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Abstract—Context: The modern code review process is consid-
ered an essential quality assurance step in software development.
The code review comments generated can provide insights re-
garding source code quality and development practices. However,
the large number of code review comments makes it challenging
to identify interesting patterns manually. In a recent study, Wen
et al. used traditional topic modeling to analyze the evolution of
code review comments. Their approach could identify interesting
patterns that may lead to improved development practices.

Objective: In this study, we investigate potential improvements
to Wen et al.’s state-of-the-art approach to analyze the evolution
of code review comments.

Method: We used 209,166 code review comments from three
open-source systems to explore and empirically analyze alterna-
tive design and implementation choices and demonstrate their
impact.

Results: We identified the following potential improvements to
the current state-of-the-art as described by Wen et al.: 1) utilize
a topic modeling method that is optimized for short texts, 2) a
refined approach for identifying a suitable number of topics, and
3) a more elaborate approach for analyzing topic evolution. Our
results indicate that the proposed changes have quantitatively
different results than the current approach. The qualitative
interpretation of the topics generated with our changes indicates
their usefulness.

Conclusions: Our results indicate the potential usefulness of
changes to state-of-the-art approaches to analyzing the evo-
lution of code review comments, with practical implications
for researchers and practitioners. However, further research is
required to compare the effectiveness of both approaches.

I. INTRODUCTION

Modern code reviews are a common step in software qual-
ity assurance [1–3]. Apart from improving software quality,
modern code reviews also support sharing knowledge with
developers new to a code base [4, 5]. The reviewer comments
provided in code reviews may provide useful information
for system development and evolution. Studies have shown
that approximately 75% of the issues discussed in code
review comments relate to improving the maintainability of
the software and 25% of the feedback relates to improving
its functionality [6, 7]. From the perspective of project and
quality managers, it would be interesting to identify common
themes within the code review comments and to analyze how
these themes evolve over time. Such an analysis could help
project and quality managers to understand theme evolution
and aid them in introducing systematic improvements, improv-
ing company-wide development guidelines [8], or identifying
training needs for developers.

The number of code commits and associated code reviews
in medium to large projects can lead to hundreds of code
review comments [5]; thus, manually analyzing the evolution
of common themes in code review comments is infeasible. Pre-
vious studies have manually identified quality-related themes
in a small set of code review comments [6, 7]. Automatic
classification of code review comments is an open research
question, and recent studies have also used machine learning
approaches with promising results [8–11]. Recently, Wen et al.
[11] demonstrated that traditional topic modeling approaches
can be used to identify common themes within code review
comments and to analyze their evolution over time.

In this study, we analyze the design and implementation
choices in Wen et al.’s approach to studying the evolution
of common themes in code review comments. We started by
replicating the research design used by Wen et al. to propose
potential alternatives to their approach. We then empirically
analyzed each alternative to demonstrate its potential impact.

The remainder of the paper is organized as follows. In
Section II, we discuss related works, whereas in Section III,
we cover the adopted methodology. Section IV presents our
findings, followed by a discussion of the results (Section V)
and a discussion of threats to validity (Section VI). Section
VII concludes the paper.

II. RELATED WORK

Several studies have manually analyzed code review com-
ments. Mäntlya et al. [6] manually analyzed nine industrial
and 23 academic systems, classified code defects discussed in
code review, and proposed a taxonomy of defects discovered
in code reviews. Beller et al. [7] manually analyzed two
open-source systems and studied 1400 code changes in code
review to identify fixed code issues, thus demonstrating the
practical benefits of the code review process. Gunawardena et
al. [12] provided a fine-grained taxonomy of defects discussed
in code review comments by manually analyzing 417 code
review comments. They further identify which code defects
can be resolved using existing static analysis tools to reduce
the overall effort required in the modern code review process.
However, none of these studies utilize an automated method
to analyze code review comments and thus are time intensive
to implement.

In contrast, other studies have explored the feasibility of
automating code review comments. Tufano et al. [10] utilized
deep learning to select candidate code review comments from



the repository of code reviews for a given code commit with
up to 31% accuracy. Hong et al. [13] improved accuracy to
42% using a retrieval-based code review comments tool. This
was further improved by Zampetti et al. [14], who used cosine
similarity between code review comments and CheckStyle
warning descriptions. They presented an automated approach
for configuring the CheckStyle 1 static analysis tool, achieving
a precision of 61% and a recall of 52%. However, the scope
of these studies is towards automation using code review
comments for automatic code review comment generation or
configuring static analysis tools, which differs from our goal
of analyzing code review comments.

Arafat et al. [15] used supervised machine learning algo-
rithms to categorize and predict the topics in code review
comments from six closed-source systems and reported 63%
accuracy for Support Vector Machine (SVM) method. How-
ever, their approach needs a manually labeled dataset for the
initial training.

Ochodek et al. [8] utilized the Bidirectional Encoder Rep-
resentation from Transformers (BERT) language model to
automatically classify 2,672 code review comments from
three open-source systems to classify discussed topics within
code review comments and achieved an average accuracy of
over 80% when compared to manually classified code review
comments. However, their study only considers a small set of
2,672 code review comments, and its effectiveness on a large
dataset is yet to be evaluated.

Wen et al. [11] investigated how community and personal
feedback trends evolve as the community matures using topic
modeling. They utilized Latent Dirichlet Allocation (LDA) on
one open-source system, Nova, and one closed-sourced system
to study the evolution of themes in code review comments
from 2011 and 2018. They considered topic stability [16] over
five runs of LDA to select a suitable number of topics and
assessed values between N=[10..50] as the range to search
for a suitable number of topics. Their results show that the
context-specific and technical feedback increases with the
community’s maturity and improved reviewer experience. Our
work extends their study by identifying decision points where
other alternatives may lead to better results. Each potential
alternative proposed in this study is also demonstrated by using
code review comments from three open-source systems.

Silva et al. [17] surveyed how different topic modeling
methods have been used for various tasks in software engi-
neering. Qiang et al. [18] provided a taxonomy of short-text
topic modeling approaches along with an open-source Java
implementation of the studied topic modeling methods and
compared the performance of eight topic modeling methods
on six datasets. Their results show that Dirichlet multinomial
mixture (DMM) based models perform best on all considered
datasets. We used their survey to identify candidate techniques
to consider instead of LDA as used by Wen et al. [11].

1https://checkstyle.org/

III. METHODOLOGY

As stated in Section I, our study explores potential improve-
ments of the promising approach developed by Wen et al.
[11] to analyze common themes discussed by reviewers using
topic modeling. To achieve the stated study aims, we define
the following research question:

RQ1: How can we improve state-of-the-art approaches
to study the evolution of code review comments?

RQ2: Which common themes in code review comments
can we identify using the suggested modifications to
Wen et al.’s approach and how do these themes evolve
over time?

Using Wen et al.’s [11] research design as a baseline, we
investigate possible improvements in the choice of algorithm,
the strategy of selecting a suitable number of topics, and
the approach for analyzing topic evolution. Specifically, we
compare the topic stability of topics generated by traditional
topic modeling used by Wen et al. [11] and the short-text topic
modeling method summarized by Qiang et al. [18]. Within
Wen et al.’s [11] approach, we suggest alternate strategies
for selecting a suitable number of topics and an alternate
method to analyze the evolution of code review comments.
An overview of the steps followed in our study is depicted
in Figure 1. In the figure, the approach by Wen et al. [11] is
depicted in blue, and our changes are in green.
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Fig. 1. Data extraction, pre-processing and topic modeling process, based on
Wen et al. [11]

A. Datasets
We utilized code review comments from three open-source

software (OSS), two OpenStack projects, Nova and Neutron,
and LibreOffice. We included the same open-source system,
Nova, as Wen et al. [11] to compare the performance of
the short-text modeling method and LDA. The OpenStack
community develops various storage and networking solutions
and has been previously investigated in the studies on the
code review process [19, 20]. The code review process of
LibreOffice2, an open-source office suite, also has been studied
in the literature by several researchers [21, 22].

We used the REST API3 provided by Gerrit to extract

2https://www.libreoffice.org/discover/libreoffice/
3https://gerrit-review.googlesource.com/Documentation/rest-api.html



the code review comments from all three OSS. To study the
evolution of code review themes over an extensive period,
we extracted the code review comments between September
2011 till February 2023. We also only considered code review
comments with more than two words.

B. Natural language processing model selection

One of the natural choices for the unsupervised classifica-
tion of text data isLDA method [23]. LDA assumes that each
document consists of a set of latent topics, whereas each latent
topic consists of a group of words. LDA is shown to have
degraded performance for short text [24] due to reduced word
co-occurrence in short texts for topic extraction. Code review
comments are relatively short pieces of text [25]. Therefore,
we considered topic modeling models suitable for short text,
as suggested by Qiang et al. [18].

Qiang et al. [18] compared several short-text topic modeling
(STTM) methods and traditional LDA on six datasets. They
found that STTM outperforms LDA in all six cases regard-
ing classification accuracy and purity. In particular, Dirich-
let multinomial mixture (DMM) based models outperformed
global word co-occurrence-based short-text topic models and
self-aggregation-based short-text topic models. We selected the
Gibbs Sampling-based Dirichlet Multinomial Mixture model
(GSDMM) [26] from among the DMM-based models due to
its comparable classification accuracy and superior execution
performance [18].

C. Data preprocessing

We replicate the pre-processing steps taken by Wen et
al. [11] as depicted in Figure 1. After data extraction, we
removed responses from the authors of the code commit to
focusing only on code review comments from the reviewers.
We also removed all brackets and punctuation to clean the code
review comments and converted all code review comments to
lowercase. We further removed URLs and words containing
numbers as they did not contribute to the classification of
themes in the code review comments. Next, we removed stop
words using the built-in preprocessing library in the Gensim
natural language processing toolkit. We also lemmatized all
code review comments and removed any null strings in the
code review comments.

TABLE I
OVERVIEW OF CODE REVIEW COMMENTS IN EXAMPLE SYSTEMS.

OSS Name Total code re-
view comments

Average comment
length (in words)

Stable number
of topics

Nova 102,642 28.2 24
Neutron 78,196 24.3 4
LibreOffice 28,328 26.8 11

Total 209,166 26.4 -

D. Parameter selection

The topic modeling algorithm’s hyperparameters, such as
the topic-to-document probability (alpha), word-to-topic prob-

ability (beta), and the number of topics (N), impact the perfor-
mance of topic classification. A larger value for N may lead
to fragmentation of topics, while a smaller value may tangle
topics, thus compromising the semantic meaning of generated
topics. A lower value for (alpha) limits the model to fewer
topics per document, while higher (beta) results in a higher
number of terms per topic. Generally, lower hyperparameter
values lead to a more decisive model [27].

As suggested by Agarwal et al. [16] and used by Wen et al.
[11], we use topic stability as a measure to identify suitable
values for N for each corpus independently. Topic stability, a
modified measure of cross-run similarity of topics based on
Jaccard similarity [16], is the median number of word-terms
occurrences in all considered runs for a given topic number.
Extending the possible values of N used by Wen et al. [11],
we considered N=[5..55] (in steps of five) for the number of
topics to analyze topic stability and topic coherence for each
of our datasets. We trained the GSDMM models for five runs,
with the selected corpus sorted in a different order and varied
choices for hyperparameters, alpha, and beta. We used the 10
top words from five runs for the GSDMM model to calculate
topic stability for each dataset and identified the most stable
number of topics. While Wen et al. [11] only evaluated a
suitable choice of N in steps of five, we propose a two-stage
approach for selecting a suitable N. As a first step, we select
the most stable choice of N in steps of five (as did Wen et al.);
we then iterate in steps of one in the neighborhood to find a
more stable value for N.

In addition to using topic stability as suggested by Wen et
al. [11], we also evaluate average coherence for all considered
values of N. Using topic stability and average coherence value
to select a suitable number of topics, N, in the previous
step, we generate topics from the corpus and store the topic
membership probabilities for each code review comment in
the corpus. To compare the topic stability of GSDMM with
LDA, we also repeated the above process for the LDA model.

E. Topic naming

Several methods have been utilized in the literature to assign
an appropriate name to a topic. Silva et al. [17] classified
these approaches as manual, automated, and a combination
of manual and automated procedures. The manual naming
approach has been frequently used in software engineering
[11, 28, 29]. To identify a topic name, two authors read the
top 20 words associated with a topic and the 20 unprocessed
code review comments that have the highest topic membership
to the topic. We read the code review comments belonging to
each topic and assigned a label that captured the central theme
within each code review comment. Then we reviewed all the
labels belonging to a topic and assigned an appropriate name
that captured most of the themes within the topic.

F. Topic impact evolution

Like Wen et al. [11], we study a given topic’s evolution by
plotting the topic’s impact for each month, along with a five-
degree polynomial-based regression line. A topic’s impact is



defined as the proportion of code review comments belonging
to a specific topic within a month [30]. As suggested by Wen et
al. [11], we used a low cut-off score for topic membership and
included only code review comments with a topic membership
probability ≥ 0.1 when calculating a given topic’s impact.

In addition to Wen et al. [11], we also consider top code
review comments belonging to months where the topic impact
for a given topic has an interesting pattern. This may provide
insight into how themes change over time and whether their
sub-themes can be analyzed.
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Fig. 2. Distribution of code review comments by length for the three example
systems

IV. RESULTS AND ANALYSIS

After preprocessing the data as described in Section III-C,
we got 209,166 code review comments from three OSS
after removing approximately 84K code review comments
due to short length. Their details are depicted in Table I.
The distribution of code review comments by length for the
three OSS is depicted in Figure 2. The evolution of the topic
impact for all generated topics is provided in the replication
package4. Here we first discuss our findings regarding the
possible improvement areas. We also discuss themes for the
system Neutron as a demonstration of the modified approach.

A. Improvement suggestions

1) Two-stage vs single-stage selection of N : As described
in Section III-D, we utilized a two-stage process for selecting
a suitable N , improving the average topic stability for the
considered systems. Figure 3 depicts the average topic stability
for the most stable choice of the number of topics for the single
and two-stage topic selection. We observe that LibreOffice
shows the highest improvement when using the two-stage topic
selection, with average topic stability improving from 0.82 to
0.86.

2) Topic modeling method: To evaluate the variation in
topic stability for the three systems for different values of N ,
we plot the average topic stability for all five runs for both
GSDMM and LDA in Figure 4. Apart from system Neutron
for N=4, GSDMM produces substantially more stable topics
when compared to LDA for the considered systems. GSDMM,
on average, produces 38% more stable topics than LDA for

4https://doi.org/10.5281/zenodo.7836738
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system Nova. For the system Neutron, the average topic
stability improvement is 32%. LibreOffice showed a similar
pattern apart from the topic stability ratio for N=5. Based on
the empirical results, short-text topic models such as GSDMM
may be further evaluated when studying the evolution of code
review comments.

We also observe that the most stable number of topics, N ,
may be less than 10, as in the case of Neutron, regardless
of the topic modeling method used. There might be systems
with most stable topic beyond N=55, thus plotting average
topic stability for such systems may aid in selecting the upper
and lower bounds for N.
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Fig. 4. Topic stability comparison using GSDMM and LDA for the three
example systems

3) Topic stability and coherence: We also evaluated the
average coherence of the topics for different values of N for
all five runs. The results for both LDA and GSDMM for
the three example systems are depicted in Figure 5. Com-
pared to GSDMM, LDA achieves a slightly higher average
coherence for all considered systems. The average coherence
gradually increases with N for the considered systems and
both algorithms, except for LibreOffice, where the average
coherence declines after a peak around N=25. The highest
average coherence for Neutron and Nova is 0.60 and 0.63,



respectively, for N=55. In comparison, the trend for average
topic stability is more varied for the increase in N. The
contrasting results need further investigation.
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The average coherence for the most stable number of topics
is only slightly less than the most coherent topic for all
considered systems. We preferred that the minor decrease in
average coherence is an acceptable trade-off in selecting a
suitable choice of N to study the evolution of the prevalent
themes in code review comments.

4) Evolution analysis: one vs multiple windows: We hy-
pothesize that some themes observed in code review comments
may become obsolete with time as systems, processes, and
methods to maintain the code base evolve. In contrast, new
themes may replace them as code reviewers focus on current
concerns within the submitted code. This raises the question
regarding the timeframe to select for the analysis of themes.
Choosing a very long duration may make it challenging to
find relevant representative themes for all months considered.
Similar to the approach by Wen et al. [11], we used a single
window for the duration considered. In contrast, multiple
windows approach divides the entire duration into sub-parts
for a more refined analysis of the themes in code review
comments.

As an exploration of the multiple windows approach, we
analyzed the theme related to “guidelines” given its interesting
evolution (see Figure 8). After generating the overall theme,
we analyzed the top 20 code review comments from months
when the trend changed significantly, along with code review
comments from beginning to end, to evaluate if the issues
discussed in the code review comments belonging to the
topic evolved. We considered code review comments from
November 2011, February 2020, and January 2023.

In the initial months, code review comments related to the
code review process appear more frequently in the guidelines
theme (e.g., “...I think this would usually be a separate
commit...”). In February 2020, the guidelines theme focused
more on code styling suggestions (e.g., “L.28-38 belongs to
L.26 so it looks better to indent these lines.”) while in the
ending month, the guidelines theme considered code review
style-related suggestions to be more critical (e.g., “The patch
is ok please remove the second line in the commit message.”).
One possible explanation for this trend is that guidelines

provided by Neutron’s core reviewers evolved with the change
in contributing developer behavior.

Considering the pace of development technologies, pro-
cesses, and practices improvements, we suggest generating
topics in shorter windows, e.g., four months, rather than the
entire duration. Using a “windowed” approach may refine the
quality of themes identified as we can assess the impact of
newly introduced interventions, e.g., company-wide procedu-
ral changes, in code review comments.

B. Named topics

In this section, we discuss the themes identified after gener-
ating topics from the Neutron system using the fine-tuned topic
choice discussed above. The plots for topic evolution from
the other two systems are provided in the replication package.
The depicted scatter plots show the topic impact (see Section
III-F) over the months considered. We also draw a polynomial-
based trend line to represent the overall evolution of the topic
impact across months. For Neutron, if all four topics were
equally divided, we would expect an average topic impact of
around 0.25 for each topic. We represent this with a continuous
horizontal line at 0.25 in the generated plots.

Fig. 6. Topic evolution for theme Inheritance in system Neutron.

1) Theme 1: Inheritance: We define inheritance-related
themes as code review comments that discuss how classes
inherit other classes, shared attributes and methods in multi-
ple inheritance instances, and misuse of inheritance, among
others. The ratio of code review comments belonging to
the inheritance-related theme or topic share [30] is 0.33.
The regression line shows that while the reviewers discussed
inheritance-related issues more frequently in the initial months,
the theme evolved with a gradual decrease in the topic impact
over the duration considered. We reproduce an example of a
code review comment discussing an inheritance-related theme.

“Althrough it’s done everywhere is this class it’s not pythonic
to use the following (java?) pattern: class MyClass: @stat-
icmethod def method1(): pass @staticmethod def method2():
MyClass.method1() because it breaks python inheritance prin-
ciple: if a subclass SubClass of MyClass overloads method1
SubClass method2 will still use MyClass.method1! ...” (Italics



added to improve readability)

Fig. 7. Topic evolution for theme concurrency in system Neutron

2) Theme 2: Concurrency: We define concurrency-related
themes as code review comments that discuss timing issues
in a multi-threaded application, event handling, and network
performance management. The topic share for concurrency-
related code review comments is 0.39, making it the most
prominent theme for Neutron. The evolution of this theme
shows that topic impact has been steady between March 2015
till March 2020, after which it gradually declined to the levels
observed before this period. An example of a code review
comment discussing a concurrency theme is reproduced as
follows.

“Not sure this is a good idea... what happens if another thread
creates a new floating IP on this router between the time that
another thread called this function and we get here? ...”

Fig. 8. Topic evolution for theme guidelines in system Neutron

3) Theme 3: Guidelines: We define the guidelines theme as
code review comments focusing on issues related to formatting
code commit messages, patch-related procedural guidelines,
code styling suggestions, recommendations of what should
be included in a commit message for clarity, and explaining
why it was required. We observe that the guidelines theme
undergoes a significant change during its evolution over the
months considered. While the code review comments related

to the theme remained steady between July 2013 till March
2020, there is a steady increase in code review comments
related to guidelines. It would be interesting to analyze further
the reasons for the sharp increase in the guidelines theme,
which may lead to process-level improvement in how code
reviews are performed in the Neutron community.

Fig. 9. Topic evolution for theme component level logic in system Neutron

4) Theme 4: Component level logic: We define component-
level logic themes as code review comments discussing logic-
related issues at the method or class level, such as conditional
logic, suggestions for additional logic, tips to replace loops
with alternate implementation, and recommendations for intro-
ducing alternate parameters in the implemented method. The
percentage of code review comments belonging to this theme
is only 17% making it the least discussed theme in Neutron.
We observe that the topic impact for component-level logic
theme remains steady till July 2018, after which it gradually
declines below 0.1. We reproduce the following code review
comment belonging to the theme.

“You can fold lines 130–133 into the for loop as ichain_name
an ochain_name and then remove 137 138 141 142 So pull
those 8 lines and add these two after if clause ending on line
142. ...” (Italics added to improve readability)

V. DISCUSSION

We suggested three potential improvements to the approach
of Wen et al. [11]. The two-stage selection of a suitable num-
ber for N improves topic stability compared to the single-stage
approach. GSDMM produces substantially more stable topics
as compared to LDA. Similarly, using average coherence in
addition to topic stability provides a comparison between the
two measures. Using the modified approach, we were able to
identify several themes.

Themes similar to those we identified using our modified
approach have also been discussed in the literature. The
theme component-level logic is synonymous with Logic issues
identified by Mäntyla et al. [6] and code_logic by Ochodek et
al. [8]. The theme concurrency bears similarity with Timing
issues identified in Mäntyla et al. [6]; however, we classify
event handling and network-related performance in concur-
rency. The guidelines theme includes code_style issues from



Ochodek et al. [8], visual representation issues [6], as well as
code review process [11]. The theme inheritance covers similar
concepts as structure [6] and code_design [8] though it takes
a fine-grained view of design-related code review comments.
Intuitively, the topic share [30] for the themes can vary across
the systems studied in the previous studies.

We achieved a different number of N for topic stability
using the modified approach compared to Wen et al. [11] for
Nova, possibly due to the difference in the duration considered
and the topic modeling method used. Our modified approach
produced a 60% more average topic stability than the state-
of-the-art for Nova; however, we could not compare the topic
stability for other systems considered. We also did not perform
a comparison between the themes identified.

Several Dirichlet Multinomial Mixture (DMM) based topic
modeling models have been reported in the literature. GS-
DMM assumes only one topic for each code review com-
ment, which we consider a valid assumption given the short
length of code review comments, especially for in-line code
review comments. We selected GSDMM over the generalized
Pòlya urn Poisson-based Dirichlet Multinomial Mixture model
(GPU-PDMM), which had better classification accuracy than
GSDMM in the four out of six datasets considered [18].
However, we selected GSDMM for its fast execution time
and slightly lower classification accuracy than GPU-PDMM.
GPU-PDMM may improve topic stability and average coher-
ence in similar studies investigating topic evolution in code
review comments. Similarly, several studies have proposed bi-
directional transformer-based (BERT) topic modeling methods
[31, 32]; however, a qualitative comparison between the per-
formance of BERT and STTM on code review comments may
improve the evolution analysis of code review comments.

There can be different approaches for using multiple win-
dows to analyze the evolution of themes in code review
comments. We only demonstrated analyzing selective months
based on the trend. A sliding window approach can also
be used to analyze the evolution of themes for code review
comments in a given set of months; then, we update the
window by adding newer months while removing the oldest
months. However, further research is needed to qualitatively
evaluate these approaches for the quality of the generated
themes.

The identified themes and an analysis of how the themes
with high topic impact evolve can lead to crucial changes
in how teams approach development tasks, company devel-
opment guidelines, and process-level improvements. As an
illustration, an analysis of the guidelines theme may provide a
checklist for developers to self-check before submitting source
code. As the theme evolves, the checklist may be updated
and thus remains relevant for the contributing developers. The
updated analysis provides an initial step toward developing
data-driven dashboards for practitioners to aid in the study of
important themes which can be utilized to suggest improve-
ment directions.

We have demonstrated that incorporating the suggestions
leads to quantitative improvements in topic stability. However,

we have yet to evaluate if these design suggestions lead to
qualitative improvement in the quality of the themes identified.

Wen et al. [11] demonstrated that their approach was
suitable for analyzing one closed-source system. Our results
indicate that the updated approach may also be well-suited
for analyzing closed-source systems. The effectiveness of the
analysis of common themes and their evolution is intuitively
dependent on the quality of the code review comments. Pre-
vious studies have observed that experienced reviewers with
in-depth knowledge of the project provide context-specific
feedback that may lead to more meaningful common themes
using our approach. As a future study, we intend to use the
updated approach and interview code reviewers regarding the
quality of the themes produced.

VI. THREATS TO VALIDITY

A. Data validity

We utilized the three open-source datasets and used random
sampling from the dataset to evaluate the quality of the
individual dataset. We removed the code review comments
with an entry in “in reply to” to remove discussion replies from
developers. We used an embedding model [33] designed from
posts in StackOverflow 5, a platform to discuss software code
issues, to further improve the quality of the generated topic
from short-text modeling methods. While an embedding model
designed from code review comments may improve results,
we believe our selected word embedding model captures
essential information related to software development and is
a suitable option. Only one author was involved in the data
extraction and topic stability evaluation. However, we used
automated tools and scripts where possible in these stages to
keep the possibility of human error to a minimum. We also
did not consider removing highly frequent words during pre-
processing, which may impact the results presented.

B. Research validity

To improve the repeatability of our study, we have shared
the datasets and Python scripts online as part of our replication
package. We have also described our steps in preprocessing
data, and the topic selection process. Moreover, to reduce
the chances of researcher bias, two authors were involved in
assigning names to generated topics.

C. External validity

The empirical study presented may have a few threats
relating to its external validity and limit the generalizability of
the results. Since we selected only open-source systems, the
language used in the code review comments may vary for other
open-source and industrial systems. Intuitively, the language
can inherently differ from one reviewer to another; thus, the
number of reviewers involved in the review also impacts the
language in code review comments. Further studies are needed
using varied datasets from both open-source and industry to
assess the generalizability of our approach.

5https://stackoverflow.com/



VII. CONCLUSIONS

Building on the recent study by Wen et al. [11], we
performed an exploratory study to evaluate possible design im-
provements in the study of the evolution of common themes in
code review comments. Among other design and analysis im-
provements, we observed that the short-text modeling method
leads to more stable topics than traditional topic modeling.
Studying the evolution of common themes in code review
comments is a promising field, with practical implications
for research and practice that may lead to suggestions that
help improve the development and process-related practices.
By extending their work and proposing new approaches for
topic selection and analysis of topic evolution, we highlight
that the choice of modeling technique is essential as it may
lead to different results. Further studies are needed in code
review comments evolution and analysis to investigate the
suggestions made. In future work, we aim to use industrial
datasets along with interviews with reviewers to investigate
the reasons behind the changes in the interesting themes as
well as their reflections on using the identified themes to create
data-driven dashboards and interventions at the development or
process level that may aid in improving the issues highlighted
in the derived themes.
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