
Automating Microservices Test Failure Analysis using Kubernetes
Cluster Logs

Pawan Kumar Sarika
Ericsson AB

Stockholm, Sweden
pawan.sarika@ericsson.com

Deepika Badampudi
Blekinge Institute of Technology

Karlskrona, Sweden
deepika.badampudi@bth.se

Sai Prashanth Josyula
Blekinge Institute of Technology

Karlskrona, Sweden
sai.prashanth.josyula@bth.se

Muhammad Usman
Blekinge Institute of Technology

Karlskrona, Sweden
muhammad.usman@bth.se

ABSTRACT
Kubernetes is a free, open-source container orchestration system
for deploying and managing Docker containers that host microser-
vices. Kubernetes cluster logs help in determining the reason for the
failure. However, as systems become more complex, identifying fail-
ure reasons manually becomes more difficult and time-consuming.
This study aims to identify effective and efficient classification algo-
rithms to automatically determine the failure reason. We compare
five classification algorithms, Support Vector Machines, K-Nearest
Neighbors, Random Forest, Gradient Boosting Classifier, and Multi-
layer Perceptron. Our results indicate that Random Forest produces
good accuracy while requiring fewer computational resources than
other algorithms.

KEYWORDS
Kubernetes cluster logs, microservices, machine learning

ACM Reference Format:
PawanKumar Sarika, Deepika Badampudi, Sai Prashanth Josyula, andMuham-
mad Usman. 2023. Automating Microservices Test Failure Analysis us-
ing Kubernetes Cluster Logs. In Proceedings of the International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE ’23),
June 14–16, 2023, Oulu, Finland. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3593434.3593472

1 INTRODUCTION
Ericsson, a leading Information and Communication Technology
(ICT) service provider, is at the forefront of pioneering cloud RAN1,
a technology that handles network traffic in the cloud. To increase
development efficiency, Ericsson developed the Application Devel-
opment Platform (ADP) ecosystem [4], which among other things,
includes a marketplace that hosts over 280 microservices. Among
these, 50+ microservices are common microservices that can be

1https://www.ericsson.com/en/ran/cloud

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593472

reused and integrated across all applications within the organiza-
tion. The microservices in the ADP ecosystem are hosted in Docker
containers and managed by Kubernetes.

Some applications need a specific set of microservices that may
differ from others. In addition, the applications may deploy mi-
croservices in different environments, such as AmazonWeb Service
(AWS), or Microsoft Azure Cloud. To ensure high quality, the ADP
ecosystem includes a Continuous Integration and Continuous De-
ployment (CICD) team, which simulates the different application
environments and performs various tests, including testing scala-
bility, robustness, and resilience.

Whenever a test fails, the developers must classify the failure
into the following categories - an issue in the cluster, artifactory,
microservice, CICD tests itself, or environment. The classification
is done to report the failure to the relevant team. For example,
microservice bugs are assigned to the relevant microservice team,
while CICD bugs are reported to the CICD team for resolution. In
addition, knowing the failure reason can provide Ericsson insights
on what they should improve. These tests generate an average of
450 MB of log data. Developers use their knowledge and experience
to classify the failure, which may take up to two hours for initial
analysis. As the number of microservices and teams using them
grows, it becomes increasingly challenging and time-consuming
for developers to classify these failures manually.

This paper reports the experience of automating the classification
of failures using machine learning techniques at Ericsson. The goal
of automation is to identify an efficient and cost-effective method
to decrease the time required for manual analysis. To achieve this
goal, we utilized developers’ knowledge and experiences to better
understand theworkflows and information necessary for classifying
the failure. Based on this understanding, we extracted important
log data to train a machine-learning model capable of accurately
predicting the failure’s cause.

2 STUDY DESIGN
Figure 1 represents the steps followed in this study. In this section,
we describe the process followed in each step.

2.1 Data Selection
As depicted in Figure 1, expert knowledge was utilized to identify
the most informative sections of Kubernetes cluster logs, which
reduced the overall data processing requirements. Moreover, before

192

https://doi.org/10.1145/3593434.3593472
https://doi.org/10.1145/3593434.3593472
https://www.ericsson.com/en/ran/cloud
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3593434.3593472
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593472&domain=pdf&date_stamp=2023-06-14


EASE ’23, June 14–16, 2023, Oulu, Finland Sarika and Badampudi, et al.

Methods

Data selection

Kubernetes Logs

Data cleaning

Log data

Training
data

Test data

Expert knowledge

Feature
Extraction

Vocabulary

Machine learning
Model

Training

TF-IDF Classification
algorithms

Figure 1: Overall research process.

automation, it is important to comprehend the manual process of
failure classification. The first author, a team member responsible
for testing and deploying microservices, noted that each team mem-
ber had their own approach to analyzing failures. To establish a
consensus, we conducted four in-depth interviews to better under-
stand the manual failure classification process. The interviewees
had varying levels of experience in identifying reasons for failure,
ranging from 1.5 to 4 years. Furthermore, the interviewees have spe-
cialized expertise in several areas related to manual failure analysis,
such as test environments, end-to-end testing, and coordination
with microservice development teams. As a result, the participants
have diverse skills and knowledge that were valuable in the failure
classification process.

We started the interview by explaining the study objective. We
then presented a scenario in which a failure occurred and asked the
interviewees to classify the failure using the same steps they would
use in a real-world situation. The interviewee is free to use any log
as an example. An experienced developer typically examines the
sections of the log that are likely to contain the failure reason. This
step allowed us to identify the most frequently visited Kubernetes
cluster logs.

The interviewees were asked to walk through the different steps
they followed, along with the inputs considered and the outputs
of each step. Through this process, we identified the crucial log
parts for failure classification and how developers identified failure
reasons.

2.2 Data Cleaning
In this study, we utilized important data identified from the inter-
view for classification. Following data selection, data cleaning was
conducted (Figure 1). We ensured data cleanliness by removing in-
accurate, incomplete, or irrelevant data. Human-readable elements
(e.g., punctuation, newline characters) were removed to reduce com-
putational costs. We converted all log elements to lowercase letters
to avoid ambiguities, and unique elements (e.g., timestamps, IP

addresses, line numbers) were removed. Stopwords and stemming
methods were not used as they rely on the English dictionary and
may not work for non-English words like ’requesthandlerclass.’

2.3 Feature Extraction
After cleaning the Kubernetes cluster logs data, the text format must
be converted into a numerical form using Feature Extraction (FE)
for algorithms to process it. Although word-to-vector (word2vec)
is a popular method for feature extraction, it was not considered
appropriate due to the wide variation in the size of each log. In-
stead, we utilized the TF-IDF method, a common feature extraction
procedure for sentences and documents. TF-IDF was more suitable
for logs since the words related to the error generally occur once
or twice in the entire log. This method highlights words distinctive
from the text, allowing the extraction of essential data features
required for classification. Using TF-IDF, we generate vocabulary,
which is used to extract the feature vectors of the log data.

2.4 Classification
Finally, the most crucial step, i.e., log classification, involves using
classification algorithms to construct models that can make accu-
rate predictions. This study employs supervised learning, as it is
necessary to make predictions for specified classes. Non-parametric
algorithms are selected for this study because they do not require
prior knowledge and are particularly suitable when working with
large datasets [2]. The chosen algorithms for this study include
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Ran-
dom Forest Classifier, Gradient Boosting Classifier, and Multilayer
Perceptron (MLP).

2.5 Training
We proceeded with training the selected classification algorithms
using the feature vectors of the training data. We used the scikit-
learn library to obtain the trained models. The SVC() is trained
with a linear kernel (SVM). The RandomForestClassifier() is
trained with 1000 trees. All other function parameters of KNeigh-
borsClassifier() and GradientBoostingClassifier() are set
to default values used by scikit-learn. MLP was built using keras
sequential model consisting of three dense layers and two Dropout
layers. The F1 Score weighted metric is used for evaluation along
with the Adam optimizer set to a learning rate of 0.001, and cate-
gorical cross-entropy is used as the loss metric.

Following the training of the algorithms, we utilized them to pre-
dict class labels for every log in the test data. We collected various
metrics, such as accuracy, F1-score, training time, and prediction
time, to compare the classification algorithms’ performances for
predicting failure reasons. We measured training and prediction
times to assess computational cost, which can be a better metric
for real-world performance than time complexity [3]. Stratified 10-
fold cross-validation was employed as the sampling strategy. This
approach helped identify the algorithm with the best predictive
accuracy and computational cost for a given hardware and software
configuration.

193



Automating Microservices Test Failure Analysis using Kubernetes Cluster Logs EASE ’23, June 14–16, 2023, Oulu, Finland

3 EXPERT OPINION FINDINGS ON
ANALYZING FAILURE REASONS

During the interviews, developers scrutinized a failed test case and
analyzed the Kubernetes cluster logs to classify the failure. Specifi-
cally, they searched for logs associated with the microservice under
test within the pods/container or pods/describe directories. If
no relevant logs were found, the logs of dependent microservices
were consulted. Our analysis revealed that the error or relevant
information could usually be found in these directories. Even when
it was not, there were clues indicating potential failure type. As
a result, we concluded that logs located in pods/containers and
pods/describe directories are crucial in most instances. To further
strengthen this conclusion, we also examined the tickets submit-
ted by the developers. We found that the root directories for 43 of
the 50 reported log snippets were located in pods/container or
pods/describe, or both directories.

The pods/containers and pods/describe directories were de-
termined to be important during the interview phase. The logs were
pre-processed, and the logs’ size was significantly reduced (up to
96.08%) through data selection and cleaning, reducing computa-
tional resources.

4 DEVELOPING PREDICTION MODELS
The classification algorithms were used to process the training data
and generate a classification model, which was then used to predict
the test data’s class labels. The performance of the algorithms was
evaluated based on their accuracy, F1-score, training time, and
prediction time.

Table 1: Model accuracy and F1-score for each algorithm

Algorithm Accuracy F1-score

SVM 0.6905 0.6580
KNN 0.6576 0.6580
Random Forest 0.7279 0.7106
Gradient Boosting 0.7302 0.7071
MLP 0.7086 0.6911

We compared the chosen classification algorithms statistically
based on the recommendations by Demšar [1]. We applied the
Friedman test to test the null-hypothesis that all algorithms are
equivalent. If this hypothesis was rejected, we conducted a post-hoc
Nemenyi test to compare the algorithms pairwise.

Table 1 presents the accuracy and F1-scores of each algorithm.
The Friedman test was performed to evaluate the statistical sig-
nificance of the differences between the algorithms, resulting in a
p-value of 0.00074 and a Q value of 19.12, confirming significant
differences in accuracy. We subsequently conducted a Nemenyi
test, and the p-values of the combinations of algorithms are shown
in Table 2 with P-values less than 𝛼 (0.05) in bold. Random Forest
and Gradient Boosting were statistically better than KNN.

Similarly, for F1-scores (Table 3), the Friedman test yielded a
p-value of 0.00056 and a Q value of 19.76, indicating significant
differences. The Nemenyi test showed that Random Forest out-
performed SVM and KNN with statistically significant differences.

Table 2: Pairwise P-values for accuracy

SVM KNN Random
Forest

Gradient
Boosting MLP

SVM 1.0000 0.3517 0.4374 0.2418 0.9000
KNN 1.0000 0.0037 0.0010 0.1143
Random
Forest 1.0000 0.9000 0.7633

Gradient
Boosting 1.0000 0.5626

MLP 1.0000

Furthermore, KNN’s performance was significantly lower than Gra-
dient Boosting’s. Regarding both F1-score and accuracy, Random
Forest, Gradient Boosting, and MLP performed similarly.

We perform the Nemenyi test to determine which algorithms
are statistically different based on F1-scores. Table 2 represents the
p-value of F1-score for each combination of algorithms. The p-value
in bold is less than 𝛼 (0.05).

Table 3: Pairwise P-values for F1-score

SVM KNN Random
Forest

Gradient
Boosting MLP

SVM 1.0000 0.9000 0.0248 0.1143 0.4374
KNN 1.0000 0.0022 0.0160 0.1143
Random
Forest 1.0000 0.9000 0.6830

Gradient
Boosting 1.0000 0.9000

MLP 1.0000

Finally, the algorithms were evaluated based on their training
and prediction times. The average training time in minutes for all
ten folds is shown in Table 4. It was observed that Gradient Boost-
ing took a significantly longer time for training when compared
to other algorithms. On the other hand, MLP took more than 2x
longer for training compared to the Random Forest. Regarding pre-
diction time, all five algorithms finished predictions in less than a
second, indicating no significant difference between them in real-
world performance. Based on the analysis, it can be concluded that
the Random Forest algorithm performed better in terms of both
accuracy and training time.

Table 4: Training and prediction time in minutes

Algorithm Training time Prediction time

SVM 0.845 0.082
KNN 0.004 0.015
Random Forest 1.702 0.006
Gradient Boosting 110.773 0.002
MLP 4.111 0.005

194



EASE ’23, June 14–16, 2023, Oulu, Finland Sarika and Badampudi, et al.

5 PILOTING THE PREDICTION MODELS
To test the model in a production environment, we developed an
end-to-end prototype. The results of the model were added to a
dashboard for developer analysis. We received feedback from de-
velopers, who indicated that while the failure classification helps
them understand the reason for the failure and where they should
look in the logs, they would appreciate additional information be-
yond the failure reason. As part of future work, we will devise an
additional solution to include the most similar log previously re-
ported along with its diagnosis report. Reviewing diagnosis reports
of similar logs will help developers quickly understand the cause of
failure. This way, developers can precisely look at the specific logs
increasing their efficiency and helping them close the cases faster.

In addition, developers expressed concerns about the trustwor-
thiness of the models’ predictions due to a lack of understanding of
how the model arrived at its conclusions. Further effort is required
to improve the models’ interpretability and explainability.

Although Random Forest performed better, we need to tune
the hyperparameters to truly capture the effectiveness of Random
Forest compared to other algorithms.

6 CONCLUSION
Identifying the reason for a failed CICD test is important to assign
the failure to the relevant team for resolution. The automatic iden-
tification of failure reasons minimizes the manual effort needed to
analyze the failure. In this study, we report experiences of classify-
ing large-scale Kubernetes cluster logs using machine learning clas-
sification algorithms: Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Random Forest Classifier, Gradient Boosting
Classifier, and Multilayer Perceptron (MLP). Each log generates 450
MB of data on average, which was reduced to 91% by identifying
relevant parts of the logs using expert opinion. We used the TF-IDF
feature extraction method. Then we trained and evaluated the clas-
sification algorithms in terms of accuracy, F1 scores, training, and
prediction time.

The results indicated that Random Forest outperforms SVM,
KNN, Gradient Boosting, and MLP in terms of accuracy and compu-
tational cost. When evaluating the proof-of-concept, the developers
expect additional information to strengthen the confidence in the
prediction. For example, providing similar logs and diagnosis re-
ports can help the developers to understand how previously failed
tests were classified manually and arrived at the same classification
predicted by the model. As part of future work, we aim to make the
comparison of the algorithms more rigorous by applying hyperpa-
rameter tuning and further improving the model’s interpretability
and explainability.

As a prospect for future research, we intend to enhance the
dimensionality of the input data. Currently, we concatenate logs
from different services into a single file, creating a two-dimensional
input. Our plan is to aggregate logs from different pods within each
service, producing a three-dimensional input where each service
has its own file. This approach would enable us to leverage deep
learning algorithms, such as CNNs, which are proficient in process-
ing 3D data. By doing so, our model would be able to identify the
interdependencies among the services, leading to improved results.

ACKNOWLEDGMENTS
The Knowledge Foundation supports this work through the OSIR
project (reference number 20190081) at Blekinge Institute of Tech-
nology, Sweden.

REFERENCES
[1] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.

The Journal of Machine learning research 7 (2006), 1–30.
[2] Stuart J Russell and Peter Norvig. 2010. Artificial Intelligence A Modern Approach

Third Edition.
[3] Author Daniel Lemire. 2021. Big-O notation and real-world performance. Re-

trieved February 20, 2023 from https://lemire.me/blog/2013/07/11/big-o-notation-
and-real-world-performance/

[4] Muhammad Usman, Deepika Badampudi, Chris Smith, and Himansu Nayak. 2022.
An Ecosystem for the Large-Scale Reuse of Microservices in a Cloud-Native Con-
text. IEEE Software 39, 05 (2022), 68–75.

195

https://lemire.me/blog/2013/07/11/big-o-notation-and-real-world-performance/
https://lemire.me/blog/2013/07/11/big-o-notation-and-real-world-performance/

	Abstract
	1 Introduction
	2 Study Design
	2.1 Data Selection
	2.2 Data Cleaning
	2.3 Feature Extraction
	2.4 Classification
	2.5 Training

	3 Expert opinion findings on analyzing failure reasons
	4 Developing prediction models
	5 Piloting the prediction models
	6 Conclusion
	Acknowledgments
	References

