
107

Modern Code Reviews—Survey of Literature and Practice

DEEPIKA BADAMPUDI, MICHAEL UNTERKALMSTEINER, and RICARDO BRITTO,

Blekinge Institute of Technology, Sweden

Background: Modern Code Review (MCR) is a lightweight alternative to traditional code inspections. While

secondary studies on MCR exist, it is uanknown whether the research community has targeted themes that

practitioners consider important.

Objectives: The objectives are to provide an overview of MCR research, analyze the practitioners’ opinions

on the importance of MCR research, investigate the alignment between research and practice, and propose

future MCR research avenues.

Method: We conducted a systematic mapping study to survey state of the art until and including 2021, em-

ployed the Q-Methodology to analyze the practitioners’ perception of the relevance of MCR research, and

analyzed the primary studies’ research impact.

Results: We analyzed 244 primary studies, resulting in five themes. As a result of the 1,300 survey data points,

we found that the respondents are positive about research investigating the impact of MCR on product quality

and MCR process properties. In contrast, they are negative about human factor– and support systems–related

research.

Conclusion: These results indicate a misalignment between the state of the art and the themes deemed im-

portant by most survey respondents. Researchers should focus on solutions that can improve the state of MCR

practice. We provide an MCR research agenda that can potentially increase the impact of MCR research.

CCS Concepts: • General and reference→ Surveys and overviews; • Software and its engineering→
Software creation and management;

Additional Key Words and Phrases: Modern code review, literature survey, practitioner survey

ACM Reference format:

Deepika Badampudi, Michael Unterkalmsteiner, and Ricardo Britto. 2023. Modern Code Reviews—Survey of

Literature and Practice. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 107 (May 2023), 61 pages.

https://doi.org/10.1145/3585004

1 INTRODUCTION

Software code review is the practice that involves the inspection of code before its integration
into the code base and deployment. Software code reviews have evolved from being rigorous, co-
located, and synchronous to lightweight, distributed, tool based, and asynchronous [34]. Modern

Ricardo Britto also with Ericsson AB.

We acknowledge that this work was supported by the Knowledge Foundation through the projects SERT – Software Engi-

neering ReThought and OSIR Open-source inspired reuse (reference number 20190081) at Blekinge Institute of Technology,

Sweden.

Authors’ address: D. Badampudi, M. Unterkalmsteiner, and R. Britto, Blekinge Institute of Technology, Software Engi-

neering Research and Education Lab Sweden, Valahallavägen 1, Karlskrona, 37141, Sweden; emails: {deepika.badampudi,

michael.unterkalmsteiner, ricardo.britto}@bth.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/05-ART107 $15.00

https://doi.org/10.1145/3585004

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://orcid.org/0000-0002-6215-1774
https://orcid.org/0000-0003-4118-0952
https://orcid.org/0000-0002-7220-9570
https://doi.org/10.1145/3585004
https://doi.org/10.1145/3585004
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585004&domain=pdf&date_stamp=2023-05-26

107:2 D. Badampudi et al.

Code Review (MCR) is a lightweight alternative to traditional code inspections [20] that focuses
on code changes and allows software developers to improve code quality and reduce post-delivery
defects [3, 7]. MCR is an essential practice in modern software development not only due to its
contribution to quality assurance but also because it helps with design improvement, knowledge
sharing, and code ownership [30].

The research interest on code inspections declined in the middle of the 2000s [25]. Due to the
value of code reviews in general, it is reasonable to assume that the research focus has shifted
to MCR. After over a decade of research on MCR, several initiatives were born to aggregate a
body of knowledge on the increasing research of this essential quality assurance practice. To the
best of our knowledge, we presented in our previous work [4] the first overview on the state of
the art of MCR research. In our previous mapping study, we reported the preliminary results of
systematically searching and analyzing the existing literature (based on titles and abstracts) and
identified major research themes. Likely in parallel, other studies have also explored and made
an attempt to aggregate the existing literature on MCR, either on particular aspects of the prac-
tice (refactoring-aware code reviews [16], benefits of MCR [30], MCR in education [22], reviewer
recommendations [14]), or in general [18, 37].

Since there exists a considerable and diverse amount of research on the MCR practice, we were
curious whether the research community has targeted themes that are also perceived as impor-
tant by MCR practitioners. Similar investigations have been conducted in the past on software
engineering research in general [13, 27] and requirements engineering research in particular [21].

The main goal of this study is therefore to provide an overview of the different research themes on

MCR, analyze practitioners’ opinions on the importance of the research themes, and outline a roadmap

for future research on MCR. To achieve this goal, we extended our earlier work [4] by including
publications up until the year 2021 and synthesizing the contributions of the 244 identified primary
studies in MCR research. Then we constructed 47 statements that describe the research covered
in the primary studies and surveyed 28 practitioners using the Q-Methodology [41] to gauge their
perception on the statements representing the research conducted in this field. Finally, we compare
the practitioners perception on the investigated themes in MCR research with the amount of publi-
cations and research impact of those themes. The main contributions of this article are as follows:

• A comprehensive aggregation of research conducted on MCR research themes un-

til and including 2021: We identify potential gaps that researchers could address in the
future and provide a summary on the state of the art in MCR research that can be useful for
practitioners (e.g., to benefit from existing findings and solutions).
• Level of alignment between MCR state of the art and practitioners’ perception on

the relevance of the MCR state of the art: We assess the practitioners’ perception on the
relevance of the MCR state of the art represented by statements that summarize each topic
in the MCR state of the art. We assess the alignment between what the research community
has focused on the most and how MCR practitioners perceive its relevance. This analysis
can help researchers to focus on themes that are deemed relevant by practitioners but do
not have enough research coverage. We propose a research roadmap based mainly on the
analysis of the reviewed primary studies and qualified by the responses from the survey.

The remainder of this article is structured as follows: Section 2 presents background on the MCR
practice and relevant related work to this study. Section 3 describes the design of our research,
which is followed by Sections 4 and 5, where we describe the mapping study and survey results,
respectively. In Section 6, we compare the state of the art and practitioners’ perspectives. Section 7
discusses our results and illustrates our MCR research roadmap. Finally, Section 8 presents our
conclusions and view on future work.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:3

Fig. 1. Overview of steps in modern code reviews (adapted from Davila and Nunes [18]).

2 BACKGROUND AND RELATED WORK

In this section, we briefly revise the history of peer code reviews (2.1), illustrate the MCR process
(2.2), and discuss related work surveying MCR literature (2.3) and practitioner surveys in SE in
general (2.4), illustrating the research gap that this study aims to fill (summarized in 2.5).

2.1 Peer Code Review

It is widely recognized that the peer review of code is an effective quality assurance strategy [2, 25].
Formal code inspections were introduced in the mid-1970s by Fagan [20]. The formal code inspec-
tion process requires well-defined inputs (a software product that is ready for review), planning
and organizing of review resources (time, location, expertise), execution of the review following
guidelines that facilitate the detection of defects, and a synthesis of the findings, which are used
for improvement [2]. Kollanus and Koskinen [25] have reviewed the research on code inspections
between 1980 and 2008 and found a peak of publications between the late 1990s and 2004 (aver-
aging 14 papers per year) with a strong decline between 2005 and 2008 (4 papers per year). This
change in research interest coincides with the rise of MCR research, starting around 2007, which
had a steady upward trend since 2011 [4]. Research on code inspections focused on reading tech-
niques, effectiveness factors, processes, the impact of inspections, defect estimation, and inspec-
tion tools [25]. Interestingly, the tool aspect was the least researched one, with 16 of 153 studies
(10%). MCR were borne of the need to perform lightweight yet efficient and effective quality as-
surance [3]. It is a technology-driven practice that complements continuous integration and

deployment (CI/CD), a method to frequently and reliably release new features. CI/CD also saw
a rise in practical adoption and research interest around 2010 [35].

2.2 Modern Code Review

Figure 1 illustrates the two phases and main six steps in MCR, which are typically supported by
tools that integrate with version control systems (e.g., Gerrit, GitHub, and GitLab). The main actors
involved in MCR are the code author(s) and the reviewer(s). While there may be organizational,
technical, and tooling differences between open source and commercial software development
implementing MCR, the general steps are valid for both contexts. A significant difference of MCR
in open source and commercial development is its perceived purpose. In open source development,
reviewers focus on building relationships with core developers, while in commercial development,
knowledge dissemination through MCR is more important [76].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:4 D. Badampudi et al.

In Step 1, the code author(s) prepare the code change for review, which usually includes a
description of the intended modification and/or a reference to the corresponding issue recorded
in a bug tracking system. When tools like Gerrit and GitHub are used, the change author creates
a pull request. Questions that arise in this step are as follows: What is the optimal size of a pull
request?, How can large changes be broken down into manageable pull requests?, and How should
changes be documented?

In Step 2, the project/code owner selects one or more reviewers, typically using heuristics such
as expertise in the affected code or time availability. Questions that arise in this step are as follows:
What is the optimal number of reviewers?, Who is the best reviewer for a particular code change?,
What is the optimal workload for a reviewer?, and How should code changes be prioritized for
review?

In Step 3, the reviewer(s) are notified of their assignment, concluding the planning phase of MCR.
Questions that arise in this step are as follows: How much time should be allocated to a review?
and How should reviews be scheduled (batch, scattered throughout the work day/week)?

In Step 4, the reviewer(s) check the code changes for defects or suggest improvements. The
procedure for this step is highly individualized and depends on tool support, company culture,
and personal preference and experience. Typically, the reviewer inspects the code changes that
are surrounded by unchanged (context) code and provide feedback to particular lines of code, as
well as to the overall change. Questions that arise in this step are as follows: What information is
needed and what are the best practices for an effective review?, What is the most effective way to
describe findings and comments to code changes?, and Can the identification of certain defects or
improvements be automated?

In Step 5, the reviewer(s) and author(s) discuss the code changes and feedback, often facilitated
by tools that enable asynchronous communication and allow referencing code and actors. This
interaction creates a permanent record of the technical considerations regarding the change that
emerged during the review. Questions that arise in this step are as follows: What are the key
considerations for effective communication between reviewer(a) and author(s)?, How can endless
(unprofessional) discussions be avoided?, and How can consensus be facilitated?

In Step 6, the change is rejected, accepted, or sent back to the author(s) for refinement. The
decision process can be implemented with majority voting or rests upon the judgement of the
project/code owner. Questions that arise in this step are as follows: To what extent can the decision
process be automated? and What can we learn from accepted/rejected changes that can be used
to accept/filter high/low quality patches earlier?

The questions above, together with other questions, are investigated in the primary studies
identified in our study but also in the literature surveys presented in the related work, which is
discussed next.

2.3 Literature Surveys

While surveys on software inspections in general [2, 25, 26], checklists [10], and tool support [28]
have been conducted in the past, surveys on MCR have only recently received an increased interest
from the research community (since 2019). We identified six studies, besides our own, that men-
tioned MCR in their review aim within a very short time frame (2019–2021). Table 1 summarizes
key data of these reviews.

To the best of our knowledge, our systematic mapping study [4] presented the first results on
the state of the art in MCR research (April 2019). We identified and classified 177 research papers
covering the time frame between 2007 and 2018. The goal of this mapping study was to identify
the main themes of MCR research by analyzing the papers’ abstract. We observed an increas-
ing trend of publications from 2011, with the major themes related to MCR processes, reviewer

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:5

Table 1. Comparison of Review Studies on MCR

Review by Time-frame Studies Focus Research questions
Badampudi et al.

2007–2018 177 MCR in general
RQ1. What topics of modern code reviews are investigated?

[4] RQ2. How were the aspects in R1 investigated?
Coelho et al.

2007–2018 13
Refactoring-aware RQ1. What are the most common research topics?

[16] code review RQ2. What are the methods/techniques/tools proposed?
RQ3. What are the validation methods applied?

Nazir et al.
2013–2019 51 Benefits of MCR

RQ1. What are the real benefits of performing MCR?
[30] RQ2. How identified benefits can be grouped into relevant

themes?
Indriasari et al.

2013–2019 51
MCR as a RQ1. What are the reported motivations for conducting peer code

review activities in tertiary-level programming courses?
[22] teaching vehicle RQ2. How has peer code review been practiced in tertiary-level

programming courses?
RQ3. What are the main benefits and barriers to the implementa-
tion of peer code review in tertiary-level programming courses?

Çetin et al.

2009–2020 29

RQ1. What kind of methods/algorithms are used in CRR studies?
Code reviewer RQ2. What are the characteristics of the datasets in CRR studies?
recommendations RQ3. What are the characteristics of the evaluation setups used in

CRR studies?
[14] (CCR) RQ4. Are the models proposed in CRR studies reproducible?

RQ5. What kind of validity threats are discussed in CRR studies?
RQ6. What kind of future works are discussed in CRR studies?

Wang et al.
2011–2019 112 Benchmarking MCR

RQ1. What contributions and methodologies does code review
(CR) research target?

[37] RQ2. How much CR research has the potential for replicability?
RQ3. What metric and topics are used with CR studies?

Davila and Nunes
1998–2019 138 MCR in general

RQ1. What foundational body of knowledge has been built based
on studies of MCR?

[18] RQ2. What approaches have been developed to support MCR?
RQ3. How have MCR approaches been evaluated and what were
the reached conclusions?

This study 2007–2021 244 MCR in general
RQ1. Which MCR themes have been investigated by the research
community?
RQ2. How do practitioners perceive the importance of the identi-
fied MCR research themes?
RQ3. To what degree are researchers and practitioners aligned on
the goals of MCR research?

characteristics and selection, tool support, source code characteristics and review comments. In
this article, we update the search to include studies published including 2021, and we considerably
deepen the classification and analysis of the themes covered in MCR research, reporting on the
major contributions, key takeaways, and research gaps. Furthermore, we survey practitioners opin-
ions on MCR research to juxtapose research trends with the perspective from the state of practice.

Briefly after our mapping study, Coelho et al. [16] published their mapping study on refactoring-
aware code reviews (May 2019). They argue that MCR can be conducted more efficiently if review-
ers are aware of the type of changes and focus therefore their search on methods/techniques/tools
that support the classification of code changes. They identified 13 primary studies (2007–2018), of
which 9 are unique to their review. This could be due to the inclusion of “code inspection” in their
search string, resulting in papers that are not related to MCR (e.g., Reference [1, 15]), even though
Coelho et al. mentioned MCR explicitly in their mapping aim.

Nazir et al. [30] published preliminary results of a systematic literature review on the benefits of
MCR in January 2020. They identified 51 primary studies, published between 2013 and 2019, and
synthesized nine clusters of studies that describe benefits of MCR: software quality improvement,
knowledge exchange, code improvement, team benefits, individual benefits, ensuring documenta-
tion, risk minimization, distributed work benefits, and artifact knowledge dissemination.

Indriasari et al. [22] reviewed the literature on the benefits and barriers of MCR as a teaching
and learning vehicle in higher education (September 2020). They identified 51 primary studies,
published between 2013 and 2019, and found that skill development, learning support, product

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:6 D. Badampudi et al.

Table 2. Comparison of Studies Analyzing Practitioners’ Perception of Research

Survey by Source of research Practitioner perception

Lo et al. [27] General Software Engineering (ICSE and ESEC/FSE) 71% positive

Carver et al. [13] Empirical Software Engineering 67% positive

Franch et al. [21] Requirements Engineering 70% positive

quality improvement, administrative process effectiveness, and the social implications are the main
drivers for introducing peer code reviews in education. Analyzing the set of primary studies they
included, we observe that this review has the least overlap of all with the other reviews. This is
likely due to the particular focus on peer code reviews in education, which was explicitly excluded,
for example, in our study.

Çetin et al. [14] focused in their systematic literature review on the aspect of reviewer recom-
mendations in MCR (April 2021). They identified 29 primary studies, published between 2009 and
2020, and report that the most common approaches are based on heuristics and machine learn-
ing, are evaluated on open source projects but still suffer from reproducibility problems, and are
threatened by model generalizatibility and data integrity.

We discuss now the two reviews of MCR that are closest in scope and aim to our work and illus-
trate similarities in observations and the main differences in contributions between the reviews.
Wang et al. published a pre-print [36] on the evolution of code review research (November 2019),
which has been extended, peer reviewed, and published in 2021 [37]. They identified 112 primary
studies, published between 2011 and 2019. Similarly to our results (see Figure 5(b)), they observe a
predominant focus on evaluation and validation research, with fewer studies reporting experiences
and solution proposals for MCR. The unique contributions of their review are the assessment of
the studies’ replicability (judged by availability of public datasets) and the identification and clas-
sification of metrics used in MCR research. The former is important, as it allows other researchers
to conduct replication studies and the latter helps researchers to design studies whose results can
be benchmarked. Compared to Wang et al. our review of the themes studied in MCR research is
more granular (9 vs. 47), and we provide a narrative summary of the papers’ contributions.

Finally, Davila and Nunes [18] performed a systematic literature review with the aim to pro-
vide a structured overview and analysis of the research done on MCR (2021). They identified
1381 primary studies published between 1998 and 2019 and provide an in-depth analysis of the
literature, classifying the field into foundational studies (which try to understand the practice),
proposal studies (improve the practice), and evaluation studies (measure and compare practices).
Their synthesis provides excellent insights in the MCR state of the art with findings that are inter-
esting for researchers as well as practitioners.

2.4 Practitioner Surveys

Several studies have investigated the practical relevance of software engineering by surveying
practitioners (see Table 2). Lo et al. [27] were interested to gauge the relevance of research ideas
presented at the International Conference on Software Engineering (ICSE) and Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE), two premier conferences in software engineering. They summarized the
key contributions of 571 papers and let practitioners (employees at Microsoft) rate the ideas on a
scale from essential to worthwhile to unimportant to unwise. Overall, 71% of the ratings were pos-
itive. However, they found no correlation between academic impact (citation count) and relevance
score. Carver et al. [13] replicated Lo et al.’s study with research contributions from a different

1When we analyzed their primary studies, we found they had one duplicated paper in their set, which included 139 studies.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:7

conference (ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement), targeting a wider and international audience of practitioners. They also investigated
what practitioners think SE research should focus on. Their conclusions are similar to the ICSE
and ESEC/FSE study, with 67% overall positive ratings for the research, and no correlation between
academic impact and relevance score. Furthermore, they found that the research at the conference
addresses the needs expressed by the practitioners quite well. However, they highlight the need for
improving the discoverability of the research to enable knowledge transfer between research and
practice.

Finally, Franch et al. [21] surveyed practitioners in the field of requirements engineering and
found mostly positive ratings (70%) for the research in this area. The practitioners justifications
for positive ratings are related to the perceived problem relevance and solution utility described
in research. The requirements engineering activities that should receive the most attention from
research, according to the practitioners needs, are traceability, evaluation, and automation.

2.5 Research Gap

While recent years have seen several literature surveys on MCR, we know very little about how this
research is perceived by practitioners. Looking at the research questions shown in Table 1, one can
observe that a few studies sought to investigate how MCR techniques [14] and approaches [18, 37]
have been evaluated. None has yet studied practitioner perception of MCR research, even though
general software and requirements engineering research has been the target of such surveys (see
Table 2). In this study, we focus the literature review on identifying the main themes and contri-
butions of MCR research, summarizing that material in an accessible way in the form of evidence
briefings, and gauging practitioners perceptions of this research using a survey. Based on the re-
sults of this two data collection strategies, we outline the most promising research avenues, from
the perspective of their potential impact on practice.

3 RESEARCH DESIGN

Based on our main goal introduced in Section 1, we formulated the following research questions.

RQ1 Which MCR themes have been investigated by the research community?
RQ1.1 How was the research on MCR conducted and in which context?
RQ1.2 What is the quality of the conducted research?
RQ1.3 Which were the most investigated MCR themes and what were the major findings of

the MCR research?
RQ2 How do practitioners perceive the importance of the identified MCR research themes?
RQ3 To what degree are researchers and practitioners aligned on the goals of MCR research?

To answer these questions, we followed a mixed-methods approach. We conducted a system-
atic mapping study to answer RQ1 and its sub-questions. In our previous study [4], we presented
preliminary results of the mapping study with the review period until 2018. To answer RQ2, we
created statements representing the primary studies’ research objectives. We then created the sur-
vey questionnaire using the statements representing the primary studies until 2018. We conducted
the survey using the Q-Methodology, collecting practitioners’ opinions on the importance of the
statements representing the MCR research topics. We extended the mapping study period to 2021,
analyzed the new primary studies (2018 onwards), and mapped to the statements representing
them. Finally, we answer RQ3 by comparing both the frequency and research impact of MCR re-
search with its perceived importance by practitioners. The research design is depicted in Figure 2.
All research material we produced in this study (search results, selected primary studies, data ex-
traction, evidence briefings, survey material, and citation analysis) is available online [5, 6]. In the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:8 D. Badampudi et al.

Fig. 2. Research methodology followed in this study.

remainder of this section, we illustrate the research methodologies we employed to answer our
research questions.

3.1 Systematic Mapping Study

We followed the guidelines for conducting systematic mapping studies by Petersen et al. [32],
which include the following steps: (1) definition of review questions, (2) conduct search for primary
papers, (3) screening relevant papers, (4) keywording of abstracts, and (5) data extraction and
mapping of studies. As seen in Figure 2, the systematic mapping study (SMS) was conducted
in two phases: one study until the review period 2018 (SMS2018) and another from review period
until 2021 (SMS2022). The review questions are represented by the sub-questions RQ1.1, RQ1.2, and
RQ1.3. Below we provide details on the execution of the consolidated mapping study (including
the initial (SMS2018) and extend mapping study (SMS2022)).

Search. Databases: The following databases were selected in SMS2018 and SMS2022 studies
based on their coverage of papers: Scopus, IEEE Explore, and ACM Digital Library. Scopus in-
dexes a wide range of publishers such as ScienceDirect and Springer.
Search Strings: We used the keywords listed in Table 3(a) to search in the three databases, using
the search strings shown in Table 4, combining each keyword with a logical “OR” operation and
adding a wildcard (*) operator. We intentionally did not include the term “inspection” due to its
association with traditional code inspections, which researchers have reviewed in the past (see
discussion at the beginning of Section 2.3).
Search Scope: The search results, including SMS2018 and SMS2022 studies, are presented in
Table 3(b). To consider full years results we included papers until the year 2021 in the SMS2022
study. All the search results were exported into a csv file. We identified duplicates using Microsoft
Excel’s conditional formatting and applying the duplicate values rule to all the titles. We manually
checked the formatted duplicate entries before removing them from the list.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:9

Table 3. Search Keywords and Results

ID Keyword

K1 code review
K2 patch accept
K3 commit review
K4 pull request
K5 modern code inspect

(a) Keywords used in search strings

Database Papers

Scopus 1412
IEEE Explore 497
ACM Digital Library - Title 104
ACM Digital Library - Abstract 291
Total 2392
Total after removing duplicates and noise 1453

(b) Search results from each database

Table 4. Search Strings Used in Different Databases

Database Search string

Scopus TITLE-ABS-KEY (“K1*” OR “K2*” OR “K3*” OR “K4*” OR “K5*”)
IEEE Explore (“All Metadata”:“K1*” OR “K2*” OR “K3*” OR “K4*” OR “K5*”)

ACM Digital Library - Title and abstract
acmdlTitle:(“K1*” “K2*” “K3*” “K4*” “K5*”)
recordAbstract:(“K1*” “K2*” “K3*” “K4*” “K5*”)

Table 5. Inclusion and Exclusion Criteria

ID Criterion

Inclusion

I1 Papers related to MCR in general.
I2 Papers discussing source code (including test code) review done on a regular basis.
I3 Papers discussing MCR-related aspects (reviewer selection, benefits, outcomes, challenges, motivations, etc.)
I4 Papers proposing solutions for particular MCR activities.

Exclusion

E1 Papers not discussing MCR or the subject of investigation is not MCR process.
E2 Papers that do not discuss the implications of a solution on the MCR process.
E3 Papers that discuss MCR in education.
E4 Papers not in English and without accessible full text.
E5 Panel abstracts and proceedings summaries.
E6 Short papers without results and symposium summarising results of other published papers.

Selection. The search results were reviewed based on a defined set of inclusion and exclusion
criteria (Table 5).
SMS2018 Selection: Before we started the selection process, we conducted a pilot selection on
randomly selected papers from the result set. All three authors performed an independent decision
on whether the paper should be included, excluded, or tentatively included (we decided to be rather
inclusive and exclude a paper later based on reading the full text). During the first pilot on 20
papers, we noticed a paper on test case review. We refined the inclusion criterion I2 (see Table 5)
to add test code review as well. Some papers discussed approaches to support the MCR process to
make it more efficient, for example, by selecting a relevant reviewer. Therefore, we added a specific
inclusion criterion related to the MCR process (I4). As one of the goals of our study is to understand
practitioners’ perception on MCR research, we decided to only include studies focusing on MCR
practice (including open source). Therefore, we excluded papers that discuss MCR in education
(E3). We modified exclusion criterion E1 to emphasize the subject of the investigation, i.e., we only
include papers where the process of MCR is under investigation. We also came across papers that
discuss solutions that might benefit, among other things, the MCR process, without discussing the
implications of the approach on the code review process itself (e.g., defect prediction). As a result,
we excluded such papers and added exclusion criterion E2. We conducted a second pilot study on
20 additional papers using the revised criteria. As a result, we achieved better understanding of the
selection criteria. We decided therefore to distribute the selection of the remaining papers among
all three authors equally. In cases where more that one version of a paper was available (e.g., a
conference paper and a journal extension), we selected the most recent version.
SMS2022 Selection: After conducting the survey, we extended our mapping study. We conducted
another pilot study on 30 random studies to evaluate if our selection (inclusion/exclusion) criteria

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:10 D. Badampudi et al.

Table 6. Data Extraction Form

Type Name Description

Meta-data
Authors The authors of the paper.
Publication type Conference or journal.
Year Publication year of the paper.
Citations To evaluate the research impact we count the paper’s Google Scholar citations (as of June 2021).

Content

Research facet Based on Wieringa’s [38] classification: evaluation research, solution proposals, validation re-
search, philosophical papers and experience papers.

Rigor and relevance To evaluate the rigor and relevance [23] of the paper we extract the following aspects. (a) Rigor:
context, study design and validity threats. (b) Relevance: subjects involved in the study, context,
scale and research method.

Main contribution A summary (either verbatim from the paper or formulated by the extractor) of the paper’s main
contribution and results.

need updating. We were consistent to a large degree in the pilot study and found we were able to
make the selection based on our initial selection criteria. Of 30 papers, we disagreed on 6 papers.
By disagreement, we mean that one of the authors decided to exclude the paper while the other
author included the paper. We agreed to revisit the papers before making the final decision. After
revisiting the papers, we eventually decided to exclude them. We divided the remaining papers
and continued the selection process independently.

Keywording. SMS2018 Keywording: The goal of keywording the abstracts is to extract and
classify the main contribution of the selected primary studies. We performed the keywording dur-
ing the selection process. The keywording process resulted in a preliminary grouping into six main,
and 15 studied sub-aspects in MCR research, published in our previous work [4]. The result of the
keywording process was used to create initial themes and to identify extraction items.
SMS2022 Keywording: We used the identified themes in the SMS2018 study to classify the pri-
mary studies in SMS2022; therefore, we did not need any keywording process.

Data extraction. We extracted the data items shown in Table 6 in both mapping studies.
SMS2018 Data extraction: We used the preliminary results (studied aspects in MCR research) as
an input to extract additional items related to the main contribution of the primary studies. For
example, we extracted the “techniques used” and “purpose” in papers providing tool support and
the “techniques used” and “selection criteria” as additional extraction items for papers providing
reviewer recommendation support. Similarly to the paper selection, we planned to distribute the
data extraction work among the three authors of this paper. Hence, to align our common under-
standing of the data extraction form, we conducted two pilots.

Data extraction pilot 1: Before starting the pilot process, we reviewed the rigor and relevance
criteria provided by Ivarsson and Gorschek [23]. Assessing the research method in the relevance
dimension of primary studies that analyze repositories was not straightforward. For evaluating
the relevance of the research methods, we agreed that the tools/solutions or findings from primary
studies should be validated or evaluated by the users in the field to get a high score. Results based
on solely analyzing repositories are not enough; other sources such as interviews/surveys should
be conducted. Once we had an understanding of the criteria we piloted the extraction process
using six primary studies where each author independently extracted the data. All the extracted
items were consistent among the authors, except for the type of the subjects in the relevance, and
study design in the rigor dimension. For study design, the extracted values were different for one
paper and the difference was resolved in a meeting. For the type of subjects, we decided to give 0
to subjects if no subjects are involved or if the main findings of the paper are not discussed with
any subjects. It is important to evaluate the relevance of the findings with users involved in code
review; therefore, we give a high score when subjects are involved to corroborate the findings. We

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:11

calculated the inter rater agreement (IRA) for each of the rigor and relevance aspects. For pilot
1 the average IRA for all aspects was 82%.

Data extraction pilot 2: Based on the updated description of the rigor and relevance criteria, we
conducted another pilot study on 11 papers. In the second pilot study, there was higher agree-
ment in the extracted items. In particular, the inter rater agreement for relevance of subjects was
increased considerably. For pilot 2 the average IRA for all aspects increased to 88%.

After piloting the data extraction, we divided the data extraction of included studies until year
2018 with 20% overlap among the authors. The average IRA between the first and second authors
was 95% and 86% between first and third authors. For the second and third authors, the IRA was
75%; however, this low percentage is mainly due to a conflict in one paper.
SMS2022 Data extraction: We used the same extraction form as in SMS2018. We independently
conducted the extraction of the studies identified in SMS2022 as we had a good understanding of
the extraction items.

Data analysis. SMS2018 Data analysis: Using a deductive approach, we used thematic analy-
sis [17] to categorize the primary studies into themes. The main contribution extracted from the
primary studies was used to generate themes. For example, if the paper’s main contribution is to
provide solution support for reviewer selection, then we assign the paper to the “solution support”
theme. We divided the primary studies based on the studies aspects identified in the keyword-
ing process among all three authors to generate themes. For example, the first author identified
themes for all the primary studies related to the MCR process and studies investigating source code
and review comments. The second author identified themes within the primary studies providing
tool support, and finally, the third author analyzed the primary studies providing reviewer rec-
ommendations. We then followed a review process where two other authors reviewed each paper
classified by one author. Based on the discussions in the review process, we moved the primary
studies into different themes when needed. This process continued until all three authors reached
a consensus.
SMS2022 Data analysis: We mapped the contributions of the primary studies identified in
SMS2022 study to existing themes. All authors were involved in the mapping process. We reviewed
the mapping process to ensure that the mapping was done fairly and not forced into existing
themes.

Evidence briefings. Evidence briefings are a technology transfer medium that summarizes the
research results in a practitioner-friendly format [12]. We created evidence briefings based on the
main findings of the primary studies identified in SMS2018. We provided the link to the evidence
briefings at the end of the survey allowing the practitioners to read more on the themes that they
find most interesting. The evidence briefings are available online [5].2

3.2 Q-Methodology Survey

We chose Q-Methodology as a data collection and analysis approach, since we were interested
in understanding the viewpoint of practitioners on the numerous modern code review research
topics we have identified in our mapping study. Q-Methodology allows us to collect viewpoints
on concepts that might share underlying common factors and that are brought to the surface by
revealing relations between concepts instead of rating these concepts in isolation [8]. The factors
are identified by analyzing the subjective opinions of individuals, not facts, revealing common
viewpoints within the surveyed community [9]. A strength of the Q-Methodology is that it can

2https://rethought.se/research/modern-code-reviews/ is the original link we shared with the participants of the survey. We

created the Zenodo record for archival purposes.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://rethought.se/research/modern-code-reviews/

107:12 D. Badampudi et al.

Fig. 3. Q-Sort structure: The number in the square brackets represents the number of statements per rating.

provide insights on the matter of study with a relatively low number of respondents, compared to
conventional surveys [19].

Q-Methodology consists of the following seven steps [41]:
(1) Defining the concourse: The concourse consists of all the statements on a particular topic,

which is in our case, modern code reviews. In our systematic mapping study, we have extracted
the primary study’s main contributions and research objective to represent the concourse.

(2) Defining the Q-Set: The Q-Set is a sample of statements drawn from the concourse. These
statements are formulated in a way such that it is possible to form an opinion about the content of
the statements. The statements should not be factual, i.e., should not present a truth such as “the
earth revolves around the sun” but rather evoke agreement or disagreement. Using our mapping
study (SMS2018), we formulated statements from the papers’ research objective in the form of “It is
important to investigate ... [research statement].” We consolidated overlapping research objectives
into single statements, i.e., the number of statements (46) < number of primary studies (149). All
authors were responsible for creating the statements from the primary studies in SMS2018. In
a review process, we revised the mapping whenever necessary. We followed the same mapping
process for the primary studies identified in SMS2022. We list the statements and the frequency
we encountered the corresponding research objective in our mapping study in Table 7.

(3) Defining the P-Set: The P-Set represents the survey participants. We sent the survey to practi-
tioners in our professional network who are involved in software development and the code review
process. We sent the survey link to our contact persons in 17 partner companies, who distributed
the survey within the company. In addition, we published the survey link on our LinkedIn profile.
The participants (P-Set) rank the statements (Q-Set) on a scale of +3 to −3 representing their agree-
ment level. The details on the P-Set, i.e., the demographic information of participants is provided
in Table 8.

(4) Defining the Q-Sort structure: The participants were asked to place a certain amount of state-
ments in each rating. The number of statements that can be placed in each rating is shown in
Figure 3. For example, the participants can file nine statements into the rating +1 and −1 rating
respectively.

(5) Conducting the Q-Sorting process: In this step, the participants in the P-Set rate the statements
in Q-Set. We adapted an existing tool [11] that implements the Q-Sort in a web application. After
we piloted the tool with three industry practitioners, we improved the tools user interface and
description of steps. The updated tool3 and the survey,4 consisting of four steps, can be accessed
online. In step 1, we provide an introduction to the study purpose so that the participants are
aware of the importance of their input. In step 2, we ask the participants to place the statements

3https://github.com/DeepikaBadampudi/qmethod.
4https://mcrq.rethought.se/#/step1.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://github.com/DeepikaBadampudi/qmethod
https://mcrq.rethought.se/#/step1

Modern Code Reviews—Survey of Literature and Practice 107:13

Fig. 4. Frequencies of project types and research facets in primary studies.

in agree, disagree, and neutral piles. In step 3, the participants place the statements in the Q-Sort
structure depicted in Figure 3. In this way, the participants read the statements two times; once
when they put them in the agree/disagree/neutral piles and then when they file them into the Q-
Sort structure. In step 4, we ask the participants to provide explanations for the placement of the
six statements that they filed in the extreme agreement (+3) and disagreement (−3) piles.

(6) Conducting Factor Analysis: In the analysis, all similar viewpoints are grouped into a factor. Q-
Methodology automatically classifies the viewpoints and provides a list of statements along with
z-scores and factors scores for each factor. In other words, a list of statements that differentiate a
viewpoint is generated along with the scores that indicate how the viewpoints differ. We elaborate
on how the factors are generated in Section 5.3.

(7) Conducting Factor Interpretation: This last step refers to the interpretation of the factors by
considering the statements and their scores in that factor and the participants’ demographic in-
formation. All the statements in each factor along with the ratings were reviewed to understand
the nuances of each viewpoint (factor). The first author formulated interpretations of each fac-
tor, considering the participants explanations for the statements rated with high agreement and
disagreement. The interpretation was then reviewed by the second and third author. The review
process resulted in minor reformulations. The factor interpretation is provided in Section 5.3.

4 MAPPING STUDY RESULTS

In this section, we report on the results that answer RQ1–Which MCR themes have been investigated

by the research community? and its sub questions, based on 244 identified primary studies.

4.1 Research Venue, Type, Quality, and Context

We see a steady growth in the number of publications on modern code review as seen in Figure 4(a).
In this section, we provide details on the quality and the context of the primary studies.

Quality: Rigor and relevance - The description of the context, study design, and validity
threats are used to determine the rigor. We assign a score of 1 for each rigor aspect when all details
are reported, 0.5 when partial details are reported and 0 when no details are reported. The relevance
is scored between 0 and 1 for the relevance of subjects involved, context, research method, and
scale. Once we scored each quality aspect, we calculated the total of rigor and relevance for each
primary study. The maximum rigor score is 3 and relevance score 4. The total scores of rigor and

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:14 D. Badampudi et al.

Fig. 5. Frequencies of project types and research facets in primary studies.

relevance shown in Figure 4(b). The scores of rigor and relevance are shown on the x- and y-axes,
respectively. The bubble represents the number of papers for a given score.

As seen in Figure 4(b), the biggest bubble representing (26%) of the primary studies has high
rigor total (score = 3) and low (score = 2) relevance. Only 14% of the primary studies have both
high rigor (3) and relevance (4). Overall relevance is low, because most of the primary studies did
not include any human subjects in the research design. Only 32% of the primary studies involved
human subjects in their study and evaluated their findings in a realistic environment. Most pri-
mary studies analyzed repositories without triangulating the findings from other sources such as
interviews or surveys.

Context - The type of projects investigated in the primary studies is shown in Figure 5(a). Most
of the primary studies (59%) investigated open source (OSS) projects. Less than 20% of the primary
studies investigated proprietary projects. About 10% of the papers did not base their findings on
any projects; these papers are mainly solutions papers.

Evaluation research investigates a problem or implements a solution in practice. As seen in
Figure 5(b), 67% of evaluation is done in open source projects and 26% in proprietary projects. A
small percentage (4%) of evaluation is done in academic projects. Four papers did not describe the
context of the evaluation. The same trend can be seen for validation research coverage. “Valida-
tion research investigates the properties of a solution proposal that has not been implemented in
practice” [38]. Most of the validation is done in open source projects, and only four studies are val-
idated in a proprietary project. Solution proposals are primary studies that propose a solution and
argue for its relevance. Unlike validation research, there is no thorough evaluation or validation
of the solution in solution papers. One of the experience papers is based on a proprietary project;
however, the project type is not discussed in the other two philosophical and experience papers.

4.2 MCR Themes and Contributions

We grouped the 244 primary studies in five themes. In the remainder of this section, we summarize
their main contributions.

4.2.1 Support Systems for Code Reviews. This theme includes primary studies that contribute
to solutions to support the MCR process, such as review prioritization, review automation, and
reviewer recommendation.

Reviewer recommendations. A majority of papers on this theme focus on proposing tools
to recommend reviewers and validate their approaches using historical data extracted from open
source projects.

Most approaches recommend code reviewers based on the similarity between files modified
or reviewed by each developer and the files of a new pull request (path similarity) [87, 106, 122,
144, 145, 158, 187, 198, 204, 222, 230, 238, 242, 268, 271, 273, 275, 279]. Some studies include other

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:15

predictors such as previous interactions between submitter and potential reviewers [144, 145, 187,
273, 275, 285], pull request content similarity [145, 211, 268, 275], contribution to similar files [122,
158, 231, 274], review linkage graphs [132], and developer activeness in a project [144, 145, 158,
211, 271]. Another popular predictor to recommend code reviewers is the similarity between the
content of previous and new pull requests [145, 152, 166, 268–270, 275, 276].

In one study, the authors used participants’ preferences in review assignment [263], while in the
other study, the authors combined the metadata of pull requests with the metadata associated with
potential reviewers [92]. Another study focuses on detecting and removing systematic labeling bias
to improve prediction [235]. Another interesting direction is to focus recommend reviewers that
will ensure code base knowledge distribution [86, 176, 207]. Finally, some studies have included
balancing review workload as an objective [43, 49, 86, 230].

In relation to how the predictors are used to recommend code reviewers, many employ tradi-
tional approaches (e.g., cosine similarity), while some use machine learning techniques, such as
Random Forest [92], Naive Bayes [92, 235], Support Vector Machines [144, 276], Collaborative Fil-
tering [87, 230], and Deep Neural Networks [222, 274], or model reviewer recommendation as an
optimization problem [43, 86, 187, 207, 211].

The performance of the identified approaches varies a lot and is often measured using Accu-
racy [92, 122, 144, 204, 230, 238, 270], Precision and Recall [106, 145, 166, 187, 204, 222, 275, 276,
279, 285], or Mean Reciprocal Rank [106, 144, 230, 230, 231, 235, 268, 279]. Of the identified studies,
only a few [49, 158, 198, 230] have evaluated code reviewer recommendation tools in live environ-
ments. Instead, the majority of the studies measures performance (accuracy, precision, recall, and
mean reciprocal rank) by comparing the actual list of reviewers present in historical data with the
list of developers recommended by their respective approaches.

One study focuses on identifying factors that should be accounted for when recommending
reviewers [223], such as the number of files and commits in a pull request, pull requester profile,
previous interactions between contributors, previous experience with related code, and ownership
of modified code are factors related to how code reviewers are selected.

Finally, only two studies evaluate whether reviewer recommendation really adds any value [158,
230], with mixed results.

Understanding the code changes that need to be reviewed. Refactoring changes the code
structure to improve testability, maintainability, and quality without changing its behavior. Sup-
porting the review of such changes has been the focus of refactoring-aware tools. Refdistiller
aims at detecting behavior-changing edits in refactorings [46]. The tool uses two techniques: (a)
a template-based checker that finds missing edits and (b) a refactoring separator that finds extra
edits that may change a program’s behavior. In a survey of 35 developers, they found that it would
be useful to differentiate between refactored and behavior-changing code, making reviews more
efficient and correct. ReviewFactor is a tool able to detect both manual and automated refactor-
ings [111]. The evaluation of the tool showed that it can detect behavior-changing refactorings
with high precision (92%) and recall (94%). RAID [79] aims at reducing the reviewers’ cognitive
effort by automatically detecting refactorings and visualizing information relevant for the refac-
toring to the reviewer. In a field experiment, professional developers reduced the number of lines
they had to review for move and extraction refactorings. CRITICS is an interactive approach to
review systematic code changes [280]. It allows developers to find changes similar to a specified
template, detecting potential mistakes. The evaluation indicates that (a) six engineers who used
the tool would like to have it integrated in their review environment, and (b) the tool can im-
prove reviewer productivity, compared to a regular diffing tool. A study at Microsoft proposes a
solution to automatically cluster similar code changes [58]. The clusters are then submitted for re-
view. A preliminary user study suggests that the understanding of code did indeed improve when

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:16 D. Badampudi et al.

the changes were clustered. Similarly, SIL identifies similar code changes in a pull request and
flags potential inconsistent or overlooked changes [51]. In an inspection of 453 code changes in
open source projects, it was found that up to 29% of the changes are composite, i.e., address differ-
ent concerns [234]. Decomposing large pull requests into cohesive change sets could therefore be
valuable. A controlled experiment study found that change decomposition leads to fewer wrongly
reported issues [94]. ChgCutter [118] provides an interactive environment that allows reviewers
to decompose code changes into atomic modifications that can be reviewed and tested individually.
Professional developers suggested in a interview study that the approach helps to understand com-
plex changes. CoRA automatically decomposes commits in a pull request into clusters of related
changes (e.g., bug fixes, refactorings) and generates concise descriptions that allows users to bet-
ter understand the changes [260]. Another idea to reduce review effort is to prioritize code that is
likely to exhibit issues. One approach is to train a Convolutional Neural Network with old review
comments and source code features to identify code fragments that require review [229]. Similarly,
CRUSO classifies to be reviewed code by identifying similar code snippets on StackOverflow and
analyzing the corresponding comments and metadata, leveraging crowd-knowledge [148, 217].

Other research looked into the order in which changed files should be presented to the reviewer
to achieve an effective review process [63]. The study proposes the following main principle for
the ordering: related change parts should be grouped as closely as possible. Another contribution
to improve the understanding of changed code suggests identifying the “salient” class, i.e., the class
in which the main change was made and that affects changes in other dependent classes [136]. The
authors hypothesize that reviews could be more efficient if the salient class would be known, mak-
ing the logic of the commit easier to understand. A preliminary evaluation (questionnaire-based)
with 14 participants showed that the knowledge about the salient class improves the understanding
of a commit. A follow-up study with a broader evaluation confirms these results [137]. A similar
idea is implemented in BLIMP tracer, which inspects the impact of changes on a file level rather
than on a class level [264]. The tool was evaluated with 45 developers, and it improved speed and
accuracy of identifying the artifacts that are impacted by a code change. SEMCIA was developed
to reduce noise in change impact analysis and uses semantic rather than syntactic relationships.
This approach reduces false positives by up to 53% and reduces the change impact sets consider-
ably [121]. MultiViewer is a code change review assistance tool that calculates metrics to better
understand the change effort, risk, and impact of a change request [257]. A step further goes the ap-
proach implemented in the tool GETTY, which aims at providing meaningful change summaries
by identifying change invariants through analyzing code differences and test run results [173].
With GETTY, reviewers can determine if a set of code changes has produced the desired effect.
The approach was evaluated with the participation of 18 practitioners. The main finding was that
GETTY substantially modified the review process to a hypothesis-driven process that led to better
review comments.

Another direction of research for improving code understanding for reviews uses visualiza-
tion of information. For example, ViDI supports visual design inspection and code quality assess-
ment [245]. The tool uses static code analysis reports to identify critical areas in code, displays the
evolution of the amount of issues found in a review session, and allows the reviewer to inspect
the impact of code changes. Git Thermite focuses on structural changes made to source code [214].
The tool analyzes and visualizes metadata gathered from GitHub, code metrics of the modified
files, and static source code analysis of the changes in pull requests. DERT aims at complement-
ing line-based code diff tools with a visual representation of structural changes, similarly to UML
but in a dynamic manner, allowing the reviewer to see an overview as well as details of the code
change [57]. Similarly, STRIFFS visualizes code changes in an UML class diagram, providing the
reviewer an overview [103]. CHANGEVIZ allows developers to inspect method calls/declarations

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:17

related to the reviewed code without switching context, helping to understand a change and its
impact [110]. OPERIAS focuses on the problem of understanding how particular changes in code
relate to changes to test cases [186]. The tool visualizes source code differences and a change’s cov-
erage impact. Finally, a tool was developed to improve the review process of visual programming
languages (such as Petri nets) [202]. It supports the code review of visual programming languages,
similarly to what is already possible with textual programming languages.

Meyers et al. [175] developed a dataset and proposed a Natural Language–based approach to
identify potential problems and elicit an active response from the colleague responsible for modify-
ing the target code. They trained a classifier to identify acted-upon comments with good prediction
performance (AUC = 0.85).

Monitoring review performance and quality. González-Barahona et al. [116] have proposed
to quantitatively study the MCR process, based on traces left in software repositories. Without
having access to any code review tool, they analyzed changelog files, commit records, and attach-
ments and flags in Bugzilla records to monitor the size of the review process, the involved effort,
and process delay. A similar study focused on review messages wherein changes are first reviewed
through communication in a mailing list [141]. They developed a series of metrics to characterize
code review activity, effort, and delays [142], which are also provided through a dashboard that
shows the evolution of the review process over time [140]. Another study looked at code reviews
managed with Gerrit and proposed metrics to measure velocity and quality of reviews [161]. Sim-
ilar metrics, such as code churn, modified source code files, and program complexity, were used
to analyze reviewer effort and contribution in the Android open source project [177]. Other tools
to analyze Gerrit review data are ReDa, which provides reviewer, activity, and contributor statis-
tics [243], and Bicho, which models code reviews as information from an issue tracking system,
allowing us to query review statistics with standard SQL queries [115]. Finally, Codeflow Analytics
aggregates and synthesizes code review metrics (over 200) [72].

Determining the usefulness of code reviews. A study of three projects developed a taxon-
omy of review comments [163, 164]. After training a classifier and categorizing 147K comments,
they found that inexperienced contributors tend to produce code that passes tests while still con-
taining issues, and external contributors break project conventions in their early contributions.
In another study, Rahman et al. [205] analyzed the usefulness of 1,116 review comments (a man-
ual process that has also been attempted to be automatized [192]) in a commercial system. They
marked a comment as useful if it triggered a code change within its vicinity (up to 10 lines) and
analyzed features of the review comment pertaining to its content and author. The results indi-
cate that useful comments share more vocabulary with the changed code, contain relevant code
elements, and are written by more experienced reviewers. Similarly, another study found that ex-
perienced reviewers are capable of pointing out broader issues than inexperienced ones [131]. The
study concluded that reviewer experience and patch characteristics such as commits with large
and widespread modifications drive the number of comments and words in a comment [131]. A
study investigated the use of existing comments in code reviews [225]. The study concluded that
when the existing code review comment is about a type of bug, participants are more likely to find
another occurrence of this type of bug. However, existing comments can also lead to availability
bias [225].

A study of 2,817 review comments found that only about 14% of comments are related to soft-
ware design, of which 73% provided suggestions to address the concerns, indicating that they were
useful [278]. Another study investigated the characteristics of useful code reviews by interviewing
seven developers [78]. The study found that the most useful comments identify functional issues,
scenarios where the reviewed code fails, and suggest API usage, design patterns, or coding conven-
tions. “Useless” comments ask how an implementation works, praise code, or point to work needed

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:18 D. Badampudi et al.

in the future. Armed with this knowledge, the researchers trained a classifier that achieved 86%
precision and 93% recall in identifying useful comments. Applying the classifier on 1.5M review
comments, they found that (a) reviewer experience with the code base correlates with usefulness
of comments, suggesting that reviewer selection is crucial, (b) the smaller the changeset, the more
useful the comments, and (c) a comment usefulness density metric can be used to pinpoint areas
where code reviews are ineffective (e.g., configuration and build files). Criticism of the above pure
statistical, syntactic approaches arose as the actual meaning of comments is not analyzed [100].

Managing code reviews. Before code hosting platforms, such as Github, became popular, re-
searchers investigated how to provide support for reviews in IDEs. SeeCode integrates with Eclipse
and provides a distributed review environment with review meetings and comments [220]. Simi-
larly, ReviewClipse supports a continuous post-commit review process [70]. Scrub combines regu-
lar peer reviews with reports from static source code analyzers in a stand-alone application [133].
Java Sniper is a web-based, collaborative code reviewing tool [282]. All these early tools have been
outlived by modern code hosting and reviewing infrastructure services such as GitHub, GitLab, Bit-
Bucket, Review Board, and Gerrit. However, while these platforms provide basic code reviewing
functionalities, research has also looked at improving the reviewing process in different ways [62].
For example, Dürschmid [96] suggested continuous code reviews that allow anyone to comment
code they are reading or reusing, e.g., from libraries. Developers can then push questions and
comments to upstream authors from within their IDE without context switching. Fistbump is a
collaborative review platform built on top of GitHub, providing an iteration-oriented review pro-
cess that makes it easier to follow rationale and code changes during the review [147].

Fairbanks [104] has proposed the use of Design by Contract (DBC) and highlighted how it
can improve how software development teams do code reviews. When both the code author and
code reviewer agree to a goal of writing code with clear contracts, they can look out for the DBC
practices being followed (or not) in the code being reviewed. The author lists a few DBC examples
that can be used by software development teams.

Balachandran and Vipin [56] proposed changes in the developer code review workflow to lever-
age online clone detection to identify duplicate code during code review. They evaluated their ap-
proach through a developer survey and learned that the proposed workflow change will increase
the usage of clone detection tools and can reduce accidental clones.

Hasan et al. [123] developed and evaluated an approach to measure the effectiveness of develop-
ers when doing code reviews. They defined a set of metrics and developed a model to measure code
review usefulness. Their approach improved the state of the art by ~25%. They conducted a survey
with participants from Samsung and learned that the respondents found their approach useful.

Optimizing the order of reviews. Code reviewers often need to prioritize which changes they
should focus on reviewing first. Many studies propose to base the review decision on the likelihood
that a particular change will eventually be accepted/merged [53, 105, 213]. Fan et al. [105] proposed
an approach based on Random Forest. They evaluated their approach using data from three open
source projects and learned that their approach is better than a random guess. In addition to the
acceptance probability, Azeem et al. [53] also considered the probability that a code integrator will
review/respond to a code review request. They rank the code review requests based on both the
acceptance and response probabilities, which are calculated using machine learning models. They
evaluated their approach using data from open source projects and obtained solid results. Saini
and Britto [213] developed a Bayesian Network to predict acceptance probability. The acceptance
probability is combined with other aspects, such as task type and the presence of merge conflicts,
to order the list of code review requests associated with a developer. They evaluated their approach
both using historical data and user feedback (both from Ericsson). They learned that their approach
has good prediction performance and was deemed as useful by the users.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:19

PRioritizer is a pull request prioritization approach that, similarly to a priority inbox, sorts re-
quests that require immediate attention to the top [253]. Users of the system reported that they
liked the prioritization but miss insights on the rationale for the particular pull request ordering.

Other studies looked especially at the historic proneness of files to defects to direct review efforts.
A study suggests combining bug-proneness, estimated review cost, and the state of a file (newly
developed or changed) to prioritize files to review [47]. The evaluation, performed on two open
source projects, indicates that the approach leads to more effective reviews. A similar approach
attempts to classify files as potentially defective, based on historic instances of detected faults and
features on code ownership, change request, and source code metrics [170].

Some studies focus on predicting the time to review [281, 284]. Zhao et al. [284] focused on de-
veloping an approach that focus on time to review to prioritize review requests. In their approach,
they employed a learning-to-rank approach to recommend review requests that can be reviewed
quickly. They evaluated their approach through a survey with GitHub code reviewers. The sur-
vey participants acknowledge the usefulness of the approach. Zhang et al. [281] employed Hidden
Markov Chains to predict the review time of code changes. They evaluated their approach using
data from open source projects, with promising results.

Wang et al. [261] aimed at supporting review request prioritization by identifying duplicated
requests. To do so, they consider a set of features, including the time when review requests are
created. They developed a machine learning model to classify whether a code review request is
duplicated. They validated their approach using data from open source, obtaining mixed results.

Automating code reviews. Gerede and Mazan [112] have proposed to train a classifier on
whether a change request is likely to be accepted or not, knowing in advance the likelihood of a
rejected change request would reduce the review effort, as those changes would not even reach the
reviewing stage. They found that the change requests by inexperienced developers that involve
many reviewers are the most likely to be rejected. In the same line of research, Li et al. [162] used
Deep Learning to predict a change’s acceptance probability. Their approach, called DeepReview,
outperformed traditional single-instance approaches.

Review Bot uses multiple static code analysis tools to check for common defect patterns and
coding standard violations to create automated code reviews [55]. An evaluation with seven de-
velopers found that they agreed to 93% of the automatically generated comments, likely due to
the lack of consistent adoption of coding standards, which were the majority of the identified
defects. Similarly, Singh et al. [221] studied the overlap of static analyzer findings with reviewer
comments in 92 pull requests from GitHub. Of 274 comments, 43 overlapped with static analyzer
warnings, indicating that 16% of the review workload could have been reduced with automated
review feedback.

A series of studies investigated the effect of bots on code reviewing practice. Wessel et al. [266]
conducted a survey to investigate how software maintainers see code review bots. They identified
that the survey participants would like enhancements in the feedback bots provide to developers,
along with more help from bots to reduce the maintenance burden for developers and enforce
code coverage. A follow-up study [267], in which 21 practitioners were interviewed, identified dis-
tracting and overwhelming noise caused by review bots as a recurrent problem that affects human
communication and workflow. However, a quantitative analysis [265] of 1,194 software projects
from GitHub showed that review bots increase the number of monthly merged pull requests. It
showed also that after the adoption of review bots, the time to review and reject pull requests de-
creased, while the time to accept pull requests was unaffected. Overall, bots seem to have a positive
effect on code reviews, and countermeasures to reduce noise, as discussed by Wessel et al. [267],
can even improve that effect.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:20 D. Badampudi et al.

CFar has been used in a production environment resulting in (a) enhanced team collaboration
as analysis comments were discussed; (b) improved productivity as the tool freed developers from
providing feedback about shallow bugs; and (c) improved code quality, since the flagged issues
were acted upon, and (d) the automatic review comments were found useful by the 98 participating
developers [127].

Recently, researchers have invested in using Deep Learning to aiming at code review automation
[52, 162, 218]. Some studies have focused on identifying the difference between different code revi-
sions [52, 218], while Tufano et al. [244] focused on providing an end-to-end solution, from identi-
fying code changes to providing review comments. Finally, Hellendoorn et al. [126] evaluated if it is
feasible at all to automate code reviews by developing a Deep Learning–based approach to identify
the location of comments. They concluded that just this simple task is very challenging, indicating
that a lot of research is still required before fully automated code review becomes a reality.

Analyzing sentiments, attitudes, and intentions in code reviews. Understanding review
comments in greater detail could lead to systems that support reviewers in both formulating and
interpreting the intentions of code reviews. A study on Android code reviews investigated the
communicative goals of questions stated in reviews [98], identifying five different intentions: sug-
gestions, requests for information, attitudes and emotion, description of a hypothetical scenario,
and rhetorical questions. A study at Microsoft showed that the type of a change intent can be used
to predict the effort for a code review [262]. A study on the Chromium project found that code
reviews with lower inquisitiveness, higher sentiment (positive or negative), and lower syntactic
complexity were more likely to miss vulnerabilities in the code [180].

Several studies investigated how sentiments are expressed in code reviews [42, 101, 134].
SentiCR flags comments as positive, neutral, or negative with 83% accuracy [42] and was later
compared to classifiers developed for the software engineering context. Surprisingly, it was out-
performed by Senti4SD [80]. The same investigation found that contributors often express their
sentiment in code reviews and that negative and controversial reviews lead to a longer review
completion time [102]. A study at Google investigated interpersonal conflict and found in a sur-
vey that 26% have at least once a month negative experiences with code reviews [101]. Further-
more, they found that rounds of a review, reviewing and shepherding time, have a high recall but
low precision in predicting negative experiences. Other research has focused on nonverbal physi-
ological signals, such as electrodermal activity, stress levels, and eye movement, to measure affect
during code reviews. These signals were associated with increased typing duration and could be
used in the future to convey emotional state to improve the communication in code reviews that
are typically conducted without direct interaction [256]. A study categorized incivility in open
source code review discussions [107]. The results indicate that more than half (66.66%) of the non-
technical emails included uncivil features. Frustration, name calling, and impatience are the most
frequent features in uncivil emails. The study also concluded that sentiment analysis tools cannot
reliably capture incivility. In a study of six open source projects, men expressed more sentiments
(positive/negative) than females [196].

Code reviews on touch enabled devices. Müller et al. [179] have proposed to use multi-touch
devices for collaborative code reviews in an attempt to make the review process more desirable.
The approach provides visualizations, for example, to illustrate code smells and metrics. Other
researchers have compared reviews performed on the desktop and on mobile devices [108]. In an
experiment, they analyzed 2,500 comments, produced by computer science students, and found
that (a) the reviewers on the mobile device found as many defects as the ones on the desktop and
(b) seemed to pay more attention to details.

Other solutions. Some primary studies propose an initial proof of concept approaches
for different purposes: to automatically classify commit messages as clean or buggy [160], to

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:21

eliminate stagnation of reviews and to optimize the average duration of open reviews [255], use of
interactive surfaces for collaborative code reviews [200], and to link code reviews to code changes
[188]. In addition, a study [167] compares two reviewer recommendations algorithms, concluding
that recommendation models needs to be trained for a particular project to perform optimally.

Links to tools and databases available reported in the primary studies: We extracted the
links to tools and databases reported in the primary studies providing solutions to support modern
code reviews. Only a few primary studies provide links to the proposed tools or databases used
in the studies. Most of the proposed solutions were for supporting reviewer recommendations.
However, only 2 of 36 solutions provided links to the tools, and seven primary studies provided
links to the database they used in their studies. We observed most reporting of links (17/28) to
tools and databases for the primary studies providing support to understand changes that need to
be reviewed. The complete list of the links to the tools and databases, along with the purpose of
the links, is available in our online repository [6].

4.2.2 Human and Organizational Factors. This theme includes primary studies that investigate
the reviewer and/or contributor as subject, for example, reviewer experience and social interac-
tions. Studies that contribute to the human factors (e.g., experience) and organizational factors
(e.g., social network) are categorized into this theme.

Review performance and reviewers’ age and experience. The most investigated topic in
this theme is the relation between the reviewers’ age and experience on the review performance.
Studies found that reviewer expertise is a good indicator of code quality [90, 154, 155, 174, 208,
240]. In addition, studies found that reviewers’ experience [154] and developers’ experience [66,
157] influence the code review outcome such as review time and patch acceptance or rejection.
A study investigated human factors (review workload and social interactions) that relate to the
participation decision of reviewers [210]. The results suggest that human factors play a relevant
role in the reviewer participation decision. Another study investigated if age affects reviewing
performance [181]. The study compared students in their 20s and 40s showed no difference based
on age or development experience. Finally, there exists some early work on harvesting reviewer
experience through crowdsourcing the creation of rules and suggestions [139].

Review performance and reviewers’ reviewing patterns and focus. Eye tracking has been
used in several studies to investigate how developers review code. Researchers found that a partic-
ular eye movement, the scan pattern, is correlated with defect detection speed [67, 216, 252]. The
more time the developer spends on scanning, the more efficient the defect detection [216]. Based on
these results, researchers have also stipulated that reviewing skill and defect detection capability
can be deduced from eye movement [83]. Studies compared the review patterns of different types
of programmers [124, 138]. A study compared novice and experienced programmers and based on
the eye movements and reading strategies concluded that experienced programmers grasped and
processed information faster and with less effort [124]. When comparing the eye-tracking results
based on gender, a study found that men fixated more frequently, while women spent significantly
more time analyzing pull request messages and author pictures [138].

Review performance and reviewers’ workload. The impact of workload on code reviews has
been investigated from two perspectives. First, a study found that workload (measured in pending
review requests) negatively impacts review quality in terms of bug detection effectiveness [155].
Second, a study crossing several open source projects found that workload (measured in concur-
rent and remaining review tasks) negatively impacts the likelihood that the reviewers accepts a
new review invitation [210].

Review performance and reviewers’ social interactions. Code reviews have been studied
with different theoretical lenses on social interactions. A study used social network analysis to

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:22 D. Badampudi et al.

model reviewer relationships and found that the most active reviewers are at the center of peer
review networks [272]. Another study used the snowdrift game to model the motivations of de-
velopers participating in code reviews [153]. They describe two motivations: (i) a reviewer has a
motive of choosing a different action (review, not review) from the other reviewer, and (ii) a re-
viewer cooperates with other reviewers when the benefit of review is higher than the cost. A study
found that past participation in reviews on a particular subsystem is a good predictor for accept-
ing future review invitations [210]. Similarly, another study looking at review dynamics found the
amount of feedback at patch has received is highly correlated with the likelihood that the patch is
eventually voted to be accepted by the reviewer [237].

Review performance and reviewers’ understanding of each other’s comments. A study
on code reviews investigated if reviewers’ confusion can be detected by humans and if a classifier
can be trained to detect reviewers’ confusion in review comments [97]. The study concludes that
while humans are quite capable of detecting confusion, automated detection is still challenging.
Ebert et al. [99] identified causes of confusion in the code: the presence of long or complex code
changes, poor organization of work, dependency between different code changes, lack of docu-
mentation, missing code change rationale, and lack of tests. The study also identified the impact
of confusion and strategies to cope with confusion.

Review performance and reviewers’ perception of code and review quality. A survey
study conducted among reviewers identified factors that determine their perceived quality of code
and code reviews [154]. High-quality reviews provide clear and thorough feedback, in a timely
manner, by a peer with a supreme knowledge of the code base, strong personal and interpersonal
qualities. Challenges to achieve high-quality reviews are of technical (e.g., familiarity with the
code) and personal (e.g., time management) nature.

The difference between core and irregular contributors and reviewers. Studies investi-
gated the difference between core and irregular contributors and reviewers in terms of review
requests, frequency, and speed [65, 73, 75, 150, 199]. A study found that contributions from core
developers were rejected faster (to speed-up development), while contributions from casual de-
velopers were accepted faster (to welcome external contributions) [65]. Similar observations were
made in other studies [75, 150], while Bosu and Carver [73] found that top code contributors
were also the top reviewers. A study explored different characteristics of the patches submitted
to company-owned OSS project and found that volunteers face 26 times more rejections than em-
ployees [199]. In addition, the review of patches submitted by volunteers have to wait, on average,
11 days, whereas employees wait 2 days on average. Studies also investigated the acceptance likeli-
hood of core and irregular contributors [75, 125]. Bosu and Carver [75] found that core contributors
are more likely to have their changes accepted to the code base than irregular contributors. A po-
tential explanation for this observation was found in another study [125], showing that rejected
code is significantly different (due to different code styles) to the project code than accepted code.
More experienced contributors submit code that is more compliant to the project’s code style. A
study investigated the consequences of disagreement between reviewers who review the same
patch [130]. The study found that more experienced reviewers are more likely to have a higher
level of agreement than less-experienced reviewers. A study investigating the career paths of con-
tributors (from non-reviewer, i.e., developer, to reviewer, to core reviewer) found that (a) there is
little movement between the population of developers and reviewers, (b) the turnover of core re-
viewers is high and occurs rapidly, (c) companies are interested in having core reviewers in their
full-time staff, and (d) being a core reviewer seems to be helpful in achieving a full-time employ-
ment in a project [254].

The effect of the number of involved reviewers on code reviews. A study found that the
more the developers are involved in the discussion of bugs and their resolution, the less likely the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:23

reviewers are to miss potential problems in the code [155]. The same holds not true for reviewer
comments: Surprisingly, the studied data indicate that the more reviewers participate with com-
ments on reviews, the more likely they miss bugs in the code they review. Another study also made
a counter-intuitive observation: Files vulnerable to security issues tended to be reviewed by more
people [174]. One reported explanation is that reviewers get confused about what their role in
the review is if there are many reviewers involved (diffusion of responsibility). Similar results were
found in a study of a commercial application: The more reviewers are active, the less efficient the
review and the lower the comment density [95]. In a study including both open source and commer-
cial projects, it was observed that it is general practice to involve two reviewers in a review [209].

Information needs of reviewers in code reviews. A study identified the following infor-
mation need categories: alternative solutions and improvements, correct understanding, rationale,
code context, necessity, specialized expertise, and splitability of a change [195]. The authors of the
study find that some of the information needs can be satisfied by current tools and research results,
but some aspects seem not to be solved yet and need further investigation. Studies investigated
the use of links in review comments [143, 259]. A case study of the OpenStack and Qt projects
indicated that the links provided in code review discussion served as an important resource to ful-
fill various information needs such as providing context and elaborating patch information [259].
Jiang et al. [143] found that 5.25% of pull requests in 10 popular open source projects have links.
The authors conclude that pull requests with links have more comments, more commenters and
longer evaluation time. Similar results were found in a study of three open source projects [258]
where patches with links took longer to review. The study also finds combining two features (i.e.,
textual content and file location) to be effective in detecting patch linkages. Similarly machine
learning classifiers can be used to automate patch linkages [132].

4.2.3 Impact of Code Reviews on Product Quality and Human Aspects (IOF). This theme includes
primary studies that investigate the impact of code reviewers on artifacts such as code, design, and
human aspects, such as attitude and understanding.

The impact of code reviews on defect detection or repair. A study showed that unreviewed
commits have over twice as many chances of introducing bugs than reviewed commits [7]. Simi-
larly, observations from another study show that both defect-prone and defective files tend to be
reviewed less rigorously in terms of review intensity, participation, and time than non-defective
files [239].

Another study has investigated how code review coverage (the proportion of reviewed code
of the total code), review participation (length and speed of discussions), and reviewer expertise
affect post-release defects in large open source projects [172]. The findings suggest that reviewer
participation is a strong indicator for defect detection ability. While high code review coverage
is important, it is even more important to monitor the participation of reviewers when making
release decisions and select reviewers with adequate expertise on the specific code. However, these
findings could not be confirmed in a replication study [159]. They found that review measures are
neither necessary nor sufficient to create a good defect prediction model. The same conclusions
we confirmed in a project of proprietary software [219]. In their context, other metrics such as the
proportion of in-house contributions, the measure of accumulated effort to improve code changes,
and the rate of author self-verification contributed significantly to defect proneness [219].

Defective conditional statements are often the source of software errors. A study [248] found
that negations in conditionals and implicit indexing in arrays are often replaced with function
calls, suggesting that reviewers found that this change leads to more readable code.

The impact of code reviews on code quality. Studies were conducted to find the problems
fixed by code reviews. A study concluded that 75% of the defects identified during code review

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:24 D. Badampudi et al.

are evolvability type defects [201]. They also found that code review is useful in improving the
internal software quality (through refactoring). Similarly, other studies [68, 171] found that 75% of
changes are related to evolvability and only 25% of changes are related to functionality.

Studies investigated the impact of code reviews on refactoring. A study on 10 JAVA OSS projects
found the most frequent changes in MCR commits are on code structure (e.g., re-factorings and re-
organizations) and software documentation [194]. An investigation of 1,780 reviewed code changes
from 6 systems pertaining to two large open source communities found that refactoring is often
mixed with other changes such as adding a new feature [191]. In addition, developers had explicit
intent of refactoring only in 31% of review that employed refactoring [191]. An empirical study
on refactoring-inducing pull requests found that 58.3% presented at least one refactoring edit in-
duced by code review [88]. In addition, Beller et al. [68] found that 78–90% of the triggers for code
changes are review comments. The remaining 10–22% are “undocumented.” Another study showed
that reviewed commits have significantly higher readability and lower complexity. However, no
conclusive evidence was reported on coupling [7].

A study of Openstack patches found higher code conformance of a patch after being reviewed
than a patch that was first submitted [228]. An investigation on the impact of code review on
coding convention violation found that convention violations disappear after code reviews. How-
ever, only a minority of the violations were removed, because they were flagged in a review com-
ment [119]. The comparison of cost required to produce quality programs using code reviews and
pair programming showed that code reviews costs 28% less compared to pair programming [233].

The impact of code reviews on detection or fixes of security issues. According to a study
[77], code review leads to the identification and fixes of different vulnerability types. The experi-
ence of reviewers regarding vulnerability issues is an important factor in finding security-related
problems, as a study indicates [174]. Another large study [236] also has similar findings. The
results indicate that code review coverage reduces the number of security bugs in the investigated
projects. A study looked into the language used in code reviews to find if the linguistics characters
could explain developers missing a vulnerability [180]. The study found that code reviews with
lower inquisitiveness (fewer questions per sentence), higher positive or negative sentiment, lower
cognitive load, and higher assertions are more likely to miss a vulnerability. A study investigated
the security issues identified through code reviews in an open source project [93]. They found
that 1% of reviewers’ comments are security issues. Language-specific issues (e.g., C++ issues
and buffer overflows) and domain-specific ones (e.g., such as Cross-Site Scripting) are often missed
security issues, and initial evidence indicates that reviews conducted by more than two reviewers
are more successful at finding security issues. Another online study on freelance developers’ code
review process has similar findings indicating that developers did not focus on security in their
code reviews [91]. However, the results showed that prompting for finding security issues in
code reviews significantly affects developers’ identification of security issues. A study found the
relevant factors in successful identification of security issues in code reviews [197]. The results
indicate that the probability of security issues identification decreases with the increase in review
factors such as number of reviewer’s prior reviews and number of review comments authored on
a file during the current review cycle. In addition, the probability of security issues identification
increases with review time, number of mutual reviews between the code author and a reviewer,
and a reviewer’s number of prior reviews of the file.

The impact of code reviews on software design. A study [178] found that high code review
coverage can help to reduce the incidence of anti-patterns such as Blob, Data class, Data clumps,
Feature envy and Code Duplication in software systems. In addition, the lack of participation
(length and speed of discussions) during code reviews has a negative impact on the occurrence of
certain code anti-patterns. Similarly, a study [184] specifically looked for the occurrences of review

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:25

comments related to five code smells (Data Clumps, Duplicate Code, Feature Envy, Large Class, and
Long Parameter List) and found that the code review process did identify these code smells. An em-
pirical study of code smells in code reviews in two most active OpenStack projects (Nova and Neu-
tron) found that duplicated code, bad naming, and dead code are the most frequently identified
smells in code reviews [120]. Another investigation of 18,400 reviews and 51,889 revisions found
that 4,171 of the reviews led to architectural changes, 731 of which were significant changes [189].

The impact of code reviews on design degradation is investigated in two studies [246, 247].
A study on code reviews in OSS projects found that certain code review practices such as long
discussions and reviewers’ disagreements can lead to design degradation [247]. To prevent design
degradation, it is important to detect design impactful changes in code reviews. A study found that
technical features (code change, commit message, and file history dimensions) are more accurate
than social ones in predicting (un)impactful changes [246].

The impact of code reviews on teams’ understanding of the code under review. An inter-
view study [227] found that code reviews help to improve the team’s understanding of the code un-
der review. In addition, code review may be a valuable addition to pair programming, particularly
for newly established teams [227]. Similarly, a survey of developers and a study of email threads
found that developers find code review dialogues useful for understanding design rationales [232].
Another survey of developers [76] found code reviews to help in knowledge dissemination. This
was also found in a survey of reviewers that code review promotes collective code ownership [69].
However, Caulo et al. [82] were not able to capture the positive impact of code review in knowl-
edge translation among developers. The authors contribute the negative results to fallacies in their
experiment design and notable threats to validity.

The impact of code reviews on peer impression in terms of trust, reliability, perception

of expertise, and friendship. A survey of open source contributors [74] found that there is a high
level of trust, reliability, and friendship between open source software projects’ peers who have
participated in code review for some time. Peer code review helped most in building a perception of
expertise between code review partners [74]. Similarly, another survey [76] found that the quality
of the code submitted for review helps reviewers form impressions about their teammates, which
can influence future collaborations.

The impact of code reviews on developers’s attitude and motivation to contribute. An
analysis of two years of code reviews showed that review feedback has an impact on contribu-
tors becoming long-term contributors [185]. Specific feedback such as “Incomplete fix” and “Sub-
optimal solution” might encourage contributors to continue to work in open source software
projects [185]. Similarly, a very large study found that negative feedback has a significant im-
pact on developers’ attitude [215]. Developers might not contribute again after receiving negative
feedback, and this impact increases with the size of the project [215].

4.2.4 Modern Code Review Process Properties (CRP). This theme includes primary studies inves-
tigating how and when reviews should be conducted and characteristics such as review benefits,
motivations, challenges, and best practices.

When should code reviews be performed? Research shows that code reviews in large open
source software projects are done in short intervals [208, 209]. In particular, large and formal orga-
nizations can benefit from creating overlap between developers’ work, which produces invested
reviewers, and from increasing review frequency [208].

What are the benefits of code reviews besides finding defects? A study on large open
source software projects found that code reviews act as a group problem-solving activity. Code
reviews support team discussions of defect solutions [208, 209]. The analysis of over 100,000 peer
reviews found that reviews also enable developers and passive listeners to learn from the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:26 D. Badampudi et al.

discussion [208, 209]. A similar observation was made in a survey of 106 practitioners, where,
besides knowledge sharing, the development of cognitive empathy was identified as a benefit of
code reviews [89].

How are review requests distributed? Research found that reviews distributed via broadcast
(e.g., mailing list) were twice as fast as unicast (e.g., Jira). However, reviews distributed via unicast
were more effective in capturing defects [48]. In the same investigation, code reviewers reported
that a unicast review allows them to comment on specific code, visualize changes, and have less
traffic of patches circulating among reviewers. However, new developers learn the code structure
faster with frequent circulation of patches among those who subscribe to broadcast reviews.

Efficiency and effectiveness of code reviews compared to team walkthroughs. Team
walkthroughs are often used in safety-critical projects but come with additional overhead. In a
study that developed an airport operational database, the MCR process was compared with a walk-
through process [71]. The authors suggest to adopt MCR to ensure coverage while adapting the
formality to the criticality of the item under review. Over-the-shoulder (OTS) reviews are syn-
chronous code reviews where the author leads the analysis. A study compared an experiment OTS
with tool-assisted (TA), asynchronous, code reviews. It was found that OTS generates higher-
quality comments about more important issues and better supports knowledge transfer, while TA
generates more comments [146].

Mentioning peers in code review comments. A study explored the use of @-mentions, a
social media tool, in pull requests [283]. The main findings were that @-mentions are used more
frequently in complex pull requests and lead to shorter delays in handling pull requests. Another
study investigated which socio-technical attributes of developers are able to predict @-mentions.
It found that a developers visibility, expertise, and productivity are associated with @-mentions,
while, contrary to intuition, responsiveness is not [149]. Generalizing the idea of @-mentions,
other researchers investigated to what information objects to stakeholders refer to in pull request
discussions. Building taxonomies of reference and expression types, they found that source code
elements are most often referred to, even though the studied platform (GitHub) does not provide
any support in creating such links (in contrast to references to people or issue reports) [84].

Test code reviews. Observations on code reviews found that the discussions on test code are
related to testing practices, coverage, and assertions. However, test code is not discussed as much as
production code [224]. When reviewing test code, developers face challenges such as lack of testing
context, poor navigation support (between test and production code), unrealistic time constraints
imposed by management, and poor knowledge of good reviewing and testing practices by novice
developers [224]. Test-driven code review is the practice of reviewing test code before production
code and studied in a controlled experiment and survey [226]. It was found that the practice does
not change review comment quality nor the overall amount of identified issues. However, more test
issues were identified on the expense of maintainability issues in production code. Furthermore,
in a survey it was found that reviewing tests was perceived as having low importance and lacking
tool support.

Decision-making in the code review process. The review process and the resulting artifacts
are an important source of information for the integration decision of pull requests. In a qualita-
tive study limited to two OSS projects, it was found that the common, most frequent reason for
rejection is unnecessary functionality [117]. In a quantitative study of 4.8K GitHub repositories
and 1M comments, it was found that there are proportionally more comments, participants and
comment exchanges in rejected than in accepted pull requests [114]. Another aspect of decision-
making in code reviews is multi-tasking. It was observed that reviewers participating simultane-
ously in several pull requests (which happens in 62% of the 1.8M studied pull requests) increase the
resolution latency [135]. MCR processes often contain a voting mechanism that informs the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:27

integrator about the community consensus about a patch. The analysis of a project showed that in-
tegrators use patch votes only as a reference and decide in 40% of the cases against the simple major-
ity vote [129]. Still, patches that receive more negative than positive votes are likely to be rejected.

Comparison of pre-commit and post-commit reviews. In change-based code reviews, one
has the choice to perform either pre-commit or post-commit reviews. Researchers have created and
validated a simulation model, finding that there are no differences between the two approaches
in most cases [59]. In some cases, post-commits were better regarding cycle time and quality. For
pre-commit reviews, the review efficiency was better.

Strategies for merging pull requests. A survey of developers and analysis of data from a
commercial project found that pull request size, the number of people involved in the discussion
of a pull request, author experience, and their affiliation are significant predictors of review time
and merge decisions [156]. It was found that developers determine the quality of a pull request by
the quality of its description and complexity and the quality of the review process by the feedback
quality, test quality, and the discussion among developers [156].

Motivations, challenges, and best practices of the code review process. Several studies
have been conducted to investigate benefits and challenges of modern code reviews. An analysis
found that improving code, finding defects, and sharing knowledge were the top three of nine
identified benefits associated with code reviews [169]. Similar studies identified knowledge shar-
ing [34, 89], history tracking, gatekeeping, and accident prevention as benefits of code reviews [34].
Challenges such as receiving timely feedback, review size, and managing time constraints were
identified as the top 3 of 13 identified challenges [3, 169]. Challenges such as geographical and
organizational distance, misuse of tone and power, unclear review objectives and context were
also identified [34]. In the context of refactoring, a survey found that changes are often not well
documented, making it difficult for reviewers to understand the intentions and implications of
refactorings [45]. The best practices for code authors include writing small patches, describing
and motivating changes, select appropriate reviewers, and being receptive toward reviewers’ feed-
back [169]. The code reviewers should provide timely and constructive feedback through effective
communication channels [169]. Code reviews are a well-established practice in open source devel-
opment (FOSS). An interview study [44] set out to understand why code review works in FOSS
communities and found that (1) negative feedback is embraced as a mean for a positive opportu-
nity for improvement and should not be reduced nor eliminated, (2) the ethic of passion and care
create motivation and resilience to rejection, and (3) both intrinsic (altruism and enjoyment) and
extrinsic (reciprocity, reputation, employability, learning opportunities) motivation are important.
Another study proposes a catalog of MCR anti-patterns that describe reviewing behaviour or pro-
cess characteristics that are detrimental to the practice: confused reviewers, divergent reviewers,
low review participation, shallow review, and toxic review [85]. Preliminary results from studying
a small sample (100) of code reviews show that 67% contain at least one anti-pattern.

4.2.5 Impact of Software Development Processes, Patch Characteristics, and Tools on Modern

Code Reviews (ION). This theme includes primary studies investigating the impact of processes
(such as continuous integration), patch characteristics (such as change size, descriptions), and tools
(e.g., statics analyzers) on modern code reviews.

The impact of static analyzers on the code review process. A study on six open source
projects analyzed which defects are removed by code reviews and are also detected by static code
analyzers [193]. In addition, a study [249] found that the issues raised by coding style checker
can improve patch authors’ coding style to avoid the same type of issues in subsequent patch
submissions. However, the warnings from static analyzers could be irrelevant for a given project
or development context. To address this issue, a study [250] proposed a coding convention checker

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:28 D. Badampudi et al.

that detects project-specific patterns. While most of the produced warnings would not be flagged
in a review, addressing defects regarding imports, regular expressions, and type resolutions before
the patch submission would indeed reduce the reviewing effort. Through an experiment [128],
it was found that the use of a symbolic execution debugger to identify defects during the code
review process is effective and efficient compared to a plain code-based view. Another study [168]
proposed a static analyzer for extracting first-order logic representations of API directives that
reduces the code review time.

The impact of gamification elements on the code review process. Gamification mecha-
nisms for peer code review are proposed in a study [251]. However, an experiment with gamifi-
cation elements in the code review process found that there is no impact of gamification on the
identification of defects [151].

The impact of continuous integration on the code review process. Experiments with
26,516 automated build entries reported that successfully passed builds are more likely to improve
code review participation and frequent builds are likely to improve the overall quality of the code
reviews [203]. Similar findings were confirmed in a study [277] that found that passed builds have
a higher chance of being merged than failed ones. On the impact of CI on code reviews, a study [81]
found that on average CI saves up to one review comment per pull request.

The impact of code change descriptions on the code review process. Interviews with
industrial and OSS developers concluded that providing motivations for code changes along with
a description of what is changed reduces the reviewer burden [206]. Similarly, an analysis of OSS
projects found that a short patch description can lower the likelihood of attracting reviewers [241].

The impact of code size changes on the code review process. An investigation of a large
commercial project with 269 repositories found that when patch size increases, the reviewers
become less engaged and provide less feedback [172]. An interview study with industrial and OSS
developers found that code changes that are properly sized are more reviewable [206]. The size of
patches negatively affects the review response time, as observed in a study on code reviews [66],
and reduces the number of review comments [165] and code review effectiveness, as shown in
a study of an OSS project [64]. Similarly, an analysis of more than 100,000 peer reviews in open
source projects recommends that changes to be reviewed should be small, independent, and
complete [95].

The impact of commit history coherence on the code review process. An interview study
on industrial and OSS project developers found that the commit messages that are self-explanatory
and have meaningful messages are easier to review [206]. In addition, interviewees suggest that
the ratio of commits in a change to the number of files changed should not be high [206].

The impact of review participation history on the code review process. An analysis of
three OSS projects found that the likelihood of attracting reviewers is higher when past changes to
the modified files are reviewed by at least two reviewers [241]. Prior patches that had few reviewers
tend to be ignored [241]. Another study, looking at reviews from two OSS projects found that more
active reviewers have faster response times [66].

The impact of fairness on the code review process. Fairness, in general, refers to the deci-
sion and allocation of resources in a way that is fair to the individuals and the group. A study [113]
in an OSS project investigated different fairness aspects and recommends, besides the common
aspects of fairness such as politeness and precise and constructive feedback, to (a) distribute
reviews fairly and (b) establish a clear procedure for how reviews are performed. A study [109]
investigated how contributions from different countries are treated. The study found that develop-
ers from countries with low human development face rejection the most. From the perspective of
bias, a study [182] investigated the benefits of anonymous code reviews. The results indicate that
while anonymity reduces bias, it is sometimes possible to identify the reviewer, and there are some

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:29

practical disadvantages such as not being able to discuss with the reviewer. The study recommends
to have a possibility to reveal the reviewer when required. Another qualitative study [183] found
that there may be perceptible race bias in the acceptance of pull requests. Similarly, a study
investigated the impact of gender, human, and machine bias in response time and acceptance
rate [138]. The results indicate that gender identity has significant effect on response time, and
all participants spend less time evaluating the pull requests of women and are less likely to accept
the pull requests of machines.

The impact of rebasing operations in the code review process. An in-depth large-scale
empirical investigation of the code review data of 11 software systems, 28,808 code reviews, and
99,121 revisions found that rebasing operations are carried out in an average of 75.35% of code
reviews, of which 34.21% operations tend to tamper with the reviewing process [190].

4.2.6 Other. In this theme, we have papers that investigate code review process on a generic
level. Two papers classified the code review process in open source projects [50] and in proprietary
projects [60]. A study identifies the factors influencing the code review process [61].

4.3 Mapping of Papers to Statements

As explained in Section 3.2, Q-Methodology relies on a set of statements that can be assessed by
survey participants. We created these statements based on the primary studies’ research objective.
All primary studies with similar research objectives are mapped to one statement. Note that
each primary study could be mapped to different statements when their research objectives are
multifaceted. We did not want to make the survey too long. Thus, we merged the statements that
are closely related. In total, we generated 47 statements representing the primary studies. We do
not have statements for three papers in the “other” theme as they were not as well aligned to the
main themes. Similarly, we do not have statements representing four short papers with very brief
descriptions of solutions proposals; we aimed to include statements with at least two or more
solutions per statement. We provide the statements derived from the primary studies in Table 7.
Note that we extended our mapping study from the review period until 2018 to 2021. Since we
created the statements on a high level, we could map most of the new studies to the existing state-
ments representing primary studies until 2018. However, we identified one new statement that we
could not map to any existing statement. The new statement is related to investigating the impact
of concurrent code changes on modern code reviews (last statement in the ION theme in Table 7).

5 SURVEY RESULTS

In this section, we report on the results that answer RQ2–How do practitioners perceive the im-

portance of the identified MCR research themes? based on 465 statements that we derived from the
identified five main themes on MCR research.

5.1 Demographics

We received 28 responses in total. We excluded three respondents, as they did not have any code
review experience or entered invalid responses. The remaining 25 respondents work in different
roles in large multinational organizations; 56% of the participants are working in Swedish soft-
ware organizations. The company name was not a mandatory field in the survey. However, ap-
proximately 70% of the respondents provided their company name. Most of the respondents are
from the telecommunication domain. We also received responses from practitioners working in
product-based companies and IT services and consulting companies. We received one response

5As the survey was conducted after our initial mapping study, we could not include the new statement representing one

primary study from the updated mapping study.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:30 D. Badampudi et al.

Table 7. Statements Representing the Five Main Themes and Frequency of Primary Studies

Statement Papers Statement Papers

Support Systems: It is important to investigate support for...
Human and Organizational Factors:
It is important to investigate...

selection of appropriate code reviewers. 36 reviewers’ age and experience. 11
understanding changes that need review. 28 reviewers’ reviewing patterns and focus. 6
automating code reviews. 11 reviewers’ understanding of each other’s comments. 2
analyzing the sentiment/attitude/intention. 11 reviewers information needs. 5
monitoring review performance and quality. 10 reviewers’ social interactions. 4
determining the usefulness of code reviews. 9 effect of number of involved reviewers. 4
managing code reviews. 9 reviewers’ workload. 2
optimizing code review order. 9 core vs. irregular - requests, frequency and speed. 5
code reviews on touch-enabled devices. 2 core vs. irregular - acceptance likelihood. 2

reviewers’ perception of code and review quality. 1
core vs. irregular - agreement level. 1
core vs. irregular - career paths. 1

TOTAL 125 TOTAL 45
Impact of code reviews on product quality and human aspects:
It is important to investigate the impact of code reviews on. . .

Modern code review process properties:
It is important to investigate. . .

code quality. 10 motivations, challenges and best practices. 6
defect detection or repair. 6 decision making process 4
detection or fixes of security issues. 7 when to review 3
software design. 6 review benefits. 3
teams’ understanding of the code under review. 5 mentioning peers in comments. 3
peer impression. 2 comparison to team walkthroughs. 2
developers’ attitude and motivation to contribute. 2 it is important to investigate reviews of test code. 2

how requests are distributed. 1
pre and post-commit code reviews. 1
strategies for merging pull requests. 1

TOTAL 39 TOTAL 27
Impact of software development processes, patch characteristics,
and tools on modern code reviews: It is important to
investigate the impact of . . . on the code review process

static analyzers. 5
code size changes. 6
fairness on the code reviews process. 4
continuous integration. 3
gamification elements. 2
code change descriptions. 2

GRAND TOTAL (some papers were classified
in more than one statement, hence the grand total
exceeds the number of reviewed primary studies)

263

review participation history. 2
commit history coherence. 1
concurrent code changes. 1
TOTAL 27

Note: All statements start with prefix text mentioned in italics under each theme.

from the insurance domain. The respondents in the other category are those who previously
worked in software companies and worked, at the time of the survey, in academia. Each respon-
dent provided a rating for each of the 46 statements (25 × 46) and six explanations for the three
statements in most positive and most negative ratings, respectively (25 × 6), resulting in 1,300 data
points.

The demographic information of the participants (their role, and experience in development,
and code review) is provided in Table 8. The respondents have varying experiences from two to
30 years and work in 10 different roles such as developer, architect, and tester. Moreover, 60% of
the participants have a Master’s degree, 30% a Bachelor’s degree, and 10% have a Ph.D. The re-
spondents who provided their company names covered four different domains and seven different
large companies. The details that could trace back to the respondents, such as their names and
company names, are not provided to ensure the confidentiality of our respondents.

5.2 Agreement Level—Rating of Statements

The agreement levels of 25 participants is illustrated in Figure 6. The vertical axis shows the
46 statements, while the horizontal axis shows the percentage on the agreement levels. The state-
ments are sorted from most to least agreement.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:31

Table 8. Demographic Information of the Survey Participants

ID Role Experience (years) ID Role Experience (years)
Development Code review Development Code review

P1 Expert engineer 15 10 P2 Testing 6 5
P3 Software engineer 4 4 P4 Quality 3 3
P5 Developer 5 2 P6 Developer 8 6
P7 Developer 3 3 P8 Software engineer 12 12
P9 Developer 7 7 P10 Developer 6 3
P11 Manager 14 10 P12 Architect 6 4
P13 Quality 20 15 P14 Architect 25 10
P15 Testing 10 3 P16 Developer 14 14
P17 Developer 15 7 P18 Developer 5 3
P19 Developer 15 15 P20 Designer 16 12
P21 Software engineer 30 30 P22 Software engineer 5 5
P23 Automation Engineer 6 2 P24 Architect 8 8
P25 Developer 10 2

Three of the top five statements are related to the impact of and on code reviews. In addition,
the benefits of code/test reviews have high positive ratings; 92% of the respondents agreed on “It is
important to investigate the impact of code reviews on code quality.” Similarly, four of the last five
statements are on investigating the difference between core and irregular reviewers. None of the
participants agreed with the statement “It is important to investigate the difference between core
vs. irregular reviewers in terms of the level of agreement between reviewers.” The statement “It
is important to investigate support for code reviews on touch-enabled devices” received the most
negative ratings. However, we can see from Figure 6 that there is no consensus on most of the
statements. In other words, most statements received both positive and negative as well as neutral
responses. In some cases (35% of the statements), the difference in positive and negative ratings is
not vast (less than 20%). For example, “It is important to investigate support for determining the
usefulness of code reviews” has 40% negative and 36% positive responses, which is a difference of
only 4%. A deeper look at the differences is needed.

We grouped the rating on the five themes to see how the ratings vary within each. As seen in
Figure 7, the theme IOF (see Figure 7(a)) received the most positive response. However, within the
theme, the impact of code reviews on product quality (i.e., code quality, security issues, software
design, and defect detection or repair) received a more positive response compared to human as-
pects, particularly on developers’ attitude and peer impression. This indicates that practitioners
perceive that research on the impact of code reviews on the outcome (e.g.,quality) is more impor-
tant than research on human aspects. This observation is further corroborated by the fact that the
theme human and organizational factors (HOF) had the second least agreement, short of the
theme support systems for code reviews (SS).

Figure 7(b) depicts the ratings on the theme ION. More than 50% of the respondents perceive
the investigation of code change description, continuous integration, code size changes, and static
analyzers on code review process to be important. However, the impact of commit history coher-
ence, fairness, review participation history, and gamification on code reviews are not considered
as important. We observe as well in the ION theme that practitioners are more negative toward
research on human aspects such as impact of fairness in code reviews, which received the highest
negative rating in the ION theme.

The investigation in the theme CRP is considered important, especially research on the inves-
tigation of benefits, challenges, and best practices (see Figure 7(c)). However, some of the topics,
such as the process for distributing review requests and merging pull requests, were not considered
as important.

In the theme HOF, research on the effect of the number of involved reviewers, reviewers’ infor-
mation needs, reviewers perception of code and review quality, and reviewers understanding each

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:32 D. Badampudi et al.

Fig. 6. Agreement level of the survey respondents. Note: All statements start with a prefix mentioned at the

top of all statements.

others’ comments was by the majority perceived as important. However, 72% of the respondents
did not agree on the need to investigate reviewers’ career paths and social interactions, as seen
in Figure 7(d). In addition, 68% of the respondents did not perceive research on the reviewers’ age
and experience to be important.

In the theme SS, only research on support for understanding what changes need review and se-
lection of appropriate reviewers was perceived as important, as shown in Figure 7(e). Support for
code reviews on touch-enabled device received most negative response where 72% of the respon-
dents gave negative ratings. It is rather surprising that this theme received the least agreement
overall, given that it is the theme with the majority of publications.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:33

Fig. 7. Ratings for the five themes.

When looking at the statements grouped in themes, there is a clear trend for the practitioners’
preference on research that investigates causal relationships between code reviews and factors
relevant for software engineering in general (themes ION and IOF). There is also a strong interest
on modern code review process properties. Surprisingly, research on human and organizational
factors as well as support systems for code reviews was not perceived as important by practitioners,
which together represent nearly 70% (164 of 244) of the primary studies from our mapping study.

5.3 Factor Analysis

We further analyzed the survey data to identify patterns in the respondents’ viewpoints using
factor analysis, as suggested by the Q-Methodology. In the survey, we asked respondents to put
only a fixed number of statements per rating, for example, only three statements in each of the −3
and 3 ratings. However, due to an error in the survey tool, four respondents could put more than
the desired statements in some ratings. Therefore, we only included 21 of 25 valid participants
responses in Q-method analysis. As mentioned in Section 3.2, the participants rate the statements,
which is represented in a Q-Sort. For example, a Q-Sort of one participation for 46 statements is
as follows (−3 3 2 3 2 −3 2 0 −3 2 0 0 −2 −2 0 2 −2 1 −1 3 0 1 −1 1 −1 1 0 0 −1 1 −1 −1 0 −1 1 −1
1 1 1 0 0 −2 0 −2 −1 0), where each value is the rating given by the participant for the statement.
The Q-Sorts of all participants is used as input for factor analysis.

The steps followed in the Q-method analysis are (see the result of each intermediate step in the
Q-method report available online [6]) as follows:

(1) Creating an initial matrix - An initial two-dimensional matrix is created (statements × par-
ticipants), where the value of each cell is the rating given by the participants (between
−3 to 3).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:34 D. Badampudi et al.

Table 9. Factor Characteristics from Q-methodology

Characteristics F1 F2 F3

Average reliability coefficient 0.80 0.80 0.80
Number of loading Q-sorts 9.00 5.00 5.00
Eigenvalues 3.53 3.24 3.17
Percentage of explained variance 16.81 15.43 15.07
Composite reliability 0.97 0.95 0.95
Standard error of factor scores 0.16 0.22 0.22

(2) Creating correlation matrix - A correlation matrix between each Q-Sort (i.e., participant
ratings) is generated using Pearson correlation coefficient test.

(3) Extracting factors and creating factor matrix - New Q-Sorts called factors are extracted that
are the weighted average Q-Sorts of all participants with similar ratings. A factor represents
Q-Sort of a hypothetical participant representing a similar viewpoint. We used principal

component analysis (PCA) to extract the factors. The two-dimensional factor matrix is
created (participants × factors). The value of each matrix cell is the correlation between the
participants Q-Sort and the factors called factor loading. A higher loading value indicates
more similarity between the participant and the factor.

(4) Calculating rotated factor loading - To clarify the relation among factors and increase ex-
planatory capacity of the factors resulting from PCA, we conducted varimax factor rotation.
Only a few factors are selected that represent the maximum variance. We used both a quanti-
tative and qualitative approach to find select the number of factors. The quantitative criteria
recommend in the literature are as follows [11]: A minimum of two loading Q-Sorts are
highly correlated to the factor, (2) the composite reliability is greater or equal to 0.8 for each
factor, (3) eigenvalues are above 1 for each factor, and (4) the sum of explained variance
percentage of all the selected factors should be between 40% and 60%.
As shown in Table 9, when we select three factors all of the above criteria are satisfied. We
also performed a qualitative analysis and excluded solutions with more than three factors, as
there were few or no distinguishable statements. For example, a statement is distinguishable
when its rank in one factor differs from all other factors.

(5) Finalising factor loading - The rotated factor loadings from the previous step are finalised
by flagging the Q-Sorts that best represent the factors. We flagged the Q-Sorts based on the
follow criteria: (1) Q-Sorts with factor loading higher than the threshold for p value < 0.05
and (2) Q-Sorts with square loading higher than the sum of square loadings of the same
Q-Sort in all other factors. As seen in Table 9, the sum of number of loading Q-Sorts is 19,
which means two respondents could not be significantly loaded into any of the factors.

(6) Calculating the z-scores and factor scores - The z-scores and factor scores indicate the state-
ment’s relative position within the factor. The z-score is a weighted average of the values
of flagged participants’ ratings given to a statement in the factor. Factor scores are based
on ordering z-scores and mapping to the Q-Sort structure (−3 to 3); they are integer values
instead of continuous. Factor scores are important for factor interpretation.

(7) Identifying distinguish statements - As mentioned in Step 4, a statement is distinguishable
when its rank in one factor differs from all other factors. The factor scores from Step 5 are
used to identify distinguished statements that represent the factor and used for factor inter-
pretation. If there is a significant difference (more than 0.05) in factor score of a statement in
one factor from all other factors, then that the statement is identified as distinguished state-
ment. The distinguished statements in Factor 1 is provided in Table 10, Factor 2 in Table 11,
and Factor 3 in Table 12.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:35

Table 10. Distinguishing Statements in Factor 1

Statements (It is important to investigate . . .) F1 F2 F3

IOF: . . . the impact of code reviews on teams’ understanding of the code under review 3 1 1
IOF: . . . the impact of code reviews on developers’ attitude and motivation to contribute 1 −1 −1
IOF: . . . the impact of code reviews on peer impression in terms of trust, reliability, perception of expertise, and
friendship

0 −3 −2

HOF: . . . the difference between core and irregular reviewers in terms of career paths −1 −3 −3
SS: . . . support for understanding the code changes that need to be reviewed −1 1 0

Fig. 8. Participants in each factor.

Figure 8 provides a summary of the respondents’ experience in development and code reviewing
in each factor. It is clear that respondents with more experience are grouped in Factor 1 compared
to other factors. We provide an interpretation of the factors in the next subsections.

5.3.1 Factor 1 Interpretation—It is Important to Investigate the Code Reviewer as a Subject. Ta-
ble 10 shows the distinguishing statements on Factor 1, which represents 43% of the respondents
and explains 16.81% of the variance in responses. As seen in Figure 8, participants loaded in Factor
1 have more experience. They have expert/senior roles in architecture and design, an average of
16 years experience in software development, and 13 years of code review experience. Participants
loaded in Factor 1 are more positive regarding the impact of code review on human factors than
the ones loaded in Factors 2 and 3. For example, statements regarding the teams’ understanding of
the code under review, developers’ attitude, and peer impression are perceived to be important in
Factor 1. Regarding the impact of code reviews on teams’ understanding, one of the respondents
in Factor 1 wrote, P27: “Without understanding the requirement of the code, there is no point to
review the code.” Another respondent was interested in the investigation of knowledge sharing;
he wrote, P3: “Code reviews enable knowledge sharing.” Research on the impact of code review
on developers’ attitude is considered important, as a considerable amount of effort goes into re-
viewing code. A participant wrote, P14: “Everyone needs to see the importance of better quality.”
However, respondents in Factors 2 and 3 disagree. One of the respondents in Factor 2 wrote, P26:
“this is more of an individual’s approach towards any work. Once a reviewer is made to follow the
correct set of principles, this [investigation on developers’ attitude] can be eliminated.”

All respondents display a neutral or even negative attitude toward the importance of investigat-
ing the impact of peer impression on code reviews. They feel that people should be objective and
not be influenced by peer impressions. One of the respondents in Factor 1 wrote, “P1: It should not
be necessary to do research on the obvious fact that people should be responsible.” Similarly, re-
spondents in Factor 1 are less negative compared to F2 and F3 about the importance to investigate
the difference between core and irregular reviewers in terms of their career paths. However, re-
spondents in Factor 1 are more negative compared to F2 and F3 about the importance to investigate
support for understanding the code changes that need review. One of the respondents wrote, “P14:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:36 D. Badampudi et al.

Table 11. Distinguishing Statements in Factor 2

Statements (It is important to investigate . . .) F1 F2 F3

IOF: . . . the impact of code reviews on defect detection or repair 1 3 0
ION: . . . the impact of continuous integration on the code review process 0 3 0
CRP: . . . the impact of mentioning peers in code review comments −2 0 −1
HOF: . . . review performance and reviewers’ age and experience −2 −3 −1
HOF: . . . review performance and reviewers’ understanding of each other’s comments 0 −1 0
HOF: . . . review performance and reviewers’ reviewing patterns and focus 0 −1 1
HOF: . . . review performance and reviewers’ perception of code and review quality 1 −1 1
HOF: . . . the difference between core and irregular reviewers in terms of the likelihood of change request
acceptance

0 −2 0

HOF: . . . the difference between core and irregular reviewers in terms of the level of agreement between reviewers 0 −2 0

Table 12. Distinguishing Statements in Factor 3

Statement (It is important to investigate . . .) F1 F2 F3

IOF: . . . the impact of code reviews on software design 3 2 0
ION: . . . the impact of code change descriptions on the code review process 2 2 0
ION: . . . the impact of code size changes on the code review process 1 1 −1
CRP: . . .when code reviews should be performed 2 2 1
SS: . . . support for analyzing the sentiment/attitude/intention in code reviews 0 −1 −3
SS: . . . support for optimizing the order of code reviews −1 −1 1

Everything should be reviewed, this is a non-question.” However, the practitioner interpreted the
question as “understanding what should be reviewed” rather than understanding the code under
review. Despite the potential misinterpretation, this statement has been ranked as most important
statement in the solutions theme (see Figure 7(e)).

5.3.2 Factor 2 Interpretation—It is not Important to Investigate Human Aspects Related to Code

Review. Table 11 shows the distinguishing statements on Factor 2, which represents 24% of the par-
ticipants and explains 15.43% of the variance in responses. The respondents grouped in this factor
have less experience compared to the respondents in Factor 1 and 3 (see Figure 8). They have roles
in development and testing with an average of 6 years experience in software development and
4 years of code review experience. Respondents in this factor are more positive about research on
the impact of code review on defect detection or repair and impact of continuous integration than
research on human factors. On the importance of defect detection or repair, one of the respondents
wrote, P18: “This [defect detection] is generally why code reviews take place—it is interesting to
perform a more formal causal analysis on this [the impact of code reviews on defect detection].”

Respondents do not see the importance of investigating human aspects unlike in Factor 1, where
respondents with more experience are positive toward investigations on human factors. In this
factor, more importance is given to having good code review guidelines as stated by one of the
participants, P25: “Standard review procedure should be independent of individual/team members’
age and experience.”

5.3.3 Factor 3 Interpretation—It is More Important to Investigate the Support for Optimizing Code

Reviews than Support for Analyzing Human Aspects. Table 12 shows the distinguishing statements
on Factor 3, which represents 24% of the participants and explains 15.07% of the variance in re-
sponses. Respondents in this factor have mainly testing roles and an average of 9 years experience
in software development and 5 years of code review experience.

Overall respondents in Factor 3 are less positive about research on the impact on and of code re-
views and code review process. They are more interested in research on the support for optimizing
code reviews than analyzing human aspects.

We did not get any explanations for the ratings as most of the ratings are between −2 to 2. For
the −3 rating the respondent had no comments.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:37

Fig. 9. Comparison of literature and practitioners’ perceptions.

6 COMPARING THE STATE OF THE ART AND THE PRACTITIONERS’ PERCEPTIONS

In this section, we answer RQ3–To what degree are researchers and practitioners aligned on the goals

of MCR research? by juxtaposing the results from the mapping study (Section 4) and the responses
from the survey (Section 5).

6.1 Comparing the Number of Research Articles and the Practitioners’ Perceptions

In Figure 9, we map survey responses, the percentage of papers representing a survey statement,
and modern code review themes. The percentage of negative and positive responses for each state-
ment is shown on the x- and y-axes, respectively. Each bubble represents a statement from the
survey and its size indicates the percentage of representing papers. The different colors represent
the five themes we identified in the mapping study.

In addition, we evaluated if there is a statistical correlation between the number of papers and
practitioners’ perceptions. Using Shapiro–Wilk normality test we determined that our data are
normally distributed. We then conducted a Pearson correlation test to evaluate if there is a signif-
icant relation between the ratings and the number of papers in different themes. The result of the
correlation test is provided in Table 13, and the statistically significant results are in bold.

Figure 9 accentuates a result we reported on the agreement levels in Section 5.2: While there
is considerable research on SS, and HOF, as indicated by the number and size of bubbles, practi-
tioners seem to have a rather negative attitude toward the research done in this theme. None of
the solution statements received more than 50% positive responses. Within this theme, research
on support for understanding the code changes that need to be reviewed and support for the selec-
tion of appropriate reviewers received the most positive responses and was also associated with
the most papers. This is a good example of alignment between research and practitioners’ interest.
The positive alignment is also confirmed in the correlation test as the solutions that have fewer
publications received also more negative ratings (cf. Table 13). On the topic of reviewer selection,
one of the respondents noted that “P9: The most effective review is the one done by developers
who are the most familiar with a particular functionality or have worked on a similar functionality

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:38 D. Badampudi et al.

Table 13. Correlation between the Number of Papers Published within a Theme

and Practitioners’ Perceptions

Pearson correlation
IOF ION CRP HOF SS

p value r p value r p value r p value r p value r
Positive rating -
Percentage of papers

0.06555 0.9693013 0.4908 0.2869428 0.2859 0.400119 0.3291 −0.2942445 0.09438 0.5901029

Negative rating -
Percentage of papers

0.01202 −0.8646518 0.3612 −0.3741424 0.125 −0.55 0.2675 0.3321971 0.009847 −0.7986266

on a different project. I think there is no helping tool to tell who is the most appropriate reviewer.”
Several studies propose or evaluate tools that do just exactly that. While the respondents’ answer
is certainly not representative, more focus on knowledge translation and transfer to practitioners
about existing solutions can be a beneficial target for researchers in this area. Furthermore, as seen
in Section 4.2.1, only 2 of 36 solutions supporting the reviewer recommendation provide links to
the tools, which could explain why practitioners are unaware of the existing solutions.

Looking at Figure 9, we see more negative than positive responses for statements related to
HOF. However, we did not find any statistical significant relation between the number of papers
in the HOF theme and the rating, as indicated in Table 13. The most positively received state-
ment is related to investigating the effect of the number of involved reviewers in code reviews.
The statement investigating review performance and reviewers’ age and experience in this theme
is associated with the most studies, but it is also perceived mostly negatively. For example, a re-
spondent wrote, P2: “Age and experience is less important than code knowledge or ability to read
code. An 18 year old with no experience writes the best comments, then that is the person I will
invite to review.” Another participant elaborated more on the age factor, P7: “I don’t understand
how the age of reviewer can help in performance, Experience to certain extent but that doesn’t
mean the experienced person knows new technologies that are emerging so this statement should
be viewed as 2 separate things with respect to experience yes important to investigate to certain
extent. But with respect to age some younger ones are actually doing more reviews now a days.”
Another respondent emphasised the importance on a standard review process being more impor-
tant than reviewer age and experience, P25: “Standard review procedure is to be independent of
individual/team members’ age and experience.”

Looking at the top-left corner of Figure 9, the area with high positive and low negative ratings
is dominated by statements related to research on the IOF and CRP. Although, we can see that
only the relation between the ratings and papers in the IOF theme is statistically significant (cf.
Table 13). This result indicates that practitioners are interested in research that investigates causal
relationships, as indicated by a respondent, P11: “Understanding how people approach and make
decisions when performing a code review may open up some other interesting questions in how
to structure and format code reviews to be more effective.” However, there is only a relatively low
number of studies in this area.

6.2 Comparing Research Impact and Practitioners’ Perceptions

We retrieved citations of all primary studies as of August 2022. Peer citation is one way of assessing
the research impact and the activity of a theme. We compared the research impact with the prac-
titioners responses from the survey. As we have the practitioners responses on each statement,
we calculated the research impact for each statement by considering the sum of citations of all
primary studies representing a statement (see Table 7).

We grouped the analysis by creating bins for the publication year, since more recent publications
have likely less citations than older publications, which may have had simply more time for being
cited. The primary studies are published between 2007 and 2021 (Figure 10). The percentage of

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:39

Fig. 10. Comparison of research impact and practitioners’ perceptions.

Table 14. Correlation between the Ratings and Research Impact

Pearson correlation
2007–2009 2010–2012 2013–2015 2016–2018 2019–2021

p value r p value r p value r p value r p value r
Positive rating - Citations 0.1186 0.8814008 0.8205 0.09631116 0.01884 0.3450907 0.2793 −0.1629392 0.9237 0.01934015
Negative rating - Citations 0.2149 −0.7850902 0.6684 −0.1807715 0.0323 −0.3161727 0.6639 0.06581944 0.9631 0.009334502

Table 15. Correlation between the Ratings and Research Impact on Each Theme

Pearson correlation
IOF ION CRP HOF SS

p value r p value r p value r p value r p value r
Positive rating - Citations 0.06555 0.4091079 0.223 0.2776709 0.3124 0.2105235 0.9791 0.004592727 0.001982 0.5502959

Negative rating - Citations 0.2306 −0.2733161 0.1797 −0.3044363 0.2766 −0.2263241 0.5221 0.1119356 0.004827 −0.5087684

negative and positive responses for each statement is shown on the x- and y-axes, and the colors
represent the different themes. Each bubble represents a statement from the survey and its size
indicates the total number of citations of all primary studies in each statement.

In addition, we evaluated if there is a statistical correlation between the research impact and
practitioners’ perceptions. Using Shapiro–Wilk normality test we determined that our data are
normally distributed. Then we conducted a Pearson correlation test to evaluate if there is a sig-
nificant relation between the ratings and the research impact in different years. Table 14 shows
the results of Pearson’s correlation test for the different years. We also evaluated the correlation
between the ratings and the research impact of papers in each theme (see Table 15).

Although the overall positive ratings are low for the SS theme, the papers with high impact
have higher positive rating compared to low-impact papers. When considering all years together,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:40 D. Badampudi et al.

the SS theme exhibits a significant negative correlation between negative ratings and research
impact (r = −0.5087684, p = 0.004827), indicating that when impact is high, the negative ratings
are low. Similarly, the correlation between positive ratings and research impact is significant as
well (r = 0.5502959, p = 0.001982). In the HOF theme we can see from Figure 10 that some of the
statements that have high impact were perceived negatively by practitioners, particularly in the
time frame between 2016 and 2018. However, we did not find any statistical significant relation
between the ratings and statements in the HOF theme. In IOF, we can see that statements that
have high impact also received more positive ratings. We also observed a statistically significant
correlation between the positive ratings and impact in the time frame between 2013 and 2015
(r = 0.7670108, p = 0.04419). We did not find any interesting patterns in the other themes.

7 DISCUSSION

In this section, we summarize the research directions that emerged from analyzing the state of
the art and the practitioner survey. Furthermore, we illustrate that our findings align with the
observations made by Davila and Nunes [18], strengthening our common conclusions, since our
respective reviews cover a non-overlapping set of primary studies. Finally, we discuss the threats
to validity associated with our research.

7.1 MCR Research Directions

We propose future MCR research directions based on current trends and our reflections, both
obtained through our mapping study and survey with practitioners. We anchor this discussion in
the MCR process steps shown in Figure 1.6 Next, we propose relevant research topics, along with
research questions that still remain to be answered.

7.1.1 Preparation for Code Review. Understanding code to be reviewed - Understanding the code
was perceived as important by the survey respondents (cf. Figure 7(e)). The solutions reported in
the primary studies focus on a subset of patch characteristics that affect review readiness (such
as References [94, 118, 260]). However, is it possible to combine all patch characteristics into an
overall score that can inform the submitter so they can improve the patch before sending it out for
review?

Review goal - After understanding the code to be reviewed, the next step is to decide the review
goal. The survey respondents are positive about investigating the impact of code review on code
quality in general and, more specifically, security (cf. Figure 7(a)). Our primary studies findings
indicate that most issues found in code reviews are related to a subset of code quality attributes
such as evolvability [68, 171]. Does that imply that only certain quality attributes can or should be
evaluated with code reviews?

Review scope - Another aspect of preparing for code review is to decide which artifacts to
review, i.e., the review scope. Test code is seldom reviewed and is not considered worthy of re-
view [224, 226]. However, the survey respondents consider test code review one of the most im-
portant research topics (cf. Figure 7(c)). In addition to test and production code, the popularity of
third-party libraries (3pps) in software development is increasing, which leads to an important
area of 3pp review. How to use risk-based assessment to scope the review target and the review
goals to achieve an acceptable tradeoff between effort and benefits?
Optimizing review order - Factors influencing the review order in OSS projects can differ from
proprietary projects or may have different importance. For example, as mentioned in our primary

6Note that we did not identify any research path for Step 4 - Reviewer Notification, indicating that this activity is already

well understood.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:41

studies [53, 105, 213], acceptance probability is one of the determinants in ordering OSS reviews
(important to attract contributors). However, in proprietary projects, other determinants such as
merge conflict probability may have more importance in determining the review order.

Key Future Questions – Preparation

Understanding code to be reviewed

Q1 What are the overall factors that affect review readiness?
Q2 How can code (patch) preparation be automated?

Review goal

Q3 Which code quality attributes are better addressed in code reviews than other means
(e.g., testing)?
Review scope

Q4 What artifacts other than code should be reviewed, and how much importance
should be given to these reviews?

Q5 How can risk assessment be used to determine when to review the security of 3pps?
Optimizing review order

Q6 How do factors determining review order relate to project type (OSS/proprietary)?

7.1.2 Reviewer Selection. Appropriate reviewer selection - The primary studies focus on identi-
fying “good reviewers” based on certain predictors such as pull request content similarity [145,
211, 268, 275]. However, how much do “good reviewers” differ in review performance from “bad
reviewers”?
Number of reviewers - The primary studies establish a correlation between the number of reviewers
and the review performance [95, 155, 174]. However, what are the factors determining the optimal
number of reviewers?

Key Future Questions – Reviewer selection

Appropriate reviewer selection

Q1 What is the impact of selecting non-recommended reviewers?
Q2 Does it matter to choose the highest ranked reviewer or follow the recommended

review order?
Number of reviewers

Q3 What are the factors that determine the optimal number of reviewers for a given
project, and what should be their responsibilities (security, test code review, or re-
quirements review) when multiple reviewers are involved?

7.1.3 Code Checking. After the preparation and reviewer selection step, the reviewers are no-
tified and the actual review takes place. It is valuable to monitor the review process to learn new
insights that can be codified in guidelines. It is known that code review can identify design is-
sues [120, 178, 184, 189]. How can this identification be used as an input to create or update
design guidelines? In addition, the primary studies found that good reviewers exhibit different
code scanning patterns to less-good reviewers [67, 83, 216, 252]. Such findings should be used to
propose/develop solutions that harvest this expertise from reviewers.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:42 D. Badampudi et al.

Key Future Questions – Code checking

Design support

Q1 How can design rules/guidelines be extracted and updated based on the design issues
identified and corrected through code reviews?
Scanning patterns

Q2 How can reviewers’ focus patterns, extracted by eye tracking from code reviewers,
be used to model and eventually transfer reviewing expertise?

7.1.4 Reviewer Interaction. Review comment usefulness - Studies have investigated reviewer
interaction through review comments. According to the primary studies, the usefulness of com-
ments is determined by the changes caused by them [192, 205]. For example, a useless comment
can be an inquiry about the code that leads to no change. However, such discussions can lead to
knowledge sharing. Therefore, the semantics of comments should also be considered when deter-
mining their usefulness.

Knowledge sharing - Experienced reviewers possess tacit knowledge that is difficult to formal-
ize and convey to novice programmers. Systems that could mine this knowledge from reviews
would be an interesting avenue for research. It could be good if reviewers get a good mix of fa-
miliar and unknown code reviews to expand their expertise over time. Existing studies [90, 154,
155, 174, 208, 240] show that the expertise of reviewers is codified in reviews, but making that
expertise tangible and accessible is still an open question. In addition, a review comment can
sometimes contain links that provide additional information that could contribute to knowledge
sharing.

Human aspects - When discussing reviewer interactions, human aspects received much atten-
tion in the reviewed primary studies. However, the investigation of review dynamics, social inter-
actions, and review performance is focused on OSS projects. It is not known if such interactions
differ in proprietary projects.

Key Future Questions – Reviewer interaction

Review comment usefulness

Q1 How could semantics to identify the usefulness of code review comments?
Knowledge sharing

Q2 How could the expertise of reviewers be mined through code review comments and
made accessible to less experienced reviewers?

Q3 How can links between actors and information objects created in MCR be used to un-
derstand the review process better or extract useful information about the developed
product?
Human aspects

Q4 To what extent is the impact of social interactions on review performance specific
to project type (OSS/proprietary)?

7.1.5 Review Decision. We have identified studies that automate code reviews. When static
code analysis tools are used for automation, the rules are visible and explicit (white box). In
contrast, the decision rules are not easily interpretable when using deep learning approaches
(black box).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:43

Key Future Questions – Reviewer decision

Automation

Q1 How can code review automation, based on deep learning approaches integrate ex-
plainability and transparency of accept/reject decisions?

7.1.6 Overall Code Review Process. The future research directions and research questions that
could not be directly mapped to any specific step in the code review process are categorized as
overall topics.

Human aspects - The difference between core and irregular reviewers has been studied mostly in
the context of OSS [65, 73, 75, 150, 199]. In our survey, the respondents perceived the difference be-
tween core and irregular reviewers as unimportant. However, the survey respondents were mostly
from companies working with proprietary projects. It would be interesting to investigate if human
factors matter more in OSS than in proprietary software development. The survey respondents con-
sidered the research on human aspects not as relevant as the research on other themes. We pose
that, since most of the research on organizations and human factors is performed in OSS projects,
research on human aspects in companies mainly working with proprietary projects is still very
relevant as the human factors might differ between OSS and proprietary contexts.

Innersourcing - We have seen MCR research in OSS and in commercial projects. However, we
do know very little about MCR in Innersourcing. Similarly to the open source way of working,
Innersourcing promotes contributions across different projects within an organization. A delay
or incomplete review may discourage an Innersource contributor. Human factors may be more
relevant for commercial projects in the context of Innersourcing.

Code reuse - Common assets are code that is reused within an organization. It would be interest-
ing to investigate how changes made to common assets should be reviewed. For example, should
reviewers from teams that use the common assets be invited to review new changes?

Key Future Questions – Overall

Human aspects

Q1 Are the OSS studies’ findings not applicable to proprietary software development?
Innersourcing

Q2 How does code review performance (review time, thoroughness, etc.) impact inner-
source contributions?
Common assets review

Q3 How should changes in common assets be reviewed?

7.2 A Comparison with Other Reviews and Surveys

Figure 11 illustrates the overlap and differences between the primary studies identified in this
article and the works by Wang et al. and Davila and Nunes. Interestingly, even though the search
period and aims of the three studies are comparable in scope, the included primary studies are
quite diverse. Wohlin et al. [40] have made similar observations when comparing the results of
two comparable mapping studies. While a detailed analysis, as done by Wohlin et al. is out of the
scope of this article, we speculate that the main reason for the divergence of primary studies is
the emphasis on different keywords in the respective searches. While Wang et al. and Davila and
Nunes included “inspection” in their search string, we explicitly did not. The term is associated
with traditional code inspections, which is a different process than MCR, as explained in Section 2.2.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:44 D. Badampudi et al.

Fig. 11. Unique and common primary studies in MCR reviews with wide scope.

Rather, we included terms that are associated with MCR, like “pull request” and “patch acceptance.”
Wang et al. excluded also papers that were not published in a high-impact venue, likely leading
to the lower number of included primary studies. We also explicitly did not exclude any papers
based on their quality. Instead, we provide an assessment of the studies’ rigor and relevance [23].

As described in Section 4.1, there is a lack of involvement of human subjects in code review
research. As code review is a human-centric process, researchers should involve more human
subjects to evaluate the feasibility of code review interventions. This research gap has also been
observed by Davila and Nunes’ review [18], who called for more user studies on MCR. Moreover,
researchers should consider more data sources in addition to analyzing repositories to achieve
triangulation, strengthening the conclusions that can be drawn on the developed interventions.
This is analogous to the observation by Davila and Nunes [18], who found that a majority of MCR
research focuses on particular open source projects (Qt, Openstack, and Android) or is conducted
in large companies such as Microsoft and Google. MCR practices and motivations in companies
working primarily with proprietary projects may be different than in open source projects. In com-
panies, the contributions and reviews are not voluntary work; furthermore, it is more likely that
the reviewers and contributors known each other. Moreover, there may be domain or organization-
specific requirements that may not be present in open source projects. Therefore, there is a need
to investigate more MCR in the context of proprietary software projects. It is also worth mention-
ing that there is a lack of studies in small and medium-sized companies. Such new studies could
shed light on the question if the knowledge accumulated through MCR is also present in small and
medium companies’ projects [18].

The surveyed practitioners were most positive about the IOF and CRP. Therefore, given the rel-
atively low number of studies in these themes, we suggest conducting more research investigating
how MCR affects and is affected. Davila and Nunes [18] share a similar insight, calling for more
research on MCR process improvement.

Previous studies that surveyed practitioners and analyzed the impact of software engineering
research [13, 27] could not establish any correlation (positive or negative) between research im-
pact and practitioner interest. These observations are to a large extent in line with our results
(Section 6.2). There is only one statistical significant correlation between the Support Systems

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:45

theme and research impact, indicating that statements containing publications with high citation
count were considered as important to investigate (and vice versa). In Section 2.4, we report also
that the past surveys on practitioner perception found that 67–71% of the research was seen posi-
tively. Looking at the results in Figure 7, we observe that 24 statements have more negative than
positive ratings and 22 statements have more positive than negative ratings (48% positive). This is
considerably lower than in the previous surveys. However, it could be attributed to the difference
in the administered survey instruments. In our survey, the participants had to distribute negative,
neutral, and positive perception according to a predefined distribution, i.e., they could not find all
research negative or positive.

7.3 Validity Threats

Our philosophical worldview is pragmatic, which is often adopted by software engineering re-
searchers [31]. We use therefore a mixed-method approach (systematic mapping study and sur-
vey) to answer our research questions. The commonly used categorizations to analyze and report
validity threats, such as internal, external, conclusion, and construct validity of the post-positivist
worldview (such as Wohlin et al. [39]), are adequate for quantitative research. However, they ei-
ther do not capture all relevant threats for qualitative research or are formulated in a way that is
not compatible with an interpretative worldview. The same argument can be made for threat cat-
egorizations originating from the interpretative worldview (such as Runeson et al. [33]). Petersen
and Gencel [31] have therefore proposed a complementary validity threat categorization, based
on work by Maxwell [29], that is adequate for a pragmatic worldview. We structure the remain-
der of the section according to their categorization and discuss validity threats w.r.t. each research
method. Please note that repeatability (reproducibility/dependability) of this research is a function
of all the threat categories together [31] and therefore not discussed individually.

7.3.1 Descriptive Validity. Threats in this category concern the factual accuracy of the made ob-
servations [31]. We have designed and used a data extraction form to collect the information from
the reviewed studies. We copied contribution statements that can be traced back to the original
studies. Furthermore, we have piloted the survey instrument with three practitioners to identify
functional defects and usability issues. Extraction form, survey instrument, and collected data are
available in an online repository [6].

7.3.2 Theoretical Validity. Threats in this category concern the ability to capture practically the
intended theoretical concepts, which includes the control of confounding factors and biases [31].

Study identification. During the search we could have missed papers that could have been
relevant but were not identified by the search string. We addressed this threat with a careful selec-
tion of keywords and not limiting the scope of the search to a particular population, comparison
or outcome [24]. For the intervention criterion, we used variants of terms that we deemed relevant
and associated with modern code reviews. Due to this association, we did not choose keywords
for the population criterion (e.g., “software engineering”) as they could have potentially reduced
the number of relevant search hits. We have compared our primary studies with the set of other
systematic literature studies (see Figure 11). We have identified 136 studies that the other reviews
missed, while not identifying 69 studies that were found by the other reviews. Hence, there is a
moderate threat that we missed relevant studies.

Study selection. Researcher bias could have led to the wrongful exclusion of relevant papers.
We addressed this threat by including all three authors in the selection process who reviewed
an independent set of studies. To align our selection criteria, we established objective inclusion
and exclusion criteria, which we piloted and refined when we found divergences in our selection

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:46 D. Badampudi et al.

(see Selection in Section 3.1). Furthermore, we adopted an inclusive selection process, postponing
the decision on exclusion for unsure papers to the data extraction step, when it would be clear that
the study did not contain the information we required to answer our research questions. When
we excluded a paper, we documented the decision with the particular exclusion criterion.

Data extraction. Researcher bias could have led to a incorrect extraction of data. All three
authors were involved in the data extraction as well. We also conducted two pilot extractions to
gain a common interpretation of the extraction items. We revised the description of rigor and
relevance criteria based on the pilot process. After the pilot process, we continued to extract data
from primary studies with an overlap of 20% where we achieved high consensus.

Statement order. All survey participants received the statements in the same order. The partic-
ipants may have tended to agree more to statements listed at the beginning than at the end of the
survey. Our survey instrument was designed in such a way that the participants could change their
rating anytime, i.e., also when they have seen all statements. Looking at our results, the themes
that were judged early in the survey (IOF) seem to have received more agreement than later themes
(SS). However, participants have provided a consistent rating for the human factor–related state-
ments, independently of whether they appear in early or late positions in the survey. Therefore
we assess the likelihood of this risk as low.

7.3.3 Internal Generalizability. Threats in this category concern the degree to which inferences
from the collected data (quantitative or qualitative) are reasonable [31].

Statement ranking and factor analysis. We followed the recommendations for conducting
the Q-Methodology [41], including factor analysis and interpretation. In addition, we report in
detail how we interpret the quantitative results of the survey, providing a chain of evidence for
our argumentation and conclusions.

Research amount and impact, and practitioners perceptions. There is a risk that practi-
tioners understood that they need to judge if the topic in a statement affects them rather than
whether research on the topic is important. We counteracted this threat by designing the survey
instrument in a way that reminds the respondents what the purpose of the ranking of statements
is. Furthermore, the free-text answers in the survey provide a good indication that the respondents
correctly understood the ranking task.

Identification of research roadmap. We have based our analysis on the contributions re-
ported by the original authors of the studies. In contrast, the gaps we highlighted are based on what
has not been reported (i.e., researched). As such, the proposed research agenda contain speculation
on what might be fruitful to research. However, we do provide argumentation and references to
the original studies, allowing readers to follow our reasoning.

7.3.4 External Generalizability. Threats in this category concern the degree to which inferences
from the collected data (quantitative or qualitative) can be extended to the population from which
the sample was drawn.

Definition of statements. There is a risk that the statements were formulated either too
generic or too specific, not reflecting all aspects of the research studies they represent. The state-
ments were defined based on the primary studies collected in the 2018 SMS. We then extended
the SMS to include papers published until 2021, classifying all new studies, except one, under the
existing statements, which indicates that the initially defined statements were still useful after four
years of research. It is, however, likely that with the advancement of MCR practice, new research
emerges that requires also an update of the statements if they survey is replicated in the future.

Survey sample. As discussed in Section 2.2, the main difference between proprietary and open
source software development, in relation to MCR, is the purpose of the MCR practice. The respon-
dents of our survey mainly work in companies that primarily work in proprietary projects. In this

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

Modern Code Reviews—Survey of Literature and Practice 107:47

context, the main purpose of MCR is knowledge dissemination rather than building relationships
to core developers [76]. Indeed, we observe in our survey results that research aspects of human
factors in relation to MCR are perceived as less important (see Section 5.2). However, the factor
analysis in Section 5.3 provides a more differentiated view, based on the profile of the survey re-
spondents. For example, senior roles are more favourable toward human factors research in MCR
than respondents with less professional experience. Nevertheless, future work could replicate the
survey in open source communities, allowing a differential analysis.

Identification of research roadmap. While the inferences we draw from the reviewed studies
may be sound within the sample we studied, there is a moderate threat that the future research
we propose has already been conducted in the studies we did not review (see discussion on study
identification in Section 7.3.2).

7.3.5 Interpretive Validity. Threats in this category concern the validity of the conclusions that
are drawn by the researchers by interpreting the data [31].

Definition of themes. Researcher bias could have lead to an inaccurate classification of the
studies in the SMS. We divided the primary studies for analysis among the authors. Each paper
that was analyzed by one author was reviewed by the two other authors, and disagreements were
discussed until a change in the classification was made or consensus was reached.

Definition of statements. Also the formulation of statements representing a study, used in the
survey, could have been affected by researcher bias. To address this treat, we followed an iterative
process in which we revised the statements and the association of papers to these statements. All
three authors were involved in this process and reviewed each others formulations and classifica-
tions to check for consistency as well as allow for different perspectives on the material. There
are two statements where more than one aspect is introduced: in the HOF theme, “age and expe-
rience” and “performance and quality” in the SS theme. A respondent may have an opinion on
just one of the aspects and therefore misrepresent the rating of the other aspect. We asked the
practitioners to provide explanations for extreme ratings, i.e., −3 and +3, which makes it possible
to know on which aspects the practitioners focused. However, such explanations are not available
for ratings other than −3 to +3. Since only 2 of 46 statements are affected, we judge the risk of
misrepresentation as low.

Identification of research roadmap. Finally, the identification of gaps in the MCR research
corpus could have been affected by researcher bias. The first and second authors conducted a
workshop in which they independently read the MCR contributions in Section 4.2. Then, they
discussed their ideas of what questions have not been answered by the reviewed research and
which questions would be interesting to find an answer for, especially if there is some support
from the survey results that a particular statement was perceived important to investigate by the
practitioners. This initial formulation of research gaps was reviewed by the third author.

8 CONCLUSIONS

In this article, we conducted a systematic mapping study and a survey to provide an overview of
the different research themes on MCR and analyze the practitioners’ opinions on the importance of
those themes. Based on the juxtaposition of these two perspectives on MCR research, we outline an
agenda for future research on MCR that is based on the identified research gaps and the perceived
importance by practitioners.

We have extracted the research contributions from 244 primary studies and summarized 15
years of MCR research in evidence briefings that can contribute to the knowledge transfer from
academic research to practitioners. The five main themes of MCR research are as follows: (1) SS,
(2) IOF, (3) CRP, (4) ION, and (5) HOF.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:48 D. Badampudi et al.

We conducted a survey to collect practitioners’ opinions about 46 statements representing the
research in the identified themes. As a result, we learned that practitioners are most positive about
the CRP and IOF theme, with special focus on the impact of code reviews on product quality. How-
ever, these themes represent a minority of the reviewed MCR research (66 primary studies). At
the same time, the respondents are most negative about HOF- and SS-related research, which con-
stitute together a majority of the reviewed research (108 primary studies). These results indicate
that there is a misalignment between the state of the art and the themes deemed important by
most respondents of our survey. In addition, we found that the research that has been perceived
positively by practitioners is generally also more frequently cited, i.e., has a larger research impact.

Finally, as there has been an increased interest in reviewing MCR research in recent years, we
analyzed other systematic literature reviews and mapping studies. Due to the different research
questions of the respective studies, there is a varying overlap of the reviewed primary studies.
Still, we find our observations on the potential gaps in MCR research corroborated. Analyzing the
data extracted from the reviewed primary studies and guided by the answers from the survey, we
propose 19 new research questions we deem worth investigating in future MCR research.

ACKNOWLEDGMENTS

We acknowledge all practitioners who contributed to our investigation.

REFERENCES

[1] Everton L. G. Alves, Myoungkyu Song, Tiago Massoni, Patricia D. L. Machado, and Miryung Kim. 2017. Refactoring

inspection support for manual refactoring edits. IEEE Trans. Softw. Eng. 44, 4 (2017), 365–383.

[2] Aybuke Aurum, Håkan Petersson, and Claes Wohlin. 2002. State-of-the-art: Software inspections after 25 years. Softw.

Test. Verif. Reliabil. 12, 3 (2002), 133–154.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In Pro-

ceedings of the International Conference on Software Engineering (ICSE’13). IEEE, 712–721.

[4] Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner. 2019. Modern code reviews - preliminary results

of a systematic mapping study. In Proceedings of the Evaluation and Assessment on Software Engineering (EASE’19).

ACM, 340–345.

[5] Deepika Badampudi, Michael Unterkalmsteiner, and Ricardo Britto. 2021. Evidence briefings on modern code reviews.

https://doi.org/10.5281/zenodo.5093742

[6] Deepika Badampudi, Michael Unterkalmsteiner, and Ricardo Britto. 2022. Data used in modern code review mapping

study and survey. https://doi.org/10.5281/zenodo.7464947

[7] Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On the impact of code reviews on software

quality. In Proceedings of the International Conference on Software Maintenance and Evolution (ICSME’15). IEEE, 81–90.

[8] Marten Brouwer. 1999. Q is accounting for tastes. J. Advert. Res. 39, 2 (1999), 35–35.

[9] Steven R. Brown. 1993. A primer on Q methodology. Oper. Subject. 16, 3/4 (1993), 91–138.

[10] Bill Brykczynski. 1999. A survey of software inspection checklists. ACM SIGSOFT Softw. Eng. Not. 24, 1 (1999), 82.

[11] Bruno Cartaxo, Gustavo Pinto, Baldoino Fonseca, Márcio Ribeiro, Pedro Pinheiro, Sergio Soares, and Maria Teresa

Baldassarre. 2019. Software engineering research community viewpoints on rapid reviews. In Proceedings of the 13th

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’19).

[12] Bruno Cartaxo, Gustavo Pinto, Elton Vieira, and Sérgio Soares. 2016. Evidence briefings: Towards a medium to trans-

fer knowledge from systematic reviews to practitioners. In Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement. 1–10.

[13] Jeffrey C. Carver, Oscar Dieste, Nicholas A. Kraft, David Lo, and Thomas Zimmermann. 2016. How practitioners

perceive the relevance of esem research. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. 1–10.

[14] H. Alperen Çetin, Emre Doğan, and Eray Tüzün. 2021. A review of code reviewer recommendation studies: Chal-

lenges and future directions. Sci. Comput. Program. 208 (2021), 102652.

[15] Zhiyuan Chen, Young-Woo Kwon, and Myoungkyu Song. 2018. Clone refactoring inspection by summarizing clone

refactorings and detecting inconsistent changes during software evolution. J. Softw.: Evol. Process 30, 10 (2018), e1951.

[16] Flavia Coelho, Tiago Massoni, and Everton L. G. Alves. 2019. Refactoring-aware code review: A systematic mapping

study. In Proceedings of the IEEE/ACM 3rd International Workshop on Refactoring (IWoR’19). IEEE, 63–66.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.5281/zenodo.5093742
https://doi.org/10.5281/zenodo.7464947

Modern Code Reviews—Survey of Literature and Practice 107:49

[17] D. S. Cruzes and T. Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In Proceedings

of the International Symposium on Empirical Software Engineering and Measurement. 275–284.

[18] Nicole Davila and Ingrid Nunes. 2021. A systematic literature review and taxonomy of modern code review. J. Syst.

Softw. 177 (2021), 110951.

[19] Charles H. Davis and Carolyn Michelle. 2011. Q methodology in audience research: Bridging the qualitative/

quantitative “divide.” J. Aud. Recept. Stud. 8, 2 (2011), 559–593.

[20] M. E. Fagan. 1976. Design and code inspections to reduce errors in program development. IBM Syst. J. 15, 3 (1976),

182–211.

[21] Xavier Franch, Daniel Mendez, Andreas Vogelsang, Rogardt Heldal, Eric Knauss, Marc Oriol, Guilherme Travassos,

Jeffrey Clark Carver, and Thomas Zimmermann. 2020. How do practitioners perceive the relevance of requirements

engineering research? IEEE Trans. Softw. Eng. 48, 6 (2020).

[22] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A review of peer code review in higher

education. ACM Trans. Comput. Educ. 20, 3 (2020), 1–25.

[23] Martin Ivarsson and Tony Gorschek. 2011. A method for evaluating rigor and industrial relevance of technology

evaluations. Empir. Softw. Eng. 16, 3 (2011), 365–395.

[24] Barbara A. Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Soft-

ware Engineering. Technical Report EBSE-2007-01. Software Engineering Group, Keele University and Department

of Computer Science, University of Durham, United Kingdom.

[25] Sami Kollanus and Jussi Koskinen. 2009. Survey of software inspection research. Open Softw. Eng. J. 3, 1 (2009).

[26] Oliver Laitenberger and Jean-Marc DeBaud. 2000. An encompassing life cycle centric survey of software inspection.

J. Syst. Softw. 50, 1 (2000), 5–31.

[27] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How practitioners perceive the relevance of

software engineering research. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.

415–425.

[28] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. 1995. A review of tool support for software inspection.

In Proceedings of the 7th International Workshop on Computer-Aided Software Engineering. IEEE, 340–349.

[29] Joseph Maxwell. 1992. Understanding and validity in qualitative research. Harv. Educ. Rev. 62, 3 (1992), 279–301.

[30] Sumaira Nazir, Nargis Fatima, and Suriayati Chuprat. 2020. Modern code review benefits-primary findings of a sys-

tematic literature review. In Proceedings of the 3rd International Conference on Software Engineering and Information

Management. ACM, 210–215.

[31] Kai Petersen and Cigdem Gencel. 2013. Worldviews, research methods, and their relationship to validity in empirical

software engineering research. In Proceedings of the Joint Conference of the 23nd International Workshop on Software

Measurement (IWSM’13) and the 8th International Conference on Software Process and Product Measurement. 81–89.

[32] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies

in software engineering: An update. Inf. Softw. Technol. 64 (2015), 1–18.

[33] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software engi-

neering. Empir. Softw. Eng. 14, 2 (2009), 131–164.

[34] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: A

case study at Google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP’18). ACM, New York, NY, 181–190.

[35] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous integration, delivery and deployment: A

systematic review on approaches, tools, challenges and practices. IEEE Access 5 (2017), 3909–3943.

[36] Dong Wang, Yuki Ueda, Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2019. The evolution of code

review research: A systematic mapping study. arXiv:1911.08816 [cs.SE]

[37] Dong Wang, Yuki Ueda, Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2021. Can we benchmark

Code Review studies? A systematic mapping study of methodology, dataset, and metric. J. Syst. Softw. 180 (2021),

111009.

[38] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2005. Requirements engineering paper classification

and evaluation criteria: A proposal and a discussion. Requir. Eng. 11, 1 (December 2005), 102–107.

[39] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engi-

neering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering

(EASE’14). ACM, 1–10.

[40] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie Engström, Ivan do Carmo Machado, and

Eduardo Santana De Almeida. 2013. On the reliability of mapping studies in software engineering. J. Syst. Softw. 86,

10 (2013), 2594–2610.

[41] Aiora Zabala and Unai Pascual. 2016. Bootstrapping Q methodology to improve the understanding of human per-

spectives. PLoS One 11, 2 (2016), e0148087.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

http://arxiv.org/abs/1911.08816

107:50 D. Badampudi et al.

MAPPING STUDY REFERENCES

[42] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017. SentiCR: A customized sentiment

analysis tool for code review interactions. In Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE’17). IEEE, 106–111.

[43] Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh Dam, Chakkrit Tantithamthavorn,

and Aditya Ghose. 2020. Workload-Aware Reviewer Recommendation Using a Multi-Objective Search-Based Approach.

Association for Computing Machinery, New York, NY, 21–30. https://doi.org/10.1145/3416508.3417115

[44] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. 2019. Why does code review work for open source soft-

ware communities? In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE’19).

IEEE, 1073–1083.

[45] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane Kessentini. 2021.

Refactoring practices in the context of modern code review: An industrial case study at Xerox. In Proceedings of

the IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP’21).

IEEE, 348–357.

[46] Everton L. G. Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: A refactoring aware code review tool for

inspecting manual refactoring edits. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, 751–754.

[47] Hirohisa Aman. 2013. 0-1 programming model-based method for planning code review using bug fix history. In

Proceedings of the 20th Asia-Pacific Software Engineering Conference (APSEC’13), Vol. 2. IEEE, 37–42.

[48] F. Armstrong, F. Khomh, and B. Adams. 2017. Broadcast vs. unicast review technology: Does it matter? In Proceedings

of the IEEE International Conference on Software Testing, Verification and Validation (ICST). 219–229.

[49] Sumit Asthana, Rahul Kumar, Ranjita Bhagwan, Christian Bird, Chetan Bansal, Chandra Maddila, Sonu Mehta, and

B. Ashok. 2019. WhoDo: Automating reviewer suggestions at scale. In Proceedings of the 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’19).

Association for Computing Machinery, New York, NY, 937–945. https://doi.org/10.1145/3338906.3340449

[50] Jai Asundi and Rajiv Jayant. 2007. Patch review processes in open source software development communities: A com-

parative case study. In Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS’07).

IEEE, 166c–166c.

[51] Krishna Teja Ayinala, Kwok Sun Cheng, Kwangsung Oh, and Myoungkyu Song. 2020. Tool support for code change

inspection with deep learning in evolving software. In Proceedings of the IEEE International Conference on Electro

Information Technology (EIT’20). IEEE, 013–017.

[52] Krishna Teja Ayinala, Kwok Sun Cheng, Kwangsung Oh, Teukseob Song, and Myoungkyu Song. 2020. Code inspec-

tion support for recurring changes with deep learning in evolving software. In Proceedings of the IEEE 44th Annual

Computers, Software, and Applications Conference (COMPSAC’20). 931–942. https://doi.org/10.1109/COMPSAC48688.

2020.0-149

[53] Muhammad Ilyas Azeem, Qiang Peng, and Qing Wang. 2020. Pull request prioritization algorithm based on accep-

tance and response probability. In Proceedings of the IEEE 20th International Conference on Software Quality, Reliability

and Security (QRS’20). 231–242. https://doi.org/10.1109/QRS51102.2020.00041

[54] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In Pro-

ceedings International Conference on Software Engineering (ICSE’13). IEEE, 712–721.

[55] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer code reviews using automatic static

analysis and reviewer recommendation. In Proceedings of the International Conference on Software Engineering. IEEE,

931–940.

[56] Vipin Balachandran. 2020. Reducing accidental clones using instant clone search in automatic code review. In Pro-

ceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’20). 781–783. https://

doi.org/10.1109/ICSME46990.2020.00089

[57] Faruk Balcı, Dilruba Sultan Haliloğlu, Onur Şahin, Cankat Tilki, Mehmet Ata Yurtsever, and Eray Tüzün. 2021. Aug-

menting code review experience through visualization. In Proceedings of the Working Conference on Software Visual-

ization (VISSOFT’21). IEEE, 110–114.

[58] Mike Barnett, Christian Bird, Joao Brunet, and Shuvendu K. Lahiri. 2015. Helping developers help themselves: Auto-

matic decomposition of code review changesets. In Proceedings of the IEEE/ACM 37th IEEE International Conference

on Software Engineering, Vol. 1. IEEE, 134–144.

[59] Tobias Baum, Fabian Kortum, Kurt Schneider, Arthur Brack, and Jens Schauder. 2017. Comparing pre-commit reviews

and post-commit reviews using process simulation. J. Softw.: Evol. Process 29, 11 (2017), e1865.

[60] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. 2016. A faceted classification scheme for change-based

industrial code review processes. In Proceedings of the IEEE International Conference on Software Quality, Reliability

and Security (QRS’16). IEEE, 74–85.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1145/3416508.3417115
https://doi.org/10.1145/3338906.3340449
https://doi.org/10.1109/COMPSAC48688.2020.0-149
https://doi.org/10.1109/QRS51102.2020.00041
https://doi.org/10.1109/ICSME46990.2020.00089

Modern Code Reviews—Survey of Literature and Practice 107:51

[61] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. 2016. Factors influencing code review processes in industry.

In Proceedings of the 24th ACM Sigsoft International Symposium on Foundations of Software Engineering. 85–96.

[62] Tobias Baum and Kurt Schneider. 2016. On the need for a new generation of code review tools. In International

Conference on Product-Focused Software Process Improvement. Springer, 301–308.

[63] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the optimal order of reading source code changes for

review. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’17). IEEE,

329–340.

[64] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2019. Associating working memory capacity and code change

ordering with code review performance. Empir. Softw. Eng. 24, 4 (2019), 1762–1798.

[65] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. 2012. The secret life of patches: A firefox case study. In

Proceedings of the 19th Working Conference on Reverse Engineering. 447–455.

[66] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. 2016. Investigating technical and non-

technical factors influencing modern code review. Empir. Softw. Eng. 21, 3 (2016), 932–959.

[67] Andrew Begel and Hana Vrzakova. 2018. Eye movements in code review. In Proceedings of the Workshop on Eye

Movements in Programming (EMIP’18). ACM, New York, NY.

[68] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Modern code reviews in open-source

projects: Which problems do they fix? In Proceedings of the 11th Working Conference on Mining Software Repositories.

202–211.

[69] Mario Bernhart and Thomas Grechenig. 2013. On the understanding of programs with continuous code reviews. In

Proceedings of the 21st International Conference on Program Comprehension (ICPC’13). IEEE, 192–198.

[70] Mario Bernhart, Andreas Mauczka, and Thomas Grechenig. 2010. Adopting code reviews for agile software develop-

ment. In Proceedings of the Agile Conference. IEEE, 44–47.

[71] M. Bernhart, S. Strobl, A. Mauczka, and T. Grechenig. 2012. Applying continuous code reviews in airport operations

software. In Proceedings of the 12th International Conference on Quality Software. 214–219.

[72] Christian Bird, Trevor Carnahan, and Michaela Greiler. 2015. Lessons learned from building and deploying a code

review analytics platform. In Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE,

191–201.

[73] Amiangshu Bosu and Jeffrey C. Carver. 2012. Peer code review in open source communities using reviewboard.

In Proceedings of the ACM 4th Annual Workshop on Evaluation and Usability of Programming Languages and Tools

(PLATEAU’12). ACM, New York, NY, 17–24.

[74] Amiangshu Bosu and Jeffrey C. Carver. 2013. Impact of peer code review on peer impression formation: A survey.

In Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. IEEE,

133–142.

[75] Amiangshu Bosu and Jeffrey C. Carver. 2014. Impact of developer reputation on code review outcomes in OSS

projects: An empirical investigation. In Proceedings of the 8th International Symposium on Empirical Software En-

gineering and Measurement. ACM, 33.

[76] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and Christopher Chockley. 2016. Process as-

pects and social dynamics of contemporary code review: Insights from open source development and industrial

practice at microsoft. IEEE Trans. Softw. Eng. 43, 1 (2016), 56–75.

[77] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni. 2014. Identifying the char-

acteristics of vulnerable code changes: An empirical study. In Proceedings of the 22nd International Symposium on

Foundations of Software Engineering. ACM, 257–268.

[78] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of useful code reviews: An empirical

study at microsoft. In Proceedings of the IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,

146–156.

[79] Rodrigo Brito and Marco Tulio Valente. 2021. RAID: Tool support for refactoring-aware code reviews. In Proceedings

of the IEEE/ACM 29th International Conference on Program Comprehension (ICPC’21). IEEE, 265–275.

[80] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. 2018. Sentiment polarity detection for soft-

ware development. Empir. Softw. Eng. 23, 3 (2018), 1352–1382.

[81] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The silent helper: The impact of continuous

integration on code reviews. In Proceedings of the IEEE 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER’20). IEEE, 423–434.

[82] Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, and Michele Lanza. 2020. Knowledge transfer in modern

code review. In Proceedings of the 28th International Conference on Program Comprehension. 230–240.

[83] K. R. Amudha Chandrika and J. Amudha. 2018. A fuzzy inference system to recommend skills for source code review

using eye movement data. J. Intell. Fuzzy Syst. 34, 3 (2018), 1743–1754.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:52 D. Badampudi et al.

[84] Ashish Chopra, Morgan Mo, Samuel Dodson, Ivan Beschastnikh, Sidney S. Fels, and Dongwook Yoon. 2021. “@

alex, this fixes# 9”: Analysis of referencing patterns in pull request discussions. Proc. ACM Hum.-Comput. Interact. 5,

CSCW2 (2021), 1–25.

[85] Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang, Patanamon Thongtanunam, Mohamed Wiem

Mkaouer, and Kenichi Matsumoto. 2021. Anti-patterns in modern code review: Symptoms and prevalence. In Pro-

ceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER’21). IEEE,

531–535.

[86] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula, and Katsuro Inoue. 2021. WhoReview:

A multi-objective search-based approach for code reviewers recommendation in modern code review. Appl. Soft

Comput. 100 (2021), 106908. https://doi.org/10.1016/j.asoc.2020.106908

[87] Aleksandr Chueshev, Julia Lawall, Reda Bendraou, and Tewfik Ziadi. 2020. Expanding the number of reviewers in

open-source projects by recommending appropriate developers. In Proceedings of the IEEE International Conference

on Software Maintenance and Evolution (ICSME’20). 499–510. https://doi.org/10.1109/ICSME46990.2020.00054

[88] Flávia Coelho, Nikolaos Tsantalis, Tiago Massoni, and Everton L. G. Alves. 2021. An empirical study on refactoring-

inducing pull requests. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM’21). 1–12.

[89] Atacílio Cunha, Tayana Conte, and Bruno Gadelha. 2021. Code review is just reviewing code? A qualitative study

with practitioners in industry. In Proceedings of the Brazilian Symposium on Software Engineering. 269–274.

[90] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. 2015. Code reviews do not find bugs: How the current code

review best practice slows us down. In Proceedings of the 37th International Conference on Software Engineering,

Volume 2 (ICSE’15). IEEE Press, 27–28.

[91] Anastasia Danilova, Alena Naiakshina, Anna Rasgauski, and Matthew Smith. 2021. Code reviewing as methodology

for online security studies with developers-a case study with freelancers on password storage. In Proceedings of the

17th Symposium on Usable Privacy and Security (SOUPS’21). 397–416.

[92] Manoel Limeira de Lima Júnior, Daricélio Moreira Soares, Alexandre Plastino, and Leonardo Murta. 2015. Developers

assignment for analyzing pull requests. In Proceedings of the 30th Annual ACM Symposium on Applied Computing.

ACM, 1567–1572.

[93] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. 2016. A security perspective on code review: The case of

chromium. In Proceedings of the IEEE 16th International Working Conference on Source Code Analysis and Manipulation

(SCAM’16). IEEE, 21–30.

[94] Marco di Biase, Magiel Bruntink, Arie van Deursen, and Alberto Bacchelli. 2019. The effects of change decomposition

on code review–a controlled experiment. PeerJ Comput. Sci. 5 (2019), e193.

[95] Eduardo Witter dos Santos and Ingrid Nunes. 2017. Investigating the effectiveness of peer code review in distributed

software development. In Proceedings of the 31st Brazilian Symposium on Software Engineering (SBES’17). ACM, New

York, NY, 84–93.

[96] Tobias Dürschmid. 2017. Continuous code reviews: A social coding tool for code reviews inside the IDE. In Companion

to the 1st International Conference on the Art, Science and Engineering of Programming. ACM, 41.

[97] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2017. Confusion detection in code reviews.

In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’17). IEEE, 549–553.

[98] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018. Communicative intention in code re-

view questions. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’18).

IEEE, 519–523.

[99] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021. An exploratory study on confusion

in code reviews. Empir. Softw. Eng. 26, 1 (2021), 1–48.

[100] Vasiliki Efstathiou and Diomidis Spinellis. 2018. Code review comments: Language matters. In Proceedings of the 40th

International Conference on Software Engineering: New Ideas and Emerging Results. ACM, 69–72.

[101] Carolyn D. Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow Hodges, Collin Green, Ciera Jas-

pan, and James Lin. 2020. Predicting developers’ negative feelings about code review. In Proceedings of the IEEE/ACM

42nd International Conference on Software Engineering (ICSE’20). IEEE, 174–185.

[102] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and M. A. Janati Idrissi. 2019. An empirical study of

sentiments in code reviews. Inf. Softw. Technol. 114 (2019), 37–54.

[103] Muntazir Fadhel and Emil Sekerinski. 2021. Striffs: Architectural component diagrams for code reviews. In Proceed-

ings of the International Conference on Code Quality (ICCQ’21). IEEE, 69–78.

[104] George Fairbanks. 2019. Better code reviews with design by contract. IEEE Softw. 36, 6 (2019), 53–56. https://doi.org/

10.1109/MS.2019.2934192

[105] Yuanrui Fan, Xin Xia, David Lo, and Shanping Li. 2018. Early prediction of merged code changes to prioritize review-

ing tasks. Empir. Softw. Eng. (2018), 1–48.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1016/j.asoc.2020.106908
https://doi.org/10.1109/ICSME46990.2020.00054
https://doi.org/10.1109/MS.2019.2934192

Modern Code Reviews—Survey of Literature and Practice 107:53

[106] Mikołaj Fejzer, Piotr Przymus, and Krzysztof Stencel. 2018. Profile based recommendation of code reviewers. J. Intell.

Inf. Syst. 50, 3 (2018), 597–619.

[107] Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The “Shut the f** k up” phenomenon: Characterizing inci-

vility in open source code review discussions. Proc. ACM Hum.-Comput. Interact. 5, CSCW2 (2021), 1–35.

[108] Wojciech Frącz and Jacek Dajda. 2017. Experimental validation of source code reviews on mobile devices. In Inter-

national Conference on Computational Science and Its Applications. Springer, 533–547.

[109] Leonardo B. Furtado, Bruno Cartaxo, Christoph Treude, and Gustavo Pinto. 2020. How successful are open source

contributions from countries with different levels of human development? IEEE Softw. 38, 2 (2020), 58–63.

[110] Lorenzo Gasparini, Enrico Fregnan, Larissa Braz, Tobias Baum, and Alberto Bacchelli. 2021. ChangeViz: Enhancing

the GitHub pull request interface with method call information. In Proceedings of the Working Conference on Software

Visualization (VISSOFT’21). IEEE, 115–119.

[111] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. 2014. Towards refactoring-aware code review. In Proceedings of

the 7th International Workshop on Cooperative and Human Aspects of Software Engineering. ACM, 99–102.

[112] Çağdaş Evren Gerede and Zeki Mazan. 2018. Will it pass? Predicting the outcome of a source code review. Turk. J.

Electr. Eng. Comput. Sci. 26, 3 (2018), 1343–1353.

[113] Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu Iida, and Katsuro Inoue. 2018. “Was

my contribution fairly reviewed?” A framework to study the perception of fairness in modern code reviews. In

Proceedings of the IEEE/ACM 40th International Conference on Software Engineering (ICSE’18). IEEE, 523–534.

[114] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2019. On the effect of discussions on pull request decisions. In

Proceedings of the 18th Belgium-Netherlands Software Evolution Workshop (BENEVOL’19).

[115] Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar, Gregorio Robles, and Alvaro del Castillo. 2014. Analyzing

gerrit code review parameters with bicho. Electr. Commun. EASST (2014).

[116] Jesús M. González-Barahona, Daniel Izquierdo-Cortázar, Gregorio Robles, and Mario Gallegos. 2014. Code review

analytics: WebKit as case study. In Open Source Software: Mobile Open Source Technologies. Springer, 1–10.

[117] Tanay Gottigundala, Siriwan Sereesathien, and Bruno da Silva. 2021. Qualitatively analyzing PR rejection reasons

from conversations in open-source projects. In Proceedings of the 13th International Workshop on Cooperative and

Human Aspects of Software Engineering (CHASE’21). IEEE, 109–112.

[118] Bo Guo, Young-Woo Kwon, and Myoungkyu Song. 2019. Decomposing composite changes for code review and re-

gression test selection in evolving software. J. Comput. Sci. Technol. 34, 2 (2019), 416–436.

[119] DongGyun Han, Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, and Giovanni Rosa. 2020. Does code

review really remove coding convention violations?. In Proceedings of the IEEE 20th International Working Conference

on Source Code Analysis and Manipulation (SCAM’20). IEEE, 43–53.

[120] Xiaofeng Han, Amjed Tahir, Peng Liang, Steve Counsell, and Yajing Luo. 2021. Understanding code smell detection

via code review: A study of the openstack community. In Proceedings of the IEEE/ACM 29th International Conference

on Program Comprehension (ICPC’21). IEEE, 323–334.

[121] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding code change understanding with semantic change impact

analysis. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’19). IEEE,

202–212.

[122] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn. 2016. Automatically recommending

code reviewers based on their expertise: An empirical comparison. In Proceedings of the 31st International Conference

on Automated Software Engineering. ACM, 99–110.

[123] Masum Hasan, Anindya Iqbal, Mohammad Rafid Ul Islam, A. J. M. Imtiajur Rahman, and Amiangshu Bosu. 2021.

Using a balanced scorecard to identify opportunities to improve code review effectiveness: An industrial experience

report. 26, 6 (2021). https://doi.org/10.1007/s10664-021-10038-w

[124] Florian Hauser, Stefan Schreistter, Rebecca Reuter, Jurgen Horst Mottok, Hans Gruber, Kenneth Holmqvist, and

Nick Schorr. 2020. Code reviews in C++ preliminary results from an eye tracking study. In Proceedings of the ACM

Symposium on Eye Tracking Research and Applications. 1–5.

[125] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli. 2015. Will they like this? Evaluating code contributions with

language models. In Proceedings of the IEEE/ACM 12th Working Conference on Mining Software Repositories. 157–167.

[126] Vincent J. Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. 2021. Towards Automating Code Review

at Scale. Association for Computing Machinery, New York, NY, 1479–1482. https://doi.org/10.1145/3468264.3473134

[127] Austin Z. Henley, KIvanç Muçlu, Maria Christakis, Scott D. Fleming, and Christian Bird. 2018. CFar: A tool to increase

communication, productivity, and review quality in collaborative code reviews. In Proceedings of the CHI Conference

on Human Factors in Computing Systems. ACM, 157.

[128] Martin Hentschel, Reiner Hähnle, and Richard Bubel. 2016. Can formal methods improve the efficiency of code

reviews? In International Conference on Integrated Formal Methods. Springer, 3–19.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1007/s10664-021-10038-w
https://doi.org/10.1145/3468264.3473134

107:54 D. Badampudi et al.

[129] Toshiki Hirao, Akinori Ihara, and Ken-ichi Matsumoto. 2015. Pilot study of collective decision-making in the code

review process. In Proceedings of the 25th Annual International Conference on Computer Science and Software Engi-

neering. IBM, 248–251.

[130] Toshiki Hirao, Akinori Ihara, Yuki Ueda, Passakorn Phannachitta, and Ken-ichi Matsumoto. 2016. The impact of a

low level of agreement among reviewers in a code review process. In IFIP International Conference on Open Source

Systems. Springer, 97–110.

[131] Toshiki Hirao, Raula Gaikovina Kula, Akinori Ihara, and Kenichi Matsumoto. 2019. Understanding developer com-

menting in code reviews. IEICE Trans. Inf. Syst. 102, 12 (2019), 2423–2432.

[132] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2019. The review linkage graph for code

review analytics: A recovery approach and empirical study. In Proceedings of the 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’19).

Association for Computing Machinery, New York, NY, 578–589. https://doi.org/10.1145/3338906.3338949

[133] Gerard J. Holzmann. 2010. SCRUB: A tool for code reviews. Innov. Syst. Softw. Eng. 6, 4 (2010), 311–318.

[134] Syeda Sumbul Hossain, Yeasir Arafat, Md Hossain, Md Arman, Anik Islam, et al. 2020. Measuring the effectiveness of

software code review comments. In International Conference on Advances in Computing and Data Sciences. Springer,

247–257.

[135] Dongyang Hu, Yang Zhang, Junsheng Chang, Gang Yin, Yue Yu, and Tao Wang. 2019. Multi-reviewing pull-requests:

An exploratory study on GitHub OSS projects. Inf. Softw. Technol. 115 (2019), 1–4.

[136] Yuan Huang, Nan Jia, Xiangping Chen, Kai Hong, and Zibin Zheng. 2018. Salient-class location: Help developers un-

derstand code change in code review. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. ACM, 770–774.

[137] Yuan Huang, Nan Jia, Xiangping Chen, Kai Hong, and Zibin Zheng. 2020. Code review knowledge perception: Fusing

multi-features for salient-class location. IEEE Trans. Softw. Eng. (2020).

[138] Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander, and Westley Weimer. 2020. Biases and

differences in code review using medical imaging and eye-tracking: Genders, humans, and machines. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 456–468.

[139] M. Ichinco. 2014. Towards crowdsourced large-scale feedback for novice programmers. In Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC’14). 189–190.

[140] Daniel Izquierdo, Jesus Gonzalez-Barahona, Lars Kurth, and Gregorio Robles. 2018. Software development analytics

for Xen: Why and how. IEEE Softw. (2018).

[141] Daniel Izquierdo-Cortazar, Lars Kurth, Jesus M. Gonzalez-Barahona, Santiago Dueñas, and Nelson Sekitoleko. 2016.

Characterization of the Xen project code review process: An experience report. In Proceedings of the IEEE/ACM 13th

Working Conference on Mining Software Repositories (MSR’16). IEEE, 386–390.

[142] Daniel Izquierdo-Cortazar, Nelson Sekitoleko, Jesus M. Gonzalez-Barahona, and Lars Kurth. 2017. Using metrics to

track code review performance. In Proceedings of the 21st International Conference on Evaluation and Assessment in

Software Engineering. ACM, 214–223.

[143] Jing Jiang, Jin Cao, and Li Zhang. 2017. An empirical study of link sharing in review comments. In Software Engi-

neering and Methodology for Emerging Domains. Springer, 101–114.

[144] Jing Jiang, Jia-Huan He, and Xue-Yuan Chen. 2015. Coredevrec: Automatic core member recommendation for con-

tribution evaluation. J. Comput. Sci. Technol. 30, 5 (2015), 998–1016.

[145] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. 2017. Who should comment on this pull request?

Analyzing attributes for more accurate commenter recommendation in pull-based development. Inf. Softw. Technol.

84 (2017), 48–62.

[146] Marian Jureczko, Łukasz Kajda, and Paweł Górecki. 2020. Code review effectiveness: An empirical study on selected

factors influence. IET Softw. 14, 7 (2020), 794–805.

[147] Akshay Kalyan, Matthew Chiam, Jing Sun, and Sathiamoorthy Manoharan. 2016. A collaborative code review plat-

form for github. In Proceedings of the 21st International Conference on Engineering of Complex Computer Systems

(ICECCS’16). IEEE, 191–196.

[148] Ritu Kapur, Balwinder Sodhi, Poojith U. Rao, and Shipra Sharma. 2021. Using paragraph vectors to improve our

existing code review assisting tool-CRUSO. In Proceedings of the 14th Innovations in Software Engineering Conference

(formerly known as India Software Engineering Conference). 1–11.

[149] David Kavaler, Premkumar Devanbu, and Vladimir Filkov. 2019. Whom are you going to call? Determinants of@-

mentions in github discussions. Empir. Softw. Eng. 24, 6 (2019), 3904–3932.

[150] Noureddine Kerzazi and Ikram El Asri. 2016. Who can help to review this piece of code? In Collaboration in a Hy-

perconnected World, Hamideh Afsarmanesh, Luis M. Camarinha-Matos, and António Lucas Soares (Eds.). Springer,

289–301.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1145/3338906.3338949

Modern Code Reviews—Survey of Literature and Practice 107:55

[151] Shivam Khandelwal, Sai Krishna Sripada, and Y. Raghu Reddy. 2017. Impact of gamification on code review process:

An experimental study. In Proceedings of the 10th Innovations in Software Engineering Conference (ISEC’17). ACM,

New York, NY, 122–126.

[152] Jungil Kim and Eunjoo Lee. 2018. Understanding review expertise of developers: A reviewer recommendation ap-

proach based on latent dirichlet allocation. Symmetry 10, 4 (2018), 114.

[153] N. Kitagawa, H. Hata, A. Ihara, K. Kogiso, and K. Matsumoto. 2016. Code review participation: Game theoretical

modeling of reviewers in gerrit datasets. In Proceedings of the IEEE/ACM Cooperative and Human Aspects of Software

Engineering (CHASE’16). 64–67.

[154] O. Kononenko, O. Baysal, and M. W. Godfrey. 2016. Code review quality: How developers see it. In Proceedings of the

IEEE/ACM 38th International Conference on Software Engineering (ICSE’16). 1028–1038.

[155] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. Godfrey. 2015. Investigating code review

quality: Do people and participation matter? In Proceedings of the International Conference on Software Maintenance

and Evolution (ICSME’15). IEEE, 111–120.

[156] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. de Water. 2018. Studying pull request merges: A

case study of Shopify’s active merchant. In Proceedings of the IEEE/ACM 40th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP’18). 124–133.

[157] V. Kovalenko and A. Bacchelli. 2018. Code review for newcomers: Is it different? In Proceedings of the IEEE/ACM 11th

International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE’18). 29–32.

[158] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto Bacchelli. 2018. Does reviewer

recommendation help developers? IEEE Trans. Softw. Eng. (2018).

[159] Andrey Krutauz, Tapajit Dey, Peter C. Rigby, and Audris Mockus. 2020. Do code review measures explain the inci-

dence of post-release defects? Empir. Softw. Eng. 25, 5 (2020), 3323–3356.

[160] Harsh Lal and Gaurav Pahwa. 2017. Code review analysis of software system using machine learning techniques. In

Proceedings of the 11th International Conference on Intelligent Systems and Control (ISCO’17). IEEE, 8–13.

[161] Samuel Lehtonen and Timo Poranen. 2015. Metrics for Gerrit code review. In Proceedings of the 14th Symposium on

Programming Languages and Software Tools (SPLST’15), CEUR Workshop Proceedings, Vol. 1525. CEUR-WS.org, 31–45.

[162] Heng-Yi Li, Shu-Ting Shi, Ferdian Thung, Xuan Huo, Bowen Xu, Ming Li, and David Lo. 2019. DeepReview: Auto-

matic code review using deep multi-instance learning. In Advances in Knowledge Discovery and Data Mining, Qiang

Yang, Zhi-Hua Zhou, Zhiguo Gong, Min-Ling Zhang, and Sheng-Jun Huang (Eds.). Springer International Publishing,

Cham, 318–330.

[163] Zhixing Li, Yue Yu, Gang Yin, Tao Wang, Qiang Fan, and Huaimin Wang. 2017. Automatic classification of review

comments in pull-based development model. In Proceedings of the International Conference on Software Engineering

and Knowledge Engineering (SEKE’17). 572–577.

[164] Zhi-Xing Li, Yue Yu, Gang Yin, Tao Wang, and Huai-Min Wang. 2017. What are they talking about? Analyzing code

reviews in pull-based development model. J. Comput. Sci. Technol. 32, 6 (2017), 1060–1075.

[165] J. Liang and O. Mizuno. 2011. Analyzing involvements of reviewers through mining a code review repository. In Pro-

ceedings of the Joint Conference of the 21st International Workshop on Software Measurement and the 6th International

Conference on Software Process and Product Measurement. 126–132.

[166] Zhifang Liao, Yanbing Li, Dayu He, Jinsong Wu, Yan Zhang, and Xiaoping Fan. 2017. Topic-based integrator matching

for pull request. In Proceedings of the Global Communications Conference. IEEE, 1–6.

[167] Jakub Lipcak and Bruno Rossi. 2018. A large-scale study on source code reviewer recommendation. In Proceedings

of the 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA’18). IEEE, 378–387.

[168] Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang.

2021. Learning-based extraction of first-order logic representations of API directives. In Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

491–502.

[169] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka. 2018. Code reviewing in the trenches: Challenges and

best practices. IEEE Softw. 35, 4 (2018), 34–42.

[170] Michał Madera and Rafał Tomoń. 2017. A case study on machine learning model for code review expert system

in software engineering. In Proceedings of the Federated Conference on Computer Science and Information Systems

(FedCSIS’17). IEEE, 1357–1363.

[171] Mika V. Mäntylä and Casper Lassenius. 2008. What types of defects are really discovered in code reviews? IEEE Trans.

Softw. Eng. 35, 3 (2008), 430–448.

[172] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016. An empirical study of the impact of

modern code review practices on software quality. Empir. Softw. Eng. 21, 5 (2016), 2146–2189.

[173] Massimiliano Menarini, Yan Yan, and William G. Griswold. 2017. Semantics-assisted code review: An efficient tool

chain and a user study. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engi-

neering (ASE’17). IEEE, 554–565.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

107:56 D. Badampudi et al.

[174] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau, Danielle Neuberger, Katherine Whit-

lock, Christopher Ketant, and Kayla Davis. 2014. An empirical investigation of socio-technical code review metrics

and security vulnerabilities. In Proceedings of the 6th International Workshop on Social Software Engineering. ACM,

37–44.

[175] Benjamin S. Meyers, Nuthan Munaiah, Emily Prud’hommeaux, Andrew Meneely, Josephine Wolff, Cecilia Ovesdot-

ter Alm, and Pradeep Murukannaiah. 2018. A dataset for identifying actionable feedback in collaborative software

development. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers). Association for Computational Linguistics, 126–131. https://doi.org/10.18653/v1/P18-2021

[176] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating turnover with code review recommendation: Balancing ex-

pertise, workload, and knowledge distribution. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering (ICSE’20). Association for Computing Machinery, New York, NY, 1183–1195. https://doi.org/10.

1145/3377811.3380335

[177] Rahul Mishra and Ashish Sureka. 2014. Mining peer code review system for computing effort and contribution

metrics for patch reviewers. In Proceedings of the IEEE 4th Workshop on Mining Unstructured Data (MUD’14). IEEE,

11–15.

[178] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do code review practices impact design quality? A

case study of the qt, vtk, and itk projects. In Proceedings of the 22nd International Conference on Software Analysis,

Evolution and Reengineering (SANER’15). IEEE, 171–180.

[179] Sebastian Müller, Michael Würsch, Thomas Fritz, and Harald C. Gall. 2012. An approach for collaborative code

reviews using multi-touch technology. In Proceedings of the 5th International Workshop on Co-operative and Human

Aspects of Software Engineering. IEEE, 93–99.

[180] Nuthan Munaiah, Benjamin S. Meyers, Cecilia O. Alm, Andrew Meneely, Pradeep K. Murukannaiah, Emily

Prud’hommeaux, Josephine Wolff, and Yang Yu. 2017. Natural language insights from code reviews that missed a

vulnerability. In International Symposium on Engineering Secure Software and Systems. Springer, 70–86.

[181] Yukasa Murakami, Masateru Tsunoda, and Hidetake Uwano. 2017. WAP: Does reviewer age affect code review perfor-

mance? In Proceedings of the International Symposium on Software Reliability Engineering (ISSRE’17). IEEE, 164–169.

[182] Emerson Murphy-Hill, Jillian Dicker, Margaret Morrow Hodges, Carolyn D. Egelman, Ciera Jaspan, Lan Cheng,

Elizabeth Kammer, Ben Holtz, Matt Jorde, Andrea Knight, and Collin Green. 2021. Engineering impacts of anonymous

author code review: A field experiment. IEEE Trans. Softw. Eng. (2021), 1–1. https://doi.org/10.1109/TSE.2021.3061527

[183] Reza Nadri, Gema Rodriguez-Perez, and Meiyappan Nagappan. 2021. Insights into nonmerged pull requests in

GitHub: Is there evidence of bias based on perceptible race? IEEE Softw. 38, 2 (2021), 51–57.

[184] Aziz Nanthaamornphong and Apatta Chaisutanon. 2016. Empirical evaluation of code smells in open source projects:

Preliminary results. In Proceedings of the 1st International Workshop on Software Refactoring. ACM, 5–8.

[185] Takuto Norikane, Akinori Ihara, and Kenichi Matsumoto. 2018. Do review feedbacks influence to a contributor’s time

spent on OSS projects? In Proceedings of the International Conference on Big Data, Cloud Computing, Data Science &

Engineering (BCD’18). IEEE, 109–113.

[186] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant, and Alberto Bacchelli. 2016. Visu-

alizing code and coverage changes for code review. In Proceedings of the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 1038–1041.

[187] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2016. Search-based peer reviewers recommendation in modern

code review. In Proceedings of the International Conference on Software Maintenance and Evolution (ICSME’16). IEEE,

367–377.

[188] Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. 2018. CROP: Linking code reviews to source code

changes. In Proceedings of the 15th International Conference on Mining Software Repositories. 46–49.

[189] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Harman. 2019. The impact of

code review on architectural changes. IEEE Trans. Softw. Eng. 47, 5 (2019), 1041–1059.

[190] Matheus Paixao and Paulo Henrique Maia. 2019. Rebasing in code review considered harmful: A large-scale empirical

investigation. In Proceedings of the 19th International Working Conference on Source Code Analysis and Manipulation

(SCAM’19). IEEE, 45–55.

[191] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro Garcia, Jens Krinke, and Emilio

Arvonio. 2020. Behind the intents: An in-depth empirical study on software refactoring in modern code review. In

Proceedings of the 17th International Conference on Mining Software Repositories. 125–136.

[192] Thai Pangsakulyanont, Patanamon Thongtanunam, Daniel Port, and Hajimu Iida. 2014. Assessing MCR discussion

usefulness using semantic similarity. In Proceedings of the 6th International Workshop on Empirical Software Engineer-

ing in Practice. IEEE, 49–54.

[193] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2015. Would static analy-

sis tools help developers with code reviews? In Proceedings of the 22nd International Conference on Software Analysis,

Evolution and Reengineering (SANER’15). IEEE, 161–170.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.18653/v1/P18-2021
https://doi.org/10.1145/3377811.3380335
https://doi.org/10.1109/TSE.2021.3061527

Modern Code Reviews—Survey of Literature and Practice 107:57

[194] Sebastiano Panichella and Nik Zaugg. 2020. An empirical investigation of relevant changes and automation needs

in modern code review. Empir. Softw. Eng. 25, 6 (2020), 4833–4872.

[195] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli. 2018. Information needs in

contemporary code review. Proc. ACM Hum.-Comput. Interact. 2, CSCW (2018), 135.

[196] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. 2019. Expressions of sentiments during code reviews:

Male vs. female. In Proceedings of the IEEE 26th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER’19). IEEE, 26–37.

[197] Rajshakhar Paul, Asif Kamal Turzo, and Amiangshu Bosu. 2021. Why security defects go unnoticed during code re-

views? A case-control study of the chromium os project. In Proceedings of the IEEE/ACM 43rd International Conference

on Software Engineering (ICSE’21). IEEE, 1373–1385.

[198] Zhenhui Peng, Jeehoon Yoo, Meng Xia, Sunghun Kim, and Xiaojuan Ma. 2018. Exploring how software developers

work with mention bot in GitHub. In Proceedings of the 6th International Symposium of Chinese CHI. ACM, 152–155.

[199] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. 2018. Who gets a patch accepted first? Comparing the con-

tributions of employees and volunteers. In Proceedings of the IEEE/ACM 11th International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE’18). IEEE, 110–113.

[200] Felix Raab. 2011. Collaborative code reviews on interactive surfaces. In Proceedings of the 29th Annual European

Conference on Cognitive Ergonomics. ACM, 263–264.

[201] Janani Raghunathan, Lifei Liu, and Huzefa Hatimbhai Kagdi. 2001. Feedback topics in modern code review: Auto-

matic identification and impact on changes 37, 3 (2001), 324–342

[202] Giuliano Ragusa and Henrique Henriques. 2018. Code review tool for visual programming languages. In Proceedings

of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’18). IEEE, 287–288.

[203] M. M. Rahman and C. K. Roy. 2017. Impact of continuous integration on code reviews. In Proceedings of the IEEE/ACM

14th International Conference on Mining Software Repositories (MSR’17). 499–502. https://doi.org/10.1109/MSR.2017.39

[204] Mohammad Masudur Rahman, Chanchal K. Roy, and Jason A. Collins. 2016. CoRReCT: Code reviewer recommenda-

tion in GitHub based on cross-project and technology experience. In Proceedings of the International Conference on

Software Engineering Companion (ICSE-C’16). IEEE, 222–231.

[205] Mohammad Masudur Rahman, Chanchal K. Roy, and Raula G. Kula. 2017. Predicting usefulness of code review com-

ments using textual features and developer experience. In Proceedings of the IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR’17). IEEE, 215–226.

[206] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli. 2018. What makes a code change

easier to review: An empirical investigation on code change reviewability. In Proceedings of the Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 201–

212.

[207] Soumaya Rebai, Abderrahmen Amich, Somayeh Molaei, Marouane Kessentini, and Rick Kazman. 2020. Multi-

objective code reviewer recommendations: Balancing expertise, availability and collaborations. Autom. Softw. Eng.

27, 3–4 (December 2020), 301–328. https://doi.org/10.1007/s10515-020-00275-6

[208] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and Daniel German. 2012. Contemporary

peer review in action: Lessons from open source development. IEEE Softw. 29, 6 (November 2012), 56–61.

[209] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software peer review practices. In Pro-

ceedings of the 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’13). ACM, New York, NY,

202–212.

[210] Shade Ruangwan, Patanamon Thongtanunam, Akinori Ihara, and Kenichi Matsumoto. 2018. The impact of human

factors on the participation decision of reviewers in modern code review. Emp. Softw. Eng. (2018), 1–44.

[211] Nafiz Sadman, Md Manjurul Ahsan, and M. A. Parvez Mahmud. 2020. ADCR: An adaptive TOOL to select “appro-

priate developer for code review” based on code context. In Proceedings of the 11th IEEE Annual Ubiquitous Comput-

ing, Electronics Mobile Communication Conference (UEMCON’20). 0583–0591. https://doi.org/10.1109/UEMCON51285.

2020.9298102

[212] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: A

case study at Google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP’18). ACM, New York, NY, 181–190.

[213] Nishrith Saini and Ricardo Britto. 2021. Using Machine Intelligence to Prioritise Code Review Requests. IEEE Press,

11–20. https://doi.org/10.1109/ICSE-SEIP52600.2021.00010

[214] Ronie Salgado and Alexandre Bergel. 2017. Pharo Git thermite: A visual tool for deciding to weld a pull request. In

Proceedings of the 12th Edition of the International Workshop on Smalltalk Technologies. ACM, 1–6.

[215] Mateus Santos, Josemar Caetano, Johnatan Oliveira, and Humberto T. Marques-Neto. 2018. Analyzing the impact

of feedback in GitHub on the software developer’s mood. In Proceedings of the International Conference on Software

Engineering & Knowledge Engineering. ACM.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1109/MSR.2017.39
https://doi.org/10.1007/s10515-020-00275-6
https://doi.org/10.1109/UEMCON51285.2020.9298102
https://doi.org/10.1109/ICSE-SEIP52600.2021.00010

107:58 D. Badampudi et al.

[216] Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. 2012. An eye-tracking study on the role of scan time in

finding source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA’12).

ACM, New York, NY, 381–384.

[217] Shipra Sharma and Balwinder Sodhi. 2019. Using stack overflow content to assist in code review. Softw.: Pract. Exp.

49, 8 (2019), 1255–1277.

[218] Shu-Ting Shi, Ming Li, David Lo, Ferdian Thung, and Xuan Huo. 2019. Automatic code review by learning the revision

of source code. In Proceedings of the AAAI Conference on Artificial Intelligence, 4910–4917. https://doi.org/10.1609/aaai.

v33i01.33014910

[219] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, Ahmed E. Hassan, and Naoyasu Ubayashi. 2016. A study of the

quality-impacting practices of modern code review at sony mobile. In Proceedings of the International Conference on

Software Engineering Companion (ICSE-C’16). IEEE, 212–221.

[220] Moran Shochat, Orna Raz, and Eitan Farchi. 2008. SeeCode—A code review plug-in for eclipse. In Haifa Verification

Conference. Springer, 205–209.

[221] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T. Stolee, and Brittany Johnson. 2017. Evaluating how static

analysis tools can reduce code review effort. In Proceedings of the IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC’17). IEEE, 101–105.

[222] J. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu. 2020. CORE: Automating review recommendation for code changes. In

Proceedings of the IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER’20).

IEEE Computer Society, Los Alamitos, CA, 284–295. https://doi.org/10.1109/SANER48275.2020.9054794

[223] Daricélio M. Soares, Manoel L. de Lima Júnior, Alexandre Plastino, and Leonardo Murta. 2018. What factors influence

the reviewer assignment to pull requests? Inf. Softw. Technol. 98 (2018), 32–43.

[224] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and Alberto Bacchelli. 2018. When testing

meets code review: Why and how developers review tests. In Proceedings of the 40th International Conference on

Software Engineering (ICSE’18). ACM, New York, NY, 677–687.

[225] Davide Spadini, Gül Çalikli, and Alberto Bacchelli. 2020. Primers or reminders? The effects of existing review com-

ments on code review. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE’20).

IEEE, 1171–1182.

[226] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink, and Alberto Bacchelli. 2019. Test-

driven code review: An empirical study. In Proceedings of the IEEE/ACM 41st International Conference on Software

Engineering (ICSE’19). IEEE, 1061–1072.

[227] Kai Spohrer, Thomas Kude, Armin Heinzl, and Christoph Schmidt. 2013. Peer-based quality assurance in information

systems development: A transactive memory perspective. In Proceedings of the International Conference on Informa-

tion Systems, (ICIS’13, Milano, Italy, December 15-18, 2013).

[228] Panyawut Sri-iesaranusorn, Raula Gaikovina Kula, and Takashi Ishio. 2021. Does code review promote conformance?

A study of OpenStack patches. In Proceedings of the IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR’21). IEEE, 444–448.

[229] Miroslaw Staron, Mirosław Ochodek, Wilhelm Meding, and Ola Söder. 2020. Using machine learning to identify code

fragments for manual review. In Proceedings of the 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA’20). IEEE, 513–516.

[230] Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman. 2020. Using a context-aware approach to

recommend code reviewers: Findings from an industrial case study. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering: Software Engineering in Practice. ACM, 1–10.

[231] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. 2019. Reviewer recommendation using software artifact traceability

graphs. In Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software

Engineering (PROMISE’19). Association for Computing Machinery, New York, NY, 66–75. https://doi.org/10.1145/

3345629.3345637

[232] Andrew Sutherland and Gina Venolia. 2009. Can peer code reviews be exploited for later information needs? In

Proceedings of the 31st International Conference on Software Engineering-Companion. IEEE, 259–262.

[233] Rajendran Swamidurai, Brad Dennis, and Uma Kannan. 2014. Investigating the impact of peer code review and pair

programming on test-driven development. In Proceedings of the IEEE SoutheastCon (SoutheastCon’14). IEEE, 1–5.

[234] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to facilitate code review. In Proceedings of

the 12th Working Conference on Mining Software Repositories. IEEE, 180–190.

[235] K. Ayberk Tecimer, Eray Tüzün, Hamdi Dibeklioglu, and Hakan Erdogmus. 2021. Detection and elimination of sys-

tematic labeling bias in code reviewer recommendation systems. In Evaluation and Assessment in Software Engi-

neering (EASE’21). Association for Computing Machinery, New York, NY, 181–190. https://doi.org/10.1145/3463274.

3463336

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1609/aaai.v33i01.33014910
https://doi.org/10.1109/SANER48275.2020.9054794
https://doi.org/10.1145/3345629.3345637
https://doi.org/10.1145/3463274.3463336

Modern Code Reviews—Survey of Literature and Practice 107:59

[236] Christopher Thompson and David Wagner. 2017. A large-scale study of modern code review and security in open

source projects. In Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software

Engineering. 83–92.

[237] Patanamon Thongtanunam and Ahmed E. Hassan. 2020. Review dynamics and their impact on software quality. IEEE

Trans. Softw. Eng. 47, 12 (2020), 2698–2712.

[238] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz, Norihiro Yoshida, and Hajimu Iida.

2014. Improving code review effectiveness through reviewer recommendations. In Proceedings of the 7th International

Workshop on Cooperative and Human Aspects of Software Engineering. ACM, 119–122.

[239] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida. 2015. Investigating code review

practices in defective files: An empirical study of the qt system. In Proceedings of the 12th Working Conference on

Mining Software Repositories. IEEE, 168–179.

[240] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida. 2016. Revisiting code ownership

and its relationship with software quality in the scope of modern code review. In Proceedings of the 38th International

Conference on Software Engineering (ICSE’16). ACM, New York, NY, 1039–1050.

[241] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida. 2018. Review participation in

modern code review: An empirical study of the Android, Qt, and OpenStack projects (journal-first abstract). In

Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering (SANER’18). IEEE,

475–475.

[242] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula, Norihiro Yoshida, Hajimu Iida, and

Ken-ichi Matsumoto. 2015. Who should review my code? A file location-based code-reviewer recommendation ap-

proach for modern code review. In Proceedings of the International Conference on Software Analysis, Evolution and

Reengineering (SANER’15). IEEE, 141–150.

[243] Patanamon Thongtanunam, Xin Yang, Norihiro Yoshida, Raula Gaikovina Kula, Ana Erika Camargo Cruz, Kenji

Fujiwara, and Hajimu Iida. 2014. Reda: A web-based visualization tool for analyzing modern code review dataset. In

Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’14). IEEE, 605–608.

[244] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele Bavota. 2021. Towards automating

code review activities. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering (ICSE’21).

163–174. https://doi.org/10.1109/ICSE43902.2021.00027

[245] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2015. Code review: Veni, vidi, vici. In Proceedings of the IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineering (SANER’15). IEEE, 151–160.

[246] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley K. G. Assunçao, Silvia Regina Vergilio, Ju-

liana Alves Pereira, Anderson Oliveira, and Alessandro Garcia. 2021. Predicting design impactful changes in modern

code review: A large-scale empirical study. In Proceedings of the IEEE/ACM 18th International Conference on Mining

Software Repositories (MSR’21). IEEE, 471–482.

[247] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenílio, Rafael Lima, Alessandro Garcia, and Carla Bezerra.

2020. How does modern code review impact software design degradation? An in-depth empirical study. In Proceed-

ings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’20). IEEE, 511–522.

[248] Yuki Ueda, Akinori Ihara, Takashi Ishio, Toshiki Hirao, and Kenichi Matsumoto. 2018. How are IF-conditional state-

ments fixed through peer CodeReview? IEICE Trans. Inf. Syst. 101, 11 (2018), 2720–2729.

[249] Yuki Ueda, Akinori Ihara, Takashi Ishio, and Kennichi Matsumoto. 2018. Impact of coding style checker on code

review-a case study on the openstack projects. In Proceedings of the 9th International Workshop on Empirical Software

Engineering in Practice (IWESEP’18). IEEE, 31–36.

[250] Yuki Ueda, Takashi Ishio, Akinori Ihara, and Kenichi Matsumoto. 2019. Mining source code improvement patterns

from similar code review works. In Proceedings of the IEEE 13th International Workshop on Software Clones (IWSC’19).

IEEE, 13–19.

[251] Naomi Unkelos-Shpigel and Irit Hadar. 2016. Lets make it fun: Gamifying and formalizing code review. In Proceedings

of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering. SCITEPRESS-

Science and Technology Publications, Lda, 391–395.

[252] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. 2007. Exploiting eye movements for

evaluating reviewer’s performance in software review. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A,

10 (October 2007), 2290–2300.

[253] Erik Van Der Veen, Georgios Gousios, and Andy Zaidman. 2015. Automatically prioritizing pull requests. In Proceed-

ings of the IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE, 357–361.

[254] P. van Wesel, B. Lin, G. Robles, and A. Serebrenik. 2017. Reviewing career paths of the OpenStack developers. In

Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’17). 544–548.

[255] Giovanni Viviani and Gail C. Murphy. 2016. Removing stagnation from modern code review. In Companion Proceed-

ings of the ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software

for Humanity. ACM, 43–44.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1109/ICSE43902.2021.00027

107:60 D. Badampudi et al.

[256] Hana Vrzakova, Andrew Begel, Lauri Mehtätalo, and Roman Bednarik. 2020. Affect recognition in code review: An

in-situ biometric study of reviewer’s affect. J. Syst. Softw. 159 (2020), 110434.

[257] Chen Wang, Xiaoyuan Xie, Peng Liang, and Jifeng Xuan. 2017. Multi-perspective visualization to assist code change

review. In Proceedings of the 24th Asia-Pacific Software Engineering Conference (APSEC’17). IEEE, 564–569.

[258] Dong Wang, Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2021. Automatic patch linkage detection

in code review using textual content and file location features. Inf. Softw. Technol. 139 (2021), 106637.

[259] Dong Wang, Tao Xiao, Patanamon Thongtanunam, Raula Gaikovina Kula, and Kenichi Matsumoto. 2021. Under-

standing shared links and their intentions to meet information needs in modern code review. Empir. Softw. Eng. 26,

5 (2021), 1–32.

[260] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2019. Cora: Decomposing and describing tangled code changes for

reviewer. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19).

IEEE, 1050–1061.

[261] Qingye Wang, Bowen Xu, Xin Xia, Ting Wang, and Shanping Li. 2019. Duplicate pull request detection: When time

matters. In Proceedings of the 11th Asia-Pacific Symposium on Internetware (Internetware’19). Association for Com-

puting Machinery, New York, NY. https://doi.org/10.1145/3361242.3361254

[262] Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip. 2019. Leveraging change intents

for characterizing and identifying large-review-effort changes. In Proceedings of the 15th International Conference on

Predictive Models and Data Analytics in Software Engineering. 46–55.

[263] Yanqing Wang, Xiaolei Wang, Yu Jiang, Yaowen Liang, and Ying Liu. 2016. A code reviewer assignment model incor-

porating the competence differences and participant preferences. Found. Comput. Decis. Sci. 41, 1 (2016), 77–91.

[264] Ruiyin Wen, David Gilbert, Michael G. Roche, and Shane McIntosh. 2018. BLIMP tracer: Integrating build impact

analysis with code review. In Proceedings of the International Conference on Software Maintenance and Evolution

(ICSME’18). IEEE, 685–694.

[265] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A. Gerosa. 2020. Effects of adopting

code review bots on pull requests to OSS projects. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution (ICSME’20). IEEE, 1–11.

[266] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A. Gerosa. 2020. What to expect

from code review bots on GitHub? A survey with OSS maintainers. In Proceedings of the 34th Brazilian Symposium

on Software Engineering (SBES’20). Association for Computing Machinery, New York, NY, 457–462. https://doi.org/

10.1145/3422392.3422459

[267] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and Marco Aurelio Gerosa. 2021. Don’t disturb me: Challenges of

interacting with software bots on open source software projects. Proc. ACM Hum.-Comput. Interact. 5, CSCW2 (2021),

1–21.

[268] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review this change?: Putting text and file

location analyses together for more accurate recommendations. In Proceedings of the International Conference on

Software Maintenance and Evolution (ICSME’15). IEEE, 261–270.

[269] Zhenglin Xia, Hailong Sun, Jing Jiang, Xu Wang, and Xudong Liu. 2017. A hybrid approach to code reviewer rec-

ommendation with collaborative filtering. In Proceedings of the 6th International Workshop on Software Mining (Soft-

wareMining’17). IEEE, 24–31.

[270] Cheng Yang, Xunhui Zhang, Lingbin Zeng, Qiang Fan, Gang Yin, and Huaimin Wang. 2017. An empirical study of

reviewer recommendation in pull-based development model. In Proceedings of the 9th Asia-Pacific Symposium on

Internetware. ACM, 14.

[271] Cheng Yang, Xun-hui Zhang, Ling-bin Zeng, Qiang Fan, Tao Wang, Yue Yu, Gang Yin, and Huai-min Wang. 2018.

RevRec: A two-layer reviewer recommendation algorithm in pull-based development model. J. Centr. South Univ. 25,

5 (2018), 1129–1143.

[272] Xin Yang. 2014. Social network analysis in open source software peer review. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE’14). ACM, New York, NY, 820–822.

[273] Xin Ye. 2019. Learning to rank reviewers for pull requests. IEEE Access 7 (2019), 85382–85391. https://doi.org/10.1109/

ACCESS.2019.2925560

[274] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer. 2021. Recommending pull request reviewers

based on code changes. Soft Comput. 25, 7 (April 2021), 5619–5632. https://doi.org/10.1007/s00500-020-05559-3

[275] Haochao Ying, Liang Chen, Tingting Liang, and Jian Wu. 2016. EARec: Leveraging expertise and authority for pull-

request reviewer recommendation in GitHub. In Proceedings of the 3rd International Workshop on CrowdSourcing in

Software Engineering. ACM, 29–35.

[276] Yue Yu, Huaimin Wang, Gang Yin, and Charles X. Ling. 2014. Reviewer recommender of pull-requests in GitHub. In

Proceedings of the International Conference on Software Maintenance and Evolution (ICSME’14). IEEE, 609–612.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

https://doi.org/10.1145/3361242.3361254
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1109/ACCESS.2019.2925560
https://doi.org/10.1007/s00500-020-05559-3

Modern Code Reviews—Survey of Literature and Practice 107:61

[277] Fiorella Zampetti, Gabriele Bavota, Gerardo Canfora, and Massimiliano Di Penta. 2019. A study on the interplay be-

tween pull request review and continuous integration builds. In Proceedings of the IEEE 26th International Conference

on Software Analysis, Evolution and Reengineering (SANER’19). IEEE, 38–48.

[278] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2018. An empirical study

of design discussions in code review. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. ACM, 1–10.

[279] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automatically recommending peer reviewers

in modern code review. IEEE Trans. Softw. Eng. 42, 6 (2016), 530–543.

[280] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Interactive code review for system-

atic changes. In Proceedings of the IEEE/ACM 37th International Conference on Software Engineering, Vol. 1. IEEE,

111–122.

[281] Weifeng Zhang, Zhen Pan, and Ziyuan Wang. 2020. Prediction method of code review time based on hidden markov

model. In Web Information Systems and Applications, Guojun Wang, Xuemin Lin, James Hendler, Wei Song, Zhuoming

Xu, and Genggeng Liu (Eds.). Springer International Publishing, Cham, 168–175.

[282] Xuesong Zhang, Bradley Dorn, William Jester, Jason Van Pelt, Guillermo Gaeta, and Daniel Firpo. 2011. Design and

implementation of Java sniper: A community-based software code review web solution. In Proceedings of the 44th

Hawaii International Conference on System Sciences. IEEE, 1–10.

[283] Y. Zhang, G. Yin, Y. Yu, and H. Wang. 2014. A exploratory study of @-mention in GitHub’s pull-requests. In Proceed-

ings of the 21st Asia-Pacific Software Engineering Conference, Vol. 1. 343–350.

[284] Guoliang Zhao, Daniel Alencar da Costa, and Ying Zou. 2019. Improving the pull requests review process using

learning-to-rank algorithms. Emp. Softw. Eng. (2019), 1–31.

[285] Zhifang Liao, ZeXuan Wu, Yanbing Li, Yan Zhang, Xiaoping Fan, and Jinsong Wu. 2020. Core-reviewer recommen-

dation based on pull request topic model and collaborator social network. Soft Comput. 24 (2020), 5683–5693.

Received 4 October 2021; revised 21 December 2022; accepted 31 January 2023

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 107. Pub. date: May 2023.

