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Abstract—Automatic target recognition (ATR) algorithms have
been successfully used for vehicle classifcation in synthetic
aperture radar (SAR) images over the past few decades. For
this application, however, the scarcity of labeled data is often
a limiting factor for supervised approaches. While the advent
of computer-simulated images may result in additional data
for ATR, there is still a substantial gap between synthetic
and measured images. In this paper, we propose the so-called
adaptive target enhancer (ATE), a tool designed to automatically
delimit and weight the region of an image that contains or is
affected by the presence of a target. Results for the publicly
released Synthetic and Measured Paired and Labeled Experiment
(SAMPLE) dataset show that, by defning regions of interest and
suppressing the background, we can increase the classifcation
accuracy from 68% to 84% while only using artifcially generated
images for training.

Index Terms—Adaptive fltering, automatic target recognition
(ATR), MSTAR, SAMPLE, synthetic aperture radar (SAR).

S
I. INTRODUCTION

YNTHETIC aperture radar (SAR) technology has wit-
nessed a remarkable growth in the past few decades [1].

SAR systems have been successfully employed in a wide range
of applications, such as target detection and classifcation in
confict zones or monitoring illegal activities along borders
[2]. In such scenarios, automatic target recognition (ATR) al-
gorithms are often used to assist the decision-making process.

While a massive amount of SAR data is continuously
produced, the potentially classifed nature of the radar signa-
tures from military vehicles arises as a challenge since the
most successful supervised classifers depend on large and
varied databases, as well as reliable labels. To mitigate these
problems, SAR image simulators can be used for expanding
or even replacing small or outdated datasets [3]–[6].

This study was fnanced in part by the Coordenaçao˜ de Aperfeiçoamento de
Pessoal de Nı́vel Superior—Brazil (CAPES-Brazil)—Finance Code 001 (Pro-´
Defesa IV), and by Brazilian National Council for Scientifc and Technological
Development (CNPq-Brazil). The authors also thank the Brazilian Institute of
Data Science (BI0S), grant 2020/09838-0, São Paulo Research Foundation
(FAPESP).

Several databases have been artifcially expanded with
computer-aided drawing (CAD) modeling, which has been
shown to improve classifcation performance by adding vari-
ability to the training. The well-known Moving and Stationary
Target Acquisition and Recognition (MSTAR) database [7]
was partially recreated through the recently released Synthetic
and Measured Paired and Labeled Experiment (SAMPLE)
database [8], which introduces the challenge of maintaining
a satisfactory classifcation performance even when more
signifcant fractions of computer-simulated (synthetic) data are
used for training. In [8], a baseline ATR algorithm based
on convolutional neural networks (CNNs) was considered to
assess the proposed challenge without any pre-processing,
and it has been verifed that the classifcation performance
decreases drastically as synthetic samples are used for training
instead of the original data. Following up this experiment, an
approach that pre-processes the images based on variance-
based joint sparsity (VBJS) despeckling, quantization, and
clutter transfer is used in [9] to tackle the measured and
synthetic domain mismatch problem. Another solution has
been proposed in [10] to map a common domain between real
and synthetic samples through a small number of matching
images from both sets. Though these techniques have been
shown to signifcantly increase the classifer’s performance,
they must rely on a priori information of the targets, i.e.,
measured SAR images with known and well-defned labels.

In this paper, we propose the so-called adaptive target
enhancer (ATE) for pre-processing synthetic and measured
SAR images for ATR. The method aims to detect and enhance
targets in these images through a combination of adaptive
thresholding, morphological operations, pixel weighting, and
a median flter. After both the synthetic and measured images
are transformed, a single classifer can be trained with only
the synthetic data to predict the outcome class of measured
SAR images. Results show that the classifcation accuracy
signifcantly increases when the proposed pre-processing is
applied, endorsing the use of synthetic images for training.
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The remainder of this paper is organized as follows. Section
II introduces the ATE technique. In Section III, the SAMPLE
challenge and related works are presented. The performance of
the proposed method is then assessed and discussed in Section
IV. Finally, Section V summarizes the main conclusions and
presents some fnal remarks.

II. PROPOSED MODEL

A. Problem statement

Consider two sets of SAR images, Dm and Ds. The
former is composed of measured SAR images acquired in
a real-world scenario. The latter is composed of artifcially
generated SAR images that share common characteristics with
the measured images but were created without a measurement
campaign. We can defne a classifer Cm that predicts the
outcome class of each observation within Dm in a way that
Cm : Dm → y, where y is the vector of classes associated
with each observation. Analogously, for the set Ds, we can
defne Cs : Ds → y. However, the availability of measured
SAR images is often an issue. Hence, we want to estimate
a classifer Ĉ that is able to predict the vector of outcome
classes y for a set of measured SAR images while training
only on a set of synthetic SAR images.

We propose to pre-process the images of each set in an
unsupervised way by employing the ATE technique, as shown
in Figure 1. The same ATE process runs independently for
the two image sets, Ds and Dm, and aims to transform them
into the sets D∗ and D∗ , respectively, to mitigate the gaps m 
between the synthetic and measured images. Hence, a robust
and unique classifer Ĉ can be achieved by training only on
the transformed synthetic data D∗ .s 

Measured	ImagesSynthetic	Images

Adaptive	Target
Enhancer	(ATE)

Adaptive	Target
Enhancer	(ATE)

Classifier Classification

Fig. 1. Proposed scheme for ATR. The ATE step creates two new sets, D∗ 
s 

and D∗ . The former is used for training a classifer, which is represented bym 
the dash-lined block. When the training is complete, the resulting classifer
Ĉ is used for evaluating the set D∗ .m 

B. Adaptive Target Enhancer (ATE)

The ATE can be described as a pre-processing technique
composed of an adaptive thresholding step, morphological
operations, pixel weighting, and a median flter. The complete
ATE fowchart can be seen in Figure 2.

The thresholding step can be described as follows: i)
vectorize the SAR image; ii) standardize (subtract the mean
and divide by the standard deviation) the resulting vector;
iii) create a new vector that contains only the pixels whose

amplitude is lower than a threshold constant λ; iv) repeat step
(ii) and (iii) for each new vector created from the original data
until all pixels are within the range (0, λ); v) reconstruct the
image and assign each pixel that surpassed the threshold λ at
any given iteration as ‘1’, setting the remaining ones as ‘0’.

After thresholding, several clusters of connected pixels are
typically scattered through the image. Two morphological
operations are then used to defne a single target structure.
First, an operation of closing (a dilation followed by an
erosion) is applied with a fxed structuring element (SE) to
ensure that pixels close to each other can form larger objects.
Second, an operation of opening (an erosion followed by a
dilation) is used to eliminate noisy pixels. In this case, since
we are interested in a single target structure, the SE is defned
for each image according to the maximum number of locally
connected pixels. The proposed morphological operations are
based on the assumption that a target is reported and will be
the most prominent object in the image. Please note that this
assumption is valid for any given target shape at any given
position within the image.

Once the target is well defned, regions surrounding it are
considered for gradually weighting the image pixels. Pixels
closer to the target structure are weighted higher than those far
from the target’s infuence zone. Additionally, the background
is not entirely excluded as it can still provide insightful
information for the feature extraction process. In total, we
defne four possible regions:

1) Target region (S1): Embraces the pixels detected by the
threshold and morphological operations steps, and aims
to report the pixels that most likely belong to a target;

2) Border region (S2): Includes the immediate surroundings
of S1 and captures information about pixels that may
have a partial contribution from the target, such as the
vehicle’s edges;

3) Neighboring region (S3): Comprises the pixels external
to S2and aims to capture any remaining useful informa-
tion, such as the vehicle’s shadows;

4) Background region (S4): The most external zone, com-
posed of the remaining pixels of the image.

For every pixel of an image I, a function W (σp) will be
used to weight its amplitude σp in regards of its region:⎧ 

α1 × σp, if the pixel is within S1;⎪⎨ 
α2 × σp, if the pixel is within S2;W (σp) = (1)
α3 × σp, if the pixel is within S3;⎪⎩ 
α4 × σp, if the pixel is within S4. 

Please note that to enhance the pixels closest to the target
structure, we need to ensure that α1 > α2 > α3 > α4.
Figure 3 illustrates an example of a mask generated by the
pixel weighting step. Finally, a median flter is applied to the
weighted image to further reduce the infuence of noise within
the enhanced regions.

III. THE SAMPLE CHALLENGE

A. Image database

The experiments presented in this paper have been con-
ducted on high-resolution SAR images originally acquired by



1111 
1111 
1111 
1111 

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

1

1.2

0

5

10

15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Morphological
Operations

Original Image Thresholding Pixel Weighting Enhanced Image

Fig. 2. The proposed ATE method. An image, either measured or synthetic, is thresholded in an adaptive way to capture the target structure, but other bright
pixels are also detected. Morphological operations are employed to preserve only the dominant structure, i.e., the target. Pixel weighting is applied to ensure
that pixels close or within the target location are considered to a greater extent than background pixels. Finally, the mask is applied to the original image,
and the target is enhanced after a median flter is used.
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Fig. 3. Illustration of the mask generated by the pixel weighting step. Each
of these non-overlapping regions is associated with a different multiplier.

the Air Force Research Laboratory (AFRL) and Defense Ad-
vanced Research Projects Agency (DARPA) between 1995 and
1997. This project resulted in the MSTAR dataset, available
in [7], and widely used for testing ATR techniques. However,
since this database is relatively small and the images share
several characteristics – like radar operating parameters and
target articulation – ATR classifers may fail to generalize.
Aiming to overcome this issue, a portion of the data has been
artifcially recreated as part of the SAMPLE [8] database,
which is based on CAD models.

The SAMPLE database consists of 1366 paired images
from 10 vehicle classes, where each pair is composed of a
measured X-band SAR image from the MSTAR dataset and
its corresponding computer-simulated one. Each image has
128 × 128 pixels with an element spacing of 0.2 × 0.2 m
and a spatial resolution of 0.3 × 0.3 m. The data have been
sampled in azimuth from 10° to 80° and in elevation from 14°
to 17°. The vehicle classes are described in detail according
to the number of available images in Table I, while a visual
comparison between measured and synthetic data can be seen
in Figure 4.

Among the several challenges that have arisen with the
SAMPLE dataset, a critical one is replacing measured SAR
images with their synthetic counterparts with minimal perfor-
mance loss. The experiments are thus conducted for different
proportions of real data used for training. The metric

Number of measured images
k = , (2)

Total number of images

is employed to express the percentage of real data used in the
experiments.

TABLE I
DESCRIPTION OF VEHICLE CLASSES CONSIDERED IN THIS PROBLEM.

Class Measured Synthetic Type Traction

2S1 177 177 Tank Tracked
BMP2 108 108 Tank Tracked
BTR70 96 96 Tank Wheeled

M1 131 131 Tank Tracked
M2 129 129 Tank Tracked
M35 131 131 Truck Wheeled
M548 129 129 Truck Tracked
M60 178 178 Tank Tracked
T72 110 110 Tank Tracked

ZSU23 177 177 Tank Tracked

B. Related works

Along with the SAMPLE database, a baseline classifer
based on CNNs – which will be further discussed in Section
IV – is also proposed in [8]. Since it has been shown through
their experiments that the classifcation accuracy is severely
affected as k decreases, a series of investigations has been
devoted to address this issue.

The benefts of adapting the data for increasing the clas-
sifcation performance when k decreases were shown in [9],
where the synthetic images are pre-processed in three steps.
First, a VBJS technique is used to remove speckle noise.
Second, a quantization technique is applied to the target region.
Finally, the background of the synthetic images is replaced by
the background of the equivalent measured images. Addition-
ally, they considered a modifed DenseNet classifer instead
of the baseline CNN from [8]. An accuracy of over 90% was
reported even for smaller values of k, achieving an accuracy
of around 84% for the specifc case when k = 0, i.e., when
all of the images used for training are synthetic.

Another approach to handle the inherent differences be-
tween simulated and measured data was proposed in [10].
The so-called matching component analysis (MCA) aims to
identify a common domain between training and test sets, here
represented by synthetic and measured images, respectively. To
that end, they defne a subset of labeled samples from the test
domain and match them with points of the original training
set. After the MCA is run to fnd affne linear mappings to a
common domain, a k-nearest neighbor (kNN) classifer is used
by training with synthetic images and testing on measured
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
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Fig. 4. Ten possible vehicle classes within the MSTAR dataset. (a)-(j): 2S1, BMP2, BTR70, M1, M2, M35, M60, M548, T72, and ZSU23 vehicles represented
by measured images, respectively. (k)-(t): Corresponding synthetic images of the vehicles.

ones. With a matching set of 100 samples – which can be
seen as an effective k of approximately 0.1 – an accuracy of
87% was achieved.

It is important to highlight some drawbacks of both ap-
proaches. In [9], the use of clutter information from the
measured images implies the necessity of having access to real
data for classifcation, even when k is low. This also suggests
that their performance is heavily dependent on the terrain
in which the target is placed. Furthermore, the complexity
of the approach is increased, given the VBJS computational
cost and the DenseNet classifer. In [10], although a simpler
classifer is used, their feature extraction process relies on
selecting a number of matching samples composed both of the
target signature and the background clutter. This implies that
access to real data is still required. Therefore, the challenge
of successfully classifying measured images of the SAMPLE
dataset when only using information of synthetic images for
training remains open.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To demonstrate the effectiveness of the ATE technique,
we implemented the same classifer as proposed in [8], a
CNN with four convolutional layers and four fully connected
layers. The details of this architecture are outlined in Table II.
The CNN was implemented in MATLAB, using the Adam
optimization algorithm with a learning rate equal to 1−3 .
We train the algorithm using batch sizes of 16 images for
60 epochs, considering only samples with elevation angles
between 14° and 16°, leaving data collected at a 17° elevation
angle for testing. The images were evenly cropped on the sides
to a size of 64×64 pixels each, in accordance with [8]. During
training, 15% of the images were used for validation.

For the baseline, we implemented the network of Table
II without pre-processing any of the images. The parameters
used for the ATE results are disposed in Table III. To defne
the target region S1, the thresholding constant λ should be
chosen carefully. If it is set too high, potential target pixels
can be missed, and the morphological operations will not be
able to fully reconstruct the target. On the other hand, if it
is set too low, the closing operation can impact the target’s

TABLE II
DESCRIPTION OF THE IMPLEMENTED CNN.

Layer Dimension Activation

Input 64 × 64 × 1 

Convolutional
Max-Pooling

64 × 64 × 16 
32 × 32 × 16 ReLU 

Convolutional
Max-Pooling

32 × 32 × 32 
16 × 16 × 32 ReLU 

Convolutional
Max-Pooling

16 × 16 × 64 
8 × 8 × 64 ReLU 

Convolutional
Max-Pooling

8 × 8 × 128 
4 × 4 × 128 ReLU 

Flatten 2048 

Fully connected 1000 ReLU 

Fully connected 500 ReLU 

Fully connected 250 ReLU 

Fully connected 10 ReLU 

TABLE III
PARAMETERS USED FOR THE EXPERIMENTS.

Processing step Parameters Adopted value

Thresholding λ 5 

Morphological operations Closing SE
Opening SE

5 × 5 
Adaptive

α1 1.00 

Pixel weighting α2 
α3 

0.60 
0.40 

α4 0.05 

Median flter Window size 3 × 3 

shape. Values in the range of λ = 2 to λ = 6 were tested,
as well as several SEs for the closing operation. As for the
extension of the non-overlapping surrounding regions S2 and
S3, we defned their coverage radius as an expansion of six
and four pixels, respectively. Both the weight values and the
extent of the regions were defned empirically. For the specifc
case of the SAMPLE dataset, we found that the most critical
parameter was the α4 weight. This was expected given the
major discrepancy between the backgrounds of the measured
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and synthetic images, reported in [9] and further discussed
in Section IV-B. Regarding the coverage radius, narrower
surrounding regions were also better than larger ones.

B. Data analysis

We frst look into the discrepancy between the background
of the synthetic and measured images of the SAMPLE dataset,
shown in Figure 5. In this analysis, we extracted the pixels
associated with a vehicle in every single image of both
synthetic and measured domains. The remaining pixels are
considered to be part of the image background. While Fig. 5(a)
shows that similar statistical behavior is expected for both the
synthetic and measured images’ pixels within the target region,
Fig. 5(b) suggests that the data distribution is very different
when comparing the background pixels of both domains. This
result reinforces the need to adapt or suppress the image
background to increase the similarity between the domains.

(a) (b)

Fig. 5. Histogram of the set of pixels associated with the (a) target and (b)
background region of the images. The data from the synthetic and measured
images are represented in gray and blue, respectively.

In Figure 6, we show the activation of the feature maps
of the network’s frst convolutional layer with and without
considering the ATE technique. The network is trained only
with synthetic data in both cases. The ATE pre-processing
enhances the target structure within the image while suppress-
ing the image background, which directly affects the feature
extraction process. With the proposed pre-processing, edges
and basic structures are now more visible in the flters.

(a) (b) (c) (d)

Fig. 6. Feature maps generated on the frst convolutional layer: (a) synthetic
and (b) measured images without using the proposed ATE method, (c)
synthetic and (d) measured images with the ATE method.

C. Classifcation performance

We frst compare the classifcation results when employing
the CNN of Table II with and without using the proposed ATE
step. In this paper, we focus solely on the case when k = 0,

i.e., when all of the images used for training are artifcially
generated. We used the following metrics:

TP
Recall = , (3)

TP + FN 

TP
Precision = , (4)

TP + FP 

2TP
F-measure = , (5)

2TP + FP + FN 
where TP, FN, and FP stand for true positive, false negative,
and false positive, respectively.

The normalized prediction outcomes are shown in Figure 7
as confusion matrices for both cases. Please note that the main
diagonal of each confusion matrix denotes the recall per class.
The overall results for the baseline (Fig. 7(a)) and when using
the proposed ATE (Fig. 7(b)) are summarized in Table IV.

TABLE IV
CLASSIFICATION PERFORMANCE.

Method Recall Precision F-measure

CNN (baseline) 68.6% 73.0% 70.7% 
ATE + CNN (proposed) 84.5% 85.3% 84.9% 

V. CONCLUSIONS

This paper proposes an easy-to-implement preprocessing
technique to bridge the gap between synthetic and measured
SAR images for ATR algorithms. The method delimits a target
structure through adaptive thresholding and morphological
operations steps, then defnes regions surrounding its zone
of infuence. Each region is multiplied by a weight, and the
fndings presented in this paper suggest that the classifca-
tion performance can be improved if the background region
is suppressed. A possible explanation for this outcome is
the mismatch between the environmental conditions of the
synthetic and measured images, which has been reported in
some related works and further investigated in this paper. The
method provides a considerable gain in accuracy compared to
the baseline classifer and performs similarly to the approaches
that used measured data. Future works should address the pos-
sible implications of limiting the feature extraction process to
only the target’s structure, investigating ways of automatically
tuning the weights for extracting the most useful information
for other datasets.
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Fig. 7. Confusion matrix, normalized by the number of images per class: (a) without using the proposed ATE and (b) using the ATE method.
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