
Bachelor of Science in Software Engineering
June 2023

Tracing Integration Errors to Upstream
Development Activities

An exploratory study

Dennis Andersson

Jacques Artale

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial
fulfillment of the requirements for the degree of Bachelor of Science in Software Engineering. The
thesis is equivalent to 10 weeks of full-time studies.

The authors declare that they are the sole authors of this thesis and that they have not used any sources
other than those listed in the bibliography and identified as references. They further declare that they
have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author:
Dennis Andersson
E-mail: dean20@student.bth.se

Jacques Artale
E-mail: jaar20@student.bth.se

University Advisor:
Michael Unterkalmsteiner
Department of Software Engineering

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract
The Eiffel Protocol provides traceability downstream and upstream of all activities that
transpire inside the CI/CD pipeline. The traceability achieved by the Eiffel Protocol comes
with great benefits even though it does not cover all development activities as it pertains only
to the CI/CD pipeline. Our research aims to explore the idea of extending the Eiffel Protocol
to cover all activities and discuss what benefits could be seen, especially in the scope of
reducing the number of integration failures. A literature study was first carried out to find the
root causes of these failures. After the literature study, we conducted a focus group session to
gather data about the potential benefits and problems of an extension, what analyses could be
drawn, and how it can affect integration errors. Our results show that an extension is
beneficial as analyses that can be made with the generated data can tackle some of the biggest
issues found in software development teams, especially in larger organizations. The
complexity, cost involved and the time needed to see a return on investment does however
weigh it down. Thus, while it is beneficial it is not enough for organizations to consider it as a
priority to integrate with their environments when thinking of the costs involved to do so.
Further implementation solutions need to be researched before it shows its worth.

Keywords:
Eiffel Protocol, Traceability, CI/CD, Continuous Integration, Continuous Delivery

ⅰ

Acknowledgments
We would like to express our deepest gratitude to our supervisor, Michael Unterkalmsteiner,
for his exceptional guidance, early morning comments and provided references. His support
has undoubtedly been a huge positive influence on our research.

ⅱ

Table of Contents

Abstract ⅰ

Acknowledgments ⅱ

1. Introduction 1
1.1 Background 1
1.1.1 Continuous Integration and Continuous Delivery 1
1.1.2 Eiffel Protocol 2

1.2 Defining Research Questions 3
1.3 Scope 4
1.4 Paper Structure 4

2. Related Work 5
3. Method 7
3.1 Literature Review 7

Figure 1. Overview of SDLC 8
3.2 Focus Group Session 9
3.2.1 Selection of Participants 9
3.2.2 Session Structure 10
3.2.3 Selection of Topics 11
3.2.4 Data Collection and Analysis 11

3.3 Validity and Reliability of our Approach 12
4. Extension and Visualization for Events 13
4.1 Overview of Extension Structure 13

Figure 2. Schematic overview of the structure including the extension 14
4.2 Custom Events 14

Figure 3. Current Event Structure 15
Figure 4. Modified Event Structure 15

4.3 Connection of Custom Events 16
Figure 5. Connection Problem Sketch 16

4.4 Visualization of Connections 16
Figure 6. Aggregation of a larger event graph 17
Figure 7. A more manageable event extension graph 18

5. Results 19
5.1 Literature Review- Causes for Integration Failures 19

Table 1. Most Prominent Causes for Integration Failures: 20
5.2 Results of the Focus Group Session 21
5.2.1 Integration 21

Table 2. Sources of Integration Failures from the Focus Group: 21
5.2.2 Positive Impact of Visualization 21

5.2.3 Drawbacks of Visualization 21
5.2.4 Challenges of Traceability 22
5.2.5 Benefits of Traceability 22
5.2.6 Analysis of Development 23
5.2.7 The Negative Impact on an Extension 23

6. Discussion 25
6.1 Discussion of Results 25
6.2 Further improvements 27

7. Conclusion and Future Work 28
7.1 Conclusion 28
7.2 Future Work and Research 28

References 30
Appendices 33
A - Table of Integration Data Types and their Origins 33
B - Questions for the Focus Group Session 35

1. Introduction

1.1 Background
The need for new software and innovative solutions is constantly growing and with it, the
software is becoming increasingly complex. With the increasing complexity and the growing
number of developers working on it, testing and integrating new code and features can
present substantial challenges. To battle these challenges, certain frequent activities that occur
during development have been made automatic in the form of continuous development [20].
These practices have risen to become extremely popular in the last two decades, the most
widely adopted of them being Continuous Integration [17].

Another approach to tackle this issue is to use software traceability which aims to improve
the software quality [22] and can be considered one of the necessities for software
engineering [23, 24]. Through monitoring changes being made to a software system, one will
be able to draw more accurate analyses and make well-informed decisions to improve the
quality of their product.

The Eiffel Protocol describes all the activities taking place in the continuous development
pipeline in the form of events, enabling the software artifacts to be traced. However, does the
continuous development pipeline cover all the metrics that could be beneficial to monitor? Or
is there something to be gained by going beyond that? Exploring that exact idea is what this
thesis focuses on. Figuring out what types of analysis can be made with that extra bit of data
and how that can benefit the software development process.

Just like the Eiffel Protocol, one should note that there exist other event-based tools as well,
one of which is a specification called CloudEvents that act as a guideline for how event data
should be communicated between different cloud services and platforms [36]. CloudEvents
use a much more simplified format for their event data compared to Eiffel but the sources
from which they gather these events are different. CloudEvents collects events from different
cloud services whilst Eiffel is more concerned about the events in the CI/CD pipeline. In this
paper, we will nevertheless focus on the Eiffel Protocol.

1.1.1 Continuous Integration and Continuous Delivery
Continuous Integration (CI) is the act of developers committing their code changes to a
shared source code repository regularly, building on the principle of rapid feedback as each
integration undergoes automatic building and testing, facilitating frequent communication
with the developers regarding codebase changes and alarming them of any conflicts occurring
in any of the steps [16 – 20]. By frequently committing, the developers are giving a sense of
progress as well as keeping the changes to a minimum. Small changes mean quicker builds
and easier bug detection as the number of lines of code changed is not that large, and because
they are frequently committing their updates, all changes should also be fresh in the
developers' memory [6].

1

Continuous Delivery (CDE) focuses on rapidly and reliably producing software builds by
utilizing automation [16, 17]. It also removes unnecessary manual work for engineers and
ensures that the software is in a production-ready state [21]. There is also a practice known as
Continuous Deployment (CD) which follows the same principle as CDE except CD is fully
automatic, whilst in CDE the last stage of deployment is a manual step [16, 20]. In this paper,
we will refer to both Continuous Delivery and Continuous Deployment as CD.

1.1.2 Eiffel Protocol
The Eiffel Protocol aims to describe all of the activities in a continuous integration and
delivery pipeline through broadcasted events that reference one another [35]. These activities
are collected during the software integration process (compilation, testing, packaging) and
can describe how different changes are related. For example, how a commit has been
integrated into the system, which tests it passed, and whether or not it is included in the
production build.

When an incident occurs in the pipeline, the necessary data about the occurrence is gathered
and a new Eiffel event, following the protocol based on what type of event it is, is
constructed. The event is then linked with other events which can be seen as causing factors
and then globally broadcasted with the help of RabbitMQ to everyone subscribed. As events
are linked together the result is a directed acyclic graph. A subscriber might then for example
use other Eiffel services subscribed to the message queue to accomplish other goals, such as
visualizing incoming events with the help of Eifel-Vici [29].

Each event that is built follows a specific JSON structure [30] consisting of three major
fields, meta, data, and links. In these fields, more key-value pairs are described based on
which Event Type is being built. The meta field contains metadata for the event such as id,
version, time, and the event type while the data field contains information about the event
such as the author, what artifact it concerns, test case results, etc. Lastly, the links field
contains all the relations this event has with other previous events and the type of relationship
they share.

Simple-event-sender is an application designed to handle Eiffel events. Any event sent to it
through its REST API will be validated and missing metadata will be added to its fields. The
complete JSON object is then sent through the RabbitMQ message bus and broadcasted to
each subscriber listening for incoming messages. The application itself hosts the RabbitMQ
bus and also includes a MongoDB for storing Eiffel events, although this database will not be
addressed in this thesis as its mostly used for validating any duplicate events.

Eiffel-store is an application whose purpose is to persistently store and visually display events
and how they are connected through a web-based graph. Whenever any new events are added
to its database it will trigger the application to update the visualization and in that sense, it is
a live view of both an aggregation of all events as well as it is capable of displaying a more
detailed view of specific events.

2

RabbitMQ-Eiffel-Store which we in this thesis will refer to as the bridge is used to connect
the Simple-event-sender to Eiffel-store. It is essentially just a subscriber on the RabbitMQ
which means that any new events we want to add will be broadcasted to the bridge. The
bridge will in turn take that event and insert it into the MongoDB used by the visualization in
the Eiffel-store application.

1.2 Defining Research Questions
The research questions we aimed to answer with this thesis were the following:

RQ1.What type of data can be used to identify the root cause of integration errors?

RQ2. How could the full traceability of all development activities be analyzed to improve the
development process?

RQ3. In which way can the visualization of the collected data strengthen the analysis
process?

With our first research question, we wanted to see from where integration failures would
derive as integration is the main focus of CI/CD and can lead to significant problems,
including delays in software delivery, increased costs, and even system failures. By knowing
the data points used to identify integration failures we could then start looking for
environments and activities where these can be found, and then move on to our second
research question.

Our second question builds upon our first one as we now wanted to know how the collected
data could be analyzed, what would be most interesting to look at, and potential issues which
would need solving, in order to prevent future failures, reduce bottlenecks or improve
efficiency and the overall development process of a team.

With our last research question, we wanted to know if analyzing the development process and
the data points could be further enhanced by visualizing the data through an existing event
graph, and in which way, it could potentially be helpful.

3

1.3 Scope
In this research we try to explore the idea of extending the Eiffel Protocol and achieving full
traceability of all development activities to see if it can have a positive influence on
integration errors for software projects. A conceptualized extension of Eiffel for the planning
tool Trello, used to structure tasks in the form of ‘cards’ on a Kanban board, is also created to
be used as inspiration for the discussion later on during our empirical study. We are not
researching a finalized solution but instead just the concept and evaluating if it has any
merits when it comes to analyzing the development.

1.4 Paper Structure
The remaining structure will be as follows:

Section 2. Related Work - Discuss some closely related research papers that we found, and
briefly describe their goals and findings.

Section 3. Method - Describe in detail how we performed our literature study and our focus
group session.

Section 4. Extension - Here we give an overview of our Proof of Concept extension, how we
utilized custom events, and how the connection of events was made.

Section 5. Results - The results gathered from our literature study are compiled together with
the results from the Thematic Analysis of the focus group session.

Section 6. Discussion - We then continue by discussing our findings and how we interpreted
the results, what the limitations of our research were, and finally, what we could have done
differently.

Section 7. Conclusion and Future Work - Here we will answer our research questions with
the help of the findings made previously and also discuss potential research that can be done
as a follow-up to our own.

4

2. Related Work
At the moment there exists a very limited amount of research on the Eiffel Protocol and
almost none describing an extension to it. Ståhl et al. [4] discuss in their “Further work” that
it might be interesting with a “Development Activity Extension” to the Eiffel Framework,
describing a research gap that is very similar to what we are discussing and what we now
tried to partially fill. There is also research done by Hramyka et al. [12] where they evaluate
the adoption of the Eiffel Framework at Axis Communications but also implement their own
Eiffel plugin for Artifactory. They concluded that pipeline traceability is a complex problem
but that it should be worthwhile to continue researching how to integrate the Eiffel Protocol
into an existing continuous integration pipeline. Helldin Boman [13] on the other hand
conducted research where they tested the confidence level found in continuous delivery
pipelines using the Eiffel Framework. Specifically, they extracted data about “build
outcome” and “confidence level change” thanks to Eiffel, which was data that was deemed
important but never measured before for software reliability. They, therefore, concluded that
using the Eiffel Framework could then help improve the confidence assessment of software.
The only paper we were able to find which focused on an extension was researched by
Gustafsson [14]. Their extension was to the Eiffel-Store tool which we also adapted and use
to visualize Eiffel Protocol events. In their research, they extended the functionality of the
tool by allowing users to filter through the events to allow stakeholders to get answers
according to their information needs.

Some more conducted research does however exist in the field of software analytics and
analysis of larger sets of data. Buse and Zimmermann [38] for example write about a
proposed new role as a software project analyst and how they could help managers turn data
sets from projects into insights they can act on which otherwise would be hidden. They also
describe how software development can be “risky and unpredictable” due to large delays and
failures often occurring. One of the more related aspects to our thesis that they bring up is
however, the need for “new principled tools for data aggregation and analysis” and how
existing tools can be limiting. Menzies & Zimmermann [28] continue in their issue of IEEE
Software by discussing software analytics, its benefits, drawbacks, historical aspects, future
growth, and also its definition, they defined software analytics as the process of empowering
software development individuals and teams with greater insight of data to improve their
decision making. This is quite directly in line with what the topic of this thesis is about,
exploring the idea of an extended collection of data in hopes of bettering the development
process by allowing improved decisions to be made using said data. Dam et al. [37] also
argue in their paper about the importance of the explainability of software analytics. Noting
that a lot of software practitioners are reluctant to use the produced analytics as they don’t
understand the reasoning behind produced results. That is why they reason that making
software analytics models more explainable for developers and their peers is just as important
as being able to generate accurate analytics.

5

Interest exists in extending the Eiffel Protocol as the software analytics that can be done
using it is by these articles deemed beneficial. It is also important that the data presented is
understandable to be able to draw efficient analyses.

6

3. Method
Here we would like to go over the methodology of the literature review and how we
conducted it and structured the data extracted from the different articles and research papers
we found. We then move on to explaining in detail how the empirical study in the form of a
focus group session was organized, from the selection of participants to data collection, and
lastly validity and reliability of the approach.

3.1 Literature Review
To conduct a comprehensive literature review on integration failures concerning continuous
integration and continuous delivery we devised a systematic search strategy consisting of four
essential steps:
1. Search string development:

Through extensive trial and error and many iterations of different types of keywords and
combinations we were able to create a search string. The search string we developed to
retrieve articles from Scopus was as follows:
(("software analytics" OR "Integration testing") AND ("continuous integration" OR
"continuous delivery") AND (identify OR eliminate OR resolve OR failure OR error))
2. Selection Criteria:

After searching for the articles and applying our selection criteria (published in the past 10
years, written in English, Subject area Computer Science) to ensure that the selected articles
were relevant to our research we were left with 110 articles. Then by reading the title and
abstract, this number was further filtered to better align with our research questions.
3. Citation Mining:

What followed was a series of citation mining also called snowballing [25] for additional
relevant resources missed by our search string. We did both forward snowballing, looking at
papers that have cited a paper within our selection to see if it's of interest, and backward
snowballing where we instead looked at the reference list of selected papers looking for other
interesting papers, that they have cited, for our research.

After conducting the 3 steps for selecting and filtering research papers to read, it resulted in
23 articles in total.

We chose to adopt an agile model of the Software Development Life Cycle (SDLC) [27] to
help us sort and categorize all of the different data points extracted from these articles more
effectively into the individual stages of development more clearly. Considering that the
SDLC contains all of the different stages both within and outside of the pipeline, makes it
ideal for us to use and structure the sources of integration failures and get an overview of
from where they originate. Many of the causes for integration failures we found (and can be
seen in Appendix A) were located within the organization itself and could thus not be placed
into one of the existing categories. Therefore we chose to extend these stages with an extra
Organization phase to accommodate for this.

7

Figure 1. Overview of SDLC

Organization: Even though not a stage of the lifecycle of software development, the
organization is, however, a large and highly important prerequisite of the project itself. It is
the foundation and origin of the developers, their individual experience, and their locations of
work that are highly coupled with our study as it is their work, practices, and processes which
we want to help trace, document and ultimately seek to improve.

Planning: The planning stage involves gathering information about resources, developers,
and roles, as well as analyzing the scope and constraints of the system. This can be done
through market research or by identifying any stakeholders and the targeted consumers. It
also involves breaking down the individual features of the project into functional and
non-functional requirements to establish a clear vision of the end product. In this stage, a
project plan is developed and any budgets or timelines are estimated.

Design: The design stage is used to convert the gathered requirements into a more detailed
architectural design by choosing any design patterns, algorithms, important data structures, or
developing mock-ups. The objective of this stage is to create a guide for the developers to
follow during the implementation stage to ensure that the result will stay as much as possible
in line with the desired outcome in regards to quality, for both the functional and
non-functional requirements such as usability, performance, or maintainability.

Implementation: During the implementation stage, any selected programming languages or
development tools are used to translate the plan and the selected design into source code. In
this stage, developers write code, conduct code reviews, and integrate different software
components into the final software of the system.

Testing: In the testing stage the implementation is validated thoroughly to ensure that it is
stable, reliable, meets the planned requirements, and behaves as expected. During this stage,

8

different kinds of testing are conducted, including unit testing, integration testing, acceptance
testing, and any other relevant techniques such as test case design, and test automation. With
these tests, defects are identified and fixed before one of the last steps of the lifecycle.

Deployment: The deployment stage is where the compiled software is released to the end
users/customer and includes installation, configuration, and data migration. It is at this stage
that the software is properly integrated into the new or existing infrastructure.

Maintenance: The final stage occurs after the software has been deployed and involves
addressing any defects or issues found during usage, as well as making any necessary updates
or enhancements for changing requirements or technologies such as outdated libraries or
dependencies. This stage ensures that the software will stay operable and stable over time.

3.2 Focus Group Session
The reason we chose to use a single focus group session as the method for conducting the
empirical study in contrast to multiple interviews was that we wanted entirely new ideas for
improvements to complement the extension. As opposed to standard interviews, letting the
participants listen to each other's answers could spire a single idea into multiple ones while
also increasing the value of the answers as each answer would always be either backed up or
criticized by at least one more person. For these reasons, the focus group was in our opinion
the most adequate method to adapt and conduct.

The objective of the focus group session [33] was to mainly answer RQ2 “How could full
traceability of all development activities be analyzed to improve the development process?”
and RQ3 “In which way can the visualization of the collected data strengthen the analysis
process?”. Although we had already conducted a literature study to answer RQ1 “What type
of data can be used to identify the root cause of integration errors?”, we used this as an
opportunity to also support or contradict our findings.

Even though a focus group can provide qualitative insights from experts with real experience,
it could also give us biased results if conducted poorly as described by [10]. Bias could occur
if we as facilitators intervene with our own opinions or if someone is dominating the
discussion which then easily could lead to skewed results. To combat this and other general
concerns we set up the following rules:

1. We as conductors will remain neutral and observative
2. Participants may speak freely but should respect each other
3. We will remain on topic

3.2.1 Selection of Participants
For our focus group we were looking for people of varied backgrounds to get different
perspectives but were mostly interested in CI/CD engineers, software process improvement
specialists, data analysts, and software engineers. We believed that these different roles could
help us identify potential problems and give us feedback in terms of in which settings

9

collecting more activities would be most profitable, how we best integrate with the pipeline,
and the most important aspects when it comes to integration failures and team effectiveness.

Through the help of a contact at Ericsson, we got in contact with two participants. They were
both highly experienced and currently working in key roles at Ericsson. One of the
participants was serving as a CI/CD Architect with five years of experience in the CI/CD
field, leading all CI/CD activities in a unit consisting of around 160 people while the other
was working as a Business Development Manager with around eight years of CI/CD
experience. Before their involvement in CI/CD, both participants held various roles within
the industry, including team leadership and software development, and as they transitioned
into their current positions they have been playing significant roles in both implementing and
improving CI/CD processes within their respective units at Ericsson. Both participants also
had a history with and were familiar with the Eiffel Protocol.

We as conductors took the role of the Moderator to ensure that the session followed the plan
and kept on track with the topics and the time which had been allocated. We tried our best to
guide the discussion and the conversations by asking open-ended questions and follow-up
questions to the participants when necessary. We also needed to ensure that all participants
were contributing and expressing their opinions which was done by asking for a follow-up
from whoever didn’t answer the original question.

3.2.2 Session Structure
The focus group session with both of our participants was planned to last for roughly 2.5
hours and fell just shy of that. The session was divided into four separate phases:
Introduction, Warm Up, Discussion and lastly Debriefing.

During the Introduction, we explained what the session was about and how it would be
structured. This information included the rules of the session, our goals, and how we would
collect the data, but also the structure and the different topics we wanted to ask questions for.
Following the Introduction was the Warm Up, where we conducted a small presentation
describing what Eiffel was and how it could be used, showing them what we had
implemented and what we were researching, explaining the current issue of Eiffel's limited
reach and our solution of how to extend it by using plugins to extract data from different tools
used in development. The Warm Up served to introduce the participants to the different
concepts and give all of them a basic understanding of what it was we were researching. Next
was the Discussion phase which was the main event of the session. This is where we went
over each of the topics individually and asked the related questions seen in Appendix B.

Here our roles as moderators becomes more important as we needed to make sure the
discussion taking place stayed on topic, progressed forward, and that each participant was
allowed to share their opinions on each question, allowing a good opportunity to get the
highest quality of data possible for each question. The last phase of the focus group session
was the Debriefing stage. The purpose of having a Debriefing period is to summarize the
Discussion and the ideas which have been developed and ask more general questions for the
extension. By doing so we not only conclude the session in a good manner but also allow for

10

some fresh and final input on all parts as it is at the end of the session where all of the
participants were most familiar and knowledgeable of the key concepts.

3.2.3 Selection of Topics
In order to choose which topics to include for the focus group, we looked at our research
questions to base each topic on, however with a larger focus on RQ2 and RQ3 as the focus
group would be our only attempt at answering those specifically. Due to this fact, we also
made sure to keep a steady supply of extra questions to occupy the allocated time in the
emergency of short answers and too little data to later build our answers on. Our approach
was simple: Start small and work up to the more important aspects.

Getting familiar with their Current work practices was chosen to help provide us with a solid
ground in understanding where they came from and what they based their answers on.
Considering RQ2 is mostly focused on how our research could improve the development
process, Analysis was also selected as an important topic to discuss. A literature review to
answer RQ1 had already been performed to identify the different causes for integration
failures but we wanted to use this opportunity to also get their perspective on the matter
which led to us creating our third topic, Integration. Getting to know which tools they used
on a day-to-day basis was also in our interest as well as discussing what data points from
those tools would be the most important in their opinion to collect data from which is why we
included Plugins as our next topic. Our last topic, General improvement, was added and
would be the most important one as it concluded the session and captured any final thoughts.

The list of topics we chose to discuss was, therefore, the following:
● Current Work Practices
● Analysis
● Integration
● Plugins
● General improvement

3.2.4 Data Collection and Analysis
The focus group session was audio recorded to ensure accurate data collection, and to lower
the amount of time spent transcribing we used an online transcription software to help us
write the outline of the discussion and then fix mistakes generated by the automation tool.

After completing the transcription, we applied Thematic Analysis in a deductive approach as
a form of qualitative data analysis due to the very specific set of topics we planned on
discussing, following the guidelines suggested by Braun and Clarke [11]. The themes we
identified were derived from our research questions which we aimed for the Thematic
Analysis to answer. With the themes we wanted to organize each participant's experience and
opinions, distinguishing positive responses from negative ones on each topic and question
introduced. The themes we used were Integration, Positive Impact of Visualization,
Drawbacks on Visualization, Challenges of Traceability, Benefits of Traceability, Current
Traceability, Analysis of Development, Negative Impact of Extension as well as Positive

11

Impact of Extension. The transcript was then thoroughly read through and each relevant idea
or point of view was grouped under these themes. This process was then repeated multiple
times to ensure that all relevant data was accurately captured and categorized. An extra note
for the categorization is that in some cases the input could match multiple themes, and to be
certain that no input was misplaced the input was instead added under all relevant themes.

3.3 Validity and Reliability of our Approach
As mentioned we only had two participants for the focus group session which in turn did not
allow us to get a wider perspective on the matter as we planned. To further add to this, both
participants worked in the same field limiting the provided viewpoints. However, to our
benefit, they were very experienced in their area as well as knowledgeable in Eiffel. They
were also well accustomed to working in larger organizations, completely aware of the
complications of integrating a working solution of our research in terms of implementation
complexity, pricing, and return on investment.

12

4. Extension and Visualization for Events
This section shows an overview and explains the structure of the Eiffel services we used and
implemented in our extension [26]. We explain why these particular services from the Eiffel
community were selected and how they fit into the bus followed by how our extension with
custom events works, how the events are connected through links, and lastly, how they are
visualized. The extension and tools we present here are what we used to collect data from
Trello and create visualizations of event graphs to show our participants during the focus
group session which would help both them and us answer our questions.

4.1 Overview of Extension Structure
While the Eiffel Community has a bundle of services available to use open-sourced on
Github, many of these are not needed to have a basic Eiffel structure up and running. Initially,
we looked at the Eiffel-easy2use[31] repository, which is made to be a simple setup of docker
containers running a wide variety of services that can interact with each other ‘out of the
box’. However, we quickly noticed that easy2use was more problematic than we anticipated,
running almost all of the different services available even though only a very select subset of
these services were interesting for our thesis, mainly broadcasting new Eiffel events, storing
them, and finally visualizing them. For these purposes, we selected two different services:
Simple Event Sender and Eiffel Store.

Simple Event Sender was chosen specifically as it already included a foundation capable of
supporting the protocol, but also due to its user-friendly approach of creating new events,
which in turn would allow us to efficiently manage each event going through the bus and into
our event graph. Eiffel Store was also chosen specifically to create a vivid visualization of the
event graph, allowing us better to showcase the patterns and relationships within the data. For
these two applications to work seamlessly together a third application (Bridge) was used to
subscribe to the message broker and listen for any incoming messages, or in this case, new
events. The application would then facilitate the communication between the two by inserting
these events into a persistent MongoDB for Eiffel Store to fetch the data from and render the
graph.

What we wanted to accomplish was to automate the process of collecting new metrics with
the help of plugins which meant that we needed to handle incoming requests from our plugins
and create our custom events, which section 4.2 explains more in detail. We ended up only
creating a single plugin for the tool Trello which was sufficient to showcase that our idea was
indeed possible to implement in practice. This plugin would use a hook embedded directly
into a project in Trello which listened for changes made to the cards such as creating a new
card, renaming a card, moving a card between two boards, or deleting a card. These different
activities were then grouped into different action types. Creating a card was labeled as
‘createCard’ while making modifications to a card was labeled as ‘updateCard’. When the
hook detected a change it sent a POST request to a Node.js server which was responsible for
identifying what type of event to create based on the action type received and filling it with

13

the necessary information before sending it to Simple Event Sender. This Node.js server also
had the potential to integrate other types of plugins into the bus and handle the creation of
more than just custom events for Trello activities. An outline of the different services and
how they work together can be seen in Fig. 2.

Figure 2. Schematic overview of the structure including the extension

4.2 Custom Events
As per the Eiffel documentation, many different types of events can represent the different
activities occurring in the pipeline, but as we move outside the pipeline things will start to fall
apart or be misrepresented if current event types would be applied. Although creating entirely
new events to suit specific purposes are possible, it would have led to multiple complications
due to the interconnected parts of the different services we had set up running the Eiffel Bus.
Making modifications to these parts and introducing new events for each activity in the
development process would have been the most optimal solution (and should be done if this
work is to be continued) but due to the time limitations, we chose to use a more convenient
alternative instead. Luckily each event in the current structure also allows for ‘custom data’
fields, relatively allowing almost any combination of key-value pairs so long as they are
within the ‘custom data’ object, and by using this approach we would ensure that our custom
events would not conflict with the standard service structure, maintain compatibility with the
protocol and still serve the purpose for our thesis.

In our case, we used the custom data fields to adapt the structure of an EiffelArtifactCreated
event for incorporating Trello data into the object. The EiffelArtifactCreated event was
chosen due to its modularity in terms of allowed connections and the low number of required
fields, which made it an excellent choice to adapt and use as a base frame for representing
activities outside of the pipeline. By disguising our custom events as already existing events
in the protocol, we successfully extended the structure without compromising compatibility
with the protocol or the services. Each key-value pair we added were the following:

14

● id - representing the Trello card id, which as section 4.3 describes, would allow us to
find connections between our custom events

● name - containing the name of the card the event refers to
● activity - being a short description of what activity specifically occurred
● type - representing the type of our custom event, similar to that of the existing type
field in meta

● linkStrengths - being an array with each element consisting of either of two values
‘weak’ or ‘strong’, which we in section 4.3 also explain more of in detail

Fig 3. and Fig 4. shows a comparison between the current event structure of an
EiffelArtifactCreated event and the modified structure next to it including the ‘custom data’
field.

{

meta: {

type: "EiffelArtifactCreated",

version: "3.0.0",

time: 1682801702400,

id: "aaaaaaaa-bbbb-cccc-ddddddddddd2",

tags: ["Event", tag]

},

data: {

identity: "pkg:somePkg/act@1.0.0",

name: "Code changes made",

},

links: [

{

type: "CAUSE",

target: "aaaaaaaa-bbbb-cccc-dddddddddddd"

}

]

}

{

meta: {

type: "EiffelArtifactCreated",

version: "3.0.0",

time: 1682801702400,

id: "aaaaaaaa-bbbb-cccc-ddddddddddd2",

tags: ["Trello", tag]

},

data: {

identity: "pkg:trello/card@1.0.0",

name: "Trello card moved",

customData: [

{

key: "trelloActivity",

value: {

id: 1,

name: "Card name",

activity: "Trello card moved",

type: "updateCard",

linkStrengths:["strong"],

}

}

]

},

links: [

{

type: "CAUSE",

target: "aaaaaaaa-bbbb-cccc-dddddddddddd"

}

]

}

Figure 3. Current Event Structure Figure 4. Modified Event Structure

15

4.3 Connection of Custom Events
Traceability in the Eiffel Protocol is achieved by letting each event reference a previous event
(except of course the first event in the chain) which will be the predecessor or the cause. In
Figures 3 and 4 we showed different types of events, both of which has a links field used to
address other events through their unique id in the target value. The problem with these kinds
of links (which Fig 5 also shows), as opposed to the links required by our extension, is that
these links are always constant and absolute while introducing new event types with
connections to previous events being of another quality, could potentially raise conflicts and
false connections, i.e connections which in reality does not exist between a set of events or
should be considered at all. For example, capturing the activity of two developers
communicating over a Slack channel might produce a weaker link to the events occurring
inside of the pipeline if the developers are not very explicitly describing the context in their
messages. Even though our Trello events do produce strong connections between themselves
(as we always know the exact id of the card created and later modified and therefore can trace
their history) there may exist weaker connections between the card itself and for example, a
commit or a set of messages, if no explicit referencing to which requirement it is related to is
made. This concept of weaker and stronger connections based on human factors raises an
interesting problem which unfortunately is out of the scope of this thesis and would require
further research: How can activities outside of the pipeline be traced to those inside the
pipeline? One possible answer could be to use an extra step in the bus with the purpose of
finding trace links through different means, such as utilizing natural language models, or by
looking at the author of the event and any previous events by the same author under a shorter
timespan. After these new connections have been identified it is important to note that they
should also be treated according to their strength and probability, both in terms of analyzing
with greater care and for visualization.

Figure 5. Connection Problem Sketch

4.4 Visualization of Connections
Eiffel Store is used to visualize an aggregation of the event graph and each individual
connection between the events. Using a set of example data containing 565 events which in
turn results in 565 nodes and 1257 connections, of which Fig 6 shows a small selection. Each
node can be seen with a gray line connecting it to another node, and by following them we
can trace each node back to a single point of origin.

16

Figure 6. Aggregation of a larger event graph

When we however wish to display the custom events, a smaller set of data was used for the
nodes and edges which Fig 7 depicts. As the figure shows, we have first a few original Eiffel
event types such as an EiffelSourceChangeCreated event followed by an
EiffelSourceChangeSubmitted event, as well as a set of our ‘custom’ Trello events. In this
example, we wanted a graph representing the following story:

“A set of test cases run, one of which fails. A new task in Trello is created which aims
to solve the issue. A developer creates a new branch, commits some code changes, and
triggers the tests once more. This time both pass. The issue is marked as ‘done’ as the
branches are merged together and the issue is later deleted”

Some of the connections showcased for the Trello events are also slightly different. Just as we
brought up previously, connections between cards are strong (green lines) while some other
connections can be harder to find and are arguably weaker (yellow dotted lines) such as a
merge of two branches or a test case passing, and an issue being marked as ‘done’. It is a very
simple example yet still somewhat accurately explains how the extension and the existing
Eiffel Bus can cooperate together in order to depict a more complete scenario.

17

Figure 7. A more manageable event extension graph

18

5. Results
In this section we show the results from the literature study on causes for integration failures
explained in 3.1, we also make a summary on the table under Appendix A which depicts the
complete compilation of all of the types of data that we were able to identify from the papers
and articles mentioned during our literature study findings. We then go over the participants'
responses from the empirical study explained in 3.2 in relation to the themes.

5.1 Literature Review- Causes for Integration Failures
In our literature review we chose to primarily present a subset of the papers we found from
our search, rather than all of them. The main reason for this decision was because of the
nature of our research methodology. Most of the papers were found through citation mining
which involves following references from the papers we initially found which caused some of
the paper's data to be included in previous papers. [1] and [2] for example, had a compilation
of many of the causes of integration failures which was presented in preceding papers.

A study on development activities' impact on 209 different projects and how relevant they
were in terms of errors was conducted by Cataldo and Herbsleb [2]. Most of their focus was
on experience, geographic distribution, technical properties of the product, and time pressure.
What they eventually found out was that the more locations involved in a project and
especially the uneven distribution of engineers across these locations, the lower the quality of
the end product would be. The different reasons for this decrease in quality were further
discussed by [7, 8, 15], such as failure to communicate effectively, different perspectives,
allocating tasks, etc. Cataldo and Herbsleb go on to name a few more factors negatively
impacting code quality, such as the technical experience of project members and the number
of technical dependencies that cross-project boundaries as more of these dependencies will
increase the complexity of the project which can increase the likelihood of errors. They also
conclude that time pressure was the leading and most significant cause of integration failures
as it would trigger the simultaneous development of interdependent tasks.

Rausch et al. [3] write about build failures in CI workflows in 14 open-sourced Java
applications, they do however bring up some relevant information through a set of common
error categories in these open-sourced projects. One of the categories in their findings for
integration errors stated that more experienced committers were more prone to cause
integration errors as they most likely were more careless when making changes. Whilst
research done by Fong Boh et al. shows that the experience of developers has a great positive
impact on the productivity of a component [9]. Rausch et al. also suggested that if more time
was given during development the likelihood of integration errors would decrease which is
directly supporting the findings of [2]. Finally, they were able to determine the most common
error category as being test failures, i.e. wrongfully written tests.

Another study conducted by Cataldo, and Herbsleb [1] examined the impact of technical
attributes of product features, attributes of the feature teams, and cross-feature interactions on
integration failures in a large-scale project that implemented 1195 features. Their results

19

showed that cross-feature interactions which they define as the number of architectural
dependencies between two product features are a major source of integration failures.
Research done previously on that subject suggests that the number of dependencies can be
used as a predictor for failures to occur [5, 10, 34]. Cataldo and Herbsleb are also able to
back up the findings of [2] which suggests that the geographic dispersion of team members as
well as the number of individuals or the number of development groups involved in the
development of a single feature could harm software quality as more people can increase the
likelihood of integration failures occurring.

They did however also state that no evidence was found for the number of lines
added/removed would impact in a particular way the code quality which contradicts [3]
which saw an increase in build failures for larger changes in lines of code, and [5, 10] that
both claim that there is a direct correlation between the churn size and failure-proneness.

After reading through the final selection of papers we were able to compile a list of the most
prominent root causes for integration errors.

Table 1. Most Prominent Causes for Integration Failures:

Integration Failure Cause Effect on Integration Failures Identified by

GSD (Global Software
Development)

Globally distributed teams tend to have a
lot of issues such as lack of
communication, understanding, and
coordination.

[1, 2, 5, 7, 8, 15]

Time Pressure Developers under time pressure are more
likely to make mistakes and less
informed decisions.

[1 – 3]

Test Cases Faulty written test cases lead to direct
failures.

[1, 3]

Developer Experience More experienced developers commit
fewer faults.

[1, 2, 3, 5, 9]

The Number of Dependencies The greater number of dependencies
increases the complexity and thus the
rate of errors.

[1, 2, 5, 10, 34]

Size of Changes The size of code changes can be an
indicator of the complexity and amount
of untested code.

[1, 2, 3, 5, 10]

The number of groups
involved

More groups involved lead to difficulty
with coordination and chaotic code.

[1, 2, 5]

20

5.2 Results of the Focus Group Session

5.2.1 Integration
When asked about their experience with integration errors they were able to tell us of six root
causes of integration failures, with the largest and most common ones measured in their
projects over 21 weeks being the application itself and problematic test cases.

Table 2. Sources of Integration Failures from the Focus Group:

Integration Failure Cause Percentual Presence

External SW Infrastructure 10.4%

Hardware Infrastructure 5.2%

Runtime Dependencies 9.4%

SUT - Application 52.1%

Testcases/Test Runner 19.8%

Automation is Defective 3.1%

We asked them about their process when encountering integration errors and their response
was to just revert the changes immediately and prevent multiple developers from submitting
commits upon each other that fail integration: “revert it … make changes … rigorously test it
and get it into a functional state”. They also had a process of sending down a test artifact to
the staging process to see how it would react before actually committing the change.

They concluded that while developers like to blame the environment as the root cause it was
in most cases their own code and mistakes in the tests themselves.

5.2.2 Positive Impact of Visualization
When talking about the visualization of the data there were a few things that could be
visualized that the participants showed great interest in. A major one is the handoff of
ownership for tasks. Being able to see who, when, and how many times a task was handed off
to someone else was quite beneficial in their opinion. Right now they felt like there were too
many handoffs happening and being able to visually see this process could help tackle the
issue. For the people interested in looking into specific cases then the lead time of a task was
deemed to be very important, as knowing the lead time can deeply affect what analysis can be
drawn from the investigated case.

5.2.3 Drawbacks of Visualization
While talking with the participants it did however become quite clear that there existed some
serious concerns about the visualization. A large part of these concerns came from the fact

21

that no greater benefit was seen to be gained from looking at a huge complex graph spanning
thousands upon thousands of events, this kind of graph becomes quite chaotic extremely fast.
They explicitly stated during the session that they could not see themselves having a meeting
where they would ever look at a graph like this, the data that generates the graph could be
compelling but the graph itself was stated to be problematic.

Another concern was that in a larger organization, there may already exist multiple
visualization tools, and getting a hold of another one can create more of a mess. Reducing the
number of tools and instead merging them into a larger one was of interest but that would be
truly costly and complicated.

5.2.4 Challenges of Traceability
During the focus group session, our participants expressed a lot of concerns related to the
idea of extending traceability. One of which was regarding the projects themselves and that
over time, as the projects scaled in size, it would be a difficult task to track the different
activities. A single project could for example be structured over multiple repos, easily
growing upwards of 200 repos and all being integrated into a single composite product.
Combining this with the fact that multiple, and often different pipelines are used would be a
large limitation for enabling good traceability within the different projects. Another issue
might also exist within the different planning tools as more often than not, multiple Jiras will
be used to track the status of the project. The problem they brought up then would be the
connectivity between the different Jiras, as one is not able to reach the other.

The problem of tracking data outside the pipeline is also a major concern that was raised.
Data found outside the pipeline is not as streamlined and different developers have their own
style of working that has been nurtured since they started. Outside the pipeline, there is no
incentive for everyone to use the same tools and instead, everyone works with what they are
accustomed to. This in turn makes it quite hard for the extension to accommodate all the old
legacy tools that a lot of developers are utilizing to guarantee widespread coverage. Tracking
data in communication channels for example also raise a huge issue when it comes to human
discipline. As humans tend to communicate quite informal, freely, and not so robotic and
informative, which makes it hard to draw confident connections between events.

They told us that for both larger and smaller organizations there is also the issue of cost and
prioritization on what to automate and invest in. In most cases, automating a task that will
yield a direct return on investment will be prioritized over reporting on a team's efficiency
which eventually might save costs in the future.

5.2.5 Benefits of Traceability
Whilst a lot of concerns were raised it was not all negative as they were followed by some
discussed benefits. By looking at the overall trends generated by the aggregated data a lot of
value can potentially be found in the predictive nature. Allowing the possibility to know in
advance when a problematic commit was heading into the pipeline. This was discussed by the
participants to be the most obvious nature of the value that could be given. Our participants

22

noted though that they were not so interested in specific cases and instead were looking more
at the overarching trends to be found, however, they did raise the point that there might very
well exist people in roles out there that are more interested in the specific analysis that can be
drawn in individual cases.

5.2.6 Analysis of Development
In the context of analysis conducted for development activities there were some data points
the participants found particularly useful and insightful, specifically regarding code reviews,
trouble reports/issues, complex components, and overall trends. Some interest was also
expressed in testing activities outside of the scope of the CI pipeline, which requires manual
work by people but the participants highlighted the importance of understanding the
following aspects from a data analytics perspective:

● Code Review:
○ How long time does it take to perform a review?
○ How many reviews are performed?
○ How many comments from the review were left?
○ How much time was there in between rounds of review?
○ What was the number of retakes before the code was ready?

● Trouble Reports/Issues:
○ What is the number of issues?
○ How often does an issue occur?
○ What is the cost of an issue?

● Complex Components:
○ What is the number of people which contributed to a story?
○ What is the number of components for a story?
○ What is the likelihood that an application fault appears in the CI pipeline?

● Overall Trends:
○ How long does it take to release?
○ How often can we make a release?
○ How many engineers does it take to solve a specific problem or implement a
new feature?

Participants expressed that specific and individual cases were not relevant but instead the
overarching trends for a team or a project. Quoting one of them, “If you had an example here
where you had, you know, test case being read, I don’t know, 50 times, perhaps that shows
more information”, i.e. activities or data points regularly appearing in specific areas which
then could be used to identify the underlying cause and eventually lead to improvement in
performance and productivity.

5.2.7 The Negative Impact on an Extension
One more existing problem one of the participants brought up with extending traceability to
the planning stage, such as a Trello board or a Jira project was that traceability already exists

23

in a sense. Depending entirely on the work practices, collecting events for planning activities
might not be necessary if the developers explicitly reference the requirement a commit aims
to solve and ties them together. In that way, each commit that is made can always be traced
back to a specific requirement.

24

6. Discussion
This section critically examines the combined results from the literature study and the
empirical study presented in section 5. In this section, we aim to compare and contrast the
findings by looking at areas that complement each other and areas where they diverge. We
begin by discussing the results and their implications for understanding integration failures
followed by exploring the potential benefits of the underlying data for improvement, while
also addressing the challenges and limitations associated with implementing a solution in an
organizational setting. Finally, we discuss the visualization aspect and its effectiveness in
conveying information, before suggesting further improvements that could be made if the
research were to be conducted once more.

6.1 Discussion of Results

One important although not surprising note is that we were not able to find any data points
for sources of integration failures beyond the testing stage in the SDLC, i.e. Deployment and
Maintenance. The most obvious explanation for this is that integration failures occur in the
earlier stages of the development process, e.g. in the design and implementation stages.

The literature study conducted shows that one of the most prominent reasons for integration
errors is GSD (Global Software Development). In the research done by Niazi et al. [15] they
compiled a list of 19 different challenges found in GSD. Looking at some of the most
impactful ones such as “Lack of communication”, “Lack of co-ordination” and “Allocation of
tasks”, we can see that those challenges are something we collect data for. By drawing
analyses of the communication between teams spread across the globe, some improvements
should be possible to find. We have not solved them but our solution does seem to potentially
add a positive influence on the risk of integration errors in those areas. As their study
suggests, the allocation of tasks is arguably the largest struggle, and according to them, it is
due to the project managers not being fully aware of the competencies and expertise of team
members and therefore cannot allocate tasks most efficiently. This challenge can be
minimized by using a completed version of the conceptualized extension, where we could
look at the aggregated data generated, concerning different team member's activities, look at
what types of components and areas they have previous experience and expertise in, assess
their skills and match them to a more accurately fitting task.

Tests that are poorly written, causing errors when integrating components, were brought up
by our participants as the second most common failure. This result can also be connected to
that of [3], stating that up to 80% of the errors in a project can be due to faulty test cases.
Even though faulty tests were not as prominent for the participants (only reaching closer to
20%) it is interesting to see how these issues both affect builds as well as integration. Adding
further to this similarity, both [3] and one of the participants express the dangers of
continuously building on top of existing failures, i.e. a failure will be more likely to occur
after another.

25

The results show that the underlying data can be beneficial from an improvement perspective
as there are many different analyses from different stakeholders which could be drawn. This
became abundantly clear during the focus group session as they could name a lot of distinct
analyses that could be made (see section 5.2.6). However, in an organization setting it most
likely will not be highly prioritized as it would require a complete implementation of a
solution from start to finish which would raise a considerable amount of costs and could be
highly complex regarding person-hours and depend on the complexity of the project. It would
need to track data from an abundance of tools unless every developer gets forced into using
the same development environment. Out of all these tools that data is being collected from, it
also has to be able to draw concrete conclusions of connectivity between the different events
found from each tool, and considering the number of tools that in itself becomes utterly
complex. A more manageable implementation could be to enable this type of traceability
within newer and smaller projects, increasing the activities captured as their usage of tools
scales within the project instead.

Johnson mentions a possible concern as well in his paper about software analytics [32] where
they have previously performed a similar study as our thesis, using what they called
Hackystat, which allowed them to collect process and product data from development tools.
However, they realized that there exists some serious concern being the conflict of invading
developers' privacy, as some developers made it known that they were not comfortable with
their every move being traced. This paper is now 10 years old and the views of these
developers could have changed as plugins and allowing data collection today are way more
common, but it should be known that to benefit from this type of traceability it would require
everyone on the team to be on board with these policies to avoid inaccurate analysis.

Just as the group session participants expressed their concerns, the visualization aspect does
not bring much benefit for analyzing trends and is overall quite messy as there in larger cases
(which is where collecting data from all activities would be most valuable) will exist
thousands upon thousands of events linked to each other. This complexity makes it difficult
for manual analysis but as [14] describes, could potentially be countered with filtering. By
filtering the data on more specific cases or more unique occurrences, we can focus on a
smaller subset of events and narrow down the scope of the analysis. Filtering on different
criteria, such as the type of event, the roles involved, the tools used, or a specific stage in the
SDLC would not only make the analysis more manageable but also allow different
stakeholders to identify critical patterns and trends more interesting for their use.

An analysis of event chains could present more compelling answers to address integration
errors. The iterative nature of integration cycles can produce a significant amount of data
over time which then if properly filtered and organized can reveal deep insights into recurring
patterns that point to fundamental problems within the integration process that are not as
easily found in a single cycle.

26

6.2 Further improvements
If the research were to be conducted once more, there are some key points we would like to
change. We realized that more time should have been spent on gaining more qualitative
feedback on the analysis of events by getting in contact with more participants and by getting
a wider amount of diversity of people to compare multiple perspectives on the importance of
traceability. Balancing time was difficult as one of the most time-consuming tasks we had to
complete before we were able to conduct the group session, was the visualization of custom
data. The visualization did help us gain insights into RQ3 and allowed the participants to give
us feedback on the positive impact and drawbacks of building a graph of events and how this
could affect the analysis of activities, but spending less time on this (for example by building
upon Fig 5 instead) and more time on feedback could potentially have strengthened our
findings.

27

7. Conclusion and Future Work
7.1 Conclusion

Through our literature study combined with the Integration theme from the focus group
session, we were able to identify several data points of interest which can be seen as root
causes of integration failures and help us answer RQ1, “What type of data can be used to
identify the root cause of integration errors?”. Our results show two different sets of factors,
the origin and cause of an integration failure. While the first one, such as the application code
itself or test failures contains the failure, it should only be considered as the result of other
leading factors such as time pressure, concurrent development of interconnected components,
or geographical team dispersion, although a more in-depth coverage of factors that can be
involved can be seen in Appendix A. Any area in a development that is directly impacted by
these factors will generally be subject to more integration failures.

Analyzing the development activities and answering RQ2, “How could the full traceability of
all development activities be analyzed to improve the development process?” can be done by
utilizing the traceability data and asking relevant questions regarding the area to improve.
This was discussed by the participants as they identified several areas of improvement seen in
section 5.2.6 and continued by stating what type of data point would be relevant in those
cases. For example, by tracing the trends of code reviews and then comparing how much time
a component spends in this state before being accepted and how accurate or prone to errors
this component turns out to be, certain patterns could be identified and would let the
organization allocate more or fewer resources to combat and prevent any potential issues.

The answer to RQ3, “In which way can the visualization of the collected data strengthen the
analysis process” can be made by looking at the opinions of the group session participants; it
generally doesn’t. The visualization itself in individual cases may strengthen the analysis by
visually being able to see the handoffs being made throughout the process and by displaying
a clear relation between events. But in general, for the overreaching trends of the process, the
participants suggested that the visualization is quite redundant and may even provoke more
confusion than it helps solve.

The Eiffel Protocol does provide a very well-structured foundation with a wide variety of
different event types to choose from. Still, an extension we discuss would require a high level
of sophisticated and tailored software solutions built on top of this for capturing events for
their specific needs, tools, and integration with their pipelines.

7.2 Future Work and Research

Future work and research in this field would include finding reliable connections between
different types of custom events and discussing the correlations between certain activities in
the development process. For example, how communication between developers can be
connected to the pipeline and if any useful data points in that setting could help improve the
effectiveness of a team.

28

It would also be of interest to perform a case study or similar experiment where traceability
for all activities, both inside and outside of the pipeline, was collected from a project and later
used to identify areas of concern and improvement. A study such as this would require a full
implementation of an extension and would complement our thesis by potentially directly
determining whether integration failures, performance issues, or unnecessary costs can be
prevented in the field with deeper event analysis.

One last area, still within the boundaries of plugins, would be to explore what more we
potentially could achieve with captured events. This thesis has focused on analysis while
there is perhaps a more direct application for captured events by integrating them into
development environments, supplying real-time notifications for important new activities
occurring.

29

References
[1] M. Cataldo and J. D. Herbsleb, "Factors leading to integration failures in global feature-oriented
development: an empirical analysis," in Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 161-170.

[2] M. Cataldo, "Sources of errors in distributed development projects: implications for collaborative
tools," in Proceedings of the 2010 ACM conference on Computer supported cooperative work, 2010,
pp. 281-290.

[3] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, "An empirical analysis of build failures in the
continuous integration workflows of java-based open-source software," in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017, pp. 345-355.

[4] D. Ståhl, K. Hallén, and J. Bosch, "Achieving traceability in large scale continuous integration and
delivery deployment, usage and validation of the eiffel framework," Empirical Software Engineering,
vol. 22, no. 3, pp. 967–995, Jun. 2017. DOI:
https://doi.org/10.1007/s10664-016-9457-1.

[5] M. Cataldo and S. Nambiar, "On the relationship between process maturity and geographic
distribution: an empirical analysis of their impact on software quality," in Proceedings of the 7th joint
meeting of the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2009, pp. 101-110.

[6] M. Fowler, "Continuous integration," martinfowler.com, May 1, 2006. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html [accessed April 2, 2023]

[7] J. D. Herbsleb and A. Mockus, "An empirical study of speed and communication in globally
distributed software development," IEEE Transactions on Software Engineering, vol. 29, no. 6, pp.
481-494, Jun. 2003.

[8] P. J. Hinds and D. E. Bailey, "Out of sight, out of sync: Understanding conflict in distributed
teams," Organization science, vol. 14, no. 6, pp. 615-632, 2003.

[9] W. Fong Boh, S. A. Slaughter, and J. A. Espinosa, "Learning from experience in software
development: A multilevel analysis," Management science, vol. 53, no. 8, pp. 1315-1331, 2007.

[10] N. Nagappan and T. Ball, "Using software dependencies and churn metrics to predict field
failures: An empirical case study," in First international symposium on empirical software
engineering and measurement (ESEM 2007), 2007, pp. 364-373.

[11] V. Braun and V. Clarke, "Thematic analysis," The Journal of Positive Psychology, vol. 12, no. 3,
pp. 297-298, 2017.

[12] A. Hramyka and M. Winqvist, "Traceability in continuous integration pipelines using the Eiffel
protocol" 2019.

30

[13] J. Helldin Boman, "Assessing confidence in a continuous delivery pipeline for software
reliability measurement," 2020.

[14] R. Gustafsson, "Intelligent and Context-Aware Information Filtering in Continuous Integration
Pipeline using the Eiffel Protocol," 2021.

[15] M. Niazi et al., "Challenges of project management in global software development: A
client-vendor analysis," Information and Software Technology, vol. 80, pp. 1-19, 2016.

[16] M. Shahin, M. A. Babar, and L. Zhu, "Continuous integration, delivery and deployment: a
systematic review on approaches, tools, challenges and practices," IEEE Access, vol. 5, pp.
3909-3943, 2017.

[17] B. Fitzgerald and K. J. Stol, "Continuous software engineering and beyond: trends and
challenges," in Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, 2014, pp. 1-9.

[18] C. Boone, C. Brandt, and A. Zaidman, "Fixing continuous integration tests from within the IDE
with contextual information," in Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension, 2022, pp. 287-297.

[19] D. Ståhl and J. Bosch, "Modeling continuous integration practice differences in industry software
development," Journal of Systems and Software, vol. 87, pp. 48-59, 2014.

[20] B. Fitzgerald and K. J. Stol, "Continuous software engineering: A roadmap and agenda," Journal
of Systems and Software, vol. 123, pp. 176-189, 2017.

[21] E. Laukkanen, J. Itkonen, and C. Lassenius, "Problems, causes and solutions when adopting
continuous delivery—A systematic literature review," Information and Software Technology, vol. 82,
pp. 55-79, 2017.

[22] G. Spanoudakis and A. Zisman, "Software traceability: a roadmap," in Handbook of software
engineering and knowledge engineering: vol 3: recent advances, 2005, pp. 395-428.

[23] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, "Software traceability with topic modeling,"
in Proceedings of the 32nd ACM/IEEE international conference on Software Engineering-Volume 1,
2010, pp. 95-104.

[24] J. Cleland-Huang et al., "Software traceability: trends and future directions," in Future of
software engineering proceedings, 2014, pp. 55-69.

[25] C. Wohlin, "Guidelines for snowballing in systematic literature studies and a replication in
software engineering," in Proceedings of the 18th international conference on evaluation and
assessment in software engineering, 2014, pp. 1-10.

[26] D. Andersson and J. Artale, "Eiffel Extension," GitHub. [Online]. Available:
https://github.com/jacques-artale/eiffel [accessed May 13, 2023]

31

[27] N. B. Ruparelia, "Software development lifecycle models," ACM SIGSOFT Software
Engineering Notes, vol. 35, no. 3, pp. 8-13, 2010.

[28] T. Menzies and T. Zimmermann, "Software analytics: so what?," IEEE Software, vol. 30, no. 4,
pp. 31-37, 2013.

[29] Eiffel-community, "Eiffel-vici [GitHub sub-repository]," GitHub. [Online]. Available:
https://github.com/Eiffel-community/Eiffel-vici [accessed March 3, 2023]

[30] Eiffel-community, "Eiffel [GitHub repository]," GitHub. [Online]. Available:
https://github.com/eiffel-community/eiffel [accessed April 2, 2023]

[31] Eiffel-community, "Eiffel-easy2use [GitHub sub-repository]," GitHub. [Online]. Available:
https://github.com/eiffel-community/eiffel-easy2use [accessed April 4, 2023]

[32] P. M. Johnson, "Searching under the streetlight for useful software analytics," IEEE software, vol.
30, no. 4, pp. 57-63, 2013.

[33] J. Kontio, L. Lehtola, and J. Bragge, "Using the focus group method in software engineering:
obtaining practitioner and user experiences," in Proceedings. 2004 International Symposium on
Empirical Software Engineering, 2004. ISESE'04, 2004, pp. 271-280.

[34] M. Cataldo et al., "Software dependencies, work dependencies, and their impact on failures,"
IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 864-878, 2009.

[35] "Eiffel," Eiffel-Community. [Online]. Available: https://eiffel-community.github.io/ [accessed
May 16, 2023]

[36] "Cloudevents specification," GitHub. [Online]. Available:
https://github.com/cloudevents/spec/blob/main/cloudevents/spec.m [accessed May 16, 2023]

[37] H. K. Dam, T. Tran, and A. Ghose, "Explainable software analytics," in Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results, 2018, pp.
53-56.

[38] R. P. Buse and T. Zimmermann, "Analytics for software development," in Proceedings of the
FSE/SDP workshop on Future of software engineering research, 2010, pp. 77-80.

32

Appendices

A - Table of Integration Data Types and their Origins
Phase of

Development Data Description Effects on Integration

Organization

People Dispersion Across
Multiple Locations

Uneven dispersion of people between
project groups

More uneven dispersion of
people leads to more
integration errors

Development Process
Maturity

Level of discipline and sophistication of
development process found in organization

Higher levels of process
maturity increases
integration success

Temporal Distribution
Difference in time zones between group
members

Risk of integration failure
increases as either
statistics increasesSpatial Distribution

Difference in geographical distance
between group members

Avg. Shared Experience
Average prior experience working with
team members

Positively improves
integration by having
more experience with
team members

Avg. MR Experience
Average number of MR that project
members have worked on before

More experience is
significant for better
integration

No. of Regional Units

the impact of major organizational barriers
for distributed work manifested in
differences across development processes,
individual and team-level goals,
managerial philosophies, and labor-related
policies and laws.

More groups involved lead
to difficulty with
coordination and chaotic
code.

No. of Locations
Number of geographical locations
engineers are distributed between

More developers stationed
at different locations
increases integration
failures

The number of Groups
Number of groups working on the same
feature

More groups negatively
impact integration

Planning

Product complexity
Measured by the ratio of modified
dependencies to the total.

Increased complexity
leads to more faults

Time budget What the time budget is for a feature
A shorter time budget can
greatly increase the risk of
Integration failures

Concurrent execution of
interdependent tasks

Development of tasks that depend on each
other, at the same time

Increases the risk of
Integration errors

No. New Features
Number of new features to be
implemented

Increased complexity
leads to more faults

33

Phase of
Development Data Description Effects on Integration

Design and
Architecture

Feature Owner Belongs to
Highly Coupled Component

No. of Dependencies
The number of interfaces of each
component involved within a feature had
with each other

The greater number of
dependencies increases the
complexity and thus the
rate of errors.

Concentration of Number of
Dependencies

How spread out dependencies are between
components

More spread out
dependencies increase
complexity

Implementation

Feature Owner Belongs to
Highly Changed Component

Changed LOCs Number of changed lines of code
Larger amounts of LOCs
changed can impact
integration negatively

Date and time of change
Middle of the night? Friday afternoon?
Monday morning?

Developer’s performance
can be affected by time
and day.

Tasks Temporal Execution
Standard deviation of tasks finished each
month

High values may indicate
uneven distribution which
suggests time pressure,
thus increasing the risk of
Integration failures

No. of branches,
Number of actively worked on branches in
repository

Increased complexity
leads to more faults

Avg. Component Experience
Average experience working with a
component

More experienced
developers commit fewer
faults.

No. Modification Requests
Number of modification requests for a
feature to be implemented

Increased complexity
leads to more faults

Experienced committees
A developer's number of commits within a
project

Overconfident developers
are more prone to cause
Integration failures

Testing Test cases Wrongfully written test cases
Faulty written test cases
lead to direct failures.

34

B - Questions for the Focus Group Session
● Could you tell us a bit about your previous education, occupation, and experience
with CI/CD?

● What are the typical team sizes you have worked in?
Current work practices

● How do you currently visualize and track your activities in projects? For example,
how do you visualize the progress of a recent commit?

● Do you face any problems when tracking this progress?
Analyzation

● Could this type of analysis be helpful or interesting from an improvement
perspective? And if so, how?

● What other types of analysis could be made?
● Which development activities in your opinion are most important to visualize and/or
track?

Integration
● What in your experience is the most common source of integration error?
● Are you taking any actions for preventing integration failures from occurring?
● Could an extension such as ours be useful in finding and/or solving integration
failures?

● How do you currently react when an integration error occurs?
● Any other data which you are paying extra attention to in your project which could be
worth collecting?

● Any data points which could be redundant?
Plugins

● What kind of tools are you currently using in your day-to-day development?
● What development tools would be valuable to collect data from?

General improvement
● Could you think of any use cases or scenarios where this extension would be
particularly useful or problematic?

● If you adapted this, could it improve collaboration, decision-making, or project
management?

● Any additional functionalities or features which could be useful for connections
between events or other parts of the system?

● If you were to adapt this to your current projects, do you think that there would be any
challenges or barricades when doing so?

Second group session
● We would also like to hold a second iteration of this session with some more people.
What types of people and what types of roles would you recommend that we try to
find? What would be most beneficial?

● Do you know any people working in these roles which we could contact already
today?

35

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

