
Organizational Conflicts in the Adoption
of Continuous Software Engineering

Eriks Klotins1(B) and Elliot Talbert-Goldstein2,3

1 Software Engineering Research Lab (SERL), Blekinge Institute of Technology,
Karlskrona, Sweden

eriks.klotins@bth.se
2 Empirical and Applied Software Engineering Lab (EASEL),

University of Maryland, Baltimore County, USA
el3@umbc.edu

3 Bosserman Center for Conflict Resolution, Salisbury, USA

Abstract. Software is a critical component of nearly every product or
service. Improvements in software can lead to substantial competitive
advantages. At the same time, software and surrounding engineering
teams have become increasingly complex.

The adoption of continuous integration and delivery is a recent trend
to radically improve software release speed. However, its adoption is far
from straightforward. Specifically, rethinking processes, organizational
culture, ways of working, and business models require buy-in from diverse
stakeholders that may have conflicting objectives. Such situations are
explored by organizational conflict research.

This paper reports on early lessons from an ongoing research project
in continuous software engineering, specifically investigating adoption
challenges from an organizational conflict perspective. We identify cata-
lysts, symptoms, and outcomes of organizational conflicts hindering the
adoption process.

We conclude that predictable conflicts emerge when adopting contin-
uous engineering. Engineers, managers, and other teams can proactively
prepare for and allocate resources to resolve them. Proper analysis and
management can help avoid wasted time, impeding processes, and frus-
tration.

Keywords: Continuous Software Engineering · Organizational
conflicts · Change management

1 Introduction

In this paper, we report on an ongoing research project into the adoption of
continuous software engineering (CSE). Our focus is continuous integration and
delivery, however we also consider broader organizational implications, such as
planning and requirements on collaboration [6].

Continuous software engineering is a set of principles promoting rapid and
frequent delivery of incremental software updates and extensive use of feedback
to steer development [6]. Observing changes in product usage patterns due to
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 149–164, 2023.
https://doi.org/10.1007/978-3-031-33976-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_10


150 E. Klotins and E. Talbert-Goldstein

software changes informs engineers about the success of changes and support
further product decisions [7,11]. However, the key differentiating characteristic
of CSE is the immediate delivery of any changes by developers to the end-users.
This speed is achieved by extensive automation of build, test, integration, and
delivery steps and by removing organizational bottlenecks.

Companies aiming to improve their software engineering processes by adopt-
ing continuous engineering principles face major challenges. Partly, the chal-
lenges are associated with adopting new tools and technologies. However, earlier
studies suggest that the required organizational changes are the most significant
challenge by far [2,10,11].

Deeper organizational inefficiencies are unlikely to be solved with new tech-
nologies and automation tools. Specifically, misunderstandings, misalignment,
and sub-optimal organizational structures will limit the benefits of adopting
process automation [6,10].

Misalignment within and across organizations is addressed by organizational
conflict research. Foundational research on organizational conflict and software
engineering includes structural and interpersonal issues within and between orga-
nizations [1,8,12,15,21].

Studies of continuous integration and delivery primarily address social and
technological obstacles. Such as challenges associated with team members chang-
ing roles and learning new skills and tools. However, only some, if any, focus on
challenges establishing an efficient cross-organizational coordination and collab-
oration [3,5,13,14]

We aim to understand to what extent underlying organizational conflicts
hinder the adoption of CSE. We use three industrial cases to explore the adoption
challenges and symptoms pointing toward deeper organizational inefficiencies.

Our results suggest that common adoption challenges, such as stakeholder
resistance, restrictive processes, and organizational silos, can be explained by
underlying organizational conflict. We conclude that organizations need to
improve their conflict resolution approaches and advocate for continuous conflict
management as part of the adoption strategy.

2 Background and Related Work

2.1 Organizational Conflicts in Software Engineering

In its most basic form, an organizational conflict is a misunderstanding or dis-
agreement, real or perceived, around the needs, interests, and values of people
working together [9].

CSE is a cross-cutting phenomenon requiring cooperation between all parts of
an organization. The multitude of stakeholders and potential differences among
them create particular causes of conflicts that need to be explored in the context
of CSE [11,16].

The causes of organizational conflict can be broken out into six broad cate-
gories: task interdependence, goal incompatibility, ambiguous rules, differences



Conflicts in Continuous SE 151

in values and beliefs, resource scarcity, and ineffective communication [15]. These
causes manifest differently in different scenarios, and specific components become
more important for different types of conflicts.

Jehn [8] introduces an empirical typology of organizational conflicts. The
topology covers the negative and positive impacts of conflict and incorporates
both “management teams” and “production groups.” The three key types of
organizational conflict are task, relationship, and process. Task conflict occurs
when team members may disagree on how to perform work. The research indi-
cates moderate task conflict can be constructive and stimulate discussion of ideas
that help groups perform better and group productivity. However, relationship
conflict, where teams have chronic issues that lead members to be “negative, irri-
table, suspicious, and resentful,” have significant adverse effects on productivity.
Process conflict connects the two other types. Conflicts over process include how
tasks should be accomplished, who is responsible, and how to delegate responsi-
bility. Lower levels of process conflict were shown to limit the negative impacts
on a team’s performance. This tripartite typology has become a foundation for
analyzing team conflict, especially in software engineering.

Further studies have extended Jehn’s [8] work to include intergroup con-
flict [12,21]. In software engineering specifically, this typology has been applied
and empirically corroborated [9,21,22]. Enterprise software adoption research
includes social network analysis to evaluate the impact of the propagation of
intergroup conflict including issues with bureaucracy, interpersonal problems,
and conflicting corporate values [21].

Siddique et al. [20] investigates the causes, consequences, and mitigation
strategies of conflicts from the perspective of project managers. The causes
include concerns like the role and knowledge of the product owner or customer,
organizational hierarchy, bureaucracy, contracting and finances, and personal
egos. Consequences included problems with productivity, wasted time and dis-
tractions, poor decisions, and lack of communication. The research covered pos-
sible strategies for addressing conflict, focusing on root-cause analysis as the
primary means to resolve conflicts.

Power [17] introduces tools to study and remove impediments in Agile
projects using impediment impact diagrams. Impediments included categories
that comprised technical issues as well as interpersonal issues. The diagrams
allow team members to compare the benefits of implementing a specific effort to
remove an impact and the internal or external resources needed to do it.

Studying the types of conflicts that may occur during the adoption of CSE is
not a direct route. It is essential to look at conflicts in teams and organizations
generally and during organizational change. Additionally, it is helpful to narrow
the scope of possible conflicts to software engineering and Agile contexts, which
provide the foundations for CSE.



152 E. Klotins and E. Talbert-Goldstein

2.2 Continuous Software Engineering

Continuous software engineering originates from lean and agile principles. The
overarching goal of CSE is to ensure a continuous flow of software from its
inception to creating value for the user [6].

The continuous flow of software is achieved by delivering software in small
increments and automating integration, verification and delivery steps. Frequent
and small software deliveries creates an opportunity to gauge the success of the
update by collecting focused telemetry and feedback [7,11].

The benefits of CSE include the flexibility to react rapidly to new market
opportunities and leverage data-driven decision-making. An automated pipeline
allows engineers to focus on value-adding tasks and offload menial tasks to
automation [6,7]. The adoption process requires the organization to rethink
its ways of working, set specific goals, and promote continuous improvements
throughout the organization and its heterogeneous teams [10].

Implementing a CSE pipeline in an existing organization is a substan-
tial undertaking. Adopting new tools, automation, test data preparation, and
pipeline maintenance requires substantial investments. Furthermore, successful
adoption of CSE requires cross-cutting changes in the organization [2,11,16].
For instance, to support the rapid delivery of software updates, the decisions of
what to deliver need to be made rapidly. Fast planning has an upstream depen-
dency on flexible resource planning and organizational support. Delivery of fre-
quent updates requires buy-in from downstream stakeholders and customers.
Such changes may require renegotiating customer contracts and tailoring busi-
ness models [7,11].

Our work with several industrial partners highlights that aligning the goals of
different parts of an organization remains one of the key challenges in adopting
continuous engineering. Misalignment often stems from different interpretations
of the same goal. For example, improving efficiency may be interpreted by an
R&D department as delivering more new features. For operations, efficiency
may mean spending fewer resources on providing stable services. More frequent
software updates increase the risk of disrupting smooth operations and are at
odds with stability. In such situations, organizational conflicts may emerge and
hinder attempts to improve organizational performance [10].

3 Research Methodology

The aim of our research is to explore how organizational conflict research can
support organizations and practitioners in adopting CSE. To guide our study we
define the following research questions:

RQ1: What are symptoms of organizational conflict in the context of adopting
CSE?

Motivation: With this research question we want to explore to what extent dif-
ficulties in adopting CSE can be attributed to hidden and/or unaddressed orga-
nizational conflicts.



Conflicts in Continuous SE 153

RQ2: What are the root causes of identified symptoms from an organizational
conflict perspective?

Motivation: With this research question we want to explore the underlying causes
for organizational conflict and map them to conflict resolution strategies.

RQ3: What are the advantages of studying conflicts in CSE empirically?

Motivation: Most of research focuses on tooling and technical aspects of CI/CD.
However, a degree of organizational streamlining are required to enable end-to-
end automation. With this research question we aim to clarify how studying
organizational conflict can support adoption of CSE.

3.1 Research Approach

We conduct this study as part of an ongoing industry-academia research project
into adopting continuous software engineering in the industry. The project aims
to develop support for practitioners to adopt and benefit from CSE principles.

As part of the project, we conduct a multiple case study [18]. The studied
cases are established organizations with mature products already in the mar-
ket. The unit of analysis is the current software delivery process in developing
market-driven software-intensive products. Our primary data collection methods
are interviews, workshops, and seminars. Our analysis focused on the process,
identification of bottlenecks, and opportunities to improve the efficiency and
effectiveness of the software delivery process.

This paper is based on results from three partner organizations. We name
companies A, B, and C to maintain their anonymity. The work with these orga-
nizations was conducted between January 2022 - February 2023.

Company A is a large mobile telecommunications hardware and software
provider in Sweden. We were involved with a part of the organization develop-
ing business-critical software systems for mobile telecommunications operators.
Their software release process is based on a quarterly release cycle. To achieve
exceptional quality and compliance, the release process is concluded by a sign-
off stage involving many stakeholders representing trade compliance, security,
business, engineering, and customer representatives, among others.

Company B is an audio streaming services company based in Sweden. Their
offerings include mobile apps, services, and tools to bring musicians, audio con-
tent creators, and listeners together. Their organization is relatively new and
characterized by a flat structure, agility, and flexibility. Teams can release soft-
ware changes within hours. However, coordinating large and cross-cutting efforts
is challenging.

Company C is a mobile telecommunications operator in Scandinavia. Their offer-
ings consist of both consumer and business oriented mobile telecommunications
services. The organization also develops tools for internal business support. Inter-
nal efficiency and speed of getting software changes from an idea to production
are their major concerns.



154 E. Klotins and E. Talbert-Goldstein

4 Results

The first interview rounds focused on understanding how software development
and delivery process works and what known bottlenecks are. Later interview and
workshop rounds were focused on specific bottlenecks.

The interviews quickly revealed that all three organizations had already
implemented some degree of automation and attempted to streamline their engi-
neering processes. For instance, test, build, and integration automation was suc-
cessfully adopted and led to substantial perceived improvements. However, the
automation of development tasks is isolated in the development and testing stage
of the process, see Fig. 1.

1 Planning

2 Development & 
testing

3 Release & operation

4 Use & Feedback

Fig. 1. Overview of the key steps of CSE

Further interviews with companies A and C revealed that significant bottle-
necks to rapidly delivering changes occur after development is considered com-
pleted. That is, preparing and handing over completed software for release and
operations, see Fig. 1. Namely, the handover includes preparing documentation
to ensure knowledge transfer, seeking sign-offs from multiple stakeholders, and
verifying regulatory compliance, among other activities.

All our partner companies mentioned the intention to use product telemetry
and customer feedback to inform further product planning, see Steps 1 and 4 in
Fig. 1. However, access to customer environments and data can be problematic
due to security and privacy concerns, service level agreements, business risks, lack
of trust, or inadequate tooling to manage large volumes of data. Furthermore,
due to organizational silos and the lack of transparency, the existing data may
not be available to other stakeholders.

Further interviews and workshops revealed that the main obstacles to smooth
and continuous software delivery are misinterpreting organizational objectives,
leading to organizational silos and stakeholders protecting their interests. This
inter-team conflict manifested largely as issues with processes, and teams had
difficulty overcoming them. Conflicts like this are not unique to CSE. However,
some specific issues arise in understanding and addressing them that need to be
studied so that future organizations can address them more easily. It is possible
to address these conflicts through analysis and mitigation efforts to improve the
performance of CSE efforts.



Conflicts in Continuous SE 155

Further insights from work with companies led us to identify catalysts, symp-
toms, and outcomes associated with adopting continuous practices and unre-
solved organizational conflicts.

4.1 Catalysts of Organizational Conflict Hindering the Adoption
of CSE Principles

Catalysts do not necessarily lead to conflict or other issues, however, they are
mentioned as a context where issues are more likely to emerge.

Catalyst-I: Functional organizational structures emerge from how the organiza-
tion is built. Our interviewees pointed out that companies are often structured
around R&D, operations, sales, product planning, strategic management, and
customer support functions. In such organizations, each unit has a distinct func-
tion and objectives to fulfill. Any improvements are often limited to each func-
tion without considering a broader picture. A consequence of such structures
and local optimizations are organizational silos [19].

Companies A and C pointed out that a cross-cutting end-to-end software
delivery, see Fig. 1, requires the collaboration of multiple organizational func-
tions. Communication between the silos is often tricky due to a lack of context,
mismatching goals, and different specializations. Slow release cycles contribute to
lost knowledge and context. Due to issues like artificial boundaries, unspecified
goal alignment, or lack of oversight into potential issues, there is an increased
risk of conflict between the teams. As one interviewee from Company A put it:

“R&D teams have no idea of how their work is integrated and delivered to
customers. We often discover many issues late in the process and we have
to go back [to development] or try to find solutions on-the-fly.”

In Company B, the primary organizational unit is a cross-functional team.
Each team comprises a product manager, engineers, infrastructure and deliv-
ery specialists, data scientists, and other roles. Such a structure ensures that
the complete planning, development, delivery, and feedback collection cycle, see
Fig. 1, can be executed within one team. This structure keeps communication
distances small and minimizes cross-unit communication and coordination.

Catalyst-II: Inimical processes lead to sub-optimal organizational performance
due to lack of flexibility. We observe that organizations have a tendency to grow
their processes by adding more steps and including new stakeholders. Processes
become inflated due to over-complicated procedures with many stakeholders who
do not necessarily understand their role in the process or share the same goals.
At the same time, our industry partners report the need to become faster and
offer new types of software deliveries. Our interviewees shared their interest in
simplifying processes by removing activities and stakeholders. As one interviewee
put it:

“Our [inimical] process did not help us to catch the log4j issue. It only
delayed us in releasing the fix.”



156 E. Klotins and E. Talbert-Goldstein

Company-A pointed out that a process built for steady delivery of business-
critical software hinders rapid delivery of security updates or experimental fea-
tures. When the process and the involved stakeholders do not permit enough
room for flexibility, it leads to frustration and sub-optimal performance. More-
over, frustration leads stakeholders to seek shortcuts and use their influence
in the organization to get things done. Importantly, processes involving ad-hoc
negotiations between stakeholders are difficult to automate and streamline.

Catalyst-III: Gatekeeping managers have a role in halting a process until certain
conditions are met. They are often part of inimical processes (Catalyst-II). For
instance, a gatekeeper would be a senior manager signing off a release for delivery
to customers, a council scrutinizing reports to negotiate if the software meets
a quality threshold, and alike. While some level of gatekeeping is necessary, a
challenge arises when the gatekeeper lacks contextual knowledge and in-depth
understanding of the artifacts produced by the process.

As reported by Company A, the gatekeepers are often responsible for signing-
off many different artifacts. They have a limited capacity to have an in-depth
understanding of what they are signing off on. Getting the gatekeeper’s knowl-
edge to a sufficient level for an informed decision takes time and is impractical,
given the size and complexity of the software. Slow release cycles and paral-
lel processes lead to the lost context that needs refreshing every time. Hence,
the gatekeeper is unlikely to fulfill its function and hinder the pace of software
deliveries. As one interviewee put it:

“To get an approval, I need to book a meeting with 20 stakeholders. I send
them information upfront, but they do not read it in many cases. This
repeats every six months”

In Company B, the gatekeepers are primarily within the team responsible
for conducting the work. Thus, they have full contextual knowledge and under-
standing of the artifacts to make an informed decision.

Based on company comments, it did not appear that the experiences associ-
ated with gatekeeping were amicably resolved. Instead, process conflict defined
the interaction, where no side could agree on particular operations. Team mem-
bers who disagree with a set process are likely to become frustrated, and this
conflict can impact overall performance and lead to further conflicts between
people.

Catalyst-IV: Lack of Autonomy and Support for Conflict Resolution. The above
catalysts are exacerbated by the lack of autonomy and support for resolving
conflicts. Companies A, B, and C follow agile software engineering practices and
empower their engineers to make decisions to a certain degree. However, we
observe that organizational conflicts are likely to occur during the handover of
artifacts from one organizational unit to another.

Different organizational units may follow different principles and fall under
different managers. Thus, resolving any disputes may require an agreement
between the parties that they have the authority to resolve the conflict or requires



Conflicts in Continuous SE 157

taking several steps up the management chain. As illustrated by Company A,
different organizational units often have different objectives and are physically
located on different continents. The negotiations between organizational units
happen, however, they are repeated at every software delivery cycle, causing
delays and frustration. The involved parties need the authority to adjust their
ways of working. Companies B and C are smaller, and engineers have more
authority to adjust their ways of working. As Company B put it:

“We have the authority and the responsibility to do the right thing.”

In particular, team members, and project managers need to be adequately
empowered and trained to resolve interpersonal conflict. There will be nega-
tive impacts. In CSE efforts, the team manager may be able to negotiate over
particular deliverables and tasks, but issues with processes are less likely to be
managed effectively. Additionally, process conflicts are more likely to propagate
to other areas than lower-level task issues, leading to broader negative impacts.

4.2 Symptoms of Underlying Conflicts

Process analysis in Companies A, B, and C revealed a number of challenges hin-
dering rapid software delivery. In our study, these challenges emerged as symp-
toms of deeper challenges.

Notably, the adverse effects emerge as an overhead for every software delivery
cycle. Increasing the pace of software deliveries without optimizing the overhead
would compound the overhead and waste.

In our study, we identify the following symptoms of underlying organizational
conflicts:

Symptom-A: Repeated Negotiation Every Time an Activity or Process is Per-
formed. All partners mentioned that they depend on meetings to coordinate
work. However, interviewees from Company A described that they often have
meetings to renegotiate certain decisions every time a process is performed. Such
meetings take calendar time to schedule and require informing the stakeholders
about the decision context, and in many cases, add little value because the out-
come of the decision is expected to stay the same. Our interviewees mentioned
that they are used to a release sign-off meeting with about 20 stakeholders for-
mally approving a release. Such a process is acceptable with quarterly releases,
however, is impractical when the organization aims to achieve faster release
cycles.

Due to inimical processes (Catalyst-III) and the lack of autonomy (Catalyst-
IV), stakeholders cannot skip unnecessary negotiations. An individual project
or team member does not have the authority to change the process. Should
they attempt to do so, more conflict could erupt. In this scenario, the question
becomes “who is responsible for process improvement?” or “how do we achieve
trust in faster release cycles?.” A party such as a senior manager or project
sponsor must be empowered to arbitrate or oversee the removal of processes that
act as impediments for teams to change outdated procedures while maintaining
the autonomy of teams.



158 E. Klotins and E. Talbert-Goldstein

Symptom-B: Organizational Constraints Hindering Effective Work. The organi-
zational constraints arise from organizational structures, internal policies, lack
of transparency, and the lack of efficient mechanisms to adjust the constraints.
In its most severe case, organizational constraints manifest as competing silos.

Company B’s main organizational unit is a small, autonomous, cross-
functional team. Such a structure makes the organization very efficient in deliv-
ering work on a team level. However, coordinating the work of many autonomous
teams to deliver more extensive work is challenging. The challenge arises from
juggling different priorities on different levels. For instance, a team may be
required to support multiple other teams while delivering on their objectives.

Company A has a functional structure, and organizational units have dif-
ferent objectives and specializations. For instance, the responsibility to deliver
working software to customers is delegated to one final integration team. Other
teams provide software components and have a partial picture of how their com-
ponents will be integrated and used. Thus, they cannot make informed decisions
about their work.

A shared concern in Companies A and B is access to product and pro-
cess data. The process data is required to enable transparency of other teams’
progress and efficient work planning. Product usage data is required to infer cus-
tomer preferences and steer product development work. However, due to data
protection concerns, lack of tooling, and ad-hoc data collection methods, such
data is not freely available throughout the organizations.

Company B has an internal team and processes responsible for aggregating
data from various sources. However, due to differences in how teams plan their
work, there needs to be oversight of the current work progress and resource
availability. Company A has an overview of the work progress due to the central
planning function, however the data of how software is used is not shared across
organizational functions.

Symptom-C: Blocking Task Dependencies. Task dependency arises from the need
for multiple organizational units to collaborate and coordinate toward a common
goal. Challenges arise when one unit needs to wait until another completes its
part. Or when there is a gap between what one unit delivers and what another
expects.

In Company A, R&D task dependencies are minimized and well managed.
However, difficulties arise in coordination with software delivery, operations, and
sales units. Due to the complexity of software, bespoke versions delivered to
customers, and lack of transparency, the deliveries do not always match the
expectations. Filling the gaps requires substantial effort just before releasing
software to customers.

In Company B, teams can collaborate in different constellations. Coordinat-
ing and scheduling a large volume of tasks is a major challenge. The challenge
can be partly attributed to the lack of company wide task and resources tracking
system.



Conflicts in Continuous SE 159

Symptom-D: Utilization of Personal Contacts and Process Shortcuts. Inimical
processes (Catalyst-II) and difficulties in reaching consensus push stakeholders
to use their influence, networks, and process loopholes to accomplish their objec-
tives.

Several interviewees mentioned using personal relationships to reach out to
other stakeholders and influence them to behave in a certain way. We observe
that such behavior is more prevalent among more senior employees. At the same
time, more junior interviewees mentioned the difficulties of attaining the same
outcome through formal channels.

Another manifestation of this symptom is labeling artifacts in a certain way
to simplify the process. For instance, an interviewee mentioned labeling a major
update as a hot fix to avoid a lengthy, and in their view, pointless review process.

4.3 Outcomes from Unresolved Organizational Conflicts

Our partner companies report a number of negative outcomes associated with the
symptoms. Importantly, the outcomes become significant concerns when organi-
zations plan to speed up their release cycles and improve internal efficiency and
effectiveness.

Outcome-A: Wasted time. Leaping organizational boundaries, renegotiating the
same decisions, involving distant stakeholders in making critical decisions takes
time away from more value creating activities. The time is wasted every time a
process runs.

Outcome-B: Lack of flexibility. Inimical processes, dependency of personal net-
works to get things done, and lack of autonomy to resolve inefficiencies limits
the organizational ability to adapt to new market and business conditions.

Outcome-C: Frustration. Awareness of organizational inefficiencies lead to frus-
tration among stakeholders. In turn, frustration leads to reduced motivation,
increased turnover rate, and overall reduced organizational performance.

5 Discussion and Analysis

This research collected information broadly about adopting CSE in large com-
panies with multiple software products. The focus of the data collection was not
explicitly aimed at the conflict. Nevertheless, the insights touched upon conflicts
throughout the process and bore further investigation.

Our results show that adopting CSE is as much an organizational as it is
an engineering challenge. Thus, a study into CSE adoption must balance the
technical and social lines of inquiry.

Studying the organizational impediments to CSE adoption falls squarely in
the realm of the study of people and organizations, which managers must be
familiar with to be successful. The company’s experiences in these cases revealed
conflicts that organizations are likely to face when implementing CSE and Agile
methodologies, more broadly.



160 E. Klotins and E. Talbert-Goldstein

5.1 RQ1: What are Symptoms of Organizational Conflict
in the Context of Adopting CSE?

There are a number of organizational concerns to be addressed when adopting
CSE practices. We separate these concerns into catalysts and symptoms.

The catalysts are not problematic or cause conflict per se. However, our
results suggest that functional organizational structures (Catalyst-I), inimical,
die-hard processes (Catalyst-II), the culture of sign-offs (Catalyst-III), and the
lack of autonomy and support for conflict resolution (Catalyst-IV) create condi-
tions for conflicts to emerge.

Symptoms are signs of deeper issues. We identify that the culture of repeated
meetings and decisions with the same outcome (Symptom-A), organizational
“red tape” (Symptom-B), blocking task dependencies (Symptom-C), and the
utilization of process shortcuts (Symptom-D) signal a deeper conflict.

These results are well aligned with the state-of-the-art in CSE. For instance,
cross-functional teams, empowering engineers to decide on their ways of working,
and organizational transparency are prerequisites for the successful adoption of
CSE [7]. At the same time, the existing literature does not provide a deeper
insight on the organizational change management perspective [10,15]

5.2 RQ2: What are the Root Causes of Identified Symptoms
from an Organizational Conflict Perspective?

State-of-the-art management practices recognize several groups of factors con-
tributing to organizational conflict. These categories include issues caused by
task interdependence, goal incompatibility, ambiguous rules, differences in val-
ues and beliefs, resource scarcity, and ineffective communication [15].

We use the causes of organizational conflict to analyze insights from our
study. Under each cause for the organizational conflict, we list sub-causes men-
tioned by our interviewees, see Fig. 2.

Our observations match well with the state-of-the-art in organizational con-
flicts. However, conflict management has attracted little attention from CSE
community. Moreover, discussions with our partners reveal that the adoption of
CSE is treated mostly as an engineering problem with the focus on technical
aspects. Our findings demonstrate how including conflict management in the
CSE adoption strategy could alleviate some of the adoption challenges [16].

Software engineering and delivery of software-intensive products and services
are inherently collaborative. Thus, some degree of dependency and conflict is
inevitable, see C1.1 in Fig. 2. In Company A, cross-functional dependencies
are more common. However, in Company B, the team dependencies are more
common, thus conflicts occur on different levels.

Our interviews confirm that collaboration across organizational units indeed
causes friction, see C1.2 in Fig. 2. From Company A, we learn that well-
coordinated work in the R&D unit can solve many issues. At the same time,
the coordination does not extend beyond the functional R&D unit. This is a
potential cause of conflict.



Conflicts in Continuous SE 161

C1: Task interdependence C2: Di erences in values 
and beliefs

C6: Ambigous rules C5: Resource scarcity C4: Ine ective communication

C3: Incompatible goals

C4.1 Distant stakeholders

C4.2 Missing context

C4.3 Large number of 
stakeholders

Organizational 

CAUSES OUTCOMES

Wasted time

Frustration

C3.1 Misaligned, 

C3.2 Gatekeepers

C1.1 Organizational units 
depend on each other to 
deliver software

C6.1 Process loopholes

C6.2 Rules/constraints 
that can be negotiated

C1.2 Lack of company-
wide coordination C2.2 Culture

Fig. 2. Root-cause analysis of organizational conflicts in adopting continuous software
engineering.

Topics around poorly understood and misaligned organizational objectives
were discussed during our interviews, see C3.1, in Fig. 2. We conclude from the
interviews that setting multiple organization-wide goals with shared and clear
key performance indicators is challenging.

In Company A, the primary goal for a long time had been the quality of
services. Consequently, there is a rigorous quality assurance process. Recently,
the organization sought to increase delivery speed. This move requires rethinking
and streamlining the quality process. In particular, the gatekeepers, see C3.2.,
need to be replaced with an automated and scalable solution. At the same time,
the priorities of quality and speed are not shared, and some fears removing the
established process may lead to deteriorating product quality.

In Company B, the primary goal is delivery speed. The organization had
been optimized to deliver features to the market fast. At the same time, the
ability to track the market relevance of high-level updates is limited.

We observe that many stakeholders across organizational units cannot main-
tain the full context of the situation, coordinate and make efficient decisions.
Consequently, fault lines appear, and organizational conflicts emerge.

This challenge is most prevalent in Company A, where the key stakehold-
ers have a many-to-many mapping with the ongoing projects with long release
cycles. Thus, they cannot fully understand each project’s context.

The causes and effects of the conflicts we identified are directly related to the
shift to CSE. These issues may not arise in other business transformations and
require special attention in this context. How these conflicts manifest for dif-
ferent companies differs and depends on the legacy structures and processes, as
well as overarching culture and goals. Team members can be conscious of these
prospective issues and flag them should they appear. Managers can also be pre-



162 E. Klotins and E. Talbert-Goldstein

pared to address them based on best practices in order to maintain performance
and meet goals.

Initially, managers can take stock of the catalysts we identified here. These
represent the corporate structures that can lead to conflicts later on. Where
possible, leaders should prepare for CSE adoption by restructuring some of the
organization, or its processes at least, to address these root causes. At a min-
imum, engineering teams should be prepared to deal with the symptoms that
arise from these catalysts. Failing that, (for example, if you read this research
after starting a CSE change) team members should be aware of the symptoms
that are driven by the catalysts. If these symptoms arise, they can likely be
traced back to their root causes at the organizational level to seek solutions.
Performing a root cause analysis on symptoms not defined here could also reveal
new catalysts.

5.3 RQ3: What are the Advantages of Studying Conflicts in CSE
Empirically?

Studying the conflicts in CSE, including their symptoms and catalysts helps pre-
vent them, and also helps too maximize their positive outcomes when conflicts
inevitably occur. For instance, since some degree conflict in teams is healthy [8],
managers should reflect on them with their teams during reviews and retrospec-
tives, to celebrate the wins and encourage a positive discord. Embracing positive
conflict could be a driver for incremental organizational change.

Tracking the frequency of conflicts is also valuable. A lack of conflict may
indicate instability in a team or organization, since stakeholders may avoid rais-
ing disputes for fear of causing their group to crumble. Instead, observing a
manageable amount of healthy conflicts can help indicate team cohesiveness [4].
Managers should clue-in to task conflict that results in positive outcomes, and
raise a red flag when teams grow silent.

Lastly, the goals of adopting CSE are meant to close the gaps between the
business need for a software solution and its development, without negative
impacts to quality in the short- or long-term [7]. As with any Agile transfor-
mation, and for any project manager, removing obstacles is the key priority.
For CSE, those obstacles have been shown to surface as issues between people
more than from technical limitations. Just like change is inevitable, so too is
conflict. Organizations should thus prioritize management, and to some extent
welcome, disputes that arise during adoption of CSE, particularly between het-
erogeneous organizational units. This means, for example, facilitating dialogue
to focus disparate interests towards shared goals.

By systematically identifying, addressing conflicts that naturally occur, orga-
nizations can help ensure the success of a continuous pipeline of software that
meets the needs of customers, engineers, operations, and sales.



Conflicts in Continuous SE 163

6 Conclusions and Further Work

In this paper, we report preliminary results from an ongoing study on adopt-
ing CSE in three companies. Through interviews and workshops, we observed
challenges faced by different teams within each organization. The data regularly
included participant discussion of organizational conflicts, defined by differences
in the understanding of goals, needs, and interests between teams. Based on this
empirical information, we have identified catalysts, symptoms, and outcomes
associated with improperly managed organizational conflict that inhibits the
adoption of CSE. Unless it is addressed, organizational conflict can hinder the
implementation of a continuous software delivery pipeline and the surrounding
automation.

We conclude in this early work that analyzing organizational conflict, and
managing it constructively, are important parts of streamlining an organization
and realizing the benefits of CSE. We propose to recognize continuous conflict
management as an essential and cross-cutting activity in the toolbox of imple-
menting continuous integration and continuous delivery.

Further work should look to these underlying conflicts, their causes, and
their outcomes, as a starting point to identify further conflicts that may arise.
Quantitative studies could also be used to measure the frequency of such conflicts
and evaluate their impacts.

References

1. Afzalur Rahim, M.: Toward a theory of managing organizational conflict. Int. J.
Conflict Manag. 13(3), 206–235 (2002)

2. Chen, L.: Continuous delivery: overcoming adoption challenges. J. Syst. Softw.
128, 72–86 (2017)

3. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. Inf. Softw. Technol. 57, 21–31 (2015)

4. Coser, L.A.: The Functions of Social Conflict, vol. 9. Routledge (1998)
5. Debbiche, A., Dienér, M., Berntsson Svensson, R.: Challenges when adopting con-

tinuous integration: a case study. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892,
pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13835-0 2

6. Fitzgerald, B., Stol, K.-J.: Continuous software engineering and beyond: trends and
challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, pp. 1–9 (2014)

7. Humble, J., Kim, G.: Accelerate: the science of lean software and devops: building
and scaling high performing technology organizations. IT Revolution (2018)

8. Jehn, K.A.: A qualitative analysis of conflict types and dimensions in organizational
groups. Adm. Sci. Q. 530–557 (1997)

9. Karn, J.S., Cowling, A.J.: Measuring the effect of conflict on software engineering
teams. Behav. Res. Methods 40, 582–589 (2008)

10. Klotins, E., Gorschek, T.: Continuous software engineering in the wild. In: Mendez,
D., Wimmer, M., Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2022. LNBIP,
vol. 439, pp. 3–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
04115-0 1

https://doi.org/10.1007/978-3-319-13835-0_2
https://doi.org/10.1007/978-3-031-04115-0_1
https://doi.org/10.1007/978-3-031-04115-0_1


164 E. Klotins and E. Talbert-Goldstein

11. Klotins, E., Gorschek, T., Sundelin, K., Falk, E.: Towards cost-benefit evaluation
for continuous software engineering activities. Empir. Softw. Eng. 27(6), 157 (2022)

12. Korsgaard, M.A., Soyoung Jeong, S., Mahony, D.M., Pitariu, A.H.: A multilevel
view of intragroup conflict. J. Manag. 34(6), 1222–1252 (2008)

13. Laukkanen, E., Itkonen, J., Lassenius, C.: Problems, causes and solutions when
adopting continuous delivery-a systematic literature review. Inf. Softw. Technol.
82, 55–79 (2017)

14. Laukkanen, E., Paasivaara, M., Arvonen, T.: Stakeholder perceptions of the adop-
tion of continuous integration-a case study. In: 2015 Agile Conference, pp. 11–20.
IEEE (2015)

15. Mitchell, D.E.: Causes of Organizational Conflict. Springer, Cham (2017)
16. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe

it is not that easy). In: 2013 Agile Conference, pp. 121–128. IEEE (2013)
17. Power, K.: Impediment impact diagrams: understanding the impact of impedi-

ments in agile teams and organizations. In: 2014 Agile Conference, pp. 41–51.
IEEE (2014)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

19. Serrat, O.: Bridging organizational silos. In: Knowledge Solutions: Tools, Methods,
and Approaches to Drive Organizational Performance, pp. 711–716 (2017)

20. Siddique, L., Hussein, B.A.: Grounded theory study of conflicts in Norwegian agile
software projects: the project managers’ perspective. J. Eng. Project Prod. Manag.
2, 120–135 (2016)

21. Williams, R.A.: Conflict propagation within large technology and software engi-
neering programmes: a multi-partner enterprise system implementation as case
study. IEEE Access 7, 167696–167713 (2019)

22. Zhang, X., Stafford, T.F., Hu, T., Dai, H.: Measuring task conflict and person
conflict in software testing. ACM Trans. Softw. Eng. Methodol. (TOSEM) 29(4),
1–19 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Organizational Conflicts in the Adoption of Continuous Software Engineering
	1 Introduction
	2 Background and Related Work
	2.1 Organizational Conflicts in Software Engineering
	2.2 Continuous Software Engineering

	3 Research Methodology
	3.1 Research Approach

	4 Results
	4.1 Catalysts of Organizational Conflict Hindering the Adoption of CSE Principles
	4.2 Symptoms of Underlying Conflicts
	4.3 Outcomes from Unresolved Organizational Conflicts

	5 Discussion and Analysis
	5.1 RQ1: What are Symptoms of Organizational Conflict in the Context of Adopting CSE?
	5.2 RQ2: What are the Root Causes of Identified Symptoms from an Organizational Conflict Perspective?
	5.3 RQ3: What are the Advantages of Studying Conflicts in CSE Empirically?

	6 Conclusions and Further Work
	References




