
Information and Software Technology 163 (2023) 107299

A
0

C
A
a

b

c

A

D
0

K
G
G
S
C
M
G
P

1

t
p
e
r
O
v
r
i
e
b
i

d
v

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ode review guidelines for GUI-based testing artifacts
ndreas Bauer a,∗, Riccardo Coppola b, Emil Alégroth a, Tony Gorschek a,c

Software Engineering Research Lab (SERL), Blekinge Institute of Technology, Karlskrona, 37179, Sweden
Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy
Fortiss, Germany

R T I C L E I N F O

ataset link: https://zenodo.org/record/72482
1

eywords:
UI testing
UI-based testing
oftware testing
ode review
odern code review
uidelines
ractices

A B S T R A C T

Context: Review of software artifacts, such as source or test code, is a common practice in industrial practice.
However, although review guidelines are available for source and low-level test code, for GUI-based testing
artifacts, such guidelines are missing.
Objective: The goal of this work is to define a set of guidelines from literature about production and test
code, that can be mapped to GUI-based testing artifacts.
Method: A systematic literature review is conducted, using white and gray literature to identify guidelines for
source and test code. These synthesized guidelines are then mapped, through examples, to create actionable,
and applicable, guidelines for GUI-based testing artifacts.
Results: The results of the study are 33 guidelines, summarized in nine guideline categories, that are
successfully mapped as applicable to GUI-based testing artifacts. Of the collected literature, only 10 sources
contained test-specific code review guidelines. These guideline categories are: perform automated checks, use
checklists, provide context information, utilize metrics, ensure readability, visualize changes, reduce complexity, check
conformity with the requirements and follow design principles and patterns.
Conclusion: This pivotal set of guidelines provides an industrial contribution in filling the gap of general
guidelines for review of GUI-based testing artifacts. Additionally, this work highlights, from an academic
perspective, the need for future research in this area to also develop guidelines for other specific aspects
of GUI-based testing practice, and to take into account other facets of the review process not covered by this
work, such as reviewer selection.
. Introduction

The development and evolution of software is a complex under-
aking dependent on a high degree of collaboration between many
rofessionals with varying skill sets and expertise ranging from differ-
nt technical skills to domain knowledge [1]. This has led to a rise and
eliance on team-based activities to enable this type of collaboration.
ne commonly used practice of team-enabling activities is code re-
iews [2,3]. Code review is a software engineering practice where peers
eview a code contribution before additions or changes are integrated
nto the code base [4,5]. As a practice, code reviews help to catch
rrors and improve sub-optimal solutions on different types of artifacts,
ut also enable knowledge and experience sharing and, maybe most
mportantly, allow active collaboration in the team [5,6].

Another practice that has become ubiquitous in modern software
evelopment is automated testing [7]. Automated testing is used to
erify the conformance of the developed software to its requirements

∗ Corresponding author.
E-mail addresses: andreas.bauer@bth.se (A. Bauer), riccardo.coppola@polito.it (R. Coppola), emil.alegroth@bth.se (E. Alégroth), tony.gorschek@bth.se

T. Gorschek).

in an automated fashion and is run frequently to provide continuous
feedback to developers. Test automation can be performed on multiple
levels of system abstraction, from low-level unit tests to high-level
system tests and Graphical User Interface (GUI) tests. Notably, GUI-
based tests can verify the behavior of a system through interactions
with its GUI in a similar way a user would [8,9]. Thus, GUI-based
testing constitutes a powerful tool to find regression defects that user
would otherwise encounter [8].

Guidelines within Software Engineering aim to provide actors in the
software development process with best practices for high-quality soft-
ware development. But most existing guidelines that seek to improve
the effectiveness and efficiency of code reviews focus on source code
and lower-level test code [10]. In fact, to the best of our knowledge,
no review guidelines have been proposed for GUI-based tests, even
though similar quality benefits can be assumed to source code due to
the GUI test code’s similar characteristics. This observation is supported
by results from interviews with GUI-based testing experts from the
vailable online 5 July 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107299
eceived 7 November 2022; Received in revised form 16 April 2023; Accepted 29
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

June 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
mailto:andreas.bauer@bth.se
mailto:riccardo.coppola@polito.it
mailto:emil.alegroth@bth.se
mailto:tony.gorschek@bth.se
https://doi.org/10.1016/j.infsof.2023.107299
https://doi.org/10.1016/j.infsof.2023.107299
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107299&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 163 (2023) 107299A. Bauer et al.
industry, who state that they use ad hoc guidelines due to the lack
of general guidelines in the literature. Coupled with reports that GUI-
based tests often suffer quality issues, we see a concrete need for
research in this area to both aid industrial practitioners and bridge a
gap in knowledge in academia.

In this study, we investigate existing literature on guidelines for
code reviews of software development artifacts for the purpose of
mapping such guidelines for use on GUI-based testing artifacts. For
this investigation, we performed a Systematic Literature Review (SLR)
complemented by a gray literature review to extract review guidelines
for source and test code. These results are then synthesized into a
set of nine code review guideline categories. Using expert judgement
and experience with GUI-based test techniques, these categories are
then mapped, through examples of application, to GUI-based testing
to create review guidelines for GUI-based testing artifacts. We stress
that the study is delimited to guidelines explicitly related to review of
artifacts, e.g., code files. Thus, omitting guidelines associated with less
tangible aspects of the review process or review environment, such as
reviewer selection or effort allocation [11–13].

Based on our results, we claim the following contributions:

• A macro-analysis of review guidelines of source and test code in
existing white and gray literature;

• A set of nine code review guideline categories that are mapped as
applicable to GUI-based test artifacts;

• Examples of how to apply the identified code review guideline
categories to GUI-based test artifacts.

The remainder of the paper is organized as follows: in Section 2 we
provide background information about GUI-based testing and Modern
Code Reviews; in Section 3 we illustrate the methodology that we
employed to conduct our literature review; in Section 4 we report
the results of the review; in Section 5 we discuss the results and the
threats to validity of the present study; in Section 6 we conclude the
paper by summarizing the main findings and providing future research
directions.

2. Background and related work

The following subsections provide definitions of the concepts of
GUI-based Testing and Modern Code Review and references to liter-
ature related to Code Review of production and test artifacts.

For the sake of clarity, in the remainder of the manuscript we will
adopt the following definitions: we will call production artifacts the
parts of the system containing the logic of the project and running
in production. We will call as test artifacts the parts of the system
containing the test cases which verify if the application works as
expected. The nature of test artifacts depend on the specific testing
technique that is applied to the project.

2.1. GUI-based testing

Graphical user interface (GUI) testing can be utilized for different
test purposes, categorized on a general level of abstraction into two
types; (1) GUI tests and (2) GUI-based tests [8]. GUI testing is de-
fined as the practice of verifying the correctness of the GUI’s visual
appearance according to the system under tests (SUT) requirements,
e.g., that components have the right shape, color and positioning.
GUI-based tests, on the other hand, are defined as the practice of
testing a SUT’s conformance to its functional requirements through its
GUI [8,9]. These tests are thereby system-level tests that are performed
through End-to-End (E2E) scenarios—Sequences of events performed
against the GUI [14]—that are executed with test drivers that can
interact with the SUT’s visual GUI, the GUI model or other GUI-related
interfaces. These tests can be manual or automated and are commonly
used for regression testing [7]. However, for this work, we primarily
2

discuss automated GUI testing with tests written as testware (e.g., test
scripts or test code) or model-based tests (e.g., visual, textual or formal
models) [15].

GUI-based testing can be categorized in different ways. One cate-
gorization is based on the way the test cases are defined where three
categories of tests are usually discussed, i.e., scripted tests, capture
and replay and model-based tests. Scripted GUI-based testing is based
on the development of test scripts, or test code, with the usage of
dedicated automation APIs, tools and frameworks (e.g., Selenium in
the web application domain [16]). Capture & Replay testing resorts
on providing instruments, usually in the form of tools, to record the
operations performed by a tester, or user, on the GUI of the system,
to generate re-executable test sequences [17]. Model-based testing is
based on the, either manual or automated, generation of models of the
SUT’s intended behavior from a GUI level of abstraction. These models
are then used to generate test sequences that provide coverage of the
different states of the GUI [18]. These models may be visual (i.e., de-
fined with nodes and vertexes) but can also be textual (e.g., utilized in
behavioral-driven development) or formal (e.g., mathematical models).

Another categorization of GUI-based test techniques, provided by
Alégroth et al. [19], is based on the GUI-based tests means of in-
teracting with the SUT, i.e. their test drivers. In this categorization,
three different generations of GUI testing approaches are identified.
Coordinate-based, or first generation GUI testing, is an approach driven
by tools that identify the elements of the GUI through their coor-
dinates on the screen. These tools generally utilize the capture and
replay paradigm, where coordinates to GUI elements are provided
by a human user during the recording of test sequences. Component-
based, or second generation testing, is an approach driven by tools that
perform interactions through the GUI’s layout model or properties,
e.g., through access to an application’s document object model (DOM)
on web applications or other GUI interfaces. Lastly, Image recognition-
based, or third generation GUI testing, is an approach driven by tools
that utilize computer vision to identify elements on the screen based
on their visual appearance [20].

Whilst these classifications differ and outline a plethora of different
types of automated GUI-based testing approaches, they are all used
for the same test purpose, i.e., system-level testing. However, whilst
research into the technology used by the approaches is ubiquitous,
research into guidelines and ways of using the approaches is less
common, leaving a gap in knowledge. Development guidelines for GUI-
based tests have been proposed [21], but guidelines for reviews of
GUI-based tests are, to the best of our knowledge, not covered in
the body of knowledge. Such guidelines are perceived important to
aid improve the effectiveness and efficiency of both individual and
team-based GUI testing.

2.2. Modern code review

Code reviews started as a waterfall-like procedure back in the 1980s
as software inspections, a practice where other developers manually
inspect artifacts to improve an artifact’s quality by verifying their
correctness [22,23]. Fagan [24] described this early form of software
inspection as a formal and highly structured process. As such, this
practice has been shown to be effective in finding both errors and
improvement potentials, applied throughout the development process
of any product. Nevertheless, the formal nature of this approach and
the resulting overhead hindered the adoption of software inspections
in the past [25].

Nowadays, code reviews have transformed towards informal, tool-
supported, lightweight processes that build a communication plat-
form for developers [5,26–28]. This current form of code reviews is
a common practice in most agile software development companies
and open source software projects, also known as Modern Code Re-
view (MCR) [5,29]. Dedicated code review tools such as Gerrit [30],
Phabricator [31], or CodeFlow [32] support the code review process

by providing context-specific information. Modern software forges such



Information and Software Technology 163 (2023) 107299A. Bauer et al.
as GitHub [33], GitLab [34], or Bitbucket [35] even integrate the
functionalities of these dedicated tools as a part of their collaborative
software development workflows.

In this work, we use the term code change to refer to added, deleted
or changed code that is inspected through a code review. This practice
is instigated by the change provider, e.g., a developer, who submits an
artifact for review by a reviewer. Other terms, used interchangeably
in literature for this practice, are changeset or patch. The latter is a
common term in the Open Source Software community to describe
artifact contributions [28].

Davila and Nunes [29] performed an SLR on the topic of modern
code reviews and proposed a taxonomy for the approach. Through this
work, the authors identified studies that propose strategies for MCR,
which are categorized into phases of the MCR process that are; (1)
review planning and setup, (2) code review, and (3) process manage-
ment and support. In the planning category, most studies focus on
reviewer recommendation and automated selection of reviewers. Only
one study in this category is related to the code change itself, proposing
a tool to add a narrative to the code and multimedia resources to
support code change documentation. Reviewers can then reproduce the
change and provide feedback based on a replay of these multimedia
comments. In the code review category, the main identified strategies to
support the code review process were to provide visualizations of code
changes, present properties associated with the changes, and support
for the analysis of change impact. Of the 22 included studies, 15
studies propose code-checking tasks for the purpose of understanding
code changes. In 10 of these 15 studies, approaches to code change
visualization are proposed.

In a study by Dong et al. [10], 57 practices and 19 code review
pains from Open Source Software and industrial communities are sum-
marized. From these results, best practices are derived and organized
in 5 steps based on the lifecycle of the MCR process. One conclusion of
their study is that the code context is one of the most difficult things
for reviewers to understand.

Analysis of the included papers in the aforementioned work indi-
cates that MCR is mostly studied in the context of software develop-
ment. However, in a study by Spadini et al. [36], test code reviews
were also investigated, in particular how developers discuss such code.
Results show that reviewers mainly discuss code improvements, sug-
gesting better testing practices and some generic code quality practices
to ensure the maintainability and readability of test code. These discus-
sions also served to provide code improvement to understand whether
a test covers all paths of the production code, i.e. provide coverage.
This is an interesting outcome of the study since coverage is a relevant
attribute for test code reviewers that is not relevant for source code.

Another practice that was observed was that test code reviewers
requested clarification of the implementation intention by asking for
the rationale of the change. For knowledge transfer, reviewers link
to external resources containing documentation or example to solve
a problem that is part of the code change. In other cases, reviewers
directly provide an example of how to tackle an issue that is discussed
during a code review. The outcomes from the study of reviews of test
cases overlap with the findings of Bacchelli and Bird [5]. For instance,
the challenges that reviewers of both source and test code face are
due to a lack of context and reasonable navigation possibilities within
code review tools. Such functionality is valuable since, when reviewing
test code, reviewers must often switch between the test and production
code back and forth to understand the impact of a change. The paper
concludes with features for future code review tools, such as ways of
providing context information to more easily understand and inspect
the classes that are under test and their dependencies, enable easy
navigation between test and production code, and provide detailed
3

code coverage information for tests.
3. Study design

The objective of this work is to identify guidelines for the review
of GUI-based testing artifacts by mapping guidelines from source and
test code review to GUI-based testing. These guidelines, from existing
literature, are acquired through a systematic literature review comple-
mented with a gray literature review. Before that, we conducted six
interviews with industrial GUI testing experts to ensure that there is
an industry need for guidelines. The mapping is performed by looking
at characteristics that are common to GUI test artifacts compared
to production and non-GUI test artifacts and what review guidelines
target each characteristic. Logical inference is then used, together with
the author’s expert judgment and experience with GUI testing (over
30 years of combined knowledge from industry and academia), to map
each guideline as applicable to GUI testing. Using logical inference, a
person (or machine) goes beyond available evidence to form a conclu-
sion Johnson-Laird [37]. Thus, a conclusion is valid if the premises (a
guideline can be applied to GUI testing) is true but do not follow any
specific logic. In detail, this mapping is performed in a systematic top-
down approach, where we (1) evaluate the purpose of each guideline,
(2) group guidelines in categories and (3) provide examples of how
these guidelines apply to GUI test artifact review. Thereby providing
a chain of logic to tailor the original guideline for source or test code
to GUI test artifacts.

The goal of this work is thereby to acquire a set of guidelines for
GUI-based test artifact review, motivated by a stated need for such
guidelines from industrial practice. This work is further motivated by
an identified gap in guidelines for GUI-based testing, including GUI test
review, in academic literature.

3.1. Research questions

To achieve the research objective, and meet the research goal, the
objective has been broken down into two research questions to guide
the research.

• RQ1. What are the guidelines, from white and gray literature, for
source code artifact review?

The rationale for this question is to acquire an overview of the most
discussed review guidelines such that they can be used as input for
the mapping to GUI-based testing artifacts. The answer to this research
question will serve as a preliminary body of knowledge about generaliz-
able code review guidelines (i.e., including generic test and source code
review) and not specific to GUI-based test artifacts. This preliminary
step was necessary because, after performing iterative tuning of the
search string, we did not find a sufficiently large body of evidence to
support the search by only looking for ‘‘GUI-based test’’ or ‘‘test’’ in the
search string.

Due to the study’s objective of providing an industrial contribution,
both white and gray in literature will be reviewed. The synthesized
guidelines are intentionally kept on a higher level of abstraction, re-
ferred to as guideline categories, to ease the mapping to the specific
characteristics of GUI-based tests. Furthermore, the literature review
will only focus on artifact guidelines, omitting to review guidelines
connected to processes, teamwork, and other non-tangible aspects.

• RQ2. To what extent can source and test artifact review guidelines
be mapped for GUI-based test artifact review?

The rationale for this research question is to meet the research objective
by mapping the guidelines found to answer RQ1 to GUI-based testing
artifacts. The mapping is conducted based on GUI test artifact char-
acteristics, stated pre-conditions for review activities connected to the
guidelines identified for RQ1 as well as the authors’ expert judgement
and experience with GUI testing (in excess of 30 years of combined

knowledge from both industry and academia).



Information and Software Technology 163 (2023) 107299A. Bauer et al.

z

3.2. Methodology

The methodology used for this work is divided into five phases:

(1) Interviews with experts
(2) Literature collection;
(3) Data extraction and analysis;
(4) Elicitation and categorization of the guidelines through coding;
(5) Mapping of identified guidelines to GUI-based test artifacts.

All five phases of the study were conducted consecutively, where the
output of one phase was used as input to the next phase in iteration.
As such, most of these work sessions were held online.

The collaborative sessions were conducted according to the mini-
Delphi method for face-to-face meetings, where meeting sessions were
closed once a consensus was reached between the authors [38]. These
sessions were utilized for (1) the design of the literature review (2) the
literature search (3) the analysis of acquired literature sources and (4)
the mapping of results to GUI-based test artifacts.

We used an online spreadsheet (Google Sheet) to organize the
data through all the phases of the methodology. The spreadsheet also
enabled collaborative, asynchronous, work whilst retaining traceability
of guidelines back to their original sources.1

In the continuation of this section, the detailed activities of each
phase of the study will be presented. Wherever suitable, practices that
affect the research validity have been added. For a longer discussion
about the study’s threats to validity, we refer the reader to Section 5.1.

3.2.1. Interviews with experts
As a starting point for this study and to ensure that there is an

industry need for code review guidelines for GUI-based test artifacts we
conducted expert interviews. These interviews were part of a general
research interest in how GUI-based testing is integrated into an overall
development process and are not solely for this study. Thus, we did
not consider the interview results as primary data sources, but rather as
complementary sources that motivate the study’s importance. Of the 18
questions asked, three were used for this study since they were explicit
regarding the usage of tools and reviews of test cases. These interviews
were semi-structured with six GUI testing experts from three Swedish
companies in the domains of consulting, financial technology and music
streaming.

The interviewees were sampled through convenience sampling—
Convenience sampling is a non-random sampling where members meet
certain practical criteria [39]—from our industrial network. To fulfill
the practical criteria, an interviewee must (1) be a professional engineer
working in the industry, (2) have more than 5 years of industrial expe-
rience with GUI testing, (3) speak English or Swedish, (4) be available
when we conduct the study. As a tool-related question, we asked the
interviewees ‘‘What GUI-based testing approaches do you have experience
with?’’ with the follow-up question ‘‘What were the tools you used for
it?’’. We used these mentioned tools as additional gray literature sources
to extract guidelines from a tool’s website, manuals, and wikis. The
interviewees were also asked if they adopted code reviews of GUI test
for quality assurance and if they had used or knew of any general
guidelines for GUI-based testing or reviews. However, although the
interviewees use code reviews, they knew of no general guidelines,
stating instead that the guidelines they had used were developed ad
hoc to fit specific contextual needs. The interviewees also stated that
general guidelines would, based on their own experiences, be of both
industrial interest and benefit.

Prior to the interviews, the interviewees were sent our questions and
information about the study’s purpose to prepare them thematically.

1 The dataset is available at the following URL: https://doi.org/10.5281/
enodo.7248201.
4

The interview guide was structured as follows: (1) preamble with
explanations regarding confidentiality and consent to audio record
the interviews, (2) background information about the interviewee’s
industrial experience, (3) the interviewee’s experience with GUI-based
testing, (4) team aspects of GUI-based testing, including use of reviews,
(5) troubleshooting of failing tests, (6) closing thoughts and asking for
topics we did not cover during the interview but seen as important by
the interviewee.

We conducted all interviews remotely via video chat and recorded
the audio. After the interviews, all audio recordings were transcribed
for further analysis.

3.2.2. White literature collection
The first phase of the study aimed to find a suitable set of literature

sources for data extraction to answer RQ1. This need arose from
a preliminary search of explicit reviewing guidelines for GUI-based
testing artifacts which resulted in no tangible results. As such, instead
of synthesizing existing guidelines, a mapping approach was chosen,
taking best practices and guidelines for review of related artifacts as
input.

The SLR was conducted following a subset of Kitchenham’s guide-
lines to conduct Systematic Literature Reviews [40]. Specifically, we
applied all the steps of the Planning and Conducting phase in Kitchen-
ham’s guidelines, with the exception of the prescribed forward and
backward snowballing steps after the first phase of collecting literature
sources. We did not deem it necessary to perform snowballing because
of the size of the set of gathered literature and because of the theoretical
saturation of concepts elicited from the first round. Although this
represents a threat to the validity of the result, due to the reasons
stated, we find this threat to be minor.

The white literature collection, as stated in Fig. 1, involved the
following steps:

Selection of Digital Libraries: Five digital libraries were used for
our search; IEEE Xplore, ACM Digital Library, Science Direct,
Springer Link, and Google Scholar. These were chosen be-
cause of their common use in software engineering literature
reviews and their perceived complementary overlap of the liter-
ature [41].

Search String: A search string was then formulated and applied to
the databases. The search string was, as mentioned, discussed
through the mini-Delphi method, and iterated until a suitable
base sample of papers was found. We formulated our search
string to be as broad as possible, including the mandatory
terms Code Review (or Software Review) and one of a set of six
synonyms of Guidelines. Therefore, based on the applied search
string, the terms ‘‘code review’’ and ‘‘software review’’ are con-
sidered as synonyms throughout all of the present manuscript.
We opted to not include the testing or GUI-based testing at this
research phase, because of the very limited number of sources
that could be found by applying such keyword in the search
string.

The final, general, search string is defined as follows:

(‘‘code review’’ OR ‘‘software review’’) AND (Guideline OR
Information OR Data OR Framework OR Practice OR ‘‘Best
Practice’’)

This general search string was then adapted to the specific
syntax of each of the selected libraries. To evaluate the depend-
ability of the search string, throughout its iteration, we tested
the string and, through random sampling, checked the validity
of the found sources in pilot searches where resulting papers
were randomly selected and reviewed for validity.

https://doi.org/10.5281/zenodo.7248201
https://doi.org/10.5281/zenodo.7248201


Information and Software Technology 163 (2023) 107299A. Bauer et al.
Fig. 1. Summary of the research approach.
Because of the high number of returned results, we limited the
search on Science Direct to title, abstract and keywords, on
ACM Digital Library to abstract and title, and on Springer Link
and Scholar to titles. To enable reproducibility of the study, we
limited our search results to the end of June 2022. Table 1 lists
the number of sources extracted from each library by applying
the search string.

To facilitate the continued data extraction and analysis phases,
we organized all found sources in a spreadsheet (data extraction
form [40]) and marked each source with the following at-
tributes: unique identifier, library, title, authors, year of publication,
article URL, venue, exclusion reason, and comments. Before data
extraction, the form was discussed by all authors.

Duplicate Removal: After the sources had been extracted, we applied
an automated text analysis script on the elicited CSV files to
remove all the duplicated papers from our initial set (i.e., papers
with the same name and same set of authors). If a source was
listed in multiple digital libraries, we kept only a single instance
of the paper in our final paper pool, keeping the source from the
library where the source was first encountered (according to the
order in Table 1).

Inclusion Criteria: To evaluate the relevance of sources to our re-
search objective, and enabling consistent evaluation among the
5

authors, we defined the following inclusion criteria:
• IC1: The source is related to production or test artifact
review;

• IC2: The source is an item of white literature available
in full-text, and published in a peer-reviewed journal or
conference (companion) proceedings;

• IC3: The source is written in a language comprehensible
by the authors: English, Italian, German, or Swedish;

• IC4: The source has been published before April 2022.

These criteria were applied to either the title and source of the
identified sources or its meta-data.

We do not explicitly list exclusion criteria as we consider them
as the direct negation of the Inclusion Criteria.

At the end of the white literature collection phase, we collected a
total of 1160 literature sources (without duplicates). On this set, we
applied the inclusion criteria for literature which resulted in 137 white
literature sources for further analysis.

3.2.3. Gray literature collection
After a preliminary analysis of the acquired sources, we got further

support for our previously stated observation that there is a lack
of academic literature about explicit guidelines for reviews of GUI-
based testing artifacts. Hence, whilst guidelines are available for source
and test artifacts, guidelines for GUI-based testing artifacts are not

available.



Information and Software Technology 163 (2023) 107299A. Bauer et al.

l
s

o
f
p

1
e
w
q
i
W
s
a
u
v
a

t
a

f

S

Table 1
Search results by library.

Library URL #Studies

IEEE Xplore https://ieeexplore.ieee.org 321
ACM Digital Library https://dl.acm.org 122
Science Direct https://www.sciencedirect.com 112
Springer Link https://link.springer.com 628
Google Scholar https://scholar.google.com 23

Duplicates 46

Total (without duplicates) 1160

In an attempt to address this lack of information, we extended the
iterature review to include also gray literature sources. As such, the
tudy can be classified as a Multivocal Literature Review (MLR) [42].

Gray literature (GL) is defined as what is produced on all levels
f government, in academia, business or industry in print and electronic
ormats, but which is not controlled by commercial publishers, i.e., where
ublishing is not the primary activity of the producing body [43].

Adams et al. classify gray literature into three different categories:
st tier (or high credibility), which includes books, magazines, gov-
rnment reports, and white papers; 2nd tier (or moderate credibility),
hich includes annual reports, news articles, presentations, videos,
uestion and answers on websites; 3rd tier (or low credibility), which
ncludes blogs, evidence from e-mails, posts on social networks [44].

e used this classification of GL as a template for our quality as-
essment questionnaire (Table 2) with the following adjustments to
id our research goals: 1st tier, Books, magazines, reports or doc-
mentation from companies; 2nd tier, News articles, presentations,
ideos, Wiki articles; 3rd tier, Blogs, emails, tweets, Q/A sites (such
s StackOverflow).

The use of gray literature served two distinct goals: (1) to attempt
o complement the missing information from the academic literature
nd (2) to provide guidelines based on an industrial perspective [45].

The gray literature was collected and filtered by performing the
ollowing steps:

nowballing from White Literature: We applied Backward
Snowballing, defined by C. Wohlin as using the reference list of
a paper to identify additional papers [46]. Backward Snowballing
was applied only to the final set of collected white literature
sources, i.e., after the application of inclusion criteria. However,
the snowballing was limited to only gray literature sources. This
is perceived as a possible threat to the search, i.e., that relevant
white literature sources may have been missed. However, due to
the comprehensive set of found sources, this threat is considered
minor.

As with white literature, we organized the gray literature
sources in a form that consists of unique identifier, title, article
URL, source (Google, interviews, snowballing), white literature ref-
erence if from snowballing, publication year, quality attributes (see
Table 2).

General-purpose Search Engine: The search was performed with the
same search string as for the white literature, applied to the
Google search engine. To limit the search in terms of the number
of found sources, we applied the Bounded Effort strategy to the
Google search result, meaning that only the first 100 Google
search hits were investigated.

Duplicate Removal and Inclusion Criteria: After collecting gray lit-
erature sources, we filtered the initial pool by applying duplicate
removal and IC1, IC3 and IC4 from the set of inclusion criteria
defined for white literature. IC2 was not applied since it would
have excluded all the identified sources at this stage.
6

Quality Assessment: To evaluate the quality of the collected gray lit-
erature sources, we applied a quality assessment questionnaire,
which is presented in Table 2. We used a 3-point Likert scale
(yes = 1, partly = 0.5, and no = 0) for the authority and outlet
criteria. For the backlinks, we used a 4-point scale based on
the percentile of the number of backlinks in our sample (≥75th
percentile = 1, ≥50th percentile = 0.75, ≥25th percentile = 0.5,
<25th percentile = 0).

The questionnaire was adapted from the quality assessment
questionnaire proposed in [42], where all the sources that had
a score higher than 2.5, in a range between 0 and 5, were kept
in the final set of sources.

Since these criteria do not directly apply to the interviews we
instead relied on the interviewees’ stated industrial experience
as a criterion for their credibility.

The described steps conducted for gray literature search allowed us
to obtain 378 gray literature sources (from snowballing, search on the
Google search engine, and tool mentions in expert interviews) without
duplicates. After applying the inclusion criteria and the final quality
assessment we were left with 105 gray literature sources that are used
to extract candidate guidelines in the next step.

3.2.4. Data extraction
After the literature source extraction, the elicited sources were

analyzed through the following steps:

Guideline Collection: All the sources were read in their entirety to
identify possible guidelines for code review. For efficiency, the
potential sources were split among the authors and read inde-
pendently. Each time a guideline or best practice for code review
was found in the paper, it was added as a candidate guideline
in a separate tab from the white literature source of the data
collection form.

For each candidate guideline we collected the following infor-
mation:

• The full text in the literature item describing the guideline;
• The nature of the guideline, i.e., if it is defined for source

or test code;
• If it is an explicit guideline, i.e., an actionable practice or

interpreted as such;

Inclusion/Exclusion Criteria for guidelines: We defined a set of in-
clusion and exclusion criteria for the guidelines to be kept
in our final set of sources. These criteria were used to filter
the candidate guidelines and ensure consistent inclusion by all
authors.

• IC1: The guideline must be related to human-readable
artifacts;

• IC2: The guideline must explicitly mention which type of
information it requires, i.e., its prerequisites, to be applied;

• IC3: The guideline must be usable for informal code re-
view, i.e., it should not require a highly structured process;

• EC1: The guideline is specific to an approach that does not
produce human-readable test artifacts;

• EC2: The guideline is tool-specific and cannot be general-
ized to other tools or frameworks;

• EC3: The guideline does not provide information about
the artifacts but refers to the test process, environment, or
actors.

https://ieeexplore.ieee.org
https://dl.acm.org
https://www.sciencedirect.com
https://link.springer.com
https://scholar.google.com


Information and Software Technology 163 (2023) 107299A. Bauer et al.

g
a
s

b
e

3

r
t
f
i

G
c
c
o
t
o
b

c
d

O

Table 2
Quality assessment questionnaire for gray literature. We use a 3-point Likert scale (yes = 1, partly = 0.5, and no = 0) for the authority and
outlet criteria.
Criteria Question

Authority Is the publishing organization reputable? For example, a research-, software- or technology organization.
Authority Is the author reputable? For example, experience, job title, or other publications in the field.

Outlet 1st tier GL (measure = 1): High credibility: Books, magazines, reports or documentation from companies
2nd tier GL (measure = 0.5): Moderate credibility: News articles, presentations, videos, Wiki articles
3rd tier GL (measure = 0): Low credibility: Blogs, emails, tweets, Q/A sites (such as StackOverflow)

Impact Number of backlinks (using https://www.seoreviewtools.com/valuable-backlinks-checker/) or citations.
The collection phase allowed us to obtain a set of 1128 candidate
uidelines (624 from WL, 504 from GL) that include duplicates. After
pplying the inclusion criteria to the original set, we obtained a final
et of 539 candidate guidelines (246 from WL, 293 from GL).

Among the Inclusion Criteria, IC3 (or the related EC3) proved to
e the most selecting, leading to the rejection of 84% of guidelines
xtracted from WL and 90% of guidelines extracted from GL.

.2.5. Data analysis and coding
After collecting the WL and GL sources, the final phase of the

esearch design was to analyze the collected sources. This was done
hrough coding to (1) identify the most mentioned review guidelines
or source and test code and (2) perform synthesis and mapping of the
dentified guidelines for GUI-based testing artifacts.

The procedure used in this phase was inspired by the Straussian
rounded Theory approach [47], more specifically the coding pro-
edure they propose. Grounded Theory is a data-driven approach to
onstruct a theory from raw data (i.e., data mined from the sources in
ur final set). The Straussian definition of Grounded Theory differs from
he original definition of the technique (i.e., Glaserian Grounded The-
ry [48]) since it allows the definition of research questions up-front,
efore starting analysis of the raw data.

The Straussian definition of coding consists of two separate and
onsecutive steps, open and axial coding. For this work, coding was
escribed and performed as follows:

pen Coding. In the first step of this approach, the captured text data
is analyzed, line by line, to capture the main concepts of a theory
under construction and identify possible overlaps between data
from different sources in the analyzed set. The application of
open coding allows the researcher to create categories, defined by
codes associated with guidelines, and then cluster the guidelines
under these categories. This clustering is made based on the
semantic meaning of the data, i.e. guidelines that have the
same or similar semantic content are clustered together. The
result of this coding is therefore a set of common definitions of
guidelines.

We applied the following operations to each guideline in our
final set of sources: (1) we searched for a code in the current set
of defined categories that is semantically compatible with the
current guideline under analysis. If a suitable code is present,
the guideline is assigned the existing code; (2) if no code in our
current code set is semantically suitable for the analyzed guide-
line, we create a new code and assign this code to the guideline.
Thus, the set of codes grows naturally as more guidelines are
analyzed.

For guidelines that were semantically ambiguous, the authors
resorted to expert judgement to determine if (1) an existing
code was suitable, (2) if more than one code was suitable or (3)
that no code was suitable. Open coding was performed indepen-
dently by two of the paper’s authors through individual passes
of the filtered set of guidelines. After the individual passes,
meetings were held to obtain a consensus on code assignment
to mitigate researcher bias.
7

Axial Coding. In the second step of the approach, as described in
the Straussian Grounded Theory, the purpose is to understand
how individual codes and related concepts are linked together.
Hence, the goal is to identify a structure in the theory that is
being built. In this study, after the codes were assigned to cat-
egories, axial coding was performed to find macro-categories of
related codes and define a hierarchy of codes. These hierarchies
were then used for the synthesis of the final set of guidelines.

We applied the following operations to each coded guideline in
our set of categories: (1) we searched for an existing macro-
category suitable to include the currently analyzed code. If such
macro-category is present, the category is assigned to it; (2) if no
suitable macrocategory exists to include the currently analyzed
code, a new macro-category is created.

Similar to the first step (i.e., open coding step), two of the
paper’s authors performed individual passes on the codes and
assigned a macro-category to each code. After the individual
passes, meetings were performed by using the mini-Delphi ap-
proach to obtain a consensus on what macro-category to assign
for each code.

In this work, the open coding phase resulted in a set of 33 codes.
These codes, after axial coding, were organized into nine higher-level
codes, representing artifact review guideline categories in this work.

Finally, using the hierarchical structure of raw data (i.e., guideline
definitions), codes (i.e., clusters of semantically equivalent definitions)
and categories (i.e., clusters of types of common guidelines) the map-
ping was done to GUI-based testing artifacts. This was achieved by
using the aforementioned information to formulate examples of how
the guidelines apply to GUI-based testing. These examples were taken
from literature or formulated by the authors based on their knowledge
and experience with GUI-based testing. They were later presented as
examples of application in the result section. For instance, for guideline
G9.2 Don’t repeat yourself (DRY), the page-object design pattern was
identified in the literature and provided as an example to apply this
guideline on GUI-based testing artifacts. Both DRY and the page-object
pattern aim to avoid code duplication to improve the maintainability
of production and test artifacts.

4. Results

In this section, we will present our results on used guidelines for
source and test artifacts to answer our research questions. At first, we
provide a macro analysis of the gathered white and gray literature
sources, which includes the distribution of literature per year and a
description of how guidelines from white and gray literature overlap.
These results, combined with test-specific guidelines that are marked
in Table 3, provide an answer to RQ1.

Next, we present the categories of used guidelines in Table 4,
followed by a structured textual format with descriptions and examples
of the application to GUI-based test artifacts, summarized in Table 5,
to answer RQ2.

https://www.seoreviewtools.com/valuable-backlinks-checker/


Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 3
Overview of code review guidelines used for source and test artifact review (WL = white literature, GL = gray literature, TS = test specific).

ID Guideline #WL #GL TS WL sources GL sources

G1 Perform automated checks

G1.1 Perform automated checks on the change 21 21 No S1, S2, S3, S9, S15, S18, S19,
S20, S25, S26, S27, S28, S30,
S36, S39, S42, S46, S60, S65,
S75, S79

GS1, GS4, GS6, GS7, GS8, GS9, GS11,
GS13, GS17, GS18, GS21, GS26, GS30,
GS36, GS37, GS47, GS49, GS50, GS55,
GS61, GS62

G1.2 Perform automated checks for code style 6 11 No S36, S47, S56, S73, S76, S77 GS5, GS11, GS14, GS15, GS17, GS21,
GS45, GS50, GS52, GS53, GS54

G2 Use checklists

G2.1 Provide/use a checklist 8 19 No S2, S6, S16, S19, S34, S42, S61,
S76

GS2, GS4, GS8, GS9, GS11, GS13, GS14,
GS15, GS20, GS22, GS26, GS30, GS37,
GS39, GS42, GS47, GS54, GS56, GS62

G3 Provide context information

G3.1 Provide additional context information 17 19 No S12, S14, S17, S22, S35, S42,
S46, S48, S50, S54, S62, S68,
S71; S72, S73, S74, S77

GS2, GS8, GS9, GS13, GS16, GS24,
GS27, GS30, GS35, GS36, GS37, GS39,
GS42, GS46, GS51, GS54, GS58, GS59,
GS63

G3.2 Provide rationale for the change 10 14 No S3, S19, S21, S22, S35, S36, S75,
S77, S78, S79

GS5, GS12, GS13, GS14, GS24, GS26,
GS28, GS36, GS40, GS42, GS47, GS50,
GS57, GS59

G3.3 Provide context information about the impact of
the change

1 1 No S22 GS3

G3.4 Provide information about the design and
architecture of code affected by the change

2 4 No S58, S63 GS5, GS21, GS54, GS59

G3.5 Provide links to related resources and
documentation

6 13 No S7, S10, S22, S29, S69, S79 GS3, GS5, GS13, GS17, GS19, GS21,
GS35, GS42, GS43, GS44, GS50, GS51,
GS59

G3.6 Provide information about the dependencies
between test and production code

1 0 Yes S77

G3.7 Provide context information about the history of
changes

4 0 No S18, S35, S62, S75

G3.8 Provide information about test edge cases 1 2 Yes S77 GS43, GS59

G3.9 Provide a prioritization of the files/classes of the
change

2 1 No S53, S55 GS36

G4 Utilize metrics

G4.1 Measure and monitor code metrics 7 7 No S35, S36, S37, S40, S45, S51, S62 GS2, GS4, GS26, GS31, GS39, GS37,
GS48

G4.2 Provide metrics about execution time (for
efficiency)

1 2 No S47 GS21, GS63

G4.3 Provide test coverage metrics (for effectiveness) 3 2 Yes S55, S57, S77 GS31, GS34

G5 Ensure readability

G5.1 Ensure readability of the change 5 9 No S1, S39, S42, S47, S76 GS5, GS13, GS21, GS23, GS31, GS41,
GS42, GS50, GS57

G5.2 Provide comments 2 7 No S47, S78 GS3, GS5, GS6, GS22, GS26, GS29,
GS47

G5.3 Follow coding style and naming conventions 2 23 No S38, S77 GS3, GS5, GS8, GS10, GS16, GS17,
GS19, GS20, GS21, GS23, GS29, GS31,
GS32, GS33, GS34, GS35, GS36, GS40,
GS41, GS42, GS43, GS51, GS63

G5.4 Follow coding style and naming practices in test
writing

2 0 Yes S67, S77

G5.5 Avoid code comments if they are not clear and
useful

0 5 No GS8, GS17, GS19, GS34, GS35

G5.6 Ensure proper usage of techniques for testing and
exception handling

2 5 Yes S47, S77 GS21, GS23, GS31, GS35, GS51

G5.7 Ensure correctness of assertions in test cases 1 2 Yes S77 GS23, GS31

G6 Visualize changes

G6.1 Provide a visualization of the change 9 1 No S11, S13, S31, S42, S49, S52,
S55, S66, S67

GS57

G6.2 Provide a visualization of the change regarding its
impact on the code base

3 0 No S5, S13, S40

G6.3 Allow tracability and easy navigation between
artifacts

2 0 No S42, S80

(continued on next page)
8



Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 3 (continued).
ID Guideline #WL #GL TS WL sources GL sources

G7 Reduce complexity

G7.1 Keep size of a change as low as possible 15 15 No S14, S18, S19, S22, S33, S36,
S39, S42, S43, S62, S64, S68,
S70, S75, S78

GS5, GS6, GS11, GS14, GS15, GS25,
GS27, GS28, GS31, GS35, GS50, GS54,
GS60, GS61, GS63

G7.2 Keep complexity of a change as low as possible 13 9 No S4, S8, S18, S22, S39, S41, S47,
S62, S68, S77, S78, S79, S80

GS3, GS19, GS22, GS28, GS29, GS31,
GS35, GS42, GS51

G7.3 Avoid unrelated and unstructured changes 6 8 No S14, S19, S23, S24, S47, S68 GS5, GS6, GS13, GS14, GS15, GS23,
GS34, GS56

G8 Check conformity with the requirements

G8.1 Ensure conformance with the requirements 0 3 No GS17, GS35, GS38

G9 Follow design principles and patterns

G9.1 Apply established design principles and patterns 0 9 No GS21, GS29, GS31, GS34, GS35, GS36,
GS42, GS50, GS51

G9.2 Don’t repeat yourself (DRY) 0 4 No GS21, GS31, GS42, GS43

G9.3 Avoid hardcoded values 0 2 No GS31, GS34

G9.4 SOLID principle 0 3 No GS21, GS31, GS42
Table 4
Categories of code review guidelines used for source and test artifact review (WL = white literature, GL = gray literature).

ID Guideline category #WL #GL Description

G1 Perform automated checks 27 32 Perform automated checks to reduce the effort of the reviewer and avoid discussion
about low-level code issues

G2 Use checklists 8 19 Create and use a checklist to prepare code changes for review and guide the
reviewer during the code review

G3 Provide context information 44 54 Providing contextual information to aid the reviewer in understanding the code
changes, e.g., the rationale of the proposed changes

G4 Utilize metrics 11 11 Utilize metrics on the code changes to monitor the effects of changes, predict the
impact of code changes on the code base, and support decision-making in the review
process

G5 Ensure readability 14 51 Ensure the readability and understandability of code changes

G6 Visualize changes 14 3 Support the reviewer with a visual representation of code changes to understand the
impact of code changes and allow easier navigation between related artifacts

G7 Reduce complexity 34 32 Avoid and reduce the complexity of code changes due to their negative impact on
reviewability

G8 Check conformity with the requirements 0 3 Ensure code changes are aligned with requirements and test specifications so that
the changes are not implementing or testing the ‘‘wrong thing’’

G9 Follow design principles and patterns 0 18 Use established software engineering design principles and design patterns
4.1. Macro analysis

In this section, we present some bibliometric data and other macro
observations based on the literature that was collected during the
literature review.

After applying the search string and removing duplicates, a total
of 1160 white literature sources and 378 gray literature sources were
acquired. After further filtering, by applying the inclusion and exclusion
criteria for the two sets, we were left with 539 (246 white literature
sources and 293 from gray literature sources) candidate guidelines.

An observation made on the number of sources from white versus
gray literature was that the number of supporting sources was greater
from gray literature. One reason for this was that the gray literature
sources often provided concrete lists of guidelines associated with
reviewing, thereby complementing several of the guideline categories
at once. In contrast, many of the white literature sources did not
necessarily focus on guidelines, i.e., only provided guidelines as a
byproduct of other research, or only focused on single guidelines. Thus
providing more in-depth results compared to the gray literature.

Fig. 2 presents the distribution of the included white and gray
literature publications per year. As can be seen, the first source that was
sampled was published in 1995, implying that this has been an area of
research for more than 20 years. We also note that this type of research
saw an increase in interest around 2013. We also note an increasing
trend in the number of published papers every year, indicating that it
9

is still an area of interest. Notably is that the number of gray literature
references is also increasing over time, implying that there is also an
industrial interest in guidelines of this type. This conclusion is based
on the fact that many of the gray literature sources were industrial
blogs and from tool vendors’ own documentation rather than academic
sources.

It is worth highlighting that the application of our IC and EC
for literature and guidelines excluded from our final pool of sources
the sources proposing or discussing guidelines about the code review
process, the related best practices, and involved actors. A relevant
amount of the works available in the literature about code review
is in fact related to the code review process. Therefore, the numbers
visualized in the graphs only represent a subset of the whole corpus of
literature discussing code review.

Furthermore, it must be considered that IC1 for literature required
the explicit mention of code review for a source to be included in our
final pool. This means that sources about the traditional practice of
code inspection, that did not mention (modern) code review, are not
considered in Fig. 2.

Regardless, the trend indicates a growing interest in both industry
and academia to provide guidelines for modern code review.

The literature review resulted in 33 guidelines, categorized into nine
guideline categories applicable to GUI-based testing artifacts. Out of
the nine categories, only seven were supported by white literature,

implying that there are practices in the industry not conceived by



Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 5
Overview of code review guidelines and their mapping to GUI testing.

ID Guideline Mapping to GUI-based test artifacts

G1 Perform automated checks

G1.1 Perform automated checks on the change Apply static code analysis tools to identify unsuitable or incorrect patterns in the
code

G1.2 Perform automated checks for code style Apply static code analysis tools to review and format code according to a style
guide

G2 Use checklists
G2.1 Provide/use a checklist Provide/use a checklist that is tailored to the company or team that cover

aspects related to GUI element localization, test oracles or synchronization

G3 Provide context information

G3.1 Provide additional context information Provide contextual information about the code change as a comment during code
review or as a comment or annotation to the artifact

G3.2 Provide rationale for the change Provide contextual information about the motivation why the changes are valid
for the purpose of the test

G3.3 Provide context information about the impact of the change Provide contextual information as a comment during the code review about how
the change will impact other reusable test cases or components that are
dependant on the change, e.g., how many test cases depend on a changed
functionality

G3.4 Provide information about the design and architecture of code affected by
the change

Provide contextual information about the logical and chronological behavior of
the GUI tests

G3.5 Provide links to related resources and documentation Provide list of references (links) as comment during code review, e.g., about a
new introduced testing technique

G3.6 Provide information about the dependencies between test and production
code

Provide a reference between test cases and the corresponding production code

G3.7 Provide context information about the history of changes Provide a list of references (links) as a comment during code review to previous
code reviews or merge requests if an artifact has been changed many times

G3.8 Provide information about test edge cases Provide contextual information about edge cases as comment during the code
review to inform the reviewer about critical paths of the test case

G3.9 Provide a prioritization of the files/classes of the change Provide prioritization of test cases as a comment during code review if multiple
test cases are part of the code review and review time is limited

G4 Utilize metrics

G4.1 Measure and monitor code metrics Measure and monitor code metrics on test cases like the complexity, coverage, or
run-time

G4.2 Provide metrics about execution time (for efficiency) Measure execution time of test cases

G4.3 Provide test coverage metrics (for effectiveness) Measure feature-, scenario- or GUI-element coverage

G5 Ensure readability

G5.1 Ensure readability of the change Ensure readability by following code styles, norms, and conventions

G5.2 Provide comments Comment and annotate GUI-based test artifacts to explain difficult aspect and
give the reviewer insights into the test creator’s reasoning behind the tests

G5.3 Follow coding style and naming conventions Script-based GUI tests should follow a set coding style, norms, and naming
convention

G5.4 Follow coding style and naming practices in test writing Script-based GUI tests should follow a set coding style, norms, and naming
convention

G5.5 Avoid code comments if they are not clear and useful Ensure comments and annotations are helpful to the reviewer and provide
additional information that cannot be easily derived from the test artifact itself

G5.6 Ensure proper usage of techniques for testing and exception handling Check for improper use of testing techniques, such as incorrect usage of mocks,
testing on the wrong level of abstraction or wrong variable initialization

G5.7 Ensure correctness of assertions in test cases Check that assertions are following established test patterns

G6 Visualize changes

G6.1 Provide a visualization of the change Provide a graph representation of visited GUI states of the SUT

G6.2 Provide a visualization of the change regarding its impact on the code base Presenting screenshots, or screen recordings, of the GUI states that are covered
by the test

G6.3 Allow tracability and easy navigation between artifacts Provide references to dependent tests and libraries and allow following the
references as links if possible

G7 Reduce complexity

G7.1 Keep size of a change as low as possible Apply patterns and to minimize the use of branching scenarios to keep scripts as
short and focused as possible

G7.2 Keep complexity of a change as low as possible Apply patterns and to minimize the use of branching scenarios to keep scripts as
short and focused as possible

G7.3 Avoid unrelated and unstructured changes Avoid mixing code changes with unrelated changes that do not fit into the scope
of the artifact change for review, e.g., code style changes

G8 Check conformity with the requirements

G8.1 Ensure conformance with the requirements Review the changed test scenario in terms of conformance with the requirements

(continued on next page)
10



Information and Software Technology 163 (2023) 107299A. Bauer et al.

t
t
f
r
l

v
1
r
h
i

d
l

4

a
r
c
w
r
d

Table 5 (continued).
ID Guideline Mapping to GUI-based test artifacts

G9 Follow design principles and patterns

G9.1 Apply established design principles and patterns Apply established design principles and patterns for source code and explicit ones
for GUI testing

G9.2 Don’t repeat yourself (DRY) Extract common functionality into reusable components and reuse them
throughout the test. Apply design patterns such as page-object pattern

G9.3 Avoid hardcoded values Avoid hardcoded values, such as hardcoded identifiers
G9.4 SOLID principle Avoid unrelated changes to confirm with the single responsibility principle
Fig. 2. White and gray literature publications per year.
p
a

u
a
i
c
t
m
a
i
c
m
b
f
t
q

b
a
a
r
t
c

he academia. The two categories of guidelines that were introduced
hrough gray literature are check conformity with the requirements and
ollow design principles and patterns. Furthermore, the gray literature
epresents a super-set of the sample, including all guidelines from white
iterature.

Analysis of the content of identified sources also showed that the
ast majority of guidelines refer to reviews of source code. In fact, only
0 of the white literature sources, out of 137, mention test-specific
eview guidelines. Whilst it can be argued that code guidelines on a
igher level of abstraction are also applicable to test code, this result
ndicates a lower research focus on test-specific guidelines.

References for all sources where guidelines were taken from are
ocumented in Table 6 for white literature and Table 7 for gray
iterature.

.2. RQ1: What are guidelines used for source and test artifact review?

Synthesis of the two literature sets, i.e., white and gray literature,
cquired from our SLR, resulted in 33 guidelines in nine categories for
eview of artifacts. These guidelines are presented in Table 3, and a
ategories-only summary is shown in Table 4. In Table 3, we report
hich guideline was defined as specific to test artifacts. As a notable

esult, we find that only 10 sources of those we analyzed specifically
escribed guidelines for the review of test artifacts. Further, the table
11

i

resents how many occurrences of each guideline appeared in white
nd gray literature with references to the sources.

The main purpose of these guidelines is to guide both the contrib-
tor of code changes and the reviewer to improve the effectiveness
nd efficiency of the code review process. On the one hand, efficiency
s improved by providing all information required by the reviewer to
omprehend the code changes. Thus, mitigating the need for reviewers
o spend time gathering this information themselves. Moreover, auto-
ated checks reduce the manual effort and prevent low-level discussion

bout personal code style opinions. On the other hand, effectiveness
s improved by summarizing relationships, metrics, and behavioral
hanges of code changes in a way that allows the reviewer to provide
ore useful feedback. Combined, these guidelines aid the reviewer

y reducing cognitive complexity and effort, allowing the reviewer to
ocus on identifying faults and improvement potential. Thus, providing
he code contributor with better feedback, which results in a better
uality of the resulting artifact.

Notably, we see that the most mentioned guideline category (Ta-
le 4) from both literature sets is to provide context information to
review request. This result can be explained by the cost-value of

dding such information, where cheap practices, e.g., linking a review
equest to the implemented requirements, can significantly improve
he reviewer’s understanding of the review. A similar explanation of
ost-value can be given for the second most mentioned item, reduc-

ng complexity. Whilst this is not necessarily a cheap practice, since



Information and Software Technology 163 (2023) 107299A. Bauer et al.

r
g
r
c
s
a

c
m
i
b
e
a
s

i
c
p
m
a
d

n
r
r
f

c
c
a
c
c
i

c
a
h
e

l
a
m
t

a
s
b
b
o
s
t
a
h

r
b
t
a
i
r
t
w
t
e

e
i
s
g
f
t
a
d
o

a
a
f
a
a
m

b
c
p
a

it may be complicated to achieve, its impact in terms of value is
high, since complexity affects the readability, understandability and
maintainability of the artifact. Notably, the guideline category with
the most significant variance in reference support between white and
gray literature is the one to ensure readability. This result is sur-
prising since this guideline is an important aspect of dealing with
complexity. From the gray literature only guideline categories, the one
regarding using established software engineering design principles has
a high reference support. As described earlier, white literature often
provides guidelines as a byproduct of other research and which could
explain why established design principles or patterns are mentioned as
a contribution.

Answer to RQ1: All identified code review guidelines used for source
and test artifact review are presented in Table 3, and a categories-
only summary is shown in Table 4. We consolidated our findings
of 33 guidelines in nine categories, where seven categories emerged
from white literature and two from gray literature. Nonetheless, the
main purpose of these guidelines is to guide the contributor of code
changes and the reviewer to improve the effectiveness and efficiency
of the code review process.

4.3. RQ2: To what extent can source and test artifact review guidelines be
mapped for GUI-based test artifact review?

In the continuation of this section, we present a detailed description
of each guideline. Table 5 presents the mapping of the identified
guidelines to GUI-based test artifacts. We structure this section ac-
cording to the categories presented in Table 4 to answer RQ2. For
generalizabililty, the level of abstraction of each guideline has been
kept on a higher level to make them applicable to different GUI
testing techniques and tools. The presented guidelines are inherently
generalizable to all GUI-based testing artifacts, since they are provided
as a generalization of general-purpose code review guidelines originally
specified for source or generic test code. Code reviews for specific
aspects of GUI-based testing are therefore not to be found in the results
discussed in this section. Each guideline category is presented according
to a structured textual format that explains (1) the purpose of the
guideline category, (2) guidelines of the category and (3) examples of
application for GUI-based tests. In the explanation of each guideline,
a reference to the guidelines in Table 5 is provided by adding the
corresponding ID in parentheses. Each guideline has also been ranked
in terms of if it is a guideline that is suggested, recommended, or strongly
ecommended to be followed, based on reference materials. Suggested
uidelines are in this context viewed as beneficial but not necessary,
ecommended guidelines are rated as beneficial by multiple sources and
ould have adverse effects if not applied and strongly recommended are
uggested by multiple sources to have significant benefits or tangible
dverse effects if not applied.
G1 Perform automated checks
Purpose and description: The purpose of performing automated

hecks is to improve the efficiency of the review process by reducing
anual effort. This allows the reviewer to focus on the understandabil-

ty and maintainability of the code changes instead of getting distracted
y revising low-level code issues [2]. These automated checks are
ither done by the submitter before the code review or handled by
Continuous Integration (CI) infrastructure when code changes are

ubmitted for a code review.
Guidelines: Automated checks can be applied in different ways, for

nstance through the application of static code analysis (G1.1). Static
ode analysis is an approach that seeks to find unsuitable or incorrect
atterns in the code. In addition, most static code analyzers also provide
etrics that can be used to determine the quality of the code being

nalyzed, e.g., cyclomatic complexity. The code analyzers come with
efault rules and patterns that they analyze, but since these may
12

c

ot align with the code developed in the applied context, they often
equire context-dependent tailoring. Failure to do such tailoring, which
equires both domain and technical knowledge, can otherwise result in
alse positive results.

A specific type of static code analysis is regarding the analysis of the
ode style (G1.2) of source code and script-based tests. An inconsistent
ode style, like different indentations for code blocks, reduces the read-
bility and obscures behavioral changes when reviewed as one set of
hanges. Since good tool support exists to detect and automatically fix
ode style-related issues, the developer should prevent these low-level
ssues before an artifact is submitted for a code review.

Ad hoc automated checks can also be created, for instance through
ontext-dependent scripts, e.g., automatically check that all test-related
rtifacts are available and that testing libraries are up to date. These ad
oc solutions can also be required when the tests are not script-based,
.g., model-based with visual models or capture-replay tools.

Regardless, it is strongly recommended to automate as many of the
ow-level review tasks as possible to reduce manual effort. However,
nd additionally, care shall be taken to how the results of the auto-
ated checks are presented to the reviewer—Cognitive complexity of

he resulting analysis shall be kept to a minimum.
Example(s) of application: In many instances, existing tools can be

pplied to assist reviews for GUI-based test, with similar benefits to
ource code. For example, similar to source code, GUI-based tests shall
e consistent to improve their readability. This is normally achieved
y following test code patterns like the setup-test-teardown or page-
bject patterns (G1.1). A static code analyzer can be instructed to find
uch patterns in the code and warn the reviewer if test code strays from
he defined pattern. Similarly, naming conventions can be targeted and
utomatically presented to the reviewer, or even developer, to avoid
uman error of them being overlooked (G1.2).
G2 Use checklists
Purpose and description: The purpose of a checklist is to guide the

eviewer during the code review, outlining either specific activities to
e carried out during the review or artifacts to be reviewed. Guidelines
hereby provide a powerful, context-dependent, tool for reviews and
re therefore strongly recommended for most types of artifact reviews,
ncluding GUI-based tests. The exception to this rule is when the
eviewing activity has been so thoroughly embedded in the organiza-
ion that its need becomes superfluous. Especially junior developers,
ithout code review experience, benefit from checklists [49]. However,

he guidelines shall take the domain, company, team culture and other
nvironmental aspects into account [50].
Guidelines: Providing and using a checklist (G2.1) may have differ-

nt origins, depending on the purpose of the checklist. For instance,
f providing guidance to what activities to perform during the review,
imilar to a definition of done, the guideline can be set on an or-
anizational level, providing a roadmap for the review with links to
urther reading. As an alternative, the checklist can be provided by
he submitter of a code change, listing specific artifacts or explicit
spects of the code that – in the submitter’s perception – require a more
etailed review. Checklists can also be automatically generated based
n code changes.

However, based on our included literature, we could not identify
ny specific items that a checklist should always contain for source-
nd test code artifacts. Neither could we identify any example checklists
or non-GUI or GUI-based testing, although checklists for source code
re available. One such example is proposed by GitLab, which encour-
ges checking for performance, security, reliability, observability, and
aintainability risks [51].
Example(s) of application: As stated, no generic checklist items could

e identified in the review. However, checklists focused on activities
ould include analysis of set naming conventions, compliance of test
atterns, and aspects of modularity and reuse, but should also include
nalysis of code complexity, readability and maintainability. Thus,

omplementing review aspects to the automated checks.



Information and Software Technology 163 (2023) 107299A. Bauer et al.

a
r
t
I
A
e
t

c
G
n
v
q

s
f
t

Checklists instead derived by test developers can outline aspects
related to GUI element localization, test oracles or synchronization
(G2.1). For instance, the reviewer could be tasked to verify that the test
scripts execute as intended in the reviewer’s development environment.
Alternatively, the reviewer could be tasked with the verification that
the chosen strategies to identify the chosen GUI element are suitable
as oracles, in terms of test robustness or compliance to requirements.
At a high-level perspective, it can be asked if the GUI element used in
an assertion is suitable given the purpose of the test. At a low-level, it
can be asked if the XPath locator is valid in a changed context.

G3 Provide context information
Purpose and description: The purpose of contextual information is to

id the reviewer in understanding the changes made to the project, be it
equirements, code or tests. This type of information is argued to reduce
he reviewer’s cognitive load and thereby improve the effectiveness—
dentification of errors or improvements—of the code review [52].
dditionally, providing such information has positive effects on the
fficiency of the review, since it mitigates the need for the reviewer
o spend time gathering this information for themselves [52].
Guidelines: The test developer is responsible for providing suffi-

ient contextual information for the review to understand the change
3.1. This information belongs to one of two categories, either tech-
ical knowledge—Information about the test code that has been de-
eloped or its artifacts—or domain knowledge—Information about re-
uirements, the application or its usage.

From the literature, the main type of contextual information that
hall be provided is a rationale for the change (G3.2)—A motivation
or the change, its cause and effect. This information aims to address
he knowledge gap that is presented when a change occurs, since what

has changed is easily seen, but why the change occurred may be less
evident. Hence, the rationale serves to provide an answer to why a
change has been made, which for GUI-level tests generally relates to
domain aspects, such as changed requirements. These requirements
may however be of both a functional, e.g., features or functions of the
SUT, or non-functional nature, e.g., quality attributes of the SUT such as
its performance or security or, for GUI-level tests, also the SUT’s visual
appearance or behavior—Changed bitmaps or modes of interaction.

The test developer also must provide information about the impact
of the changes (G3.3). For instance, if the changes have impacted the
test coverage, test design or the architectural design of the testware
(G3.4). The latter aspect is seldom discussed for GUI-level tests, but, as
discussed by Sutherland et al. in the context of software, a lack of such
discussion in reviews can lead to technical or architectural debt in the
codebase [53].

Another type of information that can help the reviewer understand
the context of a change includes documentation (G3.5), or links, to the
tested functionality (G3.6) or similar tests, alternative test solutions,
previous code reviews of the artifact (G3.7), testing edge cases (G3.8),
and other resources related to the code change. These resources shall
aim to provide the reviewer with insights into how the test developer
produced the solution to more easily judge its correctness and quality.

For larger changes, which may stretch across several test artifacts, it
is also suitable that the test developer provides a prioritized list of the
files that have been changed (G3.9). This allows the reviewer to focus
on the important or critical parts first in their review, which provides
additional contextual insights. For time-critical reviews this guide-
line also helps improve review effectiveness since the more important
changes are reviewed first.

We rank this guideline category as recommended and its guideline
of providing a rationale as strongly recommended.

Example(s) of application: For GUI testing, from a domain perspec-
tive, the test developer shall describe the changes to the requirements
that lead to the test code change (G3.1). This includes motivating why
the changes are valid for the purpose of the test, i.e., motivation for
13

why the new test is suitable to test the changed requirement(s) (G3.2).
From a technical perspective, two aspects need to be considered; (1)
the logical and (2) the chronological behavior of the GUI tests (G3.4).
For instance, if the GUI of the SUT has been updated, new GUI elements
may have been required in the test and they should be reviewed for
contextual correctness. Similarly, the changed test scenario needs to be
reviewed in terms of conformance to the requirements, including edge
cases (G3.8). The use of external, or reusable, artifacts shall also be
reviewed (G3.3, G3.5, and G3.6). In cases where test scenarios were
changed often, the test developer shall provide references to previous
reviews to reveal its history as additional context (G3.7).

For changes to the chronological behavior—Chronological behavior
is defined by synchronization between the SUT and the test cases— it
is necessary to review that they are suitable. Suitability in this context
concerns that the synchronization steps do not wait too long, which
would introduce unnecessary overhead to the test execution. However,
the waits must also not be too short, since this would increase the
probability of false positive test results. When many test scenarios are
changed, a prioritization of critical test scenarios should be provided
as a comment, assuming that the reviewer’s time is limited (G3.9).

G4 Utilize metrics
Purpose and description: The purpose of utilizing metrics in code

reviews is to monitor the effects of change, predict the impact of
code changes on the code base and support decision-making in the
review process. Metrics are thereby an additional source of information
to gain insights into the effects of the changes of artifacts—Effects
include changes in complexity, performance or breach of patterns. This
measured information enables a fast feedback loop for the contributor
and allows the reviewer to give more detailed feedback based on this
quantifiable information.

Guidelines: Measuring and monitoring different types code met-
rics can be performed during the development or review process to
give inputs to the artifact reviewer (G4.1). These metric types can be
roughly clustered in terms of change impact on artifact complexity,
efficiency, and effectiveness. Metrics regarding the impact of a change
on the complexity of the reviewed artifact can be acquired from static
code analysis tools—Static code analysis is performed as automated
checks—and are valuable to provide insights regarding the readability,
understandability and maintainability of the modified artifact. Exam-
ples of possible complexity metrics include cyclomatic complexity, the
number of files in a solution, the size of single files or functions, sum
of added and removed lines of code (i.e., code churn) and dispersion
of modified lines across files. In the sampled literature, these metrics
were also used as predictors of introducing defect-prone code to the
code base [54].

One way to monitor the efficiency of changes, be it source or
test artifacts, is to monitor the execution time (G4.2) of artifacts—By
monitoring we include execution time before and after change. For test
artifacts, the execution time can be measured on different levels of
granularity. On a high level, the execution time of the overall test suite
provides an overview, whilst lower-level, more detailed measurements
of time spent in functions, test cases, or single GUI screens, can help
identify bottlenecks. For source code, poor performance can be an
indicator of poor code quality [26]. In the same way, poorly performing
test cases should be investigated by the reviewer for test quality issues.

Measuring coverage metrics such as code, path, or GUI coverage
allows insights into the effectiveness of test artifacts (G4.3). Increased
coverage is correlated with increased fault-finding behavior and is
therefore one of the main attributes the reviewer of a test artifact must
investigate. This entails acquiring an understanding of whether the test
artifacts cover all, or at least all necessary, paths of the production
code [36].

Example(s) of application: The complexity of GUI-based tests shall
also monitored (G4.1). Depending on the frameworks used to develop
the tests, this monitoring can be done with the same tools as for source
code. For instance, tools like Selenium allow the test developer to write

test cases in source cod, or use test libraries such as XUnit [16,55].



Information and Software Technology 163 (2023) 107299A. Bauer et al.

o

i
o
‘
t
p
m
r
a
i
a
b
r

Such tests can be analyzed using the same static-code analyzers as
the source code and provide similarly effective results. For tools with
custom scripting languages or IDEs, such as Graphwalker [56] or
Scout [57], conventional solutions to measure complexity are not appli-
cable. Instead, the reviewer needs to manually evaluate the perceived
complexity, in particular taking into account the perceived readability
and understandability of the tests. These attributes are important since
they affect the maintainability of the tests, which, in turn, affects the
tests’ longevity.

The execution costs of automated GUI-based tests are more ex-
pensive compared to low-level unit tests since the tests are more
computationally heavy. In fact, the execution time of a GUI-based test
is generally several orders of magnitude more costly than, for instance,
a unit test [58]. Therefore, information about the execution time and
the required resources of these test cases are important to estimate the
scaleability of the test approach (G4.2). In particular, when these tests
are executed as part of a continuous integration environment, where
allotted time for test execution is limited and test prioritization or
selection is therefore required.

Furthermore, in the same way as for poorly performing source
code, a GUI test case with a long execution time, compared to other
similar GUI test cases, could indicate inefficiencies in its design. Inef-
ficiency could include an unnecessarily long or complex test scenario,
unsuitably long synchronization checkpoints, or inefficient GUI element
identification. Hence, quality attributes of the test artifact that the
reviewer must investigate.

Measuring test effectiveness in terms of coverage is also an impor-
tant aspect of GUI-based tests (G4.3). However, due to the level of
abstraction these tests operate, low-level coverage metrics, like code
coverage, can be difficult to calculate. Solutions include instrumen-
tation of the SUT or using third-party measurement tools, e.g., Ja-
CoCo [59] or Cobertura [60]. More commonly used coverage metrics
are instead feature, scenario, or GUI element coverage. Whilst these
metrics do not provide insights of the same granularity, they are useful
to determine the effects of a change to the tests.

Whilst many of the aforementioned metrics provide direct insights
into the quality characteristics of the GUI tests, some may not. The
former types can be acted upon immediately, e.g., if coverage is found
to be low, whilst the latter instead serve to monitor trends, or changes,
in the GUI tests’ quality. Both are useful for the reviewer as they
provide insights into the effects of the reviewed change that may not
be acquired from reviewing the artifact in isolation.

Historical data on the number of found faults, false positives and
negatives, shall also be used. These metrics are unique to tests, but
give insights into the tests’ behavior and priority. For instance, it can be
assumed that tests of older age, but still have a high failure rate, cover
important or central parts of the SUT that are also subject to continuous
change. Since such code is central to the SUT, more effort shall be spent
on reviewing these tests.

We rank this guideline as recommended since it provides a more
bjective input to base feedback on.
G5 Ensure readability
Purpose and description: The purpose of ensuring readability is to

mprove the ease of understanding, and thereby maintaining, an artifact
ver time. More formally, Buse and Weimer [61] defines readability

‘as a human judgment of how easy a text is to understand’’. As such,
he readability of an artifact has a direct impact on the reviewing
rocess itself, where an artifact with low readability is perceived as
ore difficult to review than an artifact with high readability. Code

eviews shall strive to identify the level of readability of an artifact
nd suggest improvements. For example, at Google, code reviews were
ntroduced to ensure code readability and maintainability, where read-
bility is supported by the use of a consistent code style within the code
ase Sadowski et al. [2]. Therefore, we rank this guideline as strongly
ecommended.
14
Guidelines: One way to improve the readability of code is to follow
common coding styles, norms and naming conventions (G5.1). A team
should enforce a coding style within the team to prevent low-level
discussions about individual styling preferences during a code review
(G5.2 and G5.3). A style guide is a set of conventions for how code
shall be structured in a project, including how indentations shall be
done, variable naming convention (i.e., use camel-case), restrictions on
line length, or the ban of specific operators. For instance, Google has
style guides for all major programming languages that developers must
follow for all application developments [62]. Code consistency also
lowers cognitive complexity for the reviewer, making it easier to focus
on the artifacts conformance to the intended behavior. Consistent code
can also more easily be automatically checked through, for instance,
static code analysis or other automated checks.

Another way to improve readability is to annotate important or
more difficult parts of the artifact. Annotations can take the form of
comments or other supplementary materials (G5.4). An example of the
value of annotation is provided by An et al. [63], where crash-prone
code with a low ratio of code comments was found more difficult
to review. However, annotations shall only be added when they are
useful (G5.5), i.e., they must be helpful to the reviewer by providing
additional information that is difficult to derive from the code itself.
Mindless addition of annotations can otherwise lead to ‘‘clutter’’ in the
artifact, which decreases its readability. The annotations must also be
fit-for-purpose, since they can otherwise add ambiguities that confuse
the reviewer, e.g., if supplementary materials are added that are not
consistent with the reviewed artifact itself.

For test artifacts it is also important to consider the fit-for-purpose
of the artifact, and to use the most suitable technique or pattern for
the test purpose (G5.6). Similarly to coding conventions, using familiar
techniques or patterns makes it easier for the reviewer to comprehend
the changes. Furthermore, improper use of testing techniques, such as
incorrect usage of mocks, testing on the wrong level of abstraction
or wrong variable initialization, may lead to faulty test results [36].
For instance, if a technique is on the wrong level of abstraction for
the test purpose, it may not be able to identify a fault. In addition,
test assertions should also follow suitable patterns for the test purpose
(G5.7). It is therefore important that the reviewer also evaluates the
adequacy of the artifact for the purpose, and provide recommendations
if this is not aligned.

Example(s) of application: Due to the benefits of coding conventions,
script-based GUI tests should follow a coding style, norms, and naming
convention (G5.1). These conventions can, if applicable, be the same as
the tested software to maintain consistency and readability across the
entire code base (G5.2 and G5.3). When existing conventions cannot be
reused, new conventions shall be implemented. Examples where new
conventions may be required are GUI-based tests with custom scripting
languages or tests that are derived from models. In these instances,
some coding conventions may not be applicable, but consistent naming
conventions should at least be upheld by all test-related artifacts.

Similar to source code, annotating GUI-based test artifacts can help
explain non-intuitive parts of the tests (G5.4). These comments shall
also provide the reviewer with insights into the test creator’s reasoning
behind the tests. However, authors should not add comments if the
comment does not provide additional insights since this can lead to
‘‘clutter’’ (G5.5). Supplementary materials, e.g. requirements, shall also
be provided when necessary to aid the reviewer.

A unique aspect of test code that reviewers must investigate is the
test assertions (G5.6 and G5.7). These need to be clear, from a readabil-
ity perspective, so that the reviewer can determine their correctness and
fit-for-purpose. The reviewer must also evaluate that the assertions are
placed in suitable sections of the test scenario [36]. Additionally, the
reviewer must evaluate the assertions are placed following established
test patterns.



Information and Software Technology 163 (2023) 107299A. Bauer et al.

i
d
p
a

c
a
c
b
A
d

c
a
i
t
b
a
c
c

t
S
t
r
i
h

c
v
a
s
f
t
c
a

s
i
n
p

a
t

G6 Visualize changes
Purpose and description: The purpose of visualizing code changes

is to ease the understanding of the change and its impact. Visualiza-
tion also allows for easier navigation between related artifacts and
their dependencies. A study by Baum and Schneider [64] identified
that reviewers often miss features in IDEs (Integrated Development
Environments) for code review of non-trivial changes. They conclude
that tool support would mitigate this challenge and improve both the
effectiveness and efficiency of code reviews. Furthermore, for review
of test artifacts, many code review tools lack test-specific information
and only present changes as line-by-line comparisons. This forces the
reviewer to open the artifacts in their local environments, e.g., IDEs,
to be able to navigate through the dependencies and acquire a full
picture of the change [36]. Using tools that have stronger visualization
solutions helps to mitigate these challenges.

Guidelines: First, a visualization shall be provided of the files affected
by the change and the dependencies between these files and their
changes (G6.1). These dependencies between files help a reviewer to
understand which code change(s) may have the biggest side effects due
to its depending components. Thus, providing insights into what files
shall be prioritized in the review and the order they should be reviewed
in. Common to both source and test code, changes in a file whose func-
tionality is reused in multiple instances can potentially cause more side
effects. This visualization should also indicate the impact of the change
on the rest of the system, e.g., a Change Impact Analysis [65]. Hence,
although visualization of changed technical artifacts is a minimum,
additionally affected artifacts, e.g. source code, test code, requirements
and libraries, shall also be noted.

For more assistance, semantic changes and relationships shall also
be presented in addition to the textual line-by-line changes [65] to
determine the impact of a change (G6.2). Line-by-line differences are
usually based on the underlying GIT or Unix tooling, and although they
allow the reviewer to pinpoint the exact changes, they do not provide
any insight into the behavior change caused by such changes. For
instance, renaming a variable does not affect the behavior of a program,
and therefore it does not change the semantic relationship. However,
changing the algorithm that uses said variable may result in completely
different software behaviors. Behaviors that may be non-compliant and
not visible in the code.

Visualization helps the reviewer to more easily navigate between
different artifacts, but it still requires the reviewer to open these arti-
facts, often in different tools. Using review tools that more easily help
the reviewer navigate, and help ensure traceability, between different
artifacts are therefore helpful (G6.3). For instance, mitigating the need
for a reviewer to switch between source and test code in different
windows during a review. As pointed out by Spadini et al. [36], artifacts
are usually coupled to multiple other artifacts and contextual switches
between sources thereby creating additional cognitive load.

The type of visualization also matters but what visualization is the
most suitable is often context dependent. For instance, when dependent
changes have occurred to multiple files, a class-like diagram may
be suitable. However, when changes instead affect the behavior, a
state-diagram, or tree-like structure, may be more adequate.

Example(s) of application: For GUI-based tests, a graph representa-
tion of visited GUI states of the SUT could help the reviewer to get
an overview of the changes to the GUI test scenarios (G6.1). Such
visualization can also help the reviewer understand semantic changes
to the tests. One example use case is when the test cases are generated
in a stochastic manner by the GUI-based testing tool based on some
stopping condition. This functionality means that repeated tests may
result in slightly different outcomes. Hence, an inherent function of
MBT-based GUI tests where the graph acts as a meta-model for the test
cases. Such visualization would be beneficial for scripted test solutions,
especially when they are data-driven.

Furthermore, for scripted solutions that rely on technical locators,
15

e.g., XPath locators, it may be difficult for the reviewer to relate the
locators to visual elements. Presenting screenshots, or screen record-
ings, of the GUI states that are covered by the test is therefore a
useful practice (G6.2). This type of visualization is inherent to com-
puter vision-based testing (Third generation) tools, but for first- or
second-generation tools such information is generally omitted.

Common to both source and test code, convenient navigation ca-
pabilities between different related artifacts—Artifacts are in this case
other test cases or dependent libraries—would reduce the mental effort
to find the different artifacts. Whilst tooling can make the navigation
very simple, an initial step is to reference-dependent artifacts in com-
ments of the test code (G6.3). In conjunction with suitable naming
practices, this practice can improve review efficiency. Similarly, ref-
erences to dependent tests and libraries shall be presented when a new
code change is submitted for review, i.e., change impact of the test code
change.

We rank this guideline as suggested. While we see the benefits of
visualizing changes, its implementation will depend highly on tools
used for GUI testing.

G7 Reduce complexity
Purpose and description: The purpose of reducing artifact complexity

s multi fold. First, reduced complexity is associated with increased un-
erstandability of the artifact. Second, complexity has a well-known im-
act on the defect rate of a software, where more complex components
re more likely to have defects [66].
Guidelines: The main approach to reduce complexity is to keep code

hanges for a review as small as possible (G7.1). Small code changes
re preferred by reviewer and they can provide more useful feedback
ompared to big code changes [67]. In addition, complexity should
e avoided (G7.2) by having a narrow and well defined scope [67].
lthough a development practice, these practices reduces the effort
uring code review, improving its efficiency and effectiveness.

Another complexity reducing approach is avoiding mixing code
hanges with unrelated changes that do not fit into the scope of the
rtifact change for review (G7.3). An example of an unrelated change
s to update a test case that is not in the same scope, nor related
o the other test cases of the code change. This scenario may occur
ecause the test developer noticed a possible improvement, or applied
n improvement from one test to another with a similar issue. In these
ircumstances, these changes shall be submitted as individual code
hanges.

Furthermore, included non-code artifacts like configuration files,
est or build results in less useful feedback [3]. Pure style changes—
tyle changes include changes to naming convention or arrangement of
est cases—can be integrated into the code base with a less exhaustive
eview, since these changes should not introduce any changes in behav-
or of the code. Mixing such style changes with code changes makes it
arder for the reviewer to identify the actual change in behavior.
Example(s) of application: The size and complexity of GUI-based test

ases is strongly correlated with the test scenarios that they aim to
erify. However, to reduce this complexity and the size, it is suitable to
pply patterns and to minimize the use of branching scenarios to keep
cripts as short and focused as possible (G7.1 and G7.2), e.g., unrelated
eatures must not be tested in the same scenario. The reviewer of such
ests should evaluate that these criteria are fulfilled, which includes
hecking that patterns are followed, that reusable components are used
nd that there are no unnecessary dependencies between test artifacts.

Similar to other artifacts, unrelated changes shall be dealt with
eparately and reviewed independently (G7.3). This implies that, for
nstance, style-changes or updates to GUI-locators for other tests shall
ot be submitted together with the tests that are the focus for a
articular review.

Based on the number of sources that contributed to this guideline
nd the known negative implications of complex components, we rank
his guideline as strongly recommended.



Information and Software Technology 163 (2023) 107299A. Bauer et al.
G8 Check conformity with the requirements
Purpose and description: The purpose of requirements is to provide

a specification for the system that is developed. These requirements
are thereby the inputs to development but also for the creation of
test cases that aim to verify that the implemented system conforms
to the specification. Thus, although not the only purpose of a review,
reviewers use requirements to check for such conformance and that
the code, reasonably, fulfills the intended functional and non-functional
requirements.

Although reviewers verify these attributes of an artifact change,
it is the authors’ responsibility to ensure that the artifacts that are
proposed for a review fulfill the requirements. In modern development
environments, the artifacts to go into the review are not restricted
to source code, but also automated tests and other artifacts as well,
e.g., dependent libraries, models or design descriptions.

Guidelines: The first step of a review, which is in relation to require-
ments, is to ensure that the submitted code changes are traceable to
a requirement (G8.1). Such traces shall be submitted with the review
request and/or be stated in the submitted changes to provide contextual
information for the reviewer. As part of this analysis, the reviewer shall
verify that the requirement that has been implemented is still up to
date, i.e., that no changes have been made to the requirement during
the development process.

If the requirement is up to date, for new requirements, the reviewer
shall check that the submitted code reasonably complies with the
requirement. For changed requirements, the reviewer instead verifies
that the delta, i.e., the changes, are compliant. This analysis is not
restricted to only source code, but should also cover test code or other
supplementary materials.

Alternatively, code changes can sometimes result in changed re-
quirements, i.e., requirements are updated after a change to the code.
Similarly to code, the requirements shall be submitted for review and
verified for correctness. Once verified, the review of code artifacts
proceeds as described above, taking any supplementary materials into
account.

Specific to test reviews, the reviewer must verify that the test suit-
ably verifies the implementation’s conformance with the requirement.
Dependent on the level of abstraction of the requirement, this may
entail a set of different actions. The first action is to verify that the
test is on a suitable level of abstraction to test the requirement, i.e., fit-
for-purpose. Second, the quality of the test itself needs to be reviewed,
e.g., whether it provides suitable coverage and if suitable test data are
used.

Example(s) of application: GUI-level tests, similar to all other tests,
shall be traceable to a requirement, or requirements. For instance, if
aligned with a use case, a test case can be stand-alone, but in other in-
stances, a test case may cover multiple, related, features. The reviewer
shall check for completeness of the test case to cover the intended
feature(s) and that traceability information is available (G8.1).

Next, the suitability of the GUI test scenario is evaluated in relation
to the requirement. This includes checking both the functional and
chronological behavior of the test to verify that it is compliant with
the requirement as well as synchronized with the behavior of the SUT.

Note that for GUI-level requirements, unlike lower-level tests, visual
requirements may also be consulted to ensure that the GUI elements
used in the test case, e.g., for assertions, are up to date and used in
a suitable manner. This is particularly important for computer-vision
based test cases since the use of incorrect visual elements may other-
wise lead to false positive test results. For older generations, i.e., first or
second generation, the reviewer should instead verify that the element
locators are correctly defined for the current version of the SUT. For
example, for second-generation scripts that use element IDs as locators,
these shall be checked that they are up to date.

Since this guideline does not contribute to the efficiency and effec-
tiveness of code reviews in the same way as other guidelines do we
16

rank this one as suggested.
G9 Follow design principles and patterns
Purpose and description: The purpose of design principles and design

patterns are to provide consistency among various types of artifacts.
Another purpose is to prevent the degradation of the artifacts. For
instance, software architectures and libraries may degrade over time as
the code is rewritten, maintained or otherwise updated. Principles for
software design can prevent these issues and thereby prevent source
code fragility and improve reusability, maintainability and scalability
of the software [68]. Design patterns are thereby blueprints for build-
ing reusable solutions for common problems. These patterns are well
proven and have evolved over time [69].

In contrast to the ensure readability guideline, which is based on
both white and gray literature, this guideline is based explicitly on gray
literature.

Guidelines: Common design principles, including Don’t Repeat Your-
self (DRY), SOLID for object-oriented design, and avoiding hardcoded
values, should be followed if the context allows it (G9.1). Apply-
ing the DRY principle favors the (re-)use of components instead of
a duplication of code and effort (G9.2). Hardcoded values, such as
hardcoded identifiers, can hinder the deployment of the application in
different environments [70] and thus should be avoided (G9.3). The
SOLID principle consists of single-responsibility, open-closed, Liskov
substitution, interface segregation, and dependency inversion. Applying
SOLID principles to object-oriented design helps to improve the main-
tainability of the codebase [68]. Although these are patterns that the
developer must consider, it is part of the reviewers’ responsibility to
verify that they are followed. These mentioned principles and patterns
are only a subset of what is available, and we restrict ourselves to
these examples since the patterns themselves are out of the scope of
this work. Additionally, their application are context-dependent, where
some principles may be used in some companies but not in others.
Hence, it is important that both developers and reviewers are aware
of context-applicable patterns and if/how they change over time.

Example(s) of application: For GUI-based testing, principles like the
usage of dynamic (i.e., wait for a specific visual state) synchronization
checks to avoid unnecessary test code maintenance or automatically
capture screenshots of failed actions or state transitions when a test
fails for failure replication can be applied (G9.1) [21]. If tests are
script-based, principles for source code like DRY and avoiding hard-
coded identifiers can be applied. For example, common functionality
such as logging into an application is common and should be ex-
tracted and reused throughout the test suite rather than to be repeated
(G9.2). Further, hardcoded values, such as widget identifier, should
also be avoided (G9.3). The reason is that if this functionality or values
changes, it will have to be updated in multiple scripts. Reviewers can
aid the script authors in identifying reusable functionality that can be
extracted, or point the authors to reusable components when such are
missed during development.

There are also specific patterns for testing. One such pattern, explicit
for GUI testing, is the page-object pattern (G9.2). The pattern ensures
that functionality is tested in isolation, considering one page view at
the time. This practice helps to reduce the coupling between test cases
and the SUT [71]. But the identified design patterns are not applicable
to GUI-based tests that are on a higher level of abstraction, like image
recognition-based GUI tests.

Lastly, from the SOLID principle, the single responsibility principle
overlaps to some degree with the guideline to avoid unrelated changes
G9.4. Hence, from a review standpoint, the reviewer shall ensure that
each test is focused on only one test aspect. However, it is not clear
how the remaining SOLID principles can be mapped to GUI-based test

cases.



Information and Software Technology 163 (2023) 107299A. Bauer et al.
We rank this guideline as strongly recommend and see a high value
in following established design principles and patterns.

Answer to RQ2: We present a mapping of source and test artifact
review guidelines to GUI-based test artifacts by providing examples
on its application. A summary of this mapping is shown in Table 5.
In addition, we explained the purpose of each guideline category
and ranked each guideline as suggested, recommended, or strongly
recommended based on reference materials.

5. Discussion

In this study, we have identified nine categories of code review
guidelines for source and test artifacts that can be mapped as applicable
to GUI-based test artifacts. We restrict the guidelines to artifacts to
make them as tangible as possible. Thus, omitting less tangible guide-
lines regarding processes, principles and human factors associated with
the code review process. The purpose of the proposed guidelines is to
aid practitioners in improving the effectiveness and efficiency of code
reviews. These improvements are perceived based on the proven value
of guidelines for artifact review in other areas of software engineering.
The motivation for this work stems from an empirically identified need
for general code review guidelines for GUI-based tests in the industry
as well as an identified gap for guidelines within academic literature.

As such, this work provides a tangible industrial contribution in an
initial set of general code review guidelines for GUI-based testing. We
perceive that our results can be used as a starting point for companies
that seek to start using GUI-based testing practices, or companies
that seek to improve upon their current practices. In companies that
already conduct code reviews, we expect that there may be an overlap
between existing guidelines and the proposed guidelines. However,
from our empirical analysis, we have identified that existing guidelines
are developed ad hoc. The results of this work provide a nomenclature
to and provide insights into the purpose of each guideline, which may
allow practitioners to more easily discuss and thereby motivate, or
understand, the practices they use today.

Thus, although the list of nine categories including 33 guidelines
we present is a good starting point, we do not perceive this list to
be comprehensive. This assumption is motivated by the study’s focus
on artifacts, not covering additional practices of the review process
associated with, for instance, reviewer selection or effort allocation.
The assumption is also motivated by the analysis of gray literature,
where we found multiple practices that have not been covered in white
literature. Thus, implying that there may be practices used in industry
that academia is not aware of. In addition, we have only mentioned
guidelines that could be data triangulated—Data triangulation is the
practice of using different sources of information to increase the va-
lidity of a study’s results [72]—with at least three sources. Hence,
additional guidelines were identified, but due to a lack of support for
their validity, they were not incorporated into our results. An example
of such a guideline was to ‘‘provide information to reproduce identified
faults’’ [73]. This guideline could possibly belong to a category of
guidelines regarding how to provide reviewer feedback. However, due
to the lack of additional such guidelines in our sample, no such category
was added.

The literature review also provides an academic contribution in
showing gaps in knowledge about GUI-based testing, explicitly about
review practices. However, looking at the body of knowledge on GUI-
based testing, we note that the majority of work is focused on technical
aspects of the approach. This observation also explains why we choose
artifacts as the center point of our literature review since artifacts are
more closely connected to the technical aspects of GUI-based testing.
Regardless, there is a general need for more practice and human-
focused research in the area of GUI-based testing. This work highlights
17

one such area, where additional research is also required to extend the
set of guidelines to be more comprehensive for the entire reviewing
process.

Furthermore, although the guidelines presented in this work are
perceived as valuable to GUI testing, due to their mapping to guidelines
valuable for other software engineering artifacts, the guidelines have
not yet been empirically tested. Initial screening has been made by
presenting the guidelines to practitioners, but any feedback given from
the practitioners is purely based on the perception of value. As such,
future research is required to evaluate the actual value of the suggested
guidelines.

Empirical evaluation of the guidelines is important since, in a
related study, guidelines for the development of GUI-based tests were
suggested but when evaluated in practice did not provide a successful
result [21]. Although the study is limited in scope, it suggests that best
development practices for source code are not necessarily transferable
to GUI test code. The reasons stated in the related work were increased
cognitive load as well as lack of applicability of some practices. Due to
the level of abstraction of our suggested guidelines, focusing on what
to look at in GUI-based test reviews and not how to do so, we do not
perceive the same concerns. However, there is still a possibility that
this unknown factor that set GUI-based tests apart from source code
could play a role in the applicability of the proposed guidelines. Thus,
once more, stressing the need for future empirical evaluation of the
guidelines. Despite this potential issue, we do not perceive that it takes
away anything from the contribution of this work. The reason is, as
stated, the current omission of any general guidelines for reviews of
GUI-based tests in the academic body of knowledge.

The guidelines presented in this work are for both the contributor
and reviewer, but more focused towards the reviewer, and highlight
practices that they shall perform. However, several of the practices
can also be viewed from the contributor’s perspective, meaning that
they give inputs on how to create better GUI test artifacts. This can
be viewed as a natural progression of adopting guidelines of this type.
Meaning that feedback from reviewers naturally affects how contribu-
tors work and what they provide in their review requests. For example,
if a reviewer provides feedback that contextual information is missing
for a review. The contributor would append additional information
and, likely, in the future remember what information to add. Hence,
the guidelines have a broader positive effect than for just the review
process itself.

However, the caveat of making these guidelines valuable is not to
overdo them. Seven of the nine guideline categories can be argued to be
focused around supplying the reviewer with additional information for
the review process. Whilst additional information is central to forming
a complete picture of a situation, too much information can have
adverse effects by increasing the reviewer’s cognitive load. From the
review, we identified that adding context information is necessary to
reduce the effort for the reviewer that would otherwise have to gather
this information themselves. A similar circumstance can happen if the
reviewer is provided with too much additional information that they
need to siphon through. As such, a lean mindset must be applied to the
type and amount of additional information that is provided in a review
request. In particular, ensuring that all additional information provides
value to the reviewer, omitting information that can be considered
‘‘nice to have’’. Such information, although possibly useful, is likely to
add overhead since it requires the reviewer to go through it and find
what is important and not. In the worst case, such information is a pure
waste, since it does not serve a purpose for a given review. Exactly how
to determine what information to supply is however context-dependent,
where in some cases the additional information can be very useful but,
in other circumstances, it is not. Since different reviews vary in terms
of size and focus, it is perceived that no general rule can be identified

regarding what information is the best for each context.



Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 6
White literature sources where guidelines were taken.

ID Title Authors Year

S1 A community of practice around peer review for long-term research software
sustainability

Kalyan, Akshay, et al. 2019

S2 A reflective practice of automated and manual code reviews for a studio project Oh, Jun-Suk, and Ho-Jin Choi 2005

S3 A secure code review retrospective Buttner, Andrew, et al. 2020

S4 Accept or not? An empirical study on analyzing the factors that affect the outcomes of
modern code review?

Wang, Dandan, et al. 2021

S5 Aiding code change understanding with semantic change impact analysis Hanam, Quinn, et al. 2019

S6 An effective source code review process for embedded software Hirayama, Masayuki, et al. 2006

S7 An empirical study of link sharing in review comments Jiang, Jing, Jin Cao, and Li Zhang 2019

S8 Analyzing involvements of reviewers through mining a code review repository Liang, Junwei, and Osamu Mizuno 2011

S9 Assisting the code review process using simple pattern recognition Farchi, Eitan, and Bradley R. Harrington 2006

S10 Automatic patch linkage detection in code review using textual content and file location
features

Wang, Dong, et al. 2021

S11 Can formal methods improve the efficiency of code reviews? Hentschel, Martin, et al. 2016

S12 Can peer code reviews be exploited for later information needs? Sutherland, Andrew, and Gina Venolia 2009

S13 ChangeViz: Enhancing the GitHub Pull request interface with method call information Gasparini, Lorenzo, et al. 2021

S14 Characteristics of useful code reviews: An empirical study at microsoft Bosu, Amiangshu, et al. 2015

S15 Code review analysis of software system using machine learning techniques Lal, Harsh, and Gaurav Pahwa 2017

S16 Code review and cooperative pair programming best practice Fu, Qiang, et al. 2017

S17 Code review knowledge perception: Fusing multi-features for salient-class location Huang, Yuan, et al. 2020

S18 Code review quality: How developers see it Kononenko, Oleksii, et al. 2016

S19 Code reviewing in the trenches: Challenges and Best practices MacLeod, Laura, et al. 2018

S20 Code reviews with divergent review scores: An empirical study of the openStack and Qt
communities

Hirao, Toshiki, et al. 2022

S21 Communicative intention in Code review questions Ebert, Felipe, et al. 2018

S22 Confusion in code reviews: Reasons, Impacts, and Coping strategies Ebert, Felipe, et al. 2019

S23 CoRA: Decomposing and describing tangled code changes for reviewer Wang, Min, et al. 2019

S24 Decomposing composite changes for code review and regression test selection in
evolving software

Guo, Bo, et al. 2019

S25 Effects of adopting code review Bots on Pull Requests to OSS projects Wessel, Mairieli, et al. 2020

S26 Evaluating how static analysis tools can reduce code review effort Singh, Devarshi, et al. 2017

S27 Expectations, outcomes, and challenges of modern code review Bacchelli, Alberto, and Christian Bird 2013

S28 Fix-it: An extensible code auto-fix component in review Bot Balachandran, Vipin 2013

S29 Generating Code review documentation for auto-generated mission-critical software Denney, Ewen, and Bernd Fischer 2009

S30 Impact of coding style checker on code review - A case study on the openstack projects Ueda, Yuki, et al. 2018

S31 Interactive code review for systematic changes Zhang, Tianyi, et al. 2015

S32 Investigating code reading techniques for novice inspectors: an industrial case study Rong, Guoping, et al. 2014

S33 Investigating code review quality: Do people and participation matter? Kononenko, Oleksii, et al. 2015

S34 Java code reviewer for verifying object-oriented design in class diagrams Jinto, Kanit, and Yachai Limpiyakorn 2010

S35 Lessons Learned from building and deploying a code review analytics platform Bird, Christian, et al. 2015

S36 LightSys: lightweight and efficient ci system for improving integration speed of software Lim, Geunsik, et al. 2021

S37 Mining peer code review system for computing effort and contribution metrics for patch
reviewers

Mishra, Rahul, and Ashish Sureka 2014

S38 Mining source code improvement patterns from similar code review works Ueda, Yuki, et al. 2019

S39 Modern code review: A case study at Google Sadowski, Caitlin, et al. 2018

S40 Multi-Perspective visualization to assist code change review Wang, Chen, et al. 2017

S41 Natural language insights from code reviews that missed a vulnerability Munaiah, Nuthan, et al. 2017

S42 On the need for a new generation of code review tools Baum, Tobias, and Kurt Schneider 2016

S43 On the understanding of programs with continuous code reviews Bernhart, Mario, and Thomas Grechenig 2013

S44 Patch review processes in open source software development communities: A
comparative case study

Asundi, Jai, and Rajiv Jayant 2007

S45 Guiding Developers to Make Informative Commenting Decisions in Source Code Huang, Yuan, et al. 2018

S46 Practical aspects on the assessment of a review process Kiiskila, Janne 1998

S47 Process Aspects and social dynamics of contemporary code review: Insights from open
source development and industrial practice at microsoft

Bosu, Amiangshu, et al. 2017

S48 RAID: Tool support for refactoring-aware code reviews Brito, Rodrigo, and Marco Tulio Valente 2021

(continued on next page)
18



Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 6 (continued).
ID Title Authors Year

S49 Rebasing in code review considered harmful: A large-scale empirical investigation Paixao, Matheus, and Paulo Henrique Maia 2019

S50 Refactoring practices in the context of modern code review: An industrial case study at
xerox

AlOmar, Eman Abdullah, et al. 2021

S51 Review dynamics and their impact on software quality Thongtanunam, Patanamon, and Ahmed E. Hassan 2021

S52 RSTrace+: Reviewer suggestion using software artifact traceability graphs Sülün, Emre, et al. 2020

S53 Salient-class location: help developers understand code change in code review Huang, Yuan, et al. 2018

S54 SCRUB: a tool for code reviews Holzmann, Gerald 2010

S55 Semantics-assisted code review: An efficient tool chain and a user study Menarini, Massimiliano, et al. 2017

S56 Share, But be aware: Security smells in Python Gists Rahman, Md Rayhanur, et al. 2019

S57 Static security analysis based on input-related software faults Nagy, Csaba, and Spiros Mancoridis 2009

S58 Supporting automatic code review via design He, Jiantao, et al. 2013

S59 Test-driven code review: An empirical study Spadini, Davide, et al. 2019

S60 Testing web enabled simulation at scale using metamorphic testing Ahlgren, John, et al. 2021

S61 The effect of checklist in code review for inexperienced students: An empirical study Rong, Guoping, et al. 2012

S62 The impact of code review coverage and code review participation on software quality:
a case study of the qt, VTK, and ITK projects

McIntosh, Shane, et al. 2014

S63 The Impact of code review on architectural changes Paixao, Matheus, et al. 2021

S64 The influence of non-technical factors on code review Baysal, Olga, et al. 2013

S65 The Symbolic Execution Debugger (SED): a platform for interactive symbolic execution,
debugging, verification and more

Hentschel, Martin, et al. 2019

S66 Tool support for code change inspection with deep learning in evolving software Ayinala, Krishna Teja, et al. 2020

S67 Tool support for managing clone refactorings to facilitate code review in evolving
software

Chen, Zhiyuan, et al. 2017

S68 Towards a taxonomy of code review smells Dogan, Emre, and Eray Tüzün 2021

S69 Understanding shared links and their intentions to meet information needs in modern
code review

Wang, Dong, et al. 2021

S70 Using metrics to track code review performance Izquierdo-Cortazar, Daniel, et al. 2017

S71 Using paragraph vectors to improve our existing code review assisting tool-CRUSO Kapur, Ritu, et al. 2021

S72 VCCFinder: Finding potential vulnerabilities in open-source projects to assist code audits Perl, Henning, et al. 2015

S73 What are they talking about? analyzing code reviews in Pull-based development model Li, Zhi-Xing, et al. 2017

S74 What design topics do developers discuss? Viviani, Giovanni, et al. 2018

S75 What makes a code change easier to review: an empirical investigation on code change
reviewability

Ram, Achyudh, et al. 2018

S76 What types of defects are really discovered in code reviews? Mäntylä, Mika V., and Casper Lassenius 2009

S77 When testing meets code review: Why and how developers review tests Spadini, Davide, et al. 2018

S78 Why did this reviewed code crash? An empirical study of Mozilla Firefox An, Le, et al. 2018

S79 Why do developers reject refactorings in open-source projects? Pantiuchina, Jevgenija, et al. 2021

S80 Why security defects Go unnoticed during code reviews? A case-control study of the
Chromium OS project

Paul, Rajshakhar, et al. 2021
5.1. Threats to validity

The threats to the validity of this work have been divided into
four parts; internal validity, external validity, construct validity and
reliability, following the guidelines of Runeson and Höst [74].

Internal validity: Internal validity concerns the ability of the study
design to conclude a correct relationship between factors, where mul-
tiple factors may have confounding, but unknown, effects on the in-
vestigated factor. For this study, one internal validity threat is that it
is possible that literature sources with additional guidelines may have
been overlooked. Although this could affect the guideline categories
presented in this work, it is unlikely due to the high level of abstraction
they are presented at. Another threat is that the mapping between
the source- and test code guidelines are invalid because we have
failed to take factors of the original guideline into account. Once more
this is unlikely, since the mapping was done through examples that
show the guidelines use case. This mapping approach has been used
previously for GUI-based testing research, for instance by Alégroth and
Gonzalez-Huerta [75].

A final threat about literature inclusion is about the possible uti-
lization of code inspection as a synonym for code review in literature
19
items. We tailored our inclusion criteria to include only literature
items explicitly mentioning code review; as well, we did not provide
any explicit exclusion criterion for the presence of code inspection as
a keyword in the elicited literature. This set of criteria creates two
threats if authors of searched literature used one of the term in place
of the other: there is therefore a possibility that literature about code
inspection is included in our results, and that literature about (modern)
code review is excluded. Even though this threat can have an impact
on the more quantitative results (i.e., number of sources and mentions
per guideline or category) we do not expect impacts on the qualitative
results (i.e., individual guidelines and categories description) given that
modern code review are an evolution of code inspection and we expect
guidelines in both fields to be similar.

The objective of RQ2 was to provide a mapping from unspecialized
code review guidelines to guidelines for review of GUI-based test
artifacts. In addition of the possibility of overlooking sources discussed
previously, a threat to the validity of the result is the possible existence
of facets of GUI-based test artifacts that should be code-reviewed,
but that have no correspondence with normal production code. GUI-
based testing artifacts include in fact several elements that strongly
differ from regular code artifacts, e.g. models or screen captures of the



Information and Software Technology 163 (2023) 107299A. Bauer et al.
Table 7
Gray literature sources where guidelines were taken.

ID Title URL Year

GS1 9 Best practices for code review you really need perforce.com 2019
GS2 Best practices for peer code review - SmartBear smartbear.com 2022
GS3 How to do a code review | eng-practices - Google google.github.io 2020
GS4 5 code review best practices - Work Life by Atlassian atlassian.com 2022
GS5 Code review best practices - Palantir Blog blog.palantir.com 2018
GS6 8 Proven code review best practices for developers - Snyk snyk.io 2022
GS7 How to make good code reviews better - Stack Overflow Blog stackoverflow.blog 2019
GS8 16 Tech leaders share smart best practices for reviewing code forbes.com 2020
GS9 Reviewing code - Best practices and techniques for code review codegrip.tech 2021
GS10 How to review someone Else’s code: Tips and best practices codecademy.com 2021
GS11 Code review good practices: guide for beginners medium.com 2021
GS12 5 code review best practices. Make others like your code review tsh.io 2020
GS13 Code review guidelines - GitLab documentation docs.gitlab.com 2022
GS14 Proven code review best practices from microsoft michaelagreiler.com 2019
GS15 Code review best practices - DeepSource deepsource.io 2019
GS16 13 Code review standards inspired by Google betterprogramming.pub 2020
GS17 What is code review? - Guidelines and best practices blog.ndepend.com 2021
GS18 Secure code review: How secure is your code? - DataPrivia dataprivia.com 2022
GS19 Code review - Open practice library openpracticelibrary.com 2020
GS20 6 code review best practices for a happier codebase and team educative.io 2022
GS21 Code review best practices - Trisha Gee trishagee.com 2018
GS22 Best practices for code review and Pull requests - Updivision updivision.com 2021
GS23 5 Best practices for code review - GeeksforGeeks geeksforgeeks.org 2022
GS24 How to improve your code review: tips and best practices belvo.com 2021
GS25 Investigating the effectiveness of peer code review in . . . jserd.springeropen.com 2018
GS26 Better code, better applications - every time walkingtree.tech 2022
GS27 How we do it: peer code review - DataMiner Dojo community.dataminer.services 2022
GS28 Code review guidelines for data science teams tdhopper.com 2021
GS29 Gerrit code review product overview gerrit-review.googlesource.com 2022
GS30 Code review: Best practices - Waverley software waverleysoftware.com 2019
GS31 Code review checklist - Apex hours apexhours.com 2021
GS32 The art of code review - Towards Data Sciencehttps towardsdatascience.com 2021
GS33 Code review best practices - Level up coding levelup.gitconnected.com 2021
GS34 Best practices code review test automation by Anton Smirnov itnext.io 2021
GS35 Best practices for code review dzone.com 2020
GS36 Code review best practices - GitKraken gitkraken.com 2021
GS37 Best practices for effective code review leobit.com 2020
GS38 Best practices for effective and efficient Agile code reviews queue-it.com 2022
GS39 Best practices for peer code review kessler.de 2009
GS40 Creating simple and effective guidelines for code reviews newrelic.com 2018
GS41 Best practices for code review - C# Corner c-sharpcorner.com 2016
GS42 Code review best practices - Programmer Friend programmerfriend.com 2018
GS43 How rOpenSci uses code review to promote reproducible science ropensci.org 2017
GS44 Where is the value in package peer review? ropensci.org 2018
GS45 Recommended C style and coding standards. Pocket reference guide gnu.org 2005
GS46 ChangeViz materials doi.org/10.5281/zenodo.5175927 2021
GS47 Ilya Sabanin contributor to Beanstalk guides guides.beanstalkapp.com 2019
GS48 Atlassian Crucible features atlassian.com 2022
GS49 CodeFlow getcodeflow.com 2014
GS50 Intel Open Source Technology Center – Patch Review blog.ffwll.ch 2020
GS51 Apache Spark spark.apache.org 2020
GS52 Chromium coding style dev.chromium.org 2014
GS53 Pep 8: style guide for python code peps.python.org/pep-0008 2001
GS54 10 faulty behaviors of code review speakerdeck.com 2020
GS55 How we do code review — app center blog devblogs.microsoft.com 2020
GS56 Code review best practices by Palantir medium.com 2020
GS57 Pull request best practices - the pragmatic engineer blog.pragmaticengineer.com 2020
GS58 The wireshark wiki - Development/SubmittingPatches wiki.wireshark.org 2020
GS59 Sharma S. How to write a good pull request description – and why it is important URL freecodecamp.org 2020
GS60 What is code review? smartbear.com 2020
GS61 Code reviews at google are lightweight and fast michaelagreiler.com 2020
GS62 The 2019 state of code review: Trends and insights into collaborative software development static1.smartbear.co 2019
GS63 Firefox code review wiki.mozilla.org 2016
t
t
t

visual content of the SUT. Guidelines to address these specific objects
cannot be deduced by mapping code review guidelines for traditional
code review, thereby limiting the comprehensiveness of the answer
provided to RQ2 of the present manuscript. A final construct validity
threat is related to the selection of a broad search string, including
all code and software related guidelines. The selection of such string
can have an impact on the final count of the guideline occurrence
20

that was measured as an answer to RQ2, providing measures differing o
significantly than the figures that would have been obtained including
only test-related sources in the final pool.

External validity: External validity concerns the generalizability of
he results to other areas or domains. The study’s scope is on GUI-based
esting in general, regardless of test driver, GUI element localization
echnique or test case representation. Whilst there is a threat that some
f the guidelines are less applicable in some of these permutations of

https://www.perforce.com/blog/qac/9-best-practices-for-code-review
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://google.github.io/eng-practices/review/reviewer/
https://www.atlassian.com/blog/add-ons/code-review-best-practices
https://blog.palantir.com/code-review-best-practices-19e02780015f
https://snyk.io/learn/code-review/
https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/
https://www.forbes.com/sites/forbestechcouncil/2021/11/16/16-tech-leaders-share-smart-best-practices-for-reviewing-code/
https://www.codegrip.tech/productivity/best-practices-for-reviewing-code/
https://www.codecademy.com/resources/blog/code-review-best-practices/
https://medium.com/transparent-data-eng/good-practices-of-code-review-guide-for-beginners-8c084cd70be3
https://tsh.io/blog/code-review-best-practices/
https://docs.gitlab.com/ee/development/code_review.html
https://www.michaelagreiler.com/code-review-best-practices/
https://deepsource.io/blog/code-review-best-practices/
https://betterprogramming.pub/13-code-review-standards-inspired-by-google-6b8f99f7fd67
https://blog.ndepend.com/what-is-code-review-guidelines-best-practices/
https://dataprivia.com/secure-code-review/
https://openpracticelibrary.com/practice/code-review/
https://www.educative.io/blog/code-review-best-practices
https://trishagee.com/presentations/code_review_best_practice/
https://updivision.com/blog/post/best-practices-for-code-review-and-pull-requests-insights-from-developers
https://www.geeksforgeeks.org/5-best-practices-for-code-review/
https://belvo.com/blog/how-improve-your-code-review-tips-and-best-practices/
https://jserd.springeropen.com/articles/10.1186/s40411-018-0058-0
https://walkingtree.tech/better-code-better-applications-every-time/
https://community.dataminer.services/how-we-do-it-peer-code-review/
https://tdhopper.com/blog/code-review-guidelines
https://gerrit-review.googlesource.com/Documentation/intro-quick.html
https://waverleysoftware.com/blog/code-review-best-practices/
https://www.apexhours.com/code-review-checklist/
https://towardsdatascience.com/the-art-of-code-review-552a88c6f2ac
https://levelup.gitconnected.com/code-review-best-practices-cf6f4bfeeb3e
https://itnext.io/best-practices-code-review-test-automation-fb970feeca4c
https://dzone.com/articles/best-practices-for-code-review-quick-reference
https://www.gitkraken.com/blog/code-review
https://leobit.com/blog/effective-code-review-best-practices/
https://queue-it.com/blog/agile-code-review-best-practices/
https://www.kessler.de/prd/smartbear/BestPracticesForPeerCodeReview.pdf
https://newrelic.com/blog/best-practices/code-review-guidelines
https://www.c-sharpcorner.com/article/best-practices-for-code-review/
https://programmerfriend.com/code-review-best-practices/
https://ropensci.org/blog/2017/09/01/nf-softwarereview/
https://ropensci.org/blog/2018/04/06/peer-review-value/
http://www.gnu.org/prep/standards
https://doi.org/10.5281/zenodo.5175927
http://guides.beanstalkapp.com/code-review/guide-to-code-review.html
https://www.atlassian.com/software/crucible/features
https://www.getcodeflow.com/
https://blog.ffwll.ch/slides/review-training-public.pdf
https://spark.apache.org/contributing.html
http://dev.chromium.org/developers/coding-style
https://peps.python.org/pep-0008/
https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-itake-unconference
https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
https://medium.com/palantir/code-review-best-practices-19e02780015f
https://blog.pragmaticengineer.com/pull-request-or-diff-best-practices/
https://wiki.wireshark.org/Development/SubmittingPatches
https://www.freecodecamp.org/news/how-to-write-a-pull-request-description/
https://smartbear.com/learn/code-review/what-is-code-review/
https://www.michaelagreiler.com/code-reviews-at-google/
https://static1.smartbear.co/smartbearbrand/media/pdf/the-2019-state-of-code-review.pdf
https://wiki.mozilla.org/Firefox/Code_Review


Information and Software Technology 163 (2023) 107299A. Bauer et al.

n
t
c
o
a
b
t
t
o
m
t
l
i
i

s
t
r
p
i
r
h
t
d
c
i
a
b
a
b
t
p

6

m
d
T
f

g
t
a

g
c
v
c
t
a
p
t
t
a
i
c
G
i
s
g
c
r

approaches, due to the high level of the guidelines, such threats are
perceived as low.

Construct validity: Construct validity concerns if the studied phe-
omenon is the right phenomenon to meet the research objective. In
his study, the objective was to map guidelines from source- and test
ode to guidelines for GUI-based tests. The assumption behind this
bjective is that the guidelines are transferable due to the common
ttributes between source and test code [75]. However, as discussed
y Alegroth et al. [21], not all practices seem to be transferable. Hence,
here is a threat to the study’s results that the characteristics used for
he mapping are not representative, which may lower the applicability
f some of the guidelines. Due to the example-based approach to the
apping, we consider this threat to be lower, but we cannot conclude

hat all guidelines are applicable without empirical validation. Regard-
ess, this threat does not affect the contribution of this work since there
s currently a complete lack of guidelines for GUI-based testing reviews
n the academic body of knowledge.
Reliability: Reliability concerns how reliant the study, and its re-

ults, are on the researchers. For the data collection, we have mitigated
his threat by outlining the research procedure in detail. In addition, a
eplication package has been provided that presents all the acquired
apers and the intermediate steps of the analysis. A larger threat lies
n the synthesis of the results, common to coding-based research, where
esearcher and selection biases may have been introduced. These biases
ave been mitigated through the use of continued discussions among
he authors of the paper and cross-validation of the results. However,
ue to the size of the data set, this threat cannot be completely dis-
arded. A common threat associated to Systematic Literature Reviews
s researcher’s fatigue, i.e. the possibility of introducing biases in the
nalysis of large data tests, where the application adopted methodology
ecomes less rigorous towards the end of the analysis. This threat is
mplified in the context of the present work by the adoption of a rather
road search string, as motivated in Section 3.1. The authors mitigated
his threat by adopting a careful division of the reviewing tasks and by
erforming analysis sessions in fixed time windows.

. Conclusion

Code reviews are a common practice in modern software develop-
ent, used to identify faults and find improvements but also to share
omain and technical knowledge within a software development team.
hese reviews are common for source code and lower-level testing, but
or GUI-based testing artifacts, there are no general guidelines.

In this work, we have performed a systematic literature review of
uidelines for source and test code and mapped these to GUI-based
esting artifacts. The review is classified as multi-vocal because in
ddition to incorporating white literature we also used gray literature.

From the synthesis of the results, nine categories of code review
uidelines were identified, which were perform automated checks, use
hecklists, provide context information, utilize metrics, ensure readability,
isualize changes, reduce complexity, requirements and follow design prin-
iples and patterns. The resulting mapping provides a contribution in
erms of guidelines of general value to reviewing software development
rtifacts, but explicitly for the area of GUI-based testing. In addition to
resenting the guidelines themselves, each guideline is demonstrated,
hrough examples, how it can be applied for review of GUI-based
esting. Notably, we see that the proposed guidelines can also have

positive impact on development of GUI-based tests. It is, however,
mportant to mention that the provided set of guidelines cannot be
onsider complete nor comprehensive for the practice of reviewing
UI-based test artifacts, since many specific aspects of GUI-based test-

ng exist that can hardly be considered when providing general-purpose
oftware review guidelines. Since our mapping was performed with
eneral-purpose software review guidelines as a starting point, it is by
onstruction possible that some of these specific aspects are missed. The
esults of these reviews should, therefore, be complemented in future
21
work by the definition of code review guidelines that are exclusive to
GUI-based test artifacts. Given the lack of such guidelines in the litera-
ture, we foresee the utilization of surveys and unstructured interviews
with professionals as the means for collecting such evidence.

Future work based on this pivotal research includes empirical val-
idation of the guidelines in practice, as well as extending the guide-
lines with non-artifact focused guidelines, e.g., guidelines for reviewer
selection of GUI-based tests and review-process related aspects.

In conclusion, this work provides an important stepping stone for
review guidelines for GUI-based testing. However, more work is re-
quired in the future to address the current needs from the industry,
and challenges in this area.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The dataset is available at the following URL: https://zenodo.org/r
ecord/7248201.

Acknowledgments

We would like to acknowledge that this work was supported by the
KKS foundation through the S.E.R.T. Research Profile project (research
profile grant 2018/010) at Blekinge Institute of Technology. Further,
we thank Michael Dorner for valuable discussions.

References

[1] Amy E. Randel, Kimberly S. Jaussi, Functional background identity, diversity,
and individual performance in cross-functional teams, Acad. Manag. J. 46 (6)
(2003) 763–774.

[2] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, Alberto Bac-
chelli, Modern code review: A case study at google, in: Proceedings of the
40th International Conference on Software Engineering: Software Engineering
in Practice, ACM, Gothenburg Sweden, 2018, pp. 181–190, http://dx.doi.org/
10.1145/3183519.3183525.

[3] Amiangshu Bosu, Michaela Greiler, Christian Bird, Characteristics of useful code
reviews: An empirical study at microsoft, in: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, IEEE, Florence, Italy, 2015, pp.
146–156, http://dx.doi.org/10.1109/MSR.2015.21.

[4] Jason Cohen, Modern code review, in: Making Software: What Really Works,
and Why We Believe It, 2010, pp. 329–336.

[5] Alberto Bacchelli, Christian Bird, Expectations, outcomes, and challenges of
modern code review, in: 2013 35th International Conference on Software
Engineering (ICSE), IEEE, San Francisco, CA, USA, 2013, pp. 712–721, http:
//dx.doi.org/10.1109/ICSE.2013.6606617.

[6] Nargis Fatima, Sumaira Nazir, Suriayati Chuprat, Knowledge sharing, a key
sustainable practice is on risk: An insight from Modern Code Review, in: 2019
IEEE 6th International Conference on Engineering Technologies and Applied
Sciences (ICETAS), IEEE, Kuala Lumpur, Malaysia, 2019, pp. 1–6, http://dx.doi.
org/10.1109/ICETAS48360.2019.9117444.

[7] Stefan Berner, Roland Weber, Rudolf K. Keller, Observations and lessons learned
from automated testing, in: Proceedings of the 27th International Conference on
Software Engineering, ACM, 2005, pp. 571–579.

[8] Emil Alégroth, Robert Feldt, On the long-term use of visual gui testing in
industrial practice: a case study, Empir. Softw. Eng. 22 (6) (2017) 2937–2971.

[9] Riccardo Coppola, Emil Alégroth, A taxonomy of metrics for GUI-based testing
research: A systematic literature review, Inf. Softw. Technol. (2022) 107062.

[10] Liming Dong, He Zhang, Lanxin Yang, Zhiluo Weng, Xin Yang, Xin Zhou, Zifan
Pan, Survey on pains and best practices of code review, in: 2021 28th Asia-Pacific
Software Engineering Conference (APSEC), IEEE, Taipei, Taiwan, 2021-12, pp.
482–491, http://dx.doi.org/10.1109/APSEC53868.2021.00055.

[11] Motahareh Bahrami Zanjani, Huzefa Kagdi, Christian Bird, Automatically recom-
mending peer reviewers in modern code review, IEEE Trans. Softw. Eng. 42 (6)
(2016) 530–543, http://dx.doi.org/10.1109/TSE.2015.2500238.

https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
https://zenodo.org/record/7248201
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb1
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb1
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb1
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb1
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb1
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1109/MSR.2015.21
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb4
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb4
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb4
http://dx.doi.org/10.1109/ICSE.2013.6606617
http://dx.doi.org/10.1109/ICSE.2013.6606617
http://dx.doi.org/10.1109/ICSE.2013.6606617
http://dx.doi.org/10.1109/ICETAS48360.2019.9117444
http://dx.doi.org/10.1109/ICETAS48360.2019.9117444
http://dx.doi.org/10.1109/ICETAS48360.2019.9117444
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb7
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb7
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb7
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb7
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb7
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb8
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb8
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb8
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb9
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb9
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb9
http://dx.doi.org/10.1109/APSEC53868.2021.00055
http://dx.doi.org/10.1109/TSE.2015.2500238


Information and Software Technology 163 (2023) 107299A. Bauer et al.
[12] Aleksandr Chueshev, Julia Lawall, Reda Bendraou, Tewfik Ziadi, Expanding
the number of reviewers in open-source projects by recommending appropriate
developers, in: 2020 IEEE International Conference on Software Maintenance and
Evolution, ICSME, 2020, pp. 499–510, http://dx.doi.org/10.1109/ICSME46990.
2020.00054.

[13] Adam Alami, Marisa Leavitt Cohn, Andrzej Wąsowski, Why does code review
work for open source software communities? in: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), 2019, pp. 1073–1083,
http://dx.doi.org/10.1109/ICSE.2019.00111.

[14] Ishan Banerjee, Bao Nguyen, Vahid Garousi, Atif Memon, Graphical user interface
(GUI) testing: Systematic mapping and repository, Inf. Softw. Technol. 55 (10)
(2013) 1679–1694, http://dx.doi.org/10.1016/j.infsof.2013.03.004.

[15] Emil Alégroth, Kristian Karl, Helena Rosshagen, Tomas Helmfridsson, Nils Olsson,
Practitioners’ best practices to adopt, use or abandon model-based testing with
graphical models for software-intensive systems, Empir. Softw. Eng. 27 (5) (2022)
1–42.

[16] Andreas Bruns, Andreas Kornstadt, Dennis Wichmann, Web application tests with
selenium, IEEE Softw. 26 (5) (2009) 88–91.

[17] Stanislava Nedyalkova, Jorge Bernardino, Open source capture and replay tools
comparison, in: Proceedings of the International C* Conference on Computer
Science and Software Engineering, 2013, pp. 117–119.

[18] Alper Silistre, Onur Kilincceker, Fevzi Belli, Moharram Challenger, Geylani
Kardas, Models in graphical user interface testing: Study design, in: 2020 Turkish
National Software Engineering Symposium, UYMS, IEEE, 2020, pp. 1–6.

[19] Emil Alégroth, Robert Feldt, Lisa Ryrholm, Visual GUI testing in practice:
Challenges, problemsand limitations, Empir. Softw. Eng. 20 (3) (2015) 694–744,
http://dx.doi.org/10.1007/s10664-013-9293-5.

[20] Tsung-Hsiang Chang, Tom Yeh, Robert C. Miller, GUI testing using computer
vision, in: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 1535–1544.

[21] Emil Alegroth, Elin Petersen, John Tinnerholm, A failed attempt at creating
guidelines for visual GUI testing: An industrial case study, in: 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST), IEEE, Porto
de Galinhas, Brazil, 2021, pp. 340–350, http://dx.doi.org/10.1109/ICST49551.
2021.00046.

[22] A. Frank Ackerman, Priscilla J. Fowler, Robert G. Ebenau, Software inspections
and the industrial production of software, in: Proc. of a Symposium on Software
Validation: Inspection-Testing-Verification-Alternatives, Elsevier North-Holland,
Inc., Darmstadt, Germany, USA, 1984, pp. 13–40.

[23] A.F. Ackerman, L.S. Buchwald, F.H. Lewski, Software inspections: an effective
verification process, IEEE Softw. 6 (3) (1989) 31–36, http://dx.doi.org/10.1109/
52.28121.

[24] M.E. Fagan, Design and code inspections to reduce errors in program devel-
opment, IBM Syst. J. 15 (3) (1976) 182–211, http://dx.doi.org/10.1147/sj.153.
0182.

[25] Forrest Shull, Carolyn Seaman, Inspecting the history of inspections: An example
of evidence-based technology diffusion, IEEE Softw. 25 (1) (2008) 88–90, http:
//dx.doi.org/10.1109/MS.2008.7.

[26] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, Christopher
Chockley, Process aspects and social dynamics of contemporary code review:
Insights from open source development and industrial practice at microsoft, IEEE
Trans. Softw. Eng. 43 (1) (2017) 56–75, http://dx.doi.org/10.1109/TSE.2016.
2576451.

[27] Peter C. Rigby, Christian Bird, Convergent contemporary software peer review
practices, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, in: ESEC/FSE 2013, Association for Computing Machinery,
Saint Petersburg, Russia, New York, NY, USA, 2013, pp. 202–212, http://dx.doi.
org/10.1145/2491411.2491444.

[28] Tobias Baum, Olga Liskin, Kai Niklas, Kurt Schneider, A faceted classification
scheme for change-based industrial code review processes, in: 2016 IEEE Inter-
national Conference on Software Quality, Reliability and Security, QRS, IEEE,
2016, pp. 74–85.

[29] Nicole Davila, Ingrid Nunes, A systematic literature review and taxonomy of
modern code review, J. Syst. Softw. 177 (2021) 110951, http://dx.doi.org/10.
1016/j.jss.2021.110951.

[30] Gerrit, Gerrit code review, 2022, https://www.gerritcodereview.com.
[31] Phabricator Inc., Phabricator: Discuss. Plan. Code. Review. Test, 2022, https:

//www.phacility.com/phabricator.
[32] CACM Staff, CodeFlow: Improving the code review process at microsoft,

Commun. ACM 62 (2) (2019) 36–44, http://dx.doi.org/10.1145/3287289.
[33] GitHub Inc., GitHub: Where the world builds software, 2022, https://github.com.
[34] GitLab B.V., GitLab, 2022, https://about.gitlab.com/.
[35] Atlassian, Bitbucket | Git solution for teams using Jira, 2022, https://bitbucket.

org.
[36] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, Al-

berto Bacchelli, When testing meets code review: Why and how developers
review tests, in: Proceedings of the 40th International Conference on Software
Engineering, ACM, Gothenburg Sweden, 2018, pp. 677–687, http://dx.doi.org/
10.1145/3180155.3180192.

[37] Philip N. Johnson-Laird, Human and Machine Thinking, Psychology Press, 2013.
22
[38] Shi Qing Pan, Maria Vega, Alan J. Vella, Brian H. Archer, G.R. Parlett, A mini-
Delphi approach: An improvement on single round techniques, Prog. Tour. Hosp.
Res. 2 (1) (1996) 27–39.

[39] Ilker Etikan, Sulaiman Abubakar Musa, Rukayya Sunusi Alkassim, et al., Com-
parison of convenience sampling and purposive sampling, Am. J. Theor. Appl.
Stat. 5 (1) (2016) 1–4.

[40] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Vol. 2, 2007.

[41] Vahid Garousi, Mika V. Mäntylä, Citations, research topics and active countries
in software engineering: A bibliometrics study, Comp. Sci. Rev. 19 (2016) 56–77.

[42] Vahid Garousi, Michael Felderer, Mika V. Mäntylä, Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering,
Inf. Softw. Technol. 106 (2019) 101–121, http://dx.doi.org/10.1016/j.infsof.
2018.09.006.

[43] Dominic J. Farace, Joachim Schöpfel, Grey Literature in Library and Information
Studies, 2010, http://dx.doi.org/10.1515/9783598441493, Cited by: 67; All
Open Access, Green Open Access.

[44] Richard J. Adams, Palie Smart, Anne Sigismund Huff, Shades of grey: guidelines
for working with the grey literature in systematic reviews for management and
organizational studies, Int. J. Manag. Rev. 19 (4) (2017) 432–454.

[45] Vahid Garousi, Michael Felderer, Mika V. Mäntylä, The need for multivocal
literature reviews in software engineering: complementing systematic literature
reviews with grey literature, in: Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering, 2016, pp. 1–6.

[46] Claes Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp.
1–10.

[47] Mai Thi Thanh Thai, Li Choy Chong, Narendra M. Agrawal, Straussian grounded
theory method: An illustration, Qual. Rep. 17 (5) (2012).

[48] Barney G. Glaser, Anselm L. Strauss, Elizabeth Strutzel, The discovery of
grounded theory; strategies for qualitative research, Nurs. Res. 17 (4) (1968)
364.

[49] Guoping Rong, Jingyi Li, Mingjuan Xie, Tao Zheng, The effect of checklist in
code review for inexperienced students: An empirical study, in: 2012 IEEE 25th
Conference on Software Engineering Education and Training, IEEE, Nanjing,
China, 2012, pp. 120–124, http://dx.doi.org/10.1109/CSEET.2012.22.

[50] Qiang Fu, Francis Grady, Bjoern Flemming Broberg, Andrew Roberts, Geir Gil
Martens, Kjetil Vatland Johansen, Pieyre Le Loher, Code review and cooperative
pair programming best practice, 2017, http://dx.doi.org/10.48550/ARXIV.1706.
02062.

[51] GitLab B.V., Code review guidelines, 2022, https://docs.gitlab.com/ee/
development/code_review.html.

[52] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, Alberto
Bacchelli, Information needs in contemporary code review, Proc. ACM
Hum.-Comput. Interact. 2 (CSCW) (2018) 1–27, http://dx.doi.org/10.1145/
3274404.

[53] Andrew Sutherland, Gina Venolia, Can peer code reviews be exploited for
later information needs? in: 2009 31st International Conference on Software
Engineering-Companion Volume, IEEE, 2009, pp. 259–262, http://dx.doi.org/10.
1109/ICSE-COMPANION.2009.5070996.

[54] Shane McIntosh, Yasutaka Kamei, Bram Adams, Ahmed E. Hassan, The impact
of code review coverage and code review participation on software quality: A
case study of the qt, vtk, and itk projects, in: Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 192–201.

[55] .NET Foundation, xUnit.net, 2022, https://xunit.net.
[56] GraphWalker, GraphWalker, an open-source model-based testing tool, 2022,

https://graphwalker.github.io.
[57] Michel Nass, Emil Alegroth, SCOUT: A revised approach to GUI-test automation,

2020, p. 2.
[58] Emil Alegroth, Arvid Karlsson, Alexander Radway, Continuous integration and

visual GUI testing: Benefits and drawbacks in industrial practice, in: 2018 IEEE
11th International Conference on Software Testing, Verification and Validation
(ICST), IEEE, Vasteras, 2018, pp. 172–181, http://dx.doi.org/10.1109/ICST.2018.
00026.

[59] Mountainminds GmbH & Co. KG, Java code coverage for eclipse, 2022, https:
//www.jacoco.org.

[60] Cobertura, A code coverage utility for Java, 2022, https://cobertura.github.io/
cobertura/.

[61] Raymond P.L. Buse, Westley R. Weimer, Learning a metric for code readability,
IEEE Trans. Softw. Eng. 36 (4) (2009) 546–558.

[62] Google, Google engineering practices documentation, 2022, https://google.
github.io/eng-practices/.

[63] Le An, Foutse Khomh, Shane Mcintosh, Marco Castelluccio, Why did this
reviewed code crash? An empirical study of mozilla firefox, in: 2018 25th
Asia-Pacific Software Engineering Conference, APSEC, IEEE, 2018, pp. 396–405,
http://dx.doi.org/10.1109/APSEC.2018.00054.

http://dx.doi.org/10.1109/ICSME46990.2020.00054
http://dx.doi.org/10.1109/ICSME46990.2020.00054
http://dx.doi.org/10.1109/ICSME46990.2020.00054
http://dx.doi.org/10.1109/ICSE.2019.00111
http://dx.doi.org/10.1016/j.infsof.2013.03.004
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb15
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb16
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb16
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb16
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb17
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb17
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb17
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb17
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb17
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb18
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb18
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb18
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb18
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb18
http://dx.doi.org/10.1007/s10664-013-9293-5
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb20
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb20
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb20
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb20
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb20
http://dx.doi.org/10.1109/ICST49551.2021.00046
http://dx.doi.org/10.1109/ICST49551.2021.00046
http://dx.doi.org/10.1109/ICST49551.2021.00046
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb22
http://dx.doi.org/10.1109/52.28121
http://dx.doi.org/10.1109/52.28121
http://dx.doi.org/10.1109/52.28121
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1109/MS.2008.7
http://dx.doi.org/10.1109/MS.2008.7
http://dx.doi.org/10.1109/MS.2008.7
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb28
http://dx.doi.org/10.1016/j.jss.2021.110951
http://dx.doi.org/10.1016/j.jss.2021.110951
http://dx.doi.org/10.1016/j.jss.2021.110951
https://www.gerritcodereview.com
https://www.phacility.com/phabricator
https://www.phacility.com/phabricator
https://www.phacility.com/phabricator
http://dx.doi.org/10.1145/3287289
https://github.com
https://about.gitlab.com/
https://bitbucket.org
https://bitbucket.org
https://bitbucket.org
http://dx.doi.org/10.1145/3180155.3180192
http://dx.doi.org/10.1145/3180155.3180192
http://dx.doi.org/10.1145/3180155.3180192
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb37
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb38
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb38
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb38
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb38
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb38
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb39
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb39
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb39
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb39
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb39
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb40
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb40
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb40
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb41
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb41
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb41
http://dx.doi.org/10.1016/j.infsof.2018.09.006
http://dx.doi.org/10.1016/j.infsof.2018.09.006
http://dx.doi.org/10.1016/j.infsof.2018.09.006
http://dx.doi.org/10.1515/9783598441493
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb44
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb44
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb44
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb44
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb44
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb45
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb46
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb47
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb47
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb47
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb48
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb48
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb48
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb48
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb48
http://dx.doi.org/10.1109/CSEET.2012.22
http://dx.doi.org/10.48550/ARXIV.1706.02062
http://dx.doi.org/10.48550/ARXIV.1706.02062
http://dx.doi.org/10.48550/ARXIV.1706.02062
https://docs.gitlab.com/ee/development/code_review.html
https://docs.gitlab.com/ee/development/code_review.html
https://docs.gitlab.com/ee/development/code_review.html
http://dx.doi.org/10.1145/3274404
http://dx.doi.org/10.1145/3274404
http://dx.doi.org/10.1145/3274404
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070996
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070996
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070996
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb54
https://xunit.net
https://graphwalker.github.io
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb57
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb57
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb57
http://dx.doi.org/10.1109/ICST.2018.00026
http://dx.doi.org/10.1109/ICST.2018.00026
http://dx.doi.org/10.1109/ICST.2018.00026
https://www.jacoco.org
https://www.jacoco.org
https://www.jacoco.org
https://cobertura.github.io/cobertura/
https://cobertura.github.io/cobertura/
https://cobertura.github.io/cobertura/
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb61
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb61
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb61
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/
http://dx.doi.org/10.1109/APSEC.2018.00054


Information and Software Technology 163 (2023) 107299A. Bauer et al.
[64] Tobias Baum, Kurt Schneider, On the need for a new generation of code
review tools, in: Pekka Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc,
Michael Felderer, Sousuke Amasaki, Tommi Mikkonen (Eds.), Product-Focused
Software Process Improvement, Springer International Publishing, Cham, 2016,
pp. 301–308.

[65] Quinn Hanam, Ali Mesbah, Reid Holmes, Aiding code change understanding
with semantic change impact analysis, in: 2019 IEEE International Conference
on Software Maintenance and Evolution, ICSME, IEEE, 2019, pp. 202–212.

[66] Tim Menzies, Justin S Di Stefano, Mike Chapman, Ken McGill, Metrics that
matter, in: 27th Annual NASA Goddard/IEEE Software Engineering Workshop,
2002. Proceedings., IEEE, 2002, pp. 51–57.

[67] Emre Doğan, Eray Tüzün, Towards a taxonomy of code review smells, Inf. Softw.
Technol. 142 (2022) 106737.

[68] Robert C. Martin, Design principles and design patterns, Object Mentor 1 (34)
(2000) 597.

[69] Erich Gamma, Richard Helm, Ralph Johnson, Ralph E. Johnson, John Vlissides,
et al., Design Patterns: Elements of Reusable Object-Oriented Software, Pearson
Deutschland GmbH, 1995.
23
[70] Anton Smirnov, Best practices code review test automation, 2022, https://itnext.
io/best-practices-code-review-test-automation-fb970feeca4c.

[71] Maurizio Leotta, Diego Clerissi, Filippo Ricca, Cristiano Spadaro, Improving test
suites maintainability with the page object pattern: An industrial case study, in:
2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013, pp. 108–113, http://dx.doi.org/10.1109/ICSTW.
2013.19.

[72] Lisa A. Guion, David C. Diehl, Debra McDonald, Triangulation: establishing the
validity of qualitative studies, Edis 2011 (8) (2011) 3.

[73] Felipe Ebert, Fernando Castor, Nicole Novielli, Alexander Serebrenik, Confusion
in code reviews: Reasons, impacts, and coping strategies, in: 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering,
SANER, IEEE, 2019, pp. 49–60.

[74] Per Runeson, Martin Höst, Guidelines for conducting and reporting case study
research in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164.

[75] Emil Alégroth, Javier Gonzalez-Huerta, Towards a mapping of software technical
debt onto testware, in: 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, Vienna, Austria, 2017, pp. 404–411,
http://dx.doi.org/10.1109/SEAA.2017.65.

http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb64
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb65
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb65
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb65
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb65
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb65
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb66
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb66
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb66
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb66
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb66
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb67
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb67
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb67
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb68
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb68
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb68
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb69
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb69
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb69
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb69
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb69
https://itnext.io/best-practices-code-review-test-automation-fb970feeca4c
https://itnext.io/best-practices-code-review-test-automation-fb970feeca4c
https://itnext.io/best-practices-code-review-test-automation-fb970feeca4c
http://dx.doi.org/10.1109/ICSTW.2013.19
http://dx.doi.org/10.1109/ICSTW.2013.19
http://dx.doi.org/10.1109/ICSTW.2013.19
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb72
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb72
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb72
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb73
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb74
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb74
http://refhub.elsevier.com/S0950-5849(23)00153-2/sb74
http://dx.doi.org/10.1109/SEAA.2017.65

	Code review guidelines for GUI-based testing artifacts
	Introduction
	Background and Related Work
	GUI-based Testing
	Modern Code Review

	Study Design
	Research Questions
	Methodology
	Interviews with Experts
	White Literature Collection
	Gray Literature Collection
	Data Extraction
	Data Analysis and Coding


	Results
	Macro Analysis
	RQ1: What are guidelines used for source and test artifact review?
	RQ2: To what extent can source and test artifact review guidelines be mapped for GUI-based test artifact review?

	Discussion
	Threats to Validity

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


