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Abstract
A ring 𝑅 has unbounded generating number (UGN) if,
for every positive integer 𝑛, there is no 𝑅-module epi-
morphism 𝑅𝑛 → 𝑅𝑛+1. For a ring 𝑅 =

⨁
g∈𝐺 𝑅g graded

by a group 𝐺 such that the base ring 𝑅1 has UGN, we
identify several sets of conditions under which 𝑅 must
also have UGN. The most important of these are: (1)
𝐺 is amenable, and there is a positive integer 𝑟 such
that, for every g ∈ 𝐺, 𝑅g ≅ (𝑅1)

𝑖 as 𝑅1-modules for some
𝑖 = 1, … , 𝑟; (2) 𝐺 is supramenable, and there is a posi-
tive integer 𝑟 such that, for every g ∈ 𝐺, 𝑅g ≅ (𝑅1)

𝑖 as
𝑅1-modules for some 𝑖 = 0, … , 𝑟. The pair of conditions
(1) leads to three different ring-theoretic characteriza-
tions of the property of amenability for groups. We also
consider rings that do not have UGN; for such a ring
𝑅, the smallest positive integer 𝑛 such that there is an
𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑛+1 is called the gener-
ating number of𝑅, denoted gn(𝑅). If𝑅 hasUGN, thenwe
define gn(𝑅) ∶= ℵ0.We describe several classes of exam-
ples of a ring𝑅 graded by an amenable group𝐺 such that
gn(𝑅) ≠ gn(𝑅1).
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1 INTRODUCTION

This paper relates the group-theoretic properties of amenability and supramenability to the prop-
erty of having unbounded generating number (UGN) for rings. Following Cohn [13, 14], we
say that a ring 𝑅 has UGN if, for every positive integer 𝑛, there is no 𝑅-module epimorphism
𝑅𝑛 → 𝑅𝑛+1. This property is also referred to as the rank condition (see, for instance, [23]). How-
ever, the term UGN is particularly apposite because the property is equivalent to the assertion
that, for every positive integer 𝑛, there is a finitely generated 𝑅-module that cannot be generated
by fewer than 𝑛 elements (see Proposition 2.2((i)⟺(iv))).
We study the UGN property for rings that are graded by a group𝐺. Recall that a ring 𝑅 is graded

by 𝐺, or 𝐺-graded, if there is a collection {𝑅g ∶ g ∈ 𝐺} of additive subgroups of 𝑅 such that 𝑅 =⨁
g∈𝐺 𝑅g as additive groups and𝑅g𝑅ℎ ⊆ 𝑅gℎ for all g , ℎ ∈ 𝐺. For such a ring, each𝑅g is referred to

as a homogeneous component of 𝑅. Moreover, 𝑅1 is a subring of 𝑅, called its base ring. The support
of 𝑅, denoted Supp(𝑅), is defined by Supp(𝑅) ∶= {g ∈ 𝐺 ∶ 𝑅g ≠ 0}. If 𝑅g𝑅ℎ = 𝑅gℎ for all g , ℎ ∈ 𝐺,
then 𝑅 is said to be strongly graded by 𝐺.
If each homogeneous component of a𝐺-graded ring 𝑅 contains a unit, then 𝑅 is called a crossed

product of 𝐺 over 𝑅1, denoted 𝑅1 ∗ 𝐺. Crossed products are plainly strongly graded, and their
homogeneous components are all free right and left𝑅1-modules of rank one. An important special
case of a crossed product is a skew group ring of 𝐺 over 𝑅1, defined by the presence of a group
monomorphism 𝜙 ∶ 𝐺 → 𝑅∗ such that 𝜙(g) ∈ 𝑅g for all g ∈ 𝐺. (𝑅∗ denotes the multiplicative
group of units of 𝑅.)
If a ring 𝑅 admits a unital ring homomorphism from 𝑅 to a UGN-ring, then 𝑅 must have UGN

(see Lemma 2.7). As a result, the base ring always inherits the UGN property from a graded ring.
Our primary goal in this paper is to investigate the extent to which the converse may hold. In
other words, we explore the following question, whichwas posed by Peter Kropholler in an e-mail
message to the first author in May of 2020.

Question 1.1 (Kropholler). Given a group 𝐺 and a 𝐺-graded ring 𝑅, what assumptions concerning
𝑅 and 𝐺 will ensure that 𝑅 must have UGN if 𝑅1 has UGN?
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 3

One obvious answer to this question is the assumption that 𝑅 is the group ring of 𝐺 over 𝑅1,
for, in this case, the augmentationmap 𝑅 → 𝑅1 is a unital ring homomorphism. In search of other
possible answers, we identify a relevantmeasure-theoretic property of the support of𝑅. This prop-
erty, first studied by Tarski [37] in 1929 and four and a half decades later by Rosenblatt [35, 36], is
defined as follows.

Definition 1.2. Let𝐺 be a group and𝑋 a subset of 𝐺. We say that𝑋 is amenable with respect to 𝐺,
or 𝑋 is an amenable subset of 𝐺, if there is a function 𝜇 ∶ (𝐺) → [0,∞] with the following three
properties.

(i) 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for any sets 𝐴, 𝐵 ⊆ 𝐺 with 𝐴 ∩ 𝐵 = ∅.
(ii) 𝜇(g𝐴) = 𝜇(𝐴) for any set 𝐴 ⊆ 𝐺 and g ∈ 𝐺.
(iii) 𝜇(𝑋) = 1.

Our use of the adjective “amenable” to refer to a subset of a group with this property is a novel
one. Nevertheless, the authors regard it as an appropriate choice of word because the concept is
a generalization of the usual notion of an amenable group. Specifically, a group 𝐺 is amenable if
and only if the set𝐺 is amenable with respect to𝐺 in the sense of Definition 1.2. Tarski [37] proved
that the amenability of a subset 𝑋 of a group 𝐺 is equivalent to the nonexistence of a paradoxical
decomposition of 𝑋 with respect to 𝐺 (see Subsection 2.4). Moreover, Rosenblatt [35] character-
ized amenable subsets using a generalization of Følner’s [18] well-known condition characterizing
amenable groups.
We employ a modified version (see Definition 2.20) of Rosenblatt’s characterization to prove

our main result, Theorem A, about graded rings with amenable support.

Theorem A. Let 𝐺 be a group and 𝑅 a ring graded by 𝐺 such that the following two conditions
hold.

(i) There is a positive integer 𝑟 such that, for every g ∈ 𝐺, 𝑅g ≅ (𝑅1)
𝑖 as right 𝑅1-modules for some

𝑖 = 0, … , 𝑟.
(ii) The support of 𝑅 is amenable with respect to 𝐺.

Then 𝑅 has UGN if and only if 𝑅1 has UGN.

Note that, in the statement of Theorem A and throughout the paper, we interpret 𝑆0 to be the
zero 𝑆-module (left or right, depending on context) for any ring 𝑆. We point out that there is also a
dual version of TheoremA involving left𝑅1-modules and right amenable subsets (seeCorollary 3.1,
as well as the paragraph preceding it).
TheoremA leads directly to our next result, Theorem B, which treats rings graded by amenable

groups and provides three ring-theoretic characterizations of the property of amenability for
groups. In the statement of this result and subsequently, we will employ several terms specific
to this paper that pertain to a ring 𝑅 graded by a group 𝐺. We say that the grading is full if
Supp(𝑅) = 𝐺. Moreover, we will refer to the grading as free (respectively, projective) if the homo-
geneous components are all finitely generated free (respectively, projective) right 𝑅1-modules or
all finitely generated free (respectively, projective) left 𝑅1-modules.
We call the grading boundedly free if there exists a positive integer 𝑟 such that at least one of the

following two conditions is satisfied.
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4 LORENSEN and ÖINERT

∙ For each g ∈ 𝐺, there is an integer 𝑖 ∈ [0, 𝑟] such that 𝑅g ≅ (𝑅1)
𝑖 as right 𝑅1-modules.

∙ For each g ∈ 𝐺, there is an integer 𝑖 ∈ [0, 𝑟] such that 𝑅g ≅ (𝑅1)
𝑖 as left 𝑅1-modules.

If the grading is free but not boundedly free, then it is said to be unboundedly free.
The grading is referred to as boundedly projective if there is a positive integer 𝑟 such that at least

one of the following two statements is true.

∙ For each g ∈ 𝐺, 𝑅g is a direct summand in (𝑅1)𝑟 as a right 𝑅1-module.
∙ For each g ∈ 𝐺, 𝑅g is a direct summand in (𝑅1)𝑟 as a left 𝑅1-module.

A projective grading is described as unboundedly projective if it is not boundedly projective.
It is important to bear in mind that crossed products are fully graded and boundedly free.

Furthermore, every strong grading is necessarily both full and projective (see [31, Theorem 3.1.1]).

Theorem B. The following four statements are equivalent for a group 𝐺.

(i) G is amenable.
(ii) Every ring with a full and boundedly free 𝐺-grading has UGN if and only if its base ring has

UGN.
(iii) Every crossed product of 𝐺 over a ring 𝑅 has UGN if and only if 𝑅 has UGN.
(iv) Every skew group ring of 𝐺 over a ring 𝑅 has UGN if and only if 𝑅 has UGN.

Crossed products involving amenable groups form a prominent collection of rings to which we
can apply Theorem B to ascertain whether they have UGN. But there are quite a few instances of
rings graded by amenable groups that are not crossed products where the homogeneous compo-
nents are still free modules of rank one over the base ring. One such family are the Weyl rings,
treated in Corollary 3.9. Both the Weyl rings and crossed products are special cases of what are
called crystalline and precrystalline graded rings, investigated in [32] and [33]. Such rings all pos-
sess homogeneous components that are free of rank one and thus can be analyzed profitably using
Theorem B, provided that the grading group is amenable. However, the authors are not aware of
any interesting applications of Theorem B to rings where the ranks of some of the homogeneous
components are larger than one.
Theorem A also immediately gives rise to a corollary about rings graded by a supramenable

group, a type of group that was introduced by Rosenblatt [36]. He defined a group 𝐺 to be supra-
menable if every nonempty subset of𝐺 is amenable. Significantly, he proved that any groupwhose
finitely generated subgroups all display a subexponential rate of growth must be supramenable
[36, Theorem 4.6]. As finitely generated, virtually nilpotent groups have a polynomial rate of
growth, Rosenblatt’s result implies that every locally virtually nilpotent group is supramenable.
In fact, within the class of elementary amenable groups, these two properties are equivalent (see
[11, Theorem 3.2′] or [38, p. 288]). But they fail to be equivalent in general, as demonstrated by
the existence of finitely generated groups exhibiting a growth rate that is subexponential but not
polynomial (see [19]).
Our corollary about rings graded by supramenable groups pertains to boundedly free gradings

that may not be full.

Corollary A. Let 𝐺 be a supramenable group and 𝑅 a ring with a boundedly free 𝐺-grading. Then
𝑅 has UGN if and only if 𝑅1 has UGN.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 5

Whether such a restrictive condition on the group is really necessary in Corollary A remains
unresolved.

Open Question 1.3. Let 𝐺 be an amenable group, and let 𝑅 be a ring that is equipped with a
boundedly free 𝐺-grading. If 𝑅1 has UGN, does it necessarily follow that 𝑅 has UGN?

Turning to projective gradings, we are confronted with a different pattern of behavior than in
the free case. Specifically, we show, in Theorem 4.6, that there are non-UGN-rings with bound-
edly projective, full gradings by amenable groups and base rings with UGN. However, it is not
knownwhether such examples exist for supramenable groups. Only in the limited case of a locally
finite group, can we obtain a definitive result about projective gradings; this is accomplished in
Theorem C.

Theorem C. Let 𝑅 be a ring that is projectively graded by a locally finite group 𝐺. Then 𝑅 has UGN
if and only if 𝑅1 has UGN.

As shown in Subsection 3.1, Theorem C follows easily from the fact that the UGN property is a
Morita invariant (see Corollary 2.3).
The proofs of Theorem B((iv)⇒(i)) and Theorem 4.6 employ the notion of a translation ring, a

generalization of a concept that was introduced by Gromov [20] in 1993. If 𝑅 is a ring, 𝐺 a group,
and 𝑋 a nonempty subset of 𝐺, then the translation ring of 𝑋 with respect to 𝐺 over 𝑅, denoted
𝑇𝐺(𝑋, 𝑅), is the ring of all 𝑋 × 𝑋 matrices𝑀 over 𝑅 for which there is a finite set 𝐾 ⊆ 𝐺 such that
𝑀(𝑥, 𝑦) = 0whenever 𝑦 ∉ 𝐾𝑥. Furthermore, we define 𝑇𝐺(∅, 𝑅) to be the zero ring for any group
𝐺 and ring 𝑅. The ring 𝑇𝐺(𝐺, 𝑅) is denoted simply by 𝑇(𝐺, 𝑅). For a finitely generated group 𝐺,
the rings 𝑇(𝐺, 𝑅) are the translation rings introduced by Gromov and investigated further in [6, 7,
15], and [34].
Translation rings are important examples of group-graded rings; in the case where𝑋 = 𝐺, they

are skew group rings (see Proposition 2.14), but, otherwise, theymay be neither freely nor strongly
graded (see the proof of Proposition 4.7). Our interest in translation rings stems primarily from the
fact that they can be used to characterize amenable subsets of groups, as we show in Theorem D.

Theorem D. Let 𝐺 be a group and 𝑋 a subset of 𝐺. Then the following two statements are
equivalent.

(i) The subset 𝑋 is amenable with respect to 𝐺.
(ii) For every ring 𝑅, the ring 𝑇𝐺(𝑋, 𝑅) has UGN if and only if 𝑅 has UGN.

The implication (ii)⇒(i) in Theorem D for the case 𝑋 = 𝐺 and 𝐺 finitely generated was already
shown by Elek [15, section 2]. Our reasoning for that direction is an extension of his and relies on
paradoxical decompositions of subsets of groups.We prove the converse with an argument similar
to that employed for Theorem A, invoking Rosenblatt’s generalization of Følner’s condition. The-
orem D has the benefit of furnishing characterizations of both amenability and supramenability
in terms of translation rings: a group 𝐺 is amenable if and only if, for every UGN-ring 𝑅, the ring
𝑇(𝐺, 𝑅) has UGN (Corollary 3.5); a group 𝐺 is supramenable if and only if, for every nonempty set
𝑋 ⊆ 𝐺 and UGN-ring 𝑅, the ring 𝑇𝐺(𝑋, 𝑅) has UGN (Corollary 3.6).
In the final section of the paper, we investigate rings that fail to have UGN; such rings are said

to have bounded generating number (BGN). If a ring 𝑅 has BGN, then the smallest integer 𝑛 > 0
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6 LORENSEN and ÖINERT

for which there is an 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑛+1 is called the generating number of 𝑅,
denoted gn(𝑅). The generating number of a BGN-ring can also be characterized as the smallest
integer 𝑛 > 0 such that every finitely generated 𝑅-module can be generated by 𝑛 elements (see
Proposition 2.4((i)⟺(iv))). If 𝑅 has UGN, then we define gn(𝑅) ∶= ℵ0. Thus, for an arbitrary
ring 𝑅, the generating number of 𝑅 is the smallest cardinal number 𝑐 such that every finitely
generated 𝑅-module can be generated by a subset of cardinality 𝑐.
As far as the authors are aware, the notion of the generating number of a ring has never been

studied explicitly before. In the finite case, it is analogous to the concept of the type of a non-
IBN-ring (see [26]), andmany of the same techniques that have been used to investigate types can
be applied to the study of finite generating numbers. This is particularly true of the arguments
adduced in [1] and [27]; indeed, some of our results on finite generating numbers are proved using
methods from those two papers.
Our results about finite generating numbers are all of a negative nature, showing that The-

orem B, Corollary A, and Theorem C cannot be generalized in specific fashions. The most
significant one, Theorem4.1, demonstrates that TheoremB((i)⇒(ii)) andCorollaryA fail to extend
to rings that have unboundedly free gradings.

Theorem 4.1. There exists a ring 𝑅 with a full and unboundedly free ℤ-grading such that 𝑅0 has
UGN and 𝑅 has BGN.

In the statement of Theorem 4.1, notice that, as ℤ is an additive group with identity element 0,
the base ring of 𝑅 is written 𝑅0.
The ring described in the proof of Theorem 4.1 is not strongly graded. In our next theorem, we

show that we can construct stronglyℤ-graded examples that exhibit the same dissonance between
the base ring and the entire ring.

Theorem 4.2. For any positive integer 𝑛, there exists a strongly ℤ-graded ring 𝑅 such that 𝑅0 has
UGN and gn(𝑅) = 𝑛.

The example given for Theorem 4.2 has a grading that is unboundedly projective and not free.
In Theorem 4.6, we construct an example illustrating the same phenomenon that has a boundedly
projective grading. This grading, however, is not strong.

Theorem 4.6. Let 𝐺 be an arbitrary elementary amenable group that fails to be locally virtually
nilpotent. For every 𝑛 ∈ ℤ+, there exists a ring 𝑅 graded by 𝐺 with the following properties.

(i) The 𝐺-grading on 𝑅 is full.
(ii) For each g ∈ 𝐺, the 𝑅1-module 𝑅g is a direct summand in 𝑅1.
(iii) 𝑅1 has UGN.
(iv) gn(𝑅) = 𝑛.

Corollary A says that, for a ring 𝑅 equipped with a boundedly free grading by a supramenable
group 𝐺, we have

gn(𝑅1) = ℵ0 ⟺ gn(𝑅) = ℵ0.

One might, therefore, ask whether these two generating numbers always coincide for such rings.
The answer, however, is negative, as shown by our next result.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 7

Proposition 4.8. Let 𝑚, 𝑛 be positive integers with 𝑚 ⩽ 𝑛, and let 𝐺 be a group of order 𝑛. Then
there are a ring 𝑅 and a skew group ring 𝑅 ∗ 𝐺 such that gn(𝑅) = 𝑛 and gn(𝑅 ∗ 𝐺) = 𝑚.

Proposition 4.8 also serves to show that TheoremC fails to extend to finite generating numbers.
In Proposition 4.9, we prove the existence of another form of example confirming this fact for an
arbitrary pair of positive integers. Unlike the ring 𝑅 ∗ 𝐺 described in Proposition 4.8, the one in
Proposition 4.9 is graded by an arbitrary nontrivial finite group, although it is not possible in this
case to make the ring a crossed product.

Proposition 4.9. Let 𝐺 be a nontrivial finite group and 𝑚, 𝑛 integers with 0 < 𝑚 ⩽ 𝑛. Then there
exists a ring 𝑅 strongly graded by 𝐺 such that gn(𝑅1) = 𝑛 and gn(𝑅) = 𝑚.

We conclude the paper by showing that the hypothesis that the grading is projective in
Theorem C cannot be dropped.

Theorem4.10. Let𝐺 be anontrivial finite group. Then, for any integer𝑛 > 0, there exists a𝐺-graded
ring 𝑅 such that 𝑅1 has UGN and gn(𝑅) = 𝑛.

2 NOTATION AND PRELIMINARY RESULTS

In this section, we present some elementary facts about UGN, generating numbers, and transla-
tion rings. In addition, we discuss amenable subsets of groups, particularly their descriptions in
terms of paradoxical decompositions and the Følner condition for subsets of groups. We begin by
describing the notation and terminology that we employ throughout the paper.

2.1 Notation and terminology

General notation.
If 𝑋 is a set, then (𝑋) is the power set of 𝑋 and |𝑋| the cardinality of 𝑋.
ℤ+ is the set of positive integers.
ℝ+ is the set of positive real numbers.
For any objects 𝑎, 𝑏,

𝛿(𝑎, 𝑏) ∶=

{
1 if 𝑎 = 𝑏

0 if 𝑎 ≠ 𝑏.

For 𝑖, 𝑗 ∈ ℤ+, we write 𝛿𝑖𝑗 ∶= 𝛿(𝑖, 𝑗).

Groups, rings, and modules.
The identity element of a group will be denoted by 1.
The class of elementary amenable groups is the smallest class of groups that contains all finite

groups and all abelian groups and that is closed under forming extensions and direct limits. Note
that every elementary amenable group is amenable (see [10, Propositions 4.4.6, 4.5.5, 4.5.10, and
4.6.1]).
All rings, subrings, and ring homomorphisms are assumed to be unital.
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8 LORENSEN and ÖINERT

Let 𝑅 be a ring. Then 𝑅∗ denotes the group of units (invertible elements) in 𝑅, and 𝑍(𝑅) is the
center of 𝑅. Moreover, 𝑅op represents the ring opposite to 𝑅, that is, the ring with the same set
of elements as 𝑅 and same addition, but whose multiplication ◦ is defined by 𝑟◦𝑠 ∶= 𝑠𝑟 for all
𝑟, 𝑠 ∈ 𝑅op.
If 𝑅 is a ring and 𝐺 a group, then 𝑅𝐺 denotes the group ring of 𝐺 over 𝑅.
The termmodule without the modifier left will always mean right module.
If 𝑅 is a ring, then𝔐𝑅 is the category of 𝑅-modules.
Let 𝑅 be a ring graded by a group 𝐺 and 𝑟 ∈ 𝑅. If 𝑟 =

∑
g∈𝐺 𝑟g with 𝑟g ∈ 𝑅g for all g ∈ 𝐺, then

the support of 𝑟, denoted Supp(𝑟), is defined by

Supp(𝑟) ∶= {g ∈ 𝐺 ∶ 𝑟g ≠ 0}.

Let 𝑆 be a ring. Following Bergman [8, 9], we use the term 𝑆-ring for a ring 𝑅 that is also an
𝑆-𝑆-bimodule such that the following three conditions are satisfied for all 𝑟, 𝑟′ ∈ 𝑅 and 𝑠 ∈ 𝑆.

(i) (𝑟𝑟′)𝑠 = 𝑟(𝑟′𝑠).
(ii) (𝑠𝑟)𝑟′ = 𝑠(𝑟𝑟′).
(iii) (𝑟𝑠)𝑟′ = 𝑟(𝑠𝑟′).

If𝑅 and𝑅′ are both𝑆-rings, then an𝑆-ring homomorphism from𝑅 to𝑅′ is a ring homomorphism
𝑅 → 𝑅′ that is also an 𝑆-𝑆-bimodule homomorphism.
Note that, if 𝑆 is a commutative ring, then an 𝑆-algebra, in the traditional sense, is an 𝑆-ring 𝑅

such that 𝑠𝑟 = 𝑟𝑠 for all 𝑠 ∈ 𝑆 and 𝑟 ∈ 𝑅.

Crossed products, skew group rings, and twisted group rings.
Let 𝐺 be a group and 𝑅 a ring. Let 𝜎 ∶ 𝐺 → Aut(𝑅) and 𝜔 ∶ 𝐺 × 𝐺 → 𝑅∗ be functions. Write

g ⋅ 𝑟 ∶= (𝜎(g))(𝑟) for g ∈ 𝐺, 𝑟 ∈ 𝑅. If 𝜎 is a group homomorphism, then we call 𝜎 an action of 𝐺
on 𝑅. If 𝜎 is the trivial group homomorphism, it is referred to as the trivial action.
The quadruple (𝐺, 𝑅, 𝜎, 𝜔) is called a crossed system if the maps 𝜎 and 𝜔 satisfy the following

three conditions for any g , ℎ, 𝑘 ∈ 𝐺 and 𝑟 ∈ 𝑅.

(i) g ⋅ (ℎ ⋅ 𝑟) = 𝜔(g , ℎ) ((gℎ) ⋅ 𝑟) (𝜔(g , ℎ))−1.
(ii) 𝜔(g , ℎ) 𝜔(gℎ, 𝑘) = (g ⋅ 𝜔(ℎ, 𝑘)) 𝜔(g , ℎ𝑘).
(iii) 𝜔(g , 1𝐺) = 𝜔(1𝐺, g) = 1𝑅.

If (𝐺, 𝑅, 𝜎, 𝜔) is a crossed system, then the set of formal sums
∑

g∈𝐺 𝑟g g , in which 𝑟g is an
element of 𝑅 for all g ∈ 𝐺 and zero for all but finitely many g ∈ 𝐺, can be made into a ring by
defining addition componentwise and multiplication according to the rule

(𝑟g g)(𝑟ℎ ℎ) ∶= 𝑟g (g ⋅ 𝑟ℎ) 𝜔(g , ℎ) (gℎ)

for all g , ℎ ∈ 𝐺 and 𝑟g , 𝑟ℎ ∈ 𝑅 (see [31, Proposition 1.4.1]). This ring is a crossed product of 𝐺 over
𝑅 with respect to the obvious 𝐺-grading; it is denoted 𝑅 ∗𝜎𝜔 𝐺. Moreover, every crossed product of
𝐺 over 𝑅 is isomorphic to a ring of this form (see [31, Proposition 1.4.2]).
An important special case of a crossed product arises when 𝜔 is the trivial map, meaning

𝜔(g , ℎ) = 1𝑅 for all g , ℎ ∈ 𝐺. In this case, (𝐺, 𝑅, 𝜎, 𝜔) is a crossed system if and only if 𝜎 is an
action of 𝐺 on 𝑅. When 𝜔 is trivial and 𝜎 an action, the crossed product 𝑅 ∗𝜎𝜔 𝐺 is referred to as
the skew group ring of 𝐺 over 𝑅 that is associated to the action 𝜎.
A second important case is where 𝜎 is the trivial action. In this case, a map 𝜔 ∶ 𝐺 × 𝐺 → 𝑅∗

satisfies (i) if and only if Im 𝜔 ⊆ 𝑍(𝑅)∗. Moreover, in the presence of this containment, the map 𝜔
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 9

fulfills (ii) if and only if 𝜔 is a 2-cocycle𝐺 × 𝐺 → 𝑍(𝑅)∗. If, in addition, (iii) holds, then we call 𝜔 a
normalized 2-cocycle. If 𝜎 is the trivial action and 𝜔 a normalized 2-cocycle 𝐺 × 𝐺 → 𝑍(𝑅)∗, then
𝑅 ∗𝜎𝜔 𝐺 is called the twisted group ring of 𝐺 over 𝑅 that is associated to the normalized 2-cocycle
𝜔. Furthermore, the twisted group ring 𝑅 ∗𝜎𝜔 𝐺 is isomorphic to the group ring 𝑅𝐺 if and only if
the cohomology class of 𝜔 in𝐻2(𝐺, 𝑍(𝑅)∗) is zero (see [31, section 1.5, Exercise 10]).

Monoids.
For any ring 𝑅, Proj(𝑅) is the abelian monoid consisting of the isomorphism classes of finitely

generated projective 𝑅-modules under the operation of forming direct sums.
For an abelianmonoid𝑀, wewrite 𝑥 ⩽ 𝑦 for 𝑥, 𝑦 ∈ 𝑀 if there exists 𝑧 ∈ 𝑀 such that 𝑥 + 𝑧 = 𝑦.
For any two positive integers 𝑛 and 𝑘, 𝐶(𝑛, 𝑘) denotes the monoid with presentation

𝐶(𝑛, 𝑘) ∶= ⟨𝑎 ∶ (𝑛 + 𝑘)𝑎 = 𝑛𝑎⟩.
Matrices.
If 𝑋 and 𝑌 are nonempty sets, an 𝑋 × 𝑋 matrix 𝑀 with entries in 𝑌 (or over 𝑌) is a function

𝑀 ∶ 𝑋 × 𝑋 → 𝑌. For an𝑚 × 𝑛matrix𝑀 with𝑚, 𝑛 ∈ ℤ+, we write𝑀𝑖𝑗 ∶= 𝑀(𝑖, 𝑗) for 𝑖 = 1, … ,𝑚

and 𝑗 = 1,… , 𝑛.
The ring of 𝑛 × 𝑛matrices with entries in a ring 𝑅 will be denoted𝑀𝑛(𝑅).
The transpose of a (finite or infinite) matrix 𝐴 is denoted 𝐴𝑡.
Let 𝐺 be a group, 𝑅 a ring, and𝑋 a nonempty subset of 𝐺. If𝑀,𝑁 ∈ 𝑇𝐺(𝑋, 𝑅), then the product

𝑀𝑁 is defined by
(𝑀𝑁)(𝑥, 𝑦) ∶=

∑
𝑧∈𝑋

𝑀(𝑥, 𝑧)𝑁(𝑧, 𝑦)

for 𝑥, 𝑦 ∈ 𝑋. Notice that this sum is defined because it has only finitely many nonzero terms.

2.2 UGN and generating numbers

In this subsection, we introduce the reader to some elementary facts about the UGN property and
generating numbers. The most obvious examples of UGN-rings are nonzero division rings and
nonzero finite rings. Other examplesmay be obtained by using the fact that every ring𝑅 admitting
a ring homomorphism from𝑅 to aUGN-ringmust haveUGN (see Lemma 2.7). In particular, every
nonzero commutative ring has UGN because its quotient by a maximal ideal is a field.
The UGN property was introduced by Cohn [12] in connection with the related, but currently

much better known, properties of stable finiteness and having invariant basis number. A ring 𝑅 is
said to be stably finite (SF) if, for every positive integer 𝑛, every 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑛

must be an isomorphism.A ring𝑅 has invariant basis number (IBN) if, for any twopositive integers
𝑚 and 𝑛,𝑅𝑚 ≅ 𝑅𝑛 as𝑅-modules only if𝑚 = 𝑛. It is easy to see that the following implications hold
for any nonzero ring:

SF ⟹ UGN ⟹ IBN.

Furthermore, neither of these two implications can be reversed: for the first, see, for instance, [23,
p. 11]; for the second, see [12, section 5] and [4, Example 3.19]. The precise relationship between
SF and UGN is made clear by Malcolmson’s result [29] that a ring has UGN if and only if it has a
nonzero SF quotient (see also [23, Theorem 1.26]).
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10 LORENSEN and ÖINERT

Crucial to our understanding of generating numbers of rings is the following lemma.

Lemma 2.1. Let 𝑅 be a ring, 𝐴 an 𝑅-module, and 𝑛 ∈ ℤ+. If there is an 𝑅-module epimorphism
𝐴𝑛 → 𝐴𝑛+1, then there is an 𝑅-module epimorphism 𝐴𝑛 → 𝐴𝑚 for every𝑚 ∈ ℤ+.

Proof. Let 𝜙 ∶ 𝐴𝑛 → 𝐴𝑛+1 be an 𝑅-module epimorphism. We will show by induction on 𝑘

that there is an 𝑅-module epimorphism 𝐴𝑛 → 𝐴𝑛+𝑘 for every 𝑘 ∈ ℤ+. As there is clearly an 𝑅-
module epimorphism 𝐴𝑛 → 𝐴𝑚 when 𝑚 ⩽ 𝑛, this will prove the lemma. Suppose that there is
an 𝑅-module epimorphism 𝜓 ∶ 𝐴𝑛 → 𝐴𝑛+𝑘−1 for 𝑘 > 1. Then we have the chain of 𝑅-module
epimorphisms

𝐴𝑛
𝜓

⟶ 𝐴𝑛+𝑘−1 ≅
⟶ 𝐴𝑛 ⊕𝐴𝑘−1

𝜉
⟶ 𝐴𝑛+1 ⊕ 𝐴𝑘−1 ≅

⟶ 𝐴𝑛+𝑘,

where 𝜉(𝑎, 𝑏) ∶= (𝜙(𝑎), 𝑏) for all 𝑎 ∈ 𝐴𝑛 and 𝑏 ∈ 𝐴𝑘−1. The composition of themaps in the chain
is an 𝑅-module epimorphism 𝐴𝑛 → 𝐴𝑛+𝑘. □

Lemma 2.1 allows us to establish several alternative characterizations of rings with BGN. These
are all well known and can be found, stated less formally, in the works of Cohn (see, for instance,
[13, section 1.4]).

Proposition 2.2. For a ring 𝑅, the following five statements are equivalent.

(i) 𝑅 has BGN.
(ii) There is an 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑚 for some𝑚, 𝑛 ∈ ℤ+ with 𝑛 < 𝑚.
(iii) There is an integer 𝑛 > 0 such that there is an 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑚 for every𝑚 ∈

ℤ+.
(iv) There is an integer 𝑛 > 0 such that every finitely generated 𝑅-module is a homomorphic image

of 𝑅𝑛.
(v) There is a finitely generated 𝑅-module 𝑀 such that every finitely generated 𝑅-module is a

homomorphic image of𝑀.

Proof. The equivalence of (iv) and (v) is trivial, as are the implications (i)⇒(ii), (iii)⇒(iv), and
(iv)⇒(i). Moreover, the implication (ii)⇒(iii) follows from Lemma 2.1. □

Statement (v) in Proposition 2.2 is significant in that it is expressed in purely categorical terms.
As a consequence, its equivalence to (i) implies that BGN, and perforce UGN, is Morita invariant,
thus furnishing a succinct, positive answer to a question in an exercise by Cohn [14, section 0.1,
Exercise 9]. For the benefit of the reader, we provide all the details of this argument in the proof
of Corollary 2.3. An alternative proof that focuses instead on the structure of the monoid Proj(𝑅)
for a ring 𝑅 was constructed by Ara and appears in [4, section 2].

Corollary 2.3. Let 𝑅 and 𝑆 be rings that are Morita equivalent. Then 𝑅 has UGN if and only if 𝑆
has UGN.

Proof. The argument is based on the fact that category equivalences preserve both the property
of surjectivity for homomorphisms and that of finite generation for modules (see, for example, [5,
Proposition 21.2] and [5, Proposition 21.8], respectively). Notice that it suffices to prove that, if 𝑅
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 11

has BGN, then 𝑆 has BGN. Assume that 𝑅 has BGN. According to Proposition 2.2((i)⇒(v)), there is
a finitely generated 𝑅-module𝑀 such that every finitely generated 𝑅-module is a homomorphic
image of 𝑀. Let 𝐹 ∶ 𝔐𝑅 →𝔐𝑆 be a category equivalence. This means that there is a functor
𝐺 ∶ 𝔐𝑆 →𝔐𝑅 such that 𝐹𝐺 and 𝐺𝐹 are naturally equivalent to the identity functors𝔐𝑆 →𝔐𝑆

and𝔐𝑅 →𝔐𝑅, respectively. Furthermore, the 𝑆-module 𝐹(𝑀) is finitely generated.
We will now show that every finitely generated 𝑆-module is a homomorphic image of 𝐹(𝑀).

This will imply, by Proposition 2.2((v)⇒(i)), that 𝑆 has BGN. Let 𝐴 be a finitely generated 𝑆-
module. As 𝐺(𝐴) is a finitely generated 𝑅-module, we have an 𝑅-module epimorphism 𝜙 ∶ 𝑀 →

𝐺(𝐴). Thus, the map 𝐹(𝜙) ∶ 𝐹(𝑀) → 𝐹𝐺(𝐴) is an 𝑆-module epimorphism. But 𝐹𝐺(𝐴) ≅ 𝐴 as
𝑆-modules, yielding an 𝑆-module epimorphism 𝐹(𝑀) → 𝐴. □

Remark. The authors have succeeded in constructing two other short proofs that UGN is Morita
invariant. A second approach is to first establish the following characterization of UGN: a ring 𝑅
has UGN if and only if, for every progenerator 𝑃 in𝔐𝑅 and integer 𝑛 > 0, there is no 𝑅-module
epimorphism 𝑃𝑛 → 𝑃𝑛+1. The Morita invariance of UGN then follows from the fact that category
equivalences preserve progenerators and epimorphisms.

Reasoning similar to that employed in proving Proposition 2.2 can be invoked to establish the
following set of equivalences concerning the generating number of a ring.

Proposition 2.4. Let 𝑅 be a ring and 𝑛 ∈ ℤ+. Then the following four statements are equivalent.

(i) gn(𝑅) = 𝑛.
(ii) The integer 𝑛 is the smallest positive integer such that there is an 𝑅-module epimorphism 𝑅𝑛 →

𝑅𝑚 for some integer𝑚 > 𝑛.
(iii) The integer 𝑛 is the smallest positive integer such that there is an 𝑅-module epimorphism 𝑅𝑛 →

𝑅𝑚 for every𝑚 ∈ ℤ+.
(iv) The integer 𝑛 is the smallest positive integer such that every finitely generated 𝑅-module is a

homomorphic image of 𝑅𝑛.

Remark. We point out that the generating number of a ring fails to be a Morita invariant: see
Lemma 2.9 and Proposition 2.12.

The next lemma is useful in that it allows us to formulate the conditions in Proposition 2.4, as
well as (i)–(iii) in Proposition 2.2, in terms of matrices. Because the property is well known and
the proof is very straightforward, we leave it to the reader.

Lemma 2.5. Let 𝑅 be a ring and𝑚, 𝑛 ∈ ℤ+. Then there is an 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑚 if
and only if there are an 𝑚 × 𝑛 matrix 𝐴 with entries in 𝑅 and an 𝑛 × 𝑚 matrix 𝐵 with entries in 𝑅
such that 𝐴𝐵 = 𝐼𝑚.

Lemma 2.5 enables us to establish the following four fundamental lemmas about generating
numbers (Lemmas 2.6, 2.7, 2.9, and 2.10). The special cases of Lemmas 2.6, 2.7, and 2.10 for infinite
generating numbers are all well known (see [12, 14, section 0.1], and [23, section 1C], respectively).

Lemma 2.6. Let 𝑅 be a ring. Then gn(𝑅) = gn(𝑅op). In particular, 𝑅 has UGN if and only if 𝑅op
has UGN.
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12 LORENSEN and ÖINERT

Proof. If 𝐴 is an𝑚 × 𝑛 matrix with entries in 𝑅 and 𝐵 an 𝑛 × 𝑝 matrix with entries in 𝑅, then we
employ𝐴◦𝐵 to denote the product of𝐴 and 𝐵where the entries are multiplied in 𝑅op. This means

𝐴◦𝐵 = (𝐵𝑡𝐴𝑡)𝑡. (2.1)

As (𝑅op)op = 𝑅, we only need to show that gn(𝑅op) ⩽ gn(𝑅). This is plainly true if gn(𝑅) =
ℵ0, so we assume that 𝑘 ∶= gn(𝑅) is finite. By Proposition 2.4((i)⇒(ii)) and Lemma 2.5, there
are an integer 𝑙 > 𝑘, an 𝑙 × 𝑘 matrix 𝑃 with entries in 𝑅, and a 𝑘 × 𝑙 matrix 𝑄 over 𝑅 such
that 𝑃𝑄 = 𝐼𝑙. From (2.1), we obtain 𝑄𝑡◦𝑃𝑡 = (𝑃𝑄)𝑡 = 𝐼𝑙. Therefore, appealing to Lemma 2.5 and
Proposition 2.4((i)⇒(ii)), we deduce gn(𝑅op) ⩽ 𝑘. □

Remark. Lemma 2.6 means that the UGN and generating number notions are left-right symmet-
ric; in otherwords, any of their characterizations in terms of right𝑅-modules can also be expressed
using left 𝑅-modules.

Lemma 2.7. Let𝑅 and 𝑆 be rings such that there is a ring homomorphism 𝜙 ∶ 𝑅 → 𝑆. Then gn(𝑅) ⩾
gn(𝑆). In particular, if 𝑆 has UGN, then so does 𝑅.

Proof. For any𝑚 × 𝑛matrix𝑀 with entries in 𝑅, we let 𝜙𝑀 denote the𝑚 × 𝑛matrix with entries
in 𝑆 such that (𝜙𝑀)𝑖𝑗 ∶= 𝜙(𝑀𝑖𝑗) for 𝑖 = 1, … ,𝑚 and 𝑗 = 1,… , 𝑛. The desired inequality obviously
holds if gn(𝑅) = ℵ0; hence we suppose that gn(𝑅) is finite and write 𝑘 ∶= gn(𝑅). By Proposi-
tion 2.4((i)⇒(ii)) and Lemma 2.5, there are an integer 𝑙 > 𝑘, an 𝑙 × 𝑘 matrix 𝐴 over 𝑅, and a 𝑘 × 𝑙

matrix 𝐵 over 𝑅 such that 𝐴𝐵 = 𝐼𝑙. This implies (𝜙𝐴)(𝜙𝐵) = 𝐼𝑙. It follows, then, from Lemma 2.5
and Proposition 2.4((i)⇒(ii)) that gn(𝑆) ⩽ 𝑘. □

Lemma 2.7 furnishes the following property of group rings.

Corollary 2.8. Let 𝑅 be a ring and 𝐺 a group. Then gn(𝑅𝐺) = gn(𝑅). In particular, 𝑅𝐺 has UGN if
and only if 𝑅 has UGN.

Proof. There is a ring embedding 𝑅 → 𝑅𝐺, and the augmentation map is a ring homomorphism
𝑅𝐺 → 𝑅. Hence, the conclusion follows from Lemma 2.7. □

Lemma 2.9. Let 𝑅 be a ring with BGN, and let 𝑛 ∶= gn(𝑅). If 𝑚 is a positive integer divisor of 𝑛,
then gn(𝑀𝑚(𝑅)) =

𝑛

𝑚
.

Proof. Because𝑀𝑚(𝑅) possesses a subring that is isomorphic to 𝑅, Lemma 2.7 implies that𝑀𝑚(𝑅)

has BGN. Put 𝑝 ∶= gn(𝑀𝑚(𝑅)). Appealing to Proposition 2.4((i)⇒(ii)) and Lemma 2.5, we obtain
an integer 𝑞 > 𝑝, a 𝑞 × 𝑝 matrix 𝐴 with entries in𝑀𝑚(𝑅), and a 𝑝 × 𝑞 matrix 𝐵 with entries in
𝑀𝑚(𝑅) such that𝐴𝐵 = 𝐼𝑞. This gives rise to an𝑚𝑞 ×𝑚𝑝matrix𝐴′ over 𝑅 and an𝑚𝑝 ×𝑚𝑞matrix
𝐵′ over 𝑅 such that 𝐴′𝐵′ = 𝐼𝑚𝑞. Consequently, by Lemma 2.5 and Proposition 2.4((i)⇒(ii)), we
have 𝑛 ⩽ 𝑚𝑝.
Set 𝑟 ∶= 𝑛

𝑚
. Referring to Proposition 2.4((i)⇒(iii)) andLemma2.5,we can acquire an integer𝑘 >

𝑟, a 𝑘𝑚 × 𝑛 matrix 𝑃 with entries in 𝑅, and an 𝑛 × 𝑘𝑚 matrix 𝑄 with entries in 𝑅 such that 𝑃𝑄 =

𝐼𝑘𝑚. This set-up can then be converted into a 𝑘 × 𝑟 matrix 𝑃′ with entries in𝑀𝑚(𝑅) and an 𝑟 × 𝑘

matrix 𝑄′ with entries in𝑀𝑚(𝑅) such that 𝑃′𝑄′ = 𝐼𝑘. It follows, therefore, from Lemma 2.5 and
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 13

Proposition 2.4((i)⇒(ii)) that 𝑝 ⩽ 𝑟. Combining this with the result from the previous paragraph
yields 𝑝 = 𝑟. □

Lemma 2.10. Let {𝑅𝛼 ∶ 𝛼 ∈ 𝐼} be a directed system of rings. If 𝑅 ∶= lim
VV→

𝑅𝛼 , then

gn(𝑅) = min{gn(𝑅𝛼) ∶ 𝛼 ∈ 𝐼}.

In particular, 𝑅 has UGN if and only if 𝑅𝛼 has UGN for every 𝛼 ∈ 𝐼.

Proof. Lemma 2.7 implies gn(𝑅) ⩽ gn(𝑅𝛼) for all 𝛼 ∈ 𝐼. The desired conclusion will therefore fol-
low if we show that gn(𝑅𝛼) ⩽ gn(𝑅) for some 𝛼 ∈ 𝐼. As this statement holds trivially if gn(𝑅) = ℵ0,
suppose that gn(𝑅) is finite and set 𝑝 ∶= gn(𝑅). Invoking Proposition 2.4((i)⇒(ii)) and Lemma 2.5,
we obtain an integer 𝑞 > 𝑝, a 𝑞 × 𝑝 matrix 𝐴 with entries in 𝑅, and a 𝑝 × 𝑞 matrix 𝐵 over
𝑅 such that 𝐴𝐵 = 𝐼𝑞. This means that, for some 𝛼 ∈ 𝐼, there are a 𝑞 × 𝑝 matrix 𝐴′ over 𝑅𝛼
and a 𝑝 × 𝑞 matrix 𝐵′ over 𝑅𝛼 such that 𝐴′𝐵′ = 𝐼𝑞. Therefore, appealing to Lemma 2.5 and
Proposition 2.4((i)⇒(ii)), we conclude that gn(𝑅𝛼) ⩽ 𝑝. □

Our next result describes the relationship between the generating number of a direct product
of rings and the generating numbers of the individual factors. The proof is very straightforward;
nonetheless, aswith the previous four lemmas,we provide the details for the sake of completeness.

Lemma 2.11. Let {𝑅𝛼 ∶ 𝛼 ∈ 𝐼} be a family of rings indexed by a set 𝐼, andwrite𝑅 ∶=
∏

𝛼∈𝐼 𝑅𝛼 . Then

gn(𝑅) = sup{gn(𝑅𝛼) ∶ 𝛼 ∈ 𝐼}.

Proof. That gn(𝑅) is an upper bound for the set  ∶= {gn(𝑅𝛼) ∶ 𝛼 ∈ 𝐼} follows by applying
Lemma 2.7 to the projection maps 𝑅 → 𝑅𝛼. Suppose that 𝑏 ∈ ℤ+ ∪ {ℵ0} is an arbitrary upper
bound for  . We wish to establish that gn(𝑅) ⩽ 𝑏. This is plainly true if 𝑏 = ℵ0, so assume
that 𝑏 is finite. For each 𝛼 ∈ 𝐼, there is an 𝑅𝛼-module epimorphism 𝜙𝛼 ∶ (𝑅𝛼)

𝑏 → (𝑅𝛼)
𝑏+1. The

maps 𝜙𝛼, then, induce an 𝑅-module epimorphism 𝜙 ∶
∏

𝛼∈𝐼(𝑅𝛼)
𝑏 →

∏
𝛼∈𝐼(𝑅𝛼)

𝑏+1. Moreover, as∏
𝛼∈𝐼(𝑅𝛼)

𝑘 ≅ 𝑅𝑘 as 𝑅-modules for every 𝑘 ∈ ℤ+, the map 𝜙 induces an 𝑅-module epimorphism
𝑅𝑏 → 𝑅𝑏+1. Thus, gn(𝑅) ⩽ 𝑏, and so gn(𝑅) = sup . □

In our final preliminary result about generating numbers, we observe that every positive integer
can be realized as the generating number of some ring.

Proposition 2.12. For any integer 𝑛 > 0, there is a ring 𝑅 such that gn(𝑅) = 𝑛.

We will deduce Proposition 2.12 from the following important result of Bergman [8, Theorem
6.2], which will also serve as the cornerstone of our proof of Theorem 4.10.

Theorem 2.13 (Bergman). Let𝑀 be a finitely generated abelianmonoid with distinguished element
𝐼 ≠ 0 such that the following two properties are satisfied.

(i) For all 𝑥, 𝑦 ∈ 𝑀, if 𝑥 + 𝑦 = 0, then 𝑥 = 𝑦 = 0.
(ii) For each 𝑥 ∈ 𝑀, there exists 𝜆 ∈ ℤ+ such that 𝑥 ⩽ 𝜆𝐼.

Then a ring 𝑅 exists such that there is a monoid isomorphism 𝜃 ∶ 𝑀 → Proj(𝑅) with 𝜃(𝐼) = [𝑅].
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14 LORENSEN and ÖINERT

Proof of Proposition 2.12. Let 𝑘 ∈ ℤ+. The abelianmonoid𝐶(𝑛, 𝑘) satisfies the hypotheses of Theo-
rem 2.13where the distinguished element is the generator 𝑎. Thus, there are a ring𝑅 and amonoid
isomorphism 𝜃 ∶ 𝐶(𝑛, 𝑘) → Proj(𝑅) with 𝜃(𝑎) = [𝑅]. Observe that 𝑛 is the smallest positive inte-
ger such that (𝑛 + 1)𝑎 ⩽ 𝑛𝑎 in the monoid 𝐶(𝑛, 𝑘). As a result, 𝑛 is also the smallest positive
integer such that 𝑅𝑛+1 is an 𝑅-module direct summand of 𝑅𝑛. In other words, gn(𝑅) = 𝑛. □

Remark. A concrete example of a ring 𝑅 having Proj(𝑅) ≅ 𝐶(𝑛, 𝑘) is the 𝐾-algebra 𝑉𝑛,𝑛+𝑘 defined
in [8] for a fixed field 𝐾 (see [8, Theorem 6.1]). These algebras were first studied by Leavitt in his
seminal papers [24–26]. In his honor, the current standard notation for the 𝐾-algebra 𝑉𝑛,𝑛+𝑘 is
𝐿𝐾(𝑛, 𝑛 + 𝑘) (see [3]). It enjoys the following universal property: for any 𝐾-algebra 𝑅, we have
𝑅𝑛 ≅ 𝑅𝑛+𝑘 as 𝑅-modules if and only if there is a 𝐾-algebra homomorphism 𝐿𝐾(𝑛, 𝑛 + 𝑘) → 𝑅.

2.3 Translation rings

Below we prove an important property of translation rings of groups, namely, that they can be
viewed as skew group rings. This result is similar to [34, Theorem4.28] and is probablywell known
in the case of a finitely generated group, although the authors are not aware of its appearance
anywhere in the literature.

Proposition 2.14. For any ring 𝑅 and group 𝐺, the ring 𝑇(𝐺, 𝑅) is isomorphic to the skew group
ring

∏
𝐺 𝑅 ∗ 𝐺, where the action of 𝐺 on

∏
𝐺 𝑅 is defined by

(g ⋅ 𝑓)(𝑥) ∶= 𝑓(g−1𝑥) for g , 𝑥 ∈ 𝐺.

Proof. For an arbitrary element g of𝐺, define𝐴g to be thematrix in 𝑇(𝐺, 𝑅) such that𝐴g (𝑥, 𝑦) ∶=

1 if 𝑦 = g−1𝑥 and𝐴g (𝑥, 𝑦) ∶= 0 if 𝑦 ≠ g−1𝑥. Moreover, for each function 𝑓 ∶ 𝐺 → 𝑅, let𝐷𝑓 be the
𝐺 × 𝐺 diagonal matrix with 𝐷𝑓(𝑥, 𝑥) ∶= 𝑓(𝑥) for all 𝑥 ∈ 𝐺. An easy calculation establishes

(
𝐴g𝐷𝑓𝐴

−1
g

)
(𝑥, 𝑦) =

{
𝑓(g−1𝑥) if 𝑦 = 𝑥

0 if 𝑦 ≠ 𝑥
= 𝐷g⋅𝑓(𝑥, 𝑦)

for every 𝑓 ∶ 𝐺 → 𝑅 and g ∈ 𝐺. Thismeans that there is a ring homomorphism 𝜙 ∶
∏

𝐺 𝑅 ∗ 𝐺 →

𝑇(𝐺, 𝑅) such that 𝜙(𝑓) = 𝐷𝑓 for every function 𝑓 ∶ 𝐺 → 𝑅 and 𝜙(g) = 𝐴g for every g ∈ 𝐺.
Another straightforward calculation shows that, for any function 𝑓 ∶ 𝐺 → 𝑅 and g ∈ 𝐺,

(𝐷𝑓𝐴g )(𝑥, 𝑦) =

{
𝑓(𝑥) if 𝑦 = g−1𝑥

0 if 𝑦 ≠ g−1𝑥
.

Hence, if 𝑓1, … , 𝑓𝑟 ∶ 𝐺 → 𝑅 are functions and g1, … , g𝑟 distinct elements of 𝐺, then(
𝜙

(
𝑟∑
𝑖=1

𝑓𝑖g𝑖

))
(𝑥, 𝑦) =

(
𝑟∑
𝑖=1

𝐷𝑓𝑖
𝐴g𝑖

)
(𝑥, 𝑦) =

{
𝑓𝑖(𝑥) if 𝑦 = g−1

𝑖
𝑥

0 if 𝑦 ≠ g−1
𝑖
𝑥
.

From this, we ascertain that 𝜙 is bijective. □
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 15

2.4 Amenable subsets, paradoxical decompositions, and the Følner
condition

In this subsection, we investigate amenable subsets of groups, beginning with a few elementary
observations. Notice first that a finite subset of a group is amenable with respect to the group if
and only if it is nonempty. We also invite the reader to verify using Definition 1.2 that a subset 𝑋
is amenable with respect to a group 𝐺 if and only if 𝑋 is amenable with respect to the subgroup of
𝐺 that is generated by 𝑋. (This is, though, most easily shown by applying Theorem 2.19 instead of
the definition.) As a consequence, every amenable subgroup of a group𝐺 is necessarily amenable
with respect to 𝐺.
Next we discuss paradoxical decompositions and their relevance to nonamenable subsets, bor-

rowing the parlance and approach adopted by Tomkowicz andWagon in their treatise [38] on the
Banach–Tarski paradox. First we state the following definition from their book.

Definition 2.15 [38, Definition 3.4]. Let𝐺 be a group. Two sets𝐴, 𝐵 ⊆ 𝐺 areG-equidecomposable,
written 𝐴 ∼𝐺 𝐵, if there are a partition {𝐴1, … ,𝐴𝑛} of 𝐴 and elements g1, … , g𝑛 ∈ 𝐺 such that
{g1𝐴1, … , g𝑛𝐴𝑛} is a partition of 𝐵.

It is easy to see that ∼𝐺 is an equivalence relation on the set of subsets of 𝐺. Our next lemma
provides an alternative description of 𝐺-equidecomposability, one well suited for some of the
arguments that appear later.

Lemma 2.16. Let 𝐺 be a group and 𝐴, 𝐵 subsets of 𝐺. Then 𝐴 ∼𝐺 𝐵 if and only if there are a finite
set 𝐾 ⊆ 𝐺 and a bijective map 𝛼 ∶ 𝐴 → 𝐵 such that 𝛼(𝑎)𝑎−1 ∈ 𝐾 for all 𝑎 ∈ 𝐴.

Proof. Assume 𝐴 ∼𝐺 𝐵. This means that there are a finite set 𝐾 ⊆ 𝐺 and a partition {𝐴𝑘 ∶ 𝑘 ∈ 𝐾}

of𝐴 such that {𝑘𝐴𝑘 ∶ 𝑘 ∈ 𝐾} is a partition of 𝐵. Then the map 𝛼 ∶ 𝐴 → 𝐵 defined by 𝛼(𝑎𝑘) = 𝑘𝑎𝑘
for every 𝑎𝑘 ∈ 𝐴𝑘 has the required properties.
For the converse, we assume that there are a set 𝐾 and a bijection 𝛼 ∶ 𝐴 → 𝐵 as described. For

each 𝑘 ∈ 𝐾, set 𝐴𝑘 ∶= {𝑎 ∈ 𝐴 ∶ 𝛼(𝑎) = 𝑘𝑎}. Then {𝐴𝑘 ∶ 𝑘 ∈ 𝐾} is a partition of 𝐴, and {𝑘𝐴𝑘 ∶

𝑘 ∈ 𝐾} is a partition of 𝐵. Therefore, 𝐴 ∼𝐺 𝐵. □

The notion of equidecomposability of subsets of groups provides a convenient way to define
paradoxical subsets of groups.

Definition 2.17 [38, Definition 1.1]. Let 𝐺 be a group. A subset 𝑋 of 𝐺 is said to be 𝐺-paradoxical
if there are sets 𝐴, 𝐵 ⊆ 𝑋 such that 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∼𝐺 𝑋 ∼𝐺 𝐵.

It is shown in [38] that the sets 𝐴 and 𝐵 in Definition 2.17 can always be chosen so that their
union is 𝑋.

Lemma 2.18 [38, Corollary 3.7]. A nonempty subset 𝑋 of a group 𝐺 is 𝐺-paradoxical if and only if
there is a partition {𝐴, 𝐵} of 𝑋 such that 𝐴 ∼𝐺 𝑋 ∼𝐺 𝐵.

A partition {𝐴, 𝐵} of a subset 𝑋 of a group 𝐺 such that 𝐴 ∼𝐺 𝑋 ∼𝐺 𝐵 is called a paradoxical
decomposition of 𝑋 with respect to 𝐺. A seminal result by Tarski asserts that the existence of a
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16 LORENSEN and ÖINERT

paradoxical decomposition of a nonempty subset of a group is equivalent to the failure of the
subset to be amenable.

Theorem 2.19 (Tarski [37, 38, Corollary 11.2]). Let 𝐺 be a group and 𝑋 a subset of 𝐺. Then the
following two statements are equivalent.

(i) 𝑋 is 𝐺-paradoxical.
(ii) 𝑋 is not amenable with respect to 𝐺.

An important characterization of amenable groups was established by Følner [18] in 1955.
Rosenblatt [35, Theorem 4.9] extended Følner’s result in 1973 to describe the amenability of a sub-
set of a group. For our purposes, it will be convenient to use the following version of Rosenblatt’s
condition.

Definition 2.20. Let 𝐺 be a group. If 𝑋 is a subset of 𝐺, then we say that 𝐺 satisfies the Følner
condition with respect to 𝑋 if, for any finite subset 𝐾 of 𝐺 and 𝜖 ∈ ℝ+, there exists a finite subset 𝐹
of 𝐺 such that

|𝐾𝐹 ∩ 𝑋| < (1 + 𝜖)|𝐹 ∩ 𝑋|.
In Theorem 2.21, we show that the above condition characterizes amenability of subsets of

groups.

Theorem 2.21. Let 𝐺 be a group and 𝑋 a subset of 𝐺. Then the following two statements are
equivalent.

(i) 𝑋 is amenable with respect to 𝐺.
(ii) 𝐺 satisfies the Følner condition with respect to 𝑋.

The assertion (i)⟹(ii) in Theorem 2.21 follows immediately from [35, Theorem 4.9], which
is proved using analysis. Below we supply an alternative justification for this implication that is,
instead, graph-theoretic; it is an adaptation of the argument for [10, Theorem4.9.2((c)⟹(e))]. For
this approach, we require the notion of a bipartite graph, which is a triple  = (𝑉,𝑊, 𝐸) where 𝑉
and𝑊 are sets and 𝐸 ⊆ 𝑉 ×𝑊. The elements of 𝑉 and𝑊 are the left vertices and right vertices,
respectively, and the elements of 𝐸 are the edges. For any 𝑣0 ∈ 𝑉 and𝑤0 ∈ 𝑊, we define the right
neighborhood𝑅(𝑣0) of 𝑣0 and the left neighborhood𝐿(𝑤0) of 𝑤0 as follows:

𝑅(𝑣0) ∶= {𝑤 ∈ 𝑊 ∶ (𝑣0, 𝑤) ∈ 𝐸}; 𝐿(𝑤0) ∶= {𝑣 ∈ 𝑉 ∶ (𝑣, 𝑤0) ∈ 𝐸}.

For subsets 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑊, we write

𝑅(𝐴) ∶=
⋃
𝑎∈𝐴

𝑅(𝑎), 𝐿(𝐵) ∶=
⋃
𝑏∈𝐵

𝐿(𝑏).

If the left and right neighborhoods of each vertex are finite, then the graph is said to be locally
finite.
For a bipartite graph  = (𝑉,𝑊, 𝐸) and a positive integer 𝑛, a perfect one-to-𝑛 matching is a

subset𝑀 of 𝐸 satisfying the following two conditions.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 17

(i) For each 𝑣 ∈ 𝑉, there are exactly 𝑛 elements 𝑤 ∈ 𝑊 such that (𝑣, 𝑤) ∈ 𝑀.
(ii) For each 𝑤 ∈ 𝑊, there is a unique 𝑣 ∈ 𝑉 such that (𝑣, 𝑤) ∈ 𝑀.

Invoking the Axiom of Choice, we ascertain that the existence of a perfect one-to-𝑛 matching is
equivalent to the existence of a partition {𝐴1, … ,𝐴𝑛} of𝑊 together with bijections 𝛼𝑖 ∶ 𝑉 → 𝐴𝑖 ,
𝑖 = 1, … , 𝑛, such that (𝑣, 𝛼𝑖(𝑣)) ∈ 𝐸 for every 𝑣 ∈ 𝑉 and 𝑖 = 1, … , 𝑛.
Our proof of Theorem 2.21 relies on the following theorem, which was proved for finite graphs

by P. Hall [22] in 1935 and generalized to locally finite graphs by M. Hall [21] in 1948.

Theorem2.22 (P. Hall, M. Hall [10, TheoremH.4.2]). Let 𝑛 ∈ ℤ+ and let  = (𝑉,𝑊, 𝐸) be a locally
finite bipartite graph. Thenadmits a perfect one-to-𝑛matching if and only if satisfies the following
two conditions.

(i) For every finite set 𝐴 ⊆ 𝑉, |𝑅(𝐴)| ⩾ 𝑛|𝐴|.
(ii) For every finite set 𝐵 ⊆ 𝑊, |𝐿(𝐵)| ⩾ 1

𝑛
|𝐵|.

Proof of Theorem 2.21. We prove (i)⟹(ii) by establishing the contrapositive. Suppose, therefore,
that𝐺 fails to satisfy the Følner conditionwith respect to𝑋. Thismeans that there is a finite subset
𝐾 of𝐺 and a positive real number 𝜖 such that |𝐾𝐹 ∩ 𝑋| ⩾ (1 + 𝜖)|𝐹 ∩ 𝑋| for every finite set 𝐹 ⊆ 𝐺.
Hence, |𝐾𝑖𝐹 ∩ 𝑋| ⩾ (1 + 𝜖)𝑖|𝐹 ∩ 𝑋| for every 𝑖 ∈ ℤ+ and finite set 𝐹 ⊆ 𝐺. Therefore, by replacing
𝐾 with one of its powers, we can assume that |𝐾𝐹 ∩ 𝑋| ⩾ 2|𝐹 ∩ 𝑋| for every finite subset 𝐹 of 𝐺.
By adding elements to 𝐾, we can assume further that 𝐾−1 = 𝐾.
Let  be the locally finite bipartite graph (𝑋, 𝑋, 𝐸) where 𝐸 ∶= {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∶ 𝑦 ∈ 𝐾𝑥}. If 𝐹

is an arbitrary finite subset of 𝑋, then

|𝑅(𝐹)| = |𝐿(𝐹)| = |𝐾𝐹 ∩ 𝑋| ⩾ 2|𝐹|.
Therefore,  satisfies conditions (i) and (ii) in Theorem 2.22 for 𝑛 = 2. As a result, we have a par-
tition {𝐴, 𝐵} of 𝑋 and bijections 𝛼 ∶ 𝑋 → 𝐴, 𝛽 ∶ 𝑋 → 𝐵 such that 𝛼(𝑥)𝑥−1, 𝛽(𝑥)𝑥−1 ∈ 𝐾 for every
𝑥 ∈ 𝑋. It follows, then, from Lemma 2.16 that 𝐴 ∼𝐺 𝑋 ∼𝐺 𝐵. In other words, 𝑋 is 𝐺-paradoxical.
Hence, Theorem 2.19 implies that 𝑋 is not amenable with respect to 𝐺.
To show the implication (ii)⇒(i), we again prove the contrapositive. Assume, then, that 𝑋 is

not amenable with respect to 𝐺. Appealing to Theorem 2.19 and Lemma 2.16, we obtain a finite
set 𝐾 ⊆ 𝐺, disjoint subsets 𝐴, 𝐵 of 𝑋, a bijection 𝛼 ∶ 𝑋 → 𝐴, and a bijection 𝛽 ∶ 𝑋 → 𝐵 such that
𝛼(𝑥)𝑥−1, 𝛽(𝑥)𝑥−1 ∈ 𝐾 for every 𝑥 ∈ 𝑋. Let 𝐹 be an arbitrary finite subset of 𝐺. As 𝛼(𝐹 ∩ 𝑋) ⊆

𝐾𝐹 ∩ 𝐴 and 𝛽(𝐹 ∩ 𝑋) ⊆ 𝐾𝐹 ∩ 𝐵, we deduce that |𝐾𝐹 ∩ 𝑋| ⩾ 2|𝐹 ∩ 𝑋|. This implies that 𝐺 fails to
satisfy the Følner condition with respect to 𝑋. □

3 GRADED RINGSWITH UGN

In this section, we establish our main results on graded rings, Theorem A, Theorem B, Corol-
lary A, Theorem C, and Theorem D. We conclude the section by presenting two applications of
TheoremB: in the first (Corollary 3.9), we show that theWeyl rings over a UGN ring have UGN; in
the second (Corollary 3.10), we prove that a twisted group ring of a free-by-amenable group over
a UGN-ring must possess UGN.
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18 LORENSEN and ÖINERT

3.1 Theorem A, right amenability, Corollary A, and Theorem C

Proof of Theorem A. The “only if” part follows from Lemma 2.7. We will establish the “if”
statement by proving its contrapositive. Suppose that 𝑅 has BGN. This means, by Proposi-
tion 2.2((i)⇒(iii)), that there is an 𝑅-module epimorphism 𝜙 ∶ 𝑅𝑛 → 𝑅𝑚 for some pair of positive
integers𝑚, 𝑛 such that𝑚 > 𝑛𝑟. Put𝑋 ∶= Supp(𝑅) and let𝐾 ⊆ 𝑋 be the union of the supports of all
the entries in the matrix representation of 𝜙 with respect to the standard bases. By Theorem 2.21,
there is a finite subset 𝐹 of 𝐺 such that, writing 𝑈 ∶= 𝐾−1𝐹, we have

|𝑈 ∩ 𝑋| < 𝑚

𝑛𝑟
|𝐹 ∩ 𝑋|. (3.1)

For any positive integer 𝑡 and subset 𝑉 of 𝐺, let 𝑅𝑡
𝑉
be the 𝑅1-submodule of 𝑅𝑡 consisting of

all the elements with support contained in 𝑉. In addition, let 𝜋𝑡
𝑉
∶ 𝑅𝑡 → 𝑅𝑡

𝑉
be the projection

map and notice that this map is an 𝑅1-module epimorphism. We claim that 𝑅𝑚
𝐹
= 𝜋𝑚

𝐹
𝜙(𝑅𝑛

𝑈
). To

show this, let 𝑦 ∈ 𝑅𝑚
𝐹
. Then 𝑦 = 𝜙(𝑥 + 𝑥′), where 𝑥 ∈ 𝑅𝑛

𝑈
and 𝑥′ ∈ 𝑅𝑛 with Supp(𝑥′) ∩ 𝑈 = ∅.

But Supp[𝜙(𝑥′)] ⊆ 𝐾 ⋅ Supp(𝑥′). Thus, Supp[𝜙(𝑥′)] ∩ 𝐹 = ∅; that is, 𝜋𝑚
𝐹
𝜙(𝑥′) = 0. Therefore, 𝑦 =

𝜋𝑚
𝐹
𝜙(𝑥), proving the claim.
Let 𝜙𝑈 ∶ 𝑅𝑛

𝑈
→ 𝑅𝑚 be the restriction of 𝜙 to 𝑅𝑛

𝑈
, which is an 𝑅1-module homomorphism. In

view of the claim made in the preceding paragraph, the composition 𝜋𝑚
𝐹
𝜙𝑈 ∶ 𝑅𝑛

𝑈
→ 𝑅𝑚

𝐹
is an 𝑅1-

module epimorphism. Moreover, applying condition (i), we ascertain that there is an 𝑅1-module
isomorphism 𝑅𝑛

𝑈
→ (𝑅1)

𝑘 for some 𝑘 ∈ ℤ+ with 𝑘 ⩽ 𝑛𝑟|𝑈 ∩ 𝑋|. Similarly, there is an integer 𝑙 ⩾
𝑚|𝐹 ∩ 𝑋| such that 𝑅𝑚

𝐹
≅ (𝑅1)

𝑙 as 𝑅1-modules. Thus, 𝜋𝑚𝐹 𝜙𝑈 induces an 𝑅1-module epimorphism
(𝑅1)

𝑘 → (𝑅1)
𝑙. But it follows from (3.1) that 𝑘 < 𝑙, which implies that 𝑅1 has BGN. □

Remark. We point out that the hypothesis (i) in Theorem A can be replaced by the more general
statement (i′) below.
(i′) There is a positive integer 𝑠 such that, for every g ∈ Supp(𝑅), the following two statements

hold.

∙ 𝑅g can be generated as an 𝑅1-module by 𝑠 elements.
∙ The 𝑅1-module (𝑅g )

𝑠 contains a copy of 𝑅1 as a direct summand.

To prove this, one can use essentially the same argument as for Theorem A, but with𝑚 chosen
so that 𝑚 > 𝑛𝑠2 and 𝑟 in (3.1) replaced by 𝑠2. In this case, the key 𝑅1-module epimorphism to
consider is one from 𝑅𝑛𝑠

𝑈
to 𝑅𝑚𝑠

𝐹
induced by 𝜋𝑚

𝐹
𝜙𝑈 .

Our notion of an amenable subset of a group should more precisely be referred to as left
amenability because it requires the left invariance of the measure (see Definition 1.2). If this is
replaced by right invariance, then the subset can be said to be right amenable with respect to the
group. It is then obvious that a subset𝑋 of a group𝐺 is right amenablewith respect to𝐺 if and only
if 𝑋−1 is left amenable with respect to 𝐺. This observation allows us to enunciate a dual version
of Theorem A.

Corollary 3.1. Let 𝐺 be a group and 𝑅 a ring graded by 𝐺 such that the following two conditions
hold.

(i) There is a positive integer 𝑟 such that, for every g ∈ 𝐺, 𝑅g ≅ (𝑅1)
𝑖 as left 𝑅1-modules for some

𝑖 = 0, … , 𝑟.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 19

(ii) The support of 𝑅 is right amenable with respect to 𝐺.

Then 𝑅 has UGN if and only if 𝑅1 has UGN.

Proof. The “only if” statement follows from Lemma 2.7. To prove the converse, we employ the
ring 𝑅op and grade it by 𝐺 in the following way: (𝑅op)g ∶= 𝑅g−1 for every g ∈ 𝐺. Note that we
then have (𝑅op)1 = (𝑅1)

op as rings. Moreover, for each g ∈ 𝐺, there is an integer 𝑖 ∈ [0, 𝑟] such
that (𝑅op)g ≅ ((𝑅op)1)

𝑖 as right (𝑅op)1-modules.
Suppose that 𝑅1 has UGN. Then (𝑅op)1 has UGN by Lemma 2.6. Also, as Supp(𝑅op) =

[Supp(𝑅)]−1, we have that Supp(𝑅op) is a left amenable subset of 𝐺. Therefore, by Theorem A,
𝑅op has UGN. It follows, then, from Lemma 2.6 that 𝑅 has UGN. □

With the aid of Corollary 3.1, we can prove Corollary A very easily.

Proof of Corollary A. The case where the homogenous components are free right 𝑅1-modules of
bounded rank follows immediately from Theorem A; the left-module case is a consequence of
Corollary 3.1. □

The best known examples of nonempty subsets of amenable groups that are neither left
amenable nor right amenable are free subsemigroups on two generators. An elementary amenable
group contains such a subsemigroup if and only if it is not locally virtually nilpotent (see [11, The-
orem 3.2′]), that is, not supramenable. Below we present an example [28], suggested to the first
author by Nicolas Monod, of a subset of an amenable group that is right amenable but not left
amenable.

Example 3.2. Let 𝑘 > 1 be an integer and 𝐺 the Baumslag–Solitar group BS(1, 𝑘); that is,

𝐺 ∶= ⟨𝑎, 𝑏 ∶ 𝑏𝑎𝑏−1 = 𝑎𝑘⟩.
Let 𝐴 and 𝐵 be the infinite cyclic subgroups generated by 𝑎 and 𝑏, respectively. Notice that
𝐺 = 𝐴𝐺 ⋊ 𝐵, where 𝐴𝐺 ≅ ℤ[1∕𝑘] is the normal closure of 𝐴 in 𝐺. As 𝐺 is metabelian, it is an
amenable group.
Put 𝑋 ∶= 𝐴𝐵. We claim that 𝑋 is right amenable but not left amenable. To prove the latter

assertion,write𝑋0 ∶= ⟨𝑎𝑘⟩𝐵. Observe that𝑋0 and 𝑎𝑋0 are disjoint subsets of𝑋, and that 𝑏𝑋 = 𝑋0.
Hence, the existence of a function 𝜇 ∶ (𝐺) → [0,∞] satisfying properties (i), (ii), and (iii) in
Definition 1.2 would imply

2 = 𝜇(𝑋) + 𝜇(𝑋) = 𝜇(𝑋0) + 𝜇(𝑋0) = 𝜇(𝑋0) + 𝜇(𝑎𝑋0) ⩽ 𝜇(𝑋) = 1.

Therefore, 𝑋 is not left amenable with respect to 𝐺.
To establish the right amenability of 𝑋, we invoke the following proposition, due to Rosen-

blatt [35]. He states the proposition in terms of left amenability; we have repurposed it for right
amenability. Following Rosenblatt, we employ the following notation: for any 𝑛-tuple (𝑢1, … , 𝑢𝑛)

and any set 𝑋,

‖𝑋 ∩ (𝑢1, … , 𝑢𝑛)‖ ∶= |{𝑖 = 1, … , 𝑛 ∶ 𝑢𝑖 ∈ 𝑋}|.
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20 LORENSEN and ÖINERT

Proposition 3.3 (Rosenblatt [35, Corollary 1.5]). Let 𝐺 be an amenable group. A subset 𝑋 of 𝐺 is
right amenable with respect to 𝐺 if and only if, for every𝑚-tuple (𝑢1, … , 𝑢𝑚) and 𝑛-tuple (𝑣1, … , 𝑣𝑛)

from 𝐺 such that𝑚 < 𝑛, there exists g ∈ 𝐺 such that

‖g𝑋 ∩ (𝑢1, … , 𝑢𝑚)‖ < ‖g𝑋 ∩ (𝑣1, … , 𝑣𝑛)‖.
To complete the argument using this proposition, let {𝑡𝛼 ∶ 𝛼 ∈ 𝐼} be a complete set of coset rep-

resentatives of 𝐴 in 𝐴𝐺 . Then {𝑡𝛼𝑋 ∶ 𝛼 ∈ 𝐼} is a partition of 𝐺. To apply Rosenblatt’s proposition,
we let (𝑢1, … , 𝑢𝑚) and (𝑣1, … , 𝑣𝑛) be finite sequences from 𝐺 with𝑚 < 𝑛. Then

𝑚 =
∑
𝛼∈𝐼

‖𝑡𝛼𝑋 ∩ (𝑢1, … , 𝑢𝑚)‖ and 𝑛 =
∑
𝛼∈𝐼

‖𝑡𝛼𝑋 ∩ (𝑣1, … , 𝑣𝑛)‖.
Thus, it must be the case that, for some 𝛼 ∈ 𝐼,

‖𝑡𝛼𝑋 ∩ (𝑢1, … , 𝑢𝑚)‖ < ‖𝑡𝛼𝑋 ∩ (𝑣1, … , 𝑣𝑛)‖.
Hence, 𝑋 is right amenable with respect to 𝐺.

Next we establish Theorem C, dealing with projective gradings by locally finite groups. For the
concepts from Morita theory invoked in the proof, we refer the reader to either [5, chapter 6] or
[23, chapter 18].

Proof of Theorem C. The “only if” portion of the statement follows from Lemma 2.7. To prove
the converse, we assume that 𝑅1 has UGN. In view of Lemma 2.6, we only need to consider the
case where the homogeneous components of 𝑅 are finitely generated projective right 𝑅1-modules.
Also, because UGN is inherited by direct limits (see Lemma 2.10), it suffices to treat the case
where 𝐺 is finite. This means that 𝑅 is finitely generated and projective as an 𝑅1-module. As
𝑅1 is an 𝑅1-module direct summand in 𝑅, we have further that 𝑅 is a generator for𝔐𝑅1

. These
properties make 𝑅 a progenerator in𝔐𝑅1

, rendering End𝑅1(𝑅)Morita equivalent to 𝑅1. It follows,
then, from Corollary 2.3 that End𝑅1(𝑅) has UGN. Therefore, being isomorphic to a subring of this
endomorphism ring, 𝑅 must also have UGN. □

3.2 Theorem D and its corollaries

Before proving Theorem D, we establish the following property of translation rings, generalizing
both the result and argument contained in [15, section 3] (see also [16, Proposition 2.2]).

Proposition 3.4. Let 𝐺 be a group and𝑋 a subset of 𝐺. If𝑋 is not amenable with respect to 𝐺, then,
for any ring 𝑅,

(𝑇𝐺(𝑋, 𝑅))
2 ≅ 𝑇𝐺(𝑋, 𝑅)

as 𝑇𝐺(𝑋, 𝑅)-modules, so that gn(𝑇𝐺(𝑋, 𝑅)) = 1.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 21

Proof. Assume that 𝑋 is not amenable with respect to 𝐺. If 𝑋 = ∅, then the conclusion is
clearly true. Suppose 𝑋 ≠ ∅. Applying Theorem 2.19, Lemma 2.18, and Lemma 2.16, we acquire
a finite set 𝐾 ⊆ 𝐺, a partition {𝐴, 𝐵} of 𝑋, and bijections 𝛼 ∶ 𝑋 → 𝐴 and 𝛽 ∶ 𝑋 → 𝐵 such that
𝛼(𝑥) 𝑥−1, 𝛽(𝑥) 𝑥−1 ∈ 𝐾 for all 𝑥 ∈ 𝑋. Now let 𝑅 be a ring and define the elements 𝑀 and 𝑁 of
𝑇 ∶= 𝑇𝐺(𝑋, 𝑅) as follows:

𝑀(𝑥, 𝑦) ∶=

{
1 if 𝑦 = 𝛼(𝑥)

0 if 𝑦 ≠ 𝛼(𝑥)
, 𝑁(𝑥, 𝑦) ∶=

{
1 if 𝑦 = 𝛽(𝑥)

0 if 𝑦 ≠ 𝛽(𝑥)

for all 𝑥, 𝑦 ∈ 𝑋.
Notice that the ring 𝑇𝐺(𝑋, 𝑅) is closed under transposition, so that𝑀𝑡,𝑁𝑡 ∈ 𝑇𝐺(𝑋, 𝑅). Our aim

is to establish Equations (3.2) and (3.3); these will imply 𝑇2 ≅ 𝑇 as 𝑇-modules.(
𝑀

𝑁

)(
𝑀𝑡 𝑁𝑡

)
=

(
1𝑇 0

0 1𝑇

)
. (3.2)

(
𝑀𝑡 𝑁𝑡

)(𝑀
𝑁

)
=
(
1𝑇

)
. (3.3)

Let 𝑥, 𝑥′ be arbitrary elements of 𝑋. Then

(𝑀𝑀𝑡)(𝑥, 𝑥′) =
∑
𝑦∈𝑋

𝑀(𝑥, 𝑦)𝑀(𝑥′, 𝑦).

If 𝑥 = 𝑥′, then this sum is plainly equal to 1. If 𝑥 ≠ 𝑥′, then 𝛼(𝑥) ≠ 𝛼(𝑥′), which means
(𝑀𝑀𝑡)(𝑥, 𝑥′) = 0. Hence,𝑀𝑀𝑡 = 1𝑇 . Similarly, 𝑁𝑁𝑡 = 1𝑇 . Moreover,

(𝑀𝑁𝑡)(𝑥, 𝑥′) =
∑
𝑦∈𝑋

𝑀(𝑥, 𝑦)𝑁(𝑥′, 𝑦).

As 𝛼(𝑥) ≠ 𝛽(𝑥′), this sum is equal to 0. Thus, 𝑀𝑁𝑡 = 0. By the same token, 𝑁𝑀𝑡 = 0. We have
shown, then, that (3.2) holds.
Now we calculate the products𝑀𝑡𝑀 and 𝑁𝑡𝑁.

(𝑀𝑡𝑀)(𝑥, 𝑥′) =
∑
𝑦∈𝑋

𝑀(𝑦, 𝑥)𝑀(𝑦, 𝑥′)

for all 𝑥, 𝑥′ ∈ 𝑋. This sum is equal to 1 if there is a 𝑦 ∈ 𝑋 such that 𝑥 = 𝑥′ = 𝛼(𝑦); otherwise it is
0. Hence,𝑀𝑡𝑀 is diagonal with

(𝑀𝑡𝑀)(𝑥, 𝑥) =

{
1 if 𝑥 ∈ 𝐴

0 if 𝑥 ∈ 𝐵

for every 𝑥 ∈ 𝑋. Similarly, 𝑁𝑡𝑁 is diagonal, and

(𝑁𝑡𝑁)(𝑥, 𝑥) =

{
0 if 𝑥 ∈ 𝐴

1 if 𝑥 ∈ 𝐵

for all 𝑥 ∈ 𝑋. Equation (3.3), then, follows. □
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22 LORENSEN and ÖINERT

Proof of Theorem D. The implication (ii)⟹(i) follows from Proposition 3.4. For the proof of
the converse, we denote the set {1, … , 𝑘} by 𝐽𝑘 for any 𝑘 ∈ ℤ+. Assume that (i) holds, and let 𝑅
be a ring. Notice that the “only if” part of (ii) is a consequence of Lemma 2.7. To prove the “if”
part, we suppose that 𝑇𝐺(𝑋, 𝑅) possesses BGN and deduce that 𝑅 must also have BGN. Invoking
Proposition 2.2((i)⟹(ii)) and Lemma 2.5, we obtain two integers 𝑚 > 𝑛 > 0, a 𝐽𝑚 × 𝐽𝑛 matrix
𝐴 with entries in 𝑇𝐺(𝑋, 𝑅), and a 𝐽𝑛 × 𝐽𝑚 matrix 𝐵 with entries in 𝑇𝐺(𝑋, 𝑅) such that 𝐴𝐵 is the
𝐽𝑚 × 𝐽𝑚 identitymatrix over𝑇𝐺(𝑋, 𝑅). For each pair 𝑖 ∈ 𝐽𝑚, 𝑗 ∈ 𝐽𝑛, there are finite subsets𝐾𝑖𝑗 and
𝐿𝑗𝑖 of𝐺 such that𝐴𝑖𝑗(𝑥, 𝑦) = 0whenever 𝑦 ∉ 𝐾𝑖𝑗𝑥 and 𝐵𝑗𝑖(𝑥, 𝑦) = 0whenever 𝑦 ∉ 𝐿𝑗𝑖𝑥. Now put

𝐾 ∶= {1} ∪
⋃
𝑖,𝑗

𝐾𝑖𝑗 ∪
⋃
𝑖,𝑗

𝐾−1
𝑖𝑗 ∪

⋃
𝑖,𝑗

𝐿𝑗𝑖 ∪
⋃
𝑖,𝑗

𝐿−1𝑗𝑖 .

Observe that, for all 𝑖 ∈ 𝐽𝑚 and 𝑗 ∈ 𝐽𝑛, we have

𝐴𝑖𝑗(𝑥, 𝑦) = 𝐴𝑖𝑗(𝑦, 𝑥) = 𝐵𝑗𝑖(𝑥, 𝑦) = 𝐵𝑗𝑖(𝑦, 𝑥) = 0 whenever 𝑦 ∉ 𝐾𝑥.

By Theorem 2.21, 𝐺 satisfies the Følner condition with respect to 𝑋. This means that there is a
finite subset 𝐹 of 𝐺 such that 𝑛|𝐾𝐹 ∩ 𝑋| < 𝑚|𝐹 ∩ 𝑋|. Write 𝑈 ∶= 𝐾𝐹 ∩ 𝑋 and 𝐹𝑋 ∶= 𝐹 ∩ 𝑋. Let
𝐴∗ be the 𝐽𝑚 × 𝐹𝑋 by 𝐽𝑛 × 𝑈 matrix with entries given by

𝐴∗((𝑖, 𝑓), (𝑗, 𝑢)) ∶= 𝐴𝑖𝑗(𝑓, 𝑢)

for all 𝑖 ∈ 𝐽𝑚, 𝑓 ∈ 𝐹𝑋, 𝑗 ∈ 𝐽𝑛, 𝑢 ∈ 𝑈. Moreover, let 𝐵∗ be the 𝐽𝑛 × 𝑈 by 𝐽𝑚 × 𝐹𝑋 matrix defined by

𝐵∗((𝑗, 𝑢), (𝑖, 𝑓)) ∶= 𝐵𝑗𝑖(𝑢, 𝑓)

for all 𝑗 ∈ 𝐽𝑛, 𝑢 ∈ 𝑈, 𝑖 ∈ 𝐽𝑚, 𝑓 ∈ 𝐹𝑋 .
With the above definitions, we now look at the product 𝐴∗𝐵∗ and show that it is the 𝐽𝑚 × 𝐹𝑋

by 𝐽𝑚 × 𝐹𝑋 identity matrix. Let 𝑖, 𝑖′ ∈ 𝐽𝑚 and 𝑓, 𝑓′ ∈ 𝐹𝑋 . Then

(𝐴∗𝐵∗)
(
(𝑖, 𝑓),

(
𝑖′, 𝑓′

))
=

∑
𝑢∈ 𝐾𝑓∩𝐾𝑓′∩𝑋

𝑗=1,…,𝑛

𝐴𝑖𝑗(𝑓, 𝑢)𝐵𝑗𝑖′
(
𝑢, 𝑓′

)

if 𝐾𝑓 ∩ 𝐾𝑓′ ∩ 𝑋 ≠ ∅; otherwise (𝐴∗𝐵∗)((𝑖, 𝑓), (𝑖′, 𝑓′)) = 0. Hence, in the former case, we have

(𝐴∗𝐵∗)
(
(𝑖, 𝑓),

(
𝑖′, 𝑓′

))
=

𝑛∑
𝑗=1

(
𝐴𝑖𝑗𝐵𝑗𝑖′

)
(𝑓, 𝑓′)

=

(
𝑛∑
𝑗=1

𝐴𝑖𝑗𝐵𝑗𝑖′

)
(𝑓, 𝑓′)

= (𝐴𝐵)𝑖𝑖′ (𝑓, 𝑓
′)

=

⎧⎪⎨⎪⎩
0, 𝑖 ≠ 𝑖′

0, 𝑖 = 𝑖′, 𝑓 ≠ 𝑓′

1, 𝑖 = 𝑖′, 𝑓 = 𝑓′.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12826 by B

lekinge T
ekniska H

ogskola, W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 23

Moreover, if𝐾𝑓 ∩ 𝐾𝑓′ ∩ 𝑋 = ∅, then𝑓 ≠ 𝑓′. It follows, therefore, that𝐴∗𝐵∗ is indeed the 𝐽𝑚 × 𝐹𝑋
by 𝐽𝑚 × 𝐹𝑋 identity matrix. Also, 𝐴∗ has 𝑚|𝐹𝑋| rows and 𝑛|𝑈| columns, and 𝐵∗ has 𝑛|𝑈| rows
and 𝑚|𝐹𝑋| columns. Hence, as 𝑛|𝑈| < 𝑚|𝐹𝑋|, the ring 𝑅 has BGN by virtue of Lemma 2.5 and
Proposition 2.2((ii)⟹(i)). □

Theorem D supplies right away the following characterizations of amenability and supra-
menability.

Corollary 3.5. For any group 𝐺, the following two assertions are equivalent.

(i) 𝐺 is amenable.
(ii) For any ring 𝑅, the ring 𝑇(𝐺, 𝑅) has UGN if and only if 𝑅 has UGN.

Corollary 3.6. For any group 𝐺, the following two assertions are equivalent.

(i) 𝐺 is supramenable.
(ii) For any ring 𝑅 and nonempty set 𝑋 ⊆ 𝐺, the ring 𝑇𝐺(𝑋, 𝑅) has UGN if and only if 𝑅 has UGN.

The translation ring 𝑇𝐺(𝑋, 𝑅) that we have defined should properly be called a left translation
ring because the dual concept of a right translation ring, denoted𝑇𝑟

𝐺
(𝑋,𝐴), can be defined as the set

of all 𝑋 × 𝑋 matrices𝑀 for which there is a finite set 𝐾 ⊆ 𝐺 such that𝑀(𝑥, 𝑦) = 0 whenever 𝑦 ∉
𝑥𝐾 . Notice that the map𝑀 ↦ 𝑀∗ from 𝑇𝑟

𝐺
(𝑋, 𝑅) to 𝑇𝐺(𝑋−1, 𝑅), where𝑀∗(𝑥−1, 𝑦−1) ∶= 𝑀(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋, is an isomorphism of rings. This observation leads immediately to the following
dual version of Theorem D.

Corollary 3.7. Let 𝐺 be a group and 𝑋 a subset of 𝐺. Then the following two statements are
equivalent.

(i) The subset 𝑋 is right amenable with respect to 𝐺.
(ii) For every ring 𝑅, the ring 𝑇𝑟

𝐺
(𝑋, 𝑅) has UGN if and only if 𝑅 has UGN.

3.3 Theorem B and its corollaries

We conclude this section by proving Theorem B and describing two applications.

Proof of Theorem B. First we establish (i)⟹(ii). Assume that 𝐺 is amenable, and let 𝑅 be a ring
with a 𝐺-grading that is full and boundedly free. By Lemma 2.7, 𝑅1 has UGN if 𝑅 has UGN. To
establish the converse, suppose that 𝑅1 has UGN. If the homogeneous components are free right
𝑅1-modules of bounded rank, then it follows immediately from Theorem A that 𝑅 has UGN. For
the left-module case, we just need to apply Corollary 3.1.
The assertions (ii)⟹(iii) and (iii)⟹(iv) are trivial. For (iv)⟹(i), we prove the contrapositive.

Suppose that 𝐺 is not amenable and let 𝑆 be a ring with UGN. According to Proposition 3.4, the
ring 𝑇(𝐺, 𝑆) has BGN. Furthermore, Proposition 2.14 implies that 𝑇(𝐺, 𝑆) is a skew group ring
(
∏

𝐺 𝑆) ∗ 𝐺. Also, by Lemma 2.11, the ring
∏

𝐺 𝑆 has UGN. Therefore, statement (iv) fails to
hold. □
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24 LORENSEN and ÖINERT

The best known examples of rings to which Theorem B can be applied are crossed products.
But the value of the theorem extends well beyond this realm, for there are many other sorts of
rings that permit full and boundedly free gradings by amenable groups. One well-known family
of such rings are the Weyl rings.

Definition 3.8. Let 𝑅 be a ring. The first Weyl ring over 𝑅, denoted𝑊1(𝑅), is the 𝑅-ring with the
presentation

𝑊1(𝑅) ∶= ⟨𝑥, 𝑦 ∶ 𝑥𝑦 − 𝑦𝑥 = 1; 𝑟𝑥 = 𝑥𝑟 and 𝑟𝑦 = 𝑦𝑟 for all 𝑟 ∈ 𝑅⟩.
For any integer 𝑛 > 1, the 𝑛th Weyl ring𝑊𝑛(𝑅) over 𝑅 is defined by𝑊𝑛(𝑅) ∶= 𝑊1(𝑊𝑛−1(𝑅)).

Corollary 3.9. If 𝑅 is a ring with UGN, then𝑊𝑛(𝑅) has UGN for every 𝑛 ∈ ℤ+.

Proof. It suffices to show that 𝑆 ∶= 𝑊1(𝑅) has UGN. For this, we grade 𝑆 by ℤ by assigning
deg(𝑥) ∶= 1 and deg(𝑦) ∶= −1. An appeal to [9, Corollary 6.2] allows us to deduce that 𝑆 is freely
generated as an 𝑅-module by both the set of monomials 𝑥𝑘 𝑦𝑙 for 𝑘, 𝑙 = 0, 1, 2, … and the set of
monomials 𝑦𝑙 𝑥𝑘 for 𝑘, 𝑙 = 0, 1, 2, … . As a result, 𝑆0 is a free 𝑅-module on the sets  ∶= {𝑥𝑘 𝑦𝑘 ∶

𝑘 = 0, 1, 2, … } and ′ ∶= {𝑦𝑘 𝑥𝑘 ∶ 𝑘 = 0, 1, 2, … }. From these observations, we can see that, if
𝑛 ∈ ℤ+, then 𝑆𝑛 and 𝑆−𝑛 are freely generated as 𝑅0-modules by 𝑥𝑛 and 𝑦𝑛, respectively.
Whenever the product of any two elements of  − {1} is expressed as an 𝑅-linear combination

of elements of , the coefficient of 1 is 0. Thus, we can define a ring homomorphism 𝑆0 → 𝑅 by
mapping every element 𝑠 ∈ 𝑆0 to the coefficient of 1 in the expression of 𝑠 as a linear combination
of elements of . Lemma 2.7 implies, then, that 𝑆0 has UGN. Therefore, by Theorem B, 𝑆 has
UGN. □

It is worth mentioning that there is no counterpart to the characterizations (iii) and (iv) in
Theorem B pertaining to twisted group rings. We show this in Corollary 3.10 by proving that any
twisted group ring of a free-by-amenable group over a UGN-ring must have UGN. It is an open
question whether the corresponding statement is true for the twisted group ring of an arbitrary
group.

Corollary 3.10. Let 𝐺 be a free-by-amenable group, R a ring, and 𝑅 ∗ 𝐺 a twisted group ring. Then
𝑅 ∗ 𝐺 has UGN if and only if 𝑅 has UGN.

Proof. The “only if” part follows from Lemma 2.7. To prove the “if” portion, suppose that 𝑅 has
UGN. The group 𝐺 has a free normal subgroup 𝐹 such that 𝑄 ∶= 𝐺∕𝐹 is amenable. This means
that the twisted group ring 𝑅 ∗ 𝐺 is isomorphic to a crossed product of the group 𝑄 over a twisted
group ring 𝑅 ∗ 𝐹. As 𝐹 is free, we have 𝐻2(𝐹, 𝑍(𝑅)∗) = 0, which implies 𝑅 ∗ 𝐹 ≅ 𝑅𝐹 as rings.
Hence, by Corollary 2.8, 𝑅 ∗ 𝐹 possesses UGN. It follows, then, from Theorem B that 𝑅 ∗ 𝐺 has
UGN. □

OpenQuestion 3.11. Let𝐺 be an arbitrary group. If 𝑅 is a ring with UGN,must every twisted group
ring 𝑅 ∗ 𝐺 have UGN?
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 25

4 EXAMPLES OF GRADED RINGSWITH FINITE GENERATING
NUMBERS

In this final section, we discuss obstacles to generalizing Theorem B, Corollary A, and TheoremC
in various ways. In Subsection 4.1, we describe three examples of BGN-rings graded by infinite
groups whose base rings have UGN, illustrating that the boundedness and freeness conditions on
the grading in Theorem B((i)⇒(ii)) and Corollary A are necessary. Moreover, in Subsection 4.2,
we present three examples of rings graded by finite groups; the first two show that the equalities
between infinite generating numbers that we established in Section 3 fail to translate into equal-
ities between finite generating numbers. The purpose of the last example is to demonstrate that
the projectivity condition in Theorem C cannot be jettisoned.

4.1 Gradings by infinite groups

First we prove that the hypothesis that the grading is boundedly free in Theorem B((i)⇒(ii)) and
Corollary A cannot be weakened to the grading being merely free.

Theorem 4.1. There is a ring 𝑅 with a full and unboundedly free ℤ-grading such that 𝑅0 has UGN
and 𝑅 has BGN.

Proof. Let 𝑆 be an arbitrary UGN-ring, and let 𝑅 be the 𝑆-ring generated by 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3
subject only to the following relations:

(1) 𝑠 𝑥𝑖 = 𝑥𝑖 𝑠 for all 𝑖 = 1, 2, 3 and 𝑠 ∈ 𝑆;
(2) 𝑠 𝑦𝑖 = 𝑦𝑖 𝑠 for all 𝑖 = 1, 2, 3 and 𝑠 ∈ 𝑆;
(3) 𝑥𝑖 𝑦𝑖 + 𝑦𝑖 𝑥𝑖 = 1 for 𝑖 = 1, 2, 3;
(4) 𝑥𝑖 𝑦𝑗 + 𝑦𝑖 𝑥𝑗 = 0 whenever 𝑖 ≠ 𝑗.

Relations (3) and (4) yield the matrix equation

⎛⎜⎜⎝
𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3

⎞⎟⎟⎠
(
𝑦1 𝑦2 𝑦3
𝑥1 𝑥2 𝑥3

)
=
⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠ .
Thus, by Lemma 2.5 and Proposition 2.2((ii)⇒(i)), 𝑅 has BGN.
Set up a ℤ-grading on 𝑅 by assigning deg(𝑥𝑖) ∶= 1 and deg(𝑦𝑖) ∶= −1. As in the proof of Corol-

lary 3.9, we can apply [9, Corollary 6.2] to conclude that 𝑅 is freely generated as an 𝑆-module by
each of the two sets and′ defined below.

 ∶=
{
𝑥𝑖1 … 𝑥𝑖𝑘 𝑦𝑗1 … 𝑦𝑗𝑙 ∶ 𝑘, 𝑙 ⩾ 0, 1 ⩽ 𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑙 ⩽ 3

}
;

′ ∶=
{
𝑦𝑗1 … 𝑦𝑗𝑙 𝑥𝑖1 … 𝑥𝑖𝑘 ∶ 𝑘, 𝑙 ⩾ 0, 1 ⩽ 𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑙 ⩽ 3

}
.

As a result, 𝑅0 is freely generated as an 𝑆-module by each of the sets

 ∶=
{
𝑥𝑖1 … 𝑥𝑖𝑘 𝑦𝑗1 … 𝑦𝑗𝑘 ∶ 𝑘 ⩾ 0, 1 ⩽ 𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑘 ⩽ 3

}
;

′ ∶=
{
𝑦𝑗1 … 𝑦𝑗𝑘 𝑥𝑖1 … 𝑥𝑖𝑘 ∶ 𝑘 ⩾ 0, 1 ⩽ 𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑘 ⩽ 3

}
.
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26 LORENSEN and ÖINERT

From the properties above, it is apparent that, for 𝑛 ∈ ℤ+, 𝑅𝑛 is freely generated as an
𝑅0-module by the set {

𝑥𝑖1 … 𝑥𝑖𝑛 ∶ 1 ⩽ 𝑖1, … , 𝑖𝑛 ⩽ 3
}
,

and that 𝑅−𝑛 is freely generated as an 𝑅0-module by the set{
𝑦𝑗1 … 𝑦𝑗𝑛 ∶ 1 ⩽ 𝑗1, … , 𝑗𝑛 ⩽ 3

}
.

Hence, the grading that we have defined on 𝑅 is full and unboundedly free.
Define the function 𝜙 ∶ 𝑅0 → 𝑆 by, for any 𝑟 ∈ 𝑅0, letting 𝜙(𝑟) be the coefficient of 1 in the

expression of 𝑟 as an 𝑆-linear combination of the elements of. Plainly, 𝜙 is additive, and 𝜙(1𝑅0) =
1𝑆 . Notice further that, whenever any product of two elements of  − {1} is written as a linear
combination of elements of  with coefficients in 𝑆 by repeatedly applying relations (3) and (4),
the coefficient of 1 in that linear combination will be 0. From this observation we can see that 𝜙 is
multiplicative and therefore a ring homomorphism. Thus, according to Lemma 2.7, 𝑅0 must have
UGN. □

Remark. The authors do not know whether there is an example witnessing Theorem 4.1 that has
generating number one.

In Theorem 4.2, we demonstrate that the bounded freeness of the grading in Theo-
rem B((i)⇒(ii)) and Corollary A cannot be replaced by strongness. As strong gradings are
necessarily projective, this result also serves to show that Theorem D fails to generalize to
supramenable groups.

Theorem 4.2. For any positive integer 𝑛, there exists a strongly ℤ-graded ring 𝑅 such that 𝑅0 has
UGN and gn(𝑅) = 𝑛.

The main step in establishing Theorem 4.2 is to prove the following proposition.

Proposition 4.3. Let 𝑆 be a UGN-ring, and let 𝑛 be an integer with 𝑛 > 1. Furthermore, let 𝐿 be
the 𝑆-ring generated by the sets 𝐸 ∶= {𝑒1, … , 𝑒𝑛} and 𝐸∗ ∶= {𝑒∗

1
, … , 𝑒∗𝑛} subject only to the following

relations.

(i) The elements of 𝑆 commute with the generators in 𝐸 ∪ 𝐸∗.
(ii) 𝑒∗

𝑖
𝑒𝑗 = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑛.

(iii)
∑𝑛

𝑖=1 𝑒𝑖𝑒
∗
𝑖
= 1.

Then the following two statements hold.

∙ 𝐿𝑛 ≅ 𝐿 as 𝐿-modules, so that gn(𝐿) = 1.
∙ There is a strong ℤ-grading on 𝐿 such that 𝐿0 has UGN.

The 𝑆-ring 𝐿 in Proposition 4.3 is often denoted 𝐿𝑆(1, 𝑛) (see the remark following the proof of
Proposition 2.12). It is a special case of what is known as a Leavitt path ring (see [3]). Moreover,
the ℤ-grading referred to in Proposition 4.3 corresponds to the conventional ℤ-grading on such
rings (see [3, section 2.1]).
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 27

The proof of Proposition 4.3 makes use of the following well-known, elementary property.

Proposition 4.4. Let 𝑆 be a ring, and let 𝑅 be an 𝑆-ring that is generated by elements 𝜖𝑖𝑗 for 𝑖, 𝑗 =
1, … , 𝑛 satisfying the following four conditions:

(i) 𝑠𝜖𝑖𝑗 = 𝜖𝑖𝑗𝑠 for all 𝑠 ∈ 𝑆 and 𝑖, 𝑗 = 1, … , 𝑛;
(ii) Ann𝑆(𝜖𝑖𝑗) = 0 for all 𝑖, 𝑗 = 1, … , 𝑛;
(iii) 𝜖𝑖𝑗𝜖𝑘𝑚 = 𝛿𝑗𝑘 𝜖𝑖𝑚 for all 𝑖, 𝑗, 𝑘,𝑚 = 1,… , 𝑛;
(iv)

∑𝑛
𝑖=1 𝜖𝑖𝑖 = 1.

If {𝐸𝑖𝑗 ∶ 𝑖, 𝑗 = 1,… , 𝑛} is the set of standard matrix units in 𝑀𝑛(𝑆), then there is an 𝑆-ring
isomorphism 𝜙 ∶ 𝑀𝑛(𝑆) → 𝑅 such that 𝜙(𝐸𝑖𝑗) = 𝜖𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑛.

Proof of Proposition 4.3. Let (𝐸) be the multiplicative submonoid of 𝐿 generated by 𝐸. Then
(𝐸) is free on 𝐸. For any 𝛼 = 𝑒𝑖1 ⋯ 𝑒𝑖𝑙 , we call 𝑙 the length of 𝛼, denoted 𝑙(𝛼), and write 𝛼

∗ ∶=

𝑒∗
𝑖𝑙
𝑒∗
𝑖𝑙−1

⋯ 𝑒∗
𝑖1
. In addition, we define 𝑙(1) ∶= 0 and 1∗ ∶= 1. Finally, wewrite𝑙(𝐸) for the subset of

(𝐸) consisting of all the elements of length 𝑙. With this notation, we can generalize the relations
(ii) and (iii) among the hypotheses of Proposition 4.3 as follows:

(1) 𝛼∗𝛽 = 𝛿(𝛼, 𝛽) for all 𝛼, 𝛽 ∈ (𝐸) with 𝑙(𝛼) = 𝑙(𝛽);
(2)

∑
𝛼∈𝑙 (𝐸)

𝛼𝛼∗ = 1 for all 𝑙 ⩾ 0.

We set up the ℤ-grading on 𝐿 by, for any 𝑘 ∈ ℤ, defining 𝐿𝑘 to be the 𝑆-linear span of the set of
elements of the form 𝛼𝛽∗ such that 𝛼, 𝛽 ∈ (𝐸) and 𝑙(𝛼) − 𝑙(𝛽) = 𝑘. Moreover, relations (1) and
(2) ensure that this grading is strong (see [31, Proposition 1.1.1(3)]).
That 𝐿𝑛 ≅ 𝐿 as 𝐿-modules follows from the defining relations of 𝐿. To establish that 𝐿0 has

UGN, we let 𝐿𝑙
0
be the subring of 𝐿0 consisting of all 𝑆-linear combinations of elements of the

form 𝛼𝛽∗ where 𝛼, 𝛽 ∈ 𝑙(𝐸). Then 𝐿0 is the union of the chain

𝐿00 ⊂ 𝐿10 ⊂ 𝐿20 ⊂ ⋯ ,

with the containments following easily from relation (iii). Our intent is to apply Proposition 4.4
to show that, for every 𝑙 ⩾ 0, 𝐿𝑙

0
≅ 𝑀𝑛𝑙 (𝑆). This will mean, by either Corollary 2.3 or Corollary 3.5,

that each subring 𝐿𝑙
0
has UGN, implying, by Lemma 2.10, that 𝐿0 does too.

To construct the desired isomorphism, we first choose a bijection 𝜎 ∶ {1, … , 𝑛𝑙} → 𝑙(𝐸) and
write 𝜖𝑖𝑗 ∶= 𝜎(𝑖)(𝜎(𝑗))∗ for 𝑖, 𝑗 = 1, … , 𝑛𝑙 . Then (1) and (2), respectively, imply the following two
equations:

∙ 𝜖𝑖𝑗𝜖𝑘𝑚 = 𝛿𝑗𝑘 𝜖𝑖𝑚 for 𝑖, 𝑗, 𝑘,𝑚 = 1,… , 𝑛𝑙;

∙
∑𝑛𝑙

𝑖=1 𝜖𝑖𝑖 = 1.

Now let {𝐸𝑖𝑗 ∶ 𝑖, 𝑗 = 1,… , 𝑛𝑙} be the set of standard matrix units in𝑀𝑛𝑙 (𝑆). Referring to Proposi-
tion 4.4, we see that there is an 𝑆-ring isomorphism 𝜙 ∶ 𝑀𝑛𝑙 (𝑆) → 𝐿𝑙

0
such that 𝜙(𝐸𝑖𝑗) = 𝜖𝑖𝑗 for

𝑖, 𝑗 = 1, … , 𝑛𝑙 . □

Remark. The interpretation of 𝐿0 as a direct limit of matrix rings that plays a central role in our
proof of Proposition 4.3 is originally due to Abrams and Ánh [2] for the case where 𝑆 is a field.

Remark. The case of Proposition 4.3 when 𝑆 is a field also follows from an argument constructed
by Loc [27, p. 67].
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28 LORENSEN and ÖINERT

Remark. In light of our interest in free gradings, we observe that, in Proposition 4.3, 𝐿𝑘 is a finitely
generated free right 𝐿0-module if 𝑘 > 0 and a finitely generated free left 𝐿0-module if 𝑘 < 0.

To prove Theorem 4.2, we merely need to form a direct product involving the ring from
Proposition 4.3, a technique, borrowed from [1], that we will use on three further occasions in
this section.

Proof of Theorem 4.2. Let 𝑆 be a ring with UGN, and let 𝐿 be the ℤ-graded ring defined in Propo-
sition 4.3. By Proposition 2.12, there is a ring𝑈 with gn(𝑈) = 𝑛. Put 𝑅 ∶= 𝐿 × 𝑈 and grade 𝑅 by ℤ
by defining 𝑅𝑘 ∶= 𝐿𝑘 × 𝑈 for every 𝑘 ∈ ℤ. As the grading on 𝐿 is strong, the same is true for the
grading on 𝑅. Moreover, Lemma 2.11 implies that 𝑅0 has UGN and gn(𝑅) = 𝑛. □

Remark. We point out that it is not possible to find a Leavitt path algebra over a field that enjoys
the properties of the ring 𝑅 in Theorem 4.2. The reason is that, if a Leavitt path algebra over a field
has BGN, then it must have generating number one (see [4, Remark 3.17]).

Theorem 4.2 allows us to establish the following characterization of local finiteness within the
class of elementary amenable groups.

Corollary 4.5. For an elementary amenable group𝐺, the following two statements are equivalent.

(i) 𝐺 is locally finite.
(ii) Every projectively 𝐺-graded ring has UGN if and only if its base ring has UGN.

Proof. The implication (i)⟹(ii) is TheoremC. To show (ii)⟹(i), we establish the contrapositive.
Hence, we suppose that 𝐺 is not locally finite. It follows, then, from [11, Theorem 2.3] that 𝐺
contains an infinite cyclic subgroup𝐻. According to Theorem 4.2, there is a projectively𝐻-graded
ring 𝑅 such that 𝑅1 has UGN but 𝑅 has BGN. We now extend the 𝐻-grading on 𝑅 to a 𝐺-grading
by setting 𝑅g ∶= 0 if g ∈ 𝐺 −𝐻. Equipped with this 𝐺-grading, the ring 𝑅 witnesses the failure of
(ii) to hold. □

Below we show that the boundedly free condition in Theorem B((i)⇒(ii)) cannot be replaced
by the hypothesis that the grading is merely boundedly projective.

Theorem 4.6. Let 𝐺 be an elementary amenable group that is not locally virtually nilpotent. For
every 𝑛 ∈ ℤ+, there exists a ring 𝑅 graded by 𝐺 with the following properties.

(i) The 𝐺-grading on 𝑅 is full.
(ii) For each g ∈ 𝐺, the 𝑅1-module 𝑅g is a direct summand in 𝑅1.
(iii) 𝑅1 has UGN.
(iv) gn(𝑅) = 𝑛.

The main step in establishing Theorem 4.6 is to prove Proposition 4.7.

Proposition 4.7. Let 𝐺 be any elementary amenable group that is not locally virtually nilpotent.
For every 𝑛 ∈ ℤ+, there exists a ring 𝑅 graded by 𝐺 with the following properties.

(i) For each g ∈ 𝐺, the 𝑅1-module 𝑅g is a direct summand in 𝑅1.
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 29

(ii) The base ring 𝑅1 has UGN.
(iii) gn(𝑅) = 1.

Proof. Let 𝑆 be any ring with UGN. By [11, Theorem 3.2′], 𝐺 contains a subsemigroup 𝑋 that is
free on a set of cardinality two. Set 𝑅 ∶= 𝑇𝐺(𝑋, 𝑆). As 𝑋 is not amenable with respect to 𝐺, Propo-
sition 3.4 implies gn(𝑅) = 1. For every g ∈ 𝐺, let 𝑅g ⊆ 𝑅 be the set of all 𝑋 × 𝑋 matrices 𝐴 with
entries in 𝑆 such that 𝐴(𝑥, 𝑦) = 0 if 𝑥 ≠ g𝑦. This provides us with a 𝐺-grading on 𝑅. Observe fur-
ther that 𝑅1 is the collection of all diagonal matrices in 𝑇𝐺(𝑋, 𝑆). Hence, according to Lemma 2.11,
𝑅1 has UGN.
To establish property (i), let g ∈ 𝐺 and let𝑀 be the𝑅1-module consisting of all g𝑋 × 𝑋matrices

𝐴 with entries in 𝑆 such that 𝐴(𝑥, 𝑦) = 0 if 𝑥 ≠ g𝑦. Notice that 𝑀 is a free 𝑅1-module whose
generator is the matrix 𝐴0 ∈ 𝑀 such that 𝐴0(g𝑦, 𝑦) = 1 for all 𝑦 ∈ 𝑋. Next define 𝑃 to be the
submodule of 𝑀 consisting of all the matrices with 0 in the (g𝑦, 𝑦) position whenever g𝑦 ∉ 𝑋.
Furthermore, define𝑄 to be the submodule of𝑀 consisting of all thematrices with 0 in the (g𝑦, 𝑦)
position whenever g𝑦 ∈ 𝑋. Then𝑀 ≅ 𝑃 ⊕ 𝑄 and 𝑃 ≅ 𝑅g , which proves (i). □

Now we apply the same trick as in the proof of Theorem 4.2 to prove Theorem 4.6.

Proof of Theorem 4.6. According to Proposition 4.7, there is a ring 𝑆 graded by𝐺with the following
properties.

∙ For each g ∈ 𝐺, the 𝑆1-module 𝑆g is a direct summand in 𝑆1.
∙ 𝑆1 has UGN.
∙ gn(𝑆) = 1.

Appealing to Proposition 2.12, we let 𝑇 be a nonzero ring with gn(𝑇) = 𝑛. Put 𝑅 ∶= 𝑆 × 𝑇 and
define a 𝐺-grading on 𝑅 by letting 𝑅g ∶= 𝑆g × 𝑇 for every g ∈ 𝐺. This grading is plainly full. Also,
by Lemma 2.11, 𝑅1 = 𝑆1 × 𝑇 has UGN and gn(𝑅) = 𝑛. To show (ii), let g ∈ 𝐺 and let 𝐴 be an 𝑆1-
module such that 𝑆g ⊕𝐴 ≅ 𝑆1. Now make 𝐴 into an 𝑅1-module by defining 𝑎 (𝑠, 𝑡) ∶= 𝑎𝑠 for all
𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆1, and 𝑡 ∈ 𝑇. It is then straightforward to verify that 𝑅g ⊕𝐴 ≅ 𝑅1 as 𝑅1-modules, thus
completing the proof. □

Remark. The rings described in the proofs of Proposition 4.7 and Theorem 4.6 are not
strongly graded.

4.2 Gradings by finite groups

Next we show that Theorem B, Corollary A, and Theorem C fail to extend to finite generating
numbers.

Proposition 4.8. Let 𝑚, 𝑛 be positive integers with 𝑚 ⩽ 𝑛, and let 𝐺 be a group that has order 𝑛.
Then there are a ring 𝑅 and a skew group ring 𝑅 ∗ 𝐺 such that gn(𝑅) = 𝑛 and gn(𝑅 ∗ 𝐺) = 𝑚.

Proof. By Proposition 2.12, there exist rings 𝑆 and 𝑇 with generating numbers 𝑚 and 𝑛, respec-
tively. Put 𝑈 ∶= 𝑀𝑛(𝑇). According to Lemma 2.9, we have gn(𝑈) = 1. Let 𝐺 be a finite group of
order 𝑛 and notice that 𝑇(𝐺, 𝑇) ≅ 𝑈 as rings. Proposition 2.14 implies, then, that𝑈 is isomorphic
to a skew group ring of𝐺 over

∏
𝐺 𝑇. Write𝑉 ∶= 𝑈 × 𝑆 and 𝑅 ∶= (

∏
𝐺 𝑇) × 𝑆. Define a𝐺-grading
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30 LORENSEN and ÖINERT

on 𝑉 by setting 𝑉g ∶= 𝑈g × 𝑆 for all g ∈ 𝐺. Then this grading makes 𝑉 into a skew group ring of
𝐺 over 𝑅. Furthermore, applying Lemma 2.11, we obtain gn(𝑅) = 𝑛 and gn(𝑉) = 𝑚. □

Below we use Abrams’s reasoning in [1, Theorem B] to construct another family of rings that
demonstrates that Theorem C does not extend to finite generating numbers. In contrast to the
one described in Proposition 4.8, the grading groups for this family comprise all nontrivial finite
groups.

Proposition 4.9. Let 𝐺 be a nontrivial finite group and 𝑚, 𝑛 positive integers with 𝑚 ⩽ 𝑛. Then
there exists a ring 𝑅 strongly graded by 𝐺 such that gn(𝑅1) = 𝑛 and gn(𝑅) = 𝑚.

Proof. Invoking Proposition 2.12, we let 𝑆 be a ring with gn(𝑆) = 𝑛. Then gn(𝑀𝑛(𝑆)) = 1 by
Lemma 2.9. Put 𝑘 ∶= |𝐺| and let 𝑙 ∈ ℤ+ such that 𝑛𝑙 > 𝑘 − 1. Set 𝑝 ∶= 𝑛𝑙 − 𝑘 + 1, and define a
family {𝐴g ∶ g ∈ 𝐺} of 𝑆-modules as follows:𝐴1 ∶= 𝑆𝑝;𝐴g ∶= 𝑆 for g ≠ 1. Write𝐴 ∶=

⨁
g∈𝐺 𝐴g

and 𝑇 ∶= End𝑆(𝐴). This means 𝑇 ≅ 𝑀𝑛𝑙(𝑆), implying that there is a ring embedding𝑀𝑛(𝑆) → 𝑇.
Therefore, by Lemma 2.7, we have gn(𝑇) = 1.
The ring 𝑇may be viewed as the ring of all𝐺 × 𝐺matrices 𝑃 such that 𝑃(g , ℎ) ∈ Hom𝑆(𝐴ℎ, 𝐴g )

for every pair g , ℎ ∈ 𝐺. This allows us to equip 𝑇 with a 𝐺-grading by, for each g ∈ 𝐺, defining 𝑇g

to be the set of all matrices 𝑃 ∈ 𝑇 such that 𝑃(𝑥, 𝑦) = 0 if 𝑦 ≠ g−1𝑥. Moreover, it is straightforward
to check that this grading is strong (see [31, Proposition 1.1.1(3)]).
We observe that the following isomorphic relations between rings hold:

𝑇1 ≅ End𝑆(𝑆
𝑝) × End𝑆(𝑆) ×⋯ × End𝑆(𝑆)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
𝑘−1

≅ 𝑀𝑝(𝑆) × 𝑆 ×⋯ × 𝑆
⏟⎴⏟⎴⏟

𝑘−1

.

As there is a ring embedding 𝑆 → 𝑀𝑝(𝑆), it follows from Lemma 2.7 that gn(𝑀𝑝(𝑆)) ⩽ 𝑛. Hence,
we obtain gn(𝑇1) = 𝑛 by applying Lemma 2.11. Now let𝑈 be a ring with gn(𝑈) = 𝑚. Put 𝑅 ∶= 𝑇 ×

𝑈 and endow 𝑅 with a strong 𝐺-grading by defining 𝑅g ∶= 𝑇g × 𝑈 for g ∈ 𝐺. Then Lemma 2.11
implies gn(𝑅1) = 𝑛 and gn(𝑅) = 𝑚. □

Remark. The ring 𝑅 described in the proof of Proposition 4.9 will not be a crossed product of 𝐺
over 𝑅1 if 𝑝 > 1; indeed, 𝑅 will not even be freely graded. Moreover, it is not hard to see that it will
not always be possible to find a ring 𝑅 satisfying the conclusion of Proposition 4.9 that is a crossed
product of 𝐺 over 𝑅1. To illustrate this, choose𝑚, 𝑛, 𝑘 to be positive integers such that 𝑘 divides 𝑛
and𝑚 < 𝑘. Also, take 𝐺 to be a group of order 𝑛∕𝑘 and 𝑅1 to be a ring with generating number 𝑛.
Now let 𝑅 be a crossed product of 𝐺 over 𝑅1. Then 𝑅 can be embedded in End𝑅1(𝑅) ≅ 𝑀𝑛∕𝑘(𝑅1).
Therefore, by Lemmas 2.9 and 2.7, we have gn(𝑅) ⩾ 𝑘 > 𝑚.

We conclude the paper by applying the methods employed for [1, Theorem A] and [27, Theo-
rem 3.1] to prove Theorem4.10, thus demonstrating that the hypothesis that the ring is projectively
graded in Theorem C cannot be omitted.

Theorem4.10. Let𝐺 be anontrivial finite group. Then, for any integer𝑛 > 0, there exists a𝐺-graded
ring 𝑅 such that 𝑅1 has UGN and gn(𝑅) = 𝑛.

Like the approach adopted in both [1] and [27], ours is based uponTheorem 2.13. In addition, we
rely on Lemmas 4.11 and 4.12. The first, inspired by [30, Proposition 3.3], describes an elementary
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GENERATING NUMBERS OF RINGS GRADED BY AMENABLE AND SUPRAMENABLE GROUPS 31

and well-known property of projective modules that can be used to determine the generating
numbers of their endomorphism rings (see [17, Theorem 2.35] for a far-reaching generalization
of Lemma 4.11). The second lemma introduces a certain abelian monoid to which we will apply
Theorem 2.13 when we prove Theorem 4.10.

Lemma 4.11. Let 𝑅 be a ring and 𝑃 a projective 𝑅-module. Write 𝑆 ∶= End𝑅(𝑃). Then the following
two statements are equivalent for any𝑚, 𝑛 ∈ ℤ+.

(i) There is an 𝑆-module epimorphism 𝑆𝑛 → 𝑆𝑚.
(ii) There is an 𝑅-module epimorphism 𝑃𝑛 → 𝑃𝑚.

Proof. Assume that there is an 𝑆-module epimorphism 𝑆𝑛 → 𝑆𝑚. This induces an 𝑅-module epi-
morphism 𝑆𝑛 ⊗𝑆 𝑃 → 𝑆𝑚 ⊗𝑆 𝑃. However, 𝑆 ⊗𝑆 𝑃 ≅ 𝑃 as𝑅-modules, so thatwehave an𝑅-module
epimorphism 𝑃𝑛 → 𝑃𝑚. This proves (i)⇒(ii).
Assume that there is an 𝑅-module epimorphism 𝜙 ∶ 𝑃𝑛 → 𝑃𝑚. As 𝑃 is projective, the map

𝜙 induces an 𝑆-module epimorphism Hom𝑅(𝑃, 𝑃
𝑛) → Hom𝑅(𝑃, 𝑃

𝑚). But, for every 𝑘 ∈ ℤ+,
Hom𝑅(𝑃, 𝑃

𝑘) ≅ 𝑆𝑘 as 𝑆-modules. Therefore, we have an 𝑆-module epimorphism 𝑆𝑛 → 𝑆𝑚. This
establishes (ii)⇒(i). □

Lemma 4.12. For any triple 𝑛, 𝑘, 𝑙 of positive integers, let𝑀(𝑛, 𝑘, 𝑙) be the abelianmonoid generated
by 𝑢, 𝑥1, … , 𝑥𝑙, 𝑦1, … , 𝑦𝑙 subject only to the relations

(𝑛 + 𝑘)(𝑢 + 𝑥1 +⋯ + 𝑥𝑙) = 𝑛(𝑢 + 𝑥1 +⋯ + 𝑥𝑙), 𝑥𝑖 + 𝑦𝑖 = 𝑢 for 𝑖 = 1, … , 𝑙.

Then, for any 𝑗 = 1,… , 𝑙 and any two positive integers 𝜆, 𝜇,

𝜆𝑥𝑗 ⩽ 𝜇𝑥𝑗 ⟹ 𝜆 ⩽ 𝜇.

Proof.Wewillmakeuse of themonoid homomorphism𝜙 ∶ 𝑀(𝑛, 𝑘, 𝑙) → 𝐶(𝑛, 𝑘) such that𝜙(𝑢) ∶=
𝜙(𝑦𝑖) ∶= 𝑎 and𝜙(𝑥𝑖) ∶= 0 for 𝑖 = 1, … , 𝑙. In addition,wewill employ themonoidhomomorphisms
𝜓𝑗 ∶ 𝑀(𝑛, 𝑘, 𝑙) → ℤ, for 𝑗 = 1,… , 𝑙, defined by

𝜓𝑗(𝑢) ∶= −1, 𝜓𝑗(𝑥𝑖) ∶=

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
, and 𝜓𝑗(𝑦𝑖) ∶=

{
−2 if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗
.

The hypothesis 𝜆𝑥𝑗 ⩽ 𝜇𝑥𝑗 implies that there are nonnegative integers 𝜆1, … , 𝜆𝑙, 𝛼, 𝛽1, … , 𝛽𝑙 such
that 𝜆𝑗 ⩾ 𝜆 and

𝜆1𝑥1 +⋯ + 𝜆𝑙𝑥𝑙 + 𝛼𝑢 + 𝛽1𝑦1 +⋯ + 𝛽𝑙𝑦𝑙 = 𝜇𝑥𝑗. (4.1)

Applying 𝜙 to Equation (4.1) yields (𝛼 + 𝛽1 +⋯ + 𝛽𝑙)𝑎 = 0, which means 𝛼 = 𝛽𝑖 = 0 for 𝑖 =
1, … , 𝑙. We now apply 𝜓𝑗 to (4.1), obtaining 𝜆𝑗 = 𝜇. Thus, 𝜆 ⩽ 𝜇. □

Proof of Theorem 4.10. We are given an arbitrary nontrivial finite group𝐺 and an arbitrary positive
integer 𝑛. Set 𝑙 ∶= |𝐺| − 1. Taking 𝑘 to be another arbitrary positive integer, let𝑀(𝑛, 𝑘, 𝑙) be the
abelian monoid defined in Lemma 4.12. The monoid homomorphisms 𝜙 ∶ 𝑀(𝑛, 𝑘, 𝑙) → 𝐶(𝑛, 𝑘)

and 𝜓𝑗 ∶ 𝑀(𝑛, 𝑘, 𝑙) → ℤ, for 𝑗 = 1,… , 𝑙, used in the proof of that lemma can also be employed to
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32 LORENSEN and ÖINERT

show that, if 𝛼1, …𝛼𝑙, 𝛽, 𝛾1, … , 𝛾𝑙 are nonnegative integers, then

𝑙∑
𝑖=1

(𝛼𝑖𝑥𝑖 + 𝛽𝑢 + 𝛾𝑖𝑦𝑖) = 0 ⟺ 𝛼𝑖 = 𝛽 = 𝛾𝑖 = 0 ∀ 𝑖 = 1,… , 𝑙.

This observation, combined with the fact that, for every 𝑡 ∈ 𝑀(𝑛, 𝑘, 𝑙), 𝑡 ⩽ 𝜆𝑢 for some 𝜆 ∈ ℤ+,
allows us to invoke Theorem 2.13. We thereby acquire a ring 𝑆 such that there is a monoid
isomorphism 𝜃 ∶ 𝑀(𝑛, 𝑘, 𝑙) → Proj(𝑆) with 𝜃(𝑢) = [𝑆].
For each 𝑖 = 1, … , 𝑙, let 𝑋𝑖 be a finitely generated projective 𝑆-module such that [𝑋𝑖] = 𝜃(𝑥𝑖).

Also, let 𝜎 ∶ 𝐺 − {1} → {1, … , 𝑙} be a bijection. For each g ∈ 𝐺, write 𝐴g ∶= 𝑋𝜎(g) for g ≠ 1

and 𝐴1 ∶= 𝑆. Put 𝐴 ∶=
⨁

g∈𝐺 𝐴g and 𝑅 ∶= End𝑆(𝐴) = End𝑆(𝑆 ⊕
⨁𝑙

𝑖=1 𝑋𝑖). The ring 𝑅 may be
viewed as the ring of all 𝐺 × 𝐺 matrices 𝑃 such that 𝑃(g , ℎ) ∈ Hom𝑆(𝐴ℎ, 𝐴g ) for every pair
g , ℎ ∈ 𝐺. We can therefore endow 𝑅 with a 𝐺-grading by, for each g ∈ 𝐺, defining 𝑅g to be the set
of all matrices 𝑃 ∈ 𝑅 such that 𝑃(𝑥, 𝑦) = 0 if 𝑦 ≠ g−1𝑥. Notice that we then have

𝑅1 ≅ 𝑆 × End𝑆(𝑋1) ×⋯ × End𝑆(𝑋𝑙)

as rings.
Let 𝑖 = 1, … , 𝑙. Write 𝑇𝑖 ∶= End𝑆(𝑋𝑖) and let 𝑝 ∈ ℤ+. Lemma 4.12 implies (𝑝 + 1)𝑥𝑖 ≰ 𝑝𝑥𝑖 . As

a result, 𝑋𝑝+1
𝑖

is not an 𝑆-module direct summand in 𝑋𝑝
𝑖
. Hence, by Lemma 4.11, there is no 𝑇𝑖-

module epimorphism𝑇
𝑝
𝑖
→ 𝑇

𝑝+1
𝑖

. In otherwords,𝑇𝑖 hasUGN for 𝑖 = 1, … , 𝑙. Thus, by Lemma 2.11
(or Lemma 2.7), 𝑅1 possesses UGN.
It remains to show that gn(𝑅) = 𝑛. To accomplish this, we observe that 𝑛 is the smallest positive

integer such that, in the cyclic monoid 𝐶(𝑛, 𝑘), (𝑛 + 1)𝑎 ⩽ 𝑛𝑎. Hence, referring to the homo-
morphism 𝜙 ∶ 𝑀(𝑛, 𝑘, 𝑙) → 𝐶(𝑛, 𝑘), we conclude that 𝑛 is also the smallest positive integer such
that (𝑛 + 1)(𝑢 +

∑𝑙
𝑖=1 𝑥𝑖) ⩽ 𝑛(𝑢 +

∑𝑙
𝑖=1 𝑥𝑖) in 𝑀(𝑛, 𝑘, 𝑙). Therefore, the integer 𝑛 may be further

characterized as the smallest positive integer such that (𝑆 ⊕
⨁𝑙

𝑖=1 𝑋𝑖)
𝑛+1 is an 𝑆-module direct

summand in (𝑆 ⊕
⨁𝑙

𝑖=1 𝑋𝑖)
𝑛. An appeal to Lemma 4.11, then, permits us to conclude that 𝑛 is

also the smallest positive integer such that there is an 𝑅-module epimorphism 𝑅𝑛 → 𝑅𝑛+1. In
other words, we have gn(𝑅) = 𝑛. □
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