
Bachelor of Science in Software Engineering
May 2023

The impacts of code structure analysis,
powered by the language model

FastText

Gabriel Ivarsson
Noah Håkansson

Faculty of Engineering, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Engineering at Blekinge Institute of Technology in par-
tial fulfillment of the requirements for the degree of Bachelor of Science in Software Engineering.
The thesis is equivalent to 10 weeks of full-time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Gabriel Ivarsson
E-mail: gaiv20@student.bth.se
gabriel.ivars01@gmail.com

Noah Håkansson
E-mail: noha16@student.bth.se
noah.hakansson@protonmail.com

University advisor:
Dr.-Tech. Ahmad Nauman Ghazi
Department of Software Engineering

Faculty of Engineering Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

The goal of this study was to investigate how the use of language models in the con-
text of code structure analysis could impact how developers manage code structure.
To do this, a prototype tool GOSPLAT (GoLang Static Package Language-model
Analysis Tool) was created. The objective was to, in a qualitative manner, find
themes of both the strengths and shortcomings of GOSPLAT as well as the per-
ceived need and willingness of a tool like this in a company setting. Methods used
for this case study were primarily interviews and observations, where the researchers
observed subjects when using the tool, as well as further investigating by conducting
interviews at which they were more freely able to talk about their experiences. In
this case study, both project managers and developers in a company participated.
The results were mixed, with the solution both showing promising results for im-
provements in code quality, as well as limitations where it might have misled the
developer. However, during the entire study, all subjects were adamant in their be-
lief in a tool like GOSPLAT, showing genuine interest in incorporating such a tool
into their workflow. In conclusion, a genuine need for tools like GOSPLAT was found
to exist, and improvement areas were identified to enhance their effectiveness.

Keywords: Code structure, GoLang, language models

Acknowledgments

We would like to sincerely thank our partners, they have been the largest supporters
for us during the entire study, making us able to finish the work.

We thank Dr. -Tech. Ahmad Nauman Ghazi for helping us and guiding us through
the study. Without his guidance and expertise, we would never be able to produce
the thesis with the quality required.

Lastly, we thank the unnamed company for letting us conduct our study at their
office, and giving us the resources to derive data from and further our research. For
this, we are truly grateful.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Background . 1

1.1.1 The Problem . 1
1.1.2 The Proposed solution . 2

1.2 GOSPLAT . 3
1.3 Ethical, societal and sustainability aspects 3
1.4 Scope . 4
1.5 Outline . 4

2 Related Work 5
2.1 Summary . 6

3 Method 7
3.1 Research design . 7
3.2 Case study design . 8

3.2.1 Case . 8
3.2.2 Unit of analysis . 8
3.2.3 Theory . 8

3.3 Data Collection . 9
3.3.1 Literature Study . 9
3.3.2 Interviews . 10
3.3.3 Observations . 11
3.3.4 Archival data collection . 12

3.4 Data analysis . 12
3.4.1 Data encoding . 13

3.5 Validity and reliability . 13
3.6 Ethical concerns . 14

4 Results and Analysis 15
4.1 Summary of Results and Analysis . 15
4.2 Phase 1 analysis: Initial interviews 17
4.3 Detailed Themes Explanation . 18

4.3.1 Navigating Code Structure Challenges in Software Engineering 18
4.3.2 Perspectives on GOSPLAT adoption 19

iii

4.4 Phase 2 analysis: Subject Observations 21
4.5 Detailed Themes Explanation: observations 21

4.5.1 Impact of GOSPLAT on Code Structure and Organization . . 21
4.5.2 User Experiences and Perceptions of GOSPLAT 23

4.6 Phase 3 analysis: Last interviews . 24
4.7 Detailed Themes Explanation: Last interviews 25

4.7.1 Update to prior themes . 25
4.7.2 Potential benefits of post-prototype GOSPLAT 26

5 Discussion 27
5.1 RQ1: . 27

5.1.1 RQ1.1: . 27
5.1.2 RQ: 1.2: . 28

5.2 RQ2: . 28
5.2.1 RQ: 2.1: . 29
5.2.2 RQ: 2.2: . 30

5.3 Unexpected Findings . 30
5.4 Limitations and questions of validity 31

6 Conclusions and Future Work 33
6.1 Conclusion . 33
6.2 Future Work . 34

References 35

A Supplemental Information: Introduction & Method 36
A.1 Repositories used for training . 36
A.2 Confirmation Letter: phase 1 . 37

A.2.1 Introduction . 37
A.2.2 Transparency and confidentiality 38

A.3 Confirmation Letter: phase 2 . 38
A.3.1 Introduction . 38
A.3.2 Transparency and confidentiality 39

A.4 Skeleton Program . 39

B Supplemental Information: Data Analysis 41
B.1 Finalized codes & themes: Phase 1 41

B.1.1 High-level Theme: Navigating Code Structure Challenges in
Sofware Engineering . 41

B.1.2 High-level Theme: Perspectives on GOSPLAT Adoption . . . 44
B.2 Finalized codes & themes: Phase 2 47

B.2.1 High-level Theme: Impact of GOSPLAT on Code Structure
and Organization . 47

B.2.2 High-level Theme: User Experiences and Perceptions of GOS-
PLAT . 51

B.3 Finalized codes & themes: Phase 3 53
B.3.1 Theme update: Improvements in code organization 53

iv

B.3.2 Theme Update: GOSPLAT’s Limitations and Inaccurate Rec-
ommendations . 54

B.3.3 Theme Update: Recommendations for GOSPLAT improvements 54
B.3.4 Theme Update: Willingness to adopt and enjoyment of GOS-

PLAT . 54
B.3.5 Theme: Potential benefits of post-prototype GOSPLAT 55

B.4 Figures . 57
B.4.1 Theme: Importance of Good Code Structure 57
B.4.2 Theme: Experiences with Poor Code Structure 57
B.4.3 Theme: Difficulty in Creating Code Structure 58
B.4.4 High-level Theme: Navigating Code Structure Challenges in

Software Engineering . 58
B.4.5 Theme: Positive Perspectives on GOSPLAT Usage 59
B.4.6 Theme: Initial Reservations about GOSPLAT Adoption . . . 59
B.4.7 High-level Theme: Perspectives on GOSPLAT Adoption . . . 60
B.4.8 Theme: Improvements in code organization 60
B.4.9 Impact on renaming functions and packages 61
B.4.10 High-level Theme: Impact of GOSPLAT on Code Structure

and Organization . 61
B.4.11 Theme: Perceived benefits and potential of GOSPLAT 61
B.4.12 Theme: Recommendations for GOSPLAT improvements . . . 62
B.4.13 Theme: Willingness to adopt and enjoyment of GOSPLAT . . 62
B.4.14 High-level Theme: User Experiences and Perceptions of GOS-

PLAT . 63
B.4.15 Theme: Potential benefits of post-prototype GOSPLAT 63
B.4.16 Theme: GOSPLAT’s Limitations and Inaccurate Recommen-

dations . 64
B.4.17 Thematic Map . 65

v

Chapter 1
Introduction

1.1 Background
The case study investigates the impact of a potential solution for automating code
structure analysis utilizing the language model (LM) FastText on specifically code
structure development; in the programming language GoLang. The case study re-
search involves interviews both with developers and project managers, as well as
observational sessions with developers to investigate the performance and traits of
the solution; this is done to evaluate if the LM solution is promising, as well as the
limitations to it.

Language models are widely used today in natural language processing and have
proven to be effective in those areas of data. They work by creating contextual
relationships between words using vectors or other methods, making them a suitable
choice for automated data analysis. The proposed LM solution, instead, applies
this technique to code analysis. Similar studies have been done with the FastText
model before regarding code analysis, one being the study made by Efstathiou et
al. [7], however not to the degree of analyzing specific parts of code quality such as
code structure, rather analyzing the similarity between code segments or projects.
Another study that relates more to this case study was the work of Allamanis et al. [1],
where they developed an LM-powered identifier analysis tool called NATURALIZE.
The language model solution in this case was used to find better names as well as
find flaws in the naming of identifiers, identifiers in this context being the variables
and functions. However, none have investigated the use of language models for code
structure analysis and its implications for software development.

1.1.1 The Problem

Code quality and code structure are two crucial aspects of software development.
They are closely intertwined, and one can have a significant impact on the other. As
stated by Börstler et al. [4], the code structure is a significant factor in code quality.
A well-organized and well-structured codebase makes it easier to write high-quality
code, as it promotes good programming practices such as modularity, maintainability,
and reusability.

Code quality, in turn, heavily impacts the maintainability and other factors that
can greatly impact a project’s effectiveness and future work planned for it, as stated
by Krasner et al. [10]. Poor code quality can lead to increased development costs,
longer time-to-market, and decreased customer satisfaction. It can also create sig-

1

Chapter 1. Introduction 2

nificant technical debt, which can negatively impact companies and the economy in
the future.

Unfortunately, poor code quality is a prevalent problem in both modern and
legacy projects. Asad et al. [2] found that large and hard-to-comprehend files are the
biggest issue for GoLang and many other programming languages. This can make it
difficult for developers to maintain the codebase and understand how different parts
of the code interact with each other.

To address this issue, there is a growing need for automating code analysis to
aid developers at the industry level. By automating the code analysis process, de-
velopers can quickly identify potential issues and improve the quality of their code.
Automated code analysis tools can help identify code smells, anti-patterns, and other
issues that can negatively impact the code’s quality and in turn, maintainability.

1.1.2 The Proposed solution

The model chosen for this solution was the FastText model designed by Bojanowski
et al. [3]. The reason for choosing the language model FastText instead of other
similar language models was for its use of the n-gram model [3]. The n-gram model is
able to split words into sub-words with the size controlled by the number given to n,
meaning it gives the FastText model the ability to not only specifically handle entire
words, but also sub-words [3]. This is an advantage when dealing with identifiers in
code as they may vary depending on the programmer, industry standards, and other
factors, compared to natural language in which words are more predictable.

Using the FastText model, it can be specifically trained on identifier relation-
ships, in this case for the programming language GoLang, using package names, and
function names. By placing the names closer to each other, the similarity of the two
identifiers is increased, and it’s possible to predict if for example a function is placed
in the right package in a GoLang project. An example of a line in the JSON training
data for the model would be:

{"context": "database GetUser"}

In this example, the package database is shown together with a function named
GetUser. By feeding the model with these lines of text, it can start to understand
that for example, GetUser is closely tied with the package database, as they become
closer in the vector space of the FastText model.

With the ability to calculate the similarity between a package and a function,
it’s possible to design a tool that can parse project code and compare functions to
existing packages to see if functions are truly in the correct contextual place. By
correcting contextual errors made by the programmer, the goal is to create a more
understandable and consistent code structure.

The results of this study could have significant implications for the management
of code structure in software engineering and the development of more accurate and
effective code analysis solutions. By demonstrating the potential of language models
in the context of analyzing code structure, as well as the need and willingness to adopt
them, the researchers hope to encourage further research in this area and contribute
to the development of more advanced and effective solutions. It’s also important to

Chapter 1. Introduction 3

mention that the proposed solution is generalized and may be interpreted for multiple
languages, not only GoLang.

1.2 GOSPLAT
For this study, based on the general solution presented in section 1.1.2, the re-
searchers developed a prototype CLI (Command-Line Interface) tool named GOS-
PLAT (GoLang Static Package Language-model Analysis Tool) [9] that was used
during the study to evaluate the LM-solution. The tool was built mainly using
GoLang and Python; GoLang dealt with parsing of GoLang files, and Python dealt
with the trained model. The FastText model used an n-gram interval of three to six,
the reason for this was that it made the model more flexible, in both having more full
words, as well as having sub-words, which mainly helped mitigate the small sample
size.

In total, the model was trained on 42 projects seen in section A.1. The data was
extracted manually by filtering GitHub for the most popular repositories on GitHub
using GoLang as their main language and then through the help of the researchers’
own expertise regarding the subject of code structure in GoLang, repositories were
further filtered out to promote a model with a better understanding of good code
structure. For the training, the developers created a preprocessor that derived pack-
age and function names creating a data file aligned with the example shown in section
1.1.2 and trained the model by running the data through a training script [9]. The
result of this was a tool that was able to give output on if functions were placed in
the wrong packages in the project through the use of similarity calculation made by
the model. The similarity calculation was then coupled with a threshold on simi-
larity, where only package-function relations having below-average similarity would
be flagged by the tool; the average calculation then helped mitigate possible false
positives made by the model.

1.3 Ethical, societal and sustainability aspects
Poor code quality has been an issue that has been growing recently; with legacy sys-
tems aging poorly and the massive amount of work required to maintain them and
improve on them to meet the standards of today, it gives room for improvement [10].
This study aims to help in the sustainability aspect of project maintenance, giving
aid to engineers hoping to improve code understandability. The aim of the tool we
propose GOSPLAT is to create a faster workflow for the engineer to find inconsisten-
cies in code, hints to improvements in code structure, or even function names, which
can result in more easily understandable and maintainable code for future developers.
With less work spent on future maintenance of projects with poor code readability
and maintainability, more work can be put into other areas like code optimization,
feature development, and more.

Chapter 1. Introduction 4

1.4 Scope
The case study consists of three major phases of data collection; phase 1, phase 2,
and phase 3.

Phase 1 consists of interviews; these interviews help investigate the general opin-
ion of the concepts the tool GOSPLAT are described to consist of, as well as the gen-
eral issues that developers, as well as managers, may have regarding code structure
to understand better the areas where GOSPLAT may be more effective. Through
this, researchers may find if there’s an interest in the tool and make it possible to
evaluate the willingness of adopting GOSPLAT or a similar solution in a company
environment.

Phase 2 consists of observational sessions. Here the subjects will test the proto-
type to evaluate LMs’ effectiveness in solving the issue with poor and inconsistent
code structure. It will also be used to find flaws presented in GOSPLAT. During
the sessions, the subjects will create small projects and run GOSPLAT continuously
through the process to evaluate where it did find flaws in code structure, where it
gave false positives, and also document the reactions and experiences expressed by
the subject.

Lastly, Phase 3 consists of interviews with the subjects that used GOSPLAT to
further investigate their thoughts after their experience using the tool. Areas they
found GOSPLAT improved code structure and also areas they felt subjectively could
be improved on the tool.

1.5 Outline
The remaining chapters of this study are presented in this section, including their
content.

Related Work: This chapter investigates the existing literature related to the
problem or the solution defined in this case study. It also describes the similarities
and differences between the related literature and how they compare to this case
study.

Method: This chapter describes the design of the entire case study; it includes
research questions, protocols for data collection and analysis, and threats to validity
related to the defined design.

Results and Analysis: This chapter describes the results achieved from the
data collection phases. It presents a thematic analysis split into three parts, Phase
1, Phase 2, and Phase 3, as well as the finished thematic map. It also offers a more
in-depth analysis of the themes and codes found during data collection and analysis.

Discussion: This chapter answers the defined research question found in
Method. It also discusses the importance of the findings presented under Results
and Analysis.

Conclusions and Future Work: This chapter concludes the case study report.
It summarizes the findings and answers while explaining the scientific value in the
answers presented in Discussion. It also goes over suggestions for future work that
may improve this case study and lead to new findings within the problem and solution
domains.

Chapter 2
Related Work

The literature study and the collection of the literature presented in this chapter
followed the method described in section 3.3.1.

A research study by Börstler et al. [4] investigated the properties to code quality.
The results were derived from 34 interviews with professional developers, educators,
and students to get a better view of what code quality is. The results showed that
readability, together with code structure, were the largest factors in code quality as
a whole, together with comprehensibility. While Börstler did not specifically define
why code quality is important to the study, it gives insight into the components it
consists of. Krasner and Herb instead studied the cost of poor code quality [10]. The
researchers found that code quality has a considerable impact on the economy in the
industrial environment. The estimate was as high as $520 billion spent on resolving
poor-quality legacy software. Krasner and Herb also highlighted the need for better
tools to aid in mitigating flaws in the software developed for projects. This, in turn,
highlights the need for further studies on how to automate activities for developers,
which could help both the efficiency and effectiveness of developers.

Code quality was also a focus in Asad’s empirical study [2], where the focus was
on GoLang’s most used project’s comprehensibility. The study wanted to find areas
in the chosen programming language where code lacked quality and compare it with
Java to understand the problem better. The data compared 50 popular open-source
projects in Java and GoLang. Results showed that the most significant reason for
the lack of comprehensibility in GoLang projects was too long files. In turn, the
summary was that Java and GoLang both suffer from this issue. Asad is a lot more
specific; this summary of results helped better define the pitfalls in larger coding
projects, which ties into this study’s goal as well, regarding code quality and code
structure which may be connected to large file issues.

The work that already exists on the use of LMs for identifier naming is quite
extensive. Allamanis, in a study [1], proposed the use of a new tool they had
designed called NATURALIZE. The study designed and evaluated a LM-based solu-
tion for identifier naming. The training was done on identifier names as well as their
surrounding context, which was then used together with the input code to output
results tailored to the given code and achieved upwards of 94% in accuracy. Lin et al.
[11] then furthered Allamanis’ work by comparing NATURALIZE and other static
analysis tools to find a more clear view of the tool’s efficiency, as well as their own
design, which exploited the benefits of LMs as well. The study found that identifier
renaming and checking methods using LMs were promising, receiving good results
depending on the project the tools were used on. LMs were in this study together

5

Chapter 2. Related Work 6

with the original study made by Allamanis, a breach into the use of simple LMs in
code analysis. While identifiers are not the same as code structure, the connection to
natural language is similar. Identifiers are connected to a certain context the same
way functions are located in a certain context, where functions made to achieve a
certain goal is usually grouped up, and others are separated. By looking at the re-
sults from these studies, a clear sign can be seen that there is potential to use LMs
in contexts other than just natural language. This is further shown in a study by
Efstathiou et al. [7] where the researchers wanted to investigate the applicability
of the FastText model [3] on code analysis. The model was trained on many code
projects to achieve an extensive vocabulary able to understand most code snippets
given to it. They used this model to generate comparisons between projects, finding
that the model understood that projects with similar use cases had higher similarity
than projects with different use cases. This shows that further work can be made
with the FastText model [3] in the context of code analysis.

2.1 Summary
Parts of the related work highlight the importance of code quality in software devel-
opment and the need for further research to understand its components and impact.
Börstler et al. [4] found that readability and code structure were the main factors
in code quality, while Krasner and Herb [10] demonstrated that poor code quality
could result in significant economic costs. Asad’s study focused on GoLang’s most
common projects and found that the largest issue affecting code comprehensibility
was too long files [2]. This highlights the need for a better understanding of how
to improve testing and automate activities for developers. The universal nature of
code structure further emphasizes the need for more research in this area to find
solutions to improve code quality in all programming languages. Overall, the studies
strengthen the rationale for conducting a case study on code quality.

Other studies included in the related work’s results were to demonstrate the
feasibility of this case study and its main goal. Allamanis proposed a new tool coined
Naturalize, which used the technology also presented in this case study to instead
analyze variable naming. Lin et al. [11] then complemented Allamanis’ study by
comparing Naturalize and similar tools on a much larger body of projects to more
deeply investigate the differences between a traditional static analysis tool and tools
using LMs. Efstathiou et al. [7] instead specifically investigated the applicability of
FastText in code analysis and found that it did function well, further showing that
the study’s choice of model was valid.

Chapter 3
Method

3.1 Research design
The objective of the study was to investigate how LMs can help to improve static
analysis of code project structure during the initial development stage, using the
prototype tool GOSPLAT. The study was specifically aimed toward being used in
a company environment, meaning it required the ability to handle varying levels of
complexity in small code bases developed by company subjects based on a provided
skeleton program. To achieve the stated objectives, the following research questions
are answered in this research study:

• RQ1: How does the use of language models (FastText) and the GOSPLAT
tool impact the quality of code structure during the initial development stage?

– RQ1.1: In what ways can the GOSPLAT tool assist developers in creat-
ing a higher-quality code structure?

– RQ1.2: How can the GOSPLAT tool improve the semantic understand-
ing of code structure and organization during the development process?

• RQ2: What is the perceived need and willingness of software developers to
adopt a tool like GOSPLAT that leverages language models (FastText) for
improving code structure?

– RQ2.1: How do software developers perceive the potential benefits and
drawbacks of using a tool like GOSPLAT for enhancing code structure in
their development workflow?

– RQ2.2: What factors influence software developers’ willingness to adopt
a tool like GOSPLAT for improving code structure?

The research methodology used for this thesis is case study research as well as
a literature study. The case study research was chosen as the most appropriate
methodology to evaluate the chosen research questions. We the case study guidelines
provided by Runeson et al. [8] to plan, design and execute this case study. The
literature study method was instead chosen to study the already existing literature
having been made on the problem area.

7

Chapter 3. Method 8

3.2 Case study design

3.2.1 Case

The case investigated the effectiveness and usefulness of an LM-based code analy-
sis solution, using the designed prototype GOSPLAT in the chosen programming
language GoLang, to assess the proposed LM-based solution. Furthermore, the case
explored how it can help in creating more comprehensive and structured code during
the initial development stage. The study involves subjects from a company building
their own small programs based on a provided skeleton program, and allowing GOS-
PLAT to analyze it, comparing function names and package names semantically, and
identifying if functions are in the right package or if they should be moved to another
package. This approach aims to evaluate the tool’s effectiveness in promoting a more
idiomatic and consistent code structure during the initial development process.

3.2.2 Unit of analysis

The case has a pre-deployment phase in which the researchers interviewed the focus
groups to determine interest in the tool and AI as a whole, and also to find prob-
lematic areas regarding package placement, naming, and code structure. The later
deployment phase included the following:

• Observations - notes and documentation

• Interviews - transcripts

• Archival data - log output

Observations of the focus group and interviews were conducted to evaluate the ef-
fectiveness of the tool. As well as an analysis of the tool’s log files generated from
usage and developer’s responses and opinions on the tool suggestions as part of the
post-deployment interviews. Two units of analysis exist the initial interviews be-
fore the deployment and observations of the tool. The second unit of analysis is
the post-deployment of the tool, where the tool’s log files were analyzed, and the
final interviews with the focus group were held to give insights into the perceived
effectiveness and usefulness of the tool.

3.2.3 Theory

According to related work, one of GoLang’s and other languages’ downfalls regarding
comprehensiveness is too large files [2]. The difference between GoLang and Java
being brought up in the study is that Java is an object-oriented programming (OOP)
language, while GoLang utilizes more composition compared to OOP and is a lot
more of a procedural language. In procedural languages, function structure is a lot
more important as it’s one of the larger building blocks of a program, compared to
OOP, where the focus is more on each class. With too large files, there’s a high risk
of functions with different contexts being bundled together, creating less comprehen-
sibility of the entire program. It’s known that comprehensiveness, readability, and

Chapter 3. Method 9

structure are all parts of code quality [4] which directly correlates to maintainability
in code projects. Multiple sources of data collection were used, including:

• Interviews with developers before using the tool about the area of study, lan-
guage models used in static code analysis, and general experiences in GoLang
and how they think GOSPLAT could theoretically help or improve different
situations.

• Observations where the researchers observe the developers using the tool and
documenting the results.

• A second phase of interviews after using the tool regarding the tool’s impact
and their perceived usefulness of the tool, and their experiences using it. And
the developer’s responses to suggestions made by the tool extracted from the
log files.

• Analysis of the tool’s logs to gain an understanding of what type of faults the
tool detects and reports to its users.

3.3 Data Collection

3.3.1 Literature Study

This section explains the method for the conducted literature study used to collect
the literature presented in chapter 2.

During the collection of the related literature, the ACM Digital Library together
with IEEE Xplore was mainly used. These databases were chosen for their size and
variety in published works. To begin the literature study, a search string is required.
This search string was created by the two researchers discussing the related keywords
to the research questions presented in section 3.1. In the end the researchers came
up with the research string including the necessary keywords:

“coding conventions” AND “code quality” OR “code structure” AND (“language models” OR “natural
language processing” OR “NLP”)

The initial search was done in the ACM Digital Library, where the researchers
read titles and keywords mainly to quickly decide and find works that may be re-
lated to the research questions in this study. Once the considerable amount of work
was collected, the researchers then read through the abstracts to gain a deeper un-
derstanding of the work, at which it was finally decided if the work was related to
the research questions in this study. The two main methods used during the liter-
ature study were forward and backward snowballing. Meaning the researchers both
looked through citations of found related works and references, to further increase
the chances of finding more related works.

Once a considerable amount of related work was derived from the collection, the
work was thoroughly analyzed and summarized by the two researchers.

Chapter 3. Method 10

3.3.2 Interviews

One of the three methods of data collection in this study includes interviews. The
design of the interviews was based on the work of Boyce and Neale [5] as well as
the work done by Runeson et al. [8] which defines a basic method for conducting
interviews. In the book made by Boyce and Neale, the writers explained the process
of in-depth interviews. A method the researchers in this study found fitting for the
qualitative nature of this study.

Deriving the design from the book, the structure of the interviews was separated
into several steps [5]. Before each interview, three major parts were presented to
the interviewee.

1. The terms of the interview

2. The context of the interview

3. Pre-interview questions

The terms of the interview are important to ensure transparency between the inter-
viewer and the interviewee. In addition, it also increases the validity and reliability
of the data as it makes the interview more ethical. The terms define rules which the
researchers shall not break, as the subjects have full rights to the letter of confirma-
tion and its ownership. It also helps to further give insight into what the interview
will go over as the terms also include parts of the interview. The terms can be read
in appendix A under Confirmation Letter.

The context of the interview was presented to the interviewee to increase un-
derstanding of the contents of the interview. The interviewer presented important
terms referenced in the questions and an overview of GOSPLAT and its goals. A
better understanding gives the interviewee the ability to provide better answers to
questions during the interview, this adds to the quality, reliability, and transparency
of the interview.

The last part of the interview introduction was the pre-interview questions. These
questions were not documented as they contain personal and sensitive data, which
could be used to identify the interviewees. The questions were instead used to open
the discussion between the interviewer and interviewee, to feel more comfortable.
Doing so creates a more open and less stressful space which may improve answers
given by the interviewee and ensure that both parties understand the situation.

The interview’s structure to question was derived from the methods explained
by Runeson et al., the interviews in phase 1 were semi-structured [8], while the
interviews in phase 3 were unstructured [8]. The reason for going for semi-structured
interviews in phase 1 was for both trying to specifically explore points of interest and
also to give the subject room to openly speak, while in phase 3, it was more to validate
what the researchers already had to some degree observed in phase 2’s observations,
hence a more open structure were better.

3.3.2.1 Instruments

For each interview, during Phases 1 and 3, a recording device was used as long as the
subject agreed to it by signing the confirmation letter, seen in section A.2. If this

Chapter 3. Method 11

was not accepted by the interviewee, notes would then be used instead. A computer
was used to display questions the interviewers asked.

3.3.2.2 Stakeholders

During phase 1, the stakeholders were project managers and developers employed in
the company. In phase 3 it was only developers as they were the ones participating
in the observations of phase 2.

3.3.2.3 Transcription

After the interviews, the researchers transcribed the audio recordings into text. The
reasoning behind translating audio into text is that it makes the data analysis more
effective and viable, as it makes the use of qualitative analysis methods possible.
The transcription followed a non-verbatim method; this is a choice made by the
researchers to increase understanding of the context when presenting the data analy-
sis. Necessary steps were taken during the transcription of the audio recording. The
researchers first listened to the audio recording from beginning to end to form an
overview of the contents of the recording.

3.3.3 Observations

The second method of data collection used by the researchers is observation. Using
observations, the researchers can find how GOSPLAT acts and behaves in a setting
where the developer is actively using it. It was used to further add to the complexity
of the qualitative data used in this study’s analysis and discussion.

The individual observations were split up into 4 steps. These being:

1. Introduction to the tool’s functionality

2. Introduction to the small skeleton project

3. Observation of the subject developing with it

4. Documentation of results given by GOSPLAT

The observations were done in the company under study. The subjects used a pre-
pared computer with the skeleton program made by the researchers and GOSPLAT
already installed, not to waste time and more effectively extract data from the pro-
cess.

The skeleton program itself is a simple web server made in GoLang with the
necessary code for new functionality to be developed easily. The program itself is
defined in section A.4. The skeleton program was used to save time for the subjects,
as time is very valuable, but also to make the process more smooth, efficient, and
easier to analyze. Each subject was then given 30 minutes to test the tool, during
which the researcher asked questions and observed the subject’s actions.

Chapter 3. Method 12

3.3.3.1 The observation process

The observations followed a “think aloud” protocol defined by Runeson et al. [8],
where the researcher actively asked questions throughout the observation of what
the subject was planning to do with the skeleton program, what they thought of the
output given by GOSPLAT, and how they planned to resolve the errors produced
by GOSPLAT. This was done to encourage the subject to speak their own thoughts,
which enabled the researcher to document what was going on, the experience of
the subject, and the effectiveness of GOSPLAT. The method of documentation of
records was based on the method “Descriptive records” defined by Simpson and Tuson
[12]. This method of documentation is more flexible, and notes taken during the
observation were then used in the data analysis. Using a more flexible method of
documentation is appropriate as the case study is inductive. A flexible approach is
more fitting and aligned with the research questions defined in section 3.1.

3.3.3.2 Follow-up interviews

After observations, follow-up interviews were conducted in a semi-structured man-
ner by the researcher with each of the participants, to gather data on participants’
thoughts and experiences using GOSPLAT. This was to validate findings and data
from the observations as well as give new insights. And to answer questions about
the participants’ perceived effectiveness and usefulness of GOSPLAT. The design of
these interviews is found in section 3.3.2. Confirmation and presentation of terms for
the interview were done orally because of time constraints. The presentation of terms
was done through the researcher reading the confirmation letter’s terms presented in
section A.2.

3.3.4 Archival data collection

The last method of data collection used in this study was archival data collection.
The archival data were derived from the output given by GOSPLAT during obser-
vations and was documented after each observational session by the researcher. The
documentation contains the following:

• All output given by GOSPLAT during the session of development

3.4 Data analysis
Analysis of the data from observations, interviews, and log files was done in a quali-
tative manner, using categorization and coding to identify themes and patterns.

Thematic analysis was chosen as it provides a flexible and open-ended approach
to exploring complex and nuanced phenomena. The thematic analysis allows for the
identification of patterns and themes within the data collected, which helped gain a
deeper understanding of the need for a tool like GOSPLAT in the industry and its
effectiveness. This method also enabled the analysis to stay flexible and adapt to
unexpected findings. Additionally, the thematic analysis helped identification of the
diverse perspectives presented in this study and generated new insights and ideas
about the research topic in focus.

Chapter 3. Method 13

The method of thematic analysis used in this case study is defined by Cruzes and
Dybå [6]. The method of thematic analysis was chosen for its focus on specifically
software engineering, the over-arching theme of this research work. The method is
defined by 6 major steps:

1. Familiarization with the data: This involves transcribing the interviews, read-
ing through the transcripts, and reviewing the observational notes and log files
to become familiar with the data.

2. Generating initial codes: During this phase, codes are created by identifying
and labeling meaningful segments of the data.

3. Searching for themes: Codes are then grouped together to form potential
themes, representing broader patterns in the data.

4. Reviewing themes: This phase involves refining the themes, discarding those
that do not have enough supporting evidence, and combining or splitting
themes if necessary.

5. Defining and naming themes: In this phase, each theme is given a clear and
concise name that reflects its essence, and a detailed analysis of each theme is
conducted.

6. Producing the report: Finally, a report is produced, presenting a coherent and
logical account of the themes and their significance to the research questions.

This method allowed for a systematic and in-depth analysis of the qualitative
data, enabling the identification of patterns and themes that helped answer the
research questions and provided valuable insights into the effectiveness and usability
of GOSPLAT. The iterative nature of this approach ensured that the analysis was
constantly refined and grounded in the data.

3.4.1 Data encoding

Continuing the choice of an inductive data encoding approach allowed a more open
and flexible process of analysis. As themes were constructed directly from the data
and did not let preconceived notions affect the data. This increases the validity and
reliability of the findings since themes more likely accurately reflect the data. And
because the area of study, software engineering, most research, in this case, is new
and requires a more exploratory approach, the inductive approach to data encoding
was the most fitting.

3.5 Validity and reliability
Ensuring the quality and reliability of the data was a significant concern, and this
extended across all phases, including transcription, observation, and log collection.
One large threat to validity was failure to capture relevant information during the
transcription process of interview recordings or misleading transcripts that were not
actually what the subject meant. Because of this, a double-layered approach was

Chapter 3. Method 14

deployed to maintain rigorous control over data quality in the transcription process;
the first layer involved individual transcription and proofreading, aligning the audio
recordings with the transcribed text. Once the initial proofreading phase was com-
pleted, the two researchers teamed up to proofread again, collectively ensuring data
alignment and refining the transcription.

Per the guidelines in section A.2, this refined transcription was sent to each in-
terviewee for input. The participants thereby added another layer of validation,
enhancing the reliability and privacy of the transcriptions. In addition, this strat-
egy guaranteed that the transcription went through two stages of quality control,
solidifying the reliability of the final output presented in the data analysis.

In the observation phase, a significant threat to data quality was the potential
influence of the skeleton program on the subjects’ development choices. An open
setting was maintained to negate this risk, encouraging the subjects to code freely
and utilize GOSPLAT as they found suitable. Further, the skeleton program was
kept as simplistic as possible, devoid of additional packages or functions that could
lead the subjects down a specific path.

An additional concern during this phase was the one-researcher observation ap-
proach, which might lead to data loss or manipulation. In response to this, a valida-
tion phase was executed after the observation. The two researchers scrutinized and
corroborated the gathered data to amplify its reliability.

In the log collection phase, overlooked outputs posed a risk to data quality. To
mitigate this, the researchers jointly examined the extracted data, determining if the
log output aligned with the documented observations and the final program. This
joint effort ensured the reliability of the remaining data.

3.6 Ethical concerns
Throughout this case study, the most prominent ethical concerns were confidential-
ity, consent, and anonymity. The reason for this was the involvement of human
subjects throughout the study. Confidentiality was guaranteed by both researchers
who disregarded any private information shared during data collection sessions with
subjects. This was also included in the terms of each session presented to the subject
[A.2, A.3] by the researcher(s).

Consent was obtained through Confirmation Letters [A.2, A.3]. Prior to each
interview or observational session letters comprising written terms for the subjects to
read and sign, were handed out. The subjects had the freedom to ask questions about
these terms. In phase 3, however, the terms were read out loud by the researcher,
and the consent was obtained orally, to which all subjects agreed.

The anonymity of each subject was also of high importance, contributing to
the study’s validity and protecting the subject’s privacy. To guarantee this, every
subject, as with the interviews, received a letter of confirmation outlined in section
A.3, stating the terms of the observation session. The researcher also went through
the introduction of the observation with each subject for added transparency.

Furthermore, subjects were briefed about what data, outside of recordings and
textual documentation, would be collected. This included any archival data from the
session, which was also stated in the confirmation letter in appendix A.3.

Chapter 4
Results and Analysis

This chapter presents the findings from phases 1, 2, and 3 of data collection. Phase
1 includes the initial interviews with all six subjects, comprising three developers
(subjects 2, 5, and 6), one architect/developer (subject 3), and two project managers
(subjects 1 and 4). Phase 2 includes the observations with the three developers as
due to time constraints, the architect/developer was unable to contribute, and the
managers, despite their past coding experience, felt they lacked the necessary daily
coding experience to be a valuable addition. Lastly, phase 3 includes the post-
interviews with the three developers that participated in phase 2.

The subjects’ experience in GoLang ranges from one to over five years, with most
having more than five years of experience. Using Cruzes and Dybå’s Thematic Syn-
thesis approach [6], the data from each phase was analyzed to identify the important
themes and codes that provide insight into the research questions. This chapter’s
goals are to present the findings from the thematic analysis for each phase and to
talk about how the themes, codes, and research questions relate to one another.

The chapter is organized as follows. First is a summary of the results and analysis
to help the reader understand the following sections that dive more in-depth. The
first of these Sections 4.2 presents the analysis of the initial interviews (phase 1),
detailing the process of familiarization, coding, and theme generation. The findings
from this phase are focused on the challenges of code structure in software engineer-
ing projects and perspectives on the adoption of the GOSPLAT tool. Section 4.4
describes the observations (phase 2) and the themes and codes that emerged from
the analysis of the observational data. Section 4.6 presents the analysis of the post-
interviews (phase 3), discussing the themes and codes that build upon or refine the
themes identified in the earlier phases.

The resulting thematic map that will be explored in depth is seen in figure 4.1.

4.1 Summary of Results and Analysis
Phase 1: Initial Interviews The analysis of this phase was focused on the chal-
lenges of code structure in software engineering projects and perspectives on the
adoption of the GOSPLAT tool. The subjects highlighted the importance of good
code structure, their experiences with poor code structure, and the difficulties in
creating a good code structure. They also expressed both positive perspectives and
initial reservations about GOSPLAT usage.

Phase 2: Subject Observations In this phase, observations were made with
three developers. The subjects’ experiences with GOSPLAT were analyzed, and a

15

Chapter 4. Results and Analysis 16

Code: code structure is
important when code is

shared among developers

Code: Code structure
important when you
return to old code

Code: Code structure
helps maintainability Code: code structure

important for navigating

Code: Good code structure,
helps for managing newcomers

Code: Structure
important for context of

code

Code: High-level building
blocks are more important

than code structure

Code: Low-level code-
structure is less important

Theme: Importance of
code structure

Code: Poor code
structure makes it hard

to navigate

Code: Poor structure
makes it hard to begin

working

Code: Code-structure can
be a hinderance when

developing new features

Code: Bad code structure
can create larger issues

when mixed with new
experience

Code: Even minor faults
in code structure can

hurt efficiency

Theme: Experiences with
poor code structure

Code: Difficulty to name
packages

Code: Gut feeling in
decision-making: functions

and packages

Code: A lot of time spent
on naming

Code: It’s hard to keep a
consistent code structure

in a new project

Code: Function placement
makes sense usually

Code: Garbage package
used when nothing else

works

Code: Name packages
whatever when you’re

unsure

Code: Functions belong
with their logical

counterparts

Code: Functions belong
together if they are
conceptually alike

Theme: Difficulty in
creating code structure

High-level theme:
Navigating Code Structure Challenges in

Software Engineering

Code: Positive on using
GOSPLAT

Code: Tools creating an
idiomatic way is good

Code: Idiomatic tools must
not be right just enforce a

certain way

Code: Tools make you
able to use intuitive

understanding

Code: GOSPLAT may help
in naming, saving time

Code: Tool feedback is fast,
good for newcomers

Code: GOSPLAT could be
useful for naming tips even if

just one person used it

Code: GOSPLAT and other
tools are more useful when

you don’t know what you want

Code: Using AI for
coding seems valuable

Theme: Positive
Perspectives on
GOSPLAT Usage

Code: GOSPLAT is
promising depending on

how much control it wants
Code: Unsure over

GOSPLAT’s usability

Code: GOSPLAT needs to
be of high standard to be

useful

Code: GOSPLAT partly
solves the issue

Code: No continuous
feedback from tool

Code: Everyone needs to
use GOSPLAT for it to be

fully effective

Theme: Initial
Reservations about
GOSPLAT Adoption

High-level theme:
Perspectives on GOSPLAT Adoption

Code: Positive impact
on code structure

Code: GOSPLAT pushes
for refactoring decisions Code: Moving of function

based on GOSPLAT
suggestion

Code: Tunnel vision on
putting everything in one

package

Code: continuous
disagreement with subject

regarding one singular
function

Code: Incorrect naming
suggestions

Code: GOSPLAT
Wanting to move things
to unrelated packages

Code: Freaks out when
project size grows

Code: Appreciation of
GOSPLAT's performance

Code: Recognition of
small improvements

making a big difference

Code: Potentially very
useful with an enhanced

model

Code: Improvement in
Error Reporting

Code: Integration with IDEs
is important for adoption

Code: Enjoyment in
using GOSPLAT

Code: Appreciation of
GOSPLAT's Impact on

Code Structure

Code: GOSPLAT is an
interesting Tool

Theme: GOSPLAT's
Limitations and Inaccurate

Recommendations

Theme: Recommendations
for GOSPLAT
improvements

Theme: Willingness to
adopt and enjoyment of

GOSPLAT

Theme: Improvements
in code organization

Theme: Perceived
benefits and potential of

GOSPLAT

Code: Encourage more
clear naming of functions

Code: Encourage more
clear naming of

packages

Theme: Impact on
renaming functions and

packages

High-level theme:

 Impact of GOSPLAT on Code Structure and
Organization

High-level theme:
User Experiences and Perceptions of GOSPLAT

Code: Improved
awareness of code

structure

Code: Head start on
early code structuring

Code: You get indications
of flaws in code structure

Code: GOSPLAT failing to
recognize errors in code

structure

Code: Better context-
awareness

Code: Need variety in
suggestions for different

occasions

Code: Need for improving
accuracy and hit rate

Code: Subject want to
use it after improvements

Code:Possibly more
useful as projects grow

Theme: Potential
benefits of post-

prototype GOSPLAT

Code: Enhanced code
structure consistency

Code: Time saved not
thinking about code

structure

Code: Guiding developers

Code: Assisting
newcomers

GOSPLAT
& THE LM-
Solution

Figure 4.1: Thematic map

Chapter 4. Results and Analysis 17

positive impact on code structure was observed, affecting decisions about refactoring
and moving of functions. However, they also expressed concerns about GOSPLAT’s
limitations, such as tunnel vision on centralizing all functions to one package, and
subjects’ disagreements with the tool regarding specific functions. Subjects found
the tool interesting and enjoyed how it made them more aware of code structure.
Recommendations for improvements were made in terms of error reporting and the
accuracy of the model to make it more suitable in a professional setting.

Phase 3: Last Interviews Lastly, interviews were conducted with the three
developers from phase 2. Updates to earlier themes identified in Phase 2 include
further insights into GOSPLAT’s impact on code structure and how it can offer an
early head start on structuring code properly. A willingness to adopt GOSPLAT
in their development processes after improvements were made was expressed. They
also expressed interest to use GOSPLAT in larger projects and recognized the fu-
ture potential of an improved model. However, some limitations were brought up,
like GOSPLAT’s reaction when the project size grows. Suggested improvements in-
clude better context-awareness and integration with IDEs (Integrated development
environments).

4.2 Phase 1 analysis: Initial interviews
The two researchers began the analysis by familiarising themselves with the data,
in this instance, the recordings collected from the interviews. The researchers tran-
scribed the interviews through a non-verbatim approach, where transcriptions were
finalized and discussed by both researchers. This method improved error checking by
ensuring that only relevant information was included in the study. This also aided
the researchers in finding a common understanding of the content.

Once familiar with the data and the generated transcripts, the researchers began
reading through the transcripts and generating the initial codes that would then later
be refined further. The tool used in this process was Microsoft Excel. The reasoning
behind using this tool was that it made it easier to connect codes to text segments
visually, which aided the researchers when discussing their individual codes. The
complete set of codes is presented in appendix B together with the text segments
they were derived from.

After the researchers merged their codes into a central and finalized set of codes,
the researchers began individually grouping codes based on likeness in context. These
groups were then used to form the themes and high-level themes below:

• Navigating Code Structure Challenges in Software Engineering

– Importance of Good Code Structure

– Experiences with Poor Code Structure

– Difficulty in Creating Code Structure

• Perspectives on GOSPLAT adoption

– Positive Perspectives on GOSPLAT Usage

– Initial Reservations about GOSPLAT Adoption

Chapter 4. Results and Analysis 18

Under this process, codes were changed, merged together, or simply removed for not
being relevant to the set of research questions defined in section 3.1. This helped
the results from the analysis become more concise and focused, which improves both
transparency and readability.

4.3 Detailed Themes Explanation

4.3.1 Navigating Code Structure Challenges in Software En-
gineering

This high-level theme investigates the importance, experiences, and difficulties re-
lated to code structure in software engineering projects. This theme is the only
high-level theme not connected to the central topic GOSPLAT & The LM-solution
as seen in figure 4.1. This was because of it not being connected inherently connected
to the LM-solution or GOSPLAT, it is rather an extension of the problem domain.

4.3.1.1 Importance of Good Code Structure

A zoomed-in figure of the thematic map can be seen in section B.4.1.
This theme highlights how important code structure is to concepts like main-

tainability, navigation, and teamwork. Representative codes for this theme include
Good code structure, helps for managing newcomers [B.1.1.1], where subject
4, a project manager, expressed:

“Well, being a manager of a team, it’s very important that we can have new people come in and take
over code, so. . . and then I think structure is very important yeah.” [B.1.1.1]

In another interview code Code structure is important when code is shared
among developers [B.1.1.1] was derived from a developer where they expressed:

“It’s especially important when you share and people are expected to read it, it becomes increasingly
important also for yourself.”[B.1.1.1]

Also, other codes were found to relate to this theme, these being Code struc-
ture helps maintainability [B.1.1.1], Code structure is important for nav-
igating [B.1.1.1] and Code structure is important when you return to old
code [B.1.1.1]. Due to constraints, not all codes will be represented with quotes in
this section, but all codes together with snippets from the transcripts can be found in
B. The impact of code structure on the initial development stage is covered in these
codes, which also highlight some elements of good code structure that contribute to
more effective software development. (RQ1.1) in section [3.1].

4.3.1.2 Experiences with Poor Code Structure

A zoomed-in figure of the thematic map can be seen in section B.4.2.
This theme delves into the struggles developers face when dealing with poorly

structured code. Representative codes include Poor code structure makes it
hard to navigate [B.1.1.2], In one interview with subject 4, code Poor structure
makes it hard to begin working [B.1.1.2] was found when the subject said:

Chapter 4. Results and Analysis 19

“we have had teams taking responsibility for old code where a lot of refactoring was needed to bring
it up, to where someone can understand it. And it was hard to start with, yes.” [B.1.1.2]

. In another interview, subject 5 expressed:

“Yea that happens sometimes, especially once you start a project and you don’t know what direction
it will go and that can happen even if you have had the best of intentions also” [B.1.1.2]

Forming the code Code structure can be a hindrance when developing new
features [B.1.1.2].

Other codes were also found to correlate to this theme, these being, Bad code
structure can create larger issues when mixed with new experience [B.1.1.2],
Even minor faults in code structure can hurt efficiency [B.1.1.2] and Poor
code structure makes it hard to navigate [B.1.1.2] and can be found with in-
formation and links to segments of transcripts in B. Codes described in this theme
emphasize the challenges that developers face when working with poorly structured
code and underscore the importance of good coding practices during the initial de-
velopment process. (RQ1.2) in section [3.1].

4.3.1.3 Difficulty in Creating Code Structure

A zoomed-in figure of the thematic map can be seen in section B.4.3.
The complexity and difficulties of establishing a good code structure are de-

scribed in this theme, with representative codes such as Difficult to name pack-
ages [B.1.1.3] which were derived from an interview with subject 3 where they said:

“You must find a good descriptive name, but not too good because then I’d want to use it in more
packages.” [B.1.1.3]

In another interview, the code A lot of time spent on naming [B.1.1.3] when
subject 6 answered a question with:

“I find myself a lot thinking about names for both variables and functions, a lot. And sometimes it’s
just hard,” [B.1.1.3]

Additional codes were also found during this phase that correlated with the
theme, these being, It’s hard to keep a consistent code structure in a new
project [B.1.1.3], Function placement makes sense usually [B.1.1.3], Garbage
package used when nothing else works [B.1.1.3], and Functions belong to-
gether if they are conceptually alike [B.1.1.3]. which alike other section be
found in section B with relevant links to transcript segments. These codes illustrate
the challenges developers face when designing an efficient code structure and address
the impact of these difficulties on the initial development stage. (RQ1.1 and RQ1.2)
in section [3.1].

4.3.2 Perspectives on GOSPLAT adoption

This high-level theme explores the various views, opinions, and reservations of devel-
opers regarding the adoption and usage of the GOSPLAT tool, including its potential
benefits and limitations.

Chapter 4. Results and Analysis 20

4.3.2.1 Positive Perspectives on GOSPLAT Usage

A zoomed-in figure of the thematic map can be seen in section B.4.5.
This theme covers the optimism and enthusiasm towards GOSPLAT as a po-

tentially valuable tool for improving coding practices, naming conventions, intuitive
understanding, and overall development efficiency. Some representative codes include
Positive on using GOSPLAT [B.1.2.1], where for example subject 3 expressed:

“I suppose, if it’s easy to setup and run and it’s effective then I guess so.” [B.1.2.1]

and Tools creating an idiomatic way is good [B.1.2.1], where subject 6 ex-
pressed:

“Any tool that would help give an idiomatic way or a reference way is good because then you know,
if you use those tools regularly,” [B.1.2.1]

as well as other codes, Tool feedback is fast, good for newcomers [B.1.2.1],
GOSPLAT may help in naming, saving time [B.1.2.1], and Using AI for
coding seems valuable [B.1.2.1]. These codes offer insights into how GOSPLAT
can address the challenges of creating a good code structure. (RQ2.1 and RQ3.1) in
section [3.1].

4.3.2.2 Initial Reservations about GOSPLAT Adoption

A zoomed-in figure of the thematic map can be seen in section B.4.6.
This theme investigates the concerns and hesitations expressed by developers

regarding GOSPLAT’s usability, effectiveness, control over the development process,
and the need for continuous feedback and widespread adoption for it to be fully
effective. Representative codes for this theme include GOSPLAT needs to be of
a high standard to be useful [B.1.2.2], where subject 5 expressed:

“I guess that would help. But it needs to be a pretty high standard tho, because once you start to
disagree with the tool then it will become an annoyance instead of a help” [B.1.2.2]

And in another interview subject 1 expressed:

“It’s most likely part of the solution, I would assume that the code is not refactored. Usually, if it
works don’t touch it.” [B.1.2.2]

As well as other codes, these being, Unsure over GOSPLAT’s usability [B.1.2.2],
No continuous feedback from tool [B.1.2.2], GOSPLAT partly solves the
issue [B.1.2.2], and Everyone needs to use GOSPLAT for it to be fully ef-
fective [B.1.2.2]. These reservations provide valuable information for understanding
potential barriers to GOSPLAT adoption and the tool’s limitations. (RQ2.2 and
RQ3.2) in section [3.1].

Information regarding each code and the specific segments of the transcripts they
were derived from can be seen in the appendix section B.1.

Chapter 4. Results and Analysis 21

4.4 Phase 2 analysis: Subject Observations
Unlike the prior phase of data analysis, the data is now split into two parts; notes
and log output. Researchers began by cleaning up notes, using recordings gathered
through the observation to correct and improve on notes gathered by the researcher.
During this time, notes were also assigned their correct log output to easier bring
context to what was happening during the session. Afterward, the two researchers
discussed the processed data to ensure no faults were made during this process. In-
cluding log output together with notes helped add transparency to the notes. Show-
ing what the subject was reacting to and not only documenting their reactions to
what was happening.

Once analysis began, notes and logs were read and analyzed in tandem. This
helped form more precise codes, themes, and high-level themes. Alike the prior phase,
the tool Microsoft Excel was used for the thematic analysis, and the researchers
followed the protocol defined in section 3.4.

Through the analysis, the researchers found two high-level themes and one stan-
dalone theme.

• Impact of GOSPLAT on Code Structure and Organization

– Improvements in code organization

– Impact on renaming functions and packages

– GOSPLAT’s Limitations and Inaccurate Recommendations

• User Experiences and Perceptions of GOSPLAT

– Perceived benefits and potential of GOSPLAT

– Recommendations for GOSPLAT improvements

– Willingness to adopt and enjoyment of GOSPLAT

4.5 Detailed Themes Explanation: observations

4.5.1 Impact of GOSPLAT on Code Structure and Organiza-
tion

This high-level theme investigates how usage of GOSPLAT impacted code-structure
developed during the sessions. It shows different nuances to how it helped in creating
a better code structure.

4.5.1.1 Improvements in code organization

A zoomed-in figure of the thematic map can be seen in section B.4.8.
This theme investigates the impacts GOSPLAT made to code organization during

the observational sessions. The observation notes highlight various ways GOSPLAT
has positively influenced code structure and organization. For instance, the tool
has had a positive impact on code structure, pushing for refactoring decisions and
assisting in moving functions to appropriate packages. Seen in code Positive impact

Chapter 4. Results and Analysis 22

on code structure [B.2.1.1], which was found during the observational session with
subject 2 with the note:

“Subject tells researcher that it did make code structure more precise in aspects, but would like to
see it in use in larger projects as well in the future.” [B.2.1.1]

Another code was found during the observational session with subject 6, being GOS-
PLAT pushes for refactoring decisions [B.2.1.1], generated from the researchers’
observation:

“GOSPLAT disagrees with the code structure in main.go. Subject agrees with log output. Chooses
to refactor main.go and move it into new package languageServer.” [B.2.1.1]

“Subject seems to agree with GOSPLAT in that main should be cleaned up.” [B.2.1.1]

as well as Moving of function based on GOSPLAT suggestion[B.2.1.1].
These improvements align with RQ1.1 [3.1], demonstrating how GOSPLAT can in-
fluence the development of code structure and organization.

4.5.1.2 Impact on renaming functions and packages

A zoomed-in figure of the thematic map can be seen in section B.4.9.
This theme explores how GOSPLAT encourages more clear naming of functions

and packages to improve their semantic understanding and create more idiomatic
code. During observations, GOSPLAT was found to encourage more clear naming
of functions and packages. This shows signs of GOSPLAT improving the semantic
understanding of code by encouraging clear naming. (RQ2.1 and RQ2.2)[3.1]. GOS-
PLAT also contributes to creating more idiomatic and consistent code during the
initial development process (RQ1.2)[3.1] by encouraging clearer naming of functions
and packages. Codes: Encourage more clear naming of functions [B.2.1.2]
found during a session with subject 6 where it was documented:

“Subject disagrees with moving a function called newLangServer() away from package ‘language-
Server‘ but after renaming it and re-running GOSPLAT, the tool agreed with him. The subject
found that the new name newLanguageServer() was indeed a better name.” [B.2.1.2]

and Encourage more clear naming of packages [B.2.1.2] found in an observa-
tional session with subject 2 where it was documented:

“Subject renames package ‘mathm‘ to ‘mathfunctions‘ to better suit its functionality” [B.2.1.2]

“Subject agrees that the new name which GOSPLAT agreed upon was a much better name than the
last one. They would however like GOSPLAT to make suggestions on this” [B.2.1.2]

4.5.1.3 GOSPLAT’s Limitations and Inaccurate Recommendations

A zoomed-in figure of the thematic map can be seen in section B.4.16.
This theme investigates the limitations and inaccurate recommendations observed

in GOSPLAT. Despite the improvements in code organization and naming, GOS-
PLAT exhibits limitations and inaccurate recommendations, impacting its ability to
provide insights and guidance that may create a negative impact on code structure
and organization. Some issues include tunnel vision on putting everything in one
package, continuous disagreement with subjects regarding singular functions, incor-
rect naming suggestions, and failing to recognize errors in code structure. Highlighted
in codes Tunnel vision on putting everything in one package [B.2.1.3], seen
in observation session with subject 6 where it says:

Chapter 4. Results and Analysis 23

“GOSPLAT seems to keep on wanting to move a lot of functions to new package math.” [B.2.1.3]

As well as continuous disagreement with subject regarding one singu-
lar function [B.2.1.3], documented during the observational session with subject 2,
stating:

“Subject finds it interesting that function Cos() is still not accepted by GOSPLAT. Proceeds to write
more math functions to experiment.” [B.2.1.3]

Incorrect naming suggestions [B.2.1.3], and GOSPLAT failing to recognize
errors in code structure [B.2.1.3].

4.5.2 User Experiences and Perceptions of GOSPLAT

This high-level theme investigates the subjects’ reactions to GOSPLAT. It shows
both positive feedback on the tool, willingness the subject expressed when using
it, directly after using it, and recommendations of improvement in the tool by the
subject. These themes were largely collected from the final comments the subject
made after the coding session had ended.

4.5.2.1 Perceived benefits and potential of GOSPLAT

A zoomed-in figure of the thematic map can be seen in section B.4.11.
This theme covers the subject’s perceived benefits of GOSPLAT and their thoughts

on its future potential. Despite the limitations, GOSPLAT has shown the potential
to improve the semantic understanding of code structure and organization (RQ2.1)
[3.1]. Subjects appreciated GOSPLAT’s performance. They acknowledged that small
improvements could make a big difference in codes Appreciation of GOSPLAT’s
performance [B.2.2.1] where the researcher noted at the end of the session with
subject 6:

“Subject seems happy with GOSPLAT’s performance so far. They explain to the researcher that it
was a good call made by the tool to force them to improve on the name.” [B.2.2.1]

and Recognition of small improvements making a big difference [B.2.2.1]
from the researcher notes:

“Subject found that certain scenarios such as the hello() function in their eyes were good examples
of how it does find small things which can make a big difference.” [B.2.2.1]

They also suggested that the tool could be very useful with an enhanced model
and better error detection, code: Potentially very useful with an enhanced
model [B.2.2.1].

4.5.2.2 Recommendations for GOSPLAT improvements

A zoomed-in figure of the thematic map can be seen in section B.4.12.
This theme focuses on the recommendations for improvements provided by the

subjects in regard to GOSPLAT. Subjects expressed a need for improvements in error
reporting and accuracy to make GOSPLAT more suitable for professional settings.
Found in codes Improvement in Error Reporting [B.2.2.2] which were found
during the observational session with subject 5, where it was documented:

Chapter 4. Results and Analysis 24

“Subject found some suggestions to be weird. Errors could be improved.” [B.2.2.2]

and Need for improving accuracy and hit rate [B.2.2.2]. which were docu-
mented under the same session, where it documented:

“Subject said for them to use it in a professional setting it would require better and higher hitrate as
well as accuracy.” [B.2.2.2]

Addressing these concerns will influence software developers’ willingness to adopt
GOSPLAT (RQ3.2) [3.1].

4.5.2.3 Willingness to adopt and enjoyment of GOSPLAT

A zoomed-in figure of the thematic map can be seen in section B.4.13.
This theme focuses on the subjects’ overall attitude towards GOSPLAT and

their willingness to adopt it in their development processes. Based on the observa-
tion notes, subjects enjoyed using GOSPLAT. They appreciated its impact on code
structure, codes: Enjoyment in using GOSPLAT [B.2.2.3], and Appreciation
of GOSPLAT’s Impact on Code Structure [B.2.2.3]. where it was documented
during the observational session with subject 6:

“Subject overall seems positive to GOSPLAT and explains that they were impressed with how GOS-
PLAT made them have to rethink code structure” [B.2.2.3]

They found GOSPLAT to be an interesting tool, code: GOSPLAT is an inter-
esting Tool [B.2.2.3], documented in the observational session with subject 2:

“Subject explains that GOSPLAT was an interesting tool.” [B.2.2.3]

indicating a positive perception of GOSPLAT and its potential benefits (RQ3.1) 3.1.
Additionally, Subjects expressed a willingness to use GOSPLAT in larger projects
in code: Willingness to using GOSPLAT in larger projects [B.2.2.3] and rec-
ognized the future potential with an improved model in professional settings, code:
Openness to GOSPLAT’s future potential in professional settings [B.2.2.3],
addressing (RQ3.2, RQ3.3) [3.1].

Information regarding each code and the specific segments of the notes and logs
they were derived from can be seen in the appendix section B.2.

4.6 Phase 3 analysis: Last interviews
Phase 3 was used to further investigate GOSPLAT’s performance observed in phase
2. This means that, like phase 2, the participants Subject 2, Subject 5, and Subject
6 were present in this phase. As this phase is highly connected to phase 2, the
results from the interviews were aligned with the results presented in the prior phase
in section 4.4. Because of this alignment, only one new theme was generated while
several from phase 2 were updated, the updates being:

• Improvements in code organization

• GOSPLAT’s Limitations and Inaccurate Recommendations

Chapter 4. Results and Analysis 25

• Recommendations for GOSPLAT improvements

• Willingness to adopt and enjoyment of GOSPLAT

The new theme is:

• Potential benefits of post-prototype GOSPLAT

4.7 Detailed Themes Explanation: Last interviews

4.7.1 Update to prior themes

4.7.1.1 Improvements in code organization

A zoomed-in figure of the thematic map can be seen in section B.4.8.
The update further investigates how current GOSPLAT improves code structure.

The interviews highlight various ways the subjects found that GOSPLAT helped
improve the code structure and code organization while being used under phase 2
of data collection. This can be seen in the additional codes Head start on early
code structuring [B.3.1] which were derived from the interview with subject 6,
where they expressed:

“If you use it relatively early you can get a good head start to early on placement of functions in the
“right way/in the right place”, which will help you later on.” [B.3.1]

in the same interview with subject 6, the code Improved awareness of code
structure [B.3.1] were derived when the subject expressed:

“So it improved my code structure solely by making me think about it, but also giving me a pointer
to where to start looking,” [B.3.1]

With the additional code, Subject gets indications of flaws in code struc-
ture [B.3.1] that was added into the theme. The codes imply that the tool was
helpful in improving code structure. Subject 6 mainly gave compliments and shared
in-depth information on their views of the positive impact of GOSPLAT.

4.7.1.2 GOSPLAT’s Limitations and Inaccurate Recommendations

A zoomed-in figure of the thematic map can be seen in section B.4.16.
The update further investigates the limitations in current GOSPLAT and its LM-

based solution. During phase 3, one additional code was added to the theme, this
one being Freaks out when project size grows [B.3.2]. This was found during
the interview with subject 6, in which they expressed:

“And later on it was still useful but it could freak out, in ways” [B.3.2]

4.7.1.3 Recommendations for GOSPLAT improvements

A zoomed-in figure of the thematic map can be seen in section B.4.12.
The update further investigates areas where current GOSPLAT. The subjects

further explained features that would require improvement in the LM-based solution
and additional features that would need to be included for the tool to be effective.
The additional codes are Better context-awareness [B.3.3] which were mainly
brought up by subject 6 where they expressed:

Chapter 4. Results and Analysis 26

“So it should be more context based interpreting of words, or function names would help GOSPLAT
to basically categorise words of functions with similar names.” [B.3.3]

Another code, Need variety in suggestions for different occasions [B.3.3] were
derived from the interview with subject 5, where they expressed:

“Better suggestions I guess? I think it would also benefit from different kinds of suggestions, not only
moving it to an already existing package, maybe a new package as well should be suggested in some
occasions.” [B.3.3]

Lastly, the code Integration with IDEs is important for adoption [B.3.3] was
also added to the theme as two out of three subjects requested this feature to be
added.

4.7.1.4 Willingness to adopt and enjoyment of GOSPLAT

A zoomed-in figure of the thematic map can be seen in section B.4.13.
The update further investigates how the subject perceives GOSPLAT and their

want or need to adopt it into their workflow. Subjects further explained interest in
GOSPLAT under phase 3. This can be seen in the additional codes Subject wants
to use it after improvements [B.3.4] that were found during all three interviews;
for example subject 2 expressed:

“Yeah, probably, I mean it depends. If it can be integrated into some kind of editor, and of course the
final more refined model, then yeah if I were to evaluate it more on some relevant project, I probably
would.” [B.3.4]

In addition, from the interview with subject 2, the code Possibly more useful as
projects grow [B.3.4] was also derived.

4.7.2 Potential benefits of post-prototype GOSPLAT

A zoomed-in figure of the thematic map can be seen in section B.4.15.
This theme investigates what subjects found promising in the LM-based solu-

tion presented with GOSPLAT. During interviews, all three subjects expressed that
GOSPLAT and the solution used in the tool are promising for improving how the
code structure is dealt with during development. Because of this, it was made as a
standalone theme, not tied to any other high-level theme, as it was not tied to direct
data derived from observations, but rather a speculation of the LM-solutions future.

This new theme includes the codes Enhanced code structure consistency [B.3.5]
which were derived from mainly the interview with subject 2 where they expressed:

“Well, it can benefit if there are several people working with several packages, to keep it consistent
between packages.” [B.3.5]

The code Assisting newcomers [B.3.5] was then derived from the same interview
with subject 2, where they expressed:

“And also it would benefit new people coming in, and can recognize the structure.” [B.3.5]

This was also expressed in phase 1 by project managers. There were also more
codes added to the theme, these being, Time saved not thinking about code
structure [B.3.5] and Guiding developers [B.3.5].

Information regarding each code and the specific segments of the transcripts they
were derived from can be seen in the appendix section B.3.

Chapter 5
Discussion

This section will investigate how the results tie back to the research questions first
stated in the methodology. Each research question will be gone through in order and
systematically to ensure that they have been answered all as a whole. The research
questions can be seen in section 3.1.

5.1 RQ1:
How does the use of language models (FastText) and the GOSPLAT tool
impact the quality of code structure during the initial development stage?
The results found in this study were that the tool aided in creating a higher-quality
code structure. Occasional limitations were also seen in the tool, which may impact
code structure.

5.1.1 RQ1.1:

In what ways can the GOSPLAT tool assist developers in creating a
higher-quality code structure?
During phase 2 of data collection and then later further investigated in phase 3, the
researchers observed several factors impacting the code structure from the use of
the tool. Two major positive impacts on the code structure emerged from the data
collected during phases 2 and 3. The first was making the subject more aware of the
code structure they were developing. During the use of GOSPLAT, having a tool
centered around code structure that actively double-checked their work made them
more aware and willing to put extra effort into making it more comprehensive. The
second major impact was instead of the tool giving indications of flaws, that gave
the subject an extra hand in figuring out good code structure.

These impacts are mainly observed in the high-level theme Impact of GOS-
PLAT on Code Structure and Organization [B.4.10]. Namely, the sub-theme
Improvements in code organization [B.3.1]. One code in this theme specifically
ties back to RQ1: Head start on early code structuring [B.3.1]. During phase
3, in an interview with subject 6, the subject said:

“sometimes don’t really think about where you put stuff in the beginning when you start developing.
If you use it relatively early you can get a good head start to early on placement of functions in the
"right way/in the right place" ”

Other codes also indicate a positive impact on the code structure of initial devel-
opment. These include improved awareness of code structure [B.3.1], Sub-
ject gets indications of flaws in code structure [B.3.1], and GOSPLAT

27

Chapter 5. Discussion 28

pushes for refactoring decision [B.3.1], which tie into each other. Other themes
also strengthen this, one being Perceived benefits and potential of GOS-
PLAT [B.2.2.1]. The researchers found that subjects, after observations, had on
some occasions positive reactions to the suggestions and findings GOSPLAT had
while using the tool. Further implying that the tool had a positive impact on code
structure.

On the other hand, within the mentioned high-level theme, another sub-theme is
also present that is relevant to this research question and points to negative impacts
on the code structure. The sub-theme GOSPLAT’s Limitations and Inaccurate
Recommendations [B.4.16] extracted during phase 2 [B.2.1.3] and further updated
in phase 3 [B.2.1.3] found limitations that could mislead the developer using the
tool. Codes such as Freaks out when project size grows [B.3.2], Tunnel vision
on putting everything in one package [B.2.1.3], and GOSPLAT failing to
recognize errors in code structure [B.2.1.3] suggest that GOSPLAT on occasions
does not understand the context of the code and give inaccurate suggestions. The
last pattern reported in the theme is the most damaging as it may lead to a developer
not recognizing their code structure as faulty. This theme instead shows a negative
impact on code structure as giving inaccurate suggestions may lead the developer in
the wrong direction, as well as being unable to find errors in some cases which should
be there.

5.1.2 RQ: 1.2:

How can the GOSPLAT tool improve the semantic understanding of code
structure and organization during the development process?
Themes from phases 2 and 3 indicate that GOSPLAT has the potential to improve
the semantic understanding of code structure and organization, particularly in terms
of readability. The Improvements in code organization theme [B.4.8] highlights
the tool’s ability to help developers with code organization by encouraging refac-
toring decisions, code: GOSPLAT pushes for refactoring decisions [B.2.1.1]
and promoting clearer naming of functions and packages in codes Encourage more
clear naming of functions [B.2.1.2] and Encourage more clear naming of
packages [B.2.1.2] seen in theme Impact on renaming functions and pack-
ages [B.2.1.2]. As GOSPLAT also increased awareness of code structure by making
the developers more aware of the code structure they were creating seen in code:
Improved awareness of code structure [B.3.1], and giving indications seen in
code: Subject gets indications of flaws in code structure [B.3.1], the answer
indicates that the tool may improve on semantic understanding of code structure
and organization during the development process.

5.2 RQ2:
What is the perceived need and willingness of software developers to adopt
a tool like GOSPLAT that leverages language models (FastText) for im-
proving code structure?
To address the second research question and its associated sub-questions, we exam-

Chapter 5. Discussion 29

ined themes and codes relevant to RQ2, RQ2.1, and RQ2.2 [3.1] during phases 1, 2,
and 3. Participants discussed the importance of code structure in their software engi-
neering projects and their perspectives on GOSPLAT adoption, including potential
benefits, applications, initial reservations, and factors influencing their willingness to
adopt the tool. This discussion aligns with the findings of Krasner and Herbs’ report,
which emphasizes the necessity for effective tools to improve the code structure and
detect weaknesses and vulnerabilities in software development [10].

5.2.1 RQ: 2.1:

How do software developers perceive the potential benefits and drawbacks
of using a tool like GOSPLAT for enhancing code structure in their de-
velopment workflow?
During phase 1, developers expressed positive perspectives on GOSPLAT usage,
recognizing its potential in improving naming conventions, saving time, and provid-
ing fast feedback that could be valuable for newcomers as seen in theme: Positive
Perspectives on GOSPLAT Usage [B.4.5]. Some codes to support this are
Tools creating an idiomatic way is good [B.1.2.1], Tool feedback is fast,
good for newcomers [B.1.2.1], and GOSPLAT may help in naming, saving
time [B.1.2.1] They also acknowledged the possible value of AI-assisted in software
development, code: Using AI for coding seems valuable B.1.2.1. However,
they also shared initial reservations about its adoption, highlighting concerns about
usability, the need for high standards, and the requirement for everyone to use GOS-
PLAT for it to be fully effective, theme: Initial Reservations about GOSPLAT
Adoption [B.4.6].

The theme Importance of Good Code Structure [B.4.1] from Phase 1 un-
derscores developers’ understanding of the critical role of code structure in aspects
such as maintainability, navigation, and collaboration. Developers acknowledge the
challenges in understanding and navigating poorly structured code, which can hinder
new feature development and impact overall efficiency, as shown in the theme Ex-
periences with Poor Code Structure. [B.4.2] This further corroborates Krasner
and Herbs’ recommendation of ensuring early and regular analysis of source code to
detect violations of code structure, weaknesses, and vulnerabilities [10].

One participant described the potential benefits of using a tool like GOSPLAT,
stating that:

“Any tool that would help give an idiomatic way or a reference way is good because then you know if
you use those tools regularly, you would know the relative structure, how it usually is, and you would
find your way easier around the code, even new code. Because it would all follow a sort of similar
structure, at least. I think it’s all about intuitive understanding or what you usually look for that is
the biggest thing. So it doesn’t need to have to be the right way, as long as it is similar.” [B.1.2.1]

In phases 2 and 3, the participants demonstrated enthusiasm for GOSPLAT and
its potential capabilities in supporting software engineering activities. They revealed
developers’ appreciation for the tool’s ability to improve code organization, as dis-
cussed in section RQ1.

Phase 3 data further supports the perceived benefits and potential of GOSPLAT,
such as time saved not thinking about code structure, and its potential to guide
developers and assist newcomers theme: Potential benefits of post-prototype

Chapter 5. Discussion 30

GOSPLAT [B.4.15] and codes: Enhanced code structure consistency [B.3.5],
Time saved not thinking about code structure [B.3.5], Guiding develop-
ers [B.3.5] and Assisting newcomers [B.3.5].

5.2.2 RQ: 2.2:

What factors influence software developers’ willingness to adopt a tool
like GOSPLAT for improving code structure?
Several factors influence developers’ willingness to adopt GOSPLAT for improving
code structure. The positive perceptions of GOSPLAT’s impact on code structure,
organization, and potential benefits, as evidenced in phases 1, 2, and 3, contribute to
their willingness to adopt the tool. Additionally, developers’ belief in GOSPLAT’s
potential benefits for larger projects and team collaborations in theme Perceived
need and willingness to adopt GOSPLAT [B.4.13] and codes Subject want
to use it after improvements [B.3.4] and Possibly more useful as projects
grow [B.3.4] positively influences their willingness to adopt the tool.

However, developers’ adoption of GOSPLAT is contingent upon addressing their
initial reservations, such as improving the tool’s usability and ensuring its recom-
mendations meet high standards; present in theme Initial Reservations about
GOSPLAT Adoption [B.4.6] from phase 1 and GOSPLAT’s Limitations and
Inaccurate Recommendations [B.4.16] from phase 2 and 3. They also emphasize
the importance of seamless integration with integrated development environments
(IDEs) for successful adoption, codes: Integration with IDEs is important for
adoption [B.3.3] and No continuous feedback from tool [B.1.2.2] iterated both
in phases 1 and 3. Furthermore, developers require improvements in GOSPLAT’s
accuracy, context awareness, and the variety of suggestions it offers; proposed in
theme Recommendations for GOSPLAT improvements [B.4.12] and seen in
codes Better context-awareness [B.3.3] and Need variety in suggestions for
different occasions [B.3.3] from phase 3.

In conclusion, the perceived need and willingness to adopt GOSPLATare influ-
enced by factors such as the tool’s potential benefits for code structure and organi-
zation, its applicability in larger projects and team collaborations, addressing initial
reservations, the improvements in its accuracy and context awareness, the variety of
suggestions it offers, and its integration with development environments. Addressing
these factors can contribute to the successful adoption of GOSPLAT in software de-
velopment workflows, ultimately enhancing code structure and organization in line
with Krasner and Herbs’ recommendations for improving software quality [10].

5.3 Unexpected Findings
In this study, some unexpected findings indicated that GOSPLAT inadvertently
encouraged users to enhance their function and package naming practices. During
phase 2, it was observed that the subjects became more aware of naming. Given that
both the tool and the LM solution rely on the naming of functions and packages,
it appears that the tool inadvertently promoted more precise and coherent naming
for both elements. This can be attributed to the tool’s inability to comprehend

Chapter 5. Discussion 31

less clear naming conventions in its current state. This meant the developers had
to think of less abstract names and instead consider more comprehensible names
for packages and functions, a positive side effect of this was that the readability of
the code was improved. The data supporting these findings are seen in the high-
level theme Impact of GOSPLAT on Code Structure and Organization in
section B.4.10. The second theme derived from the data collected in phase 2 was
Impact on renaming functions and packages B.4.9. In this theme, codes such as
Encourage more clear naming of functions B.2.1.2 and Encourage more clear
naming of packages B.2.1.2 can be seen, which indicates that GOSPLAT made
the developer more aware of naming. One of the notes presented in the observational
notes describes how the developer was encouraged to find a new name, and what they
came up with both GOSPLAT and the subject agreed was a better name B.2.1.2.
Initially, the researchers focused on improving code structure, overlooking that the
solution was also constrained by naming conventions. Poor and ambiguous names
made it more challenging for the LM solution to comprehend the context of the
code being analyzed. Consequently, the enhanced naming practices emerged as an
unanticipated yet favorable outcome of this case study.

5.4 Limitations and questions of validity
This section examines the limitations of the study and the validity of the aforemen-
tioned findings.

A notable drawback of this research is its specific focus on a rudimentary web
server skeleton. Developers were instructed to build upon this foundation, which
may not accurately reflect the diverse range of software development situations. This
shortcoming is connected to the issue of insufficient training data for GOSPLAT. The
majority of the training data used for GOSPLAT originated from projects centered
primarily on web servers, potentially neglecting other facets of software development.

Related to the problem of specific focus, GOSPLAT struggled in contexts under-
represented in its training data. The limited scope of the study and the narrow focus
of the training data may have adversely affected the tool’s performance, leading to
confusion and errors when encountering unfamiliar code scenarios. Consequently, the
conclusions might not be applicable to other software development projects charac-
terized by different contexts, requirements, and challenges.

A significant limitation evident in this case study is the allocation of resources to
the researchers. Since the study is conducted exclusively within a single company, the
research process is constrained by the organization’s availability to engage in various
study phases. This primarily affects the quantity of data gathered throughout all
phases and the time restrictions imposed on the researchers.

Another limitation of this case study is the small sample size, which consists of
six participants, including developers and project managers. This primarily affects
Phases 2 and 3 of the case study, as each phase involves only three participants.
Consequently, the limited data may not be sufficient to draw definitive conclusions.

The study’s limitations encompass its qualitative nature, which may preclude the
determination of precise percentages for effectiveness or efficiency. Nevertheless, our
results yield valuable insights into the existing capabilities and areas for improvement

Chapter 5. Discussion 32

of LM-based code structure analysis tools.
The findings for RQ1 and its sub-questions brought up two major perspectives;

how the current solution made a positive impact on code structure, but also its
negative impact on the quality of the code structure. The codes and themes pre-
sented were collected both during Phase 2 and Phase 3. Patterns were presented
that further strengthened the claims made in the answer. For example, two out
of three subjects said that the tool made them more aware of the code structure
they were developing, and the other way around, all observational sessions presented
with limitations such as the code Tunnel vision on putting everything in one
package [B.2.1.3]. The small sample size in phases 2 and 3, with only three subjects
participating, hurts the validity of these findings. However, the findings for RQ1 have
an inductive nature, which may reduce the need for a larger sample size. Increasing
the sample size would most likely increase the nuances of impacts, both negative
and good, on the quality of the code structure. As for the question of improving
semantic understanding of code, indications were found that GOSPLAT may offer
such improvements. Although, no clear answer to indicate that was derived from
this case study. This does however present another opportunity for future work that
may extend this case study’s findings.

Moving on to RQ2, the answers presented for this research question and its sub-
questions are based on data collected throughout phases 1, 2, and 3. During phase 1,
all subjects presented a willingness to adopt such a tool, which means both project
managers and software developers were included. Because of these reasons, one can
argue that the answer is highly supported. The sample size is also an issue in this
answer; however, to a much smaller extent. The data was collected throughout all
three phases. As mentioned, two major perspectives are included in RQ2’s answer,
the perspectives of developers as well as the perspectives of the project managers.
With both developers and project managers agreeing on the potential benefits of
GOSPLAT and their expressed willingness to adopt it further strengthens the validity
of the claims made.

Chapter 6
Conclusions and Future Work

6.1 Conclusion
In this study, the effectiveness of the GOSPLAT tool and its language model (LM)
solution in analyzing and improving code structure was examined. Software devel-
opers’ perceptions and willingness to adopt the tool were also explored. The findings
indicate that GOSPLAT shows promise in helping developers produce better code
structure but has limitations in understanding code context. Additionally, develop-
ers and project managers showed a clear need and desire for a tool like GOSPLAT.
The study increased the understanding of the problem of code structure as well as
the impacts of incorporating the use of language models into code analysis. The
study was also one of the first to explore the need for a code-structure analysis tool
in a company environment. Through these findings, both the problem area as well
as a clear need has been solidified, opening up for further research into the solution.
The findings themselves can help improve code quality analysis, as seen in the work
of Börstler et al. [4], code structure has a major part in code quality, and code
quality’s value in Software Engineering is seen in the work of Krasner and Herb [10];
by giving room for further research and extension of the solution.

As stated in the discussion 5 the answers presented, shows GOSPLAT was ob-
served to help developers produce better code structure but also showed a lack of
effectiveness in understanding the context of the code in situations highly dependent
on the context of what the tool was analyzing. This means that the mixed nature of
the answer presented in section 5.1 is aligned with what was expected from the tool’s
performance. Continuing with research question 2 as discussed in 5.2, a willingness
and need for a tool like GOSPLAT was observed from the developers and project
managers in the study, even after recognizing its shortcomings, a clear interest in
trying an improved and enhanced version of GOSPLAT that fixed the pain points
identified in the study existed among the developers that tired the tool.

Relating the findings to similar work, there’s a clear correlation between the
results between this study and the works of Allamanis et al. [1] as well as Lin et
al. [11] Allamanis, in their study investigating the use of an LM-based solution to
improve identifier naming, found the results to be promising [1]; the same pattern
was observed in the study conducted by Lin et al., which had the goal to further
investigate the effectiveness of identifier naming analysis tools based on LMs [11].
The results from this case study were indeed also showing promising results; it found
similar improvement areas to those found regarding GOSPLAT as well the areas in
which it showed promise in code structure analysis [11]. While one can argue that

33

Chapter 6. Conclusions and Future Work 34

there’s a difference between the metric data used in the studies by Lin et al. [11],
Allamanis et al. [1], and the qualitative nature of this case study, a pattern can be
observed in the use of LMs for code analysis. This case study may not be able to
give a clear answer, such as a specific percent of effectiveness or efficiency, but rather
give indications of what the currently proposed solution GOSPLAT does well, what
it lacks, and what future similar solutions may improve on and widen the impact of
code structure analysis using LM-based solutions.

6.2 Future Work
Both discussion and the conclusion sections mentioned limitations, which give ways
to extend this study in future work. Several possible areas for improvement in future
works emerge in this study:

1. Increasing sample size: This could be by introducing multiple cases into the
study to widen the nuance of the results and trying out a different approach
entirely, like combining qualitative and quantitative data collection methods.
Allamanis et al., for example, used the website GitHub as a tool for data collec-
tion and basic metric results on the acceptance rate of refactoring suggestions
to the project teams [1].

2. Improve the LM solution Increase the amount of context given to the LM
to train on. The current GOSPLAT model is trained solely on package-to-
function name relationships. Adding additional data, such as parameter types,
return types, etc., could allow the model to identify the context of the code to
give a more precise and less misleading analysis.

3. More and broader training data: Future research could tackle the draw-
back of limited training data by broadening the training data to include more
data on a variety of software projects and development scenarios. This would
also enable GOSPLAT or a similar tool to comprehend different code situations
better and enhance its capacity to offer more accurate suggestions. Addition-
ally, this would facilitate a more thorough assessment of the tool’s suitability
and efficacy across a range of software development projects.

4. Investigate integration with IDEs: Exploring the integration of these tools
into integrated development environments (IDEs) and assessing their influence
would provide valuable insights into their practical application. Integration
with IDEs was some of the most prevalent feedback during this case study.

5. Examine impact on team collaboration: Equally important is examining
these tools’ impact on team collaboration and the integration of newcomers to
a project. Such investigations would contribute to the advancement of LM-
assisted tools within software engineering.

References

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding con-
ventions,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 281–293.

[2] M. Asad, R. M. Yasir, S. Shahriar, N. Nahar, and M. N. A. Tawhid, “Analyzing
program comprehensibility of go projects,” in The 33rd International Conference
on Software Engineering and Knowledge Engineering, 2021, pp. 255–260. [Online].
Available: https://www.doi.org/10.18293/SEKE2021-152

[3] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the association for computational linguistics,
vol. 5, pp. 135–146, 2017.

[4] J. Börstler, H. Störrle, D. Toll, J. Van Assema, R. Duran, S. Hooshangi, J. Jeuring,
H. Keuning, C. Kleiner, and B. MacKellar, “" i know it when i see it" perceptions
of code quality: Iticse’17 working group report,” in Proceedings of the 2017 iticse
conference on working group reports, 2018, pp. 70–85.

[5] C. Boyce and P. Neale, Conducting in-depth interviews: A guide for designing and con-
ducting in-depth interviews for evaluation input. Pathfinder international Watertown,
MA, 2006, vol. 2.

[6] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in software
engineering,” in 2011 International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 275–284.

[7] V. Efstathiou and D. Spinellis, “Semantic source code models using identifier embed-
dings,” in 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR), 2019, pp. 29–33.

[8] M. Host, A. Rainer, P. Runeson, and B. Regnell, Case study research in software
engineering: Guidelines and examples. John Wiley & Sons, 2012.

[9] G. Ivarsson and N. Håkansson, “Gosplat,” accessed: 2023-06-18. [Online]. Available:
https://github.com/gosplat/gosplat

[10] H. Krasner, “The cost of poor software quality in the us: A 2020 report,” Proc. Con-
sortium Inf. Softw. QualityTM (CISQTM), 2021.

[11] B. Lin, S. Scalabrino, A. Mocci, R. Oliveto, G. Bavota, and M. Lanza, “Investigating
the use of code analysis and nlp to promote a consistent usage of identifiers,” in 2017
IEEE 17th International Working Conference on Source Code Analysis and Manipula-
tion (SCAM), 2017, pp. 81–90.

[12] M. Simpson and J. Tuson, Using Observations in Small-Scale Research: A Beginner’s
Guide. Revised Edition. Using Research. ERIC, 2003.

35

Appendix A
Supplemental Information: Introduction &

Method

A.1 Repositories used for training
• authboss: https://github.com/volatiletech/authboss

• beego: https://github.com/beego/beego

• caddy: https://github.com/caddyserver/caddy

• clash: https://github.com/Dreamacro/clash

• cmd: https://github.com/go-cmd/cmd

• cockroach: https://github.com/cockroachdb/cockroach

• dgraph: https://github.com/dgraph-io/dgraph

• drone: https://github.com/harness/drone

• echo: https://github.com/labstack/echo

• fiber: https://github.com/gofiber/fiber

• flyctl: https://github.com/superfly/flyctl

• frp: https://github.com/fatedier/frp

• fzf: https://github.com/junegunn/fzf

• ghostly: https://github.com/patriksvensson/ghostly

• gitea: https://github.com/go-gitea/gitea

• go-cache: https://github.com/patrickmn/go-cache

• go-cloud: https://github.com/google/go-cloud

• go-ethereum: https://github.com/ethereum/go-ethereum

• gogs: https://github.com/gogs/gogs

• go-ibax: https://github.com/IBAX-io/go-ibax

• go-pg-migrate: https://github.com/go-pg/migrations

36

Appendix A. Supplemental Information: Introduction & Method 37

• gotty: https://github.com/yudai/gotty

• go-zero: https://github.com/zeromicro/go-zero

• grafana: https://github.com/grafana/grafana

• hub: https://github.com/github/hub

• hugo: https://github.com/gohugoio/hugo

• iris: https://github.com/IrisShaders/Iris

• jwt: https://github.com/golang-jwt/jwt

• kit: https://github.com/go-kit/kit

• micro: https://github.com/zyedidia/micro

• minio: https://github.com/minio/minio

• nextdns: https://github.com/nextdns/nextdns

• pgweb: https://github.com/sosedoff/pgweb

• photoprism: https://github.com/photoprism/photoprism

• prometheus: https://github.com/prometheus/prometheus

• rclone: https://github.com/rclone/rclone

• simple-jwt-provider: https://github.com/leberKleber/simple-jwt-provider

• syncthing: https://github.com/syncthing/syncthing

• telegraf: https://github.com/influxdata/telegraf

• tidb: https://github.com/pingcap/tidb

• traefik: https://github.com/traefik/traefik

• v2ray-core: https://github.com/v2ray/v2ray-core

A.2 Confirmation Letter: phase 1

A.2.1 Introduction
Thank you for agreeing to participate in this case study. The tool we designed called
GOSPLAT is a code analysis tool based on the language model FastText. The goal is to
analyze code structure in GoLang and suggest improvements that may increase readability
for engineers.

The interview is held in English and plans to investigate the benefits of code analysis in
projects for both developers and stakeholders. In turn, the researchers plan to also explore
the connection between code analysis and the use of AI and how the interviewee perceives
these technologies, and how they can work together. This is done with the goal of finding
new insights into GOSPLAT’s effectiveness, improvement areas, and the future of language
model assisted analysis tools and possible future research in this area.

Appendix A. Supplemental Information: Introduction & Method 38

A.2.2 Transparency and confidentiality
For this case study, terms for the interview are necessary to both protect the confidentiality
of the interviewee but also to add transparency between the researchers and the interviewee.
Before signing the document, read the terms below thoroughly.

1. You as an interviewee has the right to at any point withdraw your participation in
this study, this relates to before, during, and after the interview. This means that
the data collected are owned by you fully and you may withdraw the researchers’
privileges of using it in the study at any time.

2. After your interview the data will be transcribed and a copy of the researchers’
transcription will be sent to you. We ask you kindly to read this transcription and
comment if anything shall be removed or changed. This will help in adding to the
transparency of the study and the trust between both parties.

3. Any sensitive data will not be documented by the researchers post-interview and
will be deleted. If you at any point question yourself if you are able to answer the
question, refrain from doing so, and the researchers will move on to the next question.

4. GOSPLAT is completely open-source which means details of this study are not con-
fidential and may be openly discussed by anyone with anyone.

5. Interviews will be recorded for transcription if the interviewee does not express the
need for other methods of documentation.

Note: You are free to ask researchers questions if any do arise.

Signature:

Clarification of name:

Thank you for your participation

A.3 Confirmation Letter: phase 2

A.3.1 Introduction
Thank you for agreeing to participate in this case study. This is will be a brief introduction
to todays session of observations and archival collection.

The session will be held in English primarily. The observee will be given a skeleton-
program to start developing from and will be using GOSPLAT as they go through the
process and make comments regarding what they are doing, what their experience is with
it, etc... The session is very open and the observee may ask questions to the researcher,
and give critique on the tool as they, please. The goal of the observations is to see how it is
performing in a more natural setting and to generate archival data from the output given
to us by GOSPLAT for further analysis. Some terms below will be given for your and our
sake.

Appendix A. Supplemental Information: Introduction & Method 39

A.3.2 Transparency and confidentiality
For this case study, terms for the observations are necessary to both protect the confiden-
tiality of the interviewee but also to add transparency between the researchers and the
interviewee. Before signing the document, read the terms below thoroughly.

1. You as an observee has the right to at any point withdraw your participation in this
study, this relates to before, during, and after the session. This means that the data
collected are owned by you fully and you may withdraw the researchers’ privileges of
using it in the study at any time.

2. GOSPLAT is completely open-source which means details of this study are not con-
fidential and may be openly discussed by anyone with anyone.

3. The observations will be using both recording tools and the researcher’s own doc-
umentation. To further explain, the session will be recorded while the researcher
takes notes. This is used later in data extraction for both researchers to analyze and
compare.

4. The log output made by GOSPLAT will be saved for later analysis as archival data.

Note: You are free to ask researchers questions if any do arise.

Observee’s Signature:

Clarification of name:

Researcher’s Signature:

Clarification of name:

Thank you for your participation

A.4 Skeleton Program
package main

import (
"fmt"
"net/http"
)

// hello is the base function is called when "/hello" is
// requested and prints "hello" in the terminal
func hello(w http.ResponseWriter, req *http.Request) {

fmt.Fprintf(w, "hello\n")
}

// headers prints the headers in the terminal

Appendix A. Supplemental Information: Introduction & Method 40

func headers(w http.ResponseWriter, req *http.Request) {
for name, headers := range req.Header {

for _, h := range headers {
fmt.Fprintf(w, "%v: %v\n", name, h)

}
}

}

// main establishes a server on localhost:8000 and
// sets up the endpoints "/hello" and "/headers"
func main() {

// Sets up "/hello" as an endpoint
http.HandleFunc("/hello", hello)
// Sets up "/headers" as an endpoint
http.HandleFunc("/headers", headers)

// begins http server on port 8000
http.ListenAndServe(":8090", nil)

}

Appendix B
Supplemental Information: Data Analysis

B.1 Finalized codes & themes: Phase 1

B.1.1 High-level Theme: Navigating Code Structure Chal-
lenges in Sofware Engineering

B.1.1.1 Theme: Importance of code structure

Code Quotes from transcript
Code structure is important when
code is shared among developers

Interviewer: How important do you find good code
structure to be in software projects?
- Subject 2: It’s especially important when you share
and people are expected to read it, it becomes increas-
ingly important also for yourself.

Code structure is important when
you return to old code

Interviewer: How important do you find good code
structure to be in software projects?
- Subject 2: It’s especially important when you share
and people are expected to read it, it becomes increas-
ingly important also for yourself.

Code structure helps maintainabil-
ity

Interviewer: Do you find that code structure helps
when you need to do maintenance?
- Subject 2: Yes
[Another Quote]
Interviewer: Have you ever worked on a project which
has a difficult-to-understand code structure?
- Subject 1: Yeah, I’ve had experiences. Code was dif-
ficult to understand. We worked with customer cases
and walked through the system to find bugs that cus-
tomers reported. However, these issues were usually
resolved by consulting an expert in the system.

Code structure is important for nav-
igating

Interviewer: How important do you find good code
structure to be in software projects?
- Subject 3: ...But you want structure to be able to
navigate, i guess have a sort of Predictability.

41

Appendix B. Supplemental Information: Data Analysis 42

Good code structure helps for man-
aging newcomers

Interviewer: How important do you find that code
structure is in a software project?
- Subject 4: Well, being a manager of a team, it’s very
important that we can have new people come in and
take over code, so. . . and then I think structure is
very important yea.

Structure is important for context of
code

Interviewer: How important do you find code struc-
ture to be in software projects?
- Subject 6: ...I mean you usually work on a project
where you either want other people to read what you
write or you need to read what you wrote yourself a
long time ago and just remembering and seeing struc-
ture is very important to find the context in the whole
and what things do

High-level building blocks are more
important than code structure

Interviewer: Do you find good code structure to help
when doing maintenance work? Maintenance being
refactoring for example.
- Subject 3: I think it’s more about the building blocks
of the system and how it ties together...

Low-level code structure is less im-
portant

Interviewer: Do you find good code structure to help
when doing maintenance work? Maintenance being
refactoring for example.
- Subject 3: ...I don’t necessarily think it’s about low-
level structure.

B.1.1.2 Theme: Experiences with poor code structure

Code Quotes from transcript
poor code structure makes it hard to
navigate

Interviewer: Do you have any examples of bad experi-
ences working with code structure?
- Subject 2: Yes, mainly back when I was working in
C++, it was a disaster navigating where everything
was.

Poor structure makes it hard to be-
gin working

Interviewer: Have you worked on a project where this
was a problem, that the structure was making it diffi-
cult for people to understand, to work on the project?
- Subject 4: we have had teams taking responsibility
for old code where a lot of refactoring was needed to
bring it up, to where someone can understand it. And
it was hard to start with, yes.

Appendix B. Supplemental Information: Data Analysis 43

Code structure can be a hindrance
when developing new features

Interviewer: Do you feel like the code structure hin-
dered your ability to develop new features or made it
just more difficult than it should be?
- Subject 5: Yea that happens sometimes, especially
once you start a project and you don’t know what di-
rection it will go and that can happen even if you have
had the best of intentions also

Bad code structure can create larger
issues when mixed with new experi-
ence

Interviewer: Have you ever worked on a project where
the code structure made it difficult to understand what
was happening?
- Subject 6: ...but given a relatively bad code structure
and then a new language or something else, it’s very
hard to find your way around.

Even minor faults in code structure
can hurt efficiency

Interviewer: Have you ever worked on a project where
the code structure made it difficult to understand what
was happening?
- Subject 6: but given a relatively bad code structure...
So it doesn’t have to be really bad, just a little bit of
can be enough.

B.1.1.3 Theme: Difficulty in creating code structure

Code Quotes from transcript
Difficult to name packages Interviewer: Do you struggle with naming of packages

and functions in golang and function placement?
Subject 3: ...You must find a good descriptive name,
but not too good because then I’d want to use it in
more packages.

Gut feeling in decision-making:
functions and packages

Interviewer: How do you decide which functions should
be in the same package?
Subject 2: I think it’s mainly just a feeling. Sometimes
I think it’s obvious and other times it may just be a
garbage package that we put it into.
[Another Quote] Interviewer: Do you have any pro-
cess, like a specific thing you think of before you place
the function or is it just kind of a feeling about where
it goes?
Subject 4: Probably the latter for me, I hope the pro-
fessional guys have a better structure. . . A lot of gut
feeling from my side I guess.

A lot of time spent on naming Interviewer: Do you ever encounter issues with pack-
age naming or function placement in GoLang projects
you worked on?
Subject 6: I find myself a lot thinking about names for
both variables and functions, a lot. And sometimes it’s
just hard,

Appendix B. Supplemental Information: Data Analysis 44

It’s hard to keep a consistent code
structure in a new project

Interviewer: do you feel like the code structure hin-
dered your ability to develop new features or made it
just more difficult than it should be?
Subject 5: ...especially once you start a project and
you don’t know what direction it will go and that can
happen even if you have had the best of intentions also

Function placement makes sense
usually

Interviewer: Do you struggle with naming of packages
and functions in golang and function placement?
Subject 3: ...Going back to function placement how-
ever, I think it usually makes sense

Garbage package used when nothing
else works

Interviewer: How do you decide which functions should
be in the same package?
Subject 2: Sometimes I think it’s obvious and other
times it may just be a garbage package that we put it
into.

Name packages whatever when
you’re unsure

Interviewer: Have you encountered issues naming
packages that a tool like gosplat could solve?
Every now and then Subject 2: ...you just name it
whatever, because it must be called something.

Functions belong with their logical
counterparts

Interviewer: How do you figure out which functions
belong in the same packages?
Subject 3: It tends to be if it relates to the same sort
of stuff. If it deals with the same types or business
area it’s usually placed in the same Package.
[Another Quote]
Interviewer: When you use GoLang, how do you decide
where a function should be placed, and which package
you should put it in?
Subject 4: ...I am not very experienced in program-
ming in GoLang, but what I have seen, it is not that
big of a difference for me, it is about having some log-
ical structure and placing it in the logically correct
way, so I don’t see any difference from other similar
languages.

Functions belong together if they are
conceptually alike

Interviewer: How do you decide what functions belong
together in the same package, what is your process of
figuring this out?
Subject 5: ...I guess you mostly think that if they con-
ceptually handle the same things, it feels like they be-
long together.

B.1.2 High-level Theme: Perspectives on GOSPLAT Adop-
tion

B.1.2.1 Theme: Positive Perspectives on GOSPLAT Usage

Appendix B. Supplemental Information: Data Analysis 45

Code Quotes from transcript
Positive on using GOSPLAT Interviewer: Would GOSPLAT be something that you

would want to incorporate into your or your team’s
workflow?
Subject 3: I suppose if it’s easy to set up and run and
it’s effective then I guess so.
[Another Quote]
Interviewer: Would gosplat be something you would
want to incorporate into your or your team’s workflow?
Subject 2: Yes, however from the description you gave,
in the future it would be nicer to have it continuously
give feedback when writing code.

Tools creating an idiomatic way is
good

Interviewer: How do think that GOSPLAT or similar
tools could improve this situation, where you would
have a problem with the code structure?
Subject 6: Any tool that would help give an idiomatic
way or a reference way is good because then you know,
if you use those tools regularly,...

Idiomatic tools must not be right
just enforce a certain way

Interviewer: How do think that GOSPLAT or similar
tools could improve this situation, where you would
have a problem with the code structure?
Subject 6: ...So it doesn’t need to have to be the right
way, as long as it is similar.

Tools make you able to use intuitive
understanding

Interviewer: How do think that GOSPLAT or similar
tools could improve this situation, where you would
have a problem with the code structure?
Subject 6: ...Because it would all follow sort of simi-
lar structure at least. I think it’s all about intuitive
understanding or what you usually look for that is the
biggest thing.

GOSPLAT may help in naming, sav-
ing time

Interviewer: Do you ever encounter issues with pack-
age naming or function placement in GoLang projects
you worked on?
Subject 6: ...I find myself a lot thinking about names
for both variables and functions, a lot. And sometimes
it’s just hard, you have to look at all the context and
see, can this be misleading and not, and yea. . . I
struggle a lot with that, a tool that would help me
would probably save me some time.

Tool feedback is fast, good for new-
comers

Interviewer: What areas of code review could a tool
like GOSPLAT improve on?
Subject 1: There are a few problems with newcom-
ers which is that they don’t know who to discuss the
design with and starts implementing and sending for
review at which they get rejected immediately. I’m
into anything that makes it faster for new developers
as getting feedback from a tool might feel less personal.

Appendix B. Supplemental Information: Data Analysis 46

GOSPLAT could be useful for nam-
ing tips even if just one person used
it

Interviewer: Is a tool like GOSPLAT something you
would want to incorporate into your personal or your
team’s development workflow?
Subject 6: ...I mean you could use it and hopefully,
that would be enough, I mean that if everyone doesn’t
want to use it it could still be helpful for a person
trying to find the way...

GOSPLAT and other tools are more
useful when you don’t know what
you want

Interviewer: Is a tool like GOSPLAT something you
would want to incorporate into your personal or your
team’s development workflow?
Subject 6: But if you are looking for a start, as you
say, like a direction they are very useful and can save
a lot of time.

Using AI for coding seems valuable Interviewer: Have you ever used a code analysis used
on language models before?
Subject 6: I have looked at some other bigger ones like
CoPilot, but I have not really gotten to test it myself,
I have looked at other people using it and it seems
valuable.

B.1.2.2 Theme: Initial Reservations about GOSPLAT Adoption

GOSPLAT is promising depending
on how much control it wants

Interviewer: Is a tool like this something that you
would like to incorporate into your personal or your
team’s workflow?
Subject 5: ...Because like I said before if you disagree
with such a tool it would be an annoyance, you don’t
want to be a slave to the tool...

Unsure about GOSPLAT’s usability Interviewer: How do you think GOSPLAT or a tool
like it could improve the situation? Subject 3: I don’t
know yet, I believe I’d have to try it.

GOSPLAT needs to be of a high
standard to be useful

Interviewer: How, in your opinion, do you think GOS-
PLAT or a tool like it, how do you think they could im-
prove this situation of maintainability and code struc-
ture, and so on?
Subject 5: Well. . . if it’s good enough and you can
avoid bad naming of packages and functions, yea. . .
I guess that would help. But it needs to be a pretty
high standard tho, because once you start to disagree
with the tool then it will become an annoyance instead
of a help.

GOSPLAT partly solves the issue Interviewer: How do you think that GOSPLAT or a
tool like it could improve the situation in your opinion?
Subject 1: It’s most likely part of the solution, I would
assume that the code is not refactored. Usually, if it
works don’t touch it.

Appendix B. Supplemental Information: Data Analysis 47

No continuous feedback from tool Interviewer: Would gosplat be something you would
want to incorporate into your or your team’s workflow?
Subject 2: Yes, however from the description you gave,
in the future it would be nicer to have it continuously
give feedback when writing code.

Everyone needs to use GOSPLAT
for it to be fully effective

Interviewer: Is a tool like GOSPLAT something you
would want to incorporate into your personal or your
team’s development workflow?
Subject 6: That is a hard question, in itself. Because
usually when you want to use a workflow tool or similar
you want everyone to be in on it, so that would be up
to a specific group of people to all agree on it or not.

B.2 Finalized codes & themes: Phase 2

B.2.1 High-level Theme: Impact of GOSPLAT on Code Struc-
ture and Organization

B.2.1.1 Theme: Improvements in code organization

Code Notes Logs
Positive impact
on code structure

Subject 2 session:
Subject tells researcher that it did
make code structure more precise in
aspects, but would like to see it in
use in larger projects as well in the
future.

[No logs tied to note]

GOSPLAT
pushes for refac-
toring decisions

Subject 6 session:
GOSPLAT disagrees with the code
structure in main.go. Subject agrees
with log output. Chooses to refactor
main.go and move it into new pack-
age languageServer.
[Another Note]
Subject 5 session:
Subject seems to agree with GOS-
PLAT in that main should be
cleaned up.

• error: Function ’hello’ in ’main’ package,
may not be in the best matching package,
consider placing it in ’languageserver’ or
choosing a better name for ’main’ !

[Another Log]

• Function ’headers’ in ’main’ package, may
not be in the best matching package, con-
sider placing it in ’math’ or choosing a bet-
ter name for ’main’ !

Appendix B. Supplemental Information: Data Analysis 48

Moving of func-
tion based on
GOSPLAT sug-
gestion

Subject 2 session:
Subject disagrees mostly, however
does agree that function math-
query() should be in server package.

• error: Function ’mathQuery’ in ’main’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’mathserver’ or
choosing a better name for ’main’ !

• error: Function ’hello’ in ’server’ package,
may not be in the best matching package,
consider placing it in ’mathserver’ or choos-
ing a better name for ’server’ !

• error: Function ’headers’ in ’server’ package,
may not be in the best matching package,
consider placing it in ’mathserver’ or choos-
ing a better name for ’server’ !

B.2.1.2 Theme: Impact on renaming functions and packages

Code Notes Logs
Encourage more
clear naming of
functions

Subject 6 session:
Subject disagrees with moving a
function called newLangServer()
away from package languageServer
but after renaming it and re-running
GOSPLAT, the tool agreed with
him. The subject found that the
new name newLanguageServer()
was a better name.

• error: Function ’NewLangServer’ in ’lan-
guageserver’ package, may not be in the
best matching package, consider placing it
in ’serverhub’ or choosing a better name for
’languageserver’ !

• error: Function ’hello’ in ’serverhub’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’languageserver’
or choosing a better name for ’serverhub’ !

[Another Log]

• error: Function ’ChangeLanguae’ in ’math-
Server’ package, may not be in the best
matching package, consider placing it in
’languageserver’ or choosing a better name
for ’mathServer’ !

Encourage more
clear naming of
packages

Subject 2 session:
Subject renames package server to
handlers. The subject explains that
it’s mainly built on handler func-
tions, and runs GOSPLAT.

• Subject agrees that the
new name which GOSPLAT
agreed upon was a much
better name than the last
one.

[Another Note]
Subject 2 session:

• Subject renames package
mathm to mathfunctions to
better suit its functionality.

• error: Function ’Cos’ in ’mathfunctions’
package, may not be in the best match-
ing package, consider placing it in ’main’ or
choosing a better name for ’mathfunctions’ !

B.2.1.3 Theme: GOSPLAT’s Limitations and Inaccurate Recommenda-
tions

Code Notes Logs

Appendix B. Supplemental Information: Data Analysis 49

Tunnel vision
on putting ev-
erything in one
package

Subject 6 session:
• GOSPLAT seems to keep on

wanting to move a lot of func-
tions to new package math.

[Another Note]
Subject 2 session:

• Subject creates new package
called integrals and creates
function in it called Inte-
grate().

• This seems to have caused ex-
tensive errors. Package In-
tegrals seems to make more
sense for GOSPLAT to set
most things into.

[Another Note]
Subject 6 session:

• GOSPLAT seems to have
started focusing in on package
database

• error: Function ’Setup’ in ’serverhub’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’math’ or choosing
a better name for ’serverhub’ !

• error: Function ’addNewHandler’ in ’server-
hub’ package, may not be in the best match-
ing package, consider placing it in ’math’ or
choosing a better name for ’serverhub’ !

• error: Function ’translate’ in ’serverhub’
package, may not be in the best matching
package, consider placing it in ’math’ or
choosing a better name for ’serverhub’ !

[Another Log]

• error: Function ’Add’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’handlers’ or
choosing a better name for ’mathfunctions’ !

• error: Function ’Sub’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’integrals’ or
choosing a better name for ’mathfunctions’ !

• error: Function ’FFT’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’integrals’ or
choosing a better name for ’mathfunctions’ !

• error: Function ’FFT’ in ’transformations’
package, may not be in the best matching
package, consider placing it in ’integrals’
or choosing a better name for ’transforma-
tions’ !

[Another Log]

• error: Function ’SaveToDb’ in ’client’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’database’ or
choosing a better name for ’client’ !

• error: Function ’Multiply’ in ’client’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’database’ or
choosing a better name for ’client’ !

• error: Function ’Subtract’ in ’client’ pack-
age, may not be in the best matching pack-
age, consider placing it in ’database’ or
choosing a better name for ’client’ !

• error: Function ’MakeHttpRequest’ in
’client’ package, may not be in the best
matching package, consider placing it in
’database’ or choosing a better name for
’client’ !

Appendix B. Supplemental Information: Data Analysis 50

Continuous dis-
agreement with
subject regarding
one singular func-
tion

Subject 2 session:

• Subject finds it interesting
that function Cos() is still
not accepted by GOSPLAT.
Proceeds to write more math
functions to experiment.

[Another Note]

• GOSPLAT seems to agree
with subject regarding these
functions. However Cos()
seems to still be an issue for
subject. Subject seems to find
this interesting. Is most likely
a problem regarding training
data of model.

• error: Function ’Cos’ in ’mathfunctions’
package, may not be in the best match-
ing package, consider placing it in ’main’ or
choosing a better name for ’mathfunctions’ !

[Another Log]

• error: Function ’Cos’ in ’mathfunctions’
package, may not be in the best match-
ing package, consider placing it in ’main’ or
choosing a better name for ’mathfunctions’ !

Incorrect naming
suggestions

Subject 2 session:

• Subject tests GOSPLAT ’s
naming suggestions function-
ality.

• GOSPLAT is incorrect in
naming suggestions.

• error: Function ’Add’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’handlers’ or
choosing a better name for ’mathfunctions’ !

– suggestion: Top 5 highest matching
package-names to function is:
setdirectory withtxn makeunre-
solvedaddrwithdefaults withrealm
getexpireadd

• error: Function ’Sub’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’integrals’ or
choosing a better name for ’mathfunctions’ !

– suggestion: Top 5 highest match-
ing package-names to function is:
mountshare ispubsubsink azurecert-
pool nightly ch

• error: Function ’FFT’ in ’mathfunctions’
package, may not be in the best matching
package, consider placing it in ’integrals’ or
choosing a better name for ’mathfunctions’ !

– suggestion: Top 5 highest matching
package-names to function is: peek-
box weekday fuzzcrossg jpeg week

• error: Function ’FFT’ in ’transformations’
package, may not be in the best matching
package, consider placing it in ’integrals’
or choosing a better name for ’transforma-
tions’ !

– suggestion: Top 5 highest matching
package-names to function is: peek-
box weekday fuzzcrossg jpeg week

Appendix B. Supplemental Information: Data Analysis 51

GOSPLAT Want-
ing to move things
to unrelated pack-
ages

Subject 6 session:

• GOSPLAT seems to be stuck
trying to make the subject
change the position of func-
tions into the unrelated pack-
age moments. This is not op-
timal.

• error: Function ’addNewHandler’ in ’server-
hub’ package, may not be in the best match-
ing package, consider placing it in ’moment’
or choosing a better name for ’serverhub’ !

• error: Function ’checkHeaders’ in ’server-
hub’ package, may not be in the best match-
ing package, consider placing it in ’moment’
or choosing a better name for ’serverhub’ !

[Another Log]

• error: Function ’addNewHandler’ in ’server-
hub’ package, may not be in the best match-
ing package, consider placing it in ’moment’
or choosing a better name for ’serverhub’ !

• error: Function ’checkHeaders’ in ’server-
hub’ package, may not be in the best match-
ing package, consider placing it in ’moment’
or choosing a better name for ’serverhub’ !

GOSPLAT Fail-
ing to recognize
errors in code
structure

Subject 5 session:

• Subject tries to confuse GOS-
PLAT more by creating func-
tion MakeHttpRequest() in
package somestrangepackage

• Subject runs GOSPLAT in
hope it should error from this.

• GOSPLAT is still agreeing
with this code structure. Sub-
ject disagrees with the code
structure and GOSPLAT

[No error output]

B.2.2 High-level Theme: User Experiences and Perceptions
of GOSPLAT

B.2.2.1 Theme: Perceived benefits and potential of GOSPLAT

Code Notes Logs
Appreciation
of GOSPLAT’s
performance

Subject 6 session:
• Subject seems happy with

GOSPLAT’s performance so
far. They explain to the re-
searcher that it was a good
call made by the tool to force
them to improve on the name.

[No logs tied to note]

Recognition of
small improve-
ments making a
big difference

Subject 6 session:

• Subject found that certain
scenarios such as the hello()
function in their eyes were
good examples of how it does
find small things which can
make a big difference.

[No logs tied to note]

Appendix B. Supplemental Information: Data Analysis 52

Potentially very
useful with an
enhanced model

Subject 5 session:

• Subject adds that with a
stronger model and better er-
rors it could be very useful for
improving and keeping code
structure consistent.

[No logs tied to note]

B.2.2.2 Theme: Recommendations for GOSPLAT improvements

Code Notes Logs
Improvement in
Error Reporting

Subject 5 session:
• Subject found some sugges-

tions to be weird. Errors
could be improved.

[Another Note]
Subject 5 session:

• Subject finds that error mes-
sage could be improved as
code structure faults could be
in poor naming of a function
as well as a package.

[No logs produced for first note] [An-
other Log]

• error: Function ’Save’ in ’database’ package,
may not be in the best matching package,
consider placing it in ’somestrangepackage’
or choosing a better name for ’database’ !

Need for improv-
ing accuracy and
hit rate

Subject 5 session:

• Subject said for them to use
it in a professional setting
it would require better and
higher hitrate as well as accu-
racy.

[No logs tied to note]

B.2.2.3 Theme: Willingness to adopt and enjoyment of GOSPLAT

Code Notes Logs
Enjoyment in using GOSPLAT Subject 6 session:

• Subject seems to enjoy it.
[No logs tied to
note]

Appreciation of GOSPLAT’s Impact
on Code Structure

Subject 6 session:

• Subject overall seems positive
to GOSPLAT and explains
that they were impressed with
how GOSPLAT made them
have to rethink code struc-
ture.

[No logs tied to
note]

GOSPLAT is an interesting Tool Subject 2 session:

• Subject explains that GOS-
PLAT was an interesting tool.

[No logs tied to
note]

Appendix B. Supplemental Information: Data Analysis 53

Willingness to using GOSPLAT in
larger projects

Subject 2 session:

• Subject tells researcher that it
did make code structure more
precise in aspects, but would
like to see it in use in larger
projects as well in the future.

[No logs tied to
note]

Openness to GOSPLAT’s future po-
tential in professional settings

Subject 5 session:

• Subject said for them to use
it in a professional setting
it would require better and
higher hitrate as well as accu-
racy.

[No logs tied to
note]

B.3 Finalized codes & themes: Phase 3

B.3.1 Theme update: Improvements in code organization

Code Quotes from transcript
Head start on early code structuring Interviewer: After using GOSPLAT, what are your

thoughts about the tool?
Subject 6: ...If you use it relatively early you can get a
good head start to early on placement of functions in
the “right way/in the right place”, which will help you
later on...

Improved awareness of code struc-
ture

Interviewer: How do you think it impacted your code
structure?
Subject 6: ...But when you have someone or something
giving you a pointer you at least think about it. So
it improved my code structure solely by making me
think about it, but also giving me a pointer to where
to start looking,...
[Another Quote]
Interviewer: How do you think it impacted your code
structure?
Subject 2: Not exactly sure, but I mean I guess it made
me reflect more, so I probably made an effort to keep
functions in a more logical place.

Subject gets indications of flaws in
code structure

Interviewer: After using GOSPLAT, what are your
thoughts about the tool?
Subject 6: ...i mean you get a good headups of what
might be out of sync, and what not...

Appendix B. Supplemental Information: Data Analysis 54

B.3.2 Theme Update: GOSPLAT’s Limitations and Inaccu-
rate Recommendations

Code Quotes from transcript
Freaks out when project size grows Interviewer: After using GOSPLAT, what are your

thoughts about the tool?
Subject 6: ...And later on it was still useful but it could
freak out, in ways...

B.3.3 Theme Update: Recommendations for GOSPLAT im-
provements

Code Quotes from transcript
Better context-awareness Interviewer: Any improvements to the tool GOS-

PLAT?
Subject 6: ...So it should be more context based inter-
preting of words, or function names would help GOS-
PLAT to basically categorise words of functions with
similar names...

Need variety in suggestions for dif-
ferent occasions

Interviewer: What improvements would you like to see
in GOSPLAT?
Subject 5: Better suggestions i guess? I think it would
also benefit from different kinds of suggestions, not
only moving it to an already existing package, maybe
a new package as well should be suggested in some
occassions.

Integration with IDEs is important
for adoption

Interviewer: Would you be willing to use a tool like
GOSPLAT the future, now that you’ve tried our pro-
totype?
Subject 2: ...if it can be integrated into some kind
of editor, and of course the final more refined model,
then yeah if I were to evaluate it more on some rele-
vant project, i probably would.
[Another Quote]
Interviewer: So the last question, would you be willing
to use something like GOSPLAT in the future? Now
that you’ve tried our prototype?
Subject 5: Yeah, if it worked well enough, also if it
would be integrated into the IDE. Then I would use it.

B.3.4 Theme Update: Willingness to adopt and enjoyment of
GOSPLAT

Appendix B. Supplemental Information: Data Analysis 55

Code Quotes from transcript
Subject wants to use it after im-
provements

Interviewer: So now we instead go into the future,
would you be willing to use something like GOSPLAT
now that you’ve had a chance to try the proof-of-
concept?
Subject 6: ...Yes i would, i think that would help a lot
in the day to day work.
[Another Quote]
Interviewer: So the last question, would you be willing
to use something like GOSPLAT in the future? Now
that you’ve tried our prototype?
Subject 5: Yeah, if it worked well enough, also if it
would be integrated into the IDE. Then i would use it.
[Another Quote]
Interviewer: Would you be willing to use a tool like
GOSPLAT the future, now that you’ve tried our pro-
totype?
Subject 2: Yeah, probably, i mean it depends. If it can
be integrated into some kind of editor, and of course
the final more refined model, then yeah if I were to
evaluate it more on some relevant project, i probably
would.

Possibly more useful as projects
grow

Interviewer: After using GOSPLAT, what are your
thoughts about the tool?
Subject 2: ...It seems like a useful tool, but it seems
hard to evaluate because of that. In a large project, I
think it would be useful.
[Another Quote]
Interviewer: What benefits do you see in a tool like
GOSPLAT?
Subject 2: Yeah, I think what I said earlier, if you
have a large project which is a bit difficult to have an
overview of in your mind, i think it can be very useful.
Because you have a very large code base with things
all over the place and that’s very difficult.

B.3.5 Theme: Potential benefits of post-prototype GOSPLAT

Code Quotes from transcript

Appendix B. Supplemental Information: Data Analysis 56

Enhanced code structure consis-
tency

Interviewer: Now we might take a bit of a step off
from the prototype phase it is in right now, and lets
look into the future. What benefits do you see in a
tool like GOSPLAT? Subject 5: Well, it can benefit if
there are several people working with several packages,
to keep it consistent between packages...
[Another Quote]
Interviewer: What benefits do you see in a tool like
GOSPLAT? Subject 6: mostly i think it’s a tool to
keep many developers in the same structure in some
way, it makes it easier to share code with other people.
If you use the same tools people tend to start using the
same structure and it gets easier to read for the people
involved...

Time saved not thinking about code
structure

Interviewer: What benefits do you see in a tool like
GOSPLAT? Subject 6: ...it also saves you time be-
cause you don’t have to think as much as it gives you
pointers and you can react to it rather than fully hav-
ing to come up with an idea yourself.

Guiding developers Interviewer: So now we instead go into the future,
would you be willing to use something like GOSPLAT
now that you’ve had a chance to try the proof-of-
concept?
Subject 6: ...Just have something to give you a pointer
when you feel insecure on where to put something. Or
just to doublecheck that it’s alright.

Assisting newcomers Interviewer: Now we might take a bit of a step off
from the prototype phase it is in right now, and lets
look into the future. What benefits do you see in a
tool like GOSPLAT? Subject 5: ...And also it would
benefit new people coming in, and can recognize the
structure.

Appendix B. Supplemental Information: Data Analysis 57

B.4 Figures

B.4.1 Theme: Importance of Good Code Structure

Code: Code structure is important
when code is shared among

developers

Code: Code structure important
when you return to old code

Code: Code structure helps
maintainability

Code: Code structure important
for navigating

Code: Good code structure, helps
for managing newcomers

Code: Structure important for
context of code

Code: High-level building blocks
are more important than code

structure

Code: Low-level code-structure is
less important

Theme: Importance of code
structure

B.4.2 Theme: Experiences with Poor Code Structure

Code: Poor code structure
makes it hard to navigate

Code: Poor structure makes it
hard to begin working

Code: Code-structure can be a
hinderance when developing

new features

Code: Bad code structure can
create larger issues when

mixed with new experience

Code: Even minor faults in
code structure can hurt

efficiency

Theme: Experiences with poor
code structure

Appendix B. Supplemental Information: Data Analysis 58

B.4.3 Theme: Difficulty in Creating Code Structure

Code: Difficulty to name
packages

Code: Gut feeling in decision-
making:

functions and packages

Code: A lot of time spent on
naming

Code: It’s hard to keep a
consistent code structure in a

new project

Code: Function placement
makes sense usually

Code: Garbage package used
when nothing else works

Code: Name packages whatever
when you’re unsure

Code: Functions belong with
their logical counterparts

Code: Functions belong
together if they are
conceptually alike

Theme: Difficulty in creating
 code structure

B.4.4 High-level Theme: Navigating Code Structure
Challenges in Software Engineering

Code: Code structure is important
when code is shared among

developers

Code: Code structure important
when you return to old code

Code: Code structure helps
maintainability

Code: Code structure important
for navigating

Code: Good code structure, helps
for managing newcomers

Code: Structure important for
context of code

Code: High-level building blocks
are more important than code

structure

Code: Low-level code-structure is
less important

Theme: Importance of code
structure

Code: Poor code structure
makes it hard to navigate

Code: Poor structure makes it
hard to begin working

Code: Code-structure can be a
hinderance when developing

new features

Code: Bad code structure can
create larger issues when

mixed with new experience

Code: Even minor faults in
code structure can hurt

efficiency

Theme: Experiences with poor
code structure

Code: Difficulty to name
packages

Code: Gut feeling in decision-
making:

functions and packages

Code: A lot of time spent on
naming

Code: It’s hard to keep a
consistent code structure in a

new project

Code: Function placement
makes sense usually

Code: Garbage package used
when nothing else works

Code: Name packages whatever
when you’re unsure

Code: Functions belong with
their logical counterparts

Code: Functions belong
together if they are
conceptually alike

Theme: Difficulty in creating
 code structure

High-level theme:
Navigating Code Structure Challenges in

Software Engineering

Appendix B. Supplemental Information: Data Analysis 59

B.4.5 Theme: Positive Perspectives on GOSPLAT Usage

Code: Positive on using GOSPLAT

Code: Tools creating an idiomatic
way is good

Code: Idiomatic tools must not be
right just enforce a certain way

Code: Tools make you able to use
intuitive understanding

Code: GOSPLAT may help in
naming, saving time

Code: Tool feedback is fast, good
for newcomers

Code: GOSPLAT could be useful
for naming tips even if just one

person used it

Code: GOSPLAT and other tools
are more useful when you don’t

know what you want

Code: Using AI for coding seems
valuable

Theme: Positive Perspectives
on GOSPLAT Usage

B.4.6 Theme: Initial Reservations about GOSPLAT
Adoption

Code: GOSPLAT is promising
depending on how much control it

wants

Code: Unsure over GOSPLAT’s
usability

Code: GOSPLAT needs to be of
high standard to be useful

Code: GOSPLAT partly solves the
issue

Code: No continuous feedback
from tool

Code: Everyone needs to use
GOSPLAT for it to be fully effective

Theme: Initial Reservations
about GOSPLAT Adoption

Appendix B. Supplemental Information: Data Analysis 60

B.4.7 High-level Theme: Perspectives on GOSPLAT
Adoption

Code: Positive on using GOSPLAT

Code: Tools creating an idiomatic
way is good

Code: Idiomatic tools must not be
right just enforce a certain way

Code: Tools make you able to use
intuitive understanding

Code: GOSPLAT may help in
naming, saving time

Code: Tool feedback is fast, good
for newcomers

Code: GOSPLAT could be useful
for naming tips even if just one

person used it

Code: GOSPLAT and other tools
are more useful when you don’t

know what you want

Code: Using AI for coding seems
valuable

Theme: Positive Perspectives
on GOSPLAT Usage

Code: GOSPLAT is promising
depending on how much control it

wants

Code: Unsure over GOSPLAT’s
usability

Code: GOSPLAT needs to be of
high standard to be useful

Code: GOSPLAT partly solves the
issue

Code: No continuous feedback
from tool

Code: Everyone needs to use
GOSPLAT for it to be fully effective

Theme: Initial Reservations
about GOSPLAT Adoption

High-level theme:
Perspectives on GOSPLAT Adoption

B.4.8 Theme: Improvements in code organization

Code: Positive impact on
code structure

Code: GOSPLAT pushes for
refactoring decisions

Code: Moving of function
based on GOSPLAT

suggestion

Theme: Improvements in code
organization

Code: Improved awareness
of code structure

Code: Head start on early
code structuring

Code: You get indications of
flaws in code structure

Appendix B. Supplemental Information: Data Analysis 61

B.4.9 Impact on renaming functions and packages

Code: Encourage more clear
naming of functions

Code: Encourage more clear
naming of packages

Theme: Impact on renaming
functions and packages

B.4.10 High-level Theme: Impact of GOSPLAT on Code
Structure and Organization

Code: Positive impact on
code structure

Code: GOSPLAT pushes for
refactoring decisions

Code: Moving of function
based on GOSPLAT

suggestion

Theme: Improvements in code
organization

Code: Encourage more clear
naming of functions

Code: Encourage more clear
naming of packages

Theme: Impact on renaming
functions and packages

High-level theme:

 Impact of GOSPLAT on Code Structure and
Organization

Code: Improved awareness
of code structure

Code: Head start on early
code structuring

Code: You get indications of
flaws in code structure

B.4.11 Theme: Perceived benefits and potential of
GOSPLAT

Code: Appreciation of
GOSPLAT's performance

Code: Recognition of small
improvements making a big

difference
Code: Potentially very useful

with an enhanced model

Theme: Perceived benefits and
potential of GOSPLAT

Appendix B. Supplemental Information: Data Analysis 62

B.4.12 Theme: Recommendations for GOSPLAT
improvements

Code: Improvement in Error
Reporting

Code: Integration with IDEs is
important for adoption

Theme: Recommendations for
GOSPLAT improvements

Code: Better context-
awareness

Code: Need variety in
suggestions for different

occasionsCode: Need for improving
accuracy and hit rate

B.4.13 Theme: Willingness to adopt and enjoyment of
GOSPLAT

Code: Enjoyment in using
GOSPLAT

Code: Appreciation of
GOSPLAT's Impact on Code

Structure

Code: GOSPLAT is an
interesting Tool

Theme: Willingness to adopt
and enjoyment of GOSPLAT

Code: Subject want to use it
after improvements

Code: Possibly more useful
as projects grow

Appendix B. Supplemental Information: Data Analysis 63

B.4.14 High-level Theme: User Experiences and Perceptions
of GOSPLAT

Code: Appreciation of
GOSPLAT's performance

Code: Recognition of small
improvements making a big

difference
Code: Potentially very useful

with an enhanced model

Code: Improvement in Error
Reporting

Code: Integration with IDEs is
important for adoption

Code: Enjoyment in using
GOSPLAT

Code: Appreciation of
GOSPLAT's Impact on Code

Structure

Code: GOSPLAT is an
interesting Tool

Theme: Recommendations for
GOSPLAT improvements

Theme: Willingness to adopt
and enjoyment of GOSPLAT

Theme: Perceived benefits and
potential of GOSPLAT

High-level theme:
User Experiences and Perceptions of GOSPLAT

Code: Better context-
awareness

Code: Need variety in
suggestions for different

occasionsCode: Need for improving
accuracy and hit rate

Code: Subject want to use it
after improvements

Code: Possibly more useful
as projects grow

B.4.15 Theme: Potential benefits of post-prototype
GOSPLAT

Theme: Potential benefits of
post-prototype GOSPLAT

Code: Enhanced code
structure consistency

Code: Time saved not
thinking about code structure

Code: Guiding developers

Code: Assisting newcomers

Appendix B. Supplemental Information: Data Analysis 64

B.4.16 Theme: GOSPLAT’s Limitations and Inaccurate
Recommendations

Code: Tunnel vision on
putting everything in one

package

Code: continuous
disagreement with subject

regarding one singular
function

Code: Incorrect naming
suggestions

Code: GOSPLAT Wanting to
move things to unrelated

packages

Code: Freaks out when
project size grows

Theme: GOSPLAT's Limitations
and Inaccurate

Recommendations

Code: GOSPLAT failing to
recognize errors in code

structure

Appendix B. Supplemental Information: Data Analysis 65

B.4.17 Thematic Map

Code: code structure is
important when code is

shared among developers

Code: Code structure
important when you
return to old code

Code: Code structure
helps maintainability Code: code structure

important for navigating

Code: Good code structure,
helps for managing newcomers

Code: Structure
important for context of

code

Code: High-level building
blocks are more important

than code structure

Code: Low-level code-
structure is less important

Theme: Importance of
code structure

Code: Poor code
structure makes it hard

to navigate

Code: Poor structure
makes it hard to begin

working

Code: Code-structure can
be a hinderance when

developing new features

Code: Bad code structure
can create larger issues

when mixed with new
experience

Code: Even minor faults
in code structure can

hurt efficiency

Theme: Experiences with
poor code structure

Code: Difficulty to name
packages

Code: Gut feeling in
decision-making: functions

and packages

Code: A lot of time spent
on naming

Code: It’s hard to keep a
consistent code structure

in a new project

Code: Function placement
makes sense usually

Code: Garbage package
used when nothing else

works

Code: Name packages
whatever when you’re

unsure

Code: Functions belong
with their logical

counterparts

Code: Functions belong
together if they are
conceptually alike

Theme: Difficulty in
creating code structure

High-level theme:
Navigating Code Structure Challenges in

Software Engineering

Code: Positive on using
GOSPLAT

Code: Tools creating an
idiomatic way is good

Code: Idiomatic tools must
not be right just enforce a

certain way

Code: Tools make you
able to use intuitive

understanding

Code: GOSPLAT may help
in naming, saving time

Code: Tool feedback is fast,
good for newcomers

Code: GOSPLAT could be
useful for naming tips even if

just one person used it

Code: GOSPLAT and other
tools are more useful when

you don’t know what you want

Code: Using AI for
coding seems valuable

Theme: Positive
Perspectives on
GOSPLAT Usage

Code: GOSPLAT is
promising depending on

how much control it wants
Code: Unsure over

GOSPLAT’s usability

Code: GOSPLAT needs to
be of high standard to be

useful

Code: GOSPLAT partly
solves the issue

Code: No continuous
feedback from tool

Code: Everyone needs to
use GOSPLAT for it to be

fully effective

Theme: Initial
Reservations about
GOSPLAT Adoption

High-level theme:
Perspectives on GOSPLAT Adoption

Code: Positive impact
on code structure

Code: GOSPLAT pushes
for refactoring decisions Code: Moving of function

based on GOSPLAT
suggestion

Code: Tunnel vision on
putting everything in one

package

Code: continuous
disagreement with subject

regarding one singular
function

Code: Incorrect naming
suggestions

Code: GOSPLAT
Wanting to move things
to unrelated packages

Code: Freaks out when
project size grows

Code: Appreciation of
GOSPLAT's performance

Code: Recognition of
small improvements

making a big difference

Code: Potentially very
useful with an enhanced

model

Code: Improvement in
Error Reporting

Code: Integration with IDEs
is important for adoption

Code: Enjoyment in
using GOSPLAT

Code: Appreciation of
GOSPLAT's Impact on

Code Structure

Code: GOSPLAT is an
interesting Tool

Theme: GOSPLAT's
Limitations and Inaccurate

Recommendations

Theme: Recommendations
for GOSPLAT
improvements

Theme: Willingness to
adopt and enjoyment of

GOSPLAT

Theme: Improvements
in code organization

Theme: Perceived
benefits and potential of

GOSPLAT

Code: Encourage more
clear naming of functions

Code: Encourage more
clear naming of

packages

Theme: Impact on
renaming functions and

packages

High-level theme:

 Impact of GOSPLAT on Code Structure and
Organization

High-level theme:
User Experiences and Perceptions of GOSPLAT

Code: Improved
awareness of code

structure

Code: Head start on
early code structuring

Code: You get indications
of flaws in code structure

Code: GOSPLAT failing to
recognize errors in code

structure

Code: Better context-
awareness

Code: Need variety in
suggestions for different

occasions

Code: Need for improving
accuracy and hit rate

Code: Subject want to
use it after improvements

Code:Possibly more
useful as projects grow

Theme: Potential
benefits of post-

prototype GOSPLAT

Code: Enhanced code
structure consistency

Code: Time saved not
thinking about code

structure

Code: Guiding developers

Code: Assisting
newcomers

GOSPLAT
& THE LM-
Solution

Faculty of Engineering, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

