SUT).

C. Automated Documentation Testing (ADT)
Compared to generating documentation from test code,

this approach is based on using the existing documentation,
and considering it as the robust information source (see
criterion 1). In this approach, the commands are extracted
from the documentation and then used in the test cases
that install/update/upgrade the system. In other words, the
documented commands are fed into the test cases and are
checked when the tests are executed, fulfilling criterion 2.
The test results indicate if the system and the corresponding
documentation commands are in sync. This approach does not
require any developer involvement, hence fulfilling criterion 3.

Figure 3 illustrates a high level implementation of a test
case where the test case extracts the relevant commands from
a DITA topic or topics of the “Configuration Guide”, instead of
the current practice of hard-coding commands within the test
cases. Should there be a discrepancy between the documented
commands and the platform/software system where the com-

mands are being executed, the deviation would be visible due
to test case failures.

Fig. 3. Extraction of commands by a test case from a DITA topic file.

VI. DISCUSSION

This study broadens our understanding if certain types
of documentation contribute more to documentation defects
(RQ1). We grouped the 67 documents delivered with System
A and against which defects were reported into six main
documentation categories [4]. Deployment Guides (129 defect
reports), Installation Guides (53), API References (51) and
User Manuals (50) contained most of the documentation
defects (see Table I). A key characteristic of these documents
is that they consist of steps by step instructions and commands
that need to be followed and executed to achieve a certain task.
We speculated therefore that the root cause for the reported
defects is related to the lack of verification of the consistent
co-evolution [35] of source code (or product features more

https://8https://pypi.org/project/ansible-autodoc
https://7https://www.ansible.com

generally) and its documentation. The solutions we describe
and adapt to the context of System A are targeting the problem
of having different and unreliable information sources when
generating product documentation.

Regarding the type of documentation defects RQ2, we found
that Erroneous code examples (23), Missing documentation
(36), and Outdated/Missing information (21) were the main
documentation defect types, supporting our initial conjecture
about their root cause, i.e. the lack of verified co-evolution.
Aghajani et al. [4] conducted a survey (most respondents were
employed at ABB, an automation technology company), with
the goal of determining the relevance of the different types
of documentation errors in practice. Regarding the relative
importance of information content, the survey found that
30% of the defects types related to the Information Content
(What) are considered important, as opposed to only 17%
from the Information Content (How) category. Regarding the
relative frequency of different defect types, the results in
Table II support the observations in the survey. The survey
also revealed that Erroneous code examples was indicated as
one of the top issue type based on the encountered frequency
and considered important by many practitioners (59%). Simi-

larly, the defect types Missing user documentation, Missing
documentation for a new feature/component and Outdated
examples were encountered frequently, while indicating that
they are perceived as important by practitioners. Our study
provides therefore further evidence for the relevance of these
documentation defect types and motivates the development of
preventive solutions.

Next, we want to discuss the suitability of the defect
taxonomy for documentation debt identification by answer-

ing RQ2.1. The documentation defect taxonomy [21] is mostly
influenced by the documentation used in the development
phase. For example, the defect types Erroneous code examples,
Wrong code comments, Wrong translation, Missing alterna-

tive solutions can be found in source code or in developer
documents rather than in customer-facing documents. In our
classification we found many bug reports due to incorrect or
outdated commands but we initially found it difficult to map
them to any existing defect type in the taxonomy. We decided
to classify such bug reports as Erroneous code examples to
overcome this issue, as our intention in this study was not to
extend the taxonomy. We also found that defining document
specific sub categories such as Inappropriate installation in-

structions, Documentation for users and Developer guidelines
makes the taxonomy too overwhelming when classifying a
documentation defect. A suggestion for future improvements is
to define the defect types independently from the documenta-

tion types. Once the defect categories are in place, a taxonomy
for different types of documentation can be defined, which
makes the classification more efficient, accurate and generally
applicable.

When answering RQ3, we reported that the mean time for
resolving a documentation defect is around 7 (external) to
10 (internal) days. Even though it is difficult to assign an
absolute cost to these defects, the resolution times are high,

contributing to the overall maintenance costs as well as taking
up resources that could have been assigned to work on new
product releases. The mean time for resolving a defect that
could have been detected by our proposed automated solutions
is around 11 days and could cover 87% of the identified
documentation defects from our study. We believe this is a
significant improvement and paves the way for cost savings in
the long run.

We observed that a significant number of documentation
bug reports being discovered both internally (192) within the
development organization and externally (126) by the users
of the system. The 40% of externally discovered bugs is
significant considering time being spent due to documen-

tation defects in troubleshooting, the management overhead
involved in the bug management process. The document types
Deployment Guides, Installation Guides and User Manuals
used to be manually verified by a system testing team at the
department we worked with at Ericsson. However, in recent
years there has been a significant investment on system test
automation to reduce delivery times, which resulted in almost
no verification of the documentation other than by the teams
providing the documentation input. The issue here is not the
actual system test automation, but the lack of linkage to the
relevant documentation.

When deriving solutions as part of answering RQ4, we
introduced three design criteria; a single and robust infor-

mation source for the documentation, automation and de-

veloper friendliness. Based on these criteria we proposed
two solutions, Dynamic Document Generation (DDG) and
Automated Documentation Testing (ADT). The selection of
a solution depends on different circumstances in different
organizations. For example if it is a new project that is
starting up, it would make sense to introduce DDG from the
early phases of development and testing. The selection can
also vary based on the type of documentation. For example,
step by step instructions and the commands needed for the
Installation Guides and Deployment guides are already present
in CI/CD frameworks. In such circumstances, it would be
more appropriate to use DDG for documentation. On the other
hand, the User Guides usually contain more natural language
text describing different business logic, steps to execute such
business logic and boundary values for different parameters.
For such documents, it may be more efficient to link the
documentation to the test cases to extract boundary values
required in business logic testing.

VII. CONCLUSION AND FUTURE WORK

In this study, we emphasized that the often neglected
documentation defects can be a significant contributor to the
overall maintenance cost for a software development orga-

nization. We analyzed the defects that are purely associated
with documentation in a large product developed at Ericsson.
We identified documentation debt by classifying the identi-

fied defects according to a taxonomy introduced from prior
research [21]. The classification enabled us to characterize
and then quantify documentation defects as a means for

prioritizing solutions targeted at minimizing the occurrence
of the most common documentation defects types: Erroneous
code examples, Missing documentation and Outdated/Missing
information. We identified three key requirements for a doc-

umentation verification system. Based on these defect types
and the identified requirements, we proposed to adapt two
solutions: (i) Dynamic Document Generation (DDG) and (ii)
Automated Documentation Testing (ADT). The use of a single,
robust information source is the key feature of both solutions.

We presented key ideas behind the solutions such that the
solutions can be implemented in different contexts. For DDG,
we proposed an implementation based on Ansible, which is
used extensively in the industry for installing and deploying
software system in cloud native environments.

In future work, we plan to implement the proposed two
solutions and evaluate them in an industrial context to explore
the effectiveness of the solutions and identify challenges when
implementing DDG and ADT in practice.

A. Data Availability
The 101 documentation defects and their classification is

available on https://zenodo.org/record/7562614.

REFERENCES

[1] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Software, vol. 20,
no. 6, pp. 35–39, 2003.

[2] A. S. M. Venigalla and S. Chimalakonda, “Understanding emotions of
developer community towards software documentation,” in 43rd Inter-
national Conference on Software Engineering: Software Engineering in
Society (ICSE-SEIS). IEEE, 2021, pp. 87–91.

[3] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and
G. Ruhe, “Cost, benefits and quality of software development documen-
tation: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

[4] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota,
M. Lanza, and D. C. Shepherd, “Software documentation: the practi-
tioners’ perspective,” in 42nd Int. Conference on Software Engineering
(ICSE), 2020, pp. 590–601.

[5] S. M. H. Dehaghani and N. Hajrahimi, “Which factors affect software
projects maintenance cost more?” Acta Informatica Medica, vol. 21,
no. 1, p. 63, 2013.

[6] L. Silva, M. Unterkalmsteiner, and K. Wnuk, “Multidimer: A multi-
dimensional bug analyzer,” in International Conference on Technical
Debt (TechDebt). IEEE, 2022, pp. 66–70.

[7] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in Sixth Int. Workshop
on Managing Technical Debt. IEEE, 2014, pp. 1–7.

[8] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical
debt: A unified model and systematic literature review,” Journal of
Systems and Software, vol. 135, pp. 1–16, 2018.

[9] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical debt
identification: The research landscape,” in International Conference on
Technical Debt (TechDebt). IEEE, 2018, pp. 11–20.

[10] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A. Ampatzoglou, and
L. Angelis, “The developer’s dilemma: factors affecting the decision
to repay code debt,” in International Conference on Technical Debt
(TechDebt), 2018, pp. 62–66.

[11] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a
prioritization of code debt: A code smell intensity index,” in 7th Int.
Workshop on Managing Technical Debt. IEEE, 2015, pp. 16–24.

[12] B. S. Aragão, R. Andrade, I. S. Santos, R. N. Castro, V. Lelli, and
T. G. Darin, “Testdcat 3.0: catalog of test debt subtypes and management
activities,” Software Quality Journal, vol. 30, no. 1, pp. 181–225, 2022.

[13] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test
debt,” Trends in software testing, pp. 1–17, 2017.

[14] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee Software, vol. 29, no. 6, pp. 18–21, 2012.

[15] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[16] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[17] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” in
Advances in Computers. Elsevier, 2011, vol. 82, pp. 25–46.

[18] D. Pina, A. Goldman, and C. Seaman, “Sonarlizer xplorer: a tool to mine
github projects and identify technical debt items using sonarqube,” in
Int. Conference on Technical Debt, 2022, pp. 71–75.

[19] Z. Codabux, M. Vidoni, and F. H. Fard, “Technical debt in the peer-
review documentation of r packages: A ropensci case study,” in 18th
Int. Conf. on Mining Software Repositories. IEEE, 2021, pp. 195–206.

[20] J. Y. Khan and G. Uddin, “Automatic detection and analysis of technical
debts in peer-review documentation of r packages,” pp. 765–776, 2022.

[21] E. Aghajani, C. Nagy, O. L. Vega-M´ M. asquez,arquez, Linares-V´
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1199–1210.

[22] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 21st International Conference on Program Comprehension
(ICPC). IEEE, 2013, pp. 23–32.

[23] P. W. McBurney and C. McMillan, “Automatic documentation gener-
ation via source code summarization of method context,” in 22nd Int.
Conference on Program Comprehension, 2014, pp. 279–290.

[24] ——, “Automatic source code summarization of context for java meth-
ods,” IEEE Transactions on Software Engineering, vol. 42, no. 2, pp.
103–119, 2015.

[25] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez et al.,
“On-demand developer documentation,” in Int. conference on software
maintenance and evolution (ICSME). IEEE, 2017, pp. 479–483.

[26] M. Raglianti, “Topology of the documentation landscape,” in Int.
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2022, pp. 297–299.

[27] T. Tegeler, S. Boßelmann, J. Schürmann, S. Smyth, S. Teumert, and
B. Steffen, “Executable documentation: From documentation languages
to purpose-specific languages,” in Int. Symposium on Leveraging Appli-
cations of Formal Methods. Springer, 2022, pp. 174–192.

[28] P. Stevens, “Models as documents, documents as models,” in Int.
Symposium on Leveraging Applications of Formal Methods. Springer,
2022, pp. 28–34.

[29] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan, “Dase: Document-
assisted symbolic execution for improving automated software testing,”
in 37th Int. Conf. on Software Engineering. IEEE, 2015, pp. 620–631.

[30] M. Nassif, A. Hernandez, A. Sridharan, and M. P. Robillard, “Gen-
erating unit tests for documentation,” IEEE Transactions on Software
Engineering, 2021.

[31] E. J. Friedman-Hill, “Software verification and functional testing with
xml documentation,” in 34th Annual Hawaii International Conference
on System Sciences. IEEE, 2001, pp. 8–pp.

[32] K.-J. Stol and B. Fitzgerald, “The abc of software engineering research,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 3, pp. 1–51, 2018.

[33] M. Jim´ uller, enez, L. F. Rivera, N. M. Villegas, G. Tamura, H. A. M¨
and P. Gallego, “Devops’ shift-left in practice: An industrial case of
application,” in International workshop on software engineering aspects
of continuous development and new paradigms of software production
and deployment. Springer, 2019, pp. 205–220.

[34] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping study on api
documentation generation approaches,” in 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2018, pp. 462–469.

[35] F. F. Correia, A. Aguiar, H. S. Ferreira, and N. Flores, “Patterns for
consistent software documentation,” in 16th Conference on Pattern
Languages of Programs, 2009, pp. 1–7.

https://zenodo.org/record/7562614

