
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 17th IEEE/ACM International
Conference on Software and System Processes, ICSSP 2023, Melbourne, 14 May through 15
May 2023.

Citation for the original published paper:

Unver, B., Britto, R. (2023)
Automatic Detection of Security Deficiencies and Refactoring Advises for Microservices
In: Proceedings - 2023 IEEE/ACM International Conference on Software and System
Processes, ICSSP 2023 (pp. 25-34). Institute of Electrical and Electronics Engineers
(IEEE)
https://doi.org/10.1109/ICSSP59042.2023.00013

N.B. When citing this work, cite the original published paper.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-25262

Automatic Detection of Security Defciencies and
Refactoring Advises for Microservices

¨Burak UNVER
Ericsson AB, Sweden.

burak.unver@ericsson.com

Abstract—The microservice architecture enables organizations
to shorten development cycles and deliver cloud-native appli-
cations rapidly. However, it also brings security concerns that
need to be addressed by developers. Therefore, security testing in
microservices becomes even more critical. Recent research papers
indicate that security testing of microservices is often neglected
for reasons such as lack of time, lack of experience in the security
domain, and absence of automated test environments. Even
though several security scanning tools exist to detect container,
Kubernetes, and network issues, none individually is suffcient
to cover all security problems in microservices. Using multiple
scanning tools increases the complexity of analyzing fndings and
mitigating security vulnerabilities. This paper presents a fully
automated test suite that can help developers address security
issues in microservices and resolve them. It targets to reduce
time and effort in security activities by encapsulating open-source
scanning tools into one suite and providing improved feedback.
The developed security scanning suite is named Pomegranate.
To develop Pomegranate, we employed Design Science and
conducted our investigation in Ericsson. We have evaluated our
tool using a static approach. The evaluation results indicate that
the Pomegranate could be helpful to developers by providing
simplifed and classifed outputs for security vulnerabilities in
microservices. More than half of the practitioners who give us
feedback found Pomegranate helpful in detecting and mitigating
security problems in microservices. We conclude that a fully
automated test suite can help developers to address most security
issues in microservices. Based on the fndings in this paper, the
direction for future work is to conduct a dynamic validation of
Pomegranate in a live project.

Index Terms—Microservices, Security, Kubernetes, Security
Scanning Tools

I. INTRODUCTION

The high demand for software-intensive products has been
forcing organizations to improve how software is deployed
and increase the frequency of deliveries [1]. Organizations are
migrating their applications to the cloud for several reasons,
such as higher scalability and reliability, disaster recovery,
and security. One popular architecture to develop cloud-native
applications is the microservice paradigm [2].

Speeding up the delivery of software and high capability
to evolve are the primary outcomes of a microservice archi-
tecture. Some of the other benefts are high scalability, fault
isolation, and agile bug fxing [3].

Despite of its many benefts, there are many security

Ricardo Britto
Ericsson AB, Sweden

Blekinge Institute of Technology, Sweden.
ricardo.britto@ericsson.com

[4]; there are more entry points in microservices compared to
monolith applications.

Legacy security solutions that are effective for monolith
applications are often not good enough for microservices-
based applications. For example, microservices are small and
independent units of a system and can be written using hetero-
geneous technologies (e.g., different programming languages).
Furthermore, each microservice can interact with many other
microservices or applications outside an application’s cluster.

Software security testing is a part of the software testing
domain focused on the security properties of software ap-
plications. It is divided into functional security testing and
vulnerability security testing [5]. Functional security testing
assures that security functions are successfully implemented
in an application. Vulnerability security testing focuses on re-
vealing security risks and vulnerabilities that may make a soft-
ware system exploitable by attackers. Vulnerability security
testing can be static or dynamic. Static focuses on identifying
misconfgurations and vulnerabilities in source code. Dynamic
focuses on detecting vulnerabilities and security weaknesses
in applications by assessing them during their execution.

Although there are several vulnerability scanning tools for a
specifc purpose, there is a lack of security scanning suites that
combine static and dynamic vulnerability scanners, especially
for microservices. For instance, OWASP ZAP1 is an open-
source tool to detect vulnerabilities in web-based applications
by performing dynamic analysis. Nmap network scanner2 and
Kubeaudit3 are examples of security auditing tools that can be
applied to microservices deployed on Kubernetes clusters.

A security test suite that consists of many security scanning
tools to audit classifed security defciencies, aligned with
recommendations to refactor the defective code, may help
developers to improve the security and quality of microservice-
based applications by decreasing the time and effort in iden-
tifying issues and matching them to solutions. It may also
remove dependency on security experts in development teams.

The main aim of our research was to implement a fully
automated security test suite capable of automatically de-
tecting security defciencies in microservices and providing
refactoring advice as the outcome. It aims to help developers

challenges in the microservice architecture. These challenges 1https://www.zaproxy.org/
include expanded attacking surface, lack of monitoring ca- 2https://nmap.org/
pabilities in multiple clouds, and distributed security tracing 3https://github.com/Shopify/kubeaudit

https://3https://github.com/Shopify/kubeaudit
https://ca-2https://nmap.org
https://1https://www.zaproxy.org
mailto:ricardo.britto@ericsson.com
mailto:burak.unver@ericsson.com

reduce the time and effort to perform security assessments
for microservices and posterior code fxing. Our tool, called
Pomegranate, capitalizes on existing open-source scanners and
combines them to provide useful outputs that can support the
refactoring of vulnerable parts of microservices.

In this paper, we answered the following research questions:
• RQ1: What are optimum tools and/or methods for de-

tecting known security weaknesses and best practices for
microservices in literature?

• RQ2: How well does the developed security test suite
(Pomegranate) perform?

• RQ3: How feasible and useful is the Pomegranate for
practitioners in a large-scale environment?

In the remainder of this paper, we analyze related work
in Section 2, followed by the description of the employed
research design in Section 3. Section 4 presents Pomegranate,
followed by evaluation results in Section 5. Section 6 discusses
the evaluation results. Section 7 describes the threats to
the validity of our results. Finally, last section presents our
conclusions and view on future work.

II. RELATED WORK

Migrating from monolith architecture to microservice ar-
chitecture is not a straightforward process and there are
challenges that developers need to be aware of in the design
and development stage. In Carrasco et al. [6], and Neri et al.
[7], those architectural pitfalls are identifed, and refactorings
are mentioned to resolve those challenges in microservice-
based applications.

Ponce et al. [8] present ”security smells” for microservice-
based applications and proposes solutions to mitigate the
effects of those ”security smells.” The presented classifcation
has ten security problems and ten refactorings. It is a valuable
outcome and starting point for further investigation in the era
of microservice security.

Billawa et al. [9] have conducted a Grey Literature review
to identify microservice security challenges and solutions
recommended by practitioners using security discussions in
blogs, developer forums, white papers, and standards. They
have focused on identifying methods and tools to mitigate
security challenges in the state practice. The paper contains the
latest security mechanisms for microservice architecture and
identifes a gap that new frameworks, methods, and tools are
needed to take security into consideration during development.
The absence of fully automated security testing frameworks
for agile development environments is also mentioned.

A very recent systematic literature review of microservice
security performed by Berardi et al. [10] contains a sum-
mary of open challenges in securing microservices classifying
existing challenges into four groups (threat model, security
approach, infrastructure, and development). According to the
authors, there is a need to establish techniques and guides
to help developers secure microservices since microservice
development teams need to be aware of different aspects of
the security feld.

Minna et al. [11] have presented an open-source cloud test
bed that allows practitioners to make security experimentation
repetitively using a confguration fle. Mentioned confguration
fle helps to create, customize and deploy applications on
cloud environments automatically for security testing scenar-
ios. Although the study provides a valuable design and imple-
mentation idea of an open-source cloud test bed for helping
with experiments, it does not mention security challenges in
microservices and how to map them with results from the
tools.

The study Rudrabhatla [12] presents security design patterns
for microservices. According to the author, the identifcation
of threats and vulnerabilities is diffcult for developers due
to the stateless, independent, and heterogeneous nature of
microservices. Therefore, it is required to have continuous
scanning, monitoring, logging, and introduction of DevSecOps
practices into development.

In summary, the limitations and research gaps identifed in
the existing literature are as follows:

• Most of the research papers on microservice security
focus on identifying local threats and/or introducing
methods to solve them in isolation. However, there is a
lack of holistic approaches.

• There is no single static and/or dynamic security scanning
tool to cover all security defciencies for microservices.
Each tool creates a separate report which is diffcult to an-
alyze for inexperienced developers in the security domain
and resolve weaknesses. When the same vulnerabilities
are found by multiple tools and placed in different reports,
it causes additional effort and waste of time for analy-
sis. Detecting security weaknesses in microservices and
fnding a solution to mitigate issues require having high
knowledge and expertise in the security feld. However,
only a few developers and other practitioners have needed
knowledge and expertise.

In the light of above limitations in the literature, we
developed Pomegranate to run multiple security tools and
consolidate the outputs of multiple scanners (both static and
dynamic) to guide the refactoring of vulnerable code.

III. RESEARCH DESIGN

In our research, we employed the Design Science Methodol-
ogy (DSM) [13]. DSM includes the following phases: problem
identifcation, solution, and evaluation of the emerged solution.
Figure 1 provides an overview of our research design. In the
remainder of this section, we provide more details about how
we conducted our research.

A. Identifcation and Selection Phase

Our research was motivated by the challenges faced by
security masters at Ericsson. Like other practitioners in the
software industry, Ericsson security masters are accountable
for analyzing the outcome of multiple security scanners and
creating a vulnerability impact report. Security masters spend
between 200 and 500 hours producing such a report per
release.

ldently Seamy Delicieooos
aOOBestPm:tices

he tools/methods
appkclble to1eslsuile?

OeploymentaOOTesling

Fig. 1. Research Design Structure

To start addressing the identifed problem, we conducted a
rapid literature review focusing on security issues in microser-
vices and tools/methods for identifying security defciencies
in microservices. We surveyed both scientifc publications
and grey literature (GitHub repositories, online blog posts,
practitioner reports).

We formulated a search string to search existing knowledge
in related literature on databases such as Google Scholar and
IEEE Xplore. We formulated and used the following search
strings:

search1: (”microservice” AND ”security”) AND (”challenge”
OR ”weakness” OR ”defciency” OR ”vulnerability” OR ”is-
sue”)
search2: (”microservice” AND ”security”) AND (”solution”
OR ”practice”)
search3: (”microservice” AND ”security”) AND (”scanning
tool” OR ”detection” OR ”test automation”)

To account for the rapid evolution of cybersecurity prac-
tices, we applied fltering on the literature review fndings to
eliminate outdated security practices.

We also investigated open-source security scanning tools
publicly available on GitHub. We used the advanced search
feature of Github to search with desired parameters and sort
fndings. In our search, we only collected the repositories
that are updated in the last 2 years because the technologies
used with microservices are evolving so fast and outdated
repositories are mostly incompatible with the latest versions
of technologies. We formulated and used the following search
string:

(”security” AND ”scan”) AND (”microservice” OR ”kuber-
netes” OR ”container” OR ”network”)

After collecting all security scanning tools publicly available
at GitHub, we analyzed their ftness to our research. We
also considered the popularity of the repository as a sign of

community trust. More specifcally, we analyzed the number
of forks and stars per project.

1) Design Phase: Once we identifed the security issues
and tools associated with microservices, we used its outcome
to develop Pomegranate. Our tool uses a microservice/cloud-
native architecture and capitalizes on existing open-source
components. We provide more details about the tool in Section
and in our online Appendix4.

2) Evaluation Phase: The last phase of our research was to
validate Pomegranate (RQ2 and RQ3). To do so, we did two
things: we analyzed our tool’s performance (scanning time and
reliability) and conducted a static validation [14].

To identify the average scanning time of Pomegranate, we
used the Pomegranate bash script with recording time at the
beginning and end. We frst run it ten times by deploying
the same microservice. After observing that the scanning time
is nearly the same at each time, we performed the scan
ten times in our test environment by deploying ten different
microservices at each time. Since the type of microservice
and the number of implemented features might affect scanning
time, we also chose a diverse type of microservices such as
databases, and web applications. In the same way, reliability
tests can help to understand whether the Pomegranate is trust-
worthy by creating correct outputs consistently in a specifc
time.

In our static validation, we asked security masters, develop-
ers, and architects to answer a questionnaire that focused on
the usability, feasibility, and reliability of our tool (see Table
I).

We invited 50 practitioners to attend a session wherein
we spent 30 minutes demoing Pomegranate. After the demo,
we spent 30 minutes answering questions from the audience.
In the end, we shared the questionnaire (online) and asked
the participants to answer within one week. As a result, 20
practitioners answered the questionnaire (11 developers, 8
security masters, and 1 architect).

To analyze the results, we used descriptive statistics. We also
analyzed the text provided to the questionnaire’s open-ended
question and selected relevant quotes, which are presented in
Section 5.

IV. POMEGRANATE OVERVIEW

Pomegranate5 is a security scanning suite for microservices
that combines different open-source scanning tools and reveals
security weaknesses and provides recommendations for cor-
rections in an easy-to-interpret way.

The architecture of the Pomegranate is presented in Figure
2. It contains two blocks: scanning and analysis. Testing envi-
ronment, confguration, and development details are available
in our online Appendix. We provide more details bout the
tool’s architecture in the remainder of this section. Further-
more, we also describe the categorization of security issues
that resulted from our literature review.

4https://github.com/ramsessw/Pomegranate/blob/main/doc/OnlineAppendix.pdf
5The tool is available at https://github.com/ramsessw/Pomegranate

https://github.com/ramsessw/Pomegranate
https://4https://github.com/ramsessw/Pomegranate/blob/main/doc/OnlineAppendix.pdf

run scipt on CLI

Microservice is deployed
and ru nning

Kubernetes Cluster

Scanning Tools

docker-bench-security

trivy

kube+hunter

kube+bench

OWASPZAP

nmap

terrascan

Microservice image

Image Repo

Pomegranate-suite

report

report

report

report

report

report

report

Microservice Source Code

Code Repo

Analysis

Report Vulnerability
parser Sorter

summary table -

categorized
file

Fig. 2. Pomegranate Architecture

TABLE I
FEEDBACK QUESTIONNAIRE

Nr Type Question

1 Rating Pomegranate is easy to use and under-
stand.

2 Rating Pomegranate helps developers who are
inexperienced in the security domain
to address and resolve security weak-
nesses in microservices.

3 Rating Automatic detection of security def-
ciencies and refactoring advice done by
Pomegranate are reliable.

4 Rating Pomegranate is useful to detect security
weaknesses in microservices.

5 Rating Pomegranate helps to reduce time and
effort for making security assessments.

6 Multiple What is your role at the company?
choice

7 Multiple How long experience do you have in
choice the security domain?

8 Open- Please provide your feedback and sug-
ended gestions about Pomegranate.

A. Security Issues’ Categorization
We have grouped security defects into three categories:

container, Kubernetes, and network security. Tables IV-A,

IV-A, and IV-A provide the security defects (along with unique
IDs) and best practices we identifed through our literature
review.

B. Pomegranate Scanning Block

The scanning block encapsulates multiple static and dy-
namic security scanning tools that run on a Kubernetes clus-
ter. It includes the following scanners: Docker Bench for
Security6, Trivy7, Kube-hunter8, Kube-bench9, OWASP ZAP,
Nmap, and Terrascan10.

We selected the scanners above after checking the extent
to which they cover the security defects we identifed. Tables
IV-B, IV-B, and IV-A which defects are covered by each tool.

In the container category, The Docker Bench for Security
is chosen because it applies all CIS Docker Benchmark [15]
checklist, which is highly used in the industry as a guide. Trivy
is a powerful tool with rich features and a large database of

6https://github.com/docker/docker-bench-security
7https://github.com/aquasecurity/trivy
8https://github.com/aquasecurity/kube-hunter
9https://github.com/aquasecurity/kube-bench
10https://github.com/tenable/terrascan

https://10https://github.com/tenable/terrascan
https://9https://github.com/aquasecurity/kube-bench
https://8https://github.com/aquasecurity/kube-hunter
https://7https://github.com/aquasecurity/trivy
https://6https://github.com/docker/docker-bench-security

I I I I I I

TABLE II
SECURITY DEFECTS AND PRACTISES IN CONTAINER CATEGORY

Category Security Defect Security Practice ID

Container
Vulnerable container images Prevent containers from loading vulnerable

software libraries
S1

Privilege escalation Use authentication and follow the least priv-
ilege principle

S2

Faulty container confguration Audit and harden container confguration
fles

S3

TABLE III
SECURITY DEFECTS AND PRACTISES IN KUBERNETES CATEGORY

Category Security Defect Security Practice ID

Kubernetes

Malicious access to
the Kubernetes
cluster

Use Transport Layer Security (TLS) for all API traffc S4
Use Service Accounts for API Authentication S5
Use Role Base Access Control (RBAC) for API Au-
thorization

S6

Unlimited resource usage and
capabilities on cluster

Restrict resource usage, user capabilities and network
access on cluster

S7

Exposure
of cluster
components

Restrict access to etcd S8
Restrict access to alpha or beta features S9
Use and encrypt Kubernetes Secrets S10
Use network policies to restrict pod access on cloud S11
Use latest version and check vulnerability updates
continuously

S12

Kubernetes misconfguration Audit and harden Kubernetes confguration fles S13
Unauthenticated access to
Kubelet

Enable Kubelet authentication and authorization S14

TABLE IV
SECURITY DEFECTS AND PRACTISES IN NETWORK CATEGORY

Category Security Defect Security Practice ID

Network

Exposing service to
external consumers
without protection

Use API Gateway to expose services and
Oauth 2.0 for API security

S15

Prevent vulnerabilities in URL endpoints S16
Disable exposing unnecessary open-ports
externally

S17

Non-Secured Service-to-Service
Communications

Use Mutual TLS and/or JSON Web Token
(JWT)

S18

known vulnerabilities. We also preferred integrating a static
scanning tool like Terrascan to look through source code and
container confguration deeply before running containerized
applications at production.

In the Kubernetes category, we selected kube-bench and
kube-hunter as they are leading Kubernetes scanning tools
in terms of coverage of the identifed security weaknesses,
community reputation, and ease of installation.

In the network security category, kube-hunter and Terrascan
also cover the defects of this category. In addition to them, we
included OWASP ZAP and Nmap.

TABLE V
SECURITY SCANNING TOOLS COMPARISON FOR CONTAINER CATEGORY

S1 S2 S3

To
ol

s DockerBenchSecurity ✓ ✓
Trivy ✓ ✓ ✓

Kube-hunter ✓
Terrascan ✓

Docker Bench for Security is a fully automated tool to
check common best practices in deployed Docker containers.
The tool checks the presence of requirements listed in CIS
(Center for Internet Security) Docker Benchmark [15]. It may
run as a shell script on the host or pre-built container. Findings
are written in a report fle.

Trivy is a security and misconfguration scanning tool which
is targeting container images, fle systems, git repositories,
Kubernetes clusters, and resources. It is an open-source scan-
ner created by Aqua Security. The tool has different scanning
options such as scanning known vulnerabilities (CVEs) in
OS packages and software and detecting misconfgurations in
different infrastructures.

Kube-hunter is a tool to detect security weaknesses in
Kubernetes clusters by performing a static and dynamic in-
spection. Kube-hunter can be deployed with three different
methods: running on the host machine, using containerized
version, or running as a pod in the cluster. Four main scanning
options are supported: remote scanning, interface scanning,

I I I I I I I

TABLE VI
SECURITY SCANNING TOOLS COMPARISON FOR KUBERNETES CATEGORY

S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

To
ol

s

Kube-bench ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kube-hunter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kubesec ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kubescape ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kubeaudit ✓ ✓ ✓ ✓ ✓ ✓ ✓

Popeye ✓ ✓ ✓ ✓ ✓
Datree ✓

Terrascan ✓ ✓

TABLE VII
SECURITY SCANNING TOOLS COMPARISON FOR NETWORK CATEGORY

S15 S16 S17 S18

To
ol

s OWASP ZAP ✓ ✓
Terrascan ✓

Nmap ✓ ✓
Kube-hunter ✓

network scanning, and Kubernetes node-auto-discovery.
In Pomegranate, kube-hunter is deployed as a pod in the

same cluster with a sample microservice. This deployment
type provides detecting more security issues since it simulates
the circumstance that a cluster is exposed by the attacker and
a pod of microservice is compromised due to a vulnerability.

Kube-bench is a tool checking Kubernetes deployments
based on the checklist of CIS Kubernetes Benchmark [16].
It ensures authorization, authentication, and encryption in
Kubernetes Control Plane Components. Security and Net-
work Policies, Secret Management and confgurations are also
checked by following the benchmark. For each item in the CIS
benchmark, the result is printed as ”PASS” for success, ”FAIL”
for failure, ”INFO” for information or ”WARN” for warning.

The tool can be run using a container, deploying in a
Kubernetes cluster, or installing binary on the host machine.
Similarly, as kube-hunter, we deployed kube-bench as a pod
in the Kubernetes cluster to inspect Kubernetes security def-
ciencies as part of Pomegranate. The scan is started by using a
YAML fle belonging to a job and ended with saving fndings
in a report.

OWASP Zed Attack Proxy (ZAP) is a security scanning
tool for web applications to detect vulnerabilities at run time. It
is created and developed by the OWASP Foundation that con-
tributes to the cybersecurity community through open-source
projects and activities to improve software security. OWASP
ZAP helps perform dynamic analysis in web applications by
acting as a proxy between the client application and server.
Sent requests to the application and received responses from
the application are analyzed by the tool to determine security
status.

OWASP ZAP is chosen for Pomegranate because of the
capability of scanning Application Programming Interfaces
(APIs) security vulnerabilities. This tool can also scan APIs
that expose microservices to users and communicate with other
services. To scan a microservice with OWASP ZAP, it is

needed to set exposed URL endpoints of the microservice in
ZAP confguration.

Network Mapper (Nmap) is a widely used, powerful, and
portable tool for network discovery and security scanning. Sev-
eral features of Nmap can be listed as port scanning, network
discovery, TCP/IP stack fngerprinting, and application version
detection. Using Nmap to inspect network protocols and detect
open ports help network administrators to understand the fows
in the network. Another reason to integrate Nmap in our test
suite is its capability to scan known TLS/SSL vulnerabilities
and check certifcates and used TLS algorithms.

The tool is installed in our host machine using its binary
fle. It might be also deployed as a pod that uses its container
image to inspect microservice network operations. The outputs
are written a report fle in XML format. It does not only list
open ports but also presents TLS/SSL security status if secure
communication protocols are used.

Terrascan is a static code analyzer to detect security
weaknesses in different platforms such as Kubernetes, Docker,
and Terraform by inspecting confguration fles. It helps to scan
the code for misconfgurations and fnd security vulnerabilities
and compliance violations. The tool can be installed on the
host machine or run directly via the Docker container.

Pomegranate uses Terrascan to detect faulty container con-
fgurations and ensure Kubernetes network confguration by
scanning Microservice source code. The tool can identify
infrastructure confguration fles from the given repository and
address security issues. The generated report in JSON format
includes only the details of found security violations.

C. Pomegranate Analysis Block

The analysis block includes a parsing script that reads all
generated reports and a vulnerability sorter script that classifes
fndings based on the security issue categorization presented
in this paper.

Developed Pomegranate provides outputs for users as refac-
toring advises to mitigate found security issues in tested mi-
croservice. The outcomes are a summary table for the security
status of a microservice and advisory fles of categorized
refactoring suggestions. The output summary table (see Figure
3) reveals the result for each security defect and practice if
they appear in the tested microservice. The classifed advisory
fles (see Figure 4) convey the details about vulnerability or
misconfguration and refactoring advice.

Category Security Defect Security Practice Id Status

Container Vulnerable conta iner images
Prevent containers from loading vulnerable software

S1
libraries

Unnecessary Privileges
Use authentication and follow The Least Privilege

S2 X
Princip le

Faulty container configuration Audit and harden conta iner configuration files S3 X

Kubernetes Malicious access through Kubernetes cluster Use Transport Layer Security [TLS) for all API traffic S4 X

Use Service Accounts API Authenticat ion S5 X

Use Role Base Access Control (RBAC) for API
S6

Authorization

Unlimited resource usage and capabilities on Restrict resource usage, user capabilities and network
S7

cluster access on cluster

Explosure of cluster components Restrict access to etcd S8

Restrict access to alpha or beta features S9

Use and encrypt Kubernetes Secrets S10

Use network policies to restrict pod access on cloud S11

Use latest version and check vulnerability updates
S12 X

continuously

Kubernetes misconfiguration Audit and harden Kubernetes configuration files S13 X

Unauthenticated access to Kubelet Enab le Kubelet aut hent ication and aut horization S14 X

Network
Exposing service to external consumers Use API Gateway to expose services and Oauth 2.0 for

S15 X
without protection API security

Prevent vulnerab ilities in URL endpoints S16 X

Disable exposing unnecessary open-ports externally S17 X

Non-Secured Service-to-Service
Use Mutual TLS and/ or JSON Web Token (JWT)

Communications
S18 X

Fig. 3. Pomegranate output: Summary table

V. EVALUATION RESULTS

In this section, we present the results to RQ2 and RQ3.

A. RQ2 - Pomegranate Performance Evaluation

We evaluated the average scanning time and reliability of
the test suite. The calculated average scan time after obtaining
all results was about 19 minutes. This average scan time can
be accepted as good because all integrated security scanning
tools in the Pomegranate run sequentially. So this result shows
us that scan time can be even less than 19 minutes by running
scan tools in parallel (a potential future improvement).

To verify the reliability of the Pomegranate, we performed
the scan in our test environment, repeating it ten times. All
repeating scans were performed with the same microservice
to determine whether the Pomegranate creates consistent and
accurate results. At the end of the repetitive scan, we collected
all generated fles as the output of the Pomegranate and
verifed the results by comparing them with each other.

B. RQ3 - Pomegranate Feasibility and User Evaluation

In this section, we present the feasibility, usefulness, and
usability results of The Pomegranate based on the feedback
questionnaire realized with 20 Microservice practitioners. Ta-
ble VIII consolidates the results.

The majority of the participants were positive about the
usability and simplicity (90%) of Pomegranate, the extent it
is helpful for inexperienced developers (90%), its reliability
(70%), its usefulness (85%), and the extent it helps to reduce
lead time and effort (85%).

We have asked the respondents to provide additional
feedback and suggestions in an open-ended way. We re-
ceived very constructive feedback and improvement ideas for
Pomegranate. For example, two participants highlighted that it
would be good to extend the Pomegranate with a transparent
confguration fle to utilize advanced options in scanning tools:

EXPLORER

v OPEN EDITORS

X S3json output
v POMEGRANATE-SUITE (SSH: MYHOST]

> apps

v output

{ I S2.json

S3.json

{ I S4.json

0 S5.json

0 S12Json

0 S13Json

0 S14.json

0 S15Json

0 S16Json

0 S17Json

0 S18Json

> reports

> tools

.gitmodules

+ ana lysis.py

$ pomegranate-suite.sh

CD README.md

• summary.md

template_table

u

{I S3json X <O <>•
output > 0 S3Json > {} 7

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

},
{

},
{

},
{

},
{

"desc" : "Ensure platform flag with FROM command is not used for Doc ker file" ,
"sever ity" : "MEDIUM",
"source" : ". / reports / terrascan-report.json" ,
"title" : "imageVersionnotusinglatest"

"desc" : "Ensure platform flag with FROM command is not used for Doc ker file" ,
"severity" : "MEDIUM",
"source" : ". / reports / terrascan-report.json" ,
"title" : "imageVersionnotusinglatest"

"desc" : "You should use COPY instead of ADD unless you want to extract a tar fil
"severity" : "LOW" ,
"source" : ". / reports / t r i vy -results.json" ,
"title" : "ADD instead of COPY"

"desc" : "Ensure a separate pa r tition for containers has been created (Automated)
"severity" : "WARN" ,
"source" : ". / reports / docker-bench-report.json" ,
"title" : "Host Configuration"

''des c'' : ''Ensure auditin~ is confi~ured for the Docker daemon (Automated) '' .

Fig. 4. Pomegranate output: Categorized fles

TABLE VIII
RESULTS OF FEEDBACK QUESTIONNAIRE WITH MICROSERVICE PRACTITIONERS

Survey question Developer Security Master Product Owner Other
What is your role at the company? 55% 40% 0% 5%
Survey question Less than 1 year 1 to 5 years 5 to 10 years More than 10 years
How long of experience do you have in the
security domain?

35% 45% 10% 10%

Survey question Strongly agree Agree Neutral Disagree Strongly disagree
Pomegranate is easy to use and understand. 40% 50% 10% 0% 0%
Pomegranate helps developers who are in-
experienced in the security domain to ad-
dress and resolve security weaknesses in
microservices

45% 45% 5% 5% 0%

Automatic detection of security defciencies
and refactoring advice done by Pomegranate
are reliable

10% 60% 25% 5% 0%

Pomegranate is useful to detect security
weaknesses in microservices

50% 35% 10% 0% 5%

Pomegranate helps to reduce time and effort
for making security assessments

55% 30% 15% 0% 0%

”What would also be interesting to see is how Pomegranate is
confgured & what options are available. Many of the open-
source tools used have different confguration options. Users
might want to try out and use together with the Pomegranate
suite.”

”Is the suite easy to extend with new scanners and parser? Is
it possible to detect holes in your security scanning, like a list
of security guidelines that are not currently scanned? It seems
that it is a good idea to grab a bunch of different open-source
tools and unify the output so you don’t have to look at all the
different reports manually.”

Two respondents raised concern about the suggested refac-
toring suggestions, which indicates the importance of a dy-
namic validation of Pomegranate:

”I answered neutral on the ’Automatic detection of security
defciencies and refactoring advises’ question, since it is
diffcult to know the refactoring will play out in practice since
I have not tried it and Pomegranate will only be as accurate
as the tools are defned in the suite..”

”Pomegranate is meant to detect and provide simplifed ag-
gregated results of the fndings. I am not sure if there was
something to fx/resolve the issues found (as mentioned in one
of the questions). Another point or rather question, when you
say reliable, does that mean there is some intelligent logic
implemented or the Pomegranate itself is relying on the tools
used in it e.g. kube-bench?”

All-in-all, the result of our evaluation was positive and
indicated that Pomegranate is in the right direction.

VI. DISCUSSION

Pomegranate provides a useful and effcient solution for
many limitations in the literature by combining multiple se-
curity scanning tools and uniforming all results from different
scanners. Another value of this research is that the evaluation
of the Pomegranate was conducted in a large-scale organiza-
tion with microservice practitioners such as developers and
security masters.

Covering identifed security defects and practices with a
minimum number of scanning tools in this research is an
important approach in terms of the effciency and simplicity
of the installations. Dozens of open-source security scanning
tools with diverse features and capabilities are publicly avail-
able online. However, it is observed that most of them are
outdated or have poor documentation, or have low community
trust based on the GitHub statistics like issues, numbers of
forks, and stars. As well as reviewing scanner tool documen-
tation, we also performed benchmarking in our testing environ-
ment to understand each tool’s features and capabilities. The
benchmarking activity helped us to eliminate scanning tools
that are insuffcient and have complex installation procedures.

By introducing an analysis module in Pomegranate, this
research simplifes security assessment and handles overlap-
ping vulnerabilities in different reports generated by tools. As
stated previously, the common problem with existing scanner
tools is that each tool creates a separate report and the
same vulnerabilities appear in different reports. This increases
the complexity of making security assessments and resolving
found issues. Parsing and unifying capabilities of the analysis
module in the Pomegranate help us to overcome the existing
problem in a better way in light of user evaluation results.

Another advantage of Pomegranate over existing scanning
solutions is that Pomegranate enables the integration of new
open-source tools without requiring major changes. If users
notice that there are better or integrated tools are outdated,
Pomegranate can be updated. Going through the documen-
tation, policies in new tools can be mapped to existing
classifcations in Pomegranate.

The main implications of this research for practitioners
are reducing the complexity and the technical specialization
in the security domain while securing the microservices.
Pomegranate contributes by fltering overlapped security vul-
nerabilities and misconfgurations in tool reports. Since the re-
lease frequency of microservices is high in agile development
environments, developers can utilize Pomegranate at every

release to save time and reduce the workload on the security
assessments.

The main implications of this research for other researchers
are the purposed approach of analyzing tool reports to elimi-
nate the complexity and the benchmarking results of security
scanning tools based on the identifed security vulnerabilities.
Researchers, who are studying the DevSecOps approach in
organizations, can utilize our work to introduce security testing
automation for live projects. As the limitation was highlighted
previously, existing tools are not capable of covering all
security issues in microservices, further studies are needed to
improve current tools. If a researcher intends to implement
a single comprehensive tool with more detection capabilities,
our research would be a good starting point with listing current
tools and classifed security issues.

VII. THREATS TO VALIDITY

Reliability concerns the extent to which it is possible to
reproduce the results of an investigation. Some of the data used
in our investigation is qualitative and was obtained through
questionnaires. The threats to the validity of our investiga-
tion in this category include respondent and researcher bias.
Another threat is related to the fact that reliability may be
diffcult to achieve due to access constraints to the research
site for consecutive times that may prevent repetition.

Construct validity concerns the extent to which the opera-
tional measures used in our investigation represent and answer
our research questions. In this category, there is one main
threat to the validity of our investigation: misinterpretation of
the questionnaire questions. To mitigate this threat, at the start
of the session wherein we presented Pomegranate to experts,
we clarifed the purpose of the session and the questionnaire.
We also used an iterative process to design and improve the
questionnaire, to avoid ambiguities.

Internal validity relates to the confounding factors that could
impact the validity of our results. It may be possible that we
have not covered all existing security defects in our simplifed
classifcation. As a consequence, it might be the case that
Pomegranate would not include all relevant scanners. To miti-
gate this threat, we have used triangulation (identifed security
issues and best practices from different sources). Another va-
lidity threat relates to the extent to which the evaluation results
relate to Pomegranate or are due to confounding factors not
controlled in our investigation. To mitigate this threat, we have
included a diverse set of respondents in our investigation, from
different product areas in Ericsson. However, we acknowledge
that it is still necessary to evaluate the tool in a semi-controlled
environment, account for potential confounding factors, and
use project data to evaluate Pomegranate’s usefulness and
feasibility. In doing so, we could increase the signifcance of
the evaluation results.

External validity concerns the extent to which the fndings
can be generalized and are interesting outside the inves-
tigated case. Our results have limited generalizability; we
have evaluated Pomegranate only in Ericsson. At the same
time, Pomegranate, along with our fndings, can be of use

to practitioners with a similar context as the one in our
investigation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Pomegranate, a tool that enables
the streamlines of scanning security vulnerabilities in mi-
croservices and recommends refactorings to address identifed
vulnerabilities.

Following the Design Science Method, we identifed and
framed the research problem based on practitioners’ needs.
Then, we conducted a rapid literature review to identify
security issues and best practices to avoid/address them. Then,
we developed Pomegranate, incorporating a series of open-
source components that effectively reveal security vulnera-
bilities. Furthermore, we added to our tool a capability that
consolidates the results of multiple scanners and groups them
according to the security issue classifcation we proposed
in this paper. Finally, we evaluated our tool through static
validation.

The static validation results show that most participants
were positive towards Pomegranate. The majority of the par-
ticipants were positive about its usability and simplicity (90%),
the extent it is helpful for inexperienced developers (90%), its
reliability (70%), its usefulness (85%), and the extent it helps
to reduce lead time and effort (85%).

As a future work, there are many potential directions. For
example, it is necessary to containerize Pomegranate to make it
isolated and portable, delivering it as a Docker image. In doing
so, it could be easily integrated into Continuous Integration
pipelines, supporting continuous identifcation and refactoring
of vulnerabilities.

Another relevant future work is to do a dynamic validation
of Pomegranate in a live project. More specifcally, it is
necessary to use Pomegranate for a specifc period in a project
and evaluate its usability, usefulness, and impact on lead time
end effort reduction.

REFERENCES

[1] R. V. O’Connor, P. Elger, and P. M. Clarke, “Continuous software
engineering-a microservices architecture perspective,” Journal of Soft-
ware: Evolution and Process, vol. 29, no. 11, 2017.

[2] M. Amundsen, Microservice architecture. O’Reilly Media, Inc, Usa,
2016.

[3] Martinekuan, “Microservice architecture style - azure archi-
tecture center.” [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices

[4] P. Siriwardena and N. Dias, Microservices Security in action. Manning
Publications Co., 2020.

[5] S. Y.-s. Gu Tian-yang and F. You-yuan, “Research on software secu-
rity testing,” World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering Vol:4,
No:9, 2010, 2010.

[6] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrating towards mi-
croservices: migration and architecture smells,” Proceedings of the 2nd
International Workshop on Refactoring, 2018.

[7] D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, “Design principles,
architectural smells and refactorings for microservices: A multivocal
review,” SICS Software-Intensive Cyber-Physical Systems, vol. 35, no.
1-2, p. 3–15, 2019.

[8] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Smells and refactorings
for microservices security: A multivocal literature review,” Journal of
Systems and Software, vol. 192, p. 111393, 2022.

[9] P. Billawa, A. Bambhore Tukaram, N. E. Dı́az Ferreyra, J.-P. Steghöfer,
R. Scandariato, and G. Simhandl, “Sok: Security of microservice appli-
cations: A practitioners’ perspective on challenges and best practices,”
Proceedings of the 17th International Conference on Availability, Reli-
ability and Security, 2022.

[10] D. Berardi, S. Giallorenzo, J. Mauro, A. Melis, F. Montesi, and
M. Prandini, “Microservice security: A systematic literature review,”
PeerJ Computer Science, vol. 7, 2022.

[11] F. Minna and F. Massacci, “An open-source cloud testbed for security
experimentation,” 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), 2022.

[12] C. K. Rudrabhatla, “Security design patterns in distributed microservice
architecture,” International Journal of Computer Science and Informa-
tion Security (IJCSIS), Vol. 18, No. 7, Jul 2020.

[13] C. Wohlin and P. Runeson, “Guiding the selection of research method-
ology in industry–academia collaboration in software engineering,”
Information and Software Technology, vol. 140, p. 106678, 2021.

[14] [Online]. Available: https://ieeexplore.ieee.org/document/4012630
[15] “Cis docker benchmarks.” [Online]. Available:

https://www.cisecurity.org/benchmark/docker
[16] “Cis kubernetes benchmarks.” [Online]. Available:

https://www.cisecurity.org/benchmark/kubernetes

https://www.cisecurity.org/benchmark/kubernetes
https://www.cisecurity.org/benchmark/docker
https://ieeexplore.ieee.org/document/4012630
https://docs.microsoft.com/en

