
Information and Software Technology 165 (2024) 107348

A
0

A
a
U
B

A

K
P
Q
C
E
T
T

1

s
r
S
s
o
t
d
o
e
t
p

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

tertiary study on links between source code metrics and external quality
ttributes
mar Iftikhar ∗, Nauman Bin Ali, Jürgen Börstler, Muhammad Usman
lekinge Institute of Technology, Department of Software Engineering, SE-371 79, Karlskrona, Sweden

R T I C L E I N F O

eywords:
roduct quality
uality models
ode quality
vidence
ertiary study
ertiary review

A B S T R A C T

Context: Several secondary studies have investigated the relationship between internal quality attributes,
source code metrics and external quality attributes. Sometimes they have contradictory results.
Objective: We synthesize evidence of the link between internal quality attributes, source code metrics and
external quality attributes along with the efficacy of the prediction models used.
Method: We conducted a tertiary review to identify, evaluate and synthesize secondary studies. We used
several characteristics of secondary studies as indicators for the strength of evidence and considered them
when synthesizing the results.
Results: From 711 secondary studies, we identified 15 secondary studies that have investigated the link
between source code and external quality. Our results show : (1) primarily, the focus has been on object-
oriented systems, (2) maintainability and reliability are most often linked to internal quality attributes and
source code metrics, with only one secondary study reporting evidence for security, (3) only a small set of
complexity, coupling, and size-related source code metrics report a consistent positive link with maintainability
and reliability, and (4) group method of data handling (GMDH) based prediction models have performed better
than other prediction models for maintainability prediction.
Conclusions: Based on our results, lines of code, coupling, complexity and the cohesion metrics from
Chidamber & Kemerer (CK) metrics are good indicators of maintainability with consistent evidence from
high and moderate-quality secondary studies. Similarly, four CK metrics related to coupling, complexity and
cohesion are good indicators of reliability, while inheritance and certain cohesion metrics show no consistent
evidence of links to maintainability and reliability. Further empirical studies are needed to explore the
link between internal quality attributes, source code metrics and other external quality attributes, including
functionality, portability, and usability. The results will help researchers and practitioners understand the body
of knowledge on the subject and identify future research directions.
. Introduction

Quality evaluation of source code artifacts such as test code and
ource code produced during development helps in identifying future
isks and judging how well the software system will perform in use.
oftware quality evaluation is a context dependent and multidimen-
ional concept [1]. Depending on the context and relevant perspective
f quality, various measurement methods are utilized. Several defini-
ions of software quality have been proposed in the literature. IEEE
efines software quality as ‘‘the degree to which a system, component,
r process meets specified requirements and customer or user needs or
xpectations’’ [2]. Software quality is often described as a set of proper-
ies possessed by the software itself. The presence or absence of these
roperties helps differentiate levels of software quality.

∗ Corresponding author.
E-mail addresses: umar.iftikhar@bth.se (U. Iftikhar), nauman.ali@bth.se (N.B. Ali), jurgen.borstler@bth.se (J. Börstler), muhammad.usman@bth.se

M. Usman).

Similarly, several quality models have been proposed that define the
properties of software using different terminologies into a set of factors,
attributes, or characteristics, e.g., McCall et al. [3], Boehm et al. [4],
Dromey [5] and ISO/IEC 25010:2011 [6] (see Section 2.1). While the
models refer to similar basic properties, they may differ on how the
properties are inter-linked, along with the terminology used to refer to
these properties. Some researchers have used quality characteristics [7]
while others preferred quality attributes [8] when describing properties
of quality. Considering that more secondary studies use quality attributes
to refer to quality factors, we use the same terminology for consistency.

Internal quality attributes of the product relate solely to the product
without considering the environment of the product. On the other hand,
vailable online 15 October 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107348
eceived 27 June 2022; Received in revised form 13 September 2023; Accepted 8
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:umar.iftikhar@bth.se
mailto:nauman.ali@bth.se
mailto:jurgen.borstler@bth.se
mailto:muhammad.usman@bth.se
https://doi.org/10.1016/j.infsof.2023.107348
https://doi.org/10.1016/j.infsof.2023.107348
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107348&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Fig. 1. Classification of internal and external code quality attributes, according to
Fenton [9].

external quality attributes are described as properties of product be-
haviour in relation to the product’s environment [9,10]. In the context
of our tertiary study, the entity of interest is software source code.
Internal quality attributes of source code can be assessed using code
level metrics (e.g., lines of code) without executing the code. External
quality attributes, such as how code behaves in a given environment or
platform, can be measured using external metrics (e.g., number of de-
fects), which are only available after execution. Assessing or predicting
external quality attributes of software using internal quality attributes
through source code metrics helps us measure product quality during
development which can be invaluable considering the corrective costs
related to post-deployment defects. The internal and external product
attributes are classified in Fig. 1 along with examples of external
metrics and source code metrics.

The subject of using source code metrics to assess external qual-
ity attributes has been studied in various empirical studies [11–13].
Similarly, a large number of secondary studies discuss utilizing source
code metrics as indicators of external quality attributes [14–17]. While
there are many secondary studies on the subject, the evidence on the
effectiveness of source code metrics to assess or predict external quality
attributes is varied and at times conflicting. We aim to synthesize the
evidence reported in secondary studies and summarize the source code
metrics that have been linked with external quality attributes.

The remainder of the paper has the following structure. Section 2
presents the related works in the field. Section 3 discusses the method-
ology used, followed by Section 4 on conducting the review. Results
and analysis of the study are covered in Section 5 while Section 6
discusses the implications of the research. We discuss the limitations
of the study in Section 7 and Section 8 concludes the study along with
2

potential future work.
2. Related work

This section discusses four themes of related work for this study:
relevant secondary studies on source code quality, software quality
models, code quality models, and closely related tertiary studies.

2.1. Secondary studies on source code quality

Several secondary studies discuss source code quality in the context
of software maintainability. The ISO/IEC 25010:2011 defines main-
tainability as one of eight top-level quality attributes.1 Baldassarre
et al. [16] present the results from 28 primary studies focusing on
software models used in the context of software maintainability. Riaz
et al. [15] reviewed 15 primary studies on software maintainability
prediction using source code metrics. Abílio et al. [18] review 11 pri-
mary studies that focus on feature-oriented and aspect-oriented metrics
that aid in measuring software maintainability. Saraiva et al. [17]
provide a catalog of 570 maintainability metrics for object-oriented
systems. Malhotra et al. [19] synthesizes 96 primary studies focusing on
software maintainability prediction in the early stages of development.
Burrows et al. [20] review 12 primary studies that use coupling metrics
as an indicator of maintainability in the context of aspect-oriented
programming. Nuñez et al. [21] provide a review of the current state
of object-oriented metrics. Briand et al. [14] show that fault proneness
of software may be predicted using size, coupling, and complexity
metrics. We evaluate and synthesize the varying claims and evidence in
the secondary studies linking source code metrics and external quality
attributes.

2.2. Software quality models

The ISO/IEC 25010:2011 [6] defines the quality of software in
terms of its attributes in a revised version of the previously established
ISO/IEC 9126 [22] standard. International standards are important
and common reference models to ascertain quality parameters that are
relevant to a broad set of products for concerned stakeholders. The
ISO/IEC 25010:2011 standard [6] defines software quality in terms of
eight main quality attributes, further elaborated with 32 sub-attributes.

Several other quality models have been proposed. Grady et al. [23]
have identified FURPS or functionality, usability, reliability, perfor-
mance, and supportability as key attributes of quality. Soto et al. [24]
define quality characteristics for open-source systems as maintainabil-
ity, reliability, portability, operability, performance, functional suitabil-
ity, security, and compatibility. Mayr et al. [25] propose a model to
operationalize the ISO-9126 quality model with 336 code level metrics
for embedded software. Another attempt at bridging the gap between
ISO-9126 and the needs of the industry is presented by Manet [26]
which introduces the concept of practices or guidelines to observe a
group of metrics for better assessment of underlying code. An elaborate
discussion on several quality models along with analysis on overlapping
attributes is presented by Rashidi et al. [27] and highlight that qual-
ity models differ in terms of definitions of attributes and assessment
methods.

2.3. Code quality models

An alternative model that supplements ISO/IEC 25010:2011 for
code quality is provided by the Consortium of Information and Soft-
ware Quality (CISQ) [28]. It measures source code quality in terms
of four quality attributes: reliability, maintainability, security, and
performance efficiency. Each of the quality attribute is evaluated in
terms of a set of properties called common weaknesses and measured
in terms of aggregated weaknesses or violations.

1 ISO/IEC 25010:2011 refers to the same as quality characteristics.

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
SQALE [29] evaluates code in term of its testability, reliability,
changeability, efficiency, security, maintainability, portability, reusabil-
ity and is used by metrics tools such as SonarQube.2

2.4. Tertiary studies on related topics

The tertiary study by Lacerda et al. [30] discusses code qual-
ity from the perspective of code smells and code refactoring. The
study analyses 40 systematic studies and shows that code smells affect
six of the 32 sub-attributes of quality, as defined by the ISO/IEC
205010:2011. The affected attributes include understandability, main-
tainability, testability, complexity, functionality, and reusability. The
paper lists duplicated code or duplicated clones as the most reported
code smell. Source code metrics based methods are reported as one
of the common methods to detect the top ten code smells. The report
also summarizes popular code smell detection and refactoring tools that
may aid practitioners. The study, however, does not investigate the
link between source code metrics and external attributes and which
source code metrics are good indicators of external quality based on
the evidence in the secondary studies.

In this tertiary study, we aim to synthesize the evidence from
secondary studies linking external quality attributes with source code
metrics. The synthesis includes both qualitative and quantitative evi-
dence reported in the secondary studies. Additionally, we also synthe-
size claims reported in secondary studies on the link between external
quality attributes and source code metrics. Furthermore, we evaluate
the evidence with strength of evidence criterion that takes into consid-
eration several characteristics of the secondary studies. However, for
this study, we exclude secondary studies that only report the use of
source code metrics to assess external quality attributes. To the best
of our knowledge, there are no tertiary studies that link source code
metrics with external quality attributes reported in secondary studies.

3. Methodology

In this tertiary study, we pose and answer the following overarching
research question using the guidelines by Kitchenham et al. [31]:
What is the current state-of-the-literature in terms of internal quality
attributes and source code metrics that have been linked with exter-
nal quality attributes and external metrics? A significant number of
secondary studies exist on source code quality. Therefore, we answer
this research question by identifying, evaluating and synthesizing such
secondary studies to answer the following specific questions:

RQ1: What are the characteristics of the secondary studies that link inter-
nal quality attributes and source code metrics with external quality
attributes?

RQ2: What is the efficacy of the relationship between internal quality
attributes and source code metrics with external quality attributes
and external metrics?

RQ3: What is the efficacy of the models that use source code metrics to
predict external quality attributes?

In RQ1, we aim to cover the characteristics of the secondary studies,
the years covered by the secondary study, the aims of the secondary
studies, the type of systems, the size of systems, and the programming
paradigm studied. In RQ2, we aim to provide a comprehensive evalua-
tion of the qualitative and quantitative evidence-based links that asso-
ciate internal quality attributes and their metrics with various external
quality attributes and their metrics. In RQ3, we consider whether par-
ticular prediction models are better than others in predicting external
quality attributes using source code metrics.

2 https://www.sonarqube.org/
3

3.1. Search strategy

This section presents the strategy used for searching relevant sec-
ondary studies and formulating the search string. The search is designed
to retrieve secondary studies that report evidence linking source code
metrics with external quality attributes. In order to collect as many
relevant secondary studies as possible, we preferred a broader search
strategy to collect various forms of evidence. In this phase, we have
not differentiated between secondary studies that only report usage of
source code metrics and those that report evidence.

3.1.1. Keyword-based search
We used keyword-based [31,32] search in one indexing (i.e., Sco-

pus) and two publisher databases (IEEE Xplore and ACM digital library)
as recommended by Petersen et al. [33]. IEEE and ACM publish the
most important journals and conferences in the software engineering
field [34,35]. Moreover, Scopus is considered as one of the largest
indexing services covering papers from ACM, IEEE, Springer, Wiley and
Elsevier [36,37].

3.1.2. String construction
We used keywords and synonyms from ISO/IEC 25010:2011 [6],

related key-words from a known set of papers (see online,3) and our do-
main knowledge. The search string used in the study has the following
three clusters of keywords:

Artifact: code, software program, software product, software applica-
tion, software system, object-oriented, aspect-oriented, feature-
oriented.

Quality: quality, smell*, pattern, functional suitability, performance,
efficiency, compatibility, usability, reliability, security, maintain-
ability, portability, analyzability, modifiability, testability, com-
pliance, stability, comprehension, understandability, understand-
ing, maintenance, modularity, reusability, changeability, evolv-
ability, modification, evolution, readability, metric*, measur*,
indicator, refactoring

Systematic secondary study: systematic review, systematic literature
review, systematic map, systematic mapping, tertiary study, ter-
tiary review, mapping study, multivocal literature review, multi-
vocal literature mapping.

The search string was formed by combining the above sub-strings
with a Boolean AND operator as depicted online.3 We did not consider
secondary studies shorter than eight pages as they are unlikely to
contain necessary details related to evidence between source code met-
rics and external quality attributes. We restricted ourselves to papers
published in peer-reviewed conferences, and journals to report the
evidence widely accepted by the research community. We executed the
search string in February 2021.

Moreover, in the final set of publications considered for selection,
we added the publications from the validation and known sets of
publications (see Section 3.1.3), and the secondary studies identified
by Lacerda et al. [30].

3.1.3. Search validation
To evaluate the effectiveness of the search string, we used a set of

secondary studies (see online3) as a quasi-gold standard (QGS) [31].
Two authors, not involved in the design of the search string, indepen-
dently formulated the validation set which comprised 11 secondary
studies [38].

Our search strategy achieved a recall of 73% which is moderate. The
recall could further be improved with additional keywords. However,
this led to an increase in the number of results that was impractical.
Moreover, as we have supplemented the keyword-based search with rel-
evant secondary studies from the tertiary studies by Lacerda et al. [30],
we decided not to make this change.

3 https://doi.org/10.5281/zenodo.7933498

https://www.sonarqube.org/
https://doi.org/10.5281/zenodo.7933498

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.

r
r
e
i

3

s

3

s
v

s
p
B
w
t
‘

i
S

t
A

Table 1
Inclusion/exclusion criteria used in the tertiary study.

Inclusion criteria

C0 Publications in English language and with length of at least eight
pages

C1 Peer-reviewed workshop, journal or conference publications
C2 Publications claiming to have systematically studied available

literature, i.e., systematic literature studies (SLRs or SMSs) or
multivocal literature studies (MLRs, MLMs)

C3 Papers that identify, define or measure internal quality attributes or
determine levels of code quality (e.g., work on quality measurement
or code smells)

C4 Papers that relate code metrics/quality attributes/code
refactoring/code smells to external quality attributes

Exclusion criteria

C5 Publications that are about only external quality attributes of
software product/system/service, or about the quality of other
artifacts like defect reports, test code, or test cases

Table 2
Decision rules in selection strategy based on Ali and Petersen [39].

Reviewer 2

Relevant Maybe Irrelevant

Reviewer 1
Relevant Include Include Resolve with discussion
Maybe Include Include Exclude
Irrelevant Resolve with discussion Exclude Exclude

3.2. Selection process

This section discusses the steps of the selection process.

3.2.1. Selection criteria
To identify relevant papers from the search results, we used the

criteria listed in Table 1. Papers fulfilling the boolean expression (C0
AND C1 AND C2 AND (C3 OR C4)) were selected for full-text reading.
In unclear cases, we were inclusive, i.e., when there were indications
that the full-text of a paper might contain information fulfilling C3 or
C4, we retained the paper for the next phase. Papers that did not fulfil
C3 or C4 but fulfilled C5 were excluded.

3.2.2. Preliminary selection
Before applying topic specific selection criteria, the first author

excluded publications with less than eight pages and not written in
English.

3.2.3. Selection based on title and abstract
To check the objectivity of the criteria and whether we have a

shared understanding of it, we performed a pilot round of the se-
lection process [31,39]. The piloting step involved all four authors.
12 randomly selected papers from the search results were assessed
independently by all authors as relevant, irrelevant or maybe relevant.
Cohen’s Kappa measure of inter-rater agreement was used to measure
the level of agreement between authors. We aimed for an inter-rater
agreement above 0.61 since it is considered a substantial agreement in
literature [40,41].

Any disagreements during piloting provide an opportunity of re-
viewing or updating the selection criteria in an iterative manner [33].
We resolved all disagreements through discussion and referring back to
the selection criteria.

3.2.4. Selection based on adaptive reading
As stated in Section 3.2.1, we have been inclusive when the titles

and abstracts have been insufficient to conclude the relevance of a
paper. To deal with such papers in an efficient manner, we have used
4

a modified adaptive reading method [42]. We first read the research A
questions of the secondary study to know more about its aims and ob-
jectives, followed by the introduction and conclusion sections to decide
its relevance to our study. The selection criteria listed in Section 3.2.1
were used to ascertain the relevance. Any papers excluded during this
process were reviewed by the second author to reduce the likelihood
of excluding a relevant paper.

3.2.5. Selection based on full-text reading
In this step, the full-text of the papers was read to extract the

information required to answer the research questions. During this
step, an explicit attempt was made to identify overlapping papers [43],
i.e., multiple papers reporting the same or extended version of a study.

3.3. Data extraction

Table 3 presents the data extraction form and a mapping of the data
to respective research questions.

3.3.1. Piloting of data extraction
A piloting of the data extraction form was done to assess its re-

liability and completeness. The first and third author independently
extracted the data from a randomly selected secondary study from
the validation set to reduce the chance of selecting a secondary study
that lacks sufficient data to validate the data extraction form. Any
differences were resolved through a discussion.

3.3.2. Data extraction validation
After the complete data extraction, six secondary studies were ran-

domly selected for validation of the extracted data by the third author.
Due to the laborious nature of extracting multiple entries of measures
and metrics from secondary studies, it was decided to mark the relevant
section/tables for internal/external quality attributes, and reported
source code metrics.

3.4. Quality assessment of the secondary studies

The five DARE4 questions for the quality assessment of systematic
eviews in healthcare have been widely used in software engineering
esearch [44]. For this tertiary study, the criteria proposed by Budgen
t al. [45] to answer the five DARE questions were used (see Table 19
n the appendix).

.4.1. Piloting of the quality assessment criteria
The quality assessment form was piloted on two randomly selected

econdary studies from our sample by the first and fourth authors.

.4.2. Quality assessment validation
The first author performed the quality assessment for all included

econdary studies. Six secondary studies were randomly selected for
alidation by the fourth author.

As recommended by Kitchenham et al. [31], the quality assessment
core can be utilized to remove low-quality secondary studies. This ap-
roach has been used by other tertiary studies such as Hoda et al. [46],
arros-Justo et al. [36] and Curcio et al. [47]. Inspired by [46,47],
e removed secondary studies that score ≤ 1.5 (of 5), i.e., removed

he papers that answered ‘‘no’’ to at least two questions and scored
‘partial’’ (0.5) on other questions.

The quality DARE score of a secondary study is also used dur-
ng synthesis of results as an indicator of strength of evidence (see
ection 3.5.4 and Table 5). The DARE score of a secondary study

4 The Centre for Reviews and Dissemination (CRD) suggests five questions
o determine whether to include a systematic review in their Database of
bstracts of Reviews of Effects (DARE). https://www.crd.york.ac.uk/CRDWeb/
boutPage.asp accessed on: April 17, 2022.

https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp
https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 3
Data extraction traceability with research questions.

Research question Data extracted

RQ1 What are the characteristics of the
secondary studies that link internal
quality attributes and source code
metrics with external quality attributes?

– Metadata: (author, title, publication venues, publication date)
– Aims: (research questions of the secondary study)
– Search: (time period covered in the search, databases used).
– Code quality attribute that are the secondary study’s focus: (from the research questions)
– Type of software system reported by the secondary study
– Programming paradigm reported by the secondary study
– Application domain considered by the secondary study
– Software size reported by the secondary study
– Type of research method used in secondary studies
– Quality of the secondary study: selection criteria, search coverage, quality assessment, study description and synthesis

RQ2: What is the efficacy of the
relationship between internal quality
attributes and source code metrics with
external quality attributes and external
metrics?

– Name of external quality attribute/sub-attribute
– Name and description of the external metric
– Linked to which internal attribute
– Name of source code metrics used to measure the external attribute
– Description or definition of the source code metrics
– Validation status of the source code metrics
– Number of primary studies reporting the link between source code metrics and external quality attributes
– Evidence for the reported link (e.g., claims, correlation results, prediction results)

RQ3: What is the efficacy of the models
that use source code metrics to predict
external quality attributes?

– Models used for prediction of external quality attributes
– Accuracy of the prediction models
– Datasets used for validation
– Source code metrics used for prediction
is classified as high, medium or low using the suggestion by Curcio
et al. [47]. To critically appraise the quality assessment performed by
the included secondary studies, we categorized the quality assessment
questions used in those secondary studies. The categorized quality
assessment questions primarily assess the quality of reporting. How-
ever, focusing on methodological issues during critical quality appraisal
is more beneficial [44,48]. More recent proposals, like QAISER [49]
for appraising systematic reviews, operationalize such assessments by
going beyond reporting quality and assessing the risk of bias. For each
included secondary study, we calculate an additional quality assess-
ment score besides the DARE score. This additional quality assessment
score is computed as follows: we count the number of categorized
quality assessment questions used by the secondary study.

3.5. Collation process: attributes & metrics

This section reports the methodology used when collating extracted
data related to internal attributes, external metrics, and source code
metrics, along with the strength of evidence.

3.5.1. Attributes and metrics
The external quality attributes linked to the source code metrics are

based on the information available in the secondary study regarding
the external metric or dependent variable. Similarly, if reported by the
study, the internal quality attribute is extracted. In the case where a
secondary study has not assigned any internal quality attribute, and the
source code metric belongs to a well-known metric suite, we then assign
the internal quality attribute based on the description of the metric. If
the metric is not part of a well-known suite, we then attempt to extract
the description from the primary study quoted by the secondary study.

3.5.2. Relationship indicators quality attributes and source code metrics
The secondary studies report different types and levels of evi-

dence when linking source code metrics to external quality attributes.
We mapped the different levels of evidence reported in secondary
studies as ‘‘++’’, ‘‘+’’, ‘‘0’’, ‘‘-’’, ‘‘--’’ and ‘‘unclear’’. For the vari-
ety (e.g. correlation results, prediction accuracy results) of evidence
reported, we interpret ‘‘++’’ as ‘strong positive relationship’, ‘‘+’’ as
‘positive relationship’, ‘‘0’’ as ‘insignificant relationship’, ‘‘-’’ as ‘nega-
tive relationship’, ‘‘--’’ as ‘strong negative relationship’ and ‘‘unclear’’
as ‘unclear relationship’ (see Table 4). Different types of evidence
include explanatory secondary studies (i.e., studies predicting external
quality attributes using source code metrics) report accuracy measures,
5

while exploratory secondary studies (i.e., studies investigating the re-
lationship between external quality attributes and source code metrics)
report correlation co-coefficients or claims of relationship.

3.5.3. Double counting
Double counting can occur during results aggregation in tertiary

studies when the result from the same primary study is reported by
more than one secondary study and is counted more than once. If more
than one secondary study reports the evidence of a link between source
code metric and external quality attribute used, we also investigate if
there is a risk of double counting. Thus, we consider whether these sec-
ondary studies share any primary studies when reporting their results.
While processing the degree of overlap, we only considered overlap in
primary studies that are used to report results in the secondary studies
(thus if a primary study is found in more than one secondary study, but
only one secondary study utilizes it as a source for its results while the
others consider it as reference is not considered an overlap).

In case there is no overlap, we report ‘‘No overlap’’. We note the
primary study title, the author, and the year if overlap exists. We match
these details within the other secondary study to see whether the other
secondary study also uses results from the same primary study. If this
is true, then based on how the secondary study results are presented,
we try to remove the overlap before reporting the results (by counting
results only once in the overlapped primary studies). If this is possible,
we adjust the result to count it only once and report ‘‘X PS, Resolved’’
where X represents the number of removed studies. In case this is
not possible, we report the overlap present and use it as a factor to
downgrade the strength of evidence (see Section 3.5.4).

3.5.4. Strength of evidence
To indicate the strength of evidence for the relationship between

external quality attributes and source code metrics discussed in the
previous sections, we considered twelve factors: (1) the DARE quality
score of the secondary study, (2) the aggregate number of primary
studies (within the secondary studies) reporting the stated link between
source code metric and external quality attribute, (3) whether the
secondary studies have reported and described the external metric
to measure the external quality attribute, (4) the degree of overlap
among secondary studies reporting the same result, (5) the additional
quality assessment score calculated in Section 3.4.2, (6) whether the
secondary studies reported the source code metrics used as validated,
(7) whether the secondary studies have provided a replication package
or reported the extracted data in the annexure, (8) whether the authors

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 4
Labels used indicate a relationship between external quality attributes and source code
metrics.

Assigned label Evidence reported by secondary study

Exploratory secondary studies

++ Strong positive correlation (with or without significance levels
reported)
Strong claims of positive relation

‘‘+’’ Positive correlation (significance levels reported)
Positive correlation (no significance levels reported)
Claims of positive relation

‘‘0’’
Insignificant results (significance levels reported)
Insignificant correlation (no significance levels reported)
Claims of insignificant relation

‘‘-’’
Negative correlation (significance levels reported)
Negative correlation (no significance levels reported)
Claims of negative relation

‘‘--’’
Strong negative correlation (significance levels reported)
Strong negative correlation (no significance levels reported)
Strong claims of negative relation

‘‘Unclear’’
Unclear results (significance levels reported)
Unclear results (no significance levels reported)
Claims of unclear relation

Explanatory studies

‘‘+’’ Accuracy measures (e.g., TPR, FPR, Mean ARE, AUC) reported by
secondary study as successful predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study
as good predictors using [50,51]

‘‘0’’ Accuracy measures reported by secondary study as insignificant
predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study
as insignificant predictors using [50,51]

‘‘-’’ Accuracy measures reported by secondary study as unsuccessful
predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study
as unsuccessful predictors using [50,51]

‘‘Unclear’’ Accuracy measures reported by secondary study as unclear
predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study
as unclear predictors using [50,51]

have explicitly reported any conflict of interest, (9) whether secondary
studies reporting correlations results have reported if their primary
studies have adjusted the results for using multiple statistical tests.
We consider three additional criteria for prediction-focused secondary
studies in addition to the nine criteria, (10) whether unbiased or
unskewed evaluation measures were used to report the quantitative
evidence in secondary studies, (11) whether the secondary studies that
focus on fault-proneness or defect prediction reported normalization by
the size of modules in their primary studies, and (12) for secondary
studies that focus on prediction, if the data used in primary studies (as
reported by secondary studies) is post-hoc or do the secondary study
also report results of prediction of future faults/defects/change as well.
The criteria used are summarized in Table 5.

4. Conducting the review

The results of the overall selection process are summarized in
Fig. 2. Individual steps of the process are described in the following
sub-sections.

4.1. Search results

Fig. 2 summarizes the number of results from individual databases
and the total number of unique secondary studies from the keyword-
based search. The publications from the validation set and the known
set of publications are also included. Lacerda et al. [30] is the only
6

tertiary study close to our topic. Therefore, we considered including the
secondary studies from their tertiary study, which may be potentially
relevant. We consider this as an acceptable trade-off to supplement our
search results while not duplicating the efforts of Lacerda et al. [30].
Moreover, Lacerda et al. [30] only share one secondary study with
the validation set, thus improving the chances of adding potentially
relevant studies missed by the automated search. After removing the
duplicated publications, we have 711 unique publications.

4.2. Selection results

Before applying topic specific selection steps, the first author iden-
tified publications out of the 711 search results in Fig. 2 that meet the
selection criteria C0 and C1 in Table 1. Thus, publications with less than
eight pages, not written in English or not published in a peer-reviewed
venue, are excluded. A total of 163 publications that did not meet the
page and language requirements were excluded leaving 548 secondary
studies for the next phase of the selection. Among the 163 publications
removed during this phase, four were non-English publications while
the remaining were removed due to short length.

4.2.1. Pilot selection process
For the 12 secondary studies considered in the pilot selection, all

authors agreed on seven out of twelve secondary studies while there
were disagreements on the remaining five secondary studies, giving an
initial agreement percentage of 58%. Only two out of six author-pairs
had a substantial agreement, while two author-pairs had a moderate
agreement. The disagreements were resolved in a discussion and the
descriptions of the inclusion/exclusion criteria were further clarified.

4.2.2. Complete selection process
Next, each of the remaining 548 secondary studies were reviewed

by two authors. While the first author applied the selection criteria to
all secondary studies, 182 randomly selected secondary studies were
assigned to the second, third, and fourth author, each. Table 2 used
in [52], was utilized during the decision making process. A secondary
study was excluded if it was resolved as ‘‘irrelevant’’ and it was included
if it was agreed upon as ‘‘maybe’’ or ‘‘included’’ by both authors. In
this round, the initial agreement among the author-pairs was 73%. The
average of Cohen-Kappa inter-rater agreement between author-pairs
was 0.64, which is substantial agreement [40,41].

The disagreements during this round were also resolved through
discussion among authors and was utilized to further improve the
clarity of the inclusion/exclusion criteria. After the study selection
process, 135 secondary studies were included, while 413 secondary
studies were excluded from the list of studies.

After the conclusion of the adaptive reading step, 99 secondary
studies were retained while 36 secondary studies were identified as
irrelevant to the topic. All secondary studies identified by the first
author as irrelevant were reviewed by the second author see Table 6.

The first author read the full text of 99 papers. The full text for
one secondary study [53] was not available (besides our best efforts),
thus it was excluded. Two papers were identified as the same secondary
studies [54,55] and the most recent of the two secondary studies [54]
was retained. The first author read all the papers in this phase and
further identified 37 secondary studies as irrelevant to the scope. The
excluded secondary studies were reviewed by the second and fourth
author and the authors agreed on excluding 35 secondary studies.
Disagreements on the remaining two secondary studies were resolved
through a discussion leading to inclusion of both, giving 62 secondary
studies for quality assessment and data extraction.

As a reflection on the study selection process, we analysed how
this final set of 62 secondary studies were initially assessed by authors
after selection based on titles and abstract only in Table 6. Of those
62 secondary studies, four secondary studies were initially assessed
as ‘‘Include-Exclude’’, three secondary studies were initially assessed

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 5
Strength of evidence criteria.

Strength of
evidence

Secondary study DARE score AQAS* score PS in result Reported
external metrics

Number of ‘‘Yes’’ to
criteria 6 to 12

Very High At least one high quality secondary study AQAS >= 10 PS >= 25 Yes >= 2 Yes

High
At least one high quality secondary study AQAS < 10 PS >= 25 No >= 2 Yes
At least one high quality secondary study AQAS < 10 PS >= 25 No < 2 Yes
At least one high quality secondary study AQAS < 10 10 < PS < 25 Yes >= 2 Yes

Moderate

At least one high quality secondary study AQAS < 10 PS >= 25 No < 2 Yes
At least one high quality secondary study AQAS < 10 10 < PS < 25 No >= 2 Yes
At least one high quality secondary study AQAS < 10 10 < PS < 25 Yes < 2 Yes
At least one high quality secondary study AQAS < 10 PS <= 10 Yes >= 2 Yes

Low
At least one high quality secondary study AQAS < 10 10 < PS < 25 No < 2 Yes
At least 1 high quality secondary study AQAS < 10 PS <= 10 No >= 2 Yes
One high or medium quality secondary study AQAS < 10 PS <= 10 No < 2 Yes

Very Low One high or medium quality secondary study AQAS < 10 PS <= 10 No < 2 Yes

AQAS*: Additional quality assessment score.
Fig. 2. Selection process results (The count depicts included secondary studies at each stage).
Table 6
Results after preliminary selection.

S. No Decision Number of
secondary
studies

Comment Included after
full-text reading

1 Exclude–Exclude 320 Excluded –
2 Exclude-Maybe 26 Review 0
3 Maybe–Maybe 5 Included 3
4 Include–Maybe 37 Included 14
5 Include–Include 78 Included 41
6 Include–Exclude 82 Review 4

– Studies in preliminary
selection

548 – –

as ‘‘Maybe-Maybe’’ and 14 secondary studies were initially assessed
as ‘‘Include-Maybe’’. Since a large number of secondary studies might
have been excluded solely based on the decision rules mentioned in
Table 2, we recommend that authors should include secondary stud-
ies categorized as ‘‘Include-Maybe’’ and ‘‘Maybe-Maybe’’ for full-text
reading as a large percentage of these secondary studies might be
relevant. The authors should also carefully review secondary studies
marked as ‘‘Include-Exclude’’ list as immediate exclusion may result in
the exclusion of relevant secondary studies.

4.3. Data extraction

4.3.1. Piloting of data extraction
In the piloting of the data extraction form, the authors agreed

on 76% of the data extracted for one randomly selected paper. The
differences were discussed and resolved.
7

4.3.2. Data extraction validation
In a post hoc validation of the extracted data, the third author inde-

pendently did data extraction for six secondary studies. We found that
all entries related to demographic data, internal/external attributes,
reported metrics matched between the first and third authors. However,
minor differences were observed in two fields, namely, recommen-
dations/findings and synthesis method utilized. The differences were
discussed and corrective action was taken to resolve them.

4.4. Quality assessment of the secondary studies

In the pilot round of quality assessment, there was agreement on
the first and fifth questions (see Table 19) related to the inclusion
and exclusion criteria and synthesis of secondary studies. The authors’
results did not match questions two, three, and four regarding sufficient
search coverage, quality assessment, and secondary study description.
After discussing the misalignment in understanding, the differences
were resolved.

The validation of a 10% randomly selected sample of secondary
studies showed that there was more than 80% agreement on the
first two DARE questions, 66% agreement on question 3, and 50%
agreement on the last two questions. A meeting was held to discuss
the differences and improve the alignment between the authors. It was
observed that all disagreements were minor, e.g., one author assigned
‘‘yes’’ while the other author assigned ‘‘partly’’, or when one author has
assigned ‘‘partly’’ the other author assigned ‘‘no’’ when answering ques-
tions. Based on the improved understanding, the first author reviewed
all papers assigned as ‘‘yes’’ for Questions 4 and 5 (see Table 19) of the
quality criteria. The fourth author reviewed the updated results, and all

changes were agreed upon.

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Fig. 3. Number of primary studies and years covered by the included secondary studies.

After removing secondary studies with scores less than or equal
to 1.5, 55 secondary studies remained. As DARE is not designed to
evaluate the quality of multi-vocal reviews, quality assessment-based
selection was not applied to MLRs. The secondary studies removed
due to low DARE score are listed online.3 Detailed results of quality
assessment are reported in Section 5.1.5 as part of the characteristics
of the included secondary studies.

4.5. Secondary studies providing links between external quality attributes
and source code metrics

From the list of 55 secondary studies, only 15 secondary studies
provide evidence regarding a link between external quality attributes
and source code metrics (see Fig. 2). These secondary studies either
provide quantitative (e.g., correlation or prediction results) or qualita-
tive evidence (e.g., stated claims or comments on source code metrics
as good or poor indicators) of the link between source code metrics
and external quality attributes. Forty secondary studies3 only report
the usage of source code metrics for assessing or measuring external
quality attributes. These 40 secondary studies have not commented on
how well they measure external quality attributes, nor did they provide
any qualitative or quantitative evidence exploring or explaining the link
between the source code measures and the external quality attributes.
While usage alone may be considered evidence, we focus on explicitly
stated evidence in this tertiary study. We have thus identified 15
secondary studies reporting such evidence.

4.6. Removal of double-counting results in secondary studies

We resolved overlaps in primary studies reported by the secondary
studies by counting duplicate primary studies only once. This was
possible for the case where we could trace the evidence regarding
the link between source code metrics and external quality attributes
reported in the secondary study to the primary study included. We
mitigated overlaps in primary studies between S06 and S12 (seven
primary studies), S01 and S04 (nine primary studies), S12 and S14 (one
primary study), and S06 and S14 (one primary study).

5. Results and analysis

5.1. RQ1: Characteristics of secondary studies

The 15 selected secondary studies are shown in Table 18. Ten
of them are systematic literature reviews (SLRs) and five systematic
mapping studies (SMSs). The earliest secondary study that fulfilled our
selection criteria was published in 2009. The search was performed
in February 2021, which may explain why no secondary studies from
2021 are included in our sample. The researcher’s interest in software
code metrics and reporting relationship with quality attributes has been
8

steady over the years, with nine out of 15 of the secondary studies
published between the years 2016–20.

The years covered by the secondary studies are shown in Fig. 3.
Half of the published articles cover the years between 1998 and 2014.
In their search results, only three secondary studies had included
the years prior to 1991 (when Chidamber and Kemerer metrics suite
was introduced), indicating that researchers have focused on primary
studies conducted after this year.

5.1.1. Secondary study aims
We have analysed the research questions and stated aims from

the secondary studies based on Fenton’s classification of internal and
external quality attributes [9] (see also Fig. 1). Furthermore, we classify
the secondary studies in each sub-topic based on metrics utilization,
i.e., whether the source code metrics have been utilized for exploring
the relationship between source code metrics and external quality at-
tributes (i.e., correlation studies) or explaining the relationship between
source code metrics and external quality attributes (i.e., prediction
studies).

Maintainability is the most frequently studied external attribute,
with six secondary studies investigate maintainability prediction while
five secondary studies investigate reliability prediction as depicted in
Fig. 4. One secondary study (though reports evidence for reliability)
aimed to report influential metrics and their aggregation without spec-
ifying the internal or external attributes, which we have classified
as ‘‘Unclear’’. Similarly, one secondary study investigates the internal
attributes of code categorized into coupling and cohesion.

5.1.2. Systems studied
We classified the systems studied as open-source, industrial systems,

or academic systems. The number of systems studied is shown in Fig. 5.
Of the 15 secondary studies, five did not mention the software systems
used in their primary studies.

Open-source systems were the most popular type of software sys-
tems studied and were reported by nine out of 15 secondary studies,
while seven out of 15 secondary studies utilized industrial systems.
Academic systems were reported by six out of 15 secondary studies.
Four secondary studies use systems from all three categories, while only
two out of 15, secondary studies only use one type of system. Sixty-
five unique open-source systems were reported among the included
secondary studies. JEdit.5 is the most often reported open-source system
used by three secondary studies followed by Mozilla6 and Apache7

Among the secondary studies that used public datasets, the PROMISE8

and NASA9 datasets have been reported by more than three secondary
studies.

5.1.3. Databases used
The databases used to perform an automated search by the included

secondary studies are depicted in Table 7. The most frequently used
databases for search in the included secondary studies are IEEE Xplore,
ACM Digital Library, Elsevier, and Scopus. Of the 15 secondary studies,
11 searched in IEEE Xplore and ACM Digital library while nine selected
Elsevier and Scopus. 11 out of 15 secondary studies searched in four
or more databases. The highest number of databases searched by a
secondary study was nine, reported in two secondary studies. Four
secondary studies, each, searched in four databases, which is the most
common choice among the selected studies and is also recommended
by systematic study guidelines [31,45]. Among the included secondary
studies, three secondary studies searched in two or less than two

5 http://www.jedit.org/
6 https://www.mozilla.org/en-US/
7 https://www.apache.org/
8 http://promise.site.uottawa.ca/SERepository/
9 https://data.nasa.gov/

http://www.jedit.org/
https://www.mozilla.org/en-US/
https://www.apache.org/
http://promise.site.uottawa.ca/SERepository/
https://data.nasa.gov/

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Fig. 4. Secondary study aims.
Fig. 5. Type of systems studied.

Table 7
Databases used for automated search by secondary studies.

Databases name Studies

ACM Digital Library S01, S03, S04, S05, S06, S07,
S09, S10, S11, S12, S15

EI Compendex S07, S09, S12
Google Scholar S02, S04, S06, S07, S10, S13
IEEE Xplore S01, S02, S04, S05, S06, S07,

S09, S10, S11, S12, S15
Inspec S09, S12, S15
Others S01, S04, S07, S11, S12, S13
ScienceDirect – Elsevier S01, S02, S03, S04, S06, S07,

S10, S12, S15
Scopus S01, S04, S05, S07, S09, S11,

S13, S14, S15
Springer Link S01, S02, S04, S05, S07, S12, S15
Wiley Online Library S01, S05, S07

databases, thus not fulfilling the sufficient search criteria of DARE
as described by Budgen et al. [45]. Six out of 15 secondary studies
searched in either three or four databases without incorporating an
extra search strategy or have performed searches in a restricted set of
venues.

5.1.4. Reported programming paradigms
The programming paradigms reported by each secondary study are

categorized in Table 10. The programming contexts observed include
object-oriented (14 secondary studies), procedural languages (8), and
feature-oriented (1). Of the 14 secondary studies investigating the
object-oriented paradigm, six focused solely on an object-oriented pro-
gramming context. None of the secondary studies investigated links of
9

Table 8
Quality assessment of secondary studies.

Type ID Total AQAS* Q1 Q2 Q3 Q4 Q5

SLR

S02 2.5 0 1 0.5 0 0.5 0.5
S08 2.5 0 1 0 0 1 0.5
S03 3.5 2 1 0 1 1 0.5
S07 3.5 8 1 1 0.5 0.5 0.5
S01 4 10 1 1 1 0.5 0.5
S12 4 7 1 1 1 0.5 0.5
S13 4 5 1 0.5 1 1 0.5
S15 4 0 1 1 1 0.5 0.5
S05 4.5 7 1 0.5 1 1 1
S09 4.5 7 1 0.5 1 1 1

SMS

S06 2 0 1 0.5 0 0.5 0
S11 2 0 0.5 0.5 0.5 0.5 0
S14 2 0 1 0 0 0.5 0.5
S04 4 4 1 1 1 0.5 0.5
S10 4.5 2 1 1 1 1 0.5

AQAS*: Additional quality assessment score.

source code metrics with external quality with focus on aspect-oriented,
functional or declarative programming paradigms. This highlights an
important research gap for future researchers in source code metrics.
Despite the recent interest in feature-oriented development practices,
only one secondary study investigated feature-oriented programming
paradigm.

5.1.5. Quality assessment results
After applying our quality assessment criteria mentioned in Ta-

ble 19, quality assessment results for the secondary studies are reported
in Table 8. The range of total scores for a secondary study is 0–5.
Ten studies have scored above 3.5 thus are classified as high quality
secondary studies according to Curcio et al. [47] while five secondary
studies are medium quality secondary studies. We excluded seven
secondary studies3 during study selection due to a quality score equal
to or below 1.5, see Section 4.4. Interestingly, two out of ten SLRs
do not report any quality assessment of the included primary stud-
ies. In contrast, three out of five mapping studies perform a quality
assessment.

We categorized the quality assessment questions that the included
secondary studies used to evaluate the quality of their included primary
studies. We categorized these into 18 quality assessment questions
shown in Table 9. Seven secondary studies assessed whether the in-
cluded primary studies clearly stated their objectives, study limitations,
and validity threats. While, four secondary studies assessed if the
primary studies justified the prediction methods used. For each sec-
ondary study, we calculated an additional quality assessment score

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 9
Categorized quality assessment questions from included secondary studies(#SS denotes
the number of included secondary studies).

S. No Quality assessment question #SS

QA1 Whether the objectives and scope of the study are stated
clearly?

7

QA2 Does the study provide relevant literature? 2
QA3 Do the research questions, purposes, or hypotheses logically

flow from the introductory material?
3

QA4 Are the research questions addressed clearly? 2
QA5 Does the study have a sufficient number of citations? 2
QA6 Are the results of the study reported in a clear manner? 5
QA7 Is the programming language stated? 1
QA8 Was an analysis conducted to check for outliers in the data?

(if unclear enter No)
1

QA9 Are negative findings presented? 2
QA10 Does the study discuss how the results add to the literature? 1
QA11 Does the study provide a clear description of the external

quality attribute being investigated?
2

QA12 Does the study justify the prediction method used? 4
QA13 If a study deals with more than one prediction technique is

the comparative analysis conducted?
3

QA14 Is there a description of limitations and threats to the
validity of research?

7

QA15 Are the data analysis techniques clearly defined and
described?

2

QA16 Are the predictors effectively chosen using feature selection/
dimensionality reduction techniques?

1

QA17 Did the study perform statistical hypothesis testing? 2
QA18 Whether the independent variables were clearly defined? 3

Table 10
Reported programming paradigms.

Paradigm Studies

Object Oriented S01, S02, S03, S04, S05, S06, S07, S08,
S09, S11, S12, S13, S14, S15

Procedural S01, S02, S03, S04, S07, S11, S12, S15
Feature Oriented S03

beside the DARE score shown in Table 8. Eight of the 15 secondary
studies considered whether their primary studies provided a detailed
methodology, whether the data collection steps were clearly described,
and the reproducibility of results by evaluating whether public datasets
were used.

5.2. RQ2: Strength of evidence of link between source code metrics, internal
quality attributes, external metrics and external quality attributes

This section presents the strength of evidence of the links between
source code metrics (described online3) and external quality attributes
as reported in the secondary studies. The strength of evidence is based
on several factors, e.g., quality score of the secondary study, number of
primary studies reporting the evidence, status of validation of metrics
as reported by secondary study (see Section 3.5.4). The scheme used
to interpret evidence reported in secondary studies is described in
Table 4 and strength of evidence is classified according to Table 5.
The reported evidence in the included secondary studies relates to
maintainability, reliability, and security attributes and their external
metrics as described in Fig. 1.

5.2.1. Strength of evidence on maintainability
Nine studies report evidence on the link between source code met-

rics, external metrics (see Table 20), and maintainability. Table 11
depicts results from exploratory studies along with quality score, our
interpretation of the reported relationship and strength of evidence.
Results from explanatory studies are reported in Table 12. Of these nine
secondary studies, two studies have medium quality while seven are of
high-quality.

In the exploratory secondary studies (see Section 3.5.2), four studies
10

(S03, S06, S08, and S09) reported correlation levels between source
code metrics and maintainability. Among these, only two studies (S08,
S09) reported statistical significance levels (p-values) for their results.
One secondary study (S05) reported only claims without stating evi-
dence. Change is the most often reported external metric used by two
studies while one secondary study has maintenance effort. Another
secondary study differentiates between changes and change-proneness,
defined as the likelihood of change. Three secondary studies (S03,
S09 and S15) utilize several external metrics and present aggregated
results for external metrics. Thus, it is not possible to report individual
external metrics used to link source code metrics with external quality
attributes for these three secondary studies. Complexity is the most
investigated internal quality attribute when linking source code metrics
with maintainability.

From Table 11, exploratory studies on maintainability have varying
strength of evidence ranging from moderate to very low. CBO and RFC
are reported by two secondary studies to be significantly linked with
maintainability with consistent moderate strength of evidence from
more than 20 primary studies. Similarly, strong evidence suggests that
inheritance measures NOC and DIT have insignificant relation with
maintainability.

Similarly, WMC-McCabe, LCOM2 and LOC show significant links
with maintainability. Interestingly, DIT has a weak positive link with
maintainability when external measure is either change or effort re-
lated. Several other measures show a significant link with maintainabil-
ity, including NOM, ICH, MPC, LCOM5 and DAC, though the strength
of evidence for these relationships is very low.

Four explanatory studies report quantitative results linking source
code metrics with maintainability. In Table 12, we report our interpre-
tation of reported results (based on criteria mentioned in Section 3.5.2)
linking source code metrics suites and prediction model used to explain
the relationship with external metric of maintainability. While all four
secondary studies achieve high DARE scores in our assessment, the
overall strength of evidence of link between source code metrics and
maintainability in explanatory studies is ‘‘Low’’ and ‘‘very low’’ since
less than ten primary studies report evidence of the link.

Three accuracy measures are reported in the secondary studies:
Mean Magnitude Relative Error (MMRE) or Mean Absolute Relative Er-
ror (MARE), Absolute Relative Error (ARE), and Ratio of true positive.10

CK metrics and Li & Henry metrics are the most commonly used sets of
metrics in explanatory studies and are used by three secondary studies
(S01, S04, S07). The combination of CK and Li & Henry metric suites
used along with prediction models are largely classified as ‘‘Unclear’’
for sixteen different prediction techniques. One possible explanation
could be the varying effectiveness of prediction models that they used
in the secondary studies and the dependency on the datasets used.

5.2.2. Strength of evidence on reliability
Eight secondary studies report strength of evidence on the link

between source code metrics, external metrics and reliability. Table 16
depicts results from exploratory studies along with quality score, our
interpretation of the reported relationship and strength of evidence.
Table 17 reports results from explanatory studies on reliability. Four
out of the eight secondary studies have a medium DARE score while
the other four secondary studies have high DARE score. Similar to the
previous section, complexity is the most linked internal attribute to
reliability. Among the external measures reported, fault-proneness and
number of defects are the most associated measures.

In the exploratory studies, seven secondary studies report corre-
lation results for the link between source code metrics and reliabil-
ity. Among these secondary studies, only one secondary study (S09)
reported confidence intervals for their results. The other secondary
studies reported the correlation results without providing confidence

10 We contend that MMRE and MARE are both summary statistics based on
taking numerical average of a set of Absolute Relative Errors (ARE).

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 11
Strength of evidence: maintainability linked to metrics in exploratory studies.

External metrics Internal
attribute

Source code
metric

Secondary
studies

Overlap
in PS

DARE
score

Relationship indication Strength of
evidence

‘‘++’’ ‘‘+’’ ‘‘0’’ Unclear Sig∗

Not reported in SS

Coupling CBO S03V, S09 No H, H – – 2 9 20 Moderate
Inheritance DIT S03V, S09 No H, H – – 24 8 6 Moderate
Inheritance NOC S03V, S09 No H, H – – 34 8 5 Moderate
Complexity RFC S03V, S09 No H, H – – 3 8 26 Moderate
Complexity WMC-McCabe S09 – H – – 1 8 28 Moderate
Size LOC S09 – H – – – – 28 Moderate
Cohesion LCOM2 S09 – H – – – 8 13 Moderate
Size NC S09 – H – – – 1 1 Moderate

Change-proneness

Coupling CBO S05 – H – – – – 11 Moderate
Inheritance DIT S05 – H – – – – 3 Low
Cohesion LCOM S05 – H – – – – 5 Low
Complexity RFC S05 – H – – – – 8 Low
Size SLOC S05 – H – – – – 14 Moderate
Complexity WMC S05 – H – – – – 10 Moderate

Change Coupling CBO S06V, S08 No M, M 2 1 1 – – Low
Inheritance NOC S06V, S08 No M, M – 1 2 1 – Low

Maintenance Effort

Coupling CBO S06V – M – – – 1 – Low
Inheritance DIT S06V – M – 1 – – – Low
Cohesion LCOM S06V – M – 1 – – – Low
Inheritance NOC S06V – M – 1 – – – Low
Complexity RFC S06V – M – 1 – – – Low
Complexity WMC S06V – M – 1 – – – Low

Not reported in SS

Cohesion CAMC S09 – H – – – – 3 Very Low
Stability CoV S03V – H – 1 – – – Very Low
Complexity DAC S09 – H – – 1 1 7 Very Low
Inheritance DDC S03V – H – 1 – – – Very Low
Coupling EC S09 – H – – 1 1 – Very Low
– GoS S03V – H – 1 – – – Very Low
Cohesion ICH S09 – H – – – – 9 Very Low
– LoS S03V – H – 1 – – – Very Low
Cohesion LCOM1 S09 – H – – 3 – 6 Very Low
Cohesion LCOM5 S09 – H – – 1 – 6 Very Low
Coupling MPC S09 – H – – 1 – 7 Very Low
Inheritance NMO S09 – H – – 4 – 4 Very Low
Complexity NOM S09 – H – – – 1 7 Very Low
Cohesion TCC S09 – H – – 3 – 5 Very Low
Complexity WMC S03V – M – – 1 – – Very Low

Change

Inheritance DIT S08 – M 2 – 1 – – Very Low
Cohesion LCOM S08 – M – 2 1 – – Very Low
Complexity RFC S08 – M – 1 2 – – Very Low
Size LOC S08 – M – 2 – – – Very Low
Complexity WMC S08 – M 1 – 1 – – Very Low

Sig∗: Results do not distinguish between positive or negative correlation when reporting significantly linked source code metrics.
intervals. Two secondary studies S02 and S14 state claims without
giving any evidence of results. Fault-proneness is the most utilized
external metric for reliability. S09 reports multiple external metrics and
thus is not possible to report individual external metric used to link
source code metrics with reliability.

Exploratory studies on reliability have varied strength of evidence
ranging from ‘‘High’’ to ‘‘Very low’’ (due to space limitations, results
graded as ‘‘Very low’’ are only included in the online supplement3).
CBO, RFC, LOC and WMC show positive links with reliability with
consistently high strengths of evidence from two high quality sec-
ondary studies and more than 40 primary studies. At the same time,
strong evidence suggests that LCOM, DIT, and NOC have insignificant
relationship with reliability.

Among the secondary studies with moderate strength of evidence,
several metrics including AMC, WMC-McCabe, OCAIC, LCOM2, cyclo-
matic complexity and LOC have been significantly linked with reliabil-
ity. However, TCC and NOC, are shown to be insignificantly correlated
with reliability. Thus, we recommend that TCC and NOC may not be
used when assessing reliability. One secondary study of medium quality
only provides strength of evidence of a link between code metrics,
error-proneness, and bug-prediction which may be considered weak
11

compared to the results from high quality studies.
Only one explanatory secondary study, S11, reports accuracy mea-
sures as evidence of the relationship between source code metrics and
the number of faults as the external metric for reliability in Table 17.
S11 reports several different accuracy measures to describe the link be-
tween metrics and reliability. Due to the medium DARE score and fewer
primary studies reporting results, the overall quantitative evidence is
assigned as ‘‘low’’.

5.2.3. Strength of evidence on security
One secondary study S03 with a high DARE score reports seven

metrics correlated with security. The relationship is summarized in
Table 14. Four metrics are positively linked with vulnerabilities as the
sub-attribute of security. The description of these metrics is available
online.3 This seems to be an intuitive result as software code with
several external configuration options may be easier to compromise
or changing the externally configurable options may lower a module’s
security settings.

5.3. RQ3: Efficacy of prediction models

Seven out of 15 secondary studies (S01, S02, S04, S05, S07, S11

and S15) reported models used to predict external quality attributes

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 12
Strength of evidence: maintainability linked to source code metrics in explanatory studies.

External
metrics

Source code metrics Prediction
model

Secondary
studies

DARE
Score

Relationship indicator Strength of
evidence

‘‘+’’ Unclear

- Halstead metrics, LCOM, DAC
& misc metrics

SFs S15 H 1 – Very Low
SFSf S15 H 1 – Very Low

Change

CK & LH & Li suite ANFIS S07 H 1 – Low

CK & LH suite

GRNN S01 H – 9 Low
ANN S01 H – 3 Low
FFBN S01 H – 3 Low
MLP S01 H – 4 Low
PNN S01 H – 7 Low
KN S01 H – 7 Low
GMDH S01 H – 9 Low
RT S01 H – 5 Low
M5P S01 H – 4 Low
BN S01 H – 4 Low
SVM S01 H – 9 Low
Kstar S01 H – 9 Low
ELM S04 H – 1 Low
MLP S04 H – 1 Low
SVM S04 H – 1 Low
Neuro-GA S04 H – 1 Low
Neuro-Fuzzy S04 H – 1 Low
GMDH S04 H 1 – Low
GA S04 H 1 – Low
PNN S04 H 1 – Low
ANN S07 H – 1 Low

CK & Tang suite GRNN S07 H – 1 Low

CK Suite
ANN S07 H – 1 Low
BPN S07 H – 1 Low
PNN S07 H 1 – Low

Maintainability Index Halstead ’E’, Halstead ’V’ Polynomial model S15 H 1 – Very Low

OSAVG, CSO, CSA, SNOC Univariate Linear
Regression Analysis

S15 H 1 – Very Low
Table 13
Metrics that are good indicators of external quality attributes.

External attribute Internal attribute Source code metrics Secondary studies Relationship indicator Strength of evidence

‘‘++’’ ‘‘+’’ Sig*

Maintainability

Cohesion LCOM2 S09 – – 13 Moderate

Complexity RFC S03V, S09 – – 26 Moderate
WMC-McCabe S09 – – 28 Moderate

Coupling CBO S03V, S09 – – 20 Moderate

Size LOC S09 – – 28 Moderate

Reliability

Code Churn
Changes S12 16 – – Moderate
Churn S12 15 – – Moderate
Age S12 10 – – Moderate

Cohesion
LCOM S13V – – 15 Moderate
LCOM5 S09 – – 12 Moderate
LCOM2 S09 – – 21 Moderate

Complexity

RFC S06V, S12 51 – 5 High
WMC S06V, S12 44 – 4 High
Cyclomatic Complexity S12 – 43 – High
RFC S13V – – 21 Moderate
VG (McCabe) S09 – – 32 Moderate
WMC S13V – 21 Moderate
AMC S09 – – 35 Moderate
WMC-McCabe S09 – – 62 Moderate
NOM S09 – – 16 Moderate
RFC S09 – – 50 Moderate

Coupling

CBO S06V, S12 48 – 4 High
OMMIC S09 – – 10 Moderate
CBO S13V – 23 Moderate
OCAIC S09 – – 10 Moderate
CBO S09 – – 60 Moderate

Maturity Past Faults S12 – 10 – Moderate

Size
LOC S12, S14V – 61 – High
SLOC S13V – – 16 Moderate
LOC S09 – – 58 Moderate
12

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 14
Strength of evidence: security linked with source code metrics in exploratory studies.

Ext sub-attribute Internal attribute Source code metric Secondary study PS in Overlap DARE score Relationship indicator Strength of evidence

‘‘+’’ ‘‘0’’ ‘‘-’’

Vulnerability Complexity Degree Centrality (outgoing) S03V – H 1 – – Low
Vulnerability Complexity Eigenvector Centrality S03V – H 1 – – Low
Vulnerability Complexity Internal Configuration Options S03V – H 1 – – Low
Vulnerability Complexity Number of Internal #ifDefs S03V – H 1 – – Low
Vulnerability Complexity Betweenness Centrality S03V – H - 1 – Low
Vulnerability Complexity Degree Centrality (ingoing) S03V – H - 1 – Low
Vulnerability Complexity External Configurations Options S03V – H - – 1 Low
using source code metrics. Among these, two secondary studies S11
and S15 do not compare their effectiveness in terms of prediction
accuracy due to the different focus of the secondary study. Among the
studies that compare different prediction techniques (for description
see online3), only S02 reports the comparison for reliability, while other
secondary studies report a comparison for maintainability prediction
models. The results of the comparisons are shown in Table 15. In our
sample, PNN, GA, ANFIS, and GMDH are superior prediction techniques
for maintainability.

S01 compares the effectiveness of statistical models with machine
learning based models using UIMS and QUES data-sets along with pro-
prietary software and open source system. The secondary study notes
that machine learning based techniques outperform statistical models
based on linear regression and multiple linear regression. Among the
machine learning techniques, Group Method of Data Handling (GMDH)
based models outperform other machine learning techniques including
General Regression Neural Network (GRNN), Feed Forward Back prop-
agation Network (FFBN), Probabilistic Neural Network (PNN), KStar,
Kohan Network (KN) and Support Vector Machine (SVM). S01 fur-
ther observes that the effectiveness of hybrid techniques that combine
statistical and machine learning models is inconclusive.

One secondary study, S07, also reported machine learning algo-
rithms to be superior to statistical methods. Based on the results,
Adaptive Neuro Fuzzy Inference System (ANFIS) based models perform
slightly better than Artificial Neural Network (ANN) and other methods
reported Back Propagation Network (BPN), PNN, and GRNN.

Another secondary study, S04, investigated machine learning based
prediction models and point out that the effectiveness of models is
dependent on the data-set used as well as the independent variables
utilized. Among the secondary studies, changing the data-set revealed
different techniques to be superior. In the secondary studies that use
UIMS and QUES datasets, GMDH is the superior technique with bet-
ter MMRE results compared to Genetic Algorithm (GA) and PNN.
Among the secondary studies that only used QUES dataset, Kstar and
Mamdani-based Fuzzy Logic (MFL) perform better than other methods.

Similarly, S05 notes that search-based machine learning algorithms
such as Bagging (BG) have better mean accuracy than SVM and k-
means. In terms of the mean area under the curve (AUC), BG, random
forests (RF), and adaptive boosting (AB) techniques are suggested to be
superior.

S02 notes there is no explicit agreement on the best prediction tech-
nique for reliability among the six different prediction techniques used.
The compared prediction techniques are Bayesian Network (BN), Neu-
ral Network (NN), Support Vector Machine (SVM), Clustering, Feature
Selection (FS), and Ensemble Learning (EL).

When comparing the prediction accuracy of ANFIS from S04 and
GMDH, GA and PNN results from S07 reporting the same combination
of metrics, GMDH achieves lower MMRE values in all the four mod-
elling techniques, thus can be suggested to be more suited for prediction
studies. However, when comparing different algorithms based on the
varied results in our analysed secondary studies, we can suggest that the
effectiveness of prediction techniques is context-dependent and data-
sensitive, and more analysis is needed in evaluating and comparing the
different techniques using similar datasets and independent variables.
Given the large variety of machine learning techniques, statistical
methods, nature-inspired techniques and hybrid methods, this can be
an interesting dimension for future analysis.
13

p

Table 15
Comparison of prediction models reported.

Superior
model

Models compared Sec-
ondary
study

GMDH GRNN, FFBN, PNN, Kstar, KNN, SVM S01
ANFIS ANN, BPN, PNN, GRNN S07
GMDH GA, PNN S04
BG, RF SVM, K-means S05
None BN, NN, FS, SVM, EL, Clustering S02

6. Discussion

The focus of our tertiary study is to provide a comprehensive evalua-
tion of research on source code quality by synthesizing and categorizing
the state-of-the-art literature that reports evidence-based links between
source code metrics and external quality attributes in secondary studies.
In this section, we reflect on our results and analyses in the light of
related literature.

Out of 55 secondary studies using source code metrics to study
external attributes, only 15 secondary studies of sufficient quality
reported evidence on the relationship between source code metrics
and external quality attributes. To better understand the relationship
between source code metrics and external quality attributes, more sec-
ondary studies are needed that synthesize available empirical evidence
(e.g., meta-analyses). The results of the present tertiary study provides
a starting point and provides information about source code metrics
that show consistent relationships with two external quality attributes;
maintainability and reliability.

6.1. External quality attributes

A small subset of quality attributes, namely, maintainability, relia-
bility, and security from ISO-IEC 25010 [6] have been reported with
link of evidence with source code metrics in our included secondary
studies. All 15 secondary studies in our sample have focused on re-
liability or maintainability, while security has received considerably
less focus (one secondary study). We have not found evidence linking
source code metrics with functional suitability, compatibility, usability
and other external quality attributes outlined in Fig. 1. Colakoglu
et al. [56] also observe maintainability and reliability to be the most
studied external quality attributes. Intuitively, we may argue that other
external quality attributes such as usability are less related to source
code metrics and more to the user interface or the ease of interaction.
Thus, we have no secondary studies linking source code with usability
in our included studies.

However, in other secondary studies considered during the study
selection process, source code metrics have been linked with functional
correctness11 [57]. While highly relevant to our scope, this secondary

11 The secondary study defined functional correctness as ‘‘the degree to
which a product or system provides the correct results with the needed degree
of precision’’ and quantified functional correctness in terms of fault count, fault
roneness, and fault density.

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
study was excluded due to a low DARE score. We suggest conduct-
ing high-quality secondary studies on evaluating the link between
source code metrics and other external quality attributes by extending
secondary studies such as [57,58].

6.2. Internal quality attributes

Complexity, coupling and size are most popular among internal
quality attributes and have consistently predicted or assessed main-
tainability. Our results are in agreement with Arvanitoua et al. [8]
who also report complexity, cohesion, and coupling to be the most
frequently studied internal attributes. We also note the lack of evidence
for other internal attributes such as polymorphism, abstraction, code
churn, encapsulation, and hierarchies. Arvanitoua et al. [8] also ob-
serve abstraction to be a less studied attribute. While polymorphism
has not been linked to any external quality attributes in our included
secondary studies, Briand et al. [14] report polymorphism to be posi-
tively linked to reliability. Our results show that inheritance has a weak
positive link with maintainability. One possible explanation for this
could be that software systems used to study the link between DIT and
maintainability have little less variation in class hierarchies. Our results
agree with Saxena et al. [59], who also noted that inheritance metrics,
namely, DIT and NOC, were noted to have inconsistent results for fault-
proneness. Catal et al. [60] noted that complexity metrics evaluated at
the method level have been predominantly used for fault prediction. We
observed a similar trend in our results, where complexity metrics from
Halstead and McCabe have been evaluated with multiple prediction
models for fault prediction.

6.3. External metrics

Among the secondary studies that reported a description of the
external metric, change is described as ‘‘Lines of code added, deleted,
and modified’’ in S01. In contrast, S04 described it as ‘‘The number of
changes made to the source code (changes in LOC, change in modules,
change in class)’’. Since adding comments to a source code may also
result in changes in LOC, there is a minor difference between the
two descriptions of the external metric. Similarly, S06 describes fault-
proneness as ‘‘The probability of detecting faulty classes’’, whereas S14
describes it as ‘‘The probability of exhibiting a fault’’ without specifying
the scope of the evaluation.

Since the maintainability index [61] uses complexity and size met-
rics to interpret maintainability, it is intuitively correlated to certain
source code metrics. Thus results from prediction models that use it
as a dependent variable may be misleading. However, only one of the
earliest secondary study (S15) reports using the maintainability index
as the external metric; we still feel that the results in the tertiary study
can be relied upon and utilized. This shows that in recent years, re-
searchers have preferred to use more accurate external metrics instead
of the maintainability index.

While the accuracy of prediction of bugs and defects is an important
element in assessing software product quality, the severity of bugs and
defects also impacts software quality. In our tertiary study, we have
only found evidence of the effectiveness of prediction. As suggested in
S02, using prediction capability and bug severity into account gives a
better view of software product quality.

6.4. Good indicators for external attributes

In this section, we synthesize the results from the previous Sec-
tions 5.2.1 and 5.2.2. We synthesized the results with ‘‘High’’ or ‘‘Mod-
erate’’ strength of evidence and have been significantly linked with
quality attributes in exploratory and explanatory studies in Tables 11,
12, 14, 16, and 17. Table 13 shows several metrics to be significantly
14

linked with reliability and maintainability. In our included secondary
studies, there are no high-quality secondary studies that report the link
between source code metrics and security.

Based on the results, we can suggest using this selective set of
metrics over others as they may be better indicators of related external
attributes. We note that certain source code metrics related to cohesion,
complexity, coupling, and size can be observed to be good indicators
of maintainability with consistent strength of evidence from two high-
quality secondary studies reporting results from more than ten primary
studies.

The strength of evidence for reliability is considerably richer as com-
pared to maintainability. Source code metrics related to code churn,
cohesion, complexity, coupling, maturity, and size are good indicators
of reliability with consistent strength of evidence from four high-quality
secondary studies reporting results from more than ten primary studies.

It is interesting to note that a similar set of source code metrics are
suggested to be good indicators of both maintainability and reliability.
These source code metrics do not belong to any particular set of
metric suites. Individual source code metrics from widely popular CK,
QMOOD, and Li & Henry metric suites have been shown to have varied
reported evidence. Inheritance metrics DIT and NOC from CK metric
suites have been shown to be poorly linked with maintainability and
reliability. Variants of LCOM such as LCOM2 and LCOM5 have been
noted to be more effective indicators of cohesion attributes. Complexity
metrics can be considered as consistent indicators of quality attributes
as we note that complexity metrics have shown strong strength of
evidence for both maintainability and reliability. Code churn and past
faults are also reported as good indicators for reliability but have not
shown a similar link with maintainability. Also, in our results, there
are no source code metrics that have a predominantly negative relation
with maintainability and reliability.

6.5. Beyond object-oriented & static metrics

Most of the evidence available in the included studies links source
code metrics with external attributes in the object-oriented and proce-
dural programming paradigms. Only one secondary study investigated
feature-oriented programming, while none of the secondary studies fo-
cused on aspect-oriented, functional or declarative programming. This
limits the applicability of our results to other programming paradigms,
which need to be evaluated further.

Another interesting trend is that all of the evidence presented in the
previous sections is from static source code metrics. Dynamic source
code metrics provide useful information regarding the software’s run-
time characteristics and software quality during execution. Our analysis
has not reported empirical evidence of the link between dynamic source
code metrics and external attributes. As suggested by Malhotra et al.
in S01 and S07, the combined use of static and dynamic source code
metrics to assess quality attributes may aid the source code commu-
nity in improving the assessment of quality attributes using source
code metrics. Tahir et al. [62] have investigated challenges in the
selection and implementation of dynamic metrics, which may explain
why dynamic metrics have been used less frequently. Several studies
have investigated the effectiveness of using in-process metrics collected
during testing [63,64] to predict post-release software quality with
promising results. The included secondary studies have not considered
using in-process metrics during testing. In-process metrics may be good
indicators of external quality attributes during testing compared to
internal code quality metrics.

In S12, Radjenović et al. point out that in highly iterative develop-
ment environments with frequent code changes, object-oriented metrics
are noted to be less effective in assessing external quality attributes.
In contrast to product metrics, process metrics are recommended in-
stead of object-oriented metrics and are considered more suitable for
highly iterative development environments. Malhotra et al. (S05) also

recommend using process metrics in combination with object-oriented

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
metrics such as CK metrics to improve the prediction ability of the
independent variables.

The ISO-IEC 25023 standard [65] has recommended several metrics
for product quality attributes identified in ISO-IEC 25010. However,
one of the challenges of using the recommended metrics from ISO-
IEC 25023 is that some are abstract and lack direct application to
source code [66]. This may explain why none of the included secondary
studies reported any of the recommended metrics from ISO-IEC 25023.
The results have focused on popular metric suites such as CK, Halstead,
Li & Henry metrics for reliability and maintainability. S02 suggests that
other metrics not part of metric suites, such as LOCQ [67] have been
noted to be effective in fault-prediction and may be explored in further
studies.

6.6. Metrics validation

Since we have chosen to include the validity status mentioned by
the secondary studies only, the validation status of source code metrics
presents only the perspective available through the secondary studies.
We acknowledge that using the validation status from other sources
will reflect and change the results presented in Tables 11, 12, 16, and
17. Metric suites such as CK metrics [68], Li & Henry metrics [69],
MOOD metrics [70] and QMOOD metrics [71] have been empirically
validated [41,72–75]. However, all the good indicators metrics pointed
out in the results (Table 13) remain the same as we have included
both ‘‘high’’ and ‘‘moderate’’ strength of evidence. Incidentally, all
source code metrics mentioned in Table 13 are validated based on the
information available in literature.

Certain cohesion metrics, such as LCOM, have been highlighted as
theoretically invalid metric for cohesion by Kitchenham et al. (S14) and
thus may be considered less effective in capturing the cohesiveness of
source code. Based on our findings, we suggest LCOM1 and LCOM2 are
more suitable cohesion metrics and indicators of reliability.

6.7. Accuracy measures

The mean magnitude of residual error (MMRE) has been predom-
inantly used in the secondary studies reporting explanatory results
related to maintainability and reliability. The MMRE accuracy measure
has been highlighted as biased in the literature [76,77]. Additionally,
if primary studies use MMRE as a goodness of fit criteria for model
evaluation, as well as to report the prediction accuracy, this bias may
increase [78,79]. Another reason for MMRE being biased is that the
measure does not define an upper bound for MMRE values greater than
one, while MMRE values lower than one cannot become negative; thus,
results of MMRE from models that underestimate seem more promising.
Foss et al. [80] recommend using accuracy measures after considering
the characteristics of the data. Since we can only report the accuracy
measures provided in the secondary studies, we acknowledge that data
related to data-distribution is not reported in our tertiary study.

6.8. Prediction models

In S01, Malhotra et al. note that machine learning models outper-
form statistical models and recommend exploring hybrid prediction
models for maintainability prediction. Hybrid prediction models and
ensemble learners are also recommended in S07 as well. Elmidaoui
et al. (S04) further note that the accuracy of prediction models has been
reported to be highly dependent on datasets used in addition to the
independent variables used. Two secondary studies have investigated
changing the datasets while using the same source code metrics as
independent variables and modelling techniques report dependency on
the datasets used. Prediction models that are accurate for a variety
of datasets may be considered more robust. According to S05, the
selection of source code metrics as independent variables for prediction
models can be based on feature selection methods to utilize only those
source code metrics which contribute to the improvement of the model
and can be considered to be effective predictors.
15
6.9. Datasets used

In our included secondary studies, the datasets used in explanatory
studies have been predominantly UIMS, and QUES datasets (e.g., S01
and S05) among other datasets. S05 point out that validation of pre-
diction models on industrial datasets may further improve the validity
of the prediction models and may be more relevant for practitioners.
Large datasets based on languages used in practice may also increase
the relevance of the maintainability prediction research. In this regard,
S04 highlights the need for curated datasets (such as PROMISE dataset).
Additionally, Radjenović et al. (S12) suggest that realistic datasets
are often unbalanced, with faults occurring randomly among the soft-
ware modules. Similarly, major restructuring between two software
versions may change the distribution of faults. To produce accurate
fault-prediction models, the availability of realistic unbalanced datasets
is needed for model training and validation.

6.10. Consistent tool support

Measurement tools used across secondary studies are not the same.
Thus, measurement error is possible when different tools are used to
evaluate the same datasets across studies. In S06, Tiwari et al. [81]
point out that consistent and dependable tools for coupling and cohe-
sion metrics are needed for reliable evaluation of source code metrics.

6.11. Conducting tertiary review challenges

We also want to report challenges faced during data extraction
phase which led to exclusion of relevant studies. While some secondary
studies report the evidence between external attributes and source code
metrics, the method of aggregation utilized in the secondary study
makes it difficult to trace how many primary studies have reported
the relationship between specific code metrics and external measures.
Hosseini et al. [82] provide a synthesis of cross project defect prediction
studies. The meta-analysis performed is seminal work in our opinion.
However, the accuracy measures reported for different metrics could
not be traced to individual metrics along with primary studies reporting
the results. Similarly, Arvanitoua et al. [8] suggest certain metrics to
be effective in measuring maintainability, stability and changeability
though do not provide number of primary studies reporting the trend
for individual metrics. Since, one of the criterion used to establish
strength of evidence was primary studies reporting individual metrics,
these secondary studies were excluded from our analysis.

Another challenge faced during metrics aggregation is the non-
standard method used when naming source code metrics. The incon-
sistency in naming of code metrics leads to several issues where the
same metric is described by two acronyms or when same acronyms
are assigned to two different metrics. This observation is shared by
other researchers as well including Malhotra et al. (S07), Sharkawy
et al. (S03), and Saraiva et al. [83]. To ameliorate the inconsistency,
we also suggest an online catalog of source code metrics can be created
which consistently reports metric descriptions, validation levels, along
with alternate acronyms, and related internal attributes. This can be a
difficult task since several secondary studies such as [21] have reported
300 metrics related to different programming paradigms and [83]
report 575 object-oriented metrics for maintainability alone. Though, it
could be a very effective tool for researchers, software tool developers
and practitioners in the field.

While performing the quality assessment for the secondary stud-
ies, we identified several instances that are not explicitly covered by
the DARE quality assessment criteria. To assess the search coverage
sufficiency, the criteria assigns ‘‘yes’’ to secondary studies that have
‘‘searched four or more digital libraries and included additional search
strategies OR identified and referenced all journals addressing the topic
of interest’’ and ‘‘partly’’ to ‘‘searched three or four digital libraries with
no extra strategies OR searched a defined but restricted set of journals

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
and conference proceedings’’. The cases where a secondary study has
searched in three or four digital libraries with extra search strategies
(e.g., contacting the authors, snowballing) or when secondary studies
have searched in five databases without any extra search strategy is
open to interpretation and subject to the researcher conducting the
assessment. Similarly, during assessment of quality of the secondary
study, we noticed that some authors have explicitly defined the qual-
ity criteria and reported the results whereas others only defined the
criteria and not reported any results, such as, S07, possibly due to
page limitations. Since it is often the case that more than one author
is involved in the quality assessment, such instances where subject
assessment needs to be used, may lead to confusion and disagreements
between the authors. We suggest that such issues maybe updated in the
DARE criteria and software engineering community may evaluate other
quality assessment tools derived from mature fields such as medicine,
e.g., [49], to improve the quality assessment of secondary and tertiary
studies. We also suggest that tertiary studies should not solely rely on
DARE for assessing the quality of included secondary studies. DARE
does not consider the strength of evidence of the results reported
in secondary studies, since it does not critically appraise the quality
assessment performed by the secondary studies. To perform an in-depth
evaluation of evidence from secondary studies, future tertiary studies
could use a similar method to our strength of evidence criteria (see
Section 3.5.4), to complement DARE.

6.12. Future works

Other researchers can utilize different criteria for the strength of
evidence on the data available online.3 They can customize the results
to specific usage scenarios. Additionally, researchers can extend the
same schema of evaluating the strength of evidence to other secondary
studies that have not been considered in our tertiary study.

We have also highlighted that no secondary studies reported links
between source code metrics and external quality attributes in the
aspect-oriented programming paradigm which is a research gap that
needs to be investigated. The link between dynamic metrics and ex-
ternal attributes has not been reported in the secondary studies con-
sidered. Investigating the link between dynamic metrics and external
attributes can be an interesting theme for future research. Similarly,
the use of process metrics in addition to object-oriented metrics may be
explored for suitability in assessing quality attributes in highly iterative
development environments.

We further suggest that a catalog of source code metrics with
consistent terminology and description can benefit practitioners, tool
developers, and researchers. Researchers can utilize the list of sec-
ondary studies that only report using source code metrics and external
quality attributes as a starting point for creating a catalog of source
code metrics. Keeping in view the limitations raised in Section 7, we
suggest further work to bridge the gap between syntactic structural
information and semantic assessment of internal quality attributes.
Fregnan et al. [84] have summarized semantic coupling metrics using
machine learning models to link similar words and documents. This
may help develop semantic cohesion metrics.

7. Limitations

We follow suggestions by Kitchenham et al. [48] and discuss the
intentional deviations from the systematic review guidelines [31,33]
followed in the design of the tertiary study. We also discuss possible
implications of these deviations on the study outcomes. In addition,
we discuss the threat of double counting due to overlapping primary
16

studies (see Section 7.3).
7.1. Study selection

We have aimed to cover a large corpus of knowledge, however,
there is a possibility that we have missed a small percentage of relevant
secondary studies that were not in English language, or due to limita-
tions of keywords in our search string and no snowballing on the final
set of secondary studies. We believe that such number of secondary
studies are less compared to the included set of secondary studies and
unlikely to significantly alter the results presented.

7.2. Research validity

We acknowledge the limitation of using the DARE quality score
as a measure contributing to the strength of evidence. These scores
represent the quality of a secondary study and will abstract away the
individual primary studies’ quality. A deeper analysis can be performed
where we utilize the quality of the primary studies reporting the link
between code metrics and quality attributes.

In Table 13, we have suggested source code metrics that are good
indicators of external quality attributes. Several previous studies have
highlighted that source code metrics measuring the same internal qual-
ity attribute can be correlated [85]. Source code metrics that mea-
sure different internal quality attributes have also been reported as
correlated [86,87].

Source code metrics capture syntactical structural information and
thus do not capture the source code’s semantical complexity, which
limits their applicability in assessing program comprehension.

Similarly, we note that the semantic cohesion of source code may
differ from syntactic structure information related to cohesion and has
not been discussed in the included secondary studies. While developers
in practice may perceive semantic cohesion differently in given con-
texts, they use the concept of logical cohesion by preferring to place
classes and functions with similar functionality in the same software
packages [9]. The relationship between syntactic cohesion and external
quality attributes needs to be characterized for specific contexts. As an
example, while designing libraries with particular functionality may be
considered good design practice, accessing attributes or methods from
a library may lower the overall cohesion of the calling class, thus giving
a wrongful impression of cohesion and external quality attribute being
measured. Therefore, we suggest utilizing the evidence presented in our
study in light of such limitations of source code metrics.

When using source code metrics for coupling, the coupling direction
needs to be considered for a meaningful utilization of the coupling
metrics. Arisholm et al. [88] discussed how ‘‘control classes’’, i.e., large
classes with the bulk of functionality that depend on several smaller
classes for ancillary functionality, may be easier to modify for inexpe-
rienced developers. Kitchenham et al. [89] suggested CBO to be invalid
as it treats inward and outward coupling similarly.

In practice, large classes may become a ‘‘bottleneck’’ when they
have both high outward coupling and high inward coupling. The cou-
pling metrics reported in Table [13] do not capture such nuances.
Practitioners should prioritize classes with high outward and high
inward coupling for refactoring or redesign, as small changes in them
may lead to multiple changes in classes linked to them.

7.3. Double counting

When conducting tertiary studies, there is a risk of double count-
ing when the same primary studies are included in more than one
secondary study [43]. To address the threat of double counting, we
identified the secondary studies with overlap of primary studies. For
such cases, we ensured that the duplicate primary studies were con-
sidered only once so that the results are not inflated due to double

counting.

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 16
Strength of evidence: reliability linked with code metrics in exploratory studies.

External metric Internal attribute Metrics Studies Overlap in PS DARE score Relationship indicator Strength of evidence

‘‘++’’ ‘‘+’’ ‘‘0’’ ‘‘-’’ ‘‘--’’ Unclear Sig∗

Fault-proneness

Coupling CBO S06V, S12 7 PS, Resolved M, H 48 – – – – – 4 High
Inheritance DIT S06V, S12 7 PS, Resolved M, H 0 – 52 – – – 3 High
Cohesion LCOM S06V, S12 7 PS, Resolved M, H 0 – 66 – – – 4 High
Size LOC S12, S14V 1 PS, Resolved H, M – 61 – – – – – High
Inheritance NOC S06V, S12 7 PS, Resolved M, H – – 53 – – – 3 High
Complexity RFC S06V, S12 7 PS, Resolved M, H 51 – – – – – 5 High
Complexity WMC S06V, S12 7 PS, Resolved M, H 44 – – – – – 4 High
Complexity Cyclomatic Complexity S12 – H – 43 – – – – – High

Fault-proneness

Code Churn Age S12 – H 10 – – – – – – Moderate
Coupling CBO S13V – H – – 1 – – – 23 Moderate
Code Churn Changes S12 – H 16 – – – – – – Moderate
Code Churn Churn S12 – H 15 – – – – – – Moderate
Inheritance DIT S13V – H – – 15 – – – 9 Moderate
Size Halstead N1 S12 – H – – 12 – – – – Moderate
Size Halstead n1 S12 – H – – 12 – – – – Moderate
Size Halstead N2 S12 – H – – 12 – – – – Moderate
Size Halstead n2 S12 – H – – 12 – – – – Moderate
Cohesion LCOM S13V – H – – 4 – – – 15 Moderate
Inheritance NOC S13V – H – – 15 – – – 3 Moderate
Maturity Past Faults S12 – H – 10 – – – – – Moderate
Complexity RFC S13V – H – – – – – – 24 Moderate
Size SLOC S13V – H – – – – – – 16 Moderate
Complexity WMC S13V – H – – 1 – – – 21 Moderate

Not Reported in SS

Complexity AMC S09 – H – – 3 – – – 35 Moderate
Coupling CBO S09 – H – – 3 – – 20 60 Moderate
Inheritance DIT S09 – H – – 34 – – 25 20 Moderate
Cohesion LCOM1 S09 – H – – 17 – – 21 33 Moderate
Cohesion LCOM2 S09 – H – – 10 – – 9 21 Moderate
Cohesion LCOM3 S09 – H – – 8 2 – – 10 Moderate
Cohesion LCOM4 S09 – H – – 9 1 – 2 5 Moderate
Cohesion LCOM5 S09 – H – – 2 3 – 2 12 Moderate
Size LOC S09 – H – – 0 1 – – 58 Moderate
Inheritance NOC S09 – H – – 31 1 – 25 22 Moderate
Complexity NOM S09 – H – – 5 – – 1 16 Moderate
Size NPM S09 – H – – 5 – – 2 6 Moderate
Coupling OCAEC S09 – H – – 6 1 – – 3 Moderate
Coupling OCAIC S09 – H – – 1 – – – 10 Moderate
Coupling OCMEC S09 – H – – 7 – – – 4 Moderate
Coupling OCMIC S09 – H – – 6 – – – 5 Moderate
Coupling OMMEC S09 – H – – 6 – – – 4 Moderate
Coupling OMMIC S09 – H – – – – – – 10 Moderate
Complexity RFC S09 – H – – 5 – – 21 50 Moderate
Cohesion TCC S09 – H – – 11 7 – 2 1 Moderate
Complexity VG (McCabe) S09 – H – – – – – 1 32 Moderate
Complexity WMC-McCabe S09 – H – – 1 1 – 19 62 Moderate

Defects Complexity Cyclomatic Complexity S10 – H – 1 – – – – – Low
Fault-proneness Code Churn Change Set S12 – H 8 – – – – – – Low
Not Reported in SS Coupling MPC S09 – H – 8 0 – – 1 – Low

Sig∗: Study S13 does not distinguish between positive or negative significance when reporting significantly linked source code metrics.
8. Conclusions

In this tertiary study, we have performed a systematic review of
secondary studies that have evidence for the link between source
code metrics and external quality attributes as classified by prevailing
software quality standards. After an extensive search, we identified
15 exploratory and explanatory secondary studies of moderate and
high quality on the subject. The linked evidence considered includes
qualitative and quantitative results of the link between source code
metrics and external quality attributes. We excluded secondary studies
that did not report any stated evidence of a relationship between source
code metrics and external quality attributes.

Results from moderate and high-quality secondary studies show that
evidence of a link is only available for reliability, maintainability, and
security. In contrast, other external quality attributes have not been
linked with source code metrics in the included secondary studies.
Only one secondary study reported a link with a security sub-attribute,
17
highlighting the need for further studies exploring how source code
metrics are linked with security and other external quality attributes.

The evidence shows that source code metrics have a varied link with
external attributes depending on the external metric used as the depen-
dent variable for external quality attributes. After evaluating individual
results from the perspective of the overall strength of evidence, using
the quality of secondary studies and the number of primary studies
reporting the results, we report consistent results for a limited set of
source code metrics and internal quality attributes. Good indicators
of external attributes are provided in Table 13. Several source code
metrics have been observed to have an insignificant or unclear link with
both maintainability and reliability.

Our results aid in developing confidence in the metrics reported as
good indicators, which may be useful for future studies on the subject.
Source code metrics categorized as consistent good indicators of exter-
nal quality attributes can aid practitioners in focusing on specific source

code metrics to assess the external quality attributes of interest. Source

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 17
Strength of evidence: reliability linked with code metrics in explanatory studies.

External metric Metrics sets Prediction model Studies DARE
Score

Relationship indicator Strength
of
evidence

‘‘+’’ Unclear

6 Halstead, McCabe, LOC and Branch CCA, NB, BAG, LR and BO S11 M 1 Low

BRS, EBS, EBC, BP, BS and BR RF, SVM and MP S11 M 1 Low

CBO, DEPTH, LCOM and WMC BN. S11 M 1 Low

CK metrics NB and J48 S11 M 1 Low

CK & QMOOD metrics LR, UR, MR, NN, DT, SVM, BST, RF, BAG and MP. S11 M 1 Low

CK metrics J48, NB. S11 M 1 Low
Halstead, McCabe, LOC, CK-suite & Misc MOPSO-N, NN, BN, NB, SVM and DT(C45). S11 M 1 Low

Fault-prediction

Halstead, McCabe & LOC

AFP and ALS S11 M 1 Low

AR, DT, k-NN, NBC, SVM, BAG and BST S11 M 1 Low
CC, NN-filter and TNB. S11 M 1 Low
DT and K-means. S11 M 1 Low
DT(C4.5), RF, AdaCost, Adc2, Csb2, MetaCost, Weighting, and RUS. S11 M 1 Low
J48 Tree, DWT and PCA. S11 M 1 Low
K-Means and X Means. S11 M 1 Low
KNN and SVM. S11 M 1 Low
LR, PR, SVR, NN, SVLR, NB and J48 Tree. S11 M 1 Low
MLR. S11 M 1 Low
NB and DT(C4.5) S11 M 1 Low
NB and DT(J48). S11 M 1 Low
NB, J48 and OneR S11 M 1 Low
NB, SVM and NN. S11 M 1 Low
RANQ, NB, MLP, K-NN and LR S11 M 1 Low
RF S11 M 1 Low
RF, BAG, LR, BST and NB S11 M 1 Low
RF, BAG, LR, BST and NB. S11 M 1 Low
RF. S11 M 1 Low
SA, ACP, SVM and ANN. S11 M 1 Low
ClusteringSK-means, Clustering, MDBC, RF, NB and J48 Tree. S11 M 1 Low
NB and RF S11 M 1 Low
NB, DT(C4.5-J48), SVM and LR. S11 M 1 Low
RF, BAG, LR, BST, NB, Jrip, Ibk, J48, Decorate and AODE S11 M 1 Low

Halstead, McCabe, LOC and Branch RF, LDF and LR. S11 M 1 Low

Halstead, McCabe, LOC & Misc ANN, SVM and DT and CCN. S11 M 1 Low
CA, LR, J48 and NB. S11 M 1 Low

LOC, CBO, LOCQ, WMC, RFC, LCOM, LCOM3, DIT & NOC BN S11 M 1 Low
OO & McCabe RF, LR, NB and DT. S11 M 1 Low
Table 18
List of selected secondary studies.

Title Study
type

Venue Year Ref

S01 A systematic literature review on empirical
studies towards prediction of software
maintainability

SLR Soft Computing 2020 Malhotra and Lata [90]

S02 Machine Learning Techniques for Software
Bug Prediction: A Systematic Review

SLR Journal of Computer Science 2020 Saharudin et al. [91]

S03 Metrics for analysing variability and its
implementation in software product lines: A
systematic literature review

SLR Information & Software Technology 2019 El-Sharkawy et al. [92]

S04 Empirical studies on software product
maintainability prediction: A systematic
mapping and review

SMS E-Informatica 2019 Elmidaoui et al. [93]

S05 Software change prediction: A systematic
review and future guidelines

SLR E-Informatica 2019 Malhotra and Khanna [94]

S06 Coupling and cohesion metrics for
object-oriented software: A systematic
mapping study

SMS Innovations in Software Engineering
Conference

2018 Tiwari and Rathore [81]

S07 Software Maintainability: Systematic
Literature Review and Current Trends

SLR International Journal of Software Engineering
& Knowledge Engineering

2016 Malhotra and Chug [95]

S08 Software change prediction: A literature
review

SLR International Journal of Computer
Applications in Technology

2016 Malhotra and Bansal [96]

S09 Empirical evidence on the link between
object-oriented measures and external quality
attributes: A systematic literature review

SLR Empirical Software Engineering 2015 Jabangwe et al. [52]

S10 How have we evaluated software pattern
application? A systematic mapping study of
research design practices

SMS Information & Software Technology 2015 Riaz et al. [97]

(continued on next page)
18

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 18 (continued).

Title Study
type

Venue Year Ref

S11 Software fault prediction: A systematic
mapping study

SMS Ibero-American Conference on Software
Engineering

2016 Murillo-Morera et al. [98]

S12 Software fault prediction metrics: A
systematic literature review

SLR Information & Software Technology 2013 Radjenović et al. [99]

S13 A systematic review of the empirical
validation of object-oriented metrics towards
fault-proneness prediction

SLR International Journal of Software Engineering
& Knowledge Engineering

2013 Isong and Obeten [100]

S14 What is up with software metrics? — A
preliminary mapping study

SMS Journal of Systems & Software 2010 Kitchenham [101]

S15 A systematic review of software
maintainability prediction and metrics

SLR International Symposium on Empirical
Software Engineering & Measurement

2009 Riaz et al. [15]
Table 19
Interpretation of the DARE criteria by Budgen et al. [45].

Criterion Score Interpretation

Inclusion
and
exclusion

yes The criteria used are explicitly defined in the paper

partly The inclusion/exclusion criteria are implicit
no The criteria are not defined and cannot be readily inferred.

Search
coverage

yes The authors have searched four or more digital libraries and included
additional search strategies OR identified and referenced all journals
addressing the topic of interest.

partly Searched three or four digital libraries with no extra search strategies OR
searched a defined but restricted set of journals and conference proceedings.

no Searched up to two digital libraries or an extremely restricted set of journals.

Assessment
of quality

yes The authors have explicitly defined quality criteria and extracted them from
each primary study

partly The research question involved quality issues that are addressed by the study
no No explicit quality assessment of individual papers has been attempted

Study
description

yes Detailed information is presented about each study

partly Only summary information is presented about the studies
no Details of the studies are not provided

Synthesis of
studies

yes The authors have performed a meta-analysis or used another form of
synthesis for all the data of the study

partly Synthesis has been performed for some of the data from some of the
primary studies

no No explicit synthesis has been performed (as in a mapping study)
code metrics that are insignificantly linked may be investigated for a
link with other external attributes of quality.

In our analysed secondary studies, the data sets used for validation
impact the effectiveness of code metrics-based prediction models. How-
ever, GMDH-based prediction models have performed better than other
models considered on several data sets.

Software development is essentially a human-centric activity. An
interesting future research direction can be evaluating the link between
source code metrics and external quality attributes under different
development processes, e.g., continuous integration where source code
undergoes regular updates due to a deployment-oriented outlook. We
also note that evidence of the link has been context-sensitive. Future
studies can aim to solidify evidence of the link for specific development
contexts, e.g., web development, databases development, or mobile de-
velopment. Thus, we can compare structurally and semantically similar
source code and use the source code metrics to assess product quality
objectively.
19
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is shared on zenodo .org with a permanent link attached
as a footnote in the article.

Acknowledgement

This work has been supported by ELLIIT, a Strategic Area within
IT and Mobile Communications, funded by the Swedish Government.
The work has also been supported by research grant for the OSIR
project (reference number 20190081) from the Knowledge Foundation
in Sweden.

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
Table 20
External quality attributes and external metrics used in the secondary studies.

Study
ID

External quality
attribute

External metric Description

S01 Maintainability Change Lines of code added, deleted, and modified
S02 Reliability Bugs Not provided in the secondary study
S03 Maintainability Change impact Not provided in the secondary study
S03 Vulnerability Not Reported Number of internal #ifdef-blocks, Number of internal

configurations options, Number of external configuration options,
degree centrality, eigenvector centrality, betweenness centrality

S04 Maintainability Change The number of changes made to the source code (changes in LOC,
change in modules, change in class)

S05 Maintainability Change-proneness Change-proneness is defined as the likelihood that a class would
change across different versions of a software product

S06 Reliability Fault proneness The probability of detecting faulty classes
S06 Maintainability Maintenance

Effort
The maintenance effort is measured by the number of lines
changed per class

S07 Maintainability Change Not defined by secondary study. Only referred to as ’change’ in the
inclusion/exclusion criteria

S08 Maintainability Change Not defined in the secondary study. Only referred to as ‘‘change
prediction’’ in the introduction

S09 Maintainability &
Reliability

Multiple external
metrics

The secondary study combines evidence for link between external
quality attribute and source code metrics from primary studies that
use multiple external metrics to measure the external quality
attribute. Also, the definition of the external metric are not
provided.

S10 Reliability Defects Not provided in the secondary study
S11 Reliability Fault-prediction Estimating the number of defects remaining in software systems
S12 Reliability Fault proneness Fault prediction models are used to improve software quality and

to assist software inspection by locating possible faults. A correct
service is delivered when the service implements the system
function. A service failure is an event that occurs when the
delivered service deviates from the correct/expected service. The
deviation is called an error. The adjudged or hypothesized cause of
an error is called a fault

S13 Reliability Fault proneness The paper does not define fault proneness, however, mentions
‘‘Defects during development are inevitable and the earlier they are
found and fixed, the lesser it costs and the higher the quality of
the products delivered’’

S14 Reliability Fault proneness The probability of exhibiting a fault
S15 Maintainability Maintainability

Index
Not defined in the secondary study. In the primary studies of S15
it is defined as MI = 171 - 5.2 ln(average Halstead volume) - 0.23
(average extended cyclomatic complexity per module) - 16.2
ln(average count of lines of source code per module) + 50 sin(sqrt
(2.4*(average percentage of lines of comments per module)))
Appendix

See Tables 16–20.

References

[1] B. Kitchenham, S. Pfleeger, Software quality: the elusive target [special issues
section], IEEE Softw. 13 (1) (1996) 12–21, http://dx.doi.org/10.1109/52.
476281, Conference Name: IEEE Software.

[2] IEEE, 1074-2006–IEEE Standard for Developing a Software Project Life Cycle
Process, IEEE, 2006.

[3] J.A. McCall, P.K. Richards, G.F. Walters, Factors in Software Quality, Volumes
I, II, and III, US Rome Air Development Center Reports, US Department of
Commerce, USA, 1977.

[4] B.W. Boehm, J.R. Brown, M. Lipow, Quantitative evaluation of software quality,
in: Proceedings of the 2nd International Conference on Software Engineering,
1976, pp. 592–605.

[5] R.G. Dromey, A model for software product quality, IEEE Trans. Softw. Eng.
21 (2) (1995) 146–162.

[6] Organización Internacional de Normalización, ISO-IEC 25010: 2011 Sys-
tems and Software Engineering-Systems and Software Quality Requirements
and Evaluation (SQuaRE)-System and Software Quality Models, International
Organization for Standardization, ISO, Geneva, Switzerland, 2011.

[7] S. Montagud, S. Abrahão, E. Insfran, A systematic review of quality attributes
and measures for software product lines, Softw. Qual. J. 20 (3–4) (2012)
425–486, http://dx.doi.org/10.1007/s11219-011-9146-7.
20
[8] E. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, P. Avgeriou, A
mapping study on design-time quality attributes and metrics, J. Syst. Softw.
127 (2017) 52–77, http://dx.doi.org/10.1016/j.jss.2017.01.026.

[9] N. Fenton, J. Bieman, Software Metrics: A Rigorous and Practical Approach,
CRC Press, 2019.

[10] J.P. Miguel, D. Mauricio, G. Rodriguez, A review of software quality models
for the evaluation of software products, Int. J. Softw. Eng. Appl. 5 (6) (2014)
31–53, http://dx.doi.org/10.5121/ijsea.2014.5603, arXiv:1412.2977.

[11] H.A. Al-Jamimi, M. Ahmed, Prediction of software maintainability using fuzzy
logic, in: 2012 IEEE International Conference on Computer Science and
Automation Engineering, IEEE, 2012, pp. 702–705.

[12] S. Almugrin, W. Albattah, O. Alaql, M. Alzahrani, A. Melton, Instability
and abstractness metrics based on responsibility, in: 2014 IEEE 38th Annual
Computer Software and Applications Conference, IEEE, 2014, pp. 364–373.

[13] G. Concas, M. Marchesi, A. Murgia, S. Pinna, R. Tonelli, Assessing traditional
and new metrics for object-oriented systems, in: Proceedings of the 2010 ICSE
Workshop on Emerging Trends in Software Metrics, 2010, pp. 24–31.

[14] L.C. Briand, J. Wüst, Empirical studies of quality models in object-oriented
systems, Adv. Comput 56 (2002) 97–166.

[15] M. Riaz, E. Mendes, E. Tempero, A systematic review of software maintainabil-
ity prediction and metrics, in: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, IEEE, Lake Buena Vista, FL, USA, 2009,
pp. 367–377, http://dx.doi.org/10.1109/ESEM.2009.5314233.

[16] M.T. Baldassarre, D. Caivano, S. Romano, G. Scanniello, Software models for
source code maintainability: A systematic literature review, in: 2019 45th
Euromicro Conference on Software Engineering and Advanced Applications,
SEAA, IEEE, Kallithea-Chalkidiki, Greece, 2019, pp. 252–259, http://dx.doi.org/
10.1109/SEAA.2019.00047.

http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1109/52.476281
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb6
http://dx.doi.org/10.1007/s11219-011-9146-7
http://dx.doi.org/10.1016/j.jss.2017.01.026
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb9
http://dx.doi.org/10.5121/ijsea.2014.5603
http://arxiv.org/abs/1412.2977
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb14
http://dx.doi.org/10.1109/ESEM.2009.5314233
http://dx.doi.org/10.1109/SEAA.2019.00047
http://dx.doi.org/10.1109/SEAA.2019.00047
http://dx.doi.org/10.1109/SEAA.2019.00047

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
[17] J. Saraiva, S. Soares, F. Castor, Towards a catalog of object-oriented software
maintainability metrics, in: 2013 4th International Workshop on Emerging
Trends in Software Metrics, WETSoM, IEEE, San Francisco, CA, 2013, pp. 84–87,
http://dx.doi.org/10.1109/WETSoM.2013.6619342.

[18] R. Abilio, P. Teles, H. Costa, E. Figueiredo, A systematic review of contemporary
metrics for software maintainability, in: 2012 Sixth Brazilian Symposium on
Software Components, Architectures and Reuse, IEEE, Natal, Brazil, 2012, pp.
130–139, http://dx.doi.org/10.1109/SBCARS.2012.15.

[19] R. Malhotra, A. Chug, Software maintainability: Systematic literature review
and current trends, Int. J. Softw. Eng. Knowl. Eng. 26 (08) (2016) 1221–1253,
http://dx.doi.org/10.1142/S0218194016500431.

[20] R. Burrows, A. Garcia, F. Taïani, Coupling metrics for aspect-oriented program-
ming: A systematic review of maintainability studies, Eval. Nov. Approaches
Softw. Eng. (2009) 277–290.

[21] A.S. Nuñez-Varela, H.G. Pérez-Gonzalez, F.E. Martínez-Perez, C. Soubervielle-
Montalvo, Source code metrics: A systematic mapping study, J. Syst. Softw. 128
(2017) 164–197, http://dx.doi.org/10.1016/j.jss.2017.03.044.

[22] ISO, IEC 9126-1: Software Engineering-Product Quality-Part 1: Quality Model,
Vol. 21, International Organization for Standardization, Geneva, Switzerland,
2001.

[23] R.B. Grady, D.L. Caswell, Software Metrics: Establishing a Company-Wide
Program, Prentice-Hall, Inc., 1987.

[24] M. Soto, M. Ciolkowski, The qualoss open source assessment model measuring
the performance of open source communities, in: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, 2009, pp.
498–501, http://dx.doi.org/10.1109/ESEM.2009.5314237.

[25] A. Mayr, R. Plösch, M. Kläs, C. Lampasona, F. Iese, M. Saft, A comprehen-
sive code-based quality model for embedded systems, in: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering, 2012, p. 10.

[26] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, P. Vaillergues, The squale model — A practice-based
industrial quality model, in: 2009 IEEE International Conference on Software
Maintenance, IEEE, Edmonton, AB, Canada, 2009, pp. 531–534, http://dx.doi.
org/10.1109/ICSM.2009.5306381.

[27] H. Rashidi, M. Sadeghzadeh Hemayati, Software quality models: A compre-
hensive review and analysis, J. Electr. Comput. Eng. Innov. 6 (1) (2018)
http://dx.doi.org/10.22061/jecei.2019.1076.

[28] CISQ Specifications for Automated Quality Characteristic Measures, CISQ
Technical Work Groups for Reliability, Performance Efficiency, Security,
Maintainability, Standard CISQ-TR 2012-01, OMG, 2012.

[29] A. Romanovsky, T. Vardanega, Reliable Software Technologies–Ada-Europe
2011: 16th Ada-Europe International Conference on Reliable Software Tech-
nologies, Edinburgh, UK, June 20–24, 2011. Proceedings, Vol. 6652, Springer
Science & Business Media, 2011.

[30] G. Lacerda, F. Petrillo, M. Pimenta, Y.G. Guéhéneuc, Code smells and refactor-
ing: a tertiary systematic review of challenges and observations, J. Syst. Softw.
(2020) 110610.

[31] B.A. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering
and Systematic Reviews, Vol. 4, CRC Press, 2015.

[32] N.B. Ali, M. Usman, Reliability of search in systematic reviews: Towards a
quality assessment framework for the automated-search strategy, Inf. Softw.
Technol. 99 (2018) 133–147.

[33] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic
mapping studies in software engineering: An update, Inf. Softw. Technol. 64
(2015) 1–18.

[34] L. Chen, M.A. Babar, H. Zhang, Towards an evidence-based understanding of
electronic data sources, in: 14th International Conference on Evaluation and
Assessment in Software Engineering, EASE, 2010, pp. 1–4.

[35] M. Turner, Digital Libraries and Search Engines for Software Engineering
Research: an Overview, Keele University, UK, 2010.

[36] J.L. Barros-Justo, F.B. Benitti, S. Matalonga, Trends in software reuse research:
A tertiary study, Comput. Stand. Interfaces 66 (2019) 103352.

[37] N.b. Ali, B. Tanveer, A comparison of citation sources for reference and
citation-based search in systematic literature reviews, e-Inform. Softw. Eng. J.
(2022).

[38] H.K.V. Tran, J. Börstler, N. bin Ali, M. Unterkalmsteiner, How good are my
search strings? Reflections on using an existing review as a quasi-gold standard,
e-Inform. Softw. Eng. J. 16 (1) (2022).

[39] N.B. Ali, K. Petersen, Evaluating strategies for study selection in systematic lit-
erature studies, in: Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, 2014, pp. 1–4.

[40] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics (1977) 159–174.

[41] K. El Emam, Benchmarking Kappa: Interrater agreement in software process
assessments, Empir. Softw. Eng. 4 (2) (1999) 113–133.

[42] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies
in software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering, EASE 12, 2008, pp. 1–10.

[43] J. Börstler, N.B. Ali, K. Petersen, Double-counting in software engineering
tertiary studies - An overlooked threat to validity, Inf. Softw. Technol. 158
(2023) 107174, http://dx.doi.org/10.1016/j.infsof.2023.107174.
21
[44] N.B. Ali, M. Usman, A critical appraisal tool for systematic literature reviews
in software engineering, Inf. Softw. Technol. 112 (2019) 48–50.

[45] D. Budgen, P. Brereton, N. Williams, S. Drummond, What support do systematic
reviews provide for evidence-informed teaching about software engineering
practice? e-Inform. Softw. Eng. J. 14 (1) (2020) 7–60.

[46] R. Hoda, N. Salleh, J. Grundy, H.M. Tee, Systematic literature reviews in agile
software development: A tertiary study, Inf. Softw. Technol. 85 (2017) 60–70.

[47] K. Curcio, R. Santana, S. Reinehr, A. Malucelli, Usability in agile software
development: A tertiary study, Comput. Stand. Interfaces 64 (2019) 61–77.

[48] B. Kitchenham, L. Madeyski, D. Budgen, SEGRESS: Software engineering guide-
lines for reporting secondary studies, IEEE Trans. Softw. Eng. 49 (3) (2022)
1273–1298.

[49] M. Usman, N.B. Ali, C. Wohlin, A quality assessment instrument for systematic
literature reviews in software engineering, e-Inform. Softw. Eng. J. 17 (1)
(2023) 230105, http://dx.doi.org/10.37190/e-inf230105.

[50] A.R. Gray, S.G. MacDonell, A comparison of techniques for developing
predictive models of software metrics, Inf. Softw. Technol. 39 (6) (1997)
425–437.

[51] S.D. Conte, H.E. Dunsmore, V.Y. Shen, Software Engineering Metrics and
Models, Benjamin-Cummings Publishing Co., Inc., 1986.

[52] R. Jabangwe, J. Börstler, D. Šmite, C. Wohlin, Empirical evidence on the link
between object-oriented measures and external quality attributes: A systematic
literature review, Empir. Softw. Eng. 20 (3) (2015) 640–693.

[53] K. Sreeji, C. Lakshmi, A systematic literature review: Recent trends and
open issues in software refactoring, Int. J. Appl. Eng. Res. 10 (18) (2015)
39696–39707.

[54] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, S. Li, Software quality assessment
model: a systematic mapping study, Sci. China Inf. Sci. 62 (9) (2019) http:
//dx.doi.org/10.1007/s11432-018-9608-3.

[55] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, A systematic mapping study of quality
assessment models for software products, in: 2017 International Conference on
Software Analysis, Testing and Evolution, SATE, IEEE, 2017, pp. 63–71.

[56] F.N. Colakoglu, A. Yazici, A. Mishra, Software product quality metrics: A
systematic mapping study, IEEE Access 9 (2021) 44647–44670, http://dx.doi.
org/10.1109/ACCESS.2021.3054730, Conference Name: IEEE Access.

[57] Y. Khan, M. Elish, M. El-Attar, A Systematic Review on the Impact of CK Metrics
on the Functional Correctness of Object-Oriented Classes, in: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7336 LNCS (no. PART 4) (2012)
258–273, http://dx.doi.org/10.1007/978-3-642-31128-4_19.

[58] P. Morrison, D. Moye, R. Pandita, L. Williams, Mapping the field of software
life cycle security metrics, Inf. Softw. Technol. 102 (2018) 146–159, http:
//dx.doi.org/10.1016/j.infsof.2018.05.011.

[59] P. Saxena, M. Saini, Empirical studies to predict fault proneness: A review, Int.
J. Comput. Appl. 22 (8) (2011) 41–45.

[60] C. Catal, B. Diri, A systematic review of software fault prediction studies, Expert
Syst. Appl. 36 (4) (2009) 7346–7354.

[61] P. Oman, J. Hagemeister, Metrics for assessing a software system’s maintainabil-
ity, in: Proceedings Conference on Software Maintenance 1992, IEEE Computer
Society, 1992, pp. 337–338.

[62] A. Tahir, S. MacDonell, A systematic mapping study on dynamic metrics and
software quality, in: IEEE International Conference on Software Maintenance,
ICSM, 2012, pp. 326–335, http://dx.doi.org/10.1109/ICSM.2012.6405289.

[63] N. Nagappan, L. Williams, J. Osborne, M. Vouk, P. Abrahamsson, Providing
test quality feedback using static source code and automatic test suite metrics,
in: 16th IEEE International Symposium on Software Reliability Engineering,
ISSRE’05, IEEE, 2005, pp. 85–94.

[64] N. Nagappan, L. Williams, M. Vouk, J. Osborne, Using in-process testing
metrics to estimate post-release field quality, in: The 18th IEEE International
Symposium on Software Reliability, ISSRE ’07, IEEE, 2007, pp. 209–214.

[65] Organización Internacional de Normalización, ISO-IEC 25023: 2016-Systems
and Software Engineering-Systems and software Quality Requirements and
Evaluation (SQuaRE)-Measurement of System and Software Product Quality,
International Organization for Standardization, ISO, Geneva, Switzerland, 2016.

[66] J. Spray, R. Sinha, A. Sen, X. Cheng, Building maintainable software using
abstraction layering, IEEE Trans. Softw. Eng. 48 (11) (2021) 4397–4410.

[67] A. Okutan, O.T. Yıldız, Software defect prediction using Bayesian networks,
Empir. Softw. Eng. 19 (1) (2014) 154–181.

[68] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (6) (1994) 476–493.

[69] M. Lorenz, J. Kidd, Object-Oriented Software Metrics: A Practical Guide,
Prentice-Hall, Inc., 1994.

[70] F.B. Abreu, R. Carapuça, Object-oriented software engineering: Measuring and
controlling the development process, in: Proceedings of the 4th International
Conference on Software Quality, Vol. 186, 1994, pp. 1–8.

[71] J. Bansiya, C.G. Davis, A hierarchical model for object-oriented design quality
assessment, IEEE Trans. Softw. Eng. 28 (1) (2002) 4–17.

[72] L.C. Briand, S. Morasca, V.R. Basili, Property-based software engineering
measurement, IEEE Trans. Softw. Eng. 22 (1) (1996) 68–86.

http://dx.doi.org/10.1109/WETSoM.2013.6619342
http://dx.doi.org/10.1109/SBCARS.2012.15
http://dx.doi.org/10.1142/S0218194016500431
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb20
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb20
http://dx.doi.org/10.1016/j.jss.2017.03.044
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb23
http://dx.doi.org/10.1109/ESEM.2009.5314237
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb25
http://dx.doi.org/10.1109/ICSM.2009.5306381
http://dx.doi.org/10.1109/ICSM.2009.5306381
http://dx.doi.org/10.1109/ICSM.2009.5306381
http://dx.doi.org/10.22061/jecei.2019.1076
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb42
http://dx.doi.org/10.1016/j.infsof.2023.107174
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb45
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb47
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb48
http://dx.doi.org/10.37190/e-inf230105
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb50
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb53
http://dx.doi.org/10.1007/s11432-018-9608-3
http://dx.doi.org/10.1007/s11432-018-9608-3
http://dx.doi.org/10.1007/s11432-018-9608-3
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb55
http://dx.doi.org/10.1109/ACCESS.2021.3054730
http://dx.doi.org/10.1109/ACCESS.2021.3054730
http://dx.doi.org/10.1109/ACCESS.2021.3054730
http://dx.doi.org/10.1007/978-3-642-31128-4_19
http://dx.doi.org/10.1016/j.infsof.2018.05.011
http://dx.doi.org/10.1016/j.infsof.2018.05.011
http://dx.doi.org/10.1016/j.infsof.2018.05.011
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb61
http://dx.doi.org/10.1109/ICSM.2012.6405289
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb63
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb71
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb71
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb71
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb72
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb72
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb72

Information and Software Technology 165 (2024) 107348U. Iftikhar et al.
[73] R. Harrison, S. Counsell, R. Nithi, An overview of object-oriented design metrics,
in: Proceedings Eighth IEEE International Workshop on Software Technology
and Engineering Practice Incorporating Computer Aided Software Engineering,
IEEE, 1997, pp. 230–235.

[74] M.O. Elish, A.H. Al-Yafei, M. Al-Mulhem, Empirical comparison of three metrics
suites for fault prediction in packages of object-oriented systems: A case study
of Eclipse, Adv. Eng. Softw. 42 (10) (2011) 852–859.

[75] T. Mayer, T. Hall, Measuring OO systems: a critical analysis of the MOOD
metrics, in: Proceedings Technology of Object-Oriented Languages and Systems.
TOOLS 29 (Cat. No. PR00275), IEEE, 1999, pp. 108–117.

[76] M. Jørgensen, A critique of how we measure and interpret the accuracy of
software development effort estimation, in: First International Workshop on
Software Productivity Analysis and Cost Estimation, Citeseer, 2007, pp. 1–6.

[77] B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J. Shepperd, What accuracy
statistics really measure [software estimation], IEE Proc.-Softw. 148 (3) (2001)
81–85.

[78] I. Myrtveit, E. Stensrud, M. Shepperd, Reliability and validity in comparative
studies of software prediction models, IEEE Trans. Softw. Eng. 31 (5) (2005)
380–391.

[79] I. Myrtveit, E. Stensrud, Validity and reliability of evaluation procedures in
comparative studies of effort prediction models, Empir. Softw. Eng. 17 (2012)
23–33.

[80] T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, A simulation study of the model
evaluation criterion MMRE, IEEE Trans. Softw. Eng. 29 (11) (2003) 985–995.

[81] S. Tiwari, S. Rathore, Coupling and cohesion metrics for object-oriented
software: A systematic mapping study, in: ACM International Conference
Proceeding Series, 2018, http://dx.doi.org/10.1145/3172871.3172878.

[82] S. Hosseini, B. Turhan, D. Gunarathna, A systematic literature review and meta-
analysis on cross project defect prediction, IEEE Trans. Softw. Eng. 45 (2)
(2019) 111–147, http://dx.doi.org/10.1109/TSE.2017.2770124.

[83] J. Saraiva, E. Barreiros, A. Almeida, F. Lima, A. Alencar, G. Lima, S. Soares,
F. Castor, Aspect-oriented software maintenance metrics: A systematic mapping
study, IET Semin. Digest 2012 (1) (2012) 253–262, http://dx.doi.org/10.1049/
ic.2012.0033.

[84] E. Fregnan, T. Baum, F. Palomba, A. Bacchelli, A survey on software coupling
relations and tools, Inf. Softw. Technol. 107 (2019) 159–178.

[85] S. Henry, D. Kafura, K. Harris, On the relationships among three software
metrics, ACM SIGMETRICS Perform. Eval. Rev. 10 (1) (1981) 81–88.

[86] I. Herraiz, A.E. Hassan, Beyond lines of code: Do we need more complexity
metrics, in: Making Software: What Really Works, and Why We Believe It,
O’Reilly Media, 2010, pp. 125–141.

[87] M.A.A. Mamun, C. Berger, J. Hansson, Correlations of software code metrics:
an empirical study, in: Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software Process
and Product Measurement, 2017, pp. 255–266.
22
[88] E. Arisholm, D.I. Sjoberg, Evaluating the effect of a delegated versus centralized
control style on the maintainability of object-oriented software, IEEE Trans.
Softw. Eng. 30 (8) (2004) 521–534.

[89] B.A. Kitchenham, L.M. Pickard, S.J. Linkman, An evaluation of some design
metrics, Softw. Eng. J. 5 (1) (1990) 50–58.

[90] R. Malhotra, K. Lata, A systematic literature review on empirical studies
towards prediction of software maintainability, Soft Comput. 24 (21) (2020)
16655–16677, http://dx.doi.org/10.1007/s00500-020-05005-4.

[91] S. Saharudin, K. Wei, K. Na, Machine learning techniques for software bug
prediction: A systematic review, J. Comput. Sci. 16 (11) (2020) 1558–1569,
http://dx.doi.org/10.3844/JCSSP.2020.1558.1569.

[92] S. El-Sharkawy, N. Yamagishi-Eichler, K. Schmid, Metrics for analyzing variabil-
ity and its implementation in software product lines: A systematic literature
review, Inf. Softw. Technol. 106 (2019) 1–30, http://dx.doi.org/10.1016/j.
infsof.2018.08.015.

[93] S. Elmidaoui, L. Cheikhi, A. Idri, A. Abran, Empirical studies on software
product maintainability prediction: A systematic mapping and review, e-Inform.
Softw. Eng. J. 13 (1) (2019) 141–202, http://dx.doi.org/10.5277/e-Inf190105.

[94] R. Malhotra, M. Khanna, Software change prediction: A systematic review
and future guidelines, e-Inform. Softw. Eng. J. 13 (1) (2019) 227–259, http:
//dx.doi.org/10.5277/e-Inf190107.

[95] R. Malhotra, A. Chug, Software maintainability: Systematic literature review
and current trends, Int. J. Softw. Eng. Knowl. Eng. 26 (8) (2016) 1221–1253,
http://dx.doi.org/10.1142/S0218194016500431.

[96] R. Malhotra, A. Bansal, Software change prediction: A literature review, Int.
J. Comput. Appl. Technol. 54 (4) (2016) 240–256, http://dx.doi.org/10.1504/
IJCAT.2016.080487.

[97] M. Riaz, T. Breaux, L. Williams, How have we evaluated software pattern
application? A systematic mapping study of research design practices, Inf.
Softw. Technol. 65 (2015) 14–38, http://dx.doi.org/10.1016/j.infsof.2015.04.
002.

[98] J. Murillo-Morera, C. Quesada-López, M. Jenkins, Software fault prediction: A
systematic mapping study, in: CIBSE 2015 - XVIII Ibero-American Conference
on Software Engineering, 2015, pp. 446–459.

[99] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault prediction
metrics: A systematic literature review, Inf. Softw. Technol. 55 (8) (2013)
1397–1418, http://dx.doi.org/10.1016/j.infsof.2013.02.009.

[100] B. Isong, E. Obeten, A systematic review of the empirical validation of
object-oriented metrics towards fault-proneness prediction, Int. J. Softw.
Eng. Knowl. Eng. 23 (10) (2013) 1513–1540, http://dx.doi.org/10.1142/
S0218194013500484.

[101] B. Kitchenham, What’s up with software metrics? - A preliminary mapping
study, J. Syst. Softw. 83 (1) (2010) 37–51, http://dx.doi.org/10.1016/j.jss.2009.
06.041.

http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb73
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb75
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb75
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb75
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb75
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb75
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb76
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb76
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb76
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb76
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb76
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb77
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb77
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb77
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb77
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb77
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb78
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb78
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb78
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb78
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb78
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb79
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb79
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb79
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb79
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb79
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb80
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb80
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb80
http://dx.doi.org/10.1145/3172871.3172878
http://dx.doi.org/10.1109/TSE.2017.2770124
http://dx.doi.org/10.1049/ic.2012.0033
http://dx.doi.org/10.1049/ic.2012.0033
http://dx.doi.org/10.1049/ic.2012.0033
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb84
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb84
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb84
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb85
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb85
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb85
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb86
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb86
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb86
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb86
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb86
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb87
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb88
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb88
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb88
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb88
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb88
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb89
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb89
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb89
http://dx.doi.org/10.1007/s00500-020-05005-4
http://dx.doi.org/10.3844/JCSSP.2020.1558.1569
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.5277/e-Inf190105
http://dx.doi.org/10.5277/e-Inf190107
http://dx.doi.org/10.5277/e-Inf190107
http://dx.doi.org/10.5277/e-Inf190107
http://dx.doi.org/10.1142/S0218194016500431
http://dx.doi.org/10.1504/IJCAT.2016.080487
http://dx.doi.org/10.1504/IJCAT.2016.080487
http://dx.doi.org/10.1504/IJCAT.2016.080487
http://dx.doi.org/10.1016/j.infsof.2015.04.002
http://dx.doi.org/10.1016/j.infsof.2015.04.002
http://dx.doi.org/10.1016/j.infsof.2015.04.002
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb98
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb98
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb98
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb98
http://refhub.elsevier.com/S0950-5849(23)00203-3/sb98
http://dx.doi.org/10.1016/j.infsof.2013.02.009
http://dx.doi.org/10.1142/S0218194013500484
http://dx.doi.org/10.1142/S0218194013500484
http://dx.doi.org/10.1142/S0218194013500484
http://dx.doi.org/10.1016/j.jss.2009.06.041
http://dx.doi.org/10.1016/j.jss.2009.06.041
http://dx.doi.org/10.1016/j.jss.2009.06.041

	A tertiary study on links between source code metrics and external quality attributes
	Introduction
	Related work
	Secondary studies on source code quality
	Software quality models
	Code quality models
	Tertiary studies on related topics

	Methodology
	Search strategy
	Keyword-based search
	String construction
	Search validation

	Selection process
	Selection criteria
	Preliminary selection
	Selection based on title and abstract
	Selection based on adaptive reading
	Selection based on full-text reading

	Data extraction
	Piloting of data extraction
	Data extraction validation

	Quality assessment of the secondary studies
	Piloting of the quality assessment criteria
	Quality assessment validation

	Collation process: attributes & metrics
	Attributes and metrics
	Relationship indicators quality attributes and source code metrics
	Double counting
	Strength of evidence

	Conducting the review
	Search results
	Selection results
	Pilot selection process
	Complete selection process

	Data extraction
	Piloting of data extraction
	Data extraction validation

	Quality assessment of the secondary studies
	Secondary studies providing links between external quality attributes and source code metrics
	Removal of double-counting results in secondary studies

	Results and analysis
	RQ1: Characteristics of secondary studies
	Secondary study aims
	Systems studied
	Databases used
	Reported programming paradigms
	Quality assessment results

	RQ2: Strength of evidence of link between source code metrics, internal quality attributes, external metrics and external quality attributes
	Strength of evidence on maintainability
	Strength of evidence on reliability
	Strength of evidence on security

	RQ3: Efficacy of prediction models

	Discussion
	External quality attributes
	Internal quality attributes
	External metrics
	Good indicators for external attributes
	Beyond object-oriented & static metrics
	Metrics validation
	Accuracy measures
	Prediction models
	Datasets used
	Consistent tool support
	Conducting tertiary review challenges
	Future works

	Limitations
	Study selection
	Research validity
	Double counting

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix
	References

