Information and Software Technology 164 (2023) 107305

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

A data-driven approach for understanding invalid bug reports: An industrial =~ e
case study

Muhammad Laiq®", Nauman bin Ali ?, Jiirgen Borstler ?, Emelie Engstrom

a Blekinge Institute of Technology, Department of Software Engineering, SE-371 79, Karlskrona, Sweden
b Lund University, Department of Software Engineering, SE-221 00, Lund, Sweden

ARTICLE INFO ABSTRACT

Keywords:

Software maintenance
Invalid bug reports
Bug management
Topic modeling

LDA

Bug classification
Software analytics

Context: Bug reports created during software development and maintenance do not always describe deviations
from a system’s valid behavior. Such invalid bug reports may consume significant resources and adversely
affect the prioritization and resolution of valid bug reports. There is a need to identify preventive actions to
reduce the inflow of invalid bug reports. Existing research has shown that manually analyzing invalid bug
report descriptions provides cues regarding preventive actions. However, such a manual approach is not cost-
effective due to the time required to analyze a sufficiently large number of bug reports needed to identify
useful patterns. Furthermore, the analysis needs to be repeated as the underlying causes of invalid bug reports
change over time.

Objective: In this study, we propose and evaluate the use of Latent Dirichlet Allocation (LDA), a topic modeling
approach, to support practitioners in suggesting preventive actions to avoid the creation of similar invalid bug
reports in the future.

Method: In an industrial case study, we first manually analyzed descriptions of invalid bug reports to identify
common patterns in their descriptions. We further investigated to what extent LDA can support this manual
process. We used expert-based validation to evaluate the relevance of identified common patterns and their
usefulness in suggesting preventive measures.

Results: We found that invalid bug reports have common patterns that are perceived as relevant, and they can
be used to devise preventive measures. Furthermore, the identification of common patterns can be supported
with automation.

Conclusion: Using LDA, practitioners can effectively identify representative groups of bug reports (i.e.,
relevant common patterns) from a large number of bug reports and analyze them further to devise preventive
measures.

1. Introduction

Bug management is a costly and complicated process comprising
activities such as reporting, assigning, and resolving bug reports [1,2].
In large projects, large amounts of bug reports are submitted daily [3-
5] to describe erroneous behaviors of a software system. In the next
step, developers use the submitted information to recreate the issue,
identify root causes, and fix bugs. However, in many cases, bug reports
do not describe erroneous system behavior. Such bug reports are called
‘invalid.’

Invalid bug reports consume resources and time and make the
prioritization and identification of valid bug reports difficult. In our
previous work [6], we found that around 15% of all bug reports for
two large products were invalid and that the resolution time for invalid

* Corresponding author.

bug reports was similar to the resolution time for valid bug reports.
Likewise, Erfani Joorabchi et al. [7] found that non-reproducible bug
reports (a type of invalid bug reports) remain active for more than
three months and are treated similarly (i.e., in terms of the extent of
discussion or number of people involved) as other types of bug reports.
The prevalence, resolution time, and amount of resources consumed
indicate the importance of addressing the problem.

Therefore, there is a need to identify preventive actions to reduce
the inflow of invalid bug reports. The preventive actions relevant for
a company at a particular time will depend on the nature of prevalent
causes of invalid bug reports. Existing research has shown that manu-
ally analyzing invalid bug report descriptions provides cues regarding
preventive actions [7-11]. However, due to the large number of bug

E-mail addresses: muhammad.laig@bth.se (M. Laiq), nauman.ali@bth.se (N.b. Ali), jurgen.borstler@bth.se (J. Borstler), emelie.engstrom@cs.Ith.se

(E. Engstrém).

https://doi.org/10.1016/j.infsof.2023.107305

Received 3 February 2023; Received in revised form 10 July 2023; Accepted 24 July 2023

Available online 28 July 2023

0950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:muhammad.laiq@bth.se
mailto:nauman.ali@bth.se
mailto:jurgen.borstler@bth.se
mailto:emelie.engstrom@cs.lth.se
https://doi.org/10.1016/j.infsof.2023.107305
https://doi.org/10.1016/j.infsof.2023.107305
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107305&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Laiq et al

reports that need to be analyzed and the need for repeating such an
analysis after any major change in the process, product, technology, or
personnel, a manual approach is not cost-effective.

In this study, we propose and evaluate the use of topic modeling
to identify common patterns in invalid bug reports. We use Latent
Dirichlet Allocation (LDA) to automatically generate topics from the
descriptions of invalid bug reports. Practitioners can then further an-
alyze relevant topics to suggest preventive measures to avoid creating
similar invalid bug reports in the future.

In software engineering, topics generated using topic modeling
techniques such as LDA are typically interpreted and named solely
by researchers [12]. Thus, there is a lack of rigorous evaluation of
topics with domain experts. It is, therefore, unclear whether topics
generated through LDA or similar techniques make sense to developers
or managers [13]. In this work, we use LDA to generate topics from
the descriptions of invalid bug reports. We use expert-based validation
to evaluate the practical relevance of the LDA-generated topics. Practi-
tioners will validate two aspects: firstly, if there are common patterns
in the descriptions of the invalid bug reports within an LDA-generated
topic, and second, if the identified common patterns are relevant for
devising preventive measures for reducing the future inflow of similar
invalid bug reports.

In this study, the proposed approach is implemented and evaluated
at a large-scale company using data from one of their mature products
and involving engineers working on the product.

The outline of this paper is as follows. Section 2 presents related
work on categorizing and predicting invalid bug reports and topic
modeling in software engineering and bug reports. Section 3 presents
our research approach. In Section 4, we present the study’s results and
analysis. Section 5 discusses study findings, and Section 6 discusses the
validity threats to the study. In Section 7, we describe our conclusions
and future work.

2. Related work

In this section, we describe studies on classifying invalid bug re-
ports, predicting bug reports’ validity, and applying topic modeling to
bug reports.

2.1. Studies categorizing invalid bug reports

We found only a few studies [7-11] that analyze descriptions of
invalid bug reports to identify their underlying causes. These studies are
summarized in Table 1 and compared to our work (last row in Table 1).
All studies used manual approaches without involving practitioners and
three of them investigated only a single type of invalid bug reports
(non-reproducible bug reports [7,10] and wontfix bug reports [9],
respectively).

In this study, we apply an automatic approach to identify common
patterns of invalid bug reports using the descriptions of the bug reports.
Practitioners can then evaluate the relevance and usefulness of the
identified patterns to devise preventive measures to decrease the inflow
of such invalid bug reports in the future.

2.2. Studies predicting bug report validity

Few studies have focused on predicting the validity of bug re-
ports [3,6,8,14,15]. Zanetti et al. [14] used a collaborative network on
bug reports to predict the validity of bug reports using a support vector
machine (SVM) classifier.

Fan et al. [3] extracted 33 features using five dimensions, including
submitter experience, collaboration network, and a bug report’s com-
pleteness and readability. Then, they used SVM and Random Forest
classifiers to predict the validity of bug reports. Laiq et al. [6] used
the bug reports’ text and submitter experience to predict the validity of
bug reports in a closed-source context.

Information and Software Technology 164 (2023) 107305

Zanetti et al. [14], Fan et al. [3], and Laiq et al. [6] used an ML-
based approach for predicting the validity of bug reports. However, He
et al. [15] applied a deep learning-based approach using the summaries
and headings of bug reports to predict their validity.

This study takes a different approach from previous studies [3,
6,8,14,15]. While previous studies have focused on using ML-based
classifiers to predict the validity of newly submitted bug reports, the
aim of this study is to prevent the creation of invalid bug reports in the
future.

To achieve this aim, the study employs LDA topic modeling to
identify common patterns in the description of invalid bug reports.
The results of this analysis can then be used by domain experts to
suggest preventive measures that can reduce the inflow of invalid bug
reports. This approach differs from previous studies in that it focuses on
identifying and addressing the common causes of invalid bug reports,
rather than just predicting their likelihood of being valid or invalid.

2.3. Topic modeling in software engineering

Topic modeling is an unsupervised machine learning technique that
aims to produce semantically similar topics in the form of clusters
for a given set of documents [16]. Contrary to supervised machine
learning, it does not require labeled data (i.e., classified documents or
taxonomies). It uses the frequencies and co-occurrences of words within
one or more documents to generate semantically similar clusters.

Topic modeling has proven to be a valuable technique in software
engineering due to its usefulness in identifying semantically similar rep-
resentative clusters from large datasets. As a result, several studies have
applied topic modeling for a variety of tasks in software engineering.
[16,171:

Requirements: To support tasks related to requirements, for in-
stance, requirements evolution or suggesting new features (e.g.,
[18D.

Architecting: To support tasks related to architecture decisions,
for instance, the selection of mash-up or cloud services (e.g.,
[19D).

Documentation: To support tasks related to software documenta-
tion, for instance, localization of features in the documentation
and automatic documentation generation (e.g., [20]).

Coding: To support tasks related to coding, for instance, code
clone detection, code refactoring, and developer behavior predic-
tion (e.g., [21]).

Testing: To support tasks related to software testing, for instance,
test cases prioritization (e.g., [22]).

Maintenance: To support tasks related to software maintenance,
for instance, bug management (e.g., bug localization [23-26] and
duplicate bug report detection [27-31]).

Among the topic modeling techniques (e.g., Latent Semantic Index-
ing (LSI), Probabilistic Latent Semantic Indexing (PLSI), and Latent
Dirichlet Allocation (LDA)), LDA is the most popular and has been
widely used in the software engineering literature [16,17]. In a sys-
tematic literature on the use of topic modeling in software engineering,
Silva et al. [17] found that the majority of the papers either used LDA
(80 out of 111), or an LDA-based technique (30 out of 111) for topic
modeling, and 10 papers applied more than one technique.

On the one hand, LDA has shown promising results in software
engineering tasks (see Section 3.4.1). On the other hand, LDA has
some limitations. Lin et al. [32] report that the performance of LDA
on informal documents and short texts, such as tweets, maybe be
sub-optimal.

Zhao et al. [33] proposed Twitter-LDA to effectively discover mean-
ingful topics from short text documents, such as tweets. They also
reported that topics generated by standard LDA from the short texts
(i.e., tweets) were less meaningful than Twitter-LDA topics.

M. Laiq et al

Information and Software Technology 164 (2023) 107305

Table 1
An overview of studies analyzing invalid bug report descriptions.
Author (year) Context Data Investigated type Approach Purpose
of bug reports
Sun [8] (2011) Closed-source 613 bug reports of Invalid Manual To categorize the reasons for
more than 4 years. invalid bug reports.
Erfani Joorabchi et Closed and Classified 1643 bug Non-reproducible Manual To categorize
al. [7] (2014) Open-source reports of five non-reproducible bug reports.
open-source and one
proprietary repository.
Su et al. [11] Closed-source 231 invalid bug Invalid Manual To categorize invalid bug
(2017) reports of three server reports.
applications.
Rahman et al. [10] Open-source 576 bug reports of Non-reproducible Manual To identify the factors for
(2020) Firefox and Eclipse. non-reproducible bug reports
and investigate how
professional developers cope
with non-reproducible bugs.
Panichella et al. [9] Open-source 667 GitHub wontfix Wontfix Manual To find common reasons for
(2021) bug reports. wontfix bug reports.
Our work Closed-source More than 600 bug Invalid Manual and To investigate if the
reports. Automatic descriptions of invalid bug

reports can be used for
identifying any shared causes
and whether this helps in
suggesting preventive
measures.

Approaches such as pooling (i.e., aggregating semantically or tem-
porally similar documents into a single document [34]) and contex-
tualization (i.e., making subsets of documents based on their context,
e.g., time or hashtags for tweets [35]) could be utilized to improve the
performance of LDA on short texts. Furthermore, hyperparameters can
be tuned to optimize LDA performance [17].

Topic modeling in bug reports

Several studies have applied topic modeling on bug reports to
support practitioners in various bug management-related tasks, such as
bug localization [23-26], duplicate bug report detection [27-31], bug
severity prediction [36-39], automatic bug triage [38,40,41], and bug
report categorization [42-44].

This study uses LDA, a topic modeling approach to cluster invalid
bug reports based on their descriptions. This approach produces two
matrices: (a) a documents to topics matrix and (b) a topics to keywords
matrix. In previous research in software engineering [17], the topics
produced by topic modeling are commonly named based on keywords
only. We use both the keywords and the actual descriptions of some of
the bug reports assigned to a topic to name the topics. In this study,
experts from the case company performed the naming.

3. Research methodology

We aim to investigate the usefulness of topic modeling to support
the identification of common patterns in bug reports. Furthermore,
we want to investigate whether the identified patterns help to devise
preventive measures for reducing the inflow of invalid bug reports.

To achieve our aim, we conducted an industrial case study [45] with
a two-step research process (see Fig. 1). First, we manually analyzed
a subset of invalid bug reports to assess the feasibility of the idea of
identifying relevant common patterns of invalid bug reports using de-
scriptions of invalid bug reports. This step was guided by the following
research question:

RQ1: To what extent can common patterns in invalid bug reports
be identified and used to suggest improvements?

The likely explanation of invalid bug reports can be expected in
their descriptions. Thus, in this research question, we investigate the
descriptions of invalid bug reports to identify their causes and possibly

categorize bug reports in the same class (i.e., a common pattern for bug
reports belonging to the same cause category).

Furthermore, we are interested in investigating the relevance and
usefulness of identified common patterns, i.e., do they make sense
to domain experts, and to what extent they are helpful in suggesting
preventive measures to decrease the inflow of invalid bug reports.

In the second step, we used LDA to automatically cluster invalid bug
reports based on their descriptions. The clustering reduces the number
of invalid bug reports that need to be manually analyzed. Furthermore,
each cluster has a set of weighted keywords that are representative of
the cluster, which can further assist in labeling the common pattern
found in a cluster. Thus, to investigate the role of automation in the
identification of common patterns, we posed the following research
question:

RQ2: To what extent can automation support the identification of
common patterns in invalid bug reports?

3.1. Case description

The case company is a large multinational globally distributed
Telecommunication vendor. Their context can be categorized as large-
scale software-intensive system development.

Several programming languages are used in product development
at the company. However, a majority of the code at the case company
is written in Java, JavaScript, and C++. The studied product is mature
and has a large code base older than ten years. The product team uses
a central Bug Tracking System (BTS) for managing bug reports.

The company follows agile practices and principles in software
development, e.g., sprint planning meetings and self-organizing teams.

As shown in Fig. 2, at the case company, bug reports can be
submitted by customers, testers, and developers themselves. Submitted
bug reports are first screened by the Change Control Board (CCB). When
the CCB assesses a bug report as valid, it is assigned to a relevant team.
The team then inspects the assigned bug report in more detail. If the
team still assesses the bug report as valid, it assigns it to a developer
for resolution.

M. Laiq et al

—

-

-

S0,
BTS

Information and Software Technology 164 (2023) 107305

Bug Reports > 3500

\ 4
37 Invalid Bug Reports <€ Invalid Bug Reports > 600
1
\ Unscalable XI ' ‘ v Scalable‘ v

RQ1

Lis Manual Analysis of
OO Bug Reports

Researchers Descr'PT'ons

l

. .
Common
Patterns

N

>

Selection of 5 LDA topics for evaluation with domain experts to identify
relevant and useful common patterns of invalid bug reports

-
1 ' Top 10 keywords (probability
! il g report§ Reenol I weight, count) sorted according to their
1 to each topic I .

importance

v

Expert-based Validation with L58 Expert-based Validation with S55
Practitioners _ Domain Experts @
Y Y Y Y
Relevance of Usefulness of Relevant LDA Useful LDA
Patterns* Patterns** Patterns* Patterns**
Manual Approach for Identifying Preventive Actions to o Tool-Assisted Approach for Identifying Preventive Actions to
Decrease Invalid Bug Reports Decrease Invalid Bug Reports

3.1.1. Invalid bug

In this study, we have used the working definition of invalid bug

*Relevant: Do they make sense to domain experts?
**Useful: To what extent they are helpful in suggesting preventive measures?

reports

Fig. 1. Overview of our research approach.

+ Insufficient information: The submitted bug report does not
provide sufficient information to reproduce or analyze the sub-

reports at the case company. At the case company, invalid bug reports mitted bug report.
are defined as follows:

» No such requirement exists: The submitted bug report does not 3.2. Data collection
describe any requirement that a system must fulfill.

+ Configuration issues: The submitted bug report is not a fault in
a system but occurred due to faulty configuration settings used

by the bug submitter.

» Misunderstanding: The submitted bug report describes a misun-
derstanding of the working procedure of the system.

» Future requirement: The submitted bug report does not de-
scribe a fault in the system but could be considered as a future

requirement.

In this study, we use the company’s bug management tool BTS as
our main data source. We collected more than 3500 bug reports for
the studied product (see Section 3.1) spanning 5 years (2016-2021),
of which around 17% were invalid bug reports. For our analysis, we
used the following fields of the invalid bug reports: heading (a short
description of the bug), observation (a detailed description of the bug,
including replication steps), answer (text describing the resolution of
the bug report or the reason for considering it invalid), and resolution

M. Laiq et al

Development CCB Screening

Test
Customer

i

Assign to Team

Information and Software Technology 164 (2023) 107305

Development Team
Developers

Yes
Resolve

Fig. 2. Bug management flow at the case company.

Table 2
Practitioner’s profiles, Focus Group Meeting-1 (FG1), Focus Group Meeting-2 (FG2), expert-based validation of automatic approach (EV).
Position Description Experience FG1 FG2 EV
Domain Expert The practitioner is a domain expert and software architect who works with a ~8 years v v v
cross-functional team and is mainly responsible for the product release.
Manager As a product manager, the practitioner is mainly responsible for communication and ~20 years v v
product quality assurance. However, the practitioner also plays a role in product
development decisions.
Manager The practitioner is an architect in analytics and Business Intelligence (BI). He is ~20 years v v
responsible for services delivery tools, i.e., supporting the products teams with BI in
that area.
Data Scientist The practitioner is a team leader of the data science team at the case company ~10 years v
supporting multiple product units, i.e., developing tools to boost research and
development. Further, the practitioner is qualified with PhD in applied computing.
Junior The practitioner is qualified with a master’s degree in software engineering and ~3.5 years v
Data Scientist currently works at the case company as a junior data scientist.
Domain Expert and The practitioner is a quality manager for a couple of products at the case company ~10 years v v v

Quality Architect and an experienced software engineer.

status (see Section 3.1). We further discuss the justification for these
fields in Section 3.4.

In general, practitioners’ feedback is essential not just for validat-
ing a proposed technique but also facilitates technology adoption in
practice [46]. Moreover, practitioner involvement is especially impor-
tant for technologies that require humans in the loop. One of the
shortcomings of existing research on invalid bug reports is its lack of
involvement of software maintenance practitioners (see Sections 1 and
2.1). Thus, this case study is conducted with the active involvement of
industry participants. We conducted two focus group meetings and two
expert-based validations with practitioners (see Table 2) to collect their
feedback and validate our approach. Focus group meetings involve
several roles at the case company, including managers, domain experts,
and data scientists.

In the first focus group meeting, we evaluated the results of the
manual analysis. In the second focus group meeting, we presented our
automatic approach and collected feedback from practitioners on the
approach.

In the two expert-based validations with two domain experts, we
evaluated the results of the automatic approach, i.e., the relevance
of automatically identified common groups of invalid bug reports and
their usefulness in suggesting preventive measures.

Moreover, to understand the case company’s management process,
we read their internal documentation and asked practitioners questions
regarding the processes and terminology used at the case company.

3.3. Design and analysis approach for RQ1 (i.e., To what extent can
common patterns in invalid bug reports be identified and used to suggest
improvements?)

To answer RQ1, the second author manually coded invalid bug
reports submitted for the selected product in the last 6 months (i.e., 37
invalid bug reports). For the manual coding, we used the full final
description of bug reports, including the final verdicts (i.e., invalid
or valid), comments, and communication between the submitters and
development teams. We carefully reviewed their descriptions and as-
signed codes for each indication of causes for why a bug report was

considered an invalid bug at the case company. We followed an iter-
ative process of adding new codes and revising the previous codes as
we coded each additional bug report. The themes related to invalid bug
report causes emerged by analyzing repeating codes.

To assess the validity of the common patterns for causes of in-
valid bug reports identified by the researchers, we conducted a focus
group with practitioners from the case company. During the focus
group, we briefly presented our approach. Afterward, we presented our
findings regarding common issues identified in the data and collected
practitioners’ feedback.

3.4. Design and analysis approach for RQ2 (i.e., To what extent does
automation support the identification of common patterns in invalid bug
reports?)

As described above, we first manually analyzed and identified rel-
evant and useful common patterns of invalid bug reports using their
descriptions. This established the feasibility of the idea of using the
descriptions of invalid bug reports to inform the suggestion of preven-
tive actions at the case company. However, such a manual approach
is impractical as the analysis needs to be done repeatedly and requires
substantial effort to manually code a large number of code bug reports.
Thus, we used LDA, a topic modeling approach, to support the identifi-
cation of common patterns of invalid bug reports from more than 600
bug reports.

We applied LDA on the answer and observation fields of bug reports,
as these fields together provide a sufficiently detailed description of
both the problem and the resolution. Furthermore, the practitioners
recommended using these two fields, which we also found appropriate
during our manual analysis for RQ1. The resulting topics from LDA
are each a collection of words that frequently co-occur in the corpus
of documents. However, it is important to note that not all of the
generated topics may address a particular subject. For example, it could
be a cluster filled with common or trivial terms [13] that are irrelevant
to the properties of interest of a bug report. Thus, we are interested in
investigating whether the topics generated by LDA can assist practition-
ers in identifying common patterns of invalid bug reports, as we found

M. Laiq et al

in the manual analysis (RQ1). Additionally, we seek to explore how the
identified patterns can be utilized by practitioners to devise preventive
measures to reduce the influx of invalid bug reports.

In the following subsections, we describe the motivation for using
the LDA topic modeling approach, the selection of the LDA model, and
the evaluation of LDA results.

3.4.1. LDA topic modeling

In this case study, we used LDA [47], a generative statistical tech-
nique, for topic modeling. We choose LDA because LDA has shown
promising results in various software engineering tasks, such as soft-
ware maintenance [48,49], software testing [22,50,51], software re-
quirements [18,52], and source code refactoring [53,54]. In a system-
atic literature review on topic modeling in software engineering, Silva
et al. [17] reported that 95 out of 111 papers used LDA or LDA-based
techniques for topic modeling.

LDA makes an assumption that the entire corpus of documents can
be described with a set of topics and that each document belongs
to one or more topics. Likewise, each term in the corpus belongs to
one or more topics [16]. Using these assumptions, LDA is able to
discover topics that suitably describe the entire corpus [47]. Further,
LDA is robust to over-fitting compared to other topic models, such as
Probabilistic Latent Semantic Indexing (pLSI) [47].

3.4.2. LDA model selection

We generated different models consisting of 20, 15, 10, and 8 topics,
using the observation and answer fields of invalid bug reports. Based on
the coherence values and our subjective assessment, we selected a topic
model with 10 topics. The coherence value started decreasing after 10
topics. Furthermore, we observed noise (i.e., repetition of words and
words having negligible weights and very low frequencies) in topic
models for more than 10 topics.

3.4.3. Qualitative evaluation

In software engineering, topics generated using topic modeling tech-
niques are commonly evaluated/named using keywords only [17]. Of-
ten these topics are named/interpreted solely by the researchers [12].
Thus, there is a lack of rigorous evaluation of topics with domain
experts. It is, therefore, unclear whether the topics generated through
LDA or similar techniques make sense to developers or managers [13].

In this work, we first apply LDA and generate topics using descrip-
tions of invalid bug reports. Then we backtrack to get the original bug
reports (i.e., documents in LDA terminology) belonging to each topic.
Finally, we use expert-based validation to evaluate those topics, i.e., to
assess if there are relevant common patterns of invalid bug reports in
those topics and to what extent we can use those common patterns to
devise preventive measures.

Topic naming/interpretation takes time and can be tedious [13]. To
conclude the evaluation sessions within an hour with domain experts,
we validated only 5 of the 10 topics, namely the three largest topics,
one medium sized, and one smaller topic. Note that there is a significant
difference in size also between the three largest topics. To investigate
whether LDA-generated topics can help practitioners identify relevant
patterns for suggesting preventive actions, we considered five topics
sufficient for validating the practical utility of our approach.

For the validation process (i.e., topic naming to identify relevant
common patterns from the LDA-generated topics and suggesting pre-
ventive measures based on them), the domain experts were provided
with the following information:

+ Instructions about the task and its purpose.

» Top 10 bug reports belonging to each topic. The top 10 bug
reports were selected based on their contribution to a topic,
measured as percentage.

» A bar chart (see Fig. 3) for each topic depicting the top ten
keywords (i.e., LDA-generated keywords) for the topic together
with the frequency and weight for each of the keywords.

The feedback for each topic was recorded.

Information and Software Technology 164 (2023) 107305

Topic: 1
1000 0.10
Word Count m Weight

800 r0.08
€

5 600 F0.06
o
o
2

£ 400 h0.04

200 r0.02

0 - 0.00

Q N 2 > " 5 o A o> 2
\ﬂo‘d \so‘d «0‘6 \‘40‘6 sﬂo‘d sNo‘é \ﬂo‘d \ﬂo‘d \ﬂo‘d \‘40‘6

Fig. 3. Top 10 keywords with frequency and weight. The actual keywords have been
anonymized.

3.4.4. Data preparation

In order to apply LDA, we followed standard pre-processing steps
for topic modeling [17]. As input to LDA, we used the observation and
answer fields of the bug reports (as described in Section 3.4). In a pre-
processing step, we first removed the headers of the fields (belonging
to the template), extra white spaces from the text, and stop-words.
We then applied lemmatization and tokenization. In the final step, we
converted the token into a document term matrix (i.e., the text as a
matrix where rows are documents and columns are terms) and created a
dictionary as an input for the model with other parameters (i.e., corpus,
number of topics, etc.).

4. Results and analysis
In this section, we present the results and analysis of our study.

4.1. RQI1: To what extent can common patterns in invalid bug reports be
identified and used to suggest improvements?

As a result of the manual analysis (see Section 3.3 for analysis
procedure), we identified the following relevant common patterns of
invalid bug reports and the corresponding number of bug reports for
each pattern: misunderstanding of functionality (5), working as expected
(15), non-reproducible (6), wrong version (4), faulty configuration (5), and
faulty test data (2).

Below we briefly describe common patterns' identified using the
manual approach:

» Misunderstanding of functionality: The bug reports in this
category are attributed to misunderstandings by the submitter of a
bug report regarding how certain tasks ought to be performed by
the system. For example, a common issue in this category relates
to dependencies between functions, e.g., X and Y. To activate Y,
X must be started and enabled. Otherwise, a user is unable to
activate Y. This category of invalid bug reports has also been
identified in previous work by Sun [8], Erfani Joorabchi et al. [7],
and Rahman et al. [10].

Working as expected: The bug reports in this category are quite
similar to category misunderstanding of functionality. However, in
this category, bug reports point to system functionalities that
work as defined according to the documentation. While the bug
reports in the misunderstanding of functionality pattern could be
considered a general misunderstanding of systems functionalities,

1 Due to company restrictions, we cannot report names of compo-
nents/features and exact terms. However, we report the main common patterns
identified as a result of manual analysis.

M. Laiq et al

the invalid bug reports in this category are primarily related to
user expectations for functionality to behave according to their
suggested definition.

Non-reproducible: The bug reports in this category describe bugs
that developers cannot reproduce. Such bugs could be reported
due to network issues or some unknown problem on the side
of the submitter of the bug report. This category of invalid bug
reports has also been identified in previous work by Panichella
et al. [9], Erfani Joorabchi et al. [7], and Rahman et al. [10].
Wrong version: The bug reports in this category describe issues
that are caused by using a wrong version of a component or
system by the submitter of the bug report. Either support for that
version is no longer available, or the version needs to be updated.
This category of invalid bug reports has also been identified in
previous work by Panichella et al. [9], Erfani Joorabchi et al. [7],
and Su et al. [11].

Faulty configuration: The bug reports in this category describe
issues that are caused by faulty configurations. This is a well-
known reason for invalid bug reports. However, in reality, faulty
configurations are not bugs. The problem is caused by miscon-
figuration, and the system will work after proper configuration.
This category of invalid bug reports has also been identified in
previous work by Sun [8], Panichella et al. [9], Erfani Joorabchi
et al. [7], and Su et al. [11]. They found that bug reports were
submitted in this category because the submitter used the wrong
configuration. Once the correct configuration is used, bugs are no
longer present.

Faulty test data: The bug reports in this category can be traced
to the use of faulty data while testing the system or using it to
achieve certain tasks.

The practitioners’ general responses were that these common pat-
terns are plausible and align with their subjective judgment. One of the
domain experts commented that invalid bug reports related to two of
the above-listed categories (“working as expected” and “misunderstanding
of functionality”) are quite prevalent at the case company.

Another domain expert acknowledged the relevance of the iden-
tified common patterns for proposing corrective actions. One of the
practitioners commented, “After looking at those common patterns, I
would suggest improving documentation for our complex features”.. An-
other participant commented, “We should consider educating people to
decrease invalid bug reports belonging to common patterns: working as
expected and misunderstanding of functionality”.. Preventive measures
proposed by domain experts to decrease the inflow of invalid bug
reports are described in Section 4.2.2.

Managers also acknowledged the relevance of common patterns.
They showed interest in scaling up the approach to investigate if the
approach can be used on larger data-sets and for other products.

4.2. RQ2: To what extent does automation support the identification of
common patterns in invalid bug reports?

To support the identification of common patterns in invalid bug re-
ports through automation, we applied LDA as described in Section 3.4.
Then, we validated the automated approach with two domain experts
(see Table 2 for their profiles).

The domain experts were given five topics, including the top 10 bug
reports belonging to each topic and the most frequent words with their
respective weights as described in Section 3.4.3.

In Table 3, we describe the feedback of the two domain experts
on the five topics for identifying relevant common patterns of invalid
bug reports. Section 4.2.2 describes the feedback on the usefulness of
common patterns to devise preventive measures. In Section 4.2.3, we
present the feedback on the usefulness of term frequency and weight
in interpreting the topics.

Information and Software Technology 164 (2023) 107305

In Table 3, we can see that a topic can be viewed from varied
angles by domain experts. For example, feedback on the first topic
indicates that both domain experts notice a pattern related to a specific
feature of a system. Whereas, the first domain expert attributes the
invalid bug reports in this cluster to inexperienced people, the second
domain expert attributes them to faulty test data. This does not indicate
a problem with the topics or the evaluation but differences in the
knowledge and interests of the domain experts.

4.2.1. Common patterns identified using LDA

During the expert-based validation of the LDA topic modeling ap-
proach (see Section 3.4.3), practitioners identified the following seven
patterns: faulty test data, working as expected, complex features, specific
features, lack of system knowledge, reported due to inexperience, and new
requirement. Of those seven, two were already identified during manual
analysis (faulty test data and working as expected) and are described
in Section 4.1. Below we describe the remaining five patterns?:

+ Complex features: This category captures invalid bug reports
that are related to complex features of a system. One interesting
finding by domain expert-1 (see Table 3) was identifying a com-
mon pattern of invalid bug reports related to a complex feature.
He further added that there are certain complex features in their
system, and bug reports in this topic are related to that specific
feature.

Specific features: This category captures invalid bug reports that
are related to specific features of a system. During the validation
of the automatic approach, both domain experts identified pat-
terns (i.e., from topics 1, 2, and 5, see Table 3) of invalid bug
reports related to specific features of the system. Due to company
restrictions, we cannot share the names of those features.

Lack of system knowledge: This category captures invalid bug
reports that are reported due to a lack of a system of knowl-
edge. In the feedback, practitioners highlighted that people often
submit such invalid bug reports due to their lack of knowledge
about complex and latest functionalities of the system. Sun [8]
also found that some invalid bug reports were submitted because
of the submitters’ lack of system knowledge. This category is
closely related to the pattern misunderstanding of functionality,
i.e. bug reports submitted due to a misunderstanding of system
functionality. However, the bug reports in this category are due
to insufficient knowledge about the system.

Reported due to inexperience: This category captures invalid
bug reports that inexperienced individuals mainly submit. The
practitioners highlighted that inexperienced individuals lack gen-
eral knowledge of functionalities of the system and its complex
features. Therefore, they report such kind of invalid bug reports.
This category is related to the lack of system knowledge cate-
gory with an additional aspect: inexperienced people only submit
invalid bug reports in this category.

New requirement: This category captures invalid bug reports
that are submitted as bugs; however, these bug reports point to
new requirements or features for the system to support. This cat-
egory of invalid bug reports has also been identified in previous
work by Panichella et al. [9], Erfani Joorabchi et al. [7], and
Rahman et al. [10]. They discovered that new requirements or
feature requests were submitted as bug reports.

2 Due to company restrictions, we cannot report names of compo-
nents/features, exact terms, and exact topics. However, we report the main
common patterns identified as a result of LDA topic modeling.

M. Laiq et al

Table 3

Feedback by domain experts on the automatic approach.

Information and Software Technology 164 (2023) 107305

Topic Id Domain expert-1 Domain expert-2

#1 These bug reports make sense together, and I can see a I see a couple of patterns, one related to test data and the
couple of patterns of invalid bug reports in this topic: (a) other related to a specific feature.
specific feature (also complex feature) and (b) reported due
to inexperience.

#2 These bug reports do not describe issues in the system and Bug reports in this topic point to issues of a specific feature
can be categorized as working as expected, i.e., working as and its test-related data (i.e., related to test data).
expected pattern.

#3 In this topic, submitters are reporting bug reports that are These bug reports are reported due to lack of system
not implemented and could be future requests or new knowledge, i.e., lack of system knowledge pattern.
requirements.

#4 Multiple themes not dominated by any specific. No distinct pattern.

#5 In this topic, I can see two unique patterns of invalid bug No distinct pattern.

reports, i.e., both patterns are related to specific features of

the system.

4.2.2. Improvement suggestions

In order to validate the usefulness of identified common patterns
for suggesting preventive measures to decrease the number of invalid
bug reports in the future, we used expert-based validation as described
in Section 3.4. The domain experts suggested the following preventive
measures:

(a) Co-reviewer: One of the highlighted approaches proposed by
practitioners was the use of a co-reviewer for bug report writing
at the early stages. It is important to ensure only bug reports
describing faults in the code proceed to the next step of the bug
handling process. Otherwise, a lot of resources will be consumed.
However, this idea will only work for testers and developers but
not for customers.

(b) Improve documentation: The practitioners also agreed on the
idea of improving the documentation for some parts of software
systems. In our manual analysis, we identified that a number of
invalid bug reports could be avoided by improving the system’s
documentation in some areas.
It should be noted that our approach helps in identifying those
parts of the system where such improvements will likely have the
most positive effects.
Training of new employees: It is highly likely that new em-
ployees will make mistakes while writing the bug reports and
eventually will submit invalid bug reports. Thus there is a need
to train those people. This could, for example, be achieved by
working in pairs, e.g., a junior and senior in combination. Further,
training could be optimized for specific features identified in the
automatic approach results.

Bettenburg et al. [55] also reported that inexperienced people

are likely to submit invalid bug reports. Just et al. [56] pointed

out that people with experience often submit high-quality bug
reports. Thus, training is important for new employees, or they
could work in pairs (i.e., junior and senior).

(d) Decision support tool for invalid bug prediction: Our discus-
sions with practitioners indicated that an ML-based intelligent
tool could be used to identify likely invalid bug reports early.
Using such a tool could save resources and help to effectively
manage bug reports (i.e., prioritize valid bug reports based on the
prediction results of the ML-based tool).

(c

—

4.2.3. Term frequency and weight for interpreting LDA topics

We collected practitioners’ feedback on the usefulness and effec-
tiveness of term frequency and weight associated with each keyword
for naming topics and identifying the common patterns of invalid bug
reports. We presented them with the top 10 words belonging to each
topic (see Fig. 3 for an example) and collected their feedback. In
Table 4, we present their response for the selected topics.

In general, practitioners’ responses were positive regarding the use-
fulness of keywords for interpreting the topics. They also reported
that some keywords helped identifying patterns, for instance, keywords
related to the specific features of their system. One of the domain
experts commented, “I can see the keywords in this topic point to one of
our features in the system. Thus, [I conclude] this cluster of invalid bug
reports is related to that specific feature”.

5. Discussion

In this case study, we analyzed invalid bug reports in a large-
scale closed-source software-intensive product development context.
We collected more than 3500 bug reports data spanning 5 years, of
which around 17% were invalid. This study was conducted with the
active participation of industry practitioners.

In the following subsections, we discuss the findings of the case
study.

Data-driven Approach for Decreasing Invalid Bug Reports: In this
study, we propose and evaluate LDA, a topic modeling approach, to
identify patterns in descriptions of invalid bug reports. We analyzed
more than 600 invalid bug reports and identified a representative
group of clusters that were further analyzed by domain experts (see
Section 3.4). The feedback from domain experts indicates (a) that
relevant and useful common patterns related to the causes of invalid
bug reports can be identified using their descriptions (see Sections 4.1
and 4.2 for the identified common patterns) and (b) that these patterns
can be utilized to suggest to preventive measures (see Section 4.1 and
Table 3 for preventive measures).

The common patterns describing the causes of invalid bug reports
will be highly context-specific. Thus, the preventive measures proposed
based on the identified common patterns for one product may not be
applicable to other products, even at the same company. Also, the
preventive measures need to be changed, as the underlying reasons for
invalid bug reports will change over time. This is where the manual
approaches fail; however, our approach delivers this. Our approach can
automatically identify a representative group of clusters that domain
experts can further analyze to identify relevant common patterns and
use them to devise preventive measures.

On the one hand, our approach is useful in identifying context-
specific patterns such as complex features and features where the doc-
umentation should be improved, see Table 3. On the other hand, our
approach also identified general patterns that are in line with the
common reasons and categories of invalid bug reports identified in
previous work [7-11], such as misunderstanding of functionality, testing
error, non-reproducible, environmental issue, and conflicting expectation.

In those previous works, a validation with domain experts is miss-
ing; the researchers solely identified the common patterns describing
the causes of invalid bug reports. Furthermore, the potential use of the

M. Laiq et al

Table 4
Practitioners’ feedback on term frequency and importance.

Information and Software Technology 164 (2023) 107305

Topic 1d Feedback - domain expert-1 Feedback - domain expert-2

#1 Somewhat helpful. Keywords were helpful.

#2 Yes, keywords were helpful in identifying the pattern. Keywords were helpful.

#3 Not useful. Keywords were somewhat helpful.
#4 Not useful. Not much helpful.

#5 Useful. Not helpful.

patterns for suggesting preventive measures has been overlooked. How-
ever, involving practitioners is essential since only they have sufficient
knowledge and context information to assess whether the patterns are
(a) relevant and (b) useful to suggest suitable preventive measures for
a certain “class” of bug reports. Likewise, the LDA topics interpretation
accuracy of non-experts is relatively low (50%, as reported by Hindle
et al. [13]). Consequently, we involved software maintenance practi-
tioners (see Table 2) in identifying relevant common patterns of invalid
bug reports from LDA topics generated using the descriptions of invalid
bug reports. Further, we also evaluated their usage for identifying
preventive measures.

In this study, we do not evaluate the effectiveness of the proposed
preventive measures for decreasing invalid bug reports. This will re-
quire a longitudinal study. Furthermore, it would be interesting to
explore to what extent the identified common patterns and preventive
measures for one product are relevant to other products in the same
context.

Using our approach, practitioners can devise preventive measures

targeting current issues of invalid bug reports. Furthermore, the ap-
proach can help in identifying specific areas for improvement that may
help to decrease the inflow of invalid bug reports, such as complex
features, features where documentation can be improved, and common
patterns of bug reports submitted by inexperienced developers.
Topic Modeling in Invalid Bug Reports: Topic modeling techniques,
such as LDA, are used to discover semantically similar clusters (i.e., top-
ics) from a large collection of documents. However, not all topics may
describe a subject of interest, and not all may make sense to domain
experts. A cluster might just comprise common terms. Our findings
reveal that LDA-generated topics from invalid bug reports descriptions
make sense to domain experts (see Table 3). Thus, LDA can be used
to effectively identify common patterns of invalid bug reports and
that these patterns are relevant and useful for practitioners to devise
preventive measures.

Due to practitioners’ interest, we developed a tool to support our
approach. The tool could help new product managers or product teams
to explore and identify common patterns of invalid/invalid bug reports.
The tool provides the following features (see column two of Fig. 1):

+ The tool groups semantically similar bug reports.

» The tool shows the top ten bug reports and top 10 keywords
belonging to each group.

+ The tool provides a graphical representation of topics with their
top keywords and weight, see Fig. 3.3

« The tool provides support for adding domain-specific stop-words.

+ The tool has LDA inference support to evaluate the effects of the
proposed preventive measures.

Recommendation for Evaluating LDA Topics: Based on our experience
and feedback from the domain experts, we provide the following gen-
eral recommendations for the evaluation of LDA topics in the context
of bug reports:

+ Topic naming: Topic naming/interpretation takes time and could
be tedious. In our study, it took more than an hour for each

3 Due to company restrictions, we cannot report actual words with their
frequency and weight.

domain expert to name topics. However, rigorous evaluation of
topics with domain experts is necessary to have confidence in the
findings.

Term frequency and weight for topic naming: Our findings show
that sole usage of terms with high frequency and weight may not
be sufficient for naming/interpreting all topics, even for domain
experts (see Table 4). Thus, we recommend using both the top
topic words and the top documents belonging to each topic.

6. Limitations and threats to validity

This section discusses the limitations of the proposed approach
and potential threats to the validity of the empirical investigations
conducted as part of the design.

6.1. Applicability and relevance of solution

The proposed approach has been applied and evaluated in a large-
scale software development context. However, the solution is relevant
for any cases where the influx of invalid bug reports is a challenge,
provided bug reports are sufficiently described (see Section 3.4).

The proposed approach uses the descriptions of invalid bug reports
because the likely explanation for the causes of invalid bug reports
can be expected there. Thus, common patterns describing the causes of
invalid bug reports can be identified using their descriptions and can
further likely be utilized by practitioners to devise preventive measures.

6.2. Internal validity

We extracted more than 3500 bug reports from the company’s
bug tracking system and analyzed the 17% of them (approx. 600 bug
reports) that were flagged as invalid. The used data of invalid bug
reports is not extensive but sufficient and realistic for the proposed
approach because the number of invalid bug reports in the closed
source is smaller [6] compared to the open source. However, the
quality of bug reports in the closed source is relatively higher [57]
compared to the open source. Thus the descriptions of bug reports
would contain sufficient information. Also, the case company follows a
rigorous process to manage bug reports. Thus, the bug reports used in
this study contain a sufficient level of detail. Furthermore, we only used
bug reports with practitioners’ final verdicts (i.e., valid or invalid) as
these labels represent judgments of more than one domain expert. The
points mentioned above give us confidence that the proposed approach
is data-driven and there is little likelihood of overfitting.

The extent of common patterns in the invalid bug reports was in-
vestigated through manual analysis, which imposes a risk of researcher
bias. To mitigate this threat, we validated the identified common
patterns with practitioners. Similarly, for the automatic approach, we
validated the LDA-generated patterns with practitioners to validate the
usefulness of the approach.

Further assumptions of usefulness are based on the possibility to
identify preventive measures. The preventive measures for decreasing
the number of invalid bug reports in the future were proposed by
practitioners.

M. Laiq et al

6.3. External validity

Since this is a single case study, statistical generalization to other
cases is not possible. We assume that the extent of common patterns are
similar in similar cases, where the scale of organization, bug manage-
ment approach, programming languages used, maturity of the product,
size of code-base, number of people involved in development, testing
and support of the studied product, and type of system are important
factors to consider (see Section 3.1).

Similarly, we assume that the benefits of applying the proposed
data-driven approach applies to other cases managing a large inflow of
reported bugs. However, to gain evidence for both these assumptions,
further studies in more contexts are needed.

Nevertheless, some of our identified common patterns are in line
with the common reasons, and categories of invalid bug reports iden-
tified in previous work [7-11], such as misunderstanding of function-
ality, testing error, non-reproducible, environmental issue, and conflicting
expectation.

6.4. Construct validity

Similar to previous works [3,14], this case study defines valid
and invalid reports according to their working definition at the case
company, see Section 3.1.

To avoid bias and to improve the reliability of the interpretation of
practitioners’ feedback, two researchers participated in the focus group
meetings with the practitioners. One was taking notes, and the other
led the discussion. Later, both researchers discussed the feedback and
presented it back to the practitioners for validation.

The feedback from two domain experts for each topic was collected
using a form. We internally reviewed and revised the form before
sending it to domain experts. Furthermore, we presented our results
back to domain experts for validation.

6.5. Conclusion validity

In this study, we used an LDA topic modeling approach to identify
common patterns of invalid bug reports. We choose LDA because LDA
has shown promising results in various software engineering tasks, such
as software maintenance [48,49], software testing [22,50,51], software
requirements [18,52], and source code refactoring [53,54].

LDA makes an assumption that the entire corpus of documents can
be described with a set of topics, and each document belongs to one or
more topics. Likewise, each term in the corpus belongs to one or more
topics [16]. Using this assumption, LDA is able to discover themes that
suitably describe the entire corpus [47]. Furthermore, LDA is robust to
overfitting compared to other topic models, such as Probabilistic Latent
Semantic Indexing (pLSI) [47]. Notwithstanding, LDA has some limita-
tions. For instance, LDA performance can be suboptimal for short and
informal documents such as tweets [32]. In this study, we used invalid
bug report descriptions (i.e., documents in LDA terminology) from a
closed-source company. The bug reports contain sufficient information,
as the quality of bug reports in the closed source is relatively higher
than that in the open source [57], and the case company follows a
rigorous process in bug management.

Moreover, LDA-generated topics may point to common words in-
stead of describing a subject of interest and thus may not make sense
to domain experts. However, our findings reveal that LDA-generated
topics from the description of invalid bug reports make sense to domain
experts (see Table 3) and can be used to identify common patterns of
invalid bug reports and further be utilized by domain experts to suggest
preventive measures for decreasing the inflow of invalid bug reports
(see Section 4.2.2).

10

Information and Software Technology 164 (2023) 107305

7. Conclusion and future work

In large-scale software development, a number of bug reports are
submitted daily. However, not all of the submitted bug reports describe
an erroneous behavior of a software system. Such invalid bug reports
are treated the same way as valid bug reports. Thus, they consume a sig-
nificant amount of time and resources and affect the bug management
process and a company’s ability to respond quickly to real problems
adversely.

This study shows that relevant common patterns of invalid bug
reports can be identified from their descriptions and can be used by
practitioners to devise preventive measures. We also showed that it
is possible to support the identification of relevant common patterns
with automation in large-scale software development. Using LDA, prac-
titioners can effectively identify relevant common patterns of invalid
bug reports and analyze them further to devise preventive measures
for decreasing the inflow of invalid bug reports.

Furthermore, our proposed approach to identifying common pat-
terns of invalid bug reports from their descriptions and their usage
to devise preventive measures is context-independent. Thus, it can be
utilized in other contexts where large amounts of invalid bug reports
are an issue.

In the future, we aim to evaluate our approach on other products
at the case company and evaluate the effectiveness of the proposed
preventive actions.

CRediT authorship contribution statement

Muhammad Laiq: Conceptualization, Data curation, Methodology,
Software, Formal analysis, Investigation, Project administration, Val-
idation, Visualization, Writing — original draft, Writing — review &
editing. Nauman bin Ali: Conceptualization, Data curation, Formal
analysis, Funding acquisition, Investigation, Methodology, Project ad-
ministration, Supervision, Validation, Writing — original draft, Writing
— review & editing. Jiirgen Borstler: Conceptualization, Investiga-
tion, Methodology, Project administration, Supervision, Writing — re-
view & editing. Emelie Engstrom: Conceptualization, Investigation,
Methodology, Project administration, Supervision, Writing — review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgments

This work has been supported by ELLIIT, a strategic research envi-
ronment in information technology and mobile communications funded
by the Swedish government. The work has also been supported by a
research grant for the GIST project (reference number 20220235) from
the Knowledge Foundation in Sweden.

M. Laiq et al

References

[1]

[2]

[3]

[4]

[51

(6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, B. Xu, How practitioners perceive
automated bug report management techniques, IEEE Trans. Softw. Eng. 46 (8)
(2018) 836-862.

C. Parnin, A. Orso, Are automated debugging techniques actually helping
programmers? in: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, 2011, pp. 199-209.

Y. Fan, X. Xia, D. Lo, A.E. Hassan, Chaff from the wheat: Characterizing and
determining valid bug reports, IEEE Trans. Softw. Eng. 46 (5) (2018) 495-525.
J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, H. Mei, A survey on bug-report
analysis, Sci. China Inf. Sci. 58 (2) (2015) 1-24.

O. Chaparro, J.M. Florez, U. Singh, A. Marcus, Reformulating queries for
duplicate bug report detection, in: 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering, SANER, IEEE, 2019, pp.
218-229.

M. Laiq, N.b. Ali, J. Bostler, E. Engstrom, Early identification of invalid bug
reports in industrial settings—a case study, in: International Conference on
Product-Focused Software Process Improvement, Springer, 2022, pp. 497-507.
M. Erfani Joorabchi, M. Mirzaaghaei, A. Mesbah, Works for me! characterizing
non-reproducible bug reports, in: Proceedings of the 11th Working Conference
on Mining Software Repositories, 2014, pp. 62-71.

J. Sun, Why are bug reports invalid? in: 4th International Conference on Software
Testing, Verification and Validation, IEEE, 2011, pp. 407-410.

S. Panichella, G. Canfora, A. Di Sorbo, “Won’t we fix this issue?” qualitative
characterization and automated identification of wontfix issues on GitHub, Inf.
Softw. Technol. 139 (2021) 106665.

M.M. Rahman, F. Khomh, M. Castelluccio, Why are some bugs non-
reproducible?:—-an empirical investigation using data fusion-, in: 2020 IEEE
International Conference on Software Maintenance and Evolution, ICSME, IEEE,
2020, pp. 605-616.

Y. Su, P. Luarn, Y.-S. Lee, S.-J. Yen, Creating an invalid defect classification
model using text mining on server development, J. Syst. Softw. 125 (2017)
197-206.

A. Hindle, N.A. Ernst, M.W. Godfrey, J. Mylopoulos, Automated topic naming to
support cross-project analysis of software maintenance activities, in: Proceedings
of the 8th Working Conference on Mining Software Repositories, 2011, pp.
163-172.

A. Hindle, C. Bird, T. Zimmermann, N. Nagappan, Do topics make sense to
managers and developers? Empir. Softw. Eng. 20 (2) (2015) 479-515.

M.S. Zanetti, I. Scholtes, C.J. Tessone, F. Schweitzer, Categorizing bugs with
social networks: A case study on four open source software communities, in:
35th International Conference on Software Engineering, ICSE, IEEE, 2013, pp.
1032-1041.

J. He, L. Xu, Y. Fan, Z. Xu, M. Yan, Y. Lei, Deep learning based valid bug reports
determination and explanation, in: 31st International Symposium on Software
Reliability Engineering, ISSRE, IEEE, 2020, pp. 184-194.

T.-H. Chen, S.W. Thomas, A.E. Hassan, A survey on the use of topic models when
mining software repositories, Empir. Softw. Eng. 21 (5) (2016) 1843-1919.
C.C. Silva, M. Galster, F. Gilson, Topic modeling in software engineering research,
Empir. Softw. Eng. 26 (6) (2021) 1-62.

L.V.G. Carreno, K. Winbladh, Analysis of user comments: An approach for
software requirements evolution, in: 2013 35th International Conference on
Software Engineering, ICSE, IEEE, 2013, pp. 582-591.

A.B. Belle, G. El Boussaidi, S. Kpodjedo, Combining lexical and structural
information to reconstruct software layers, Inf. Softw. Technol. 74 (2016) 1-16.
L.B. Souza, E.C. Campos, F. Madeiral, K. Paixdo, A.M. Rocha, M.
de Almeida Maia, Bootstrapping cookbooks for APIs from crowd knowledge on
stack overflow, Inf. Softw. Technol. 111 (2019) 37-49.

K. Damevski, H. Chen, D.C. Shepherd, N.A. Kraft, L. Pollock, Predicting future
developer behavior in the IDE using topic models, in: Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 932-932.

S.W. Thomas, H. Hemmati, A.E. Hassan, D. Blostein, Static test case prioritization
using topic models, Empir. Softw. Eng. 19 (1) (2014) 182-212.

S.K. Lukins, N.A. Kraft, L.H. Etzkorn, Bug localization using latent dirichlet
allocation, Inf. Softw. Technol. 52 (9) (2010) 972-990.

X. Zhang, Y. Yao, Y. Wang, F. Xu, J. Lu, Exploring metadata in bug reports for
bug localization, in: 2017 24th Asia-Pacific Software Engineering Conference,
APSEC, IEEE, 2017, pp. 328-337.

Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, J. Lu, Bug localization via
supervised topic modeling, in: 2018 IEEE International Conference on Data
Mining, ICDM, IEEE, 2018, pp. 607-616.

Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, J. Lu, Enhancing supervised
bug localization with metadata and stack-trace, Knowl. Inf. Syst. 62 (6) (2020)
2461-2484.

J. Zou, L. Xu, M. Yang, X. Zhang, J. Zeng, S. Hirokawa, Automated duplicate
bug report detection using multi-factor analysis, IEICE Trans. Inform. Syst. 99
(7) (2016) 1762-1775.

T. Akilan, D. Shah, N. Patel, R. Mehta, Fast detection of duplicate bug reports
using LDA-based topic modeling and classification, in: International Conference
on Systems, Man, and Cybernetics, SMC, IEEE, 2020, pp. 1622-1629.

11

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Information and Software Technology 164 (2023) 107305

A. Panichella, A systematic comparison of search algorithms for topic
modelling—a study on duplicate bug report identification, in: International
Symposium on Search Based Software Engineering, Springer, 2019, pp. 11-26.

J. Zou, L. Xu, M. Yang, M. Yan, D. Yang, X. Zhang, Duplication detection for
software bug reports based on topic model, in: 2016 9th International Conference
on Service Science, ICSS, IEEE, 2016, pp. 60-65.

A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, D. Lo, C. Sun, Duplicate bug report
detection with a combination of information retrieval and topic modeling, in:
2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, IEEE, 2012, pp. 70-79.

T. Lin, W. Tian, Q. Mei, H. Cheng, The dual-sparse topic model: Mining focused
topics and focused terms in short text, in: Proceedings of the 23rd International
Conference on World Wide Web, 2014, pp. 539-550.

W.X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, X. Li, Comparing twitter
and traditional media using topic models, in: Advances in Information Retrieval:
33rd European Conference on IR Research, ECIR 2011, Dublin, Ireland, April
18-21, 2011. Proceedings 33, Springer, 2011, pp. 338-349.

R. Mehrotra, S. Sanner, W. Buntine, L. Xie, Improving lda topic models for
microblogs via tweet pooling and automatic labeling, in: Proceedings of the
36th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2013, pp. 889-892.

J. Tang, M. Zhang, Q. Mei, One theme in all views: Modeling consensus topics
in multiple contexts, in: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2013, pp. 5-13.

R. Bibyan, S. Anand, A. Jaiswal, Latent Dirichlet allocation (LDA) based on
automated bug severity prediction model, in: Proceedings of Data Analytics and
Management, Springer, 2022, pp. 363-377.

G. Yang, K. Min, J.-W. Lee, B. Lee, Applying topic modeling and similarity for
predicting bug severity in cross projects, KSII Trans. Internet Inform. Syst. (TIIS)
13 (3) (2019) 1583-1598.

G. Yang, T. Zhang, B. Lee, Towards semi-automatic bug triage and severity
prediction based on topic model and multi-feature of bug reports, in: 2014 IEEE
38th Annual Computer Software and Applications Conference, IEEE, 2014, pp.
97-106.

J. Kim, G. Yang, Bug severity prediction algorithm using topic-based feature
selection and CNN-LSTM algorithm, IEEE Access 10 (2022) 94643-94651.

T. Zhang, G. Yang, B. Lee, E.K. Lua, A novel developer ranking algorithm for
automatic bug triage using topic model and developer relations, in: 2014 21st
Asia-Pacific Software Engineering Conference, Vol. 1, IEEE, 2014, pp. 223-230.
W. Zhang, G. Han, Q. Wang, Butter: An approach to bug triage with topic
modeling and heterogeneous network analysis, in: 2014 International Conference
on Cloud Computing and Big Data, IEEE, 2014, pp. 62-69.

N. Limsettho, H. Hata, A. Monden, K. Matsumoto, Unsupervised bug report
categorization using clustering and labeling algorithm, Int. J. Softw. Eng. Knowl.
Eng. 26 (07) (2016) 1027-1053.

M.F. Zibran, On the effectiveness of labeled latent dirichlet allocation in
automatic bug-report categorization, in: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion, ICSE-C, IEEE, 2016, pp.
713-715.

N. Limsettho, H. Hata, A. Monden, K. Matsumoto, Automatic unsupervised bug
report categorization, in: 2014 6th International Workshop on Empirical Software
Engineering in Practice, IEEE, 2014, pp. 7-12.

P. Runeson, M. Host, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw, Eng. 14 (2) (2009) 131-164.

R. Rana, M. Staron, J. Hansson, M. Nilsson, W. Meding, A framework for
adoption of machine learning in industry for software defect prediction, in: 9th
International Conference on Software Engineering and Applications, ICSOFT-EA,
IEEE, 2014, pp. 383-392.

D.M. Blei, A.Y. Ng, M.L. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res.
3 (2003) 993-1022.

M. Pettinato, J.P. Gil, P. Galeas, B. Russo, Log mining to re-construct system
behavior: An exploratory study on a large telescope system, Inf. Softw. Technol.
114 (2019) 121-136.

W. Martin, F. Sarro, M. Harman, Causal impact analysis for app releases in
Google play, in: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 435-446.

J. Shimagaki, Y. Kamei, N. Ubayashi, A. Hindle, Automatic topic classification of
test cases using text mining at an android smartphone vendor, in: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2018, pp. 1-10.

Q. Luo, K. Moran, D. Poshyvanyk, A large-scale empirical comparison of static
and dynamic test case prioritization techniques, in: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 559-570.

H. Jiang, J. Zhang, X. Li, Z. Ren, D. Lo, X. Wu, Z. Luo, Recommending
new features from mobile app descriptions, ACM Trans. Softw. Eng. Methodol.
(TOSEM) 28 (4) (2019) 1-29.

G. Canfora, L. Cerulo, M. Cimitile, M. Di Penta, How changes affect software
entropy: An empirical study, Empir. Softw. Eng. 19 (1) (2014) 1-38.

http://refhub.elsevier.com/S0950-5849(23)00159-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb17
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb17
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb17
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb19
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb19
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb19
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb27
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb27
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb27
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb27
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb27
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb43
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb53

M. Laiq et al

[54]

[55]

G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia, Methodbook:
Recommending move method refactorings via relational topic models, IEEE
Trans. Softw. Eng. 40 (7) (2013) 671-694.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, T. Zimmermann, What
makes a good bug report? in: 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2008, pp. 308-318.

12

[56]

[57]

Information and Software Technology 164 (2023) 107305

S. Just, R. Premraj, T. Zimmermann, Towards the next generation of bug
tracking systems, in: IEEE Symposium on Visual Languages and Human-Centric
Computing, IEEE, 2008, pp. 82-85.

A. Bachmann, A. Bernstein, Software process data quality and characteristics: A
historical view on open and closed source projects, in: The Joint International
and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, 2009, pp. 119-128.

http://refhub.elsevier.com/S0950-5849(23)00159-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00159-3/sb57

	A data-driven approach for understanding invalid bug reports: An industrial case study
	Introduction
	Related Work
	Studies Categorizing Invalid Bug Reports
	Studies Predicting Bug Report Validity
	Topic Modeling in Software Engineering
	Topic Modeling in Bug Reports

	Research Methodology
	Case Description
	Invalid Bug Reports

	Data Collection
	Design and Analysis Approach for RQ1 (i.e., To what extent can common patterns in invalid bug reports be identified and used to suggest improvements?)
	Design and Analysis Approach for RQ2 (i.e., To what extent does automation support the identification of common patterns in invalid bug reports?)
	LDA Topic Modeling
	LDA Model Selection
	Qualitative Evaluation
	Data Preparation

	Results and Analysis
	RQ1: To what extent can common patterns in invalid bug reports be identified and used to suggest improvements?
	RQ2: To what extent does automation support the identification of common patterns in invalid bug reports?
	Common Patterns Identified Using LDA
	Improvement Suggestions
	Term Frequency and Weight for Interpreting LDA Topics

	Discussion
	Limitations and Threats to Validity
	Applicability and Relevance of Solution
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion and Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

