
Master of Science in Engineering: Game and Software Engineering
June 2023

Performance comparison of WebGPU
and WebGL in the Godot game engine

Emil Fransson
Jonatan Hermansson

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in
partial fulfilment of the requirements for the degree of Master of Science in Engineering: Game
and Software Engineering. The thesis is equivalent to 20 weeks of full time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Emil Fransson
E-mail: emfa17@student.bth.se

Jonatan Hermansson
E-mail: johm18@student.bth.se

University advisor:
Senior Lecturer, Yan Hu
Department of Computer Science

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Background. For rendering graphics on the web, WebGL has been the standard
API to employ over the years. A new technology, WebGPU, has been set to release
in 2023 and utilizes many of the novel rendering approaches and features common for
the native modern graphics APIs, such as Vulkan. Currently, very limited research
exists regarding WebGPU:s rasterization capabilities. In particular, no research ex-
ists pertaining to its capabilities when used as a rendering backend in game engines.

Objectives. This paper aims to investigate performance differences between We-
bGL and WebGPU. This is done in the context of the game engine Godot, and the
measured performance is that of the CPU and GPU frame time. The tests consist
of six games for analyzing real-world cases and a number of synthetic test cases that
target specific parts of the rendering pipeline. To perform the comparisons a We-
bGPU backend Rasterizer was implemented with the intended scope of being able
to render basic 2D games.

Method. The existing WebGL Rasterizer in Godot was deconstructed to match the
scope of the intended rendering functionality. The WebGPU Rasterizer was then
implemented in its image and the performance of the implementations was measured
in different scopes. These scopes include the frame time on the GPU and CPU
and some essential rendering functions on the CPU side. Lastly, the means were
calculated, and a t-test was performed to validate the significance of the difference
between Rasterizers.

Results. The results show that WebGPU performs better than WebGL when used
as a rendering backend in Godot, for both the games tests and the synthetic tests.
The comparisons clearly show that WebGPU performs faster in mean CPU and GPU
frame time. This held true also for 95% lowest frame time. The results varied for the
cases of the mean 1% high frame time, with WebGPU generally performing better.
The results for the essential rendering functions saw WebGL performing consistently
better.

Conclusions. In conclusion, WebGPU outperformed WebGL. In most of the tests
conducted, substantially and with high statistical significance. In order to better
realize the performance benefits of WebGPU in the environment of game engines the
implementation could be further expanded on in order to support more advanced
games and 3D scenes. Still, the findings of this thesis show WebGPU as a strong
contender to WebGL for web rendering.

Keywords: Game Engine, Performance Overhead, Rendering, WebGPU, WebGL

i

Sammanfattning

Bakgrund. För att rendera grafik på webben har WebGL varit det vanliga API:et
att använda under åren. En ny teknik, WebGPU, är planerad att släppas 2023 och
använder många av de nya renderingstekniker- och funktioner som är vanliga för
moderna grafik-API:er, som Vulkan. För närvarande finns mycket begränsad forskn-
ing om WebGPU:s rasteriseringsförmåga. I synnerhet finns ingen forskning gällande
dess användning som renderingsbackend i spelmotorer.

Syfte. Detta arbete syftar till att undersöka prestandaskillnader mellan WebGL
och WebGPU. Det görs i sammanhanget av spelmotorn Godot, och den uppmätta
prestandan är bildtid på CPU:n respektive GPU:n. Testerna består av sex spel
för att analysera mer verkliga sammanhang samt ett antal syntetiska testfall som
riktar sig mot specifika delar av renderingspipelinen. För att utföra jämförelserna
implementerades en WebGPU rasteriserare med den begränsade förmågan att kunna
rendera grundläggande 2D-spel.

Metod. Den befintliga WebGL-rasteriseraren i Godot demonterades för att matcha
omfattningen av den avsedda funktionaliteten. WebGPU-rasteriseraren implementer-
ades sedan i dess avbild och prestandan för implementationerna mättes i de olika
testen. Mätningarna inkluderar bildtiden på GPU och CPU samt några viktiga ren-
deringsfunktioner på CPU-sidan. Slutligen beräknades medelvärden och ett t-test
för att validera signifikansen av skillnaden mellan rasteriserarna.

Resultat. Resultaten visar att WebGPU presterar bättre än WebGL när den
används som renderingsbackend i Godot, både för speltesterna och de syntetiska
testerna. Jämförelserna visar tydligt att WebGPU presterar genomsnittligt bättre.
Detta gällde även för de 95% lägsta bildtiderna. Resultaten varierade mer för fallen
med den genomsnittliga 1% höga bildtiden. Resultaten för de specifika renderings-
funktionerna visade dock att WebGL konsekvent presterade bättre.

Slutsatser. Sammanfattningsvis överträffade WebGPU WebGL. I de flesta genom-
förda tester avsevärt och med hög statistisk signifikans. För att bättre inse pre-
standafördelarna med WebGPU i spelmotormiljö kan implementeringen utökas yt-
terligare för att stödja mer avancerade spel och 3D-scener. Ändå visar resultaten i
denna avhandling att WebGPU är ett bra alternativ till WebGL för webbrendering.

Nyckelord: Spelmotor, Prestandakostnader, Rendering, WebGPU, WebGL

iii

Acknowledgments

We would like to thank our supervisor Yan for providing us with valuable knowledge
and insights in writing this thesis. Furthermore, we would like to thank our friends
and co-advisors Fritjof and Mikael at Macaroni Studios for providing us with this
opportunity and a place to conduct our work. Without the help of these people, this
thesis would not have been possible.

Emil
I would personally like to thank my friend and thesis partner Jonatan for the excel-
lent teamwork and his ability to always remain positive and motivated in the effort
of completing this thesis work on time. It has been a pleasure.

Jonatan
I would like to extend my deepest gratitude to my friend and thesis partner Emil,
who has not only been paramount in his contribution to the thesis but also in keeping
my own motivation high over the course of the project.

v

Contents

Abstract i

Sammanfattning iii

Acknowledgments v

1 Introduction 9
1.1 Background . 9

1.1.1 WebGL . 9
1.1.2 WebGPU . 10
1.1.3 Godot . 11
1.1.4 Emscripten and WebAssembly 11

1.2 Aim and Objectives . 11
1.3 Thesis Scope . 12
1.4 Glossary . 12
1.5 Ethical, Societal and Sustainability aspects 13
1.6 Contribution . 14
1.7 Outline . 14

2 Related Work 15
2.1 WebGPU & Compute . 15
2.2 Vulkan vs OpenGL . 16
2.3 Reducing the Research Gap . 16

3 Method 17
3.1 Research Question . 17
3.2 Technical Limitations . 17

3.2.1 Selecting a Backend Framework 18
3.2.2 Frame buffering . 19
3.2.3 Managing Synchronous GPU Read Backs 19
3.2.4 Performance Measuring . 19

3.3 Scope of Implementation . 20
3.3.1 Supported Renderer and Storage 20
3.3.2 Supported Render Item Types 21
3.3.3 Supported Shader Types . 21
3.3.4 Supported Utility Features . 21

3.4 Implementation . 22
3.4.1 Deconstructing Godot . 22

vii

3.4.2 Minimizing Runtime WebGPU Structures 23
3.4.3 The Render Loop . 26
3.4.4 Render Techniques . 28

3.5 Experiment and Data Gathering . 30
3.5.1 Hardware and Software Specification 35

3.6 Alternative Approaches . 36
3.7 Validity and Reliability of Approach 36

4 Results and Analysis 39
4.1 Understanding the Data . 39
4.2 Performance Comparison - Game tests 40

4.2.1 GPU Frame Time . 40
4.2.2 CPU Frame Time . 41

4.3 Performance Comparison - Synthetic tests 46
4.3.1 GPU Frame Time . 46
4.3.2 CPU Frame Time . 51

4.4 Statistical Significance . 60
4.5 Analysis Summary . 60

5 Discussion 61
5.1 Research Question & Answers . 61

5.1.1 Mean CPU & GPU Frame Time 61
5.1.2 Main CPU Function Performance 62
5.1.3 Validity and Reliability of Data 63

5.2 WebGPU Performance . 63
5.3 WebGL Performance . 64
5.4 Limitations . 64

6 Conclusions and Future Work 67
6.1 Future Work . 68

6.1.1 Optimizations . 68
6.1.2 Future Research . 68

References 71

A Shader Listings 73

B Game Footage 83

C Synthetic Tests Footage 87

D Graphs For Measurements 89

E CPU Time Tables 99

viii

List of Figures

3.1 Shows a side-by-side comparison of Rasterizer frameworks, with the
left-most framework displaying the full set of possible implementation
features, and the right-most framework displaying the actual imple-
mented features for the WebGPU Rasterizer, based on the aimed-for
scope. 20

3.2 Overview of GPU structures that are built during initialization to the
left and during runtime to the right. Smaller boxes indicate that the
data structure does not have to be rebuilt continuously. 24

3.3 Overview of the state contained within the WebGPU render pipeline. 25
3.4 Overview of the WebGPU implementation of the Godot render loop. 27
3.5 A full-screen triangle’s positional coordinates (left) and texture coor-

dinates (right). 30
3.6 Example of code used to time a specific scope on the CPU. 32
3.7 Example of measuring elapsed time on the GPU with WebGPU. . . . 33
3.8 Example of measuring elapsed time on the GPU with WebGL. 33

4.1 Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the various games. Lower is better. 40

4.2 Comparison of the highest 1% mean and the lowest 95% mean We-
bGL and WebGPU GPU frame times, in milliseconds, for the various
games. Lower is better. 41

4.3 Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the various games. Lower is better. 42

4.4 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the various games.
Lower is better. 42

4.5 Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the various games. Lower is better. . 43

4.6 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for
the various games. Lower is better. 43

4.7 Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the various games. Lower is better. 44

4.8 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the various
games. Lower is better. 44

1

2 List of Figures

4.9 Comparison of the mean WebGL and WebGPU GPU frame times,
in milliseconds, for the Multiple Quads test. Lower is better. The
workloads range from 10 to 50.000 quads. 46

4.10 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Multiple Quads
test. Lower is better. The workloads range from 10 to 50.000 quads. . 47

4.11 Comparison of the mean WebGL and WebGPU GPU frame times,
in milliseconds, for the Full-screen quads test. Lower is better. The
workloads range from 10 to 50.000 full-screen quads. 48

4.12 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU GPU frame times, in milliseconds, for the Full-screen
quads test. Lower is better. The workloads range from 10 to 50.000
full-screen quads. 48

4.13 Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Multiple Polygons test. Lower is better. The
workloads range from 10 to 50.000 polygons. 49

4.14 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Multiple Polygons
test. Lower is better. The workloads range from 10 to 50.000 polygons. 49

4.15 Comparison of the mean WebGL and WebGPU GPU frame times,
in milliseconds, for the Large Polygons test. Lower is better. The
workloads range from 2 million to 16 million vertices. 50

4.16 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Large polygons
test. Lower is better. The workloads range from 2 million to 16 million
vertices. 51

4.17 Comparison of the mean WebGL and WebGPU CPU frame times,
in milliseconds, for the Multiple Quads test. Lower is better. The
workloads range from 10 to 50.000 quads. 52

4.18 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Multiple Quads
test. Lower is better. The workloads range from 10 to 50.000 quads. . 52

4.19 Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Multiple Quads test. Lower is
better. The workloads range from 10 to 50.000 quads. 53

4.20 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU canvas_render_items frame times for the Multiple Quads
test. Lower is better. The workloads range from 10 to 50.000 quads. . 53

4.21 Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Full-screen Quads test. Lower is better. The
workloads range from 10 to 50.000 full-screen quads. 54

4.22 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU CPU frame times, in milliseconds, for the Full-screen
Quads test. Lower is better. The workloads range from 10 to 50.000
full-screen quads. 54

List of Figures 3

4.23 Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Full-screen Quads test. Lower is
better. The workloads range from 10 to 50.000 full-screen quads. . . . 55

4.24 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for
the Full-screen Quads test. The workloads range from 10 to 50.000
full-screen quads. 55

4.25 Comparison of the mean WebGL and WebGPU CPU frame times,
in milliseconds, for the Multiple Polygons test. The workloads range
from 10 to 50.000 polygons. 56

4.26 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Multiple Polygons
test. Lower is better. The workloads range from 10 to 50.000 polygons. 56

4.27 Comparison of the mean WebGL and WebGPU RenderBatches frame
times for the Multiple Polygons test. Lower is better. The workloads
range from 10 to 50.000 polygons. 57

4.28 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU RenderBatches frame times, in milliseconds, for the
Multiple Polygons test. Lower is better. The workloads range from
10 to 50.000 polygons. 57

4.29 Comparison of the mean WebGL and WebGPU CPU frame times,
in milliseconds, for the Large Polygons test. Lower is better. The
workloads range from 2 million to 16 million vertices. 58

4.30 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Large Polygons
test. Lower is better. The workloads range from 2 million to 16 million
vertices. 58

4.31 Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Large Polygons test. Lower is
better. The workloads range from 2 million to 16 million vertices. . . 59

4.32 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for
the Large Polygons test. Lower is better. The workloads range from
2 million to 16 million vertices. 59

A.1 Listing of the canvas glsl-vertex shader used by the WebGL Rasterizer
for rendering quads. 74

A.2 Listing of the canvas glsl-fragment shader used by the WebGL Ras-
terizer for rendering quads. 75

A.3 Listing of the canvas glsl-vertex shader used by the WebGL Rasterizer
for rendering polygons. 76

A.4 Listing of the canvas glsl-fragment shader used by the WebGL Ras-
terizer for rendering polygons. 77

A.5 Listing of the canvas wgsl-vertex shader used by the WebGPU Ras-
terizer for rendering quads. 78

A.6 Listing of the canvas wgsl-fragment shader used by the WebGPU Ras-
terizer for rendering quads. 79

4 List of Figures

A.7 Listing of the canvas wgsl-vertex shader used by the WebGPU Ras-
terizer for rendering polygons. 80

A.8 Listing of the canvas wgsl-fragment shader used by the WebGPU Ras-
terizer for rendering polygons. 81

B.1 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features the main menu from the game Checkers. 83

B.2 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Checkers. 83

B.3 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Snake. 84

B.4 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Evader. 84

B.5 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Falling Cats. 84

B.6 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features the main menu from the game Ponder. 85

B.7 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Ponder. 85

B.8 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features gameplay from the game Deck Before Dawn. 85

C.1 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features a synthetic test of rendering 30000 polygons, each composed
of 360 vertices. 87

C.2 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features a synthetic test of rendering 30000 textured sprites (quads). . 87

C.3 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features a synthetic test of rendering 30000 layered full-screen textured
sprites (quads). 88

C.4 A side-by-side comparison of the rasterized output between the We-
bGPU Rasterizer (left) and the WebGL Rasterizer (right). The footage
features a synthetic test of rendering 20 layered polygons, each with
50000 vertices (1 million in total). 88

List of Figures 5

D.1 Comparison of the mean WebGL and WebGPU ConstructBatches
frame times, in milliseconds, for the various games. Lower is better. . 89

D.2 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the
various games. Lower is better. 89

D.3 Comparison of the mean WebGL and WebGPU ConstructBatches
frame times, in milliseconds, for the Multiple Quads test. Lower is
better. The workloads range from 10 to 50.000 quads. 90

D.4 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the
Multiple Quads test. Lower is better. The workloads range from 10
to 50.000 quads. 90

D.5 Comparison of the mean WebGL and WebGPU ConstructBatches
frame times, in milliseconds, for the Full-screen Quads test. Lower
is better. The workloads range from 10 to 50.000 full-screen quads. . 91

D.6 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the
Full-screen Quads test. Lower is better. The workloads range from 10
to 50.000 full-screen quads. 91

D.7 Comparison of the mean WebGL and WebGPU ConstructBatches
frame times, in milliseconds, for the Multiple Polygons test. Lower
is better. The workloads range from 10 to 50.000 polygons. 92

D.8 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the
Multiple Polygons test. Lower is better. The workloads range from
10 to 50.000 polygons. 92

D.9 Comparison of the mean WebGL and WebGPU ConstructBatches
frame times, in milliseconds, for the Large Polygons test. Lower is
better. The workloads range from 2 million to 16 million vertices. . . 93

D.10 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the
Large Polygons test. Lower is better. The workloads range from 2
million to 16 million vertices. 93

D.11 Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Multiple Quads test. Lower is better.
The workloads range from 10 to 50.000 quads. 94

D.12 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU RenderBatches frame times, in milliseconds, for the
Multiple Quads test. Lower is better. The workloads range from 10
to 50.000 quads. 94

D.13 Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Full-screen Quads test. Lower is better.
The workloads range from 10 to 50.000 full-screen quads. 95

D.14 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU RenderBatches frame times, in milliseconds, for the
Full-screen Quads test. Lower is better. The workloads range from 10
to 50.000 full-screen quads. 95

6 List of Figures

D.15 Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Large Polygons test. Lower is better.
The workloads range from 2 million to 16 million vertices. 96

D.16 Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the Large
Polygons test. Lower is better. The workloads range from 2 million
to 16 million vertices. 96

D.17 Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Multiple Polygons test. Lower is
better. The workloads range from 10 to 50.000 polygons. 97

D.18 Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for
the Multiple Polygons test. Lower is better. The workloads range
from 10 to 50.000 polygons. 97

List of Tables

1.1 A glossary of frequently used terminology 13

3.1 Information about hardware and software versions of the machine
upon which all test cases were run. 35

4.1 Mean, highest 1% mean, and lowest 95% mean GPU frame times, in
milliseconds, for the various games. Lower is better. SLatency denotes
WebGPU speed-up. p is the t-test yielded p-value. 41

4.2 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-
vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Checkers. Lower is better. SLatency de-
notes WebGPU speed-up. p is the t-test yielded p-value. 45

4.3 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-
vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Snake. Lower is better. SLatency denotes
WebGPU speed-up. p is the t-test yielded p-value. 45

4.4 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-
vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Evader. Lower is better. SLatency de-
notes WebGPU speed-up. p is the t-test yielded p-value. 45

4.5 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-
vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Ponder. Lower is better. SLatency de-
notes WebGPU speed-up. p is the t-test yielded p-value. 45

4.6 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-
vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Falling Cats. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 45
4.7 Mean, highest 1% mean, and lowest 95% mean for overall CPU, can-

vas_render_items, ConstructBatches & RenderBatches CPU times,
in milliseconds, for the game Deck Before Dawn. Lower is better.
SLatency denotes WebGPU speed-up. p is the t-test yielded p-value. . 46

4.8 Resulting mean GPU frame times, in milliseconds, for the WebGPU
and WebGL Rasterizers rendering the multiple quads. Lower is better.
SLatency denotes WebGPU speed-up. p is the t-test yielded p-value. . 47

4.9 Resulting mean GPU frame times for the WebGPU and WebGL Ras-
terizers rendering the full-screen quads. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 48

7

8 List of Tables

4.10 Resulting mean GPU frame times, in milliseconds, for the WebGPU
and WebGL Rasterizers rendering the multiple polygons. Lower is
better. SLatency denotes WebGPU speed-up. p is the t-test yielded
p-value. 50

4.11 Resulting mean GPU frame times, in milliseconds, for the WebGPU
and WebGL Rasterizers rendering the large polygons. Lower is better.
SLatency denotes WebGPU speed-up. p is the t-test yielded p-value. . 51

E.1 Resulting mean, high 1% mean and low 95 % mean CPU frame times,
in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the variable numbers of multiple polygons. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 99
E.2 Resulting mean, high 1% mean and low 95 % mean CPU frame times,

in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the variable numbers of multiple quads. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 100
E.3 Resulting mean, high 1% mean and low 95 % mean CPU frame times,

in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the variable numbers of full-screen quads. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 101
E.4 Resulting mean, high 1% mean and low 95 % mean CPU frame times,

in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the variable numbers of large polygons. Lower is better. SLatency

denotes WebGPU speed-up. p is the t-test yielded p-value. 102

Chapter 1

Introduction

Modern video games leverage sophisticated graphics application programming in-
terfaces (APIs) to render highly detailed worlds. They accomplish this at interac-
tive frame rates by utilizing powerful graphics processing units (GPUs) with which
modern computers are equipped. Commonly used APIs include Direct3D [18] for
machines running Windows, Metal [4] for Apple products, and Vulkan [25] and
OpenGL [15] as a cross-platform alternative.

The APIs mentioned all target native platforms and, as evident, there are many
choices available to developers on these. However, when it comes to rendering on
the web, the choices narrow significantly. Previously, WebGL was the lowest-level
alternative for rendering on the web [9]. It is based on the aforementioned OpenGL
native API and adopts the same workflow and syntax.

The most modern of the mentioned APIs work closer to the hardware they are
targeting than ever before, allowing developers a higher degree of control and oppor-
tunity for low-level optimization previously unachievable. However, this additional
control places much more responsibility on the developer. E.g. regarding resource
management and synchronization. This is in contrast to how the GPU drivers handle
it in the background with older APIs and API versions.

This thesis consists of an implementation of a rendering backend for the game
engine Godot using the currently latest low-level web graphics API WebGPU, see
section 1.1.2, and comparing its performance in various test cases to the performance
of the WebGL backend currently implemented in Godot.

1.1 Background

This section presents vital information pertaining the background of some of the
major concepts of this thesis.

1.1.1 WebGL

WebGL is a cross-platform, open-source API for rendering interactive 2D and 3D
graphics on the web, with an initial release in March 2011. A typical WebGL pro-
gram consists of JavaScript-written control code and shader code facilitated by the
OpenGL Shading Language (GLSL). Additionally, Emscripten may compile C/C++
OpenGL code into WebAssembly, allowing the WebGL API to be interacted with
through lower-level languages (see section 1.1.4) [16].

9

10 Chapter 1. Introduction

WebGL is a mature API supported by many different hardware products and
browsers and has been applied in many environments and fields, such as rendering
backends in the gaming industry and for visualization purposes in medicine and in
geospatial applications.

As it is built as a subset of the OpenGL API, its strengths consists of a general
ease of use (compared to alternative graphics API:s such as Vulkan), cross-platform
support and being open-source. However, it also inherits the drawbacks prevalent
in OpenGL, such as a notorious driver overhead and a stateful syntax with many
necessary render pipeline constructs having to be set repeatedly, further increasing
the overhead. Furthermore, WebGL has no support for general compute [16].

WebGL currently exists as a possible rendering backend in the Godot engine for
rendering graphics on the web platform.

1.1.2 WebGPU

WebGPU is a new graphics API that aims to bring a more modern API workflow
to web platforms with its first draft of specifications being released in 2021 [27].
Like the previously mentioned modern APIs, it aims to enable the developer to work
closer to the hardware of the machine it is running on. The API utilized by the web
browser is determined by the operating system on which it is executed. Depending
on the specifications of the system, the web browser may utilize either the Direct3D
12, Vulkan, or Metal APIs.

As with these APIs, WebGPU provides developers with relatively direct access to
previously inaccessible low-level GPU resources. It also employs a stateless syntax
which leads to fewer API calls, invoking less API overhead when compared to the
stateful syntax of WebGL, inherited by OpenGL.

WebGPU is not meant to be a replacement for the WebGL API. Rather, it
has been referred to as its successor [14]. It also provides functionality previously
unavailable to WebGL through compute shaders that enable hardware-accelerated
general computation in the browser. However, general computation is not a part of
the comparison in the thesis as WebGL does not formally support compute shaders.

One of the notable syntactic similarities that can be found between WebGPU and
APIs like Direct3D 12 and Vulkan is the idea of bundling state. This lies at the core
of these APIs and is best exemplified through the pipeline state object. This state
structure holds a complete configuration of the graphics pipeline, excluding bound
resources. It is then used to bind the entire pipeline as a bundle through a single
API call. In less modern APIs, different parts of the pipeline state are set through
separate API calls, including different shaders, depth-test states, and so on. This,
invariably, leads to a larger API call overhead on the central processing unit (CPU)
side of the application and is one of the main bottlenecks modern APIs like WebGPU
try to avoid.

While WebGPU is closer in syntax to that of the modern native graphics APIs, it
still has to adhere to the fundamental security and compatibility standards required
of web APIs. This is inherently detrimental to the performance of WebGPU when
compared to native APIs directly. However, WebGL also follows these requirements,
making a comparison between the two apt.

1.2. Aim and Objectives 11

1.1.3 Godot

Godot is an open-source game engine first released in 2015. It has since had many
updates and the newest version, 4.0, was recently released as of writing this thesis
[11], with many new features and an entirely new rendering pipeline leveraging the
aforementioned Vulkan API, along with a host of updates to the existing legacy
rendering backends.

Godot is multifaceted in the advantages it affords the work when used as a foun-
dation for implementing a rendering backend. Firstly, a pre-established architecture
can be followed during implementation, keeping comparisons between rendering APIs
fair. Secondly, the currently implemented WebGL rendering backend can be assumed
to be fairly well optimized and thus serves as a good benchmark for the performance
of WebGL rendering engines in the industry.

The reason for choosing Godot over another game engine mainly comes down to
it being open-source, meaning its code is openly available and able to be modified.
This makes open-source software ideal for an in-engine implementation. Other big
game engines, such as Unity and Unreal Engine, are either closed-source or only
provide access to the source code under a specific license.

1.1.4 Emscripten and WebAssembly

Godot is primarily written in the programming language C++. To run it on the web,
it needs to first be compiled into WebAssembly [20], a low-level bytecode language
meant to narrow the gap between web and native performance.

One caveat of WebAssembly is that it does not have direct support for calling web
APIs, including WebGPU. To circumvent this issue, JavaScript must be employed
to invoke these APIs. The compiler Emscripten [8], which Godot uses to compile its
C++ code to WebAssembly, provides headers that allow the C++ code to interact
with certain web APIs, among them WebGL and WebGPU.

The communication between C++ and JavaScript introduces a necessary over-
head. However, this overhead exists for both APIs and cannot be avoided without
writing the entire application in JavaScript. The possible difference in overhead for
the two APIs caused by the intercommunication with JavaScript can be viewed as a
part of the operative cost of that API.

1.2 Aim and Objectives

The aim of the thesis is to examine and quantify the performance difference between
WebGPU and WebGL when employed as a rendering backend for the game engine
Godot, with the purpose of determining how the API:s perform relative to one an-
other in such an environment. This is accomplished through a careful reconstruction
of a scaled-down subset of the already implemented backend in the engine using the
WebGPU API. Then, measurements of their performance are taken in various test
scenes.

The test scenes include scenes measuring performance in very specific render-
ing scenarios as well as scenes more generally representative of real, though simple,

12 Chapter 1. Introduction

games. More specific information regarding the various test cases is discussed in
chapter 3.

With this as the aim of the thesis, the objectives of the thesis are as follows:

1. Investigate the WebGPU API and best practices.

2. Investigate the Godot 4.0 rendering backend.

3. Deconstruct the existing WebGL render backend to align with the scope of the
Minimum viable product (MVP).

4. Implement a WebGPU render backend in the Godot game engine, adhering to
the Godot 4.0 rendering backend as closely as possible.

5. Set up a test environment in the Godot game engine, suitable for the imple-
mented WebGPU MVP solution.

6. Profile CPU & GPU frame time, meaning how long each frame takes to render,
of the implemented rendering backend and the existing WebGL backend.

1.3 Thesis Scope
The scope of the thesis amounts to implementing and profiling a WebGPU renderer
based on the Rasterizer backend architecture existing in Godot 4.0. This is done
under the hypothesis that such a Rasterizer should be able to outperform the ex-
isting WebGL equivalent due to its modern architecture. The capabilities of the
implemented Rasterizer should be limited to rendering textured sprites and panels
allowing for simple, yet complete, 2D games with accompanying user interfaces. It
should also look and play identically to the WebGL-rendered equivalent from start
to finish.

Due to time constraints, features such as 3D-rendering and advanced (post-
processing) effects are omitted from the scope of this work. While they are natively
supported in Godot Engine (and by the WebGL Rasterizer), such features will be
deconstructed for the WebGL backend. This is done to ensure that both Rasterizers
act on identical data in an identical environment and are fairly profiled.

Another reason for opting to target simple 2D games and scenes is that a vast
majority of games developed for Godot are made in 2D. As the render backend will
be based on the updated Rasterizer architecture in Godot 4.0, it is assumed that
the existing collection of games made with it will be 2D and simple in scope and
complexity. This makes for a good fit for the intended solution and ensures that
supported games exist which are possible to render with the features included with
the implemented Rasterizer.

1.4 Glossary
This thesis features frequently used terminology pertaining to Godot, WebGPU,
rendering, and more. The reader should refer to Table 1.1 where these terms are
explained in alphabetical order.

1.5. Ethical, Societal and Sustainability aspects 13

Table 1.1: A glossary of frequently used terminology

Term Explanation

Bind Group "A bind group is a WebGPU construct that represents
a bundled set of resources that can be bound as a set
through a single graphics command."

Blit "Blit is a lexicalized form of BitBlt, Bit Block Transfer,
that refers to moving a block of bits from one place in
graphics memory to another. In more modern computer
graphics the term is generalized to simply refer to any
copying of data from one place in graphics memory to
another, such as a texture being sampled by a point sam-
pler."

Command Encoder "The command encoder is a WebGPU construct that al-
lows the recording of graphics commands. The command
encoder is later submitted to the graphics queue to have
its commands executed on the hardware."

Polygon "A Polygon is a Godot-defined render item type that is
involved with rendering panels, buttons, and other user
interface objects. The type is essential for rendering
most 2D games."

Rasterizer "A Rasterizer (with capital R) is Godot’s naming con-
vention for render backends inheriting from the Ren-
derer Compositor class and implementing the necessary
functionality pertaining the rendering of scenes. Both
the WebGL render backend and the implemented We-
bGPU render backend are Godot Rasterizers. The new
Vulkan backend, in contrast, is not as it implements the
newer RenderDevice framework instead."

Rect "A Rect is a Godot-defined render item type that is
involved with rendering (textured) rectangular shaped
sprites. The type is essential for rendering 2D scenes."

Render Item "A Render Item is a Godot-defined type that acts as a
base class from which all different supported render item
types (such as rects and polygons) must inherit. It con-
tains data and logic essential for rendering."

*Storage "A Storage is a Godot-defined type acting as asset man-
ager for some particular asset type, optimizing the work-
flow and memory usage in dealing with those assets. A
notable example is TextureStorage."

WGSL "WGSL stands for WebGPU Shader Language and is, as
it states, the shader language used by WebGPU shaders."

1.5 Ethical, Societal and Sustainability aspects

The implementation and data-gathering phases of the work are conducted purely
digitally and no other people will be involved in any part of the entire process.

14 Chapter 1. Introduction

The utilized games and game-related assets are all freely available to use under
allowing licenses.

Furthermore, there is no physical product that requires any kind of materials to
produce. In terms of sustainability, the only aspect that could be argued for is that
intensive graphics applications use a lot of energy. However, with the assumption
that the application will be run no matter the backing rendering engine, we believe
the difference in energy use between the rendering engine implemented in this work
and the currently implemented WebGL rendering engine in Godot to be negligible.

1.6 Contribution
The results of this thesis can provide valuable insights for developers and other
stakeholders of graphics and game engines regarding the performance possibilities in
using the latest and most modern rendering API for web rendering, especially in the
context of the Godot code environment.

Furthermore, the results can provide grounds for a choice between WebGPU and
WebGL, where the former has a more complex API leading to the possibility of
longer development times.

Lastly, the work is not exhaustive and can instead be seen as a foundation and
the first steps toward further improvement. It can be built upon and used as a basis
for comparisons in future research on the same or similar subjects.

1.7 Outline
The thesis structure begins with chapter one and the introduction, detailing back-
ground information pertaining to the work, aim and objectives, thesis scope, ethical,
societal, and sustainability aspects, and the academic contribution the work is ex-
pected to provide. This chapter is followed by a chapter on related work, in which
the reader is updated on key research done in the areas of WebGPU and general
compute, Vulkan vs. OpenGL comparisons, and more. The chapter also goes into
detail on how this work aims to lessen the research gap on the subject. Chapter three
details the research question, technical limitations, and the overall research method,
in which the full WebGPU Rasterizer implementation details are explained. It also
includes how the experiment and data gathering (profiling) was conducted and the
validity and reliability of the chosen approach. Chapter four presents the Results
and Analysis of the conducted experiment. Chapter five contains a Discussion of the
performed work, and the sixth and final chapter presents the conclusions drawn from
the work and proposes several optimizations and adjustments in the future work
section.

Chapter 2

Related Work

2.1 WebGPU & Compute

With the advent of WebGPU, general computation on the web is now possible to
do on the GPU, through the use of configurable compute shaders. It is not possible
to set up compute shaders using WebGL. However, a number of user-defined hacks
that emulate compute shader capabilities have been suggested over the years.

With general computing capabilities, new possibilities are made available to the
audience; for example, the implementation of neural networks in the web browser.
Hidaka et al. found that their implementation of a deep neural network (DNN)
using WebGPU performed around 36 times faster (91 ms over 3297 ms) compared to
another popular DNN implementation for the web that makes use of the emulated
compute capabilities of WebGL [13].

Aldahir researched the compute performance differences (Mandelbrot set genera-
tion and matrix multiplication) of CUDA and WebGPU, with WebGPU set up to run
compute operations in a cluster of web browsers. The results showed CUDA being
faster and more efficient than WebGPU. However, the authors added that WebGPU
is still in early development and hence not as stable and mature as CUDA. Also,
WebGPU, along with WebRTC, displayed good scalability with over 75% efficiency
for building clusters of web browsers [2].

Usher and Pascucci compared the compute capabilities of WebGPU with that
of native Vulkan and found them to be remarkably similar in terms of performance
on compute-heavy tasks. In the paper, the marching cubes algorithm applied on
a scalar field was used as a proxy for compute-intensive tasks. The results display
similar performance with WebGPU falling in the same order of magnitude and often
even closer to the Vulkan implementation in terms of time-to-render [24].

Dyken et al. investigated the relative performance of rendering large-scale graph
layouts on the web using libraries based on WebGPU (GraphWaGu), WebGL (NetV
& Stardust), and non-GPU-accelerated equivalents (such as D3 Canvas). Thanks
to the compute capabilities of WebGPU, GraphWaGu is the only GPU-leveraged
library that is able to compute iterations of the graph algorithms in parallel. At
100.000 nodes and 2.000.000 edges, only GraphWaGu is able to maintain interactive
rendering at a frame rate of ten or more. The equivalent frame rate for NetV is three,
with StarDust being unable to render the graph layout at all. Pushing GraphWaGu
to its limits, a maximum of 200.000 nodes and 4.000.000 edges are rendered, a feat
that no other tested library, WebGL-based or otherwise, is able to accomplish [7].

All of the papers mentioned in this section have compared WebGPU to another

15

16 Chapter 2. Related Work

established API in terms of its compute performance. It details both how it compares
to WebGL, wherein general compute is not readily available, as well as APIs that are
more suited to general compute or even designed for it in the case of CUDA. This
gives a general idea as to how WebGPU compares to other APIs. However, the aim
of this thesis is to find how it performs regarding its rasterization capabilities which
is present in WebGL, unlike general compute.

2.2 Vulkan vs OpenGL
Previous research has been done comparing declarative APIs such as OpenGL to the
more modern APIs such as Vulkan and determined that Vulkan does indeed perform
much faster than OpenGL in metrics such as draw call overhead [21]. In one such
study, this was shown to be especially true for low polygon-count meshes but also for
higher polygon-count examples, though the difference between the two was smaller
in this case. The results show that the more modern API makes better use of the
GPU and therefore performs better.

Further research in the same vein was done comparing Vulkan and OpenGL in var-
ious micro-benchmarks [10]. The tests found, among other discoveries, that Vulkan
was able to push a much larger amount of triangles per second than OpenGL at the
cost of a slightly higher power requirement.

In a study measuring the energy efficiency of Vulkan as compared to that of
OpenGL, performance was also noted [17]. Performance was measured in frames-per-
second and samples were taken at various workloads. The results show that Vulkan
boasts far better performance and predictability, especially at higher workloads.

The research papers mentioned, however, used native APIs. This thesis will
instead perform a similar comparison between two web APIs, WebGL and WebGPU.
This could cause results to differ from the native case. However, the presented
research does give an assortment of examples wherein a modern API outperforms a
declarative API which hints at what could be expected from a comparison between
WebGL and WebGPU as well.

2.3 Reducing the Research Gap
It is evident from the findings presented in this chapter that there has been quite some
research done in the field of WebGPU and its general compute capabilities. However,
this does not hold true for WebGPU and its rasterization capability counterpart, in
particular research involving comparisons of WebGPU and WebGL. Furthermore,
at the time of writing this thesis, no research could be found that places its context
inside the environment of a game engine. The work presented in this thesis aims to do
just that, effectively reducing the research gap on WebGPU as a new rasterization
technology for the web in the environment of Godot, grounding the research and
results in real usability scenarios.

Chapter 3
Method

This chapter presents and motivates the methods conducted in order to reach the re-
sults. The applied methodology belongs to the domain of Research And Development
and is investigated in three main parts:

1. Detailed explanation of the software implemented for the solution, pertaining
to the development of the WebGPU Rasterizer backend.

2. The approach used to quantify the performance differences between the imple-
mented WebGPU rasterizer and the existing WebGL Rasterizer.

3. As assessment of the validity and reliability of the chosen approach.

3.1 Research Question
As of writing this thesis, very limited research can be found overall on the subject.
In particular, research relating to rasterization performance is absent, with most
findings being the work of hobbyists. As this thesis further narrows the scope by
aiming to quantify and compare the performance of WebGPU relative to WebGL in
a game engine environment the research question becomes as follows:

• RQ: What is the difference in performance regarding CPU and GPU frame
time between WebGPU and WebGL when used as a rendering backend in the
Godot game engine?

By studying the research in chapter 2 and applying knowledge regarding how
WebGPU aims to provide a workflow more optimized for the hardware it is targeting,
the expectation is that the implemented WebGPU backend should perform better
than the WebGL backend. It is, however, difficult to predict how large the difference
between the two is. Since no previous research has been done targeting rendering
with WebGPU, no hypothesis regarding said difference has been made.

3.2 Technical Limitations
A number of technical limitations were identified during the research phase and have
played a part in steering the solution in certain directions. These limitations mainly
derive their existence from limitations in the WebGPU API and/or Godot code base
and would be too time-consuming or outright impossible to overcome in the time

17

18 Chapter 3. Method

allocated for this thesis work. Furthermore, the limitations had to be respected in
order for the performance profiling to be fair and consistent. The limitations are
outlined below.

3.2.1 Selecting a Backend Framework

With the release of Godot 4.0, a new rendering backend was introduced, called
the Render Device. It was implemented in order to reflect the modern approach of
organizing a renderer. New renderer backends are suggested and urged to inherit from
and implement this new framework for the best performance and pipeline workflow.
The current official Vulkan renderer does this, as does the (as of writing this thesis)
unreleased D3D12 renderer. During the early research and development phase, using
the render device backend seemed the most reasonable for this implementation as
well. However, a host of critical problems were identified that made WebGPU a bad
fit for this modern workflow, of which the most glaring are detailed here:

• In its current state, WebGPU does not support recording render commands
from multiple threads. Render Device backends are by default scheduled on
different threads, which would invalidate the WebGPU primitives, such as the
device and adapter.

• Shaders compiled for use by the Render Device backend end up in SPIR-V
format, which would have to be converted to an equivalent wgsl format in
order to be used by WebGPU. Capable tools exist for this. However, upon
testing, it was determined that WebGPU lacked the necessary shader types in
order to be compatible.

• WebGPU does not currently support push constants, which are used frequently
with the render device backend. In order to solve this and the aforementioned
issue, it would have been necessary to act on and adjust the SPIR-V shader byte
code to adhere to the WebGPU standard and form compatible wgsl shaders.

• WebGPU does not currently support synchronously waiting for GPU work to
complete. As such, all work pertaining to e.g. fetching texture or buffer data
would have to be performed asynchronously, invalidating the workflow of the
Render Device backend.

While it in theory could be possible to circumvent these issues, upon discus-
sion with Godot developers, it was further determined that implementing WebGPU
as a Render Device backend would diminish the value of a performance compari-
son between WebGPU and WebGL. This is because WebGL implements the legacy
Rasterizer backend, and the render paths in Godot are too different between the
two backend types for a comparison between them to yield any data of significance.
Combining the fact that implementing a WebGPU backend based on the Rasterizer
backend type would make for a fair comparison, and that the glsl-shaders in use by
WebGL are directly translatable to equivalent wgsl-shaders, it was determined that
the Render Device backend should be foregone in favor of the Rasterizer backend.

3.2. Technical Limitations 19

3.2.2 Frame buffering

The existing WebGL implementation in Godot is set up with multiple frame buffering
in mind (defaulting to three frames), so-called "frames-in-flight", as the API allows
for such explicit developer control. The WebGPU API, upon analysis, has no explicit
synchronization management between CPU and GPU that allows for manual control
over frames in flight. This was determined by reaching out to the Google developers
responsible for implementing WebGPU on Chrome Canary. They informed that the
Dawn API is responsible for managing the WebGPU render commands on Chrome
Canary and handles the implicit resource management for developers when writing
buffer and texture data. This is in order to minimize CPU-GPU sync points and
keep frames in flight going. With this information in mind, the proposed solution was
created with the concept of frame buffering treated as a black box where trust is put
in the developers behind WebGPU and the conversations had with them. Simply
put, explicit control of frame buffering is not currently supported and is as such
omitted from this work.

3.2.3 Managing Synchronous GPU Read Backs

When Godot constructs tile maps to be used in games, it queries a Texture Storage
class that manages textures for a certain texture to be used for the tile map. However,
it does so after all textures for use by a game have already been loaded into the engine
and video memory (VRAM), after which they are removed from regular RAM. Godot
expects the texture data to be instantly available to it via a readback of the texture
data from VRAM. WebGL manages this by introducing a synchronization point and
simply waiting synchronously for the texture data to be available before returning it
to the caller. However, as was explained in section 3.2.1, such synchronization cannot
be set up using WebGPU. In order to circumvent this issue, every texture has its data
stored contiguously in an array in system memory until the run time loop begins,
at which point it is certain that the engine is done with such tile map management.
The data is then erased and freed. This introduces no extra memory overhead during
runtime. However, it is worth noting that some intermediate memory overhead exists
at initialization.

Furthermore, this means that during runtime, the WebGPU implementation is
technically lacking the ability of the engine to read texture data from VRAM. How-
ever, in the use cases presented in this thesis, such a readback is never performed.
Consequently, the WebGL and WebGPU implementations should be indistinguish-
able in this regard during application runtime.

3.2.4 Performance Measuring

For security and privacy reasons, browsers limit the precision of high-resolution times-
tamps. In Google Chrome, this limit is 5µs, which matches the recommended highest
precision a browser should provide [26]. Furthermore, a slight randomness is added
to these timestamps. Due to these limitations of performance measurement, short
functions that run for upwards of tens of microseconds become impossible to measure
in a way that provides meaningful data for the study. Thus, these functions are not

20 Chapter 3. Method

measured in the thesis.

3.3 Scope of Implementation
This section explains the rationale behind the scope that is being aimed for in the
implementation. Generally, it comes down to selecting which features to include and
which to omit from the so-called "Renderer Compositor", from which all current and
new Rasterizers must inherit and implement.

Broadly speaking, what to support should be determined by selecting within
five categories: The renderer(-s) to implement, the storage(-s) to implement, which
types of render items the renderer should support, what shader variants to support,
and what, if any, utilities to include. The reader should refer to Figure 3.1 for a
visualization.

Figure 3.1: Shows a side-by-side comparison of Rasterizer frameworks, with the left-
most framework displaying the full set of possible implementation features, and the
right-most framework displaying the actual implemented features for the WebGPU
Rasterizer, based on the aimed-for scope.

3.3.1 Supported Renderer and Storage

As was hinted at in section 1.3 - "Thesis Scope", and further discussed in section
3.2.1 - "Selecting a backend Framework", the developed renderer implements the
Rasterizer backend, just like the WebGL renderer backend does. However, while
this implementation deals with simple 2D rendering only, the Rasterizer backend
allows for many more features, such as 3D rendering, advanced post-processing, and

3.3. Scope of Implementation 21

more. The Rasterizer backend is split into a number of different objects that manage
these features; a "Canvas Rasterizer" that deals with all things pertaining to 2D
rendering, a "Scene Rasterizer" that manages all things related to 3D rendering, and
a number of storage classes that act as asset managers for different Godot-defined
resource types, some notable examples being textures (TextureStorage), materials
(MaterialStorage) and meshes (MeshStorage).

Of these, the Canvas Renderer was implemented, along with the texture storage
class, as these in conjunction are sufficient (and required!) to render 2D games. The
Scene Renderer only deals with 3D graphics, which is outside the scope of this thesis
work. Of the storages, MeshStorage and MaterialStorage are used for 3D rendering,
and so are naturally omitted. As rendering lights and particles are outside the thesis
scope, so are the equivalent storage classes.

3.3.2 Supported Render Item Types

While Godot defines and supports a number of render item types (ten to be precise,
of which five correspond to 2D render items) only two have been selected for being
supported by this implementation - the "rect" item type and the "polygon" item
type. These two have been selected due to their particular importance for rendering
2D scenes. The rect type makes it possible to render sprites to the screen, and the
polygon type makes it possible to render panels, buttons, and other UI elements on
the screen. Together, these two types are sufficient for rendering simple 2D games.
Although not all render item types in Godot are used for 2D rendering, supporting
more would mean improving the general visuals and features of some 2D games (and
being able to support more existing 2d games overall). However, due to the limited
time for implementation, additional render item type support was omitted.

3.3.3 Supported Shader Types

The WebGL backend Rasterizer has support for a number of glsl-shaders, of which
only the "Canvas Shader" is used for 2D rendering. At compile time, this big shader
is further split into numerous minor shaders, in Godot referred to as "shader vari-
ants". In total five shader variants are compiled for 2D rendering, each corresponding
to and managing the final color computations for a single render item type. As this
implementation supports two render item types it will also limit its scope to support-
ing the equivalent two shader variants used for rendering those two types, namely the
"quad" variant, used for rendering rect render items, and the "attributes" variant,
used for rendering polygon render items.

Furthermore, as blitting is a mandatory render technique used in Godot, this
implementation also sets up a shader for achieving that. This is further detailed in
section 3.4.4. In total, this means that three shaders are implemented and used in
this implementation, which is sufficient for achieving the desired results.

3.3.4 Supported Utility Features

The Utility features available to implement for a Rasterizer (Config, Utilities, and
CopyEffects) are mainly concerned with making a Rasterizer generalizable for all

22 Chapter 3. Method

systems and platforms, in the sense that after setting them up they can be referred
for system and API-relevant data. Examples include limits, such as the texture
dimension limits for a given system, or the maximum length of vertex buffer layout
attributes. Another example is retrieving the video adapter API version. While these
features are important for a Rasterizer built to be deployed and released, for this
thesis work it falls outside of the scope, as the test system is well known. Therefore,
no time was spent on including these features.

3.4 Implementation

As noted in section 1.2 - Aim and Objectives, the implementation phase consisted
of a deconstruction effort of the already existing WebGL Rasterizer, followed by an
implementation of an equivalent WebGPU Rasterizer, staying as close as possible to
the architectural design decisions of the WebGL Rasterizer. This was followed up by
setting up a test environment for the profiling of scenes and games suitable for the
scope of the MVP WebGPU Rasterizer, and then the actual profiling.

3.4.1 Deconstructing Godot

In order for the implemented WebGPU Rasterizer and the existing WebGL Rasterizer
to be eligible for performance comparisons, the overall computation work they do
must be as identical as possible. More precisely, these prerequisites must be aimed
for:

1. The shaders used must be as close as possible in terms of instruction count,
branching, and operations. Exactly the same work must be done in the shaders.

2. The shader pressure, in terms of data types and data layout, must be as close
as possible. In other words, the shaders must act on the same (amount of)
data, and the data must be sent to VRAM structured identically.

3. No optimizations are allowed for the WebGPU Rasterizer on CPU-side or GPU-
side, which would put it at an unfair advantage over the WebGL Rasterizer.
As an example, if the existing WebGL Rasterizer batches instance data and
uploads to the GPU even though that data has undergone no change on the
CPU, then the WebGPU Rasterizer must honor this Godot design decision and
do the same, without adding any optimizations.

4. The CPU workflow must be as identical as possible in terms of computations
and branching.

5. The run time allocations should be as identical as possible.

For achieving the aforementioned prerequisites the work began with deconstruct-
ing the WebGL Rasterizer to a state where it would match the MVP aimed for
as close as possible; the Rasterizer should be able to render simple 2D games of
predetermined complexity and nothing more.

3.4. Implementation 23

First, the unneeded glsl-shader variants were decoupled fully. The remaining two
shaders dealing with rects and polygon rendering were then stripped of all function-
ality outside of the scope of the MVP, which largely amounted to code dealing with
light calculations and particle calculations. The equivalent WebGPU wgsl-shaders
were then carefully crafted in the image of these shaders, in order to be as close as
possible in terms of data and computations. As the shader details are of consid-
erable importance for the implementation they are included in their full display in
this thesis. The reader may refer to figures A.1 - A.8 in the appendix section for
the complete implementation details for these. A careful and experienced reader can
verify that the wgsl and glsl-shaders are, in fact, translations of each other. This
fulfills prerequisite one and also sets the shaders up for fulfilling prerequisite two.

Following the deconstruction of the shaders the same process was applied to
the WebGL Rasterizer. Logic and data relating to 3D rendering were decoupled
first. This meant fully decoupling the WebGL Scene Rasterizer and the storages
only dealing with 3D rendering. Following this all logic dealing with unsupported
Render Item types was removed, leaving only the rect and polygon types. By this
time the WebGL shader variants dealing with types other than rects and polygons
were decoupled as well. As the only assets that fall into the MVP are textures
the remaining storage classes, aside from the TextureStorage, were now removed as
well. Finally, the Utility objects were removed. Looking at Figure 3.1, the left-
most section showing the discarded and included Rasterizer features act as a good
overview of the results of the deconstruction; the WebGPU Rasterizer was based on
the deconstructed WebGL equivalent.

With the WebGL Rasterizer deconstructed to a minimal state for supporting the
MVP, the WebGPU Rasterizer was now crafted in its image. As all Godot Rasterizers
must implement the so-called Renderer Compositor and override and implement the
same functions this means the overall render path will be the same for them all by
default, as the engine will communicate with the Rasterizers in the same manner.
For achieving a result where the internal details of the render paths are as close
as possible for WebGPU and WebGL two main things had to be considered: the
details of the render loop and the applied render techniques. For details regarding
the implementation of the render loop, the reader is referred to section 3.4.3 - The
Render Loop, and for the implemented render techniques the reader is referred to
section 3.5.4 - Render Techniques.

While the implemented WebGPU Rasterizer should be fair in order for the pro-
duced profiling results to be of any significance, due to natural differences between
the API:s of WebGL and WebGPU the Rasterizer should still be set up in such a
way as to play to the strengths of WebGPU. This mainly pertains to the separation
between runtime constructs and initialization constructs, in which there are consider-
ate differences between the possibilities of the APIs. For details regarding how these
constructs were set up for WebGPU, the reader is referred to the following section
-3.4.2 Minimizing Runtime WebGPU Structures.

3.4.2 Minimizing Runtime WebGPU Structures

A lot of information is available to the renderer at the time of its initialization. Using
this information there has been an attempt to minimize the amount of work that

24 Chapter 3. Method

needs to be performed during the application runtime. Put another way, the goal is
to maximize the amount of work that can be done beforehand such that there is no
impact on runtime performance after initialization.

Because of how WebGPU allows the binding of bundled state, a lot of GPU
data structures can be built during initialization. This includes the pipeline state,
shader modules, bind group layouts, and fixed-size data buffers. See Figure 3.2 for
an overview of what structures are built during initialization and what structures
are built during runtime.

Figure 3.2: Overview of GPU structures that are built during initialization to the
left and during runtime to the right. Smaller boxes indicate that the data structure
does not have to be rebuilt continuously.

In WebGPU, the pipeline state comprises the state pertaining to the hardware
render pipeline. It mainly contains five large modules of data which themselves
consist of smaller submodules, see Figure 3.3. These five are the pipeline layout, the
vertex state, the fragment state, the primitive state, and the depth stencil state. In
the two-dimensional rendering case, the depth stencil state is unused.

The pipeline layout chiefly defines a bind group layout which is used by shaders
to access bound GPU resources. The bind group layout consists of bind group layout
entries that describe the kind of resource that the bind group can have bound to it.
This is clearly known at initialization time, considering the shaders are fixed and,
consequently, so are their bound resource slots.

The fragment and vertex states are tightly coupled with the pipeline layout in
that they contain compiled shader modules. The shaders need to have bind groups
that match those of the bind group layout previously established. The fragment state
further contains information relating to the render targets to which it can output
which themselves contain a blend state such that alpha blending can be properly
supported.

The vertex state contains a description of the vertex attributes passed to the
shader through a bound vertex buffer. This is optional and is, for example, not used
in the render pipeline concerned with the rect render command.

Lastly, the primitive state contains a description of the kind of primitive the
pipeline should render and whether or not any culling should be performed on back-

3.4. Implementation 25

Figure 3.3: Overview of the state contained within the WebGPU render pipeline.

26 Chapter 3. Method

facing or front-facing primitives. For all pipelines present in the implementation
presented by this thesis, the primitives used are triangles and the culling is set to
cull back-facing geometry.

After all the state has been set at initialization time, there still remain some
GPU structures for which the runtime has responsibility. These are bind groups (not
layouts), the instance buffer, as well as the swap chain in the case where it needs to
be rebuilt, such as when the canvas is resized. The resizing of the swap chain is an
implementation detail left to Emscripten and the API that implements WebGPU in
the web browser (Dawn for Chrome Canary). Aside from initializing it once in the
application it is not manually managed in runtime.

Bind groups are created for every batch depending on the texture and sampling
state of the batch in question. The reason these bind groups cannot be built at
initialization time is due to how Godot handles item commands. Specifically, in the
rect item command, see section 3.3.2, where it simply stores its texture and sampler
state as a part of the item command instead of as a bundled material data structure
which could have a bind group built for it at time of initialization. Therefore, it is
indeterminable how the bind groups will look before the item commands are received
by the renderer, resulting in them having to be built at runtime within the render
loop.

The instance buffer is rebuilt at least once per frame. Every invocation of
canvas_render_items initiates a new batch of batches and a new instance buffer
is associated with the batches in the current invocation. The instance buffers that
were created during a frame are then destroyed before the next frame is rendered.

It is also possible that the swap chain needs to be resized. If this is the case,
the implementation would need to rebuild the swap chain during runtime as well.
However, in a regular application, such a rebuilding of the swap chain should not need
to occur very often and should have a negligible overall impact on the performance
of the implementation as a whole.

Lastly, It should be noted that for the buffers being built at initialization time,
the data they contain will most likely have to be updated every frame. This also
holds true for the instance buffer that is allocated during runtime. It is only the
allocation of memory that can be done during the initialization of the renderer.

3.4.3 The Render Loop

The Rasterizer enters the render loop through the begin_frame function and finishes
upon the end_frame function returning. These two functions are both very simple.
The former creates a WebGPU command encoder and sets this to be used by the
current iteration of the render loop. The latter closes the command encoder and
submits it to the WebGPU queue to be executed.

In between these two invocations, all items visible on the canvas are rendered to
an off-screen texture. Optionally, before the end of the loop, this off-screen texture is
blitted to the back buffer of the swap chain and presented by the swap chain. More
information pertaining to the blitting of the main render target to the swap chain is
available in section 3.4.4. A high-level overview of the entire render process can be
seen in Figure 3.4.

3.4. Implementation 27

Figure 3.4: Overview of the WebGPU implementation of the Godot render loop.

28 Chapter 3. Method

The renderer receives a call to the canvas_render_items function and is passed
a linked list data structure of the items it is expected to render as well as a ren-
der target texture onto which it should render them. This function comprises four
steps. These are the CanvasBegin, CanvasUpdate, CanvasRender, and CanvasEnd
functions. The Rasterizer begins the process by entering the CanvasBegin function
wherein it validates its swap chain state. If the swap chain size does not match the
one requested, the swap chain is rebuilt. After that, a RenderPassDescriptor with
the requested render target as its RenderPassColorAttachment is set up, and using
said descriptor, the RenderPassEncoder is built and the main WebGPU render pass
is initiated.

Next up, the CanvasUpdate function is called. Here, the per-frame data of the
render pass is updated. This includes time, transformations of the canvas and screen,
and similar render pass-global data. The per-frame data buffer contains some infor-
mation that is technically unused by the implementation. However, it is made to be
the same size as the one that WebGL uses to make the comparison as fair as possible.
The CanvasUpdate function also batches all the render items before rendering them,
see more about batching in section 3.4.4. These batches are iterated over in the
third function, CanvasRender, where for each batch, the right GPU resources are
fetched and bound, including the large instance buffer containing instance-specific
data. The resources in the current implementation are limited to textures and these
are fetched from a TextureStorage singleton that acts as the owner of all textures
in the application. The items contained within the batch are then rendered to the
aforementioned render target texture.

Finally, the canvas_render_items function enters CanvasEnd, wherein the ren-
der pass encoder is simply closed and the render pass is finished. Control is then
given back to the engine and the engine can decide whether or not to blit the render
target to the screen or not. The seemingly most common case is that a blit is re-
quested. Lastly, the command encoder is closed and it is submitted to the WebGPU
queue to execute.

3.4.4 Render Techniques

In order for measurements between the performance of the two APIs to be as fair as
possible, the WebGPU rendering backend has to adhere to the rendering techniques
that Godot employs. The techniques that concern the scaled-down version of the
Rasterizer backend include batching and instancing as well as the forcing of render
target blitting.

Batching/Instancing – Batching refers to a technique where similar items are
gathered and rendered as a batch to make sure all items that use the same resources
are rendered at once and avoid binding the same resource multiple times unneces-
sarily. This technique can be further enhanced by GPU features like instancing to
render all items in a batch with a single draw call.

In Godot, batching is done in the rendering backend. However, before items are
submitted to be rendered, they have already been sorted such that similar items are
submitted contiguously. The batching in the rendering backend is then performed
by setting up a batch data structure that contains data that is common to the entire
batch. Furthermore, data that is unique to each item in a batch is stored in an

3.4. Implementation 29

instance buffer. The batch notes where in the instance buffer its items start and how
many items it contains, such that the right data is used when later accessing the
instance buffer on the GPU during rendering.

The deciding factors of whether a batch needs to be split differs between item
types, but in general, batches are split when two subsequent items are sufficiently
different. The most obvious example of two items being sufficiently different is them
being of different item types. For example, rects and polygons cannot be part of the
same batch.

In the scaled-down version of the Rasterizer backend batches of rects can only be
split if they differ in the texture they use. This is because no other properties that
would warrant a split in the full implementation are supported in the scaled-down
version. For polygons, batches are always split due to Godot not supporting the
batching of polygons even if they represent the exact same polygon. This holds true
both for the scaled-down rendering backend as well as for the fully implemented one.

Lastly, once all the items of the scene have been correctly batched the batches are
iterated over. For each batch, its batch-global data is bound through constructing
WebGPU bind groups, whereafter a single draw call is issued with an instance count
equal to that of the number of items contained in the batch. The instance buffer
is also bound by building a bind group and this is then accessed at the right index
depending on the render items index of the first item in the batch.

Render Target Blitting – Godot uses two separate render target textures when
rendering a two-dimensional scene. One of these is used for rendering the scene
items, whereas the other is the image that is ultimately presented to the user of
the application. For each frame, Godot decides whether or not the main render
target should be blitted to the presented render target. This had to be adhered to
in the WebGPU implementation, such that both it and the WebGL implementation
perform uniform work.

For blitting, a separate pipeline was set up with a vertex shader that simply
renders a triangle covering the entire back buffer, see Figure 3.5, and a fragment
shader that textures this triangle using the main render target texture. In effect,
this copies the main render target to the render target being presented. However,
it is not a direct copy of the data. Rather it scales the image to match the desired
viewport size such that the engine can provide users with a fixed aspect ratio, for
example.

30 Chapter 3. Method

Figure 3.5: A full-screen triangle’s positional coordinates (left) and texture coordi-
nates (right).

The blitting is set up as a separate render pass and as such, it is initiated by using
the frame’s command encoder to construct a RenderPassEncoder with the swap chain
back buffer as its ColorTargetAttachment. A point sampler and the render target
that was previously used are then bound and the aforementioned full-screen triangle
is then textured by sampling points in the render target.

3.5 Experiment and Data Gathering

When it comes to the performance of games and graphical scenes the general consen-
sus of how well something performs is how smooth it appears to run to the human
eye. For obvious reasons, this holds especially true for non-static scenes where at
least some elements are in motion. A common performance property to analyze is
that of the frame rate in terms of frames per second (FPS). It is often included in
game benchmarks and is typically well-known to the intended audience. However,
FPS is also considered flawed by nature, which generally comes down to its non-
linear scaling property. As a trivial example, if a game renders 59 frames over 0.75
seconds and the next frame takes 0.25 seconds to render, in theory, the 60 frames per
second generated sounds good, however in practice the user will have experienced a
massive negative spike in performance, affecting the user’s sense of how smooth the
experience is. A better approach is to use the elapsed frame time, which is gener-
ally measured in milliseconds. This does scale linearly and any drop will feel less
dramatic proportionally speaking [23] [6].

Another reason for omitting frames per second as a performance property comes
down to the environment in which the experiment takes place; the web platform.
When rendering on the web Chrome Canary will impose a forced vertical synchro-
nization that cannot be turned off, which puts a limit on the maximum frames per
second possible, generally defaulting to the refresh rate of the monitor. As such,
any test involving a scene that would be possible to render faster than the given
monitor’s refresh rate would incur a loss in data, effectively making the experiment
and gathered data void.

3.5. Experiment and Data Gathering 31

The gathered data in the conducted experiment is that of the frame time mea-
sured in milliseconds, for the aforementioned reasons. As the WebGL backend and
implemented WebGPU backend spans over both the CPU and GPU in terms of work
performed, both the CPU work times and GPU work times are measured. The time
gathered is for a full frame for the CPU and GPU. However, for the CPU timings
additional measurements are taken for narrower scopes in order to filter out Godot-
specific operations that are outside of the scope of the Rasterizers but all the same
is included in the full frame measured times. These scopes are:

• canvas_render_items - function, which includes all CPU Rasterizer work
aside from the blitting operation.

• ConstructBatches - function, which includes the work of constructing all the
batches and creating and uploading the constant buffers to GPU.

• RenderBatches - function, which iterates over all batches, optionally creates
and binds WebGPU/WebGL constructs, and performs the necessary render
calls.

• blit_render_targets_to_screen - function, which, as the name suggests,
sets up and performs the blitting of the render target to the back buffer.

The timings are gathered as averages over 2000 frames. Along with average frame
times, the means of the 1% highest and the 95% lowest frame times are calculated
to be able to analyze the performance consistency between the two Rasterizers. The
measurements taken will be used to directly answer the thesis research question,
stated in section 3.1.

Following the calculation of the aforementioned mean values, a so-called paired
t-test is conducted to show whether the WebGPU and WebGL mean values are
significantly different. The t-test produces a t-value that can be used to look up a
p-value in a table. The p-value denotes how likely it is that the difference between
the two mean values is due to happenstance. For this thesis, it was decided that a
p-value less than 0.05 denotes that the two mean values are significantly different.
The calculation for the t-value is presented in equation 3.1.

t =
x̄− ȳ

σ
√
n

(3.1)

In the above equation, t is the t-value, x̄ is the mean of the first collection of
samples, ȳ is the mean of the second collection of samples, σ is the standard deviation
of differences between pairs of samples, and n is the number of samples in the two
collections.

The measurements of elapsed time on the CPU for the various scopes was mea-
sured by using the C++ standard library’s chrono header. A timestamp was acquired
from chrono::high_resolution_clock at the start of the relevant scope and an-
other one at the end of it. To calculate how much time elapsed, the start time stamp
was subtracted from the end one. This elapsed time was then stored in a vector
and is used later when enough samples have been gathered to calculate an average

32 Chapter 3. Method

elapsed time and the aforementioned 1% highs and 95% lows. A code example can
be found in Figure 3.6.

1 auto start = std:: chrono :: high_resolution_clock ::now();
2 /*
3 Code related to the relevant scope
4 */
5 auto end = std:: chrono :: high_resolution_clock ::now();
6 timeElapsedVector.push_back ((end - start).count());
7
8 if (timeElapsedVector.size() == SAMPLE_COUNT) {
9 CalculateAverages ();

10 }

Figure 3.6: Example of code used to time a specific scope on the CPU.

For measuring time on the GPU, different methods need to be used for the differ-
ent APIs. WebGL provides a way of measuring the elapsed time between two points,
whereas WebGPU provides a way to queue a timestamp on the command encoder.
If one timestamp is acquired at the start of a frame and one at the end, the elapsed
time can be acquired in the same way as described for the CPU measurements.

To acquire a timestamp in WebGPU it is first required that the WebGPU device
has the timestamp-query feature available. Next, a WebGPU query set can be created
with the timestamp query type. Through the WriteTimestamp function, a timestamp
can then be written to this query set. In the implementation, the query set is created
with a capacity of 4000 queries, one for the start timestamp and one for the end
timestamp over 2000 frames. When the capacity has been reached, the query results
are written to a buffer in VRAM that is then copied to a read-back buffer such that
the timestamps can be read by the CPU and averages can be calculated. Mapping
a buffer to be read by the CPU is an asynchronous operation in WebGPU. Thus, it
has to be done in a callback function. A code example can be found in Figure 3.7.

3.5. Experiment and Data Gathering 33

1 // Gathering Timestamps
2 {
3 commandEncoder.WriteTimestamp (& timestampQuerySet , timestampCount);
4 /*
5 Relevant GPU scope
6 */
7 commandEncoder.WriteTimestamp (& timestampQuerySet , timesampCount + 1);
8 timestampCount += 2;
9

10 if (timestampCount == 2 * SAMPLE_COUNT) {
11 m_CommandEncoder.ResolveQuerySet(timestampQuerySet , 0, 2 * SAMPLE_COUNT , timestampBuffer , 0);
12 m_CommandEncoder.CopyBufferToBuffer(timestampBuffer , 0, readBackTimestamps , 0, 2 * SAMPLE_COUNT * sizeof(

uint64_t));
13 }
14
15 // Frame is ended and the command encoder is submitted to the queue.
16
17 if (timestampCount == 2 * SAMPLE_COUNT) {
18 readBackTimestamps.MapAsync(wgpu:: MapMode ::Read , 0, 2 * SAMPLE_COUNT * sizeof(uint64_t), QueryMapCallback ,

this);
19 timeStampCount = 0;
20 }
21
22 }
23
24 // Buffer Map Callback
25 void QueryMapCallback(WGPUBufferMapAsyncStatus status , void *userData) {
26 if (status == WGPUBufferMapAsyncStatus_Success) {
27 RasterizerWEBGPU *self = (RasterizerWEBGPU *) userData;
28 auto *data = (uint64_t *)self ->m_ReadBackTimestamps.GetConstMappedRange (0, 2 * SAMPLE_COUNT * sizeof(uint64_t

));
29
30 CalculateAverages(data);
31
32 self ->m_ReadBackTimestamps.Unmap ();
33 } else {
34 assert(false && "Failed to map time stamp query set buffer");
35 }
36 }

Figure 3.7: Example of measuring elapsed time on the GPU with WebGPU.

In WebGL, queries are started with the glBeginQuery function and ended with
the glEndQuery function. Queries, however, are not guaranteed to be finished just
because they have been ended. Thus, a buffer of eight query objects is kept such
that a query has eight frames to finish before it gets read by the CPU using the
glGetQueryObjectuiv function. The buffer of query objects is used as a ring buffer
where the query object right after the one currently being written to is read by the
CPU. That way, it is free to be used for the next frame’s time query. A code example
can be found in Figure 3.8.

1 static constexpr uint32_t QUERY_COUNT = 8;
2
3 glBeginQuery(GL_TIME_ELAPSED_EXT , queryBuffer[queryCount % QUERY_COUNT]);
4
5 // Relevant GPU Scope
6
7 glEndQuery(GL_TIME_ELAPSED_EXT);
8
9 if (queryCount >= QUERY_COUNT) {

10 uint32_t queryIndex = (queryCount + 1) % QUERY_COUNT;
11 uint32_t timeElapsed = 0;
12 glGetQueryObjectuiv(m_QueryBuffer[queryIndex], GL_QUERY_RESULT , &timeElapsed);
13 timeElapsedVectorGPU.push_back(timeElapsed);
14 }
15 queryCount ++;

Figure 3.8: Example of measuring elapsed time on the GPU with WebGL.

The experiments conducted belong to one of two categories; simple 2D games
or synthetic tests. For the category of simple 2D games six different games that
are simple in scope and complexity were selected. As the Rasterizers are limited in
scope, and as the games must be supported by the Godot version used in this work,

34 Chapter 3. Method

the games were selected purely based on the engine’s and the two Rasterizers’ ability
to support and render them. The games are:

1. Snake [12], in which the player must avoid obstacles and gather apples in order
for the snake character to grow longer and longer.

2. Evader [19], in which the player must avoid incoming shapes on the highway.

3. Checkers1 [1], in which the player plays the checkers game either versus an AI
or optionally versus another player locally.

4. Falling Cats [3], in which the player must catch cats falling from a tree before
they hit the ground.

5. Deck Before Dawn [22], in which the player strategically plays a number of
cards every turn with abilities in order to defend a sleeping child from nightmare
creatures.

6. Ponder 2 [5], in which the player must navigate a duck character in a finite
number of sequences in order to collect all ducklings.

The reader may refer to appendix B for footage of all games running on both the
WebGL Rasterizer and the WebGPU Rasterizer.

The synthetic tests are selected in order to test specific areas of rendering and
how the Rasterizers compare for each one. As such the synthetic tests are further
split into four categories for each specific test case. The synthetic test categories are:

1. Multiple Quads — Multiple tiny textured sprites

The test consists of one big draw call of one batch consisting of instances of
textured sprites in the order of 10, 100, 1000, 10000, 20000, 30000, 40000, and
50000 sprites rendered on screen simultaneously, using the shaders for rendering
the quad render item type (shaders A.5 and A.6 for WebGPU and shaders A.1
and A.2 for WebGL). Every sprite is its own render item, and as such, the
processing of all the sprites and the forming of the instance buffer should put
considerate pressure on the CPU. As every sprite is instanced and small in size,
relatively low pressure should be put on the Vertex shader stage. The number
of fragment shader invocations should increase continuously as more and more
sprites are rendered.

2. Full-screen quads — Multiple full screen textured sprites

The test and details regarding it are identical to the aforementioned test with
the sole difference that every sprite now is full screen sized. In contrast to the
test with multiple small-sized sprites, this test should yield orders of magnitude
more fragment shader invocations due to the vast increase in pixel fill rate. As
such an overall high burden should be placed on the GPU. This is considered
the most demanding stress test.

1The version used in testing is v1.0.1-0-g7a4203b
2The version used for testing is v1.0.0

3.5. Experiment and Data Gathering 35

3. Multiple Polygons — Multiple tiny polygons

The test consists of one batch per polygon (as Godot has every polygon forming
its own batch) in the order of 10, 100, 1000, 10000, 20000, 30000, 40000,
and 50000 polygons rendered on screen simultaneously, using the shaders for
rendering the polygon render item type (shaders A.7 and A.8 for WebGPU
and shaders A.3 and A.4 for WebGL). Every polygon consists of 360 vertices
each with vertex attribute data corresponding to 32 bytes. Separate vertex
and index buffers are bound prior to every draw call, of which there is one per
polygon. This test is made to put a more even burden on the CPU and GPU
as the CPU work involving the forming of batches and the render-related calls
will increase with an increasing number of polygons. The number of vertex
and fragment shader invocations will also increase with an increasing number
of polygons.

4. Large polygons — A few polygons, each with 50000 vertices

The test consists of one batch per polygon in the order of 40, 80, 120, 160, 200,
240, 280, and 320 polygons rendered on the screen simultaneously, using the
shaders for polygons just like the aforementioned test. As the batch count is
kept low due to the low number of polygons being rendered the load put on
the CPU work should be kept low too. Instead, the aim of the test is to put
considerate pressure on the vertex shader stage as the number of vertices to
process will increase significantly with each test increasing the polygon count,
up to and including 16 million vertices. As the size of the polygon shapes are
kept low the fragment shader stage should not receive much pressure. Overall,
this test should put a disproportionate load on the GPU, over the CPU.

3.5.1 Hardware and Software Specification

This section describes the machine that was used to run the test cases on. It presents
its hardware as well as what versions of relevant graphics drivers were used. The
specifications are presented in Table 3.1.

Table 3.1: Information about hardware and software versions of the machine upon
which all test cases were run.

Component
CPU Intel Core i7 12700H, 2.7GHz
GPU NVIDIA GeForce RTX 3070 Ti (Laptop Version), 8GB GDDR6

Memory SK Hynix, 2x8GB DDR4, 3.2GHz
Disk Samsung MZVL21T0HCLR-00B07, 1TB, 7.0/5.1 GB/s

Monitor Resolution 2560x1440
Monitor Refresh Rate 165Hz

Operating System Windows 11 Home 22H2
NVIDIA Driver Version 531.41

Emscripten 3.1.30
Chrome Canary 114.0.5715.1

Godot Engine Version 4.0

36 Chapter 3. Method

3.6 Alternative Approaches

It was established in section 3.5 that frame time is the most suitable candidate for
what data to gather in this work. Lower frame times result in a smoother experience
for users observing scenes being rendered in real-time. An alternative approach that
could be postulated could be that of replacing or complementing the quantitative
approach with a qualitative one, in which a number of subjects analyze the rendered
scenes produced by both Rasterizers. Then, they could be asked to provide feedback
on the perceived smoothness as part of some questionnaire. However, such an ex-
periment (and similar ones), would be ill-suited for the intended research goal of the
study, as frame time is a precise metric, and human perception is not. For instance,
it would be impossible for such a subject to know the distribution of frame time
due to different workloads put on the CPU and GPU. For this, and other obvious
reasons, such experiment alternatives were discarded.

Originally, this thesis aimed to analyze the performance differences between We-
bGPU and WebGL in Godot using two metrics, frame time and VRAM usage.
Adding VRAM to the analysis another dimension would be introduced in determin-
ing the performance of the two APIs; efficiency in terms of memory utilization on
GPU. However, upon contacting and discussing the issue with the Google engineers
responsible for implementing WebGPU on Chrome Canary through the Dawn API, it
was discovered that measuring the VRAM usage with WebGPU is, as of writing this
thesis, not possible. This comes down to reasons ranging from non-portability, issues
with so-called fingerprinting, and a lack of features exposing it through the underly-
ing APIs. In other words, it is too early in the development phase to be supported
in WebGPU. The only method possible, according to the Google engineers, would be
to estimate the usage based on the GPU resources created. However, the accuracy
of such an estimate is questionable, especially as the underlying resource manage-
ment for managing multiple frames in flight is entirely implementation dependent
and should be viewed as a black box. This would lead to sketchy comparisons with
WebGL at best, and therefore it was determined that the data gathering of VRAM
usage should be omitted.

3.7 Validity and Reliability of Approach

In order to reach a high validity and reliability of the approach, much time was dedi-
cated to implementing a solution with an emphasis on fairness, or rather, minimizing
unfairness. As has already been discussed in this chapter, this, in large part, had
to do with implementing a Rasterizer that was as identical in function to the We-
bGL equivalent as possible. The existing framework helped in doing so, as it forced
the implementation to adhere to the already established render paths and dedicated
functionality. One way of validating the result is to compare the produced output of
the two Rasterizers. Put simply, for any one game, either both Rasterizers succeed
or both fail at rendering the game. Otherwise, one Rasterizer would be more feature
complete than the other, which would indicate different computation capabilities.
For verifying this, 19 2D games were tested. Of these six games were able to be
rendered with both Rasterizers, and the rest failed with no output produced at all.

3.7. Validity and Reliability of Approach 37

The six games also produced identical outputs for both of the Rasterizers and were
thus selected as candidates for the performance comparisons. The reader may verify
that the produced output is indeed identical by looking at appendix B. While the
state of the games is not identical (as this is hard to produce due to natural game
randomness), one should be able to verify that the games are identical running on the
two Rasterizers. By the same token, examples of the visual results of the synthetic
tests can be observed in appendix C.

The combined facts that the Rasterizers have succeeded in producing the same
output while having been created as mirror images of each other make for a strong
case that a solution with an emphasis on minimizing unfairness has been achieved.
However, it is of course not guaranteed as some possible aspects might affect the
experiments. For one, Godot is a large and complex environment to place the ex-
periment within and it is difficult to realize all possible ways this could affect the
experiment.

Another important aspect to consider when profiling games and other real-time
applications is the complexity of the scene; e.g. in a 3D open-world game, the
complexity of the scene can vary heavily depending on the position and orientation
of the virtual camera. However, this will not be an issue for the experiments involved
in this thesis work, as it deals only with simple 2D games with static camera views
into the scene, resulting in a scene where the complexity is roughly the same. Despite
this, due to the random nature of some games, the scene complexity will vary to some
degree. For the synthetic tests, however, it is completely identical in every case.

A final point to make is that of producing a result that can be considered gen-
eralizable. The aim of the thesis work is to produce knowledge on what can be
generalizable in the scope of its environment, that is, the Godot game engine, which
influences the nature of the results. It is important to realize that the produced re-
sult will give a hint as to what can be expected in an environment outside of Godot
(such as another game engine or free-standing application) rather than a promise,
as those environments will come with their own set of rules that might impact the
results.

Chapter 4

Results and Analysis

This chapter aims to present all the data that has been gathered during the conducted
tests in a comparative format between the WebGPU Rasterizer and the WebGL
Rasterizer. The chapter starts with a section presenting the results of a performance
comparison when profiling the various games detailed in section 3.5, followed by an
equivalent section on the conducted synthetic tests. For both cases, the results are
split into GPU and CPU frame time comparisons.

The GPU sections contain two graphs and the underlying data in a table for the
GPU frame times measured during the relevant test. The first of the graphs presents
the mean GPU frame time and the second presents both the highest 1% mean of
GPU frame times and the lowest 95% mean, effectively ignoring the 5% worst frame
times in an attempt to adjust for unpredictable spikes.

For the CPU sections, what graphs are included varies from test to test, depending
on what test results were deemed most noteworthy. However, all graphs are available
for the reader in appendix D. For any graphs of the ConstructBatches scope, the
appendix also needs to be consulted due to them being completely excluded from this
section. The reasoning behind this choice is that the ConstructBatches scope takes
place purely on the CPU and has no direct interaction with the respective graphics
API. There is, however, still some variation between the two implementations.

The chapter is rounded off with an analysis summary.

4.1 Understanding the Data

When studying the various graphs and tables presented in this chapter (and the
additional appendix material) the reader should be informed on what the different
functions executed on the CPU pertains. Most details have been discussed already
in section 3.5, and so the reader is referred there for more details as to what the
functions do.

It is important to realize that both the RenderBatches function and the Con-
structBatches function are contained within the canvas_render_items function. The
profiling data is gathered per these function scopes in order to gain a greater under-
standing of how the two Rasterizers more narrowly perform to another; they have
been deemed most important for analyzing the relative CPU performance between
the Rasterizers. Also, aside from these functions, the whole CPU frame is profiled
as well. This is important, as including the full CPU frame timings can produce
knowledge relating to e.g. how GPU/CPU synchronization introduces stalling and
waiting times that affect the overall performance.

39

40 Chapter 4. Results and Analysis

In order to further understand how WebGPU performs compared to WebGL, a
speed-up factor is calculated and included for all CPU and GPU mean frame times.
Also, the measurement for the likelihood that the observed differences between the
groups are due to chance (the p-value) is calculated and included for all mean, high
1% mean, and low 95% mean CPU and GPU frame times. The WebGPU speed-up
factor is denoted SLatency and the p-value is denoted p. They are both included in
all tables presented. In cases where the p-value is greater than 0.05, the data is
color-coded red for the reader’s convenience.

4.2 Performance Comparison - Game tests

This section presents the measurements gathered from the various game tests. The
first section presents the GPU frame time and the second the total CPU frame time
as well as the various scopes within it that were also measured.

4.2.1 GPU Frame Time

Below are the graphs and table showing the data gathered on the GPU frame time
in the various game tests.

Figure 4.1: Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the various games. Lower is better.

4.2. Performance Comparison - Game tests 41

Figure 4.2: Comparison of the highest 1% mean and the lowest 95% mean WebGL
and WebGPU GPU frame times, in milliseconds, for the various games. Lower is
better.

Table 4.1: Mean, highest 1% mean, and lowest 95% mean GPU frame times, in milliseconds, for the various games.
Lower is better. SLatency denotes WebGPU speed-up. p is the t-test yielded p-value.

Mean GPU times (ms) High 1% GPU times (ms) Low 95% GPU times (ms)

Game WebGPU WebGL SLatency p WebGPU WebGL p WebGPU WebGL p

Checkers 0.326 2.775 8.512 <0.001 1.797 11.343 <0.001 0.256 2.444 <0.001
Snake 0.163 3.191 19.578 <0.001 0.175 10.774 <0.001 0.163 2.814 <0.001
Evader 0.090 3.205 35.611 <0.001 0.095 7.944 <0.001 0.090 3.048 <0.001
Ponder 0.443 3.022 6.822 <0.001 1.790 11.518 <0.001 0.377 2.683 <0.001

Falling Cats 0.165 4.181 25.339 <0.001 0.263 6.604 <0.001 0.163 4.099 <0.001
Deck Before Dawn 0.196 2.753 14.046 <0.001 0.461 11.591 <0.001 0.187 2.362 <0.001

In Figure 4.1, it can be seen that WebGPU on average has much shorter GPU
frame times than WebGL in all games that were included in the test. Table 4.1
shows a speed-up factor ranging between 6.822, in the case of Ponder, and 35.611,
in the case of Evader. Figure 4.2 shows that the difference between the lowest 95%
of frame times and the highest 1% is larger for WebGL. However, for Checkers and
Ponder and Falling Cats, the percentage difference is more significant for WebGPU.
For checkers, this comes out to a 7.020 times increase for WebGPU compared to a
4.641 times increase for WebGL. For Ponder, the increase is 4.748 times for WebGPU
and 4.292 times for WebGL. Lastly, for Falling Cats, WebGPU shows a 1.613 times
increase and WebGL shows a 1.611 times increase. For the other games, WebGPU
has a smaller spread in absolute and percentage terms.

4.2.2 CPU Frame Time

Below are the graphs for the CPU frame time measured for the various game tests.

42 Chapter 4. Results and Analysis

Figure 4.3: Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the various games. Lower is better.

Figure 4.4: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the various games. Lower is better.

In Figure 4.3, it is shown that WebGPU has shorter mean frame times for all of
the game tests compared to WebGL. Deck Before Dawn is a clear outlier in the data
set in how much shorter the CPU frame time is with the WebGPU implementation.
Figure 4.4 shows that the percentage differences between the lowest 95% and highest
1% of frame times are typically lower compared to the spread documented for GPU
frame times in Figure 4.2. This does, however, not hold true for all cases. For
instance, Evader shows a larger spread for WebGPU in CPU frame time than it did
for the GPU.

4.2. Performance Comparison - Game tests 43

Figure 4.5: Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the various games. Lower is better.

Figure 4.6: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU canvas_render_items frame times, in milliseconds, for the various games.
Lower is better.

44 Chapter 4. Results and Analysis

Figure 4.7: Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the various games. Lower is better.

Figure 4.8: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the various games. Lower
is better.

In figures 4.5 and 4.7 a break in the trend of the WebGPU implementation being
on average faster than WebGL one can be seen. The times measured are short in
both cases, but in the most extreme example, Snake, WebGPU takes 2.133 times
longer for canvas_render_items and 2.667 times longer for RenderBatches.

The difference between the lowest 95% and the highest 1% of measured times is
shown in figures 4.6 and 4.8. These can be seen to be similar between the games
with Evader and Falling Cats showing the most significant spread for both imple-
mentations in both canvas_render_items and RenderBatches.

4.2. Performance Comparison - Game tests 45

Table 4.2: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Checkers. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Checkers WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.341 0.959 <0.001 2.812 0.678 1.633 <0.001 0.329 0.936 <0.001
canvas_render_items 0.233 0.167 <0.001 0.526 0.493 0.107 0.223 0.155 <0.001

ConstructBatches 0.018 0.011 <0.001 0.135 0.130 0.722 0.016 0.009 <0.001
RenderBatches 0.136 0.078 <0.001 0.361 0.351 0.474 0.127 0.068 <0.001

Table 4.3: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Snake. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Snake WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.404 0.877 <0.001 2.171 0.719 1.805 <0.001 0.395 0.848 <0.001
canvas_render_items 0.318 0.151 <0.001 0.575 0.512 0.419 0.310 0.142 <0.001

ConstructBatches 0.036 0.022 <0.001 0.122 0.074 <0.001 0.034 0.021 <0.001
RenderBatches 0.242 0.091 <0.001 0.478 0.396 0.289 0.235 0.084 <0.001

Table 4.4: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Evader. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Evader WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.214 0.703 <0.001 3.285 0.540 1.416 <0.001 0.205 0.677 <0.001
canvas_render_items 0.116 0.093 <0.001 0.348 0.376 0.557 0.110 0.084 <0.001

ConstructBatches 0.006 0.004 <0.001 0.025 0.037 0.051 0.005 0.003 <0.001
RenderBatches 0.051 0.037 <0.001 0.176 0.271 0.040 0.048 0.029 <0.001

Table 4.5: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Ponder. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Ponder WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.415 0.956 <0.001 2.304 0.773 1.734 <0.001 0.405 0.926 <0.001
canvas_render_items 0.311 0.185 <0.001 0.600 0.455 <0.001 0.303 0.175 <0.001

ConstructBatches 0.081 0.052 <0.001 0.210 0.216 0.730 0.303 0.175 <0.001
RenderBatches 0.183 0.083 <0.001 0.409 0.322 <0.001 0.177 0.075 <0.001

Table 4.6: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Falling Cats. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Falling Cats WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.250 0.807 <0.001 3.228 0.519 1.461 <0.001 0.241 0.783 <0.001
canvas_render_items 0.155 0.120 <0.001 0.372 0.412 0.095 0.147 0.110 <0.001

ConstructBatches 0.014 0.008 <0.001 0.084 0.071 0.277 0.012 0.007 <0.001
RenderBatches 0.083 0.051 <0.001 0.266 0.273 0.585 0.078 0.043 <0.001

46 Chapter 4. Results and Analysis

Table 4.7: Mean, highest 1% mean, and lowest 95% mean for overall CPU, canvas_render_items, ConstructBatches
& RenderBatches CPU times, in milliseconds, for the game Deck Before Dawn. Lower is better. SLatency denotes
WebGPU speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Deck Before Dawn WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

Overall CPU 0.350 5.220 <0.001 14.914 0.677 7.893 <0.001 0.340 5.129 <0.001
canvas_render_items 0.260 0.148 <0.001 0.565 0.398 <0.001 0.251 0.139 <0.001

ConstructBatches 0.025 0.018 <0.001 0.121 0.088 0.017 0.023 0.016 <0.001
RenderBatches 0.195 0.087 <0.001 0.451 0.293 <0.001 0.187 0.080 <0.001

Tables 4.2 through 4.7 show the underlying data for figures 4.3 through 4.8. They
also show a speed-up factor between WebGL and WebGPU for the mean total CPU
frame time in the game tests. This speed-up can be seen to range between 2.171 and
14.583, with WebGPU showing a positive speed-up in all test cases despite its being
slower in all the measured scopes it contains.

4.3 Performance Comparison - Synthetic tests

This section details the profiling results of the synthetic tests, starting with the
results for the GPU frame times and being followed up by the CPU frame times.
Like with the games section every test type is dealt with in turn and separately.

4.3.1 GPU Frame Time

Figure 4.9: Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Multiple Quads test. Lower is better. The workloads range
from 10 to 50.000 quads.

4.3. Performance Comparison - Synthetic tests 47

Figure 4.10: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Multiple Quads test. Lower is
better. The workloads range from 10 to 50.000 quads.

Table 4.8: Resulting mean GPU frame times, in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the multiple quads. Lower is better. SLatency denotes WebGPU speed-up. p is the t-test yielded p-value.

Mean GPU times (ms) High 1% GPU times (ms) Low 95% GPU times (ms)

Multiple Quads WebGPU WebGL SLatency p WebGPU WebGL p WebGPU WebGL p

10 0.181 1.636 9.039 <0.001 0.260 8.790 <0.001 0.180 1.381 <0.001
100 0.155 1.166 7.523 <0.001 0.221 9.495 <0.001 0.153 0.879 <0.001
1000 0.138 0.664 4.812 <0.001 0.218 5.909 <0.001 0.134 0.433 <0.001
10k 0.228 1.325 5.811 <0.001 0.428 9.532 <0.001 0.223 1.044 <0.001
20k 0.190 1.211 6.374 <0.001 2.387 5.053 <0.001 0.130 1.119 <0.001
30k 0.247 1.141 4.619 <0.001 0.773 2.772 <0.001 0.223 1.091 <0.001
40k 0.483 2.216 4.588 <0.001 0.849 4.929 <0.001 0.468 2.117 <0.001
50k 0.501 2.762 5.513 <0.001 0.981 6.356 <0.001 0.481 2.599 <0.001

For the synthetic test involving rendering multiple quads WebGPU outperforms We-
bGL in all cases in GPU mean frame times, as can be clearly seen in Figure 4.9. The
speed-up factor ranges from 4.588, as is the case when rendering 40 000 quads, up
to 9.039, as is the case when rendering ten quads (see Table 4.8).

Furthermore, the frame times for WebGPU are also more stable overall than
WebGL, which has a vastly higher spread, as is evident in Figure 4.10.

48 Chapter 4. Results and Analysis

Figure 4.11: Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Full-screen quads test. Lower is better. The workloads range
from 10 to 50.000 full-screen quads.

Figure 4.12: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Full-screen quads test. Lower is
better. The workloads range from 10 to 50.000 full-screen quads.

Table 4.9: Resulting mean GPU frame times for the WebGPU and WebGL Rasterizers rendering the full-screen
quads. Lower is better. SLatency denotes WebGPU speed-up. p is the t-test yielded p-value.

Mean GPU times (ms) High 1% GPU times (ms) Low 95% GPU times (ms)

Full-Screen Quads WebGPU WebGL SLatency p WebGPU WebGL p WebGPU WebGL p

10 0.685 2.151 3.140 <0.001 1.942 10.315 <0.001 0.652 1.893 <0.001
100 2.078 4.837 2.328 <0.001 2.380 7.566 <0.001 2.074 4.735 <0.001
1000 24.891 44.664 1.794 <0.001 25.611 45.373 <0.001 24.865 44.635 <0.001
10k 246.616 445.865 1.808 <0.001 248.262 451.459 <0.001 246.549 445.784 <0.001
20k 504.454 891.181 1.767 <0.001 516.710 892.149 <0.001 504.086 891.156 <0.001
30k 744.488 1354.534 1.819 <0.001 747.311 1366.234 <0.001 744.372 1354.051 <0.001
40k 1007.410 1787.326 1.774 <0.001 1024.746 1802.513 <0.001 1006.823 1786.851 <0.001
50k 1225.461 2203.585 1.798 <0.001 1246.317 2206.178 <0.001 1224.881 2203.508 <0.001

The results of rendering multiple full-screen quads show how considerate pressure
was put on both Rasterizers, with long GPU mean frame times for all tests above
1000 quads. Looking at Figure 4.11 both Rasterizers show an approximately linear

4.3. Performance Comparison - Synthetic tests 49

increase in frame time as the number of quads increases, with WebGPU being roughly
1.8 - 3.1 times faster than WebGL depending on the profiling context.

The relative spread of frame times is less tangible at these high frame times, as
is evident from Figure 4.12, and from Table 4.9, which show results close to that of
the mean frame times.

Figure 4.13: Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Multiple Polygons test. Lower is better. The workloads range
from 10 to 50.000 polygons.

Figure 4.14: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Multiple Polygons test. Lower
is better. The workloads range from 10 to 50.000 polygons.

50 Chapter 4. Results and Analysis

Table 4.10: Resulting mean GPU frame times, in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the multiple polygons. Lower is better. SLatency denotes WebGPU speed-up. p is the t-test yielded p-value.

Mean GPU times (ms) High 1% GPU times (ms) Low 95% GPU times (ms)

Multiple Polygons WebGPU WebGL SLatency p WebGPU WebGL p WebGPU WebGL p

10 0.227 4.579 20.172 <0.001 2.083 6.712 <0.001 0.139 4.505 <0.001
100 0.168 1.896 11.286 <0.001 0.963 10.922 <0.001 0.151 1.480 <0.001
1000 0.226 1.195 5.288 <0.001 0.534 8.172 <0.001 0.218 1.000 <0.001
10k 1.727 29.345 16.992 <0.001 4.123 32.912 <0.001 1.614 29.231 <0.001
20k 3.835 57.533 15.002 <0.001 7.796 63.086 <0.001 3.641 57.317 <0.001
30k 6.404 86.756 13.547 <0.001 11.028 94.496 <0.001 6.182 86.448 <0.001
40k 13.230 117.810 8.905 <0.001 16.700 128.586 <0.001 13.142 117.400 <0.001
50k 15.755 150.939 9.580 <0.001 21.386 161.820 <0.001 15.630 150.512 <0.001

The Polygons synthetic tests show the biggest comparative GPU frame time
differences between the two Rasterizers, with WebGPU vastly outperforming WebGL
in every case. As an example, looking at Figure 4.13, at the point of rendering 50
000 polygons WebGL manages an average of 150.94 milliseconds per frame while
WebGPU is still running at passable real-time speeds (15.75 milliseconds, equivalent
to more than 60 frames per second).

Figure 4.15: Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Large Polygons test. Lower is better. The workloads range from
2 million to 16 million vertices.

4.3. Performance Comparison - Synthetic tests 51

Figure 4.16: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU GPU frame times, in milliseconds, for the Large polygons test. Lower is
better. The workloads range from 2 million to 16 million vertices.

Table 4.11: Resulting mean GPU frame times, in milliseconds, for the WebGPU and WebGL Rasterizers rendering
the large polygons. Lower is better. SLatency denotes WebGPU speed-up. p is the t-test yielded p-value.

Mean GPU times (ms) High 1% GPU times (ms) Low 95% GPU times (ms)

Large Polygons WebGPU WebGL SLatency p WebGPU WebGL p WebGPU WebGL p

2m 1.432 3.078 2.149 <0.001 1.828 10.007 <0.001 1.428 2.827 <0.001
4m 1.661 5.788 3.485 <0.001 1.893 9.495 <0.001 1.659 5.719 <0.001
6m 1.840 3.683 2.002 <0.001 2.118 8.856 <0.001 1.836 3.517 <0.001
8m 1.958 4.506 2.301 <0.001 2.142 8.484 <0.001 1.956 4.313 <0.001
10m 2.011 5.175 2.573 <0.001 2.307 8.427 <0.001 2.008 5.051 <0.001
12m 2.085 5.759 2.762 <0.001 2.192 8.469 <0.001 2.083 5.706 <0.001
14m 2.429 6.338 2.609 <0.001 2.560 6.602 <0.001 2.428 6.334 <0.001
16m 2.765 7.228 2.614 <0.001 2.982 7.495 <0.001 2.762 7.223 <0.001

The GPU frame times for the Large Polygons synthetic test show results of We-
bGPU being roughly 2 - 3 times faster across the various workloads. The frame
time increases roughly linearly for the Rasterizers with greater workloads, with a
statistical deviation occurring at 4 million polygons for WebGL. Like with the test of
rendering multiple quads, WebGL again shows a bigger spread of frame times, with
WebGPU remaining fairly stable (see Figure 4.15 and 4.16).

4.3.2 CPU Frame Time

Quads

52 Chapter 4. Results and Analysis

Figure 4.17: Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Multiple Quads test. Lower is better. The workloads range
from 10 to 50.000 quads.

Figure 4.18: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Multiple Quads test. Lower is
better. The workloads range from 10 to 50.000 quads.

For the Quads synthetic test, Figure 4.17 shows that WebGPU performs better
in total CPU frame time compared to WebGL. It is also shown in the graph that
the gap between them, with the exception of the 30 000 quads variant, increases the
more items are being rendered.

Figure 4.18 shows that, for the workloads of 10 000 quads and up, both WebGL
and WebGPU have fairly consistent frame times, with little spread between the lowest
95% and the highest 1% of measured times. The exception to this is for the 50 000
quads test, where WebGPU shows a larger difference than WebGL both in quantity
and in proportional increase.

4.3. Performance Comparison - Synthetic tests 53

Figure 4.19: Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Multiple Quads test. Lower is better. The
workloads range from 10 to 50.000 quads.

Figure 4.20: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU canvas_render_items frame times for the Multiple Quads test. Lower is
better. The workloads range from 10 to 50.000 quads.

In terms of the canvas_render_items scope, the quads test shows that the We-
bGL implementation is faster than the WebGPU one for all workloads below 20 000
quads, see Figure 4.19. Thereafter, WebGPU can be seen to be faster excepting the
30 000 quads test. The gap between the two also appears to grow as the workload
increases past 40 000 quads.

In Figure 4.20, it is shown that the proportional spread of the canvas_render_items
times follows a similar pattern to that shown for total CPU frame time in Figure
4.18. The difference in quantity, however, is different as the time taken for the
canvas_render_items scope is shorter than that of the total CPU frame.

The RenderBatches times measured for the Quads test are very short. However,
the WebGPU implementation always performs worse than the WebGL implementa-
tion. There is also no clear pattern that depends on the workload variants.

54 Chapter 4. Results and Analysis

Full-screen Quads

Figure 4.21: Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Full-screen Quads test. Lower is better. The workloads range
from 10 to 50.000 full-screen quads.

Figure 4.22: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Full-screen Quads test. Lower
is better. The workloads range from 10 to 50.000 full-screen quads.

For the Full-screen Quads synthetic tests WebGL can be seen to have a mostly
linear increase in mean CPU frame time following from the number of quads that
need to be rendered, see Figure 4.21. However, for WebGPU, while there is a fairly
steady increase for all workloads below 50 000 quads, the 50 000 quads variant has
a much larger frame time than the 40 000 quads variant. The frame time for this
variant looks very similar to the GPU frame time presented in Figure 4.11.

Regarding the differences between the 95% lowest and 1% highest frame times,
Figure 4.22 shows that the spread is insignificant in almost all cases. This is due
to the frame time already being very long and the difference being less than 100
milliseconds. The outlier here is, again, the 50 000 quads variant for WebGPU
where this difference is clearly shown to be much larger. It should, however, be

4.3. Performance Comparison - Synthetic tests 55

noted that despite the spread for the other variants looking minuscule in the above
graph, it still amounts to multiple tens of milliseconds, which in a case with shorter
overall times would be devastating for the frame rate.

Figure 4.23: Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Full-screen Quads test. Lower is better. The
workloads range from 10 to 50.000 full-screen quads.

Figure 4.24: Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for the Full-screen
Quads test. The workloads range from 10 to 50.000 full-screen quads.

The graphs associated with canvas_render_items seen in figures 4.23 and 4.24
there is a steady increase in frame time for both WebGL and WebGPU. However,
WebGPU for the 50 000 quads variant gets a much longer time that is close to the
mean CPU frame time presented in Figure 4.21 and the mean GPU frame time
presented in Figure 4.11. Again, the spread is large for the WebGPU 50 000 quads
variant. The differences for the other variants are difficult to discern in the graph
but come out to less than 5 milliseconds in all cases.

As with the aforementioned Quads test, the RenderBatches times measured for
the Full-screen Quads test are very short and show similar times as the Quads test

56 Chapter 4. Results and Analysis

does. However, again, there is no apparent connection between workload size and
time taken for the RenderBatches scope.

Polygons

Figure 4.25: Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Multiple Polygons test. The workloads range from 10 to 50.000
polygons.

Figure 4.26: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Multiple Polygons test. Lower
is better. The workloads range from 10 to 50.000 polygons.

The total CPU frame time, Figure 4.25, of the Polygons synthetic tests shows
that, outside of the 10 polygon test case, the WebGPU implementation is faster than
the WebGL one. It also shows that an increase in rendered polygons causes a nearly
linear increase in frame time, where the increase for the WebGL Rasterizer is steeper
than that of the WebGPU one. Notably, for WebGPU, the step from 40 000 polygons
to 50 000 polygons breaks the previous pseudo-linearity and causes the frame time
to increase more significantly.

4.3. Performance Comparison - Synthetic tests 57

For the spread of frame times, Figure 4.26 shows that the proportional difference
between the lowest 95% and the highest 1% of frame times is rather small. However,
it should be noted that in terms of absolute quantity, this spread is still significant
due to the longer frame times of the test. Note that the spread is larger for the We-
bGPU implementation both in terms of the absolute difference and the proportional
difference.

Figure 4.27: Comparison of the mean WebGL and WebGPU RenderBatches frame
times for the Multiple Polygons test. Lower is better. The workloads range from 10
to 50.000 polygons.

Figure 4.28: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the Multiple Polygons
test. Lower is better. The workloads range from 10 to 50.000 polygons.

For the Polygons test, the RenderBatches scope is the main contributor to the
long frame times. A similar pattern to that of the aforementioned total CPU frame
time can be found in the RenderBatches times. This is the case for both mean time
and spread between the lowest 95% and highest 1% of measured times.

Large Polygons

58 Chapter 4. Results and Analysis

Figure 4.29: Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Large Polygons test. Lower is better. The workloads range from
2 million to 16 million vertices.

Figure 4.30: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU CPU frame times, in milliseconds, for the Large Polygons test. Lower is
better. The workloads range from 2 million to 16 million vertices.

In the Large Polygons synthetic test, the total CPU time recorded for the two
Rasterizers in Figure 4.29 shows that WebGPU has a very small steady increase fol-
lowing an increase in workload, whereas the WebGL implementation varies seemingly
settling into a steady increase after 12 million vertices (240 polygons).

In terms of the difference between the lowest 95% and the highest 1%, Figure 4.30
shows that the WebGPU implementation, in line with the mean times, has a very
similar spread notwithstanding the workload of the test. WebGL, however, shows
relatively small differences for the smaller test sizes, excepting the 4 million vertices
variant, and relatively large differences for the higher vertex count variants.

4.3. Performance Comparison - Synthetic tests 59

Figure 4.31: Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Large Polygons test. Lower is better. The
workloads range from 2 million to 16 million vertices.

Figure 4.32: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU canvas_render_items frame times, in milliseconds, for the Large Polygons
test. Lower is better. The workloads range from 2 million to 16 million vertices.

The mean times for the canvas_render_items scope, as shown in Figure 4.31,
display a fairly linear increase in time taken for both implementations, with WebGPU
having a less steep increase than WebGL. The increase isn’t strictly linear, however,
as the WebGPU 4 million and 6 million vertex variants both show the exact same
time.

Interestingly, the proportional differences, as can be seen in Figure 4.32, between
the two implementations are quite similar and relatively large. They also vary a lot
more than the steady increase that was seen in the mean times for the same tests.

Lastly, it should be mentioned that for all tests except for the 50 000 quads
variant of the Quads test, the WebGPU implementation is slower than the WebGL
implementation when it comes to ConstructBatches. The graphs and tables for
this data, as well as the tables for all other CPU side measurements of the synthetic
tests, can be found in appendix D.

60 Chapter 4. Results and Analysis

4.4 Statistical Significance
In studying the calculated p-values for the various means presented in this chapter as
well as in appendix D, it is discovered that most are significantly different. However,
in the case of the means of the full sample collections, the RenderBatches times for
the 40 000 quads synthetic test shows a p-value of 0.116 which is greater than 0.05.
Thus, WebGL and WebGPU are not significantly different in this test. This is also
supported by the fact that the graph in Figure D.11 shows the two being almost
equal.

For the means calculated for the highest 1% of measured times, p-values exceeding
0.05 are often presented for the times measured on the CPU. However, in the case
of times measured on the GPU, the p-values show that the two APIs are always
significantly different.

Lastly, for the lowest 95% of measured times, the canvas_render_items time
for the 20 000 quads synthetic test is the only time the calculated p-value exceeds
0.05. Thereby, in accordance with the similarity shown in Figure 4.20, WebGL and
WebGPU are not significantly different in this regard for the chosen sample count.

4.5 Analysis Summary
In all games, WebGPU outperforms WebGL both in terms of overall CPU and
GPU mean frame times. WebGPU performs worse in the ConstructBatches and
RenderBatches functions, especially for the game Snake, however, the margins are
very small in general. WebGPU also remains more stable overall with the lowest
mean 95% frame times being closer to the mean frame times, as well as having fewer
frame time spikes. This holds especially true for the GPU timings, as the Rasterizers
perform more equally on the CPU side.

The synthetic tests show similar results, with WebGPU outperforming WebGL
in both CPU and GPU frame time performance. This is especially prominent in
the case of rendering multiple polygons and multiple quads. WebGL also shows
more fluctuating frame times, as heavily evident by the multiple quads and the large
polygons tests. WebGPU is always slower in the ConstructBatches function, with
the exception of rendering 50 000 quads, which is the only statistical anomaly to
the case. The RenderBatches function performs better on the WebGPU Rasterizer
when the tests involve many batches (Polygons and Large Polygons tests).

As evident by the previous section, Statistical Significance, the gathered data
pairs are by and large significantly different from each other, with the majority of
samples falling below a p-value of 0.001. This holds especially true for the overall
mean CPU and GPU values, as well as the 95% low mean CPU and GPU values. For
the data on the high 1%, this is also always significantly different on GPU, however
many cases exist where this is not the case on CPU, as is evident by the Full-Screen
Quads and Multiple Quads synthetic tests (Table E.3 and E.2).

Chapter 5

Discussion

This chapter will discuss the results presented in chapter 4, Results and Analysis.
First, the research question stated in section 3.1 will be answered. Subsequently,
the outcome of the results will be discussed, as well as existing limitations regarding
their analysis.

5.1 Research Question & Answers

RQ: What is the difference in performance regarding CPU and GPU frame time
between WebGPU and WebGL when used as a rendering backend in the Godot game
engine?

The data gathered and presented in the previous chapter, Results and Analysis,
as well as the additional material in the equivalent appendix section, has clearly
answered the Research Question. Additional details follow below:

5.1.1 Mean CPU & GPU Frame Time

For both the synthetic tests and the games tests, WebGPU outperforms WebGL in
terms of mean GPU frame time for every experiment made. For the games, this is
evident from looking at Figure 4.1 and Table 4.1. The speed-up of using the WebGPU
Rasterizer ranges from roughly 6.8 - 35.6, a significant result. This trend continues
for the synthetic experiments made. The smallest speed-up measured occurred at
the point of the Full-Screen Quads test, of rendering 20 000 quads, where a speed-up
of 1.767 was reached (see Table 4.9). In contrast, the biggest comparative difference
in terms of performance reached for the synthetic tests was found upon performing
the Polygons experiment, where a speedup of 20.172 was reached, which the reader
may verify in Table 4.10. See section 5.2 for a discussion on possible explanations as
to the nature of these results.

The mean CPU frame times are also faster across every experiment made over the
two test types. For the games, this is evident from looking at tables 4.2 - 4.7. The
CPU speed-ups for the games are more modest than the equivalent GPU speed-ups,
with the majority being around 2 - 3 times faster on WebGPU. Deck Before Dawn
is a noteworthy exception to this as it performs particularly worse on WebGL than
WebGPU (Roughly 15 times slower). However, the cause of this discrepancy has
not been determined and remains unknown. The game was also remeasured which
yielded similar results.

61

62 Chapter 5. Discussion

Studying the mean synthetic tests CPU results found in tables E.1 - E.4, it can
be seen that WebGPU performs better than WebGL. For the Full-Screen Quads test,
the difference in mean CPU frame times is very big for the tests of rendering 1000 - 40
000 quads, with speedups in the range of 160 - 170. A possible explanation for this is
due to how WebGL is stalling on the GPU on those workloads, whereas WebGPU is
not, resulting in longer synchronization/waiting times on the CPU. While the CPU
frame times are even worse on WebGL for rendering 50 000 quads, the speed up
has dropped significantly, down to 1.935, as WebGPU suddenly struggles with vastly
longer CPU frame times than normal. This sudden increase in frame time may be
due to WebGPU being forced to synchronize the GPU and CPU when copying all
batch data contents to the GPU. See section 5.2 for more discussion.

Another discrepancy between the two Rasterizers can be found by looking at the
mean CPU times for the cases where the workloads are very light. For rendering 2
million Large Polygons, the WebGL Rasterizer takes an average of 5.459 ms to finish
a frame, with WebGPU taking 0.198 ms, producing a speed-up factor of 27.571. This
gap is diminished in the following test of rendering 4 million Large Polygons, as the
WebGL Rasterizer then only takes 0.947 ms to produce a frame on the CPU. This
phenomenon, while not as pronounced, is seen again on the test of rendering multiple
quads, as the test switches from rendering ten quads, to rendering 100 quads (Table
E.2). This may be yet again due to stalling. However, it is not evident from looking
at the equivalent mean GPU frame time graphs (figures 4.15 and 4.9). It is the case
that rendering 100 quads is faster than rendering ten. However, it is not the case
that rendering 4 million large polygons is faster than rendering 2 million. So the
results are not as consistent as to be able to draw any certain conclusions.

5.1.2 Main CPU Function Performance

While the mean CPU frame times are decidedly faster on the WebGPU Raster-
izer across all tests, it is often not the case that the main Rasterizer functions
(canvas_render_items, ConstructBatches & RenderBatches) implemented are.
For the games, the WebGL Rasterizer consistently produces a faster result, as veri-
fied in Tables 4.2–4.7.

For the synthetic tests ConstructBatches is always faster on the WebGL Ras-
terizer, except for rendering 50 000 full-screen quads, which seems to be a statistical
anomaly. However, the times measured for both implementations are always fairly
similar. This result is expected considering the ConstructBatches scope performs
no direct communication with the graphics API and therefore should remain mostly
unaffected by what API is being used. This fact has led to the conclusion that the
implementations of the ConstructBatches scope are mostly equivalent with minor
differences caused by architectural mismatches.

Furthermore, WebGL performs better in certain cases when it comes to the
RenderBatches scope. From what the data shows, it can be gleaned that these
cases are when only a few batches need to be rendered. A good example of this can
be seen in the Polygons synthetic test, wherein WebGL outperforms WebGPU in
terms of the RenderBatches measurements for ten polygons. After that, however,
WebGPU is always faster. The cause of this phenomenon is unknown, although it
is assumed to be caused by WebGL being more lightweight compared to WebGPU.

5.2. WebGPU Performance 63

Thus, requiring less binding of resources by default for one frame, whereas WebGPU
requires an entire pipeline state to be bound. It stands to reason, therefore, that We-
bGPU has a larger upfront cost when rendering, causing smaller scenes with very few
draw calls to be relatively inefficient compared to how WebGL does it. On the other
hand, as soon as the scenes get more complex, WebGPU seems to benefit greatly
from this greater upfront cost as it has much shorter CPU rendering times for the
higher batch-count tests.

5.1.3 Validity and Reliability of Data

From the conducted paired t-tests done on the gathered data, it is valid to declare
with high confidence that the results, by and large, are statistically significant. There
are a few exceptions to this, most prevalent in the high 1% mean CPU values in
the games experiments, or the Full-Screen Quads and Multiple Quads high 1% mean
CPU synthetic tests. This finding is considered reasonable, as the number of samples
for calculating the 1% high mean values is a fraction of the original sample count
(20 in total per test). This inherently reduces the degree of certainty possible when
conducting the t-tests. Despite this, on the GPU side, there is still always a significant
difference in the results between the measured WebGPU and WebGL values.

One theory as to why the results are less significant on the CPU is that often very
limited work happens per frame, with the majority of work being put on the GPU.
As both Rasterizers are fast enough in these cases, the data yielded is close enough to
not be of significant difference. An example where this reasoning does not hold well,
however, can be seen in the case of rendering 100 multiple polygons in Table E.1. The
resulting p-value for the RenderBatches function is 0.361 and the equivalent p-value
for the canvas_render_items function is 0.161, both significantly higher than 0.005.
However, as seen in the experiment of rendering 10 polygons, there is a significant
difference. In that case, less work is put on the CPU than the 100 polygons test,
which is a contradicting finding.

5.2 WebGPU Performance

There are several explanations as to why WebGPU performs better than WebGL
at the rendering tasks presented in the thesis. Some are difficult to ascertain as
they depend on both WebGPU implementation details and the particular graphics
drivers being used on the machine it runs on. However, due to the drivers for modern
graphics APIs being able to work closer to the hardware, it stands to reason that
they can reach degrees of optimization unachievable by the WebGL or OpenGL ones.

The use of bundled state is seemingly also of great value to the WebGPU imple-
mentation as mentioned in section 5.1.2. It is, again, difficult to estimate exactly
what is gained for WebGPU through this architectural choice, due to WebGL being,
to an extent, opaque in its setting of GPU state. However, this difference between
the two APIs provides a reasonable explanation for the results that have previously
been presented.

Despite WebGPU showing consistently better frame times than WebGL, there
are still times when it struggles. Most notably, the CPU frame time for the 50

64 Chapter 5. Discussion

000 full-screen quads synthetic test, where WebGPU suddenly shows a 104 times
increase in frame time compared to the 40 000 full-screen quads variant. This
can be further traced to the canvas_render_items function, where the same pat-
tern shows up. However, none of the two measured scopes contained within the
canvas_render_items function display the same behavior. Because the CPU frame
time for this case is very similar to the GPU frame time, this suggests that within
the canvas_render_items function some synchronization between the GPU and
CPU takes place. The seemingly most reasonable explanation is the uploading of
data to the instance buffer that takes place in between the ConstructBatches and
RenderBatches scopes. It involves a call to the WriteBuffer function on the GPU
queue and depending on how the WebGPU implementation handles this call, it is
possible that this could force synchronization between the CPU and GPU, which
consequently causes the CPU times to increase drastically due to the very long GPU
frame times of the test.

On the other hand, GPU frame times are very long for other variants of the Full-
screen Quads test. The reason synchronization would not need to take place for the
other variants remains unknown and can most likely only be answered by studying
the WebGPU implementation.

5.3 WebGL Performance
Aside from the already discussed performance benefits that are inherent to WebGPU
as a modern technology, there exist other possible explanations as to why the per-
formance of WebGL falls behind WebGPU in the conducted experiments.

WebGL seems to experience different kinds of stalling at different workloads,
whereas WebGPU does not. Looking at Figure 4.21, WebGL experiences excep-
tionally high mean CPU frame times. As this particular test is very heavy on the
GPU a plausible reason is that the CPU stalls as it is waiting on the WebGL GPU
instructions. The claim is reinforced by the fact that WebGL is several hundreds
of milliseconds slower than WebGPU in mean GPU frame times in the case of the
larger workloads, as evident in Figure 4.11.

A possible example of the GPU being stalled instead can be seen in the Polygons
tests. (Figure 4.13). As the workload increases from ten to 100, to 1000 polygons the
GPU mean frame times shorten. This could be the case of the GPU being less and
less bottlenecked by the CPU as it gets more work to perform. Looking at Figure
4.25, the claim is supported by the fact that the CPU mean frame times increase a
bit up to and including 1000 polygons, at which point the work is more evenly spread
across the CPU and GPU. From that point, the jump from 1000 to 10 000 polygons
is big enough for the GPU to start struggling more.

5.4 Limitations
This section will present some limitations pertaining to the analysis of the results
previously presented.

The first limitation concerns the method used for measuring elapsed time on the
GPU. As stated in section 3.5 Experiment and Data Gathering, the two graphics

5.4. Limitations 65

APIs differ in how elapsed time on the GPU is measured. Most importantly, due
to how API calls are issued in WebGL—namely, there being no command queue
structure available to the user—there is no guarantee that the GPU time elapsed
will be affected by what takes place on the CPU between the start and end of a time
elapsed query. This stands in stark contrast to how measurement is done in WebGPU.
There, a timestamp is queued as a command within a packed command buffer that
has been fully prepared before its submission to the GPU. Thereby making sure the
only elapsed time being measured is the execution of the commands queued between
the start and end timestamp.

Such a difference in timing would barely matter when the CPU only issues a few
WebGL calls during a frame. However, for the test cases presented where there are
many thousands of draw calls, there is no way of knowing when exactly the elapsed
time query starts due to not being able to know when exactly the first draw call is
submitted to the GPU.

This discrepancy in the measurement of elapsed GPU time is a direct consequence
of WebGL forcing time elapsed to be measured in this exact way. There is no way
of getting around the fact that GPU command submission is opaque to the user of
the API.

Secondly, the Web limits its frame rate to that of the refresh rate of the monitor.
This results in measurements of elapsed CPU time having to be done within a singular
frame. Without this frame rate limit, measurements of frame time could be done
across two frames to measure the exact time it takes to render an entire frame.
However, due to the forced synchronization between frames, such a measurement
would be meaningless. Instead, the rendering part of the engine code is measured.
With this trade-off, there are some possible issues regarding what is being done
outside of the rendering code of the engine. For instance, the Emscripten submission
of frames to the browser takes place outside of the user’s control and outside of
the rendering code. Therefore, if WebGPU and WebGL are handled differently by
Emscripten in some regards, the measurements presented in this thesis would not
fairly represent this difference.

Chapter 6

Conclusions and Future Work

This paper has investigated the relative performance of two Rasterizers based on two
different rendering APIs; WebGL and WebGPU. This was done by implementing a
WebGPU Rasterizer backend and comparing it with the existing WebGL Rasterizer
backend in the context of the Godot game engine. The work was chosen to highlight
the performance capabilities of a modern web rendering technology through WebGPU
when compared to the existing WebGL alternative. The work was grounded in both
game examples with realistic workloads and raw stress tests of varying workloads
through synthetic experiments.

The aim of the paper, as stated in the research question, was to determine the
difference in CPU and GPU frame times between using a WebGPU and WebGL
Rasterizer. To account for occasional spikes in frame time, aside from just presenting
the overall mean CPU and GPU frame time results, the 1% high and 95% low average
frame timings were also calculated and presented. Additionally, in order to gain
a greater understanding of the CPU frame times, measurements were taken for a
selection of the most important render functions and were presented as well.

For the implementation, careful consideration was put into making a backend
WebGPU Rasterizer with an emphasis on minimizing unfairness with regard to ar-
chitecture, utilized rendering techniques, and shader complexity. This was done to
ensure the measurements gathered were relevant to the stated research question.

The results presented show how the WebGPU implementation, in its current
state, consistently performs better than the WebGL equivalent. It does so across all
conducted experiments in terms of total mean CPU and GPU frame time. The 1%
high and 95% low averages show that the WebGPU implementation is also overall
more stable in its frame times compared to WebGL, although there are some excep-
tions. Furthermore, and in general, the presented results are statistically significant.

For the profiled Rasterizer functions WebGPU is consistently slower for all con-
ducted game experiments. In general, for tests consisting of a few batches with few
draw calls, WebGPU performs worse than WebGL, only overtaking it as the num-
ber of batches increases. A possible cause of this behavior could be that WebGL
is more lightweight in initial frame setup, but as complexity increases the bundled
state approach of WebGPU works in its favor.

Overall, it can be concluded that the aim of determining the differences in CPU
and GPU frame times between a WebGPU and WebGL Rasterizer was achieved.
The results and findings of the thesis have broad implications for the future of web
rendering technology, highlighting the potential advantages of WebGPU over the
existing WebGL alternative.

67

68 Chapter 6. Conclusions and Future Work

6.1 Future Work

During the process of working on this thesis, a number of discoveries were made with
regard to what could be further improved upon and researched. These discoveries
are detailed in their own subsections, with Optimizations discussing how the imple-
mentation, in its current form, could be improved, and Future Research detailing
possible endeavors that could be explored to expand upon the existing work.

6.1.1 Optimizations

The implementation of the WebGPU renderer is relatively naive in the sense that
it blindly follows an architecture specifically made for APIs designed like OpenGL.
Therefore, it stands to reason that even better results could be achieved if an ar-
chitecture more suitable to the modern graphics API workflow was used for the
implementation. An example of this would be to implement the renderer using the
Godot Engine RenderDevice backend instead of the Rasterizer backend, introduced
with Godot 4.0. However, with the current state of WebGPU and functionality like
push constants being unsupported, an entirely separate rendering backend might be
preferred.

Further optimizations come down to minimizing structures being constructed at
runtime, such as the instance buffer, and trying to keep the rebinding of resources
to a minimum. For this thesis, this has been attempted. However, it is possible that
it could be further realized within a more accommodating architecture.

6.1.2 Future Research

A notable suggestion for future research is to investigate the GPU VRAM usage by
both WebGL and WebGPU, if and when this feature eventually becomes available
for WebGPU. Memory usage could play a large part in how effective an application
runs as general memory pressure and cache misses has a certain cost associated with
them. As WebGL and WebGPU both manage the memory "behind the scenes" in
order to effectively handle multiple frames in flight, an analysis of the memory usage
would add new insights into how the two technologies perform comparatively.

Another suggestion for future research is to build upon the work in this thesis
in order to have the WebGPU Rasterizer more feature rich. This would mainly
involve adding support for additional render item types and complementing the 2D
Canvas Renderer with the 3D Scene Renderer. This would open up new performance
comparisons to be made and new insights as to how the APIs:s compare. One such
comparison could be to perform 3D shadow passes where only the vertex shader
and depth buffer are bound to the render pipeline (omitting the fragment shader),
which in modern rendering architectures tends to be well-optimized. Yet another
comparison could be to compare anti-alias resolve queries of the two APIs:s, which
are bound to be different in terms of performance. These are but two of many
possible comparisons that could be made if more features are added to the WebGPU
Rasterizer. A feature-complete WebGPU Rasterizer equivalent would "tell the whole
story" and make it possible to generalize how the two APIs:s compare across all
domains of the Godot rendering backend.

6.1. Future Work 69

As this work compares WebGPU and WebGL in the environment of the Godot
game engine, future research would benefit from replicating the experiment in other
engines featuring a WebGL backend (Unity being a notable example). This would
lead to new knowledge on how WebGPU as a modern web rendering solution scales
over multiple products, each with its own set of rules and standards.

The work presented in this thesis is open source and free to replicate and improve
upon.

References

[1] Aezart, “Snake,” Itch.io. [Online]. Available: https://aezart.itch.io/checkers

[2] A. Aldahir, “Evaluation of the performance of webGPU in a cluster of web-
browsers for scientific computing,” Bachelor’s thesis, Umeå University, 2022.
[Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-197058

[3] angelchama333, “Falling Cats,” Itch.io. [Online]. Available: https://
angelchama333.itch.io/falling-cats

[4] “Metal Overview,” Apple Inc. [Online]. Available: https://developer.apple.com/
metal/

[5] ceruleancerise, “Ponder,” Itch.io. [Online]. Available: https://ceruleancerise.
itch.io/ponder

[6] R. Dunlop, “FPS Versus Frame Time.” [Online]. Available: http://www.mvps.
org/directx/articles/fps_versus_frame_time.htm

[7] L. Dyken, P. Poudel, W. Usher, S. Petruzza, J. Y. Chen, and S. Kumar,
“Graphwagu: Gpu powered large scale graph layout computation and
rendering for the web,” in Eurographics Symposium on Parallel Graphics and
Visualization, 2022. [Online]. Available: https://diglib.eg.org/xmlui/bitstream/
handle/10.2312/pgv20221067/073-083.pdf?sequence=1

[8] “Emscripten documentation,” Emscripten. [Online]. Available: https://
emscripten.org/

[9] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat, “3D graphics on
the web: A survey,” Computers & Graphics, vol. 41, pp. 43–61, 2014.

[10] O. Ferraz, P. Menezes, V. Silva, and G. Falcao, “Benchmarking Vulkan vs
OpenGL Rendering on Low-Power Edge GPUs,” in 2021 International Con-
ference on Graphics and Interaction (ICGI), 2021, pp. 1–8.

[11] “Godot 4.0 sets sail: All aboard for new horizons,” Godot. [Online]. Available:
https://godotengine.org/article/godot-4-0-sets-sail/

[12] P. Hex, “Snake in Godot4,” Itch.io. [Online]. Available: https://hexblit.itch.io/
snake-in-godot4

[13] M. Hidaka, Y. Kikura, Y. Ushiku, and T. Harada, “WebDNN: Fastest DNN
execution framework on web browser,” in MM 2017 - Proceedings of the 2017
ACM Multimedia Conference, 2017, pp. 1213–1216.

71

https://aezart.itch.io/checkers
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-197058
https://angelchama333.itch.io/falling-cats
https://angelchama333.itch.io/falling-cats
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://ceruleancerise.itch.io/ponder
https://ceruleancerise.itch.io/ponder
http://www.mvps.org/directx/articles/fps_versus_frame_time.htm
http://www.mvps.org/directx/articles/fps_versus_frame_time.htm
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/pgv20221067/073-083.pdf?sequence=1
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/pgv20221067/073-083.pdf?sequence=1
https://emscripten.org/
https://emscripten.org/
https://godotengine.org/article/godot-4-0-sets-sail/
https://hexblit.itch.io/snake-in-godot4
https://hexblit.itch.io/snake-in-godot4

72 References

[14] R. K. and W. C., “WebGL + WebGPU Meetup July 12, 2022,” The Khronos
Group, 2022. [Online]. Available: https://www.khronos.org/assets/uploads/
developers/presentations/WebGL__WebGPU_Updates_Jul_22.pdf

[15] “OpenGL - The Industry Standard for High Performance Graphics,” Khronos
Group. [Online]. Available: https://www.opengl.org/

[16] D. Liu, J. Peng, Y. Wang, M. Huang, Q. He, Y. Yan, B. Ma,
C. Yue, and Y. Xie, “Implementation of interactive three-dimensional
visualization of air pollutants using WebGL,” Environmental Modelling
& Software, vol. 114, pp. 188–194, Apr. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1364815218304195

[17] M. Lujan, M. Baum, D. Chen, and Z. Zong, “Evaluating the Performance and
Energy Efficiency of OpenGL and Vulkan on a Graphics Rendering Server,” in
2019 International Conference on Computing, Networking and Communications
(ICNC), 2019, pp. 777–781.

[18] “Direct3D - Win32 apps,” Microsoft, Sep. 2021. [Online]. Available:
https://learn.microsoft.com/en-us/windows/win32/direct3d

[19] MohamedA.G, “Evader,” Itch.io. [Online]. Available: https://mohamedag.itch.
io/evader

[20] A. Rossberg, “WebAssembly Core Specification,” Apr. 2022. [Online]. Available:
https://www.w3.org/TR/wasm-core-2/

[21] J. Shiraef, “An exploratory study of high performance graphics application
programming interfaces,” Master’s thesis, University of Chattanoga, 2016.
[Online]. Available: https://scholar.utc.edu/theses/446

[22] ShoeFisherGames, “Deck Before Dawn,” Itch.io. [Online]. Available: https:
//shoefishergames.itch.io/deck-before-dawn

[23] U. Technologies, “Best practices for profiling game perfor-
mance | Unity.” [Online]. Available: https://unity.com/how-to/
best-practices-for-profiling-game-performance

[24] W. Usher and V. Pascucci, “Interactive Visualization of Terascale Data in the
Browser: Fact or Fiction?” in 2020 IEEE 10th Symposium on Large Data Anal-
ysis and Visualization (LDAV), 2020, pp. 27–36.

[25] Vulkan, “Vulkan Cross platform 3D Graphics,” Khronos Group. [Online].
Available: https://www.vulkan.org/

[26] “High Resolution Time Level 2,” W3C, 2019. [Online]. Available: https:
//www.w3.org/TR/hr-time-2/#clock-resolution

[27] “WebGPU,” W3C, 2021. [Online]. Available: https://www.w3.org/TR/2021/
WD-webgpu-20210518/

https://www.khronos.org/assets/uploads/developers/presentations/WebGL__WebGPU_Updates_Jul_22.pdf
https://www.khronos.org/assets/uploads/developers/presentations/WebGL__WebGPU_Updates_Jul_22.pdf
https://www.opengl.org/
https://linkinghub.elsevier.com/retrieve/pii/S1364815218304195
https://learn.microsoft.com/en-us/windows/win32/direct3d
https://mohamedag.itch.io/evader
https://mohamedag.itch.io/evader
https://www.w3.org/TR/wasm-core-2/
https://scholar.utc.edu/theses/446
https://shoefishergames.itch.io/deck-before-dawn
https://shoefishergames.itch.io/deck-before-dawn
https://unity.com/how-to/best-practices-for-profiling-game-performance
https://unity.com/how-to/best-practices-for-profiling-game-performance
https://www.vulkan.org/
https://www.w3.org/TR/hr-time-2/#clock-resolution
https://www.w3.org/TR/hr-time-2/#clock-resolution
https://www.w3.org/TR/2021/WD-webgpu-20210518/
https://www.w3.org/TR/2021/WD-webgpu-20210518/

Appendix A
Shader Listings

73

74 Appendix A. Shader Listings

1 #include "stdlib_inc.glsl"
2
3 layout(location = 6) in highp vec4 attrib_A;
4 layout(location = 7) in highp vec4 attrib_B;
5 layout(location = 8) in highp vec4 attrib_C;
6 layout(location = 9) in highp vec4 attrib_D;
7 layout(location = 10) in highp vec4 attrib_E;
8 layout(location = 11) in highp vec4 attrib_F;
9 layout(location = 12) in highp uvec4 attrib_G;

10 layout(location = 13) in highp uvec4 attrib_H;
11
12 #define read_draw_data_world_x attrib_A.xy
13 #define read_draw_data_world_y attrib_A.zw
14 #define read_draw_data_world_ofs attrib_B.xy
15 #define read_draw_data_color_texture_pixel_size attrib_B.zw
16
17 #define read_draw_data_modulation attrib_C
18 #define read_draw_data_ninepatch_margins attrib_D
19 #define read_draw_data_dst_rect attrib_E
20 #define read_draw_data_src_rect attrib_F
21 #define read_draw_data_flags attrib_G.z
22 #define read_draw_data_specular_shininess attrib_G.w
23 #define read_draw_data_lights attrib_H
24
25 flat out vec4 varying_A;
26 flat out vec2 varying_B;
27 flat out vec4 varying_C;
28 flat out vec4 varying_E;
29 flat out uvec2 varying_F;
30 flat out uvec4 varying_G;
31
32 #include "canvas_uniforms_inc.glsl"
33
34 out vec2 uv_interp;
35 out vec4 color_interp;
36 out vec2 vertex_interp;
37
38 void main() {
39 varying_A = vec4(read_draw_data_world_x , read_draw_data_world_y);
40 varying_B = read_draw_data_color_texture_pixel_size;
41 varying_C = read_draw_data_ninepatch_margins;
42 varying_E = read_draw_data_src_rect;
43 varying_F = uvec2(read_draw_data_flags , read_draw_data_specular_shininess);
44 varying_G = read_draw_data_lights;
45
46 vec2 vertex;
47 vec4 color;
48 vec2 uv;
49
50 vec2 vertex_base_arr [6] = vec2 [](vec2 (0.0, 0.0), vec2 (0.0, 1.0), vec2 (1.0, 1.0), vec2 (1.0, 0.0), vec2 (0.0,

0.0), vec2 (1.0, 1.0));
51 vec2 vertex_base = vertex_base_arr[gl_VertexID % 6];
52
53 uv = read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw) * ((read_draw_data_flags &

FLAGS_TRANSPOSE_RECT) != uint (0) ? vertex_base.yx : vertex_base.xy);
54 color = read_draw_data_modulation;
55 vertex = read_draw_data_dst_rect.xy + abs(read_draw_data_dst_rect.zw) * mix(vertex_base , vec2 (1.0, 1.0) -

vertex_base , lessThan(read_draw_data_src_rect.zw, vec2 (0.0, 0.0)));
56
57 mat4 model_matrix = mat4(vec4(read_draw_data_world_x , 0.0, 0.0), vec4(read_draw_data_world_y , 0.0, 0.0), vec4

(0.0, 0.0, 1.0, 0.0), vec4(read_draw_data_world_ofs , 0.0, 1.0));
58
59 vertex = (model_matrix * vec4(vertex , 0.0, 1.0)).xy;
60 color_interp = color;
61 vertex = (canvas_transform * vec4(vertex , 0.0, 1.0)).xy;
62 vertex_interp = vertex;
63 uv_interp = uv;
64 gl_Position = screen_transform * vec4(vertex , 0.0, 1.0);
65 }

Figure A.1: Listing of the canvas glsl-vertex shader used by the WebGL Rasterizer
for rendering quads.

75

1 #[fragment]
2
3 #include "canvas_uniforms_inc.glsl"
4 #include "stdlib_inc.glsl"
5
6 in vec2 uv_interp;
7 in vec2 vertex_interp;
8 in vec4 color_interp;
9

10 // Can all be flat as they are the same for the whole batched instance
11 flat in vec4 varying_A;
12 flat in vec2 varying_B;
13 #define read_draw_data_world_x varying_A.xy
14 #define read_draw_data_world_y varying_A.zw
15 #define read_draw_data_color_texture_pixel_size varying_B
16
17 flat in vec4 varying_C;
18 #define read_draw_data_ninepatch_margins varying_C
19
20 flat in vec4 varying_E;
21 #define read_draw_data_src_rect varying_E
22
23 flat in uvec2 varying_F;
24 flat in uvec4 varying_G;
25 #define read_draw_data_flags varying_F.x
26 #define read_draw_data_specular_shininess varying_F.y
27 #define read_draw_data_lights varying_G
28
29 uniform sampler2D color_buffer; // texunit:-4
30 uniform sampler2D sdf_texture; // texunit:-5
31 uniform sampler2D normal_texture; // texunit:-6
32 uniform sampler2D specular_texture; // texunit:-7
33
34 uniform sampler2D color_texture; // texunit :0
35
36 layout(location = 0) out vec4 frag_color;
37
38 void main() {
39 vec4 color = color_interp;
40 vec2 uv = uv_interp;
41 color *= texture(color_texture , uv);
42 frag_color = color;
43 }

Figure A.2: Listing of the canvas glsl-fragment shader used by the WebGL Rasterizer
for rendering quads.

76 Appendix A. Shader Listings

1 #[vertex]
2
3 layout(location = 0) in vec2 vertex_attrib;
4 layout(location = 3) in vec4 color_attrib;
5 layout(location = 4) in vec2 uv_attrib;
6
7 #include "stdlib_inc.glsl"
8
9 layout(location = 6) in highp vec4 attrib_A;

10 layout(location = 7) in highp vec4 attrib_B;
11 layout(location = 8) in highp vec4 attrib_C;
12 layout(location = 9) in highp vec4 attrib_D;
13 layout(location = 10) in highp vec4 attrib_E;
14 layout(location = 11) in highp vec4 attrib_F;
15 layout(location = 12) in highp uvec4 attrib_G;
16 layout(location = 13) in highp uvec4 attrib_H;
17
18 #define read_draw_data_world_x attrib_A.xy
19 #define read_draw_data_world_y attrib_A.zw
20 #define read_draw_data_world_ofs attrib_B.xy
21 #define read_draw_data_color_texture_pixel_size attrib_B.zw
22 #define read_draw_data_modulation attrib_C
23 #define read_draw_data_ninepatch_margins attrib_D
24 #define read_draw_data_dst_rect attrib_E
25 #define read_draw_data_src_rect attrib_F
26 #define read_draw_data_flags attrib_G.z
27 #define read_draw_data_specular_shininess attrib_G.w
28 #define read_draw_data_lights attrib_H
29
30 flat out vec4 varying_A;
31 flat out vec2 varying_B;
32 flat out vec4 varying_C;
33 flat out uvec2 varying_F;
34 flat out uvec4 varying_G;
35
36 #include "canvas_uniforms_inc.glsl"
37
38 out vec2 uv_interp;
39 out vec4 color_interp;
40 out vec2 vertex_interp;
41
42 void main() {
43 varying_A = vec4(read_draw_data_world_x , read_draw_data_world_y);
44 varying_B = read_draw_data_color_texture_pixel_size;
45 varying_C = read_draw_data_ninepatch_margins;
46 varying_F = uvec2(read_draw_data_flags , read_draw_data_specular_shininess);
47 varying_G = read_draw_data_lights;
48
49 vec2 vertex;
50 vec4 color;
51 vec2 uv;
52
53 vertex = vertex_attrib;
54 color = color_attrib * read_draw_data_modulation;
55 uv = uv_attrib;
56
57 mat4 model_matrix = mat4(vec4(read_draw_data_world_x , 0.0, 0.0), vec4(read_draw_data_world_y , 0.0, 0.0), vec4

(0.0, 0.0, 1.0, 0.0), vec4(read_draw_data_world_ofs , 0.0, 1.0));
58
59 vertex = (model_matrix * vec4(vertex , 0.0, 1.0)).xy;
60 color_interp = color;
61 vertex = (canvas_transform * vec4(vertex , 0.0, 1.0)).xy;
62 vertex_interp = vertex;
63 uv_interp = uv;
64 gl_Position = screen_transform * vec4(vertex , 0.0, 1.0);
65 }

Figure A.3: Listing of the canvas glsl-vertex shader used by the WebGL Rasterizer
for rendering polygons.

77

1 #[fragment]
2
3 #include "canvas_uniforms_inc.glsl"
4 #include "stdlib_inc.glsl"
5
6 in vec2 uv_interp;
7 in vec2 vertex_interp;
8 in vec4 color_interp;
9

10 flat in vec4 varying_A;
11 flat in vec2 varying_B;
12 #define read_draw_data_world_x varying_A.xy
13 #define read_draw_data_world_y varying_A.zw
14 #define read_draw_data_color_texture_pixel_size varying_B
15 flat in vec4 varying_C;
16 #define read_draw_data_ninepatch_margins varying_C
17
18 flat in uvec2 varying_F;
19 flat in uvec4 varying_G;
20 #define read_draw_data_flags varying_F.x
21 #define read_draw_data_specular_shininess varying_F.y
22 #define read_draw_data_lights varying_G
23
24 uniform sampler2D color_buffer; // texunit:-4
25 uniform sampler2D sdf_texture; // texunit:-5
26 uniform sampler2D normal_texture; // texunit:-6
27 uniform sampler2D specular_texture; // texunit:-7
28 uniform sampler2D color_texture; // texunit :0
29
30 layout(location = 0) out vec4 frag_color;
31
32 void main() {
33 vec4 color = color_interp;
34 vec2 uv = uv_interp;
35 color *= texture(color_texture , uv);
36 frag_color = color;
37 }

Figure A.4: Listing of the canvas glsl-fragment shader used by the WebGL Rasterizer
for rendering polygons.

78 Appendix A. Shader Listings

1 const FLAGS_TRANSPOSE_RECT: u32 = (1 << 10);
2 const FLAGS_DEFAULT_NORMAL_MAP_USED: u32 = (1 << 26);
3 const FLAGS_DEFAULT_SPECULAR_MAP_USED: u32 = (1 << 27);
4 struct CanvasData {
5 CanvasTransform: mat4x4 <f32 >,
6 ScreenTransform: mat4x4 <f32 >,
7 CanvasNormalTransform: mat4x4 <f32 >,
8 CanvasModulation: vec4 <f32 >,
9 ScreenPixelSize: vec2 <f32 >,

10 Time: f32 ,
11 UsePixelSnap: u32 ,
12 SdfToTex: vec4 <f32 >,
13 ScreenToSdf: vec2 <f32 >,
14 SdfToScreen: vec2 <f32 >,
15 DirectionalLightCount: u32 ,
16 TexToSdf: f32 ,
17 Padding1: u32 ,
18 Padding2: u32
19 }
20 struct Miscellaneous {
21 PlaceHolder1: u32 ,
22 PlaceHolder2: u32 ,
23 DataFlags: u32 ,
24 SpecularShininess: u32
25 }
26 struct PerInstanceData {
27 DstRect: vec4 <f32 >,
28 SrcRect: vec4 <f32 >,
29 ModulationColor: vec4 <f32 >,
30 Misc: Miscellaneous ,
31 WorldPos: vec4 <f32 >,
32 WorldOffset: vec2 <f32 >,
33 TexelSize: vec2 <f32 > ,
34 Lights: vec4 <u32 >,
35 MsdfOrNinepatchMargins: vec4 <f32 >
36 }
37 struct VertexOutput {
38 @builtin(position) outPositionCS: vec4 <f32 >,
39 @location (0) color: vec4 <f32 >,
40 @location (1) tex: vec2 <f32 >,
41 @location (2) @interpolate(flat) WorldXY: vec4 <f32 >,
42 @location (3) @interpolate(flat) TexelSize: vec2 <f32 >,
43 @location (4) @interpolate(flat) MsdfOrNinepatchMargins: vec4 <f32 >,
44 @location (5) @interpolate(flat) SrcRect: vec4 <f32 >,
45 @location (6) @interpolate(flat) FlagsAndSpecularShininess: vec2 <u32 >,
46 @location (7) @interpolate(flat) Lights: vec4 <u32 >
47 }
48 @group (0) @binding (2) var <uniform > canvasData : CanvasData;
49 @group (0) @binding (3) var <storage ,read > perInstanceData : array <PerInstanceData >;
50
51 @vertex
52 fn main(@builtin(vertex_index) vertexID : u32 , @builtin(instance_index) instanceID : u32) -> VertexOutput {
53 var out: VertexOutput;
54 out.WorldXY = perInstanceData[instanceID]. WorldPos;
55 out.TexelSize = perInstanceData[instanceID]. TexelSize;
56 out.MsdfOrNinepatchMargins = perInstanceData[instanceID]. MsdfOrNinepatchMargins;
57 out.SrcRect = perInstanceData[instanceID]. SrcRect;
58 out.FlagsAndSpecularShininess = vec2 <u32 >(perInstanceData[instanceID].Misc.DataFlags , perInstanceData[

instanceID].Misc.SpecularShininess);
59 out.Lights = perInstanceData[instanceID]. Lights;
60
61 var vertex : vec2 <f32 >;
62 var color : vec4 <f32 >;
63 var uv : vec2 <f32 >;
64
65 var vertexBaseArray = array <vec2 <f32 >, 6>(vec2 <f32 >(0.0 , 0.0), vec2 <f32 >(0.0, 1.0), vec2 <f32 >(1.0 , 1.0), vec2 <

f32 >(1.0 , 0.0), vec2 <f32 >(0.0, 0.0), vec2 <f32 >(1.0 , 1.0));
66 var vertexBase = vertexBaseArray[vertexID % 6];
67 var mixValue = vec2 <f32 >(0.0, 0.0);
68 if (perInstanceData[instanceID]. SrcRect.z < 0.0)
69 mixValue.x = 1;
70 if (perInstanceData[instanceID]. SrcRect.w < 0.0)
71 mixValue.y = 1;
72
73 vertex = perInstanceData[instanceID]. DstRect.xy + abs(perInstanceData[instanceID]. DstRect.zw) * mix(vertexBase

, vec2 <f32 >(1.0, 1.0) - vertexBase , mixValue);
74
75 if ((perInstanceData[instanceID].Misc.DataFlags & FLAGS_TRANSPOSE_RECT) != 0) {
76 uv = perInstanceData[instanceID]. SrcRect.xy + abs(perInstanceData[instanceID]. SrcRect.zw) * vertexBase.yx;
77 }
78 else{
79 uv = perInstanceData[instanceID]. SrcRect.xy + abs(perInstanceData[instanceID]. SrcRect.zw) * (vertexBase.xy *

vec2 <f32 >(1.0, -1.0) + vec2 <f32 >(0.0, 1.0));
80 }
81 var modelMatrix = mat4x4 <f32 >(vec4 <f32 >(perInstanceData[instanceID]. WorldPos.xy, 0.0, 0.0), vec4 <f32 >(

perInstanceData[instanceID]. WorldPos.zw, 0.0, 0.0), vec4 <f32 >(0.0, 0.0, 1.0, 0.0), vec4 <f32 >(
perInstanceData[instanceID]. WorldOffset.xy , 0.0, 1.0));

82 vertex = (modelMatrix * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
83 vertex = (canvasData.CanvasTransform * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
84 vertex = (canvasData.ScreenTransform * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
85 color = perInstanceData[instanceID]. ModulationColor;
86 out.outPositionCS = vec4 <f32 >(vertex , 0.0, 1.0);
87 out.color = color;
88 out.tex = uv;
89 return out;
90 }

Figure A.5: Listing of the canvas wgsl-vertex shader used by the WebGPU Rasterizer
for rendering quads.

79

1 const FLAGS_TRANSPOSE_RECT: u32 = (1 << 10);
2 const FLAGS_DEFAULT_NORMAL_MAP_USED: u32 = (1 << 26);
3 const FLAGS_DEFAULT_SPECULAR_MAP_USED: u32 = (1 << 27);
4
5 struct FragInput {
6 @location (0) inColor: vec4 <f32 >,
7 @location (1) tex: vec2 <f32 >,
8 @location (2) @interpolate(flat) WorldXY: vec4 <f32 >,
9 @location (3) @interpolate(flat) TexelSize: vec2 <f32 >,

10 @location (4) @interpolate(flat) MsdfOrNinepatchMargins: vec4 <f32 >,
11 @location (5) @interpolate(flat) SrcRect: vec4 <f32 >,
12 @location (6) @interpolate(flat) FlagsAndSpecularShininess: vec2 <u32 >,
13 @location (7) @interpolate(flat) Lights: vec4 <u32 >
14 }
15
16 @group (0) @binding (0) var bilinearSampler : sampler;
17 @group (0) @binding (1) var diffuseTexture : texture_2d <f32 >;
18 @group (0) @binding (4) var normalMapTexture : texture_2d <f32 >;
19 @group (0) @binding (5) var specularMapTexture : texture_2d <f32 >;
20
21 @fragment
22 fn main(input: FragInput) -> @location (0) vec4 <f32 > {
23 var color = input.inColor;
24 var uv = input.tex;
25 color *= textureSample(diffuseTexture , bilinearSampler , vec2f(input.tex.x, input.tex.y));
26 return color;
27 }

Figure A.6: Listing of the canvas wgsl-fragment shader used by the WebGPU Ras-
terizer for rendering quads.

80 Appendix A. Shader Listings

1 const FLAGS_TRANSPOSE_RECT: u32 = (1 << 10);
2 const FLAGS_DEFAULT_NORMAL_MAP_USED: u32 = (1 << 26);
3 const FLAGS_DEFAULT_SPECULAR_MAP_USED: u32 = (1 << 27);
4 struct CanvasData {
5 CanvasTransform: mat4x4 <f32 >,
6 ScreenTransform: mat4x4 <f32 >,
7 CanvasNormalTransform: mat4x4 <f32 >,
8 CanvasModulation: vec4 <f32 >,
9 ScreenPixelSize: vec2 <f32 >,

10 Time: f32 ,
11 UsePixelSnap: u32 ,
12 SdfToTex: vec4 <f32 >,
13 ScreenToSdf: vec2 <f32 >,
14 SdfToScreen: vec2 <f32 >,
15 DirectionalLightCount: u32 ,
16 TexToSdf: f32 ,
17 Padding1: u32 ,
18 Padding2: u32
19 }
20 struct Miscellaneous {
21 PlaceHolder1: u32 ,
22 PlaceHolder2: u32 ,
23 DataFlags: u32 ,
24 SpecularShininess: u32
25 }
26 struct PerInstanceData {
27 DstRect: vec4 <f32 >,
28 SrcRect: vec4 <f32 >,
29 ModulationColor: vec4 <f32 >,
30 Misc: Miscellaneous ,
31 WorldPos: vec4 <f32 >,
32 WorldOffset: vec2 <f32 >,
33 TexelSize: vec2 <f32 >,
34 Lights: vec4 <u32 >,
35 MsdfOrNinepatchMargins: vec4 <f32 >
36 }
37 struct VertexInput {
38 @location (0) inPositionLS: vec2 <f32 >,
39 @location (1) inColor: vec4 <f32 >,
40 @location (2) inTexCoords: vec2 <f32 >
41 }
42 struct VertexOutput {
43 @builtin(position) outPositionCS: vec4 <f32 >,
44 @location (0) color: vec4 <f32 >,
45 @location (1) tex: vec2 <f32 >,
46 @location (2) @interpolate(flat) WorldXY: vec4 <f32 >,
47 @location (3) @interpolate(flat) TexelSize: vec2 <f32 >,
48 @location (4) @interpolate(flat) MsdfOrNinepatchMargins: vec4 <f32 >,
49 @location (5) @interpolate(flat) FlagsAndSpecularShininess: vec2 <u32 >,
50 @location (6) @interpolate(flat) Lights: vec4 <u32 >
51 }
52
53 @group (0) @binding (2) var <uniform > canvasData : CanvasData;
54 @group (0) @binding (3) var <storage , read > perInstanceData : array <PerInstanceData >;
55
56 @vertex
57 fn main(vsIn : VertexInput , @builtin(instance_index) instanceID : u32) -> VertexOutput {
58 var out: VertexOutput;
59
60 out.WorldXY = perInstanceData[instanceID]. WorldPos;
61 out.TexelSize = perInstanceData[instanceID]. TexelSize;
62 out.MsdfOrNinepatchMargins = perInstanceData[instanceID]. MsdfOrNinepatchMargins;
63 out.FlagsAndSpecularShininess = vec2 <u32 >(perInstanceData[instanceID].Misc.DataFlags , perInstanceData[

instanceID].Misc.SpecularShininess);
64 out.Lights = perInstanceData[instanceID]. Lights;
65
66 var vertex : vec2 <f32 >;
67 var color : vec4 <f32 >;
68 var uv : vec2 <f32 >;
69 vertex = vsIn.inPositionLS;
70 uv = vsIn.inTexCoords;
71 color = vsIn.inColor * perInstanceData[instanceID]. ModulationColor;
72
73 var modelMatrix = mat4x4 <f32 >(vec4 <f32 >(perInstanceData[instanceID]. WorldPos.xy, 0.0, 0.0), vec4 <f32 >(

perInstanceData[instanceID]. WorldPos.zw, 0.0, 0.0), vec4 <f32 >(0.0, 0.0, 1.0, 0.0), vec4 <f32 >(
perInstanceData[instanceID]. WorldOffset.xy , 0.0, 1.0));

74
75 vertex = (modelMatrix * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
76 vertex = (canvasData.CanvasTransform * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
77 vertex = (canvasData.ScreenTransform * vec4 <f32 >(vertex , 0.0, 1.0)).xy;
78 out.outPositionCS = vec4 <f32 >(vertex , 0.0, 1.0);
79 out.color = color;
80 out.tex = uv;
81 return out;
82 }

Figure A.7: Listing of the canvas wgsl-vertex shader used by the WebGPU Rasterizer
for rendering polygons.

81

1 const FLAGS_TRANSPOSE_RECT: u32 = (1 << 10);
2 const FLAGS_DEFAULT_NORMAL_MAP_USED: u32 = (1 << 26);
3 const FLAGS_DEFAULT_SPECULAR_MAP_USED: u32 = (1 << 27);
4
5 struct FragInput {
6 @location (0) inColor: vec4 <f32 >,
7 @location (1) tex: vec2 <f32 >,
8 @location (2) @interpolate(flat) WorldXY: vec4 <f32 >,
9 @location (3) @interpolate(flat) TexelSize: vec2 <f32 >,

10 @location (4) @interpolate(flat) MsdfOrNinepatchMargins: vec4 <f32 >,
11 @location (5) @interpolate(flat) FlagsAndSpecularShininess: vec2 <u32 >,
12 @location (6) @interpolate(flat) Lights: vec4 <u32 >
13 }
14
15 @group (0) @binding (0) var bilinearSampler : sampler;
16 @group (0) @binding (1) var diffuseTexture : texture_2d <f32 >;
17 @group (0) @binding (4) var normalMapTexture : texture_2d <f32 >;
18 @group (0) @binding (5) var specularMapTexture : texture_2d <f32 >;
19
20 @fragment
21 fn main(input: FragInput) -> @location (0) vec4 <f32 > {
22 var color = input.inColor;
23 var uv = input.tex;
24 color *= textureSample(diffuseTexture , bilinearSampler , vec2f(input.tex.x, input.tex.y));
25 return color;
26 }

Figure A.8: Listing of the canvas wgsl-fragment shader used by the WebGPU Ras-
terizer for rendering polygons.

Appendix B

Game Footage

Figure B.1: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features the main
menu from the game Checkers.

Figure B.2: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Checkers.

83

84 Appendix B. Game Footage

Figure B.3: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Snake.

Figure B.4: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Evader.

Figure B.5: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Falling Cats.

85

Figure B.6: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features the main
menu from the game Ponder.

Figure B.7: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Ponder.

Figure B.8: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features gameplay
from the game Deck Before Dawn.

Appendix C

Synthetic Tests Footage

Figure C.1: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features a synthetic
test of rendering 30000 polygons, each composed of 360 vertices.

Figure C.2: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features a synthetic
test of rendering 30000 textured sprites (quads).

87

88 Appendix C. Synthetic Tests Footage

Figure C.3: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features a synthetic
test of rendering 30000 layered full-screen textured sprites (quads).

Figure C.4: A side-by-side comparison of the rasterized output between the WebGPU
Rasterizer (left) and the WebGL Rasterizer (right). The footage features a synthetic
test of rendering 20 layered polygons, each with 50000 vertices (1 million in total).

Appendix D

Graphs For Measurements

Figure D.1: Comparison of the mean WebGL and WebGPU ConstructBatches frame
times, in milliseconds, for the various games. Lower is better.

Figure D.2: Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU ConstructBatches frame times, in milliseconds, for the various games.
Lower is better.

89

90 Appendix D. Graphs For Measurements

Figure D.3: Comparison of the mean WebGL and WebGPU ConstructBatches frame
times, in milliseconds, for the Multiple Quads test. Lower is better. The workloads
range from 10 to 50.000 quads.

Figure D.4: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU ConstructBatches frame times, in milliseconds, for the Multiple Quads
test. Lower is better. The workloads range from 10 to 50.000 quads.

91

Figure D.5: Comparison of the mean WebGL and WebGPU ConstructBatches frame
times, in milliseconds, for the Full-screen Quads test. Lower is better. The workloads
range from 10 to 50.000 full-screen quads.

Figure D.6: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU ConstructBatches frame times, in milliseconds, for the Full-screen Quads
test. Lower is better. The workloads range from 10 to 50.000 full-screen quads.

92 Appendix D. Graphs For Measurements

Figure D.7: Comparison of the mean WebGL and WebGPU ConstructBatches frame
times, in milliseconds, for the Multiple Polygons test. Lower is better. The workloads
range from 10 to 50.000 polygons.

Figure D.8: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU ConstructBatches frame times, in milliseconds, for the Multiple Polygons
test. Lower is better. The workloads range from 10 to 50.000 polygons.

93

Figure D.9: Comparison of the mean WebGL and WebGPU ConstructBatches frame
times, in milliseconds, for the Large Polygons test. Lower is better. The workloads
range from 2 million to 16 million vertices.

Figure D.10: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU ConstructBatches frame times, in milliseconds, for the Large Polygons test.
Lower is better. The workloads range from 2 million to 16 million vertices.

94 Appendix D. Graphs For Measurements

Figure D.11: Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Multiple Quads test. Lower is better. The workloads
range from 10 to 50.000 quads.

Figure D.12: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the Multiple Quads test.
Lower is better. The workloads range from 10 to 50.000 quads.

95

Figure D.13: Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Full-screen Quads test. Lower is better. The workloads
range from 10 to 50.000 full-screen quads.

Figure D.14: Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU RenderBatches frame times, in milliseconds, for the Full-screen Quads
test. Lower is better. The workloads range from 10 to 50.000 full-screen quads.

96 Appendix D. Graphs For Measurements

Figure D.15: Comparison of the mean WebGL and WebGPU RenderBatches frame
times, in milliseconds, for the Large Polygons test. Lower is better. The workloads
range from 2 million to 16 million vertices.

Figure D.16: Comparison of the highest 1% mean and lowest 95% mean WebGL and
WebGPU RenderBatches frame times, in milliseconds, for the Large Polygons test.
Lower is better. The workloads range from 2 million to 16 million vertices.

97

Figure D.17: Comparison of the mean WebGL and WebGPU canvas_render_items
frame times, in milliseconds, for the Multiple Polygons test. Lower is better. The
workloads range from 10 to 50.000 polygons.

Figure D.18: Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU canvas_render_items frame times, in milliseconds, for the Multiple
Polygons test. Lower is better. The workloads range from 10 to 50.000 polygons.

Appendix E

CPU Time Tables

Table E.1: Resulting mean, high 1% mean and low 95 % mean CPU frame times, in milliseconds, for the WebGPU
and WebGL Rasterizers rendering the variable numbers of multiple polygons. Lower is better. SLatency denotes
WebGPU speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Multiple Polygons WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

10, Overall CPU 0.421 0.776 <0.001 1.843 1.232 1.649 0.007 0.401 0.744 <0.001
10, canvas_render_items 0.208 0.095 <0.001 0.857 0.337 0.001 0.193 0.088 <0.001

10, ConstructBatches 0.020 0.005 <0.001 0.162 0.044 <0.001 0.018 0.004 <0.001
10, RenderBatches 0.096 0.049 <0.001 0.570 0.232 0.005 0.087 0.044 <0.001

100, Overall CPU 0.493 1.117 <0.001 2.266 1.162 2.004 <0.001 0.476 1.086 <0.001
100, canvas_render_items 0.305 0.281 <0.001 0.858 0.631 0.161 0.293 0.271 <0.001

100, ConstructBatches 0.037 0.014 <0.001 0.107 0.071 0.027 0.035 0.013 <0.001
100, RenderBatches 0.193 0.228 <0.001 0.699 0.549 0.361 0.183 0.219 <0.001

1000, Overall CPU 1.086 3.604 <0.001 3.319 1.749 6.191 <0.001 1.064 3.551 <0.001
1000, canvas_render_items 0.819 1.795 <0.001 1.378 2.474 <0.001 0.802 1.774 <0.001

1000, ConstructBatches 0.129 0.089 <0.001 0.384 0.213 <0.001 0.124 0.086 <0.001
1000, RenderBatches 0.622 1.653 <0.001 1.064 2.333 <0.001 0.610 1.633 <0.001

10k, Overall CPU 8.548 32.793 <0.001 3.836 10.623 36.779 <0.001 8.473 32.659 <0.001
10k, canvas_render_items 6.880 24.608 <0.001 7.929 27.898 <0.001 6.842 24.508 <0.001

10k, ConstructBatches 1.214 0.936 <0.001 1.678 1.290 <0.001 1.196 0.922 <0.001
10k, RenderBatches 5.499 23.285 <0.001 6.317 26.484 <0.001 5.472 23.187 <0.001

20k, Overall CPU 17.349 64.028 <0.001 3.691 20.578 70.267 <0.001 17.211 63.776 <0.001
20k, canvas_render_items 14.055 54.579 <0.001 15.952 59.737 <0.001 13.980 54.378 <0.001

20k, ConstructBatches 2.499 2.077 <0.001 3.449 2.755 <0.001 2.462 2.047 <0.001
20k, RenderBatches 11.322 51.897 <0.001 12.592 57.005 <0.001 11.275 51.703 <0.001

30k, Overall CPU 26.756 95.596 <0.001 3.573 35.890 104.974 <0.001 26.506 95.224 <0.001
30k, canvas_render_items 21.621 85.055 <0.001 30.212 93.032 <0.001 21.427 84.749 <0.001

30k, ConstructBatches 3.917 2.954 <0.001 5.663 4.147 <0.001 3.861 2.904 <0.001
30k, RenderBatches 17.305 81.206 <0.001 25.458 88.582 <0.001 17.143 80.914 <0.001

40k, Overall CPU 36.066 129.399 <0.001 3.588 51.556 141.631 <0.001 35.738 128.920 <0.001
40k, canvas_render_items 28.978 117.470 <0.001 45.869 128.163 <0.001 28.699 117.058 <0.001

40k, ConstructBatches 5.186 3.996 <0.001 6.887 5.365 <0.001 5.118 3.933 <0.001
40k, RenderBatches 23.277 112.357 <0.001 40.860 122.806 <0.001 23.021 111.959 <0.001

50k, Overall CPU 65.336 165.028 <0.001 2.526 88.754 177.235 <0.001 64.473 164.519 <0.001
50k, canvas_render_items 59.179 151.610 <0.001 82.886 162.062 <0.001 58.296 151.189 <0.001

50k, ConstructBatches 5.767 5.030 <0.001 8.026 6.912 <0.001 5.669 4.951 <0.001
50k, RenderBatches 52.361 145.309 <0.001 76.367 155.460 <0.001 51.456 144.903 <0.001

99

100 Appendix E. CPU Time Tables

Table E.2: Resulting mean, high 1% mean and low 95 % mean CPU frame times, in milliseconds, for the WebGPU and
WebGL Rasterizers rendering the variable numbers of multiple quads. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Multiple Quads WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

10, Overall CPU 0.347 1.551 <0.001 4.470 0.847 2.912 <0.001 0.333 1.497 <0.001
10, canvas_render_items 0.159 0.126 <0.001 0.469 0.572 0.330 0.151 0.117 <0.001

10, ConstructBatches 0.015 0.008 <0.001 0.071 0.052 0.006 0.014 0.007 <0.001
10, RenderBatches 0.062 0.041 <0.001 0.216 0.329 0.212 0.057 0.035 <0.001

100, Overall CPU 0.368 1.283 <0.001 3.486 0.835 2.397 <0.001 0.351 1.241 <0.001
100, canvas_render_items 0.174 0.134 <0.001 0.484 0.537 0.438 0.163 0.125 <0.001

100, ConstructBatches 0.035 0.023 <0.001 0.205 0.202 0.936 0.031 0.019 <0.001
100, RenderBatches 0.058 0.039 <0.001 0.245 0.325 0.317 0.052 0.032 <0.001

1000, Overall CPU 0.734 1.591 <0.001 2.168 1.117 3.025 <0.001 0.720 1.540 <0.001
1000, canvas_render_items 0.372 0.294 <0.001 0.606 0.906 <0.001 0.364 0.273 <0.001

1000, ConstructBatches 0.218 0.151 <0.001 0.367 0.596 <0.001 0.214 0.139 <0.001
1000, RenderBatches 0.058 0.039 <0.001 0.159 0.362 <0.001 0.055 0.033 <0.001

10k, Overall CPU 2.696 4.934 <0.001 1.830 3.677 7.679 <0.001 2.660 4.847 <0.001
10k, canvas_render_items 1.234 1.095 <0.001 1.770 1.711 0.585 1.215 1.077 <0.001

10k, ConstructBatches 1.053 0.748 <0.001 1.533 1.149 <0.001 1.037 0.736 <0.001
10k, RenderBatches 0.038 0.025 <0.001 0.078 0.063 0.109 0.037 0.024 <0.001

20k, Overall CPU 4.752 5.992 <0.001 1.261 6.279 9.932 <0.001 4.696 5.873 <0.001
20k, canvas_render_items 2.154 2.184 0.007 12.854 3.726 <0.001 2.127 2.132 0.635

20k, ConstructBatches 1.953 1.617 <0.001 2.590 2.592 0.979 1.928 1.583 <0.001
20k, RenderBatches 0.040 0.035 <0.001 10.136 0.106 0.032 0.038 0.034 <0.001

30k, Overall CPU 8.152 8.501 <0.001 1.043 9.277 12.141 <0.001 8.111 8.350 <0.001
30k, canvas_render_items 3.612 3.272 <0.001 4.323 4.734 <0.001 3.587 3.205 <0.001

30k, ConstructBatches 3.290 2.391 <0.001 3.944 3.398 <0.001 3.268 2.344 <0.001
30k, RenderBatches 0.043 0.038 <0.001 0.147 0.098 0.072 0.041 0.037 <0.001

40k, Overall CPU 10.013 13.085 <0.001 1.307 12.542 15.864 <0.001 9.909 12.961 <0.001
40k, canvas_render_items 4.532 5.330 <0.001 5.648 6.687 <0.001 4.483 5.271 <0.001

40k, ConstructBatches 4.080 3.842 <0.001 5.153 4.875 <0.001 4.032 3.799 <0.001
40k, RenderBatches 0.047 0.042 <0.001 0.156 0.119 0.502 0.045 0.041 <0.001

50k, Overall CPU 11.170 17.122 <0.001 1.533 15.442 20.581 <0.001 10.978 16.993 <0.001
50k, canvas_render_items 5.288 6.987 <0.001 7.630 8.560 0.003 5.208 6.927 <0.001

50k, ConstructBatches 4.707 5.083 <0.001 6.300 6.210 0.152 4.636 5.039 <0.001
50k, RenderBatches 0.045 0.040 <0.001 0.088 0.159 0.003 0.044 0.038 <0.001

101

Table E.3: Resulting mean, high 1% mean and low 95 % mean CPU frame times, in milliseconds, for the WebGPU
and WebGL Rasterizers rendering the variable numbers of full-screen quads. Lower is better. SLatency denotes
WebGPU speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Full-Screen Quads WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

10, Overall CPU 0.375 1.398 <0.001 3.728 0.902 2.719 <0.001 0.358 1.352 <0.001
10, canvas_render_items 0.168 0.134 <0.001 0.598 0.393 0.005 0.156 0.125 <0.001

10, ConstructBatches 0.016 0.009 <0.001 0.133 0.096 0.142 0.013 0.007 <0.001
10, RenderBatches 0.062 0.043 <0.001 0.354 0.242 0.066 0.055 0.037 <0.001

100, Overall CPU 0.334 1.493 <0.001 4.470 0.617 2.735 <0.001 0.325 1.449 <0.001
100, canvas_render_items 0.155 0.172 <0.001 0.302 0.395 <0.001 0.150 0.164 <0.001

100, ConstructBatches 0.030 0.028 <0.001 0.080 0.147 <0.001 0.029 0.025 <0.001
100, RenderBatches 0.051 0.049 0.004 0.146 0.197 0.004 0.049 0.044 <0.001

1000, Overall CPU 0.637 43.208 <0.001 67.830 1.319 52.918 <0.001 0.611 42.909 <0.001
1000, canvas_render_items 0.293 0.385 <0.001 0.749 0.734 0.720 0.277 0.373 <0.001

1000, ConstructBatches 0.156 0.184 <0.001 0.445 0.442 0.884 0.146 0.177 <0.001
1000, RenderBatches 0.045 0.055 <0.001 0.194 0.253 0.209 0.042 0.051 <0.001

10k, Overall CPU 3.235 445.146 <0.001 137.603 4.781 452.812 <0.001 3.182 444.953 <0.001
10k, canvas_render_items 1.394 1.277 <0.001 2.254 1.757 <0.001 1.361 1.260 <0.001

10k, ConstructBatches 1.174 0.793 <0.001 1.946 1.129 <0.001 1.144 0.782 <0.001
10k, RenderBatches 0.042 0.030 <0.001 0.119 0.141 0.177 0.040 0.028 <0.001

20k, Overall CPU 5.316 890.508 <0.001 167.515 6.631 896.947 <0.001 5.273 890.302 <0.001
20k, canvas_render_items 2.379 2.620 <0.001 3.238 3.302 0.277 2.352 2.594 <0.001

20k, ConstructBatches 2.156 1.804 <0.001 2.923 2.391 <0.001 2.132 1.784 <0.001
20k, RenderBatches 0.041 0.037 <0.001 0.144 0.167 0.215 0.039 0.034 <0.001

30k, Overall CPU 8.390 1353.816 <0.001 161.361 10.062 1367.305 <0.001 8.326 1353.269 <0.001
30k, canvas_render_items 3.523 4.060 <0.001 4.336 5.635 0.025 3.494 4.017 <0.001

30k, ConstructBatches 3.213 2.808 <0.001 3.970 3.829 0.436 3.187 2.778 <0.001
30k, RenderBatches 0.045 0.038 <0.001 0.167 0.153 0.548 0.043 0.036 <0.001

40k, Overall CPU 10.939 1786.538 <0.001 163.344 12.872 1802.173 <0.001 10.863 1786.011 <0.001
40k, canvas_render_items 4.722 5.726 <0.001 5.893 7.724 <0.001 4.679 5.666 <0.001

40k, ConstructBatches 4.274 4.047 <0.001 5.359 5.611 0.236 4.234 4.002 <0.001
40k, RenderBatches 0.045 0.046 0.116 0.156 0.219 0.548 0.043 0.042 <0.001

50k, Overall CPU 1138.584 2202.755 <0.001 1.935 1355.518 2209.514 <0.001 1127.640 2202.478 <0.001
50k, canvas_render_items 1131.196 6.167 <0.001 1348.941 8.416 <0.001 1120.228 6.066 <0.001

50k, ConstructBatches 5.763 4.536 <0.001 7.239 6.078 <0.001 5.714 4.469 <0.001
50k, RenderBatches 0.106 0.042 <0.001 0.295 0.166 <0.001 0.101 0.040 <0.001

102 Appendix E. CPU Time Tables

Table E.4: Resulting mean, high 1% mean and low 95 % mean CPU frame times, in milliseconds, for the WebGPU and
WebGL Rasterizers rendering the variable numbers of large polygons. Lower is better. SLatency denotes WebGPU
speed-up. p is the t-test yielded p-value.

Mean CPU times (ms) High 1% CPU times (ms) Low 95% CPU times (ms)

Large Polygons WebGPU WebGL p SLatency WebGPU WebGL p WebGPU WebGL p

2m, Overall CPU 0.198 5.459 <0.001 27,571 0.621 6.789 <0.001 0.186 5.401 <0.001
2m, canvas_render_items 0.110 0.135 <0.001 0.389 0.423 0.628 0.102 0.127 <0.001

2m, ConstructBatches 0.012 0.007 <0.001 0.080 0.049 0.048 0.011 0.006 <0.001
2m, RenderBatches 0.060 0.093 <0.001 0.243 0.344 <0.001 0.054 0.087 <0.001

4m, Overall CPU 0.267 0.947 <0.001 3.547 0.752 3.358 <0.001 0.254 0.904 <0.001
4m, canvas_render_items 0.167 0.242 <0.001 0.510 0.487 0.725 0.156 0.234 <0.001

4m, ConstructBatches 0.019 0.015 <0.001 0.196 0.152 <0.001 0.015 0.011 <0.001
4m, RenderBatches 0.099 0.182 <0.001 0.333 0.419 <0.001 0.090 0.174 <0.001

6m, Overall CPU 0.256 0.953 <0.001 3.723 0.578 1.515 <0.001 0.249 0.934 <0.001
6m, canvas_render_items 0.170 0.262 <0.001 0.413 0.469 0.342 0.165 0.255 <0.001

6m, ConstructBatches 0.020 0.014 <0.001 0.063 0.043 0.022 0.019 0.013 <0.001
6m, RenderBatches 0.112 0.214 <0.001 0.300 0.399 0.021 0.108 0.209 <0.001

8m, Overall CPU 0.285 1.150 <0.001 4.035 0.631 1.752 <0.001 0.277 1.128 <0.001
8m, canvas_render_items 0.196 0.362 <0.001 0.436 0.831 <0.001 0.190 0.348 <0.001

8m, ConstructBatches 0.024 0.020 <0.001 0.068 0.121 <0.001 0.023 0.018 <0.001
8m, RenderBatches 0.134 0.303 <0.001 0.356 0.735 <0.001 0.129 0.291 <0.001

10m, Overall CPU 0.348 1.401 <0.001 4.026 0.692 2.026 <0.001 0.339 1.378 <0.001
10m, canvas_render_items 0.247 0.424 <0.001 0.543 0.699 0.055 0.240 0.416 <0.001

10m, ConstructBatches 0.031 0.022 <0.001 0.100 0.079 0.040 0.029 0.021 <0.001
10m, RenderBatches 0.173 0.362 <0.001 0.444 0.619 0.037 0.167 0.355 <0.001

12m, Overall CPU 0.379 5.663 <0.001 14.942 0.866 9.990 <0.001 0.368 5.573 <0.001
12m, canvas_render_items 0.276 0.462 <0.001 0.726 0.830 0.231 0.266 0.453 <0.001

12m, ConstructBatches 0.034 0.024 <0.001 0.152 0.096 0.002 0.032 0.022 <0.001
12m, RenderBatches 0.199 0.403 <0.001 0.605 0.707 0.231 0.191 0.395 <0.001

14m, Overall CPU 0.390 6.078 <0.001 15.585 0.743 12.250 <0.001 0.381 5.769 <0.001
14m, canvas_render_items 0.292 0.547 <0.001 0.610 0.819 0.008 0.285 0.540 <0.001

14m, ConstructBatches 0.036 0.029 <0.001 0.085 0.086 0.899 0.035 0.027 <0.001
14m, RenderBatches 0.215 0.482 <0.001 0.455 0.721 <0.001 0.210 0.476 <0.001

16m, Overall CPU 0.477 6.952 <0.001 14.574 0.876 12.503 <0.001 0.467 6.676 <0.001
16m, canvas_render_items 0.360 0.633 <0.001 0.728 0.949 0.013 0.352 0.624 <0.001

16m, ConstructBatches 0.050 0.032 <0.001 0.155 0.094 <0.001 0.047 0.031 <0.001
16m, RenderBatches 0.263 0.562 <0.001 0.609 0.853 0.007 0.256 0.554 <0.001

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

	Abstract
	Sammanfattning
	Acknowledgments
	Introduction
	Background
	WebGL
	WebGPU
	Godot
	Emscripten and WebAssembly

	Aim and Objectives
	Thesis Scope
	Glossary
	Ethical, Societal and Sustainability aspects
	Contribution
	Outline

	Related Work
	WebGPU & Compute
	Vulkan vs OpenGL
	Reducing the Research Gap

	Method
	Research Question
	Technical Limitations
	Selecting a Backend Framework
	Frame buffering
	Managing Synchronous GPU Read Backs
	Performance Measuring

	Scope of Implementation
	Supported Renderer and Storage
	Supported Render Item Types
	Supported Shader Types
	Supported Utility Features

	Implementation
	Deconstructing Godot
	Minimizing Runtime WebGPU Structures
	The Render Loop
	Render Techniques

	Experiment and Data Gathering
	Hardware and Software Specification

	Alternative Approaches
	Validity and Reliability of Approach

	Results and Analysis
	Understanding the Data
	Performance Comparison - Game tests
	GPU Frame Time
	CPU Frame Time

	Performance Comparison - Synthetic tests
	GPU Frame Time
	CPU Frame Time

	Statistical Significance
	Analysis Summary

	Discussion
	Research Question & Answers
	Mean CPU & GPU Frame Time
	Main CPU Function Performance
	Validity and Reliability of Data

	WebGPU Performance
	WebGL Performance
	Limitations

	Conclusions and Future Work
	Future Work
	Optimizations
	Future Research

	References
	Shader Listings
	Game Footage
	Synthetic Tests Footage
	Graphs For Measurements
	CPU Time Tables

