Empirical Software Engineering (2023) 28:144
https://doi.org/10.1007/510664-023-10356-1

®

Check for
updates

Automated NFR testing in continuous integration
environments: a multi-case study of Nordic companies

Liang Yu'® - Emil Alégroth’ - Panagiota Chatzipetrou? - Tony Gorschek'3

Accepted: 7 June 2023
© The Author(s) 2023

Abstract

Context Non-functional requirements (NFRs) (also referred to as system qualities) are
essential for developing high-quality software. Notwithstanding its importance, NFR testing
remains challenging, especially in terms of automation. Compared to manual verification,
automated testing shows the potential to improve the efficiency and effectiveness of quality
assurance, especially in the context of Continuous Integration (CI). However, studies on how
companies manage automated NFR testing through CI are limited.

Objective This study examines how automated NFR testing can be enabled and supported
using CI environments in software development companies.

Method We performed a multi-case study at four companies by conducting 22 semi-
structured interviews with industrial practitioners.

Results Maintainability, reliability, performance, security and scalability, were found to be
evaluated with automated tests in CI environments. Testing practices, quality metrics, and
challenges for measuring NFRs were reported.

Conclusions This study presents an empirically derived model that shows how data produced
by CI environments can be used for evaluation and monitoring of implemented NFR quality.
Additionally, the manuscript presents explicit metrics, CI components, tools, and challenges
that shall be considered while performing NFR testing in practice.

Communicated by: Smita Ghaisas

B Liang Yu
liang.yu@bth.se

Emil Alégroth
emil.alegroth@bth.se

Panagiota Chatzipetrou
panagiota.chatzipetrou@oru.se

Tony Gorschek
tony.gorschek @bth.se
Blekinge Institute of Technology, Karlskrona, Sweden

Department of Informatics, CERIS, Orebro University School of Business,
SE-701 82 Orebro, Sweden

3 Fortiss GmbH, 80805 Munich, Germany

Published online: 24 October 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10356-1&domain=pdf
http://orcid.org/0000-0001-5949-1375

144  Page 2 0f29 Empirical Software Engineering (2023) 28:144

Keywords Non-functional requirements - NFR - Continuous integration - CI -
Automated testing - Metrics - Case study

1 Introduction

Non-functional requirements (NFRs) are the qualities of a system (Werner et al. 2020), which
describe how a system fulfills functional requirements. The attention for NFRs increases in
software development companies since non-functional qualities are nowadays seen as critical
success factors in the marketplace (Werner et al. 2020). Whilst some NFRs (for example,
performance) are expected by users, others (for example, privacy) must be ensured by the
software’s design if it is to comply with national or international regulations (for example,
the General Data Protection Regulation (GDPR)).

Most frequently, NFRs define cross-functional quality aspects of a system and, in some
instances, are viewed as being more important than the system’s functionalities (Jinior 2020).
Due to their cross-functional characteristics, NFR verification and validation (Karhapdi et al.
2021) is a challenging task (Alsaqaf et al. 2019). Therefore, conventional NFR testing prac-
tices are primarily performed manually, which is neither efficient nor effective (Junior 2020).
In fact, faulty NFRs produce additional work, which can account for 40% to 50% of the total
work done in some software projects (Wagner 2006; Boehm and Basili 2005). Given this,
we note that many product development organizations lack a shared understanding of NFR
validation (Werner et al. 2020) in a continuous software engineering context.

Continuous integration (CI) (Fitzgerald and Stol 2017) has been used to assist automated
software verification (Dlugi et al. 2015) and validation (Rathod and Surve 2015). CI envi-
ronment is an integral part of modern testing teams (Knauss et al. 2016) and contains a set
of components (Yu et al. 2020) (for example, tools and frameworks). Dlugi et al. (2015)
proposed a CI framework to verify and validate system functionalities in fast iterations, and
Knauss et al. (2016) reported that fast code quality feedback enabled by CI can prevent faults
slipping through the development phase to later phases. Further, Fitzgerald and Stol (2017)
adopted test automation tools to detect bugs in source codes, and Shahin et al. (2017) investi-
gated CI practices associated with tools to improve software testing processes. These studies
show the importance of using CI to evaluate functional requirements. However, how one
might best capitalize on the CI and CI environments for non-functional requirement testing
is still an open area of research (Paixao et al. 2017).

Our interest in this area of research is informed by the results of a systematic literature
review (SLR) (Yu et al. 2020) on the topic of utilizing CI environments for NFR testing. The
main findings of the SLR were that automated NFR testing can be achieved in an academic
setting, and CI can support! or enable”> NFR evaluation. However, the practices of NFR
test-automation in industrial contexts were not covered.

In this study, we performed a multi-case study at companies that operate in diverse business
domains to investigate how they are using CI environments to identify practices that seek to
measure the NFR testing. This research is also perceived to provide guidance for researchers
in terms of NFR evaluation through CI environments from industry. The results of the present

1 support refers to providing inputs or resolving other prerequisites for automated tests
2 enable explicitly refers to making automated NFR tests possible

@ Springer



Empirical Software Engineering (2023) 28:144 Page3of29 144

study provide practitioners and researchers with a guide on NFR evaluation (Miller 2008)
using CI environments.

Based on the theory classification of Gregor (2006), the main contributions of this study
are our provision of:

1. Anempirically derived model that explains (Gregor 2006) how CI environments produce
test data, useful for evaluation of NFRs, and to monitor quality trends, through automated
notification systems based on test outcomes.

2. Practical knowledge and actions (Gregor 2006) for NFR testing by using CI environ-
ments, that is, involvement of existing CI environments leads to a greater improvement
of automated testing for NFRs.

The knowledge includes:

— An understanding of the test capabilities of a CI environment. Study results show corre-
lation between CI components and NFR test capabilities.

— A view of the status on how companies handle NFR evaluation. Common NFR types and
NFR metrics were identified in this study.

The actions contain:

— Practices of adding or upgrading components and tools in a CI environment to enable
automated verification for particular NFRs (e.g., automated security scans) and support
NFR evaluation in terms of fast test execution and continuous analysis and monitoring
on test outputs.

— A guideline to collect metric data through CI components to measure NFRs.

— Challenges to be considered while performing NFR testing in practice.

The rest of this paper is structured as follows: Section 2 presents the background and
related work. In Section 3, we describe the research methodology that was adopted in this
study. In Section 4, we present results of the study, and in Section 5, we discuss threats to the
study validity. In Section 6, we discuss the findings and implications of our research, and in
Section 7, we share our conclusions and indicate where future research is needed.

2 Related Work

NFRs specify system qualities (Gorschek and Wohlin 2006; Mairiza et al. 2010) — additional
to the system’s functionality. These qualities can be categorized as either internal quali-
ties (ISO/IEC-25023 2016) (e.g., extendability and testability) or external qualities (Khurum
etal. 2014) (e.g., user experience and performance).

To ensure system qualities (Svensson et al. 2011), NFRs are important aspects to assess
software products. For example, a system must have sufficient usability (Chung and do Prado
Leite 2009), defined as its usefulness and performance, to be usable. If a system does not
meet the privacy policy required by users or customers, then the system may not be usable in
practice. Moreover, the needs of fast evaluation in the CI environment applies to NFRs, and
the potential of using automated testing (Paixao et al. 2017) is important to avoid bottlenecks
in CI environment. Thus, warranting additional research into tools, methods, and techniques
for automated NFR testing.

@ Springer



144  Page4of29 Empirical Software Engineering (2023) 28:144

However, there are challenges to evaluate some types of NFRs in the industry (Karhapaé
et al. 2021). As stated, many NFRs (for example, reliability (Chen 2015)), specify qualities
that are influenced by many aspects of a system (Junior 2020), thereby placing prerequisites
on data capture and storage and even access to the entire system. This circumstance stands
in contrast to functional testing, where a function is often isolated or restricted to the testing
of a single software component. Moreover, some NFR types are grounded in the users’ sub-
jective views (Werner et al. 2020) (e.g. User experience) or other qualitative factors (Werner
et al. 2021). These factors can be difficult or impossible to quantify for the automated test-
ing (Werner et al. 2021). For example, whilst one user may perceive a system’s performance
as adequate, another may perceive it as unsuitable.

Existing literature confirms that NFR testing is challenging. Alsaqaf et al. (2019) reported
challenges while managing NFRs in large-scale distributed agile projects. Karhapdi et al.
(2021) did further industrial case studies and identified obstacles for verifying quality require-
ments using CI particularly. These studies emphasized the challenges of NFR evaluation in
industrial contexts, but did not explore the practices of using CI environments for NFR
test-automation.

To explore NFR testing in CI environments, we found relevant studies in our own recent
systematic literature review (SLR) (Yu et al. 2020). For example, Rehmann et al. (2016);
Nouacer et al. (2016) and Bougouffa et al. (2017) reported three different CI approaches to
validate system qualities, such as performance, reliability, and security, in multiple software
products. As these studies had a narrower scope focusing only on a particular NFR type,
Cannizzo etal. (2008); Janus etal. (2012) and Chen (2015) investigated the possibility of using
a CI approach to evaluate multiple NFR types, such as, system’s robustness, performance,
and maintainability, but they did not offer detail information about how the NFR testing can
be measured.

To complement the existing work, Staron et al. (2011) proposed a way of using spe-
cific metrics to measure NFRs through CI approaches, and Lopez et al. (2022) explored a
systematic mapping between metrics and NFRs. However, their focus was to analyze and
visualize metrics through measurement systems instead of practices of automated tests using
metrics. Thus, we conduct this research to shed light on automated NFR testing through CI
environments.

3 Research Methodology

Our research process, visualized in Fig. 1, consisted of four phases. Phase 1 aimed to define
research questions and goals. Phase 2 focused on the case study design, including case study
plan (Runeson and Host 2009), interview questions’ preparation, participant selection, and
pilot testing of the interview questions. In Phase 3, we conducted interviews and transcribed
interview recordings. Phase 4 targeted analysis and synthesis of the collected data. In the
continuation of this section, we describe the individual parts of the process in more detail.

3.1 Research Questions

The study is an investigation into how automated NFR testing is achieved in CI environments
in software development companies. Then, four research questions are presented:

@ Springer



Empirical Software Engineering (2023) 28:144 Page50f29 144

Step1: Establish ' Step4: Prepare Step5: Select ' Step8: Transcribe _:> Step9:
research goal : interview questions target participants : interviews : | Synthesis
' A ' A '
! refine 1 1
Y 1 A 1 1 Y
Step2: Define |,  |Step3: Case study| |  Step6: Pilot |, | Step7: Conduct | , [Step10: Data
research questions : plan testing : interviews : analysis
) . Phase2: Case study . Phase3:Data ; Phase4:
Phasel: Plan . . . . .
design collection Analysis

Fig.1 An overview of the research processes

— RQ1: What types of NFRs are verified through automated tests?
RQ1 aims to identify what specific types of NFRs have been evaluated in case companies.
— RQ2: What metrics are used for automated NFR testing in industrial practice?

RQ2 expands on RQ1 and aims to identify practices including test processes, metrics, and
tools that are used for NFR testing. By adopting this higher-level perspective, we examine
implicit relationships between NFR metrics and CI environments.

— RQ3: How are CI environments contributing to NFR test capabilities?

RQ3 extends the scope of RQ2 by explicitly focusing on how how the components in a
CI environment impact the NFR testing. The goal includes examining, for example, how a
single, several, or a set of CI components affect NFR testing capabilities.

— RQ4: What challenges are associated with automated NFR testing?

RQ4 targets to identify challenges of NFR testing in the studied projects and practices to
mitigate the challenges.

3.2 Case Study Design

We conducted a multi-case study (Runeson and Host 2009) in software development com-
panies. A multi-case study involves the analysis of multiple cases for comparisons, that can
provide a more comprehensive understanding of NFR issues in companies and suitable for
making generalizations about the issues, when comparing to a case study with analysis of a
small number of cases.

3.3 Case Companies

In this study, our case companies are Qvantel Sweden, Ericsson, Fortnox, and Company
Alpha,3 where we had access to practitioners, products, testers, test-cases, and processes to
study automated NFR testing. As shown in Table 1, company contexts are presented, and the
selected projects were randomly assigned index names from A to E to remove traceability
back to the case companies.

Ericsson is amultinational company that produces software and services for telecommuni-
cations. The studied projects contain a financial system and a large-scale telecommunications

3 Company Alpha’s is kept anonymous due to a non-disclosure agreement (NDA).

@ Springer



(2023) 28:144

Empirical Software Engineering

Page 6 of 29

144

QmeN

sjuowraAoxdwr paaN

yuowdofaaap e
-USWAIOUT I0J UBqUES|

uorsuedxo ise

QIoW PN

juowdofoaap ey
~UQWIAIOUT J0J UeqUES|

Sumoisd jseq

210U PN

QIR

QIoW PARN

Juowr
-dojoadp  eIUOWAIOUT
pue SnonNUnuod paseq

QIR

Q10w PN

Juow
-dojoaop snonun
-u0d paseq-o[ide

LAunyew D

spuewop Sunsay,

JuaruoL1aua |7

PUB WINIOS JO QIMXIJA|  PUB WNIOS JO AIMXIA  JUdWdO[OAID [BJUSWIAIOU]  -9[ISB PUB USALIP-UB[J PUB  UQALIP-UB[] sso001d Sunsay, SHAN
SUQZNIO [eUOTEN suonezIuesIo [eqo[H S[enpIAIpUI [eUONEN  SuonezIueSIo [eqO[D)  suonezrueSIo [eqo[D) Iowo)snd Jo odAT, 14D
SOX SOX ON SOX SOX Juowdo[oAdp paynqrusIq
uon uon uon uon
-BO0[ QUO WOIJ SUIed) B0 QUO WOIJ SuIea) UonEoO0[ U0 WO}  -BOO[ QUO WOIJ SWEd)  -BO0[ QU0 WOIJ SWed)
159) 29 Juawdoereg 159) 29 Juowdorereg sweo) Juowdopoad@ 159} 29 Juowdofeadg 159} 29 Juawdoressd POAJOAUT SWBI],
ON (18qO13)sox. (A[Teuoneu)sox (18qO13)sox. (18qQO[3)sox uondope 913y
0001< 0S~ 00T~ 00ST< 00€~ (s100uI3UQ JO IJoquInu) JZI§ uonD2IUDSI()
yonpoid jonpoxd
Injew paAI-3uo| jonpoud aInje jonpoad aIjey Injew pIAIf-3uo| jonpoad ey jonpoud jo AjumnjeA
suoned
suonn|os suonnjos 310d suonn[os -IUNWWOJ[A)  10J
QIBJ[oM UOWWO)) -dns ssoursnq [ensiq wopeld Sunjueg wojjerd uowwo) SQOIAIIS QOURUL 2d£) 1onpoig
(s100u13ua Jo raquinu) ()ZOZ
(0001<) 195187 (05 0 17) I1eWS (001 01 1G) wnIpS (00§1<) 93177 (00T O} TO1) WNIPA]N  NOLIDTAY puk seg) oz1s 109[01g
sIegje
[e100S pue [IESH UONEBIIUNUWIWOD [BISI A3o[ouyo9) ooueUL]  SUONEOIUNWWIOI[I],  ASO[OUYd) doURUL] urewop ssauIsng 12l044
JUSWOL Jo08]
q 100fo1g  1elorg D 19lo1g g 109fo1g v 109fo1g 1X91U0D) jhGilive)

soruedwod ased ur (6007 UIIYOA\ PUE UISIDNRJ) SIXIUOD pue s1oaford | djqel

pringer

as



Empirical Software Engineering (2023) 28:144 Page70f29 144

service. They have different CI environments which have been used for both functional and
non-functional requirements’ evaluation. The CI environments steer practices for global
teams, and provide a shared process with practices including code reviews, compilation,
building, integration, and automated testing.

Qvantel Sweden is a fast-growing company that provides cloud-native business support
services, which help customers run their business for a new level of autonomy, faster time
to market, and flexibility to adapt to changing business needs. The CI environment supplies
a solid CI process allows developers to deliver smaller portions of code. It allows for non-
duplicated work for developers to ensure that the code they commit is as bug-free as possible,
and reduces the number of manual and repetitive tasks that developers face.

Fortnox is a cloud-based platform that meets the needs of small businesses and accounting
agencies managing their finances efficiently. The CI environment helps developers catch
security issues earlier through automated CI tests.

Company Alpha is a welfare agency. The project in this company is a legacy system that
concerns businesses on insurance services through web interfaces. The CI environment in this
project increases transparency between team members and covers automated performance
testing. It provides neutral feedback continuously, which could help to mitigate the damage
of future build failures or merging issues, and teams could consider feedback as a way to
learn and improve rather than something that is negative.

3.3.1 Prepare Interview Questions

An interview guide, as shown in Appendix A, was constructed to ensure that multiple
researchers could perform the interviews in parallel. The guide is divided into distinct parts
that include (i) a description of the purpose of the study, (ii) the study procedure, (iii) a
description of how the participants’ confidentiality is assured, (iv) how the participants can
give feedback or add to their interview answers (Runeson and Host 2009), and finally, (v) alist
of predefined interview questions for data collection. The interview questions were divided
across three main areas: (a) types of NFRs that are verified or validated with automated tests,
(b) test practices that describe how the automated NFR tests are performed, (c) challenges
associated with the NFR testing.

3.3.2 Select Participants

We adopted convenience sampling (Wohlin et al. 2012), selecting participants based on their
availability and willingness to participate in this study.

We first identified the population of interest, which is a group of industrial engineers who
seek to use or improve their NFR testing by using the CI environment. To ensure the target
participants can provide information of NFR testing through CI, we defined specific sampling
criteria, such as working experience and job role, as shown in Table 2, aiming to increase
the representativeness of the sample. The working experience includes domain knowledge in
both NFR testing and using CI techniques for test automation, and at the time of this study,
86% of selected participants had more than five years of work experience, which could be
an indicator of the participants’ ability to answer our interview questions. Moreover, the job
role contains tester, product owner, software architect, and developer to collect data from
different perspectives to minimize the bias of data sources.

@ Springer



144  Page 8 0f29 Empirical Software Engineering (2023) 28:144

Table 2 Participant details: ID,

Role, Work experience, and i’lgrticipant Participant role Work expe‘ri— Project
Project name ence (years) name
T1 Lead developer 10-15 Project A
T2 Software architect 5-10
T3 Senior developer 10-15
T4 Developer 3-5
TS Software architect 5-10
T6 Tester 3-5
T7 Tester 5-10
T8 Senior tester 10-15
T9 Developer 3-5 Project B
T10 Developer 5-10
T11 Product owner 10-15
T12 Tester 5-10
T13 Principal developer 15-20 Project C
T14 Senior architect 10-15
T15 Software architect 5-10
T16 Tester 5-10
T17 Developer 10-15 Project D
T18 Tester 5-10
T19 Tester 5-10
T20 Developer 5-10 Project E
T21 Software architect 5-10
T22 Tester 5-10

We contacted target engineers through email, phone calls, or in person and asked them
if they would be willing to participate in the study. We explained the purpose of the study,
study procedure, and how the participants data would be used. After the data collection and
analysis, we reported our synthesized results back to the participants to acquire feedback.

3.3.3 Pilot Testing

The interview guide was tested in four pilot rounds, each involving a distinct set of par-
ticipants. The aim of these pilot tests was to gather information that would help refine our
interview questions.

The first author conducted two pilot interviews with industrial professionals, while the
second author conducted the remaining two interviews with external researchers. During
the first pilot test, it was identified that two questions concerning the “waiting-time to get
feedback from the CI server” produced overlapping semantic outcomes. As a result, these
questions were refined. In the second pilot test, the question pertaining to “feedback time”

@ Springer



Empirical Software Engineering (2023) 28:144 Page9of29 144

was found to be ambiguous and was subsequently rephrased. The third pilot test revealed that
a few participants did not understand the abbreviation “NFR.” To address this, a definition
was added to the guidelines. The fourth pilot test did not find any additional issues, and all
participants from the previous pilots were included to ensure their agreement with the revised
interview questions.

It is important to note that these pilot tests were not included in the study findings.

3.4 Data Collection

We collected qualitative data through semi-structured interviews of 22 participants from the
case companies. A summary of the interviewees can be found in Table 2. The interviews
were conducted by two authors with each participant in person. They lasted between 33 to 54
minutes, and the average interview time was 46 minutes. The time duration does not include
the “warm up” and “cool down” parts. The first author worked as an embedded researcher
in Ericsson, and the second author conducted three interviews together at Fortnox to extract
information. After the interviews, two separate meetings were conducted by the authors to
discuss and merge the collected data. With this experience and learning, the first author
executed the rest of interviews in the other companies.

We started each interview by going through the questions defined in our interview template.
We followed with additional probing questions or open discussions on more specific subjects,
depending on an interviewee’s role. For example, an interview with a software architect
involved extended questioning on NFR test processes and designs to interpret what was done
and how. All interviews were recorded with audio and notes.

3.5 Data Analysis

We employed thematic analysis (Cruzes and Dyba 2011), an established data analysis method
to identify themes and patterns in our collected data, and the procedure is presented in Fig. 2.

As can be seen in the figure, the thematic analysis contains four stages. Stage 1 focuses
on collecting codes from interview recordings. Stage 2 is about how we grouped codes
into different categories based on semantic equivalence or a shared contextual relationship
(Petersen and Wohlin 2009) (for example, NFR types, tools, and CI components). In Stage 3,
we synthesized codes into categories in higher-level themes (Cruzes and Dyba 2011). Stage
4 is where we drew conclusions using the synthesized themes.

Our analysis involved inductively identifying themes from raw transcripts, that related to
practices and challenges of NFR testing in the studied projects. The open coding (Corbin
and Strauss 1990) approach was used to minimize the bias of analysis, and we used the
constant comparison method, whereby codes were added and merged based on discussions
between authors. In our initial coding phase, the first two authors coded dialog segments
in our interview template independently, and a meeting was conducted with all authors to
discuss their understanding of the codes after coding each transcript.

The initial codes and transcripts were stored in an Excel file with tables, example shown
in Table 3. The codes and quotes were incrementally developed from examining interview
transcripts. Each transcript that was mapped to a code was tagged with the ID of a participant,
which allows us to record how many individual statements (made by different participants)

@ Springer



144 Page 10 of 29 Empirical Software Engineering (2023) 28:144
Interview X Interview Y Interview Z
Question 1 Question 2 Question 3

Stage 1:
Extract codes
from statements

Interviewee:

statement A,
statement B

Question 1.x

Interviewee:

Interviewee:| statement D

Question 2.x

Interviewee: | statement E, |—

Interviewee:

statement G,
statement H

Interviewee: statement |,

Question 3.x

statement C,

statement J,
statement X statement F. 1] statement K.

Stage 2: x
Group codes E

Stage 3:
Synthesize
codes to themes

Stage 4:
Draw
conclusions
I—answe THHSWGF—I
Fiesea(ch RQ1, RQ2, RQ3
Question

Fig.2 Thematic analysis (Cruzes and Dyba 2011) stages adopted for coding during the data analysis phase

supported each code. These unique IDs were of the form “Tx”, where “x” is an integer
between 1 and 22, and kept the participants anonymous. The IDs also provided traceability
back to the transcripts if needed during the analysis to get more contextual information.
When more interview recordings were transcribed, the number of quotes soon became dif-
ficult to overview, defeating the purpose of the coding. Thus, another layer of abstraction was
added to mitigate this issue, where quotes were replaced with descriptions that could include
one or more of the aforementioned codes. This layer could keep the chain of evidence and

Table 3 Example table showing how initial codes and transcripts were stored

Codes Interview Timestamp  Quote RQ Interviewee
record ID IDs

e.g., Code e.g., Al 09:59 - Add reviewer manually RQ2 e.g., TS5
review 12:42

Jenkins verification job gives RQ3

+1 if success

Product owners give 4+-2 when RQ2

a commit is approved RQ3

Two +2 is set to be mandatory RQ2

for each Git commit, to ensure
it works and encourage people
to review carefully

@ Springer



Empirical Software Engineering (2023) 28:144 Page110f29 144

Table 4 Revised example table for initial coding

ID Codes Description Interviewee IDs
e.g., 10 e.g., Code review Statements about source T1,T2,T3,T4,T5,T6,T7,T8,T9,
code reviews. T14,T15,T17,T18,T20,T21,T22

reduce the cognitive complexity of overviewing the analyzed interview results. An example
of what the coding procedure looked like before the abstraction is shown in Table 3, and the
result after abstraction is shown in Table 4.

During the coding phase, addressing intercoder disagreements was a primary focus. Our
approach involved open discussion, clarification, and revisiting the data to achieve consensus.
Regular meetings and in-depth discussions were conducted to facilitate effective communi-
cation and exchange of perspectives, enabling us to gain a comprehensive understanding of
each other’s interpretations. In cases where differences in coding persisted, we dedicated the
necessary time to revisit the specific data segments in question. This included a thorough
examination of the relevant data, with the aim of exploring its details and contextual signifi-
cance at a deeper level. Through this analysis, we sought to enhance our understanding and
align our interpretations, ultimately striving to achieve a high level of coding agreement.

To retain the traceability, the complete list of extracted codes can be found in Appendix B.
To answer the research questions, we developed themes based on thematic synthesis of our
coded data. We discussed similarities and differences between codes to group codes into
themes, whereby each theme illustrate how a type of NFR is evaluated using CI components
and tools.

Additionally, we performed member checking with the study participants to verify our
findings resonate with the context of their organization, and the member checking feedback
was used to revise our findings.

Data Availability Statement: The raw data used in this study can be obtained by contacting
the corresponding author upon request. We have made efforts to remove direct identifiers,
such as names, contact information, and project-related details to address potential concerns
of re-identification. Our aim is to prioritize the protection of participant confidentiality while
ensuring data availability in accordance with appropriate ethical and legal considerations.

In summary, our primary coding groups, extracted themes (e.g., NFR types, tools, and
CI components), and the mapping to research questions present in Fig. 3. We used the code
groups, NFR types, and the uses of tools and CI components to understand NFR metrics
for RQ2. We also added the number of interviewees that support a particular code group for
RQ4.

4 Results

This section presents the results of our study in response to our research questions.

4.1 RQ1:What Types of NFRs are Verified Through Automated Tests?
Through the meetings with practitioners from the studied companies, we identified several

NFR types that were verified in an automated manner. These NFR types are maintainability,
security, performance, scalability, and stability.

@ Springer



144  Page 12 0f 29 Empirical Software Engineering (2023) 28:144

« PA:ProjectA « PD:ProjectD « VCS: Version control system
« PB:ProjectB « PE:ProjectE + SCM: Source code management

+ PC: Project C + CIS: Continuous integration server
|Qode grou;§|'=|>| NFRs | -+ | Tools |—| Cl components Interviewees
>
)
Performance tests JMeter,Postman PA
Source code server Jenkins PB Cloud platform
Continuous integration Performance Git PD e E E
IAutomated testing Gerit Bitbucket PE PA FB PG PD PE
Challenges/problems Artifactory Automated tests
WD, A e Cloud platform
- PA | [vcs Artifactory server
Security tests PD Cloud platform
Source code server ZAP, Jenkins
: . PE
|Version control Securi Git
(Continuous integrati Y| ot Bitucket ——|
. [Gioud platiorn J [ —— | | [2][2] [¢]
IAutomated testing Artifactory, Xray PB
Problems/issues CcIs] ( PA PB PC PD PE
0 Whiware, AWS o T
b
Cloud platform
pc| (o) Skudplatorm )
oro-senvioss
Docker
IAWS Scalabill Kubernetes PA Cloud platform 2|[2
e calabilty G e M oA o PG 7o FE
A — -
- - Ansible
Logging, debugging — Vagrant vCS Cloud platform
Upgrade tests Maintainability Jenkins PB -
|Automated testing SonarQube PD PE
(Obstacles AWS |
o . 3
System stability tests Ansible Cloud platform l
Fault tolerance Stability Jenkins ' 2c PA PB PC PD PE
Continuous integration , AWS -
L Y—) L J

e«

Fig.3 Synthesis of the collected data including NFR types, tools, and CI components

As shown in Table 5, both internal and external quality attributes (ISO/IEC-25023 2016)
were found in the studied projects. From the data in this table, we can see that external
attributes of NFRs receive more attention than internal ones in the studied projects. As a
practitioner reported that “Customers’ feedback and their priorities play a role in deciding
whether NFRs are automated or not.” Low priority or awareness of internal NFRs could
cause internal NFRs (e.g., scalability) to not be tested or overlooked (Aljallabi and Mansour
2015), which could result in additional cost. For example, if a system (e.g., banking service)
is not built to easily incorporate the functionality required to accommodate different time
zones, costly rework may be required (Boehm and Basili 2005).

Moreover, we can see in the above table that Performance and Security were evaluated
more often compared to the other NFRs in the studied projects. This might correlate with how
easy the NFR type is to quantify — Performance is perceived as easier to quantify (Rehmann
et al. 2016) than many other NFR types. It can also be attributed to growing external factors,
such as societal pressures, which may explain the popularity of security testing in the studied
companies since user privacy (Remlein and Stachowiak 2021) is expected to be secured in
modern software.

Surprisingly, some NFR types (e.g., usability (Cajander et al. 2013), and reliability (L6pez
et al. 2022)) are considered important in research but not identified in the studied projects.

@ Springer



Empirical Software Engineering (2023) 28:144 Page130f29 144

Table 5 Identified NFR types and attributes (ISO/IEC-25023 2016)

NFR Attributes Internal or external attribute Project name
Maintainability Testability Internal Project B
Changeability
Modifiability
Security Vulnerability External Project A, B, C, and D

Confidentiality
Authentication

Access control

Performance Response time External Project A, B, C, D, and E
Accuracy

Resource utilisation

Stability Fault tolerance Internal Project B
Recoverability
Scalability High availability External Project A and B

As practitioners confirmed that “ease of use is critical for software products, but it is not
easy to measure the usability of a system with automated tests due to missing a full view of
quality requirements and the limited information on using tools to support NFR validation.”
This finding indicates that aspects, like usability that impact most functionality, are hard to
gauge for individual developers focusing on one item at a time often (Alsaqaf et al. 2019),
meaning a system view focus on NFRs would be beneficial (Karhapdi et al. 2021) for the
test-automation of the “missed” NFRs.

Additionally, participants in this study suggested potential improvements for NFR testing,
with many commenting on the need for additional metrics to effectively govern NFRs within
organizations and improve test skills and knowledge. As a result, the subsequent section
explores metrics for NFR evaluation.

4.2 RQ2: What Metrics are Used for Automated NFR Testing in Industrial Practice?

As a way to study how NFR testing were measured, we extracted both NFR types and metrics
from industrial practitioners, as shown in Table 6.

It can be seen from the data in Table 6 that multiple metrics are used to measure a NFR type.
For example, in the table, performance was measured by using multiple metrics to enable
longitudinal evaluation since a single metric could be biased. This indicates that different
metrics could provide more comprehensive test results while measuring NFRs.

Moreover, Table 6 also shows that an NFR metric can be implemented with different
data that can be collected with CI components through automated jobs. As practitioners
reported that CI components hold large amounts of data from source codes/tests, and the
data can be used to evaluate, monitor, and analyze NFRs continuously. For example, a CI
server can run automated vulnerability assessments against an application and collect the

@ Springer



(2023) 28:144

Empirical Software Engineering

Page 14 of 29

144

v 109lo1g

4 102lo1g

 1eloig

D 19lo1g

g 19loig

v 109lo1g

Sunyoer) anss|

UOTBWOINE 1S3,

IOAIRS [D

WIISAS [0UOD UOTSIOA
JUSWAFRURW 9POJ A0INOS

uoneWO)NE JSA,
IOAISS [D

WoISAS [0ONUOD UOISIOA
JUSWASBUBW POD 30INOS

uuojerd pnopD
uonEWO)Ne IS,
JOATRS [D

UOTJBWOINE JSA,
JOAIRS [D

WOISAS [OUOD UOTSIIA
JUQWASEURW 9POD ADINOS

UOTBWOINE JSA,
JOAIRS [D

WOISAS [OUOD UOTSIIA
JUQWASBUBW 9POD ADINOS

uonewone s3],
IOAIRS D

wWo)SKS [0IUOD UOISIOA
JUOWAZBURW QPO AJINOS

WISAS
Joueuy e ur eyep Aoeand 1osn)

WISAS aIeJ[oM B UI
sysanbar 1asn jo djex KoeIndoe Ay,

QOIAIIS Gom
B UI BJEP PUB SAOIAdP J[Iqour
SurSeuew Jo owny JI0SSAV0IJ

WAISAS
Sunyueq € U SJUNODIOE PUE SISSN )8
-a10 0) s)sanbar jo awrn ssuodsoy

QOIAIIS
yiomyau d[iqowr e ur suondrosqns
Josn SurSeuew jo awn asuodsoy

QOIAIRS [RIOURUY
B Ul SJUNOJOE UIIM)AQ SUOTIOR
-sueqyjuowed Jo owir asuodsoy

‘uondA1ous Surinbar swalt eyep
Jo Ioquunu [e10) 9y} ST g pue ‘A[1oa1
-100 paydAous sw)r elep Iosn
JOo Ioquinu Ay} SI Y aIoym ‘q/y
= Ddda :(Qda) uondimnus ereq

"QIIAIRS B AQ PIssd

-o1d sysenbar gy jo Joquinu [e)0)
oy} ST g pue ‘sysenbar [y pa[rey Jo
JaquInud STy A1yMm ‘g/V =JVOV
:(YVOV) si1senbar 4y Jo AdeIndoy
‘syse) Ay waojrad

0} paxmbar st jey) owrn uonerado
SI g pUE ‘S)SB) JO ]IS B JNOXd 0)
paxmbar owr) 10889001d ST |7 919y M
‘a/v = Nd :(Nd) 93esn 10ss2001d

‘sosuodsax
painseaw Jo Joquunu dy) SI U pue
9sonbai e 01 puodsar 03 saye) 9014
-I9S B JRY) QW A SI 1y dIyM
‘u(uy + 4+ 2V + 1V) = LIN
(IIN) Qwi], osuodsay UBIA

Aunoag

ERlUAIROIRER |

wreu Jo2fo1g

sjuouodwod 1D pajeay

s302foad parpnys oy ur eleq

soreuw AN

adA1 AN

s100foxd Termsnput parpnys oY) ur Sunse) IYIN pPIeWOoINe I0J SOINAW YN PoIoenxg 9 3|qel

i
[
50
=)
g
o
)
Sl



144

Page 15 of 29

(2023) 28:144

Empirical Software Engineering

wuojierd pnopD
uoreWONe IS,

JOATRS [D

W)SAS [ONUOD UOISIIA

QOTAIS JIOMIQU JIGOW © UT
puodas 1ad ssedor 1asn J[puey

*$9559008 198N $$3001d 03 JwW) [£10)
ay) st 1g pue ‘porrad Swm B UIHM
J[puBY UBD JDIAISS B JBY} SSIO0E
19sn [e)0} oY) SI 1y AIaym ‘(ug
++ 1DV ++ TV) = JIN
(dYN) 2w jun ur passedoxd

g 109lo1g JUOWASEURW 9POd JINOS 0) WAsAs ' Jo Apiqeded ayg, s)sonbar jo Ioquinu  WNWIXB]A Annqeis
sisA[eue 9pood oneIs
IOAIDS [D
g ‘v 19loig JuswSEURW 9POJ A0INOS V/IN V/IN Ayiqeurejurejy
uuojierd pnopD 'sjsanbaz
JUSWATRURW S)ORJNIY po[Ie} JO Ioquinu dy) SI U pue
UOTJBWOINE JST, ‘sysonbar 1osn poqrej oY) I9A0991
IOAIRS [D QOIAIS JI0MIAU J[IqOW 0] Qwm [e10) Ayl SI 1y QIYM
WISAS [0NUOD UOISIOA © UT SaIN[TR} WOIJ Blep [Iqoul ‘upuy + 4 v + 1V) = THIN
g 109lo1g JUSWAFRURW 9POI A0INOS SuIssooor JO own AIA0IIY (LAYIN) Qwn  AIOAOJAI  UBIIN Aiqeress
Sunyoer) anss|
apue ) JUSWAZRURW S)ORJNIY
g ‘v 19lo1g IOAIRS [D SwRISAS [ UT SANI[IQRIdUTNA (VA) yuawssasse AJ[Iqeroung
wuojierd pnop)
JuoWSeURW $)ORJNIY uoneorjdde qgom
D 109fo1g IOATRS ID B UT $10BJTIIR J0J SYSTI ALINO3S 159) UOTIEIIOURJ
"BJEp 0)
S955900€ PAINIAXd JO Ioquunu I}
Sunryoer) anssy SI g pue ‘s30[ AJLINd3S Ul papIodal
UOTJBWOINE JST, QOTAIOS YIOM}oU SOSS200B JO JoqUINU oY) ST |/ d10UyMm
g 109loig JOAIRS D Q[IqOW B UL BJEp $SA00B IAs() ‘4/V = VDN ‘Npne ssadde 19s()
Qureu Jo9fo1g sjuauodwod 1) paje[oy s309fo1d parpnys oy ur ereq soIRW AN odK) AN

panunuod 9 3jqel

pringer

Qs



144 Page 16 of 29 Empirical Software Engineering (2023) 28:144

o
enable MNofifications
:{> Quality trend
[2)
-
c
(4] -
£ metrics
c
°
= Source code management
> Version control system
g Clserver Data (representation)
== | contain|Test automation P
o Artifacts management rocuc
Static code analysis
Clout platform }Ost { Products J { Tools
Issue tracking

Fig. 4 The uses of CI environments for NFR testing through synthesizing the collected data from industrial
participants

number of detected vulnerabilities to support security evaluation. This finding implies that
CI environments can be vital in supplying data for NFR measurements and automated test
executions.

To demonstrate practitioners’ views on how CI contributes to metrics and NFR testing,
we transform the collected information into a flowchart, as shown in Fig. 4. What stands
out in the figure is that CI environments consist of components that can produce data from
products (e.g., source codes) and tools (e.g., CI tools) to develop metrics for NFR testing.
Below we describe two typical examples of NFR evaluation to clarify the usage of CI from
products and tools’ perspectives.

Example 1 CI components produce data from software products to support NFR validation.
For instance, the stability measurement steps in Project B are:

1. Developers implemented test cases to measure the maximum number of requests pro-
cessed in unit time (MRP), and tests are managed in a CI source code management
component.

2. CI server executes the tests and collects data, such as the total number of user requests
(e.g., 10000) and test execution period (e.g., 200 seconds), when the source code is
changed.

3. CI server uses the collected data and records metric results (e.g., MRP = 10000/200 =
50).

4. CI server notifies developers about the quality impact of their code changes.

5. Clmonitors metric results persisted in a cloud platform for further quality improvements.

These steps, which are supported by CI components, connect each other and can hardly
be replaced by manual work. Without CI components, the extra effort might be required to
collect and monitor test data, and the seamless connection between measurement steps would
be broken.

Example 2 CI components with associated tools generate data to enable NFR verification.
For example, security tools, like Trivy or Anchore, to manage vulnerability assessment in
Project A, and the measurement steps are:

1. CI server integrates security scanning tools to scan build artifacts (e.g., Jar files) stored
in the artifacts management component.
2. CI server generates vulnerability reports after the scanning job is finished.

@ Springer



Empirical Software Engineering (2023) 28:144 Page170f29 144

3. ClI notifies developers about the new/resolved vulnerabilities.
4. CI produces the vulnerability trend in a chart and uploads it to a cloud platform.

Some tools can be deployed outside of CI environments for developers, but additional budget
and work could be expected to maintain the tool out of a CI environment for development
teams.

Additionally, we noted that two NFRs may influence each other negatively. For example,
client-server applications in a banking system could require extra security algorithms or
protocols (Remlein and Stachowiak 2021) to exchange data across a network communication
for better data integrity. When the system deals with a large number of user requests, the
network performance may decline. CI-based metrics for this particular case can be used to
catch relevant quality fluctuation and provide developers fast feedback, but significant quality
drops or growths requires to be analyzed manually.

The next chapter moves on to investigate how individual and multiple components in a
CI environment impact the NFR testing.

4.3 RQ3: How are Cl Environments Contributing to NFR Test Capabilities?

We have examined the connection between CI components and NFR testing by referring to
the data that we collected. Our examination is presented in terms of the following:

1. Software tools that enable automated NFR testing,
2. Individual CI components used for automated NFR testing,
3. Sets of CI components used for automated NFR testing.

4.3.1 Software Tools that Enable Automated NFR Testing

First, in each of the projects that we studied, we mapped the identified NFRs to the relevant
CI tools based on participants’ inputs stating which tools were used for a particular NFR
type.

As shown in Table 7, each NFR type connects to multiple CI tools. Some tools can enable
specific NFR tests, whilst others support NFR evaluation. We observed that using tools can
positively impact a test’s effectiveness with respect to the implementation effort for NFR
metrics. For instance, the Postman tool was used to enable more effective performance tests.
Other tools were used to make NFR testing more efficient.

Table 7 A mapping between the identified NFR types and software tools

Types of NFRs Tools enable NFR testing Tools support NFR testing

Performance Postman, JMeter, Junit Bitbucket, VMware, Jenkins,
Jfrog artifactory

Security ZAP, Anchore, SonarQub Jenkins, Jfrog artifactory

Scalability JMeter Jenkins, VMware

Maintainability JMeter Jenkins, VMware

Stability Junit Jenkins, VMware

@ Springer



144 Page 18 of 29 Empirical Software Engineering (2023) 28:144

4.3.2 Individual Cl Components Used for Automated NFR Testing

To discover which CI components (Yu et al. 2020) have been adopted for automated NFR
testing, we analyzed the extracted data using the following steps:

1. List the identified types of NFRs and test tools that were identified.
2. Group the tools into CI tool categories.
3. Map the identified categories of CI tools to CI components (Yu et al. 2020).

CI components, such as continuous integration server(CIS), artifacts management(AM),
and static code analysis(SCA), can enable particular NFR evaluation. For example, in Project
D, CIS component used the ZAP plugin to scan security vulnerabilities. In Project A, AM
component evaluated security issues from a snapshot or release package, thereby enabling
security testing. CIS component was instrumental in enabling the automated execution of
NFR test cases. In Project B, SCA component verified maintainability issues in the source
code.

Other CI components, such as version control system, source code management, cloud
platform, and issue tracking can be used to efficiently manage the source codes of NFR test
cases with version-control efficiently, maximize the use of hardware resources (for example,
CPU, memory, and disk space), and track test results.

Some components (for example, static code analysis) can be deployed as a standalone
application. However, to maximize the capabilities of test tools and to acquire optimal value,
it is essential that they can be integrated into a CI environment.

4.3.3 Sets of Cl Components for Automated NFR Testing

A single CI component can generate limited value for automated NFR testing. For instance,
the static code analysis component can enable automated security tests and provide feedback
regarding the level of a source code, but this component cannot provide feedback on a service
or system level.

Several CI components packaged together in an environment can provide better conditions
for automated NFR testing. For example, CIS, AM, and cloud platform components were
used in Project C to enable and support system-level security tests. These components thus
expand on automated security tests, from the source code to the system level.

A package of CI components brings several benefits to automated testing. Larger CI
environments may well be associated with more complexity, but more capability in terms
of automated testing can be achieved in return. Some NFRs (for example, performance in
the projects studied here) require the presence of five different CI components in order to be
fully automated. Note that the same CI components can also be used to evaluate the other
NFRs (for example, security, scalability, and stability). This finding suggests that the larger
the number of CI components that a project uses, the more capabilities it has for automated
NFR testing.

4.4 RQ4: What Challenges are Associated with Automated NFR Testing?

This section presents the challenges for NFR testing as elicited in our study. The main
challenges that practitioners described were difficulties in automating NFR tests, barriers to

@ Springer



Empirical Software Engineering (2023) 28:144 Page190f29 144

analyzing NFR issues, and challenges with NFR monitoring. We also reflect on the findings
of the NFR testing and explain how these challenges can be mitigated.

Challenge 1: NFR test-automation could be difficult for products with complex
dependencies between sub-modules. Dependencies exist among system components due
to the cross-cutting nature of NFRs. As a practitioner stated, which was also confirmed by
the others, “For many cases, when we succeed in making an NFR work well for a system
module, unexpected issues appear at some point in another module which is annoying.” To
mitigate this issue, a higher frequency of software integration through CI environments is
needed, which could increase the chances of catching potential interoperability issues as early
as possible in the development stage. This finding is consistent with a similar issue reported
by Karhapii et al. (2021).

Challenge 2: Resolving NFR issues may require joint teams’ effort. Difficulties related
to NFR root-cause analysis were reported in all studied projects. As the organizations in our
study split NFRs into smaller parts and distributed them to many teams, there were risks that
the debugging of NFR issues would be complex while teams were growing. When a fault is
found, the root cause analysis is slowed down. To mitigate this challenge, CI components (for
example, issue tracking) can be used to narrow down NFR matters by using CI test reports,
which means practitioners can identify NFR-related issues earlier with the support of CI.
This challenge was also reported by Alsaqaf et al. (2019); however, Alsaqaf et al. focused
on strategies to manage quality requirements instead of automated testing.

Challenge 3: it is challenging to track the NFR development life-cycle. When we asked
about the NFR development life-cycle, practitioners were unanimous in the view that there are
lacking information on how to track NFRs. One reason could be that tacking NFRs concerns
software design, implementation, testing, and release. Manual work to monitor overall NFRs’
state from source codes to release packages might be executable in some cases, but doing
so could introduce human faults or inconsistent quality reports. Therefore, monitoring NFRs
through CI environments is beneficial, confirmed by prior studies, such as Lépez et al. (2022)
and Sas and Avgeriou (2020). Our study results show that CI components can produce data
from products’ source files to support NFR testing. Moreover, practitioners reported that
developers add requirements’ index IDs in their source code commits to increase traceability,
and the index IDs are included in the release note of a software delivery. Combining the study
results and practitioners’ feedback, a potential solution to mitigate this challenge is adding
the requirements’ ID in each source code commit and using CI to collect and monitor this
ID across requirements, implementation, test reports, and release packages.

Challenge 4: CI environments’ stability affects NFR testing. As a practitioner stated
that “unstable CI environments fail NFR tests more often.” Hardware resources (e.g., CPU,
memory, disk) in a CI environment and network issues between CI components could cause
NEFR tests to fail, which may result in many false positives in test reports. Such issues become
more sensitive for NFR testing, as some NFR evaluation (e.g., system latency) depends on a
reliable test environment. Addressing this kind of issue is challenging since a CI environment
contains different components and tools with complex data traffic, event-based interactions,
and network configurations. Further research that investigates how to maintain stable CI
environments for better NFR testing is needed since limited empirical studies were found in
this research area.

Challenge 5: NFR test-report analysis is difficult to be performed. We examined
multiple automated NFR tests executed in CI environments and where the test results were

@ Springer



144 Page 20 of 29 Empirical Software Engineering (2023) 28:144

sent back to the developers. However, the NFR test results were not stored for aggregated
visualization and analysis due to lack of knowledge. As a practitioner mentioned that “it is
hard to know what information to gather while looking over NFR test reports.” Over half
of the practitioners confirmed this issue. Practitioners’ feedback shows the importance of
having a dashboard for storing and analyzing NFR test data, which helps improve system
qualities continuously. Therefore, further study with more focus on collecting and analyzing
NFR test results is suggested.

5 Validity Threats

We discuss several threats to the validity of our study and present the steps that we took to
mitigate these threats.

Internal validity: The following measures were taken to ensure the internal validity of the
results. We followed the case study guidelines presented by Runeson and Host (2009). The
interview questions were thoroughly tested and validated to (i) improve their quality (for
example, by improving the consistency of the questions and reducing their ambiguity) and
(ii) address potential ethical issues (for example, obtaining informed consent, and ensuring
data privacy and data anonymity).

Although an interview guide was used by the researchers in this study, some of the inter-
view questions could have been misinterpreted, leading to inaccurate answers that could have
introduced errors or other flaws in the data. The questions were included in the interview
guide were carefully reviewed and tested by industrial practitioners and the researchers to
mitigate this threat. The study results were also verified by sending the study results to the
practitioners.

External validity: We investigated different software development companies that contain
small, medium, and large software projects from diverse business domains, and all the studied
companies operate in different contexts. However, the companies were delimited to those in
the Nordic countries. This delimitation influences the generalizability of the results, since
geographic location and culture affects work practices. As such, we make no claims, although
possible, of the applicability of the presented results outside the Nordic countries.

We strategically selected a diverse range of industrial projects to increase the probability
that the data set that was ultimately selected is representative of as many software development
companies as possible. However, our data sample is small, therefore, it is important to consider
that some projects might use CI environments for NFR testing in other business domains,
thereby providing us with supplementary data on automated NFR tests.

Construct validity: Since the aim of this study is to explore NFR testing using CI compo-
nents in industrial practice, we studied the phenomenon in multiple industrial contexts. All
of the participants were screened before we conducted the interviews to ensure that they were
suitable candidates for the study. Consequently, we sought to, but never employed, exclu-
sion of employees who did not know CI, who had never done testing before, and also new
employees. Another risk was that participants would not want to report on the challenges that
the company currently has, which was mitigated by assuring that all collected information
would be anonymous and confidential.

Conclusion validity: Three researchers independently devised coding schemes that were
used to transcript interview recordings. The coding schemes were discussed to form a common
understanding of how the transcripts were coded. However, the synthesis of collected codes is
more subjective, and a different set of researchers could generate different results. To mitigate

@ Springer



Empirical Software Engineering (2023) 28:144 Page210f29 144

this threat, the results were shared with key actors who had knowledge about the CI and NFR
testing in each company. Additionally, the participants reviewed this manuscript to validate
that the included information was accurate.

6 Discussion

We have investigated practices for automated NFR evaluation in CI environments and related
challenges in software development companies. The practices could help practitioners for
their decisions concerning (i) automate NFR evaluation in a CI environment or (ii) improve
existing CI environments and NFR testing capabilities. Based on the findings, we discuss the
implications for practitioners and researchers and result generalization.

6.1 Implications for Practitioners

Our findings have implications for developers and testers working in software development
companies who struggle with NFR quality improvements. For example, most of the partici-
pants in this study reviewed our theoretical model and reported that the model we developed
improved their ability to understand how CI can contribute to NFR testing. This suggests that
our findings could be effective for other engineers to be aware that there are great potential
capabilities in CI environments to be used for better-automated NFR testing. Our findings
confirm prior publications, such as Garousi et al. (2017) and Wang et al. (2022). The results of
identified NFR metrics suggest that using CI data to measure NFRs could lead to reliable and
consistent test results. These metrics could be easily implemented in various organizations,
including small businesses and large corporations. It is important to note that our study was
conducted in limited cases, meaning many other metrics may be used for the same purposes
in some cases.

We observe that multiple metrics can evaluate a particular NFR from different perspectives.
For example, two metrics, like UCA and VA in Table 6, were used for security testing, and
participants from project B stated that positive security impacts were generated by using
them. This indicates that using metrics may increase the possibility of detecting issues for
developers since different NFR metrics offer a broader view to measure the testing of a
specific NFR. Metrics can transform vague NFR evaluation into concrete methods, including
measurement definitions (Lopez et al. 2022), formulas, and input data. This finding agrees
with the results reported by Colakoglu et al. (2021). However, we did not find detail impacts
of using multiple metrics for quality attributes’ trade-offs in the previous publications, and
more empirical studies in this research area are needed.

We observe that international standards for quality measurements have been used to define
specific NFR metrics in our study. For example, in Project B, ISO/IEC 25023 (ISO/IEC-25023
2016) standards were used to define the metric named MRET in Table 6 to measure system
scalability. A few participants mentioned that using international standards can reduce the
effort of test design and implementation, as the standards already provide detailed steps to
define metrics (ISO/IEC-25023 2016). We are not sure why the other selected projects did not
use international standards, but there are a few possible explanations. One possibility is that
the product in Project B is large and mature serving global customers that may comply with
specific standards in their requirements. This finding confirms the value of using international
standards for NFR evaluation in the industry.

@ Springer



144 Page 22 of 29 Empirical Software Engineering (2023) 28:144

Furthermore, we learned that NFR priorities impact software quality while interviewing
participants. For example, in the studied projects, security and performance were validated
in priority, as they reflect the quality of external interfaces in a system and are visible to
customers. While some NFRs, like maintainability, are mainly visible to the developer(s)
and are thus neglected during testing or in low priority. This suggests that our findings
could help practitioners be aware of the importance of reviewing the NFR test plan with
relevant stakeholders. As confirmed by Werner et al. (2020), the review allows developers to
have a common understanding (Werner et al. 2020) of NFR goals, which helps implement
automated tests and spot test obstacles. Moreover, NFRs include many quality attributes,
making it difficult to develop automated tests covering all quality attributes. A guide for NFR
prioritization can be found in the model presented by Svensson et al. (2011).

6.2 Implications for Researchers

From a research perspective, implications for researchers include:

— The study provides insights into the implementation of NFR verification in CI environ-
ments, offering a foundation for further research in this area. Researchers can build upon
these findings to investigate more extensive connections between CI components, NFR
metrics, and challenges, exploring additional possibilities that may exist beyond those
identified in this study.

— Further investigation is needed to explain why certain beneficial NFR metrics, which have
potential to improve software quality in companies, are not used. This opens opportunities
for future research to explore the barriers or reasons behind the underutilization of such
metrics, providing a deeper understanding of the factors influencing their adoption.

— The observation that ISO/IEC 25023 standards were utilized in defining specific NFR
metrics in one of the studied projects emphasizes the importance of exploring the role of
international standards in NFR evaluation. Future research could explore into the benefits
and challenges of adopting international standards for the evaluation.

6.3 Result Generalization

We adopt case-based generalization (Wieringa and Daneva 2015) strategies to make infer-
ences about applying study findings in wider software development companies, as the sample
for this study consisted of a small group of companies. Ghaisas et al. (2013) have reported
seven main lessons learned while generalizing the findings from three industrial case studies
to a larger population by examining software components’ architectural similarity.

Our inference of generalizing by similarity contain below steps:

1. Triangulation: we collect data from multiple sources and use a thematic coding method
transforming Cl-related data into a component-based architectural view and NFR eval-
uation into specific metrics to improve the ability to generalize study findings.

2. Comparative analysis: we compare the findings of the studied projects to identify common
CI components/tools and NFR metrics to generate more generalizable conclusions.

3. Participant feedback: we share study results with participants and collect their reviews
to validate study findings, which aim to increase the generalizability of the study results.

@ Springer



Empirical Software Engineering (2023) 28:144 Page230f29 144

4. Contextual analysis: we examine the contexts of all studied industrial projects (see
Table 1) to identify the factors that may influence the study findings and consider their
potential impact on the generalizability.

Based on our analysis of the selected cases, we identified several common themes related to
the impact of NFR testing. These themes include the maturity of the CI environment (Garousi
et al. 2017) (e.g., immature, growing, expansion, mature), the size of a project (Petersen and
Wohlin 2009) (e.g., small, medium, large), and the number of engineers (Petersen and Wohlin
2009). Despite the limited scope of our study, which examined four companies, including
two international ones, we believe that the results have wider implications for software
development companies that share similar characteristics and themes presented in Table 1.
Further research is needed to confirm and extend our findings.

7 Conclusion and Future Work

This study aims to investigate the use of CI environments for automated NFR testing. Through
amulti-case study in software development companies, the findings provide a comprehensive
overview of the NFR testing practices including test tools, CI components, and metrics used
in the industry.

The study results indicate that utilizing metrics with data generated by CI environments
can improve the NFR testing. We have found that a variety of metrics using data produced
by CI environments support NFR testing through this study. The uses of metrics and CI
environments allow for the testing in automated processes and early detection of NFR issues.

However, we identified several challenges associated with using CI environments in NFR
testing. These challenges include a lack of knowledge of verifying system qualities through
CI environments, difficulties in NFR debugging, and missing issue-tracking processes.

To enhance understanding of the specific contributions of CI to NFR testing, we proposed
a theoretical model that reveals the potential of CI components to generate data from product
artifacts, which can be used to generate metrics to support NFR evaluation. This model serves
as a useful tool for practitioners to understand how metric data generated by CI components,
and metric outcomes can be shared and visualized through notifications and quality trends
enabled by CI, which are helpful to mitigate the aforementioned challenges of NFR debugging
and issue tracking.

Overall, the study’s findings suggest that while CI environments can provide many benefits
for the NFR testing, they also come with challenges. With the proposed model, which provides
understanding of how data from CI components can support NFR metrics, organizations can
evolve their existing CI environments to achieve better test processes.

We recognize the limitations of our study, although we examined a heterogeneous set of
companies. Additional data collection from more case studies in other domains and contexts
is required in the future. Such data would help us better understand the CI environment and
identify more NFRs that can undergo Cl-based testing.

In future work, we intend to (i) focus on the role of CI components and (ii) implement
probes using machine-learning algorithms to deal with NFR test data. The data can then be
used to (iii) suggest CI improvements in achieving data-driven testing. This follows from the
idea that each CI component produces unique data that can be of value for NFR testing if
this data is collected throughout the CI cycle.

@ Springer



144 Page 24 of 29 Empirical Software Engineering (2023) 28:144

Appendix A: Interview Guide

Preparation
Below actions should be considered to improve the instrumentality and address potential
biases.

1. Explain the purpose of the interview.

2. Explain the NFR, e.g. product characteristics or quality requirements mapped to
performance, security, maintainability etc.
Explain the anonymity and confidentiality of the input data during the interview.
Indicate how long the interview takes (about 30 mins).
Share contact information with interviewees.
Record interview context, e.g. audio, video, or document etc.

oo

Interview questions
= How does the existing CI environment look like from a component level based on
your perception?
o Could you please describe the CI environment in general from a component
level?
o What are the software tools used for each CI component?
= How do you use the CI environment in your daily work?
o How do you normally commit source code changes while collaborating with
multiple teams together?
o How have your source codes been reviewed and analyzed by using the CI
environment and why in this process?
o What kind of tests has been used to analyze source code changes and in which
tool?
o What is the estimated average waiting-time to get the feedback from a CI
server, if we count at the time you push a commit to a source code repository?
o How have your daily work been influenced by using the continuous integration
environment?
= How do you use CI environment for NFR testing?
o What kind of NFR-related tests have been implemented in your team and how
much time does it take to execute the testing based on the usage in the team?
Why and why not?
o How have the NFRs been tested and verified by utilizing the existing CI
environment? Why and why not?
o What are the software tools that have been used for NFR testing?
o How do you track NFRs by using the CI environment and in which tool?
= Do you see any challenges in the current techniques, tools, or practices regarding
automated NFR testing?
o What area of improvement would you like to see related to CI-based NFR
testing?
o Do you have any suggestions for the improvement?

@ Springer



Empirical Software Engineering

(2023) 28:144

Page250f29 144

Appendix B: Primary Codes Extracted from Interviews

ID  Code name Description Interviewee ID
1 Performance Statements about both manual and T2,T4,T5,T7, T8, T11,T12,T13,
tests automated tests on performance. T14,T15,T17,T18,T19,T20,T22
2 Security tests Statements about both manual and T1,T4,T5,T6,T7,T8,T9,T10,T13,
automated tests on the security. T14,T15,T17,T18,T19
3 Upgrade tests Statements about the test of upgrading T3,T10
a system.
4 Maintainability ~ Statements relating to debug and repair. T9,T11,T12
5 Stability tests Statements about the test of a system T3,T10,T12
load in a limited time period.
6 Scalability Statements relating to the high T2,T5,T9,T12
availability of services in production.
7 Fault tolerance Statements about a system continue T12,T14
to operate well in the event of a failure.
8 Automated Statements about test cases that T1,T2,T3,T4,T5,T6,T7,T8,T9,T12,
testing executed by using CI jobs. T14,T16,T18,T19,T20,T21,T22
9 Source codes Statements related to codes of test cases T1,T2,T3,T4,T5,T6,T14,T15,T16,
e.g., JAVA, Python, C++, etc. T17,T18,T19,T20,T21,T22
10  Code review Statements about the code reviews. T1,T2,T3,T4,T5,T6,T7,T8,T9,
T14,T15,T17,T18,T20,T21,T22
11 Version control ~ Statements about the version control T1,T2,T3,T7,T8,T14,T15,T17,
system in a CI environment. T18,T19,T20,T21,T22
12 Continuous Statements about continuous T1,T2,T4,T5,T6,T7,T8,T9,T13,
integration integration solution or strategy. T14,T15,T17,T18,T19,T20,T21,T22
13 Code analysis Statements about the static code analysis.  T1,T2,T3,T4,T5,T6,T9,T12,T13,
T14,T15,T20,T21
14 Artifacts Statements about how to handle build T2,T3,T5,1T9,T10,T11,T12,T13,T16
management snapshots or release packages. T17,T18,T19,T20,T22
15 Issue tracking Statements on how to handle failed tests. T2,T3,T4,T5,T6,T7,T8,T10,T11,
T14,T15,T20,T21,T22
16  Feedback Statements about the average T1,T2,T3,T4,T5,T6,T7,T8,T9,T13,
time execution time for CI jobs. T14,T15,T17,T18,T19,T20,T21
17 Gerrit Statements about a tool T1,T2,T3,T4,T5,T6,T14,T15,T16,
Bitbucket to manage source codes or files. T17,T18,T19,T20,T21,T22
18  Jenkins Statements about a CI tool. T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,

T11,T12,T17,T18,T19,T20,T21,T22

@ Springer



144 Page 26 of 29 Empirical Software Engineering (2023) 28:144
ID  Code name Description Interviewee ID
19  Xray Statements about atool to check security ~ T2,T3,T4,T5,T7,T8,T10,T11
ZAP vulnerability risks. T17,T18,T19
20  Postman Statements about a tool to test T2,T4,T5,T7,T8,T11,T12,T13,
JMeter performance of REST API requests. T14,T15,T17,T18,T19,T20,T22
21 SonarQube Statements about the SonarQube T3,T7,T9,T10,T11,T12,T14,T15
for scanning source codes. T20,T21
22 Jfrog Statements about a tool to T2,1T3,T5,T9,T10,T11,T12,T13,T16
Artifactory handle build artifacts. T17,T18,T19,T20,T22
23 Kubernetes Statements relating to the technology T2,T3,T6,T7,T9,T12,T13,T14,T15
to manage containerized applications.
24  VMware Statements about a cloud platform T2,T3,T5,T9,T10,T11,T12,T13,T16
AWS to manage hardware resources. T17,T18,T19,T20,T22
25  Trouble report Statements about the tools T7,18,T9,T10,T11,T12,T14,T15
JIRA to report bugs or issues. T17,T18,T20,T22
26  Ansible Statements about a tool T2,1T3,T6,1T7,T9,T12,T13,T14,T15
Vagrant to automate processes or events.

Acknowledgements We acknowledge support from the KKS Foundation through the S.E.R.T. Research Pro-
file Project and the KKS PLEng 2.0 at Blekinge Institute of Technology.

Funding Open access funding provided by Blekinge Institute of Technology.

Declarations

Conflicts of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aljallabi, BM, Mansour, A: Enhancement approach for non-functional requirements analysis in agile environ-
ment. In: 2015 international conference on computing, control, networking, electronics and embedded
systems engineering (ICCNEEE), pp 428-433. IEEE (2015)

Alsaqaf W, Daneva M, Wieringa R (2019) Quality requirements challenges in the context of large-scale
distributed agile: An empirical study. Information and software technology 110:39-55

Boehm, B, Basili, VR: Software defect reduction top 10 list. Foundations of empirical software engineering:
the legacy of Victor R. Basili 426(37), 426-431 (2005)

Bougoufta, S, Diehm, S, Schwarz, M, Vogel-Heuser, B: Scalable cloud based semantic code analysis to support
continuous integration of industrial plc code. In: 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN), pp 621-627. IEEE (2017)

@ Springer


https://rethought.se
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2023) 28:144 Page270f29 144

Cajander, A, Larusdottir, M, Gulliksen, J: Existing but not explicit-the user perspective in scrum projects in
practice. In: IFIP Conference on Human-Computer Interaction, pp 762-779. Springer (2013)

Cannizzo, F, Clutton, R, Ramesh, R: Pushing the boundaries of testing and continuous integration. In: Agile
2008 Conference, pp 501-505. IEEE (2008)

Chen L (2015) Continuous delivery: Huge benefits, but challenges too. IEEE software 32(2):50-54

Chung, L, do Prado Leite, JCS: On non-functional requirements in software engineering. In: Conceptual
modeling: Foundations and applications, pp 363-379. Springer (2009)

Colakoglu FN, Yazici A, Mishra A (2021) Software Product Quality Metrics: A Systematic Mapping Study.
IEEE Access 9:44647-44670. https://doi.org/10.1109/ACCESS.2021.3054730, https://ieeexplore.ieee.
org/document/9336003/

CorbinJM, Strauss A (1990) Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative
sociology 13(1):3-21

Cruzes, DS, Dyba, T: Recommended steps for thematic synthesis in software engineering. In: 2011 International
Symposium on Empirical Software Engineering and Measurement, pp 275-284. IEEE (2011)

Dlugi, M, Brunnert, A, Krcmar, H: Model-based performance evaluations in continuous delivery pipelines.
In: Proceedings of the 1st International Workshop on Quality-Aware DevOps, pp. 25-26. ACM (2015)

Fitzgerald B, Stol KJ (2017) Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software 123:176-189

Garousi V, Felderer M, Hacaloglu T (2017) Software test maturity assessment and test process improvement:
A multivocal literature review. Information and Software Technology 85:16—42. https://doi.org/10.1016/
j-infsof.2017.01.001, . https://linkinghub.elsevier.com/retrieve/pii/S0950584917300162

Ghaisas, S, Rose, P, Daneva, M, Sikkel, K, Wieringa, RJ: Generalizing by similarity: Lessons learnt from
industrial case studies. In: 2013 1st International Workshop on Conducting Empirical Studies in Industry
(CESI), pp 37-42. IEEE (2013)

Gorschek T, Wohlin C (2006) Requirements abstraction model. Requirements Engineering 11(1):79-101

Gregor, S: The nature of theory in information systems. MIS quarterly pp 611-642 (2006)

ISO/IEC-25023: Systems and Software Engineering: Systems and Software Quality Requirements and Eval-
uation (SQuaRE): Measurement of System and Software Product Quality. ISO (2016)

Janus, A, Schmietendorf, A, Dumke, R, Jdger, J: The 3c approach for agile quality assurance. In: Proceedings
of the 3rd international workshop on emerging trends in software metrics, pp 9-13. IEEE Press (2012)

Junior, MC: Automated verification of compliance of non-functional requirements on mobile applications
through metamorphic testing. In: 2020 IEEE 13th International Conference on Software Testing, Vali-
dation and Verification (ICST), pp 421-423. IEEE (2020)

Karhapidi P, Behutiye W, Rodriguez P, Oivo M, Costal D, Franch X, Aaramaa S, Chora$§ M, Partanen J, Abherve
A (2021) Strategies to manage quality requirements in agile software development: a multiple case study.
Empirical Software Engineering 26(2):1-59

Khurum M, Petersen K, Gorschek T (2014) Extending value stream mapping through waste definition beyond
customer perspective. Journal of Software: Evolution and Process 26(12):1074-1105

Knauss, E, Pelliccione, P, Heldal, R, f\gren, M, Hellman, S, Maniette, D: Continuous integration beyond
the team: a tooling perspective on challenges in the automotive industry. In: Proceedings of the 10th
ACM/IEEE international symposium on empirical software engineering and measurement, p 43. ACM
(2016)

Lépez L, Burgués X, Martinez-Fernandez S, Vollmer AM, Behutiye W, Karhapii P, Franch X, Rodriguez P,
Oivo M (2022) Quality measurement in agile and rapid software development: A systematic mapping.
Journal of Systems and Software 186:111187

Mairiza, D, Zowghi, D, Nurmuliani, N: An investigation into the notion of non-functional requirements. In:
Proceedings of the 2010 ACM symposium on applied computing, pp 311-317. ACM (2010)

Miller, A: A hundred days of continuous integration. In: Agile, 2008. AGILE’08. Conference, pp 289-293.
IEEE (2008)

Nouacer R, Djemal M, Niar S, Mouchard G, Rapin N, Gallois JP, Fiani P, Chastrette F, Lapitre A, Adriano
T et al (2016) Equitas: A tool-chain for functional safety and reliability improvement in automotive
systems. Microprocessors and Microsystems 47:252-261

Paixdo, KV, Felicio, CZ, Delfim, FM, de A Maia, M: On the interplay between non-functional requirements
and builds on continuous integration. In: Proceedings of the 14th international conference on mining
software repositories, pp 479-482. IEEE Press (2017)

Petersen, K, Wohlin, C: Context in industrial software engineering research. In: 2009 3rd international sym-
posium on empirical software engineering and measurement, pp 401-404. IEEE (2009)

Rathod, N, Surve, A: Test orchestration a framework for continuous integration and continuous deployment.
In: Pervasive Computing (ICPC), 2015 International Conference on, pp 1-5. IEEE (2015)

@ Springer


https://doi.org/10.1109/ACCESS.2021.3054730
https://ieeexplore.ieee.org/document/9336003/
https://ieeexplore.ieee.org/document/9336003/
https://doi.org/10.1016/j.infsof.2017.01.001
https://doi.org/10.1016/j.infsof.2017.01.001
https://linkinghub.elsevier.com/retrieve/pii/S0950584917300162

144 Page 28 0of 29 Empirical Software Engineering (2023) 28:144

Rehmann KT, Seo C, Hwang D, Truong BT, Boehm A, Lee DH (2016) Performance monitoring in sap hana’s
continuous integration process. ACM SIGMETRICS Performance Evaluation Review 43(4):43-52
Remlein, P, Stachowiak, U: Security verification in the context of 5g sensor networks. Journal of telecommu-
nications and information technology (2021)

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software engineering.
Empirical Software Engineering 14(2):131

Sas D, Avgeriou P (2020) Quality attribute trade-offs in the embedded systems industry: an exploratory case
study. Software Quality Journal 28(2):505-534

Shahin M, Babar MA, Zhu L (2017) Continuous integration, delivery and deployment: a systematic review on
approaches, tools, challenges and practices. IEEE Access 5:3909-3943

Staron M, Meding W, Karlsson G, Nilsson C (2011) Developing measurement systems: an industrial case
study. Journal of Software Maintenance and Evolution: Research and Practice 23(2):89-107

Svensson, RB, Gorschek, T, Regnell, B, Torkar, R, Shahrokni, A, Feldt, R, Aurum, A: Prioritization of quality
requirements: State of practice in eleven companies. In: 2011 IEEE 19th international requirements
engineering conference, pp 69-78 (2011). https://doi.org/10.1109/RE.2011.6051652

Wagner, S: A literature survey of the quality economics of defect-detection techniques. In: Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering, pp 194-203 (2006)

Wang Y, Mintyld MV, Liu Z, Markkula J (2022) Test automation maturity improves product quality-
Quantitative study of open source projects using continuous integration. Journal of Systems and Soft-
ware 188:111259. https://doi.org/10.1016/j.jss.2022.111259, . https://linkinghub.elsevier.com/retrieve/
pii/S0164121222000280

Werner, C, Li, ZS, Ernst, N., Damian, D.: The lack of shared understanding of non-functional requirements in
continuous software engineering: Accidental or essential? In: 2020 IEEE 28th international requirements
engineering conference (RE), pp 90-101. IEEE (2020)

Werner, C, Li, ZS, Lowlind, D, Elazhary, O, Ernst, NA, Damian, D: Continuously managing nfrs: Opportunities
and challenges in practice. IEEE Transactions on Software Engineering (2021)

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Science of Com-
puter Programming 101:136-152

Wohlin, C, Runeson, P, Host, M, Ohlsson, MC, Regnell, B, Wesslén, A: Experimentation in software engi-
neering. Springer Science & Business Media (2012)

Yu L, Alégroth E, Chatzipetrou P, Gorschek T (2020) Utilising ci environment for efficient and effective testing
of nfrs. Information and Software Technology 117:106199

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Liang Yu is a Ph.D student at Blekinge Institute of Technology. His
research has been focused on automated testing and software CI/CD
processes. He has twelve years of industrial experience as a software
developer in Sweden.

@ Springer


https://doi.org/10.1109/RE.2011.6051652
https://doi.org/10.1016/j.jss.2022.111259
https://linkinghub.elsevier.com/retrieve/pii/S0164121222000280
https://linkinghub.elsevier.com/retrieve/pii/S0164121222000280

Empirical Software Engineering (2023) 28:144 Page290f29 144

Emil Alégroth is a senior lecturer at Blekinge Institute of Technol-
ogy. His research has been focused on automated testing, in particular
GUI test automation, with several impactful publications in the area.
Emil’s research has been primarily empirical in nature, conducted in
co-production with industry with companies such as Saab, Ericsson
and Spotify. He has also operated for several years as the CEO of a
company developing test solutions for industry and co-founded com-
panies in the domain of software testing.

Panagiota Chatzipetrou Chatzipetrou is an Associate Professor
(docent) at the department of Informatics at Orebro University in
Orebro, Sweden. As a researcher, she mainly focuses on empirical
studies under the different perspectives of software development.
Her research interests include - but are not limited to- applications
of statistical methods to quality problems in software engineering
and especially to requirements engineering and the exploitation of
human factor and the different views that ultimately determine the
quality of a software product and the product development. Also,
she has been working with decision support systems for the devel-
opment of software-intensive systems, large-scale agile (and global)
software development, and behavioral software engineering. She has
collaborated with a number of different Universities in Sweden and
in Europe.

Tony Gorschek is a Professor of Software Engineering at Blekinge
Institute of Technology (Sweden) and part time at Chalmers Univer-
sity. He has over fifteen years of industrial experience as a CTO, senior
executive consultant and engineer, but also as chief architect and prod-
uct manager. In addition, he has built up six startups in fields ranging
from logistics to Internet based services and algorithmic stock trad-
ing. Currently he manages his own consultancy company, works as a
CTO, and serves on several boards in companies developing cutting
edge technology and products. His research interests include empirical
software engineering, engineering security, technology and product
management, process assessment and improvement, quality assurance,
and value based lean development of software intensive products and
services.

@ Springer



	Automated NFR testing in continuous integration environments: a multi-case study of Nordic companies
	Abstract
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Research Questions
	3.2 Case Study Design
	3.3 Case Companies
	3.3.1 Prepare Interview Questions
	3.3.2 Select Participants
	3.3.3 Pilot Testing

	3.4 Data Collection
	3.5 Data Analysis

	4 Results
	4.1 RQ1:What Types of NFRs are Verified Through Automated Tests?
	4.2 RQ2: What Metrics are Used for Automated NFR Testing in Industrial Practice?
	4.3 RQ3: How are CI Environments Contributing to NFR Test Capabilities?
	4.3.1 Software Tools that Enable Automated NFR Testing
	4.3.2 Individual CI Components Used for Automated NFR Testing
	4.3.3 Sets of CI Components for Automated NFR Testing

	4.4 RQ4: What Challenges are Associated with Automated NFR Testing?

	5 Validity Threats
	6 Discussion
	6.1 Implications for Practitioners
	6.2 Implications for Researchers
	6.3 Result Generalization

	7 Conclusion and Future Work
	Appendix A: Interview Guide
	Appendix B: Primary Codes Extracted from Interviews
	Acknowledgements
	References


