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Abstract: Fifth-generation (5G) mobile networks have already marked their presence globally, revolu-
tionizing entertainment, business, healthcare, and other domains. While this leap forward brings
numerous advantages in speed and connectivity, it also poses new challenges for security protocols.
Machine learning (ML) and deep learning (DL) have been employed to augment traditional security
measures, promising to mitigate risks and vulnerabilities. This paper conducts an exhaustive study
to assess ML and DL algorithms’ role and effectiveness within the 5G security landscape. Also, it
offers a profound dissection of the 5G network’s security paradigm, particularly emphasizing the
transformative role of ML and DL as enabling security tools. This study starts by examining the
unique architecture of 5G and its inherent vulnerabilities, contrasting them with emerging threat
vectors. Next, we conduct a detailed analysis of the network’s underlying segments, such as net-
work slicing, Massive Machine-Type Communications (mMTC), and edge computing, revealing
their associated security challenges. By scrutinizing current security protocols and international
regulatory impositions, this paper delineates the existing 5G security landscape. Finally, we outline
the capabilities of ML and DL in redefining 5G security. We detail their application in enhancing
anomaly detection, fortifying predictive security measures, and strengthening intrusion prevention
strategies. This research sheds light on the present-day 5G security challenges and offers a visionary
perspective, highlighting the intersection of advanced computational methods and future 5G security.

Keywords: 5G networks; machine learning security; security in deep learning

1. Introduction

The emergence of the fifth-generation (5G) mobile network represents a significant
milestone in the field of telecommunications. This advanced technology promises to revolu-
tionize connectivity, ushering in a new era with the potential for transformative impacts on
various sectors [1]. As 5G networks provide ultra-high-speed data transmission, minimal
latency, and high-density connectivity, they are poised to underpin crucial developments
in the Internet of Things (IoT), autonomous vehicles, smart cities, and other technolog-
ical advancements [2]. As 5G networks increasingly underpin essential sectors such as
healthcare, transportation, defense, and public services, robust security measures become
paramount to sustain trust, safeguard privacy, and ensure the functional integrity of these
sectors [3]. With 5G infrastructure becoming a cornerstone of our digitally oriented soci-
ety, the intricate and pervasive nature of its security implications necessitates thorough
scholarly exploration.
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Recent research has highlighted the centrality of 5G security in sustaining the reliability
and integrity of 5G services [4]. The susceptibility of 5G networks to cyberattacks, both from
known and unidentified sources, has been a focal concern [5]. The necessity for dynamic
and adaptive security solutions has been pointed out by several scholars, emphasizing the
need for innovative approaches to combat evolving cyber threats [6]. While conventional
methods of cybersecurity have been effective to a degree, the exponential increase in data
volumes, device heterogeneity, and system complexity inherent in 5G networks necessitate
the exploration of more innovative, dynamic, and adaptive security measures. To this end,
artificial intelligence (AI) branches such as machine learning (ML) and deep learning (DL)
have been increasingly recognized as pivotal in strengthening 5G security [7]. Leveraging
the power of these AI subdomains is critical in examining their promising roles in fortifying
5G networks against a myriad of potential cyber threats.

ML, with its ability to learn and improve from experience, provides a robust framework
for identifying patterns, detecting anomalies, and predicting potential threats, thereby
enhancing the effectiveness and efficiency of security solutions [8]. On the other hand,
DL, a subset of ML that imitates the functioning of the human brain in processing data,
offers a deeper layer of security by recognizing and mitigating complex cyberattacks in
real time [9]. The pivot to 5G is not just a technological shift; it is an evolutionary leap that
brings unique challenges, many of which remain uncharted in current research, like big
data [10]. Using ML and DL, the promise these techniques hold for security is yet to be
fully harnessed, especially tailored for 5G’s dynamic environment. Given our escalating
dependence on 5G infrastructures and the palpable risks of security oversights, there is a
pressing imperative to delve deeper, to preemptively identify vulnerabilities, and to devise
robust countermeasures.

This research delves into these areas, shedding light on how ML and DL can be
leveraged to ensure 5G security. Also, it seeks to fill this void by providing a comprehensive
examination of 5G security, tracing its evolution, dissecting the associated threats, and
probing the effectiveness of current and prospective security solutions. Furthermore,
it explores the role of ML and DL in various areas of 5G security, including intrusion
detection, risk prediction, security protocol optimization, and more. It also aims to provide
a holistic perspective on the potential of ML and DL in enhancing 5G security. It also
intends to address the challenges and limitations encountered in integrating these advanced
technologies into 5G networks and offers potential solutions in this exciting area of research.
This research, therefore, embarks on an exhaustive exploration into the world of 5G security,
with a keen focus on the revolutionary potential of ML and DL. In doing so, we aim to offer
a comprehensive resource that not only illuminates the current challenges but also paves
the way for future innovations in the realm of 5G security.

1.1. Study Objectives

This study aims to thoroughly examine security concerns and strategies within 5G
mobile technology while also investigating ML and DL’s roles in addressing these security
issues. Thus, this study seeks to identify the distinctive security challenges inherent to
the 5G system, comprehend their broader implications, and critically assess the efficacy of
potential solutions. Further, this research provides a broad overview of 5G telecommuni-
cations technology, highlighting its technical aspects, architecture, and technical aspects.
Secondly, this study examines the primacy of security in 5G networks and discusses the
privacy concerns and the importance of ensuring the reliability and integrity of services.
Thirdly, this research explores the role of ML and DL in enhancing 5G mobile technology
security. Also, this research aims to dissect the theoretical underpinnings of existing secu-
rity mechanisms using AI, shedding light on the concepts and principles that undergird
the current security landscape of 5G networks.

This research aims to answer the following key questions:

1. What are the unique security challenges posed by 5G telecommunications technology?
2. What are the solutions for the security challenges of 5G telecommunications technology?
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3. What is the role of machine learning and deep learning in enhancing 5G mobile
technology security?

1.2. Study Contributions

In this research, we present an exhaustive examination of security dimensions in
5G networks. The contributions emanating from this scholarly endeavor encompass the
following: (1) An extensive exposition of the current security architectures and function-
alities deployed in 5G networks. (2) An in-depth analysis of security threats and security
breaches in 5G networks. (3) Another salient contribution is an in-depth exploration of
the unique security challenges arising from 5G’s features. These challenges effectively
expand the existing threat landscape of 5G networks. (4) An analysis of the security issues
in Massive Machine-Type Communications (mMTC), network slicing vulnerabilities, and
their associated mitigation strategies in 5G networks. (5) An in-depth analysis of the role of
machine learning and deep learning techniques in enhancing 5G security.

1.3. Methodology

This study adopts a systematic literature review methodology to investigate security
concerns in 5G networks. The search strategy encompasses several academic databases,
such as IEEE Xplore, ACM Digital Library, and Google Scholar, focusing on recent peer-
reviewed articles and conference proceedings. Specific keywords, such as “5G Security”,
“5G vulnerabilities”, “Machine learning in 5G security”, and “Network attacks in 5G”,
were employed to narrow the scope of the inquiry. Upon identifying potential articles, an
initial screening process was conducted based on titles and abstracts to assess relevance.
The selected articles then underwent a more rigorous full-text evaluation to ascertain
their alignment with the research objectives. Quality metrics include the reputation of
the publication outlet, the rigor of the methodologies employed, and citation frequency,
among others. Data extracted from each vetted article include research objectives, methods,
key findings, and implications. Thematic analysis was subsequently employed to identify
and interpret patterns related to 5G security and machine learning and deep learning in
enhancing 5G security, answering this study’s research questions. This approach ensures
that the findings are rigorous and pertinent to the domain of 5G security.

The rest of the paper is organized as follows. Section 2 discusses 5G telecommunica-
tions technology and architecture. Section 3 examines in detail the mobile network security
evolution and the evolution of the threat landscape. Section 4 explores and analyzes the
security threat landscape in 5G networks. Section 5 discusses the current and prospective
solutions to enhance 5G security. Sections 6 and 7 discuss the role of machine learning and
deep learning in 5G security and the cutting-edge technologies being applied or proposed
to address 5G security concerns. Section 8 discusses the technical and ethical considera-
tions for the effective implementation of 5G security. Finally, Section 9 draws this study’s
conclusions and guidelines for future work.

2. Fifth-Generation Telecommunications Technology and Architecture

In order to better understand the security threats and challenges that face 5G tech-
nology, we will start by analyzing the 5G network technology and architecture in detail;
5G, the fifth generation of mobile networks, represents a substantial technological leap in
telecommunications technology, laying the foundation for a hyper-connected world. Mark-
ing a significant departure from its predecessors, 5G’s infrastructure has been designed
to enable an array of new services, cater to increasingly dense traffic, support massive
device connectivity, and offer high-speed data transfer with ultra-low latency. At the core
of 5G technology are a set of new technologies and concepts, including advanced antenna
techniques, beamforming, massive Multiple-Input Multiple-Output (MIMO), Network
Function Virtualization (NFV), Software-Defined Networking (SDN), and Mobile Edge
Computing (MEC), among others [11]. Together, these technologies enable 5G networks
to offer unprecedented network performance in terms of speed, capacity, and flexibility.



Electronics 2023, 12, 4604 4 of 44

A key differentiating feature of 5G technology is its flexible architecture, allowing it to
serve a broad spectrum of use cases, each with its specific requirements. Unlike the pre-
vious generations of mobile networks that were primarily designed for human-oriented
communication, 5G is intended to support diverse application scenarios encompassing
human-oriented and machine-oriented communications [12].

Furthermore, 5G is not simply an evolution of 4G LTE; it brings forth entirely new
network paradigms such as dense networking and network slicing, making it possible
to customize different network slices for specific use cases or services [13]. This degree
of customization is a step towards providing a more personalized, efficient, and secure
network experience. One of the most intriguing features of 5G is its spectrum flexibility.
While previous mobile network generations primarily operated on sub-6 GHz bands,
5G extends the usable spectrum to higher frequency bands, including millimeter wave
bands (up to 100 GHz). The use of these high-frequency bands opens up large amounts
of spectrum, enabling higher data rates, reduced latency, and increased capacity [14].
Additionally, 5G networks utilize advanced modulation and coding schemes, as well as
sophisticated multi-antenna techniques, to further enhance the data rate and network
capacity. These enhancements not only improve the quality of service but also increase the
spectral efficiency, ensuring that the network resources are used optimally [15]. While the
technical intricacies of 5G networks are complex, the fundamental objective is to build a
flexible, efficient, and secure network that can accommodate the increasing demand for
connectivity in the modern digital age. An evolution of mobile network security concerns
and technology for each generation from 1G to 6G is shown in Table 1.

Table 1. Evolution of mobile network security concerns and key technological for each generation [16,17].

Generation Security Concerns and Measures Impact on Security Key Technological Advances

1G
Limited security priorities;
primarily focused on basic voice
communication.

Minimal impact; minimal data
vulnerabilities - Analog voice calls

2G
Digital data vulnerability;
introduced encryption methods
like A5/1

Increased security with encryption;
vulnerabilities like A5/1 attacks

- Digital communication
- A5/1 encryption

3G
Broadened threat landscape; robust
encryption and authentication
required

Improved security with robust
encryption; counteracted malware
and phishing

- IP-based services
- Robust encryption
- User–network authentication

4G Increased vulnerabilities; advanced
security measures adopted

Enhanced security with advanced
encryption; focus on all-IP networks

- Advanced encryption
- Secure IP-based protocols
- All-IP architecture

5G
New security challenges; dynamic
security solutions needed; ML and
DL adoption

Heightened security challenges;
dynamic security solutions;
ML and DL usage

- Network slicing
- MIMO
- Network Function

Virtualization
- Software-Defined Networking
- Mobile edge computing
- Flexible architecture
- Spectrum flexibility

6G Potential security challenges;
reliance on AI; terahertz frequencies

Expected security enhancements
with AI; potential risks with AI
manipulation

- Terahertz frequencies
- Cell-free architectures
- Satellite-network integration
- Quantum encryption
- Collaborative AI-driven

defenses
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Table 1 seeks to delineate this evolution by mapping each generation of mobile net-
works to its associated security concerns, the impact these concerns have on security, and
the key technological advances introduced in each era. As the table elucidates, security
measures have evolved from minimal concerns in 1G, primarily focused on voice com-
munications, to multifaceted strategies in 5G that leverage ML and DL techniques for
dynamic security solutions. The anticipated 6G technology is poised to bring its own set of
challenges and solutions, potentially hinging on artificial intelligence (AI) and quantum
encryption. The 5G security challenges are shown in Figure 1:
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2.1. Network Architecture in 5G

The 5G network architecture is a radical departure from the previous generations,
insofar as it is characterized by increased flexibility and adaptability. Unlike the preceding
generations of mobile networks, which were primarily built around a rigid, hierarchical
network structure, the 5G architecture is designed to be highly flexible, distributed, and
software-defined. It incorporates a wide range of innovative concepts and techniques, such
as network slicing, edge computing, and SDN, which collectively contribute to enhanced
performance, functionality, and user experience [18].

The design of 5G network architecture addresses several requirements and challenges
brought about by a range of applications, from high-speed mobile broadband to ultra-
reliable, low-latency communications (uRLLC) [19]. The versatility and adaptability of 5G
structures stem from a transition to a more software-centric approach from a traditionally
hardware-centric one, enabling a level of flexibility, scalability, and efficiency never seen
before in previous generations. Fifth-generation networks employ a heterogeneous network
(HetNet) structure that supports the coexistence of different types of cells, varying from
macro-cells to small cells like pico-cells and femtocells. The utilization of these different
cell types in a layered structure optimizes coverage and capacity, especially in dense urban
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environments, and ensures a more uniform user experience [20]. The core characteristic of
5G network structure is its use of a flat, decentralized architecture instead of the traditional
hierarchical one, to reduce latency and optimize traffic routing. The use of decentralized
architectures also allows for higher throughput rates, enabling faster data transmission [21].
To deal with the demand for high data rates and the massive connectivity required for
IoT devices, 5G also includes the use of advanced antenna technologies, such as MIMO.
Massive MIMO increases the capacity of a cell by using a high number of transmit antennas
at the base station to serve a significant number of users in the same time–frequency
resource [22]. Crucially, 5G networks implement a cloud-based architecture where functions
and services can be instantiated in a flexible and dynamic manner [23]. This leads to a
paradigm shift from a dedicated hardware-centric infrastructure to a more flexible, software-
centric environment, enhancing the adaptability and scalability of network services. A
diagrammatical illustration of 5G network architecture is shown in Figure 2.
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Key Elements of 5G Architecture

The architecture of 5G networks is an amalgamation of various key components, each
playing a vital role in providing superior performance, high-speed connectivity, and greater
adaptability (see Figure 3). In this section, we explore these integral elements, offering an
in-depth understanding of their functionalities:

1. The user equipment (UE): The UE is the endpoint of the communication within the
network. This could range from a smartphone or tablet to a connected vehicle or an
IoT device. It serves as the primary interface for users to interact with the network [24].
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The UE is designed to support a broad spectrum of frequency bands, enabling it to
connect with different types of cells in a heterogeneous network.

2. The 5G new radio (NR) access network: This aspect of the 5G network architecture
primarily comprises gNodeBs (next-generation NodeBs), which provide the wireless
connectivity between the UE and the core network. They are designed to support
massive MIMO and beamforming technologies, which considerably enhance the
capacity, coverage, and user experience [25].

3. The 5G core network: The core network in 5G systems operates as the orchestrator of
various network functions and services. Unlike the core networks of previous genera-
tions, the 5G core network is characterized by increased virtualization and flexibility.
It is built around an SBA, which allows for dynamic and flexible service provisioning.
It is responsible for critical tasks like authentication, mobility management, session
management, and interconnection with other networks [26].

4. The network slices: Network slicing is a revolutionary element in 5G architecture. It
essentially refers to a logically isolated end-to-end network that can be customized to
cater to the specific requirements of a particular service or application. Network slices
can be designed with a specific set of optimized resources and network topology that
cater to different use case requirements, such as latency, throughput, reliability, and
capacity. This separation of resources enables the operator to deploy a multitude of
slices, each catering to a specific use case, all the while ensuring that a failure in one
does not impact the others [27].

5. Edge computing: Another vital component of 5G architecture is edge computing,
which pushes computational capabilities closer to the end users. This decentralization
reduces latency, increases speed, and also allows for improved bandwidth utilization.
It also results in enhanced privacy and security since data do not have to traverse
across the network, thereby reducing exposure [28].

6. The SDN is an integral part of 5G network architecture, offering a programmable
control plane that separates the network control and forwarding functions. This
enables network administrators to manage traffic from a centralized console without
needing to manipulate individual switches, thereby enhancing network flexibility
and adaptability [29].

7. The technical foundations of 5G telecommunications technology are built on a com-
bination of innovative technologies and strategic improvements over the previous
generations. These technological innovations form the core pillars of 5G and signifi-
cantly contribute to its unique features, encompassing Enhanced Mobile Broadband
(eMBB), URLLC, and mMTC [30].

8. The eMBB caters to services and applications that demand high data rates across
a large coverage area. It is designed to support scenarios requiring dense, high-
volume, and high-speed data transfer, such as high-definition video streaming, virtual
and augmented reality, and other immersive media applications. The technological
prowess of eMBB extends to offering peak data rates of up to 20 Gbps, setting new
benchmarks in mobile broadband speed and capacity [31]. This capability is achieved
through a combination of high-frequency bands and advanced antenna techniques
like massive MIMO, beamforming, and efficient modulation schemes.

9. The URLLC aims to support mission-critical applications that demand stringent
reliability and low latency. It is designed to offer an ultra-reliable communication
service, ensuring a good success rate for data transmission within a specified latency.
Typical latency requirements for URLLC applications are in the order of 1 millisecond
or less, which is a significant improvement over the previous network generations.
These performance attributes make URLLC ideally suited for time-critical applications
such as autonomous vehicles, industrial automation, remote surgery, and other critical
IoT applications [32].

10. The mMTC: It is designed to support massive IoT deployments, enabling connectivity
between an enormous number of devices per square kilometer. With mMTC, 5G
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can handle a significantly higher density of connected devices compared to previous
generations, allowing the seamless operation of a plethora of IoT devices [33]. This is
crucial for applications such as smart cities, smart homes, environmental monitoring,
and agriculture, among others. To manage this vast device connectivity, 5G networks
incorporate advanced device management, power management, and signaling tech-
niques to ensure the efficient use of network resources and maintain device battery
life [34]. In addition, these technical components define the capabilities of 5G net-
works, enabling it to address a diverse range of use cases, applications, and services.
These are not separate networks but are distinct aspects of the overall 5G architecture,
each playing its part in forming the cohesive, high-performing network that is 5G.
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2.2. Reliability and Integrity of 5G Services

5G networks are expected to enable and support an unprecedentedly wide range
of applications, from autonomous vehicles and telemedicine to smart cities and indus-
trial automation. Many of these applications involve mission-critical services where even
minor service interruptions or data alterations can have potentially catastrophic conse-
quences [36]. Therefore, the reliability and integrity of services delivered over 5G networks
are of paramount importance. Reliability in the context of 5G refers to the network’s ability
to deliver a consistent level of service, without interruptions or significant fluctuations in
performance, even under challenging conditions. This is crucial for applications such as
telemedicine and autonomous driving, where a high level of service availability and low
latency are required. Network reliability also extends to the network’s resilience against
malicious attacks or system failures, with the ability to rapidly recover and maintain core
functions [37]. Integrity, on the other hand, pertains to the assurance that data transmitted
over the network remain unaltered during transmission, whether by accidental errors or de-
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liberate tampering [38]. Given the sensitive nature of the data handled by 5G applications,
ensuring data integrity is fundamental. An example is in financial transactions, where even
a small discrepancy can lead to substantial monetary loss, or in healthcare applications,
where incorrect patient data can result in erroneous diagnoses or treatments. To ensure
reliability and integrity, 5G networks should adopt robust security measures, including
advanced encryption techniques, reliable error detection and correction mechanisms, secure
routing protocols, and resilient network architectures. Techniques such as redundancy,
fault tolerance, and real-time anomaly detection can enhance the reliability and integrity of
5G services. Moreover, leveraging AI and machine learning for proactive threat detection
and response can further strengthen network resilience [39]. The interconnected world
that 5G networks facilitate brings immense opportunities, but it also requires unwavering
attention to the reliability and integrity of services, cementing these elements as key pillars
in the development and operation of 5G networks.

2.3. The Sixth Generation: The Next Frontier in Wireless Communications

The projected sixth generation of wireless communication systems, 6G, is expected to
be more than just an incremental upgrade from its predecessor, 5G. It is predicted to usher
in unprecedented speeds, lower latencies, and a level of connectivity and integration that
the world has never seen [40]. Where 5G introduced the concepts of mMTC and URLLC,
6G is anticipated to amplify these features to a new level. Think of technologies such as
holographic meetings, high-definition augmented and virtual reality, and ultra-connected
smart cities. Moreover, terahertz frequencies, cell-free architectures, and satellite-network
integration are other key expected features of 6G, making global coverage and space-to-
ground communications possible [41].

The potential of 6G is immense, but with that potential come significant security
challenges. As the line between our physical and digital worlds becomes even more
blurred, securing our wireless networks becomes not just a matter of data protection but a
matter of personal safety [42]. Many researchers investigated 6G security and the use of AI
and ML in enhancing 6G security [43,44]. However, with 6G networks being inherently
AI-driven, the defense mechanisms will also rely heavily on artificial intelligence. AI can
offer proactive threat detection, analyze vast datasets in real time to identify anomalies,
and adapt dynamically to emerging threats [45]. However, this reliance on AI also brings
vulnerabilities. There is a potential risk of adversaries manipulating AI operations, leading
to system misbehaviors.

3. Mobile Network Security Evolution and the Evolution of Threat Landscape
3.1. Evolution from 1G to 4G

Mobile network security has evolved significantly from 1G to 5G networks. Each
generation presented its unique security challenges influenced by technological advance-
ments, changing user needs, and evolving threat patterns. Understanding this progression
is crucial for addressing the demands of future 5G networks. In the 1980s, the 1G networks,
providing analog voice services, had minimal security concerns [46]. However, with 2G’s
introduction of digital communication, the security landscape shifted. The digital nature of
2G made data vulnerable to interception and manipulation, prompting the introduction of
encryption algorithms like A5/1, although some vulnerabilities like the A5/1 attacks still
arose [47]. A graphical representation of mobile networks evolution is shown in Figure 4.

The 3G networks, which integrated broadband data services and IP-based services,
opened the door to a wider range of threats, such as malware and phishing. To counteract
these, robust encryption and mutual user–network authentication became necessary [48].
While, the fourth generation further expanded capabilities but also vulnerabilities, particu-
larly with its all-IP network architecture [49]. This led to the development of sophisticated
security measures, including advanced encryption and secure IP-based protocols. Thus,
the evolution from 1G to 4G shows the interplay between technological evolution and
escalating security focus.
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In addition, 3G’s integration with IP-based services brought both enhanced functional-
ity and increased threats, prompting the use of more robust security measures. Further, 4G,
emphasizing all-IP network architecture, brought even more vulnerabilities [50], requiring
stronger countermeasures like advanced encryption and robust user authentication.

3.2. Fifth-Generation Network Security

With the advent of 5G telecommunications technology, there is an expanding prolifer-
ation of data transmission across vast digital landscapes. This significant shift in the realm
of digital communications underscores the primacy of security in these next-generation
networks. Security, in the context of 5G, encompasses multiple dimensions, from the
privacy of personal information to the reliability and integrity of services offered through
the network [51]. These elements have been a focal point in traditional networks; however,
their importance is massively elevated in the 5G framework due to the inherent technical
advancements and the larger, more diverse user-base that this technology caters to [52].
Fifth-generation networks, compared to their predecessors, are designed to handle a much
broader range of applications, many of which involve the transmission of sensitive data and
the delivery of critical services. Applications such as telemedicine, autonomous vehicles,
and smart cities heavily rely on 5G networks for their operation, thereby escalating the
need for robust and reliable security measures [53]. A summary of 5G security challenges
is shown in Figure 5.
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Furthermore, the envisaged increase in machine-to-machine communications in the 5G
era implies a shift in the nature of information being transmitted, with increased volumes
of sensitive, operational data being communicated across networks [54]. The broadening of
the attack surface, due to the increasing complexity of the network and the sheer number
of connected devices, adds another layer of intricacy to the security landscape in 5G.
The highly distributed architecture of 5G, combined with the heterogeneity of devices
and services it supports, create multiple potential points of vulnerability that could be
exploited by malicious entities. Ensuring the security of 5G networks, therefore, calls for a
multifaceted approach that addresses not only the encryption and protection of data but
also the secure management and authentication of devices and users [55]. The evolution
towards the more connected world that 5G represents is closely intertwined with the
need for more comprehensive and sophisticated security measures. Table 2 reports the
most pressing security challenges encountered in the 5G landscape. Each challenge is
corroborated by the pertinent literature, thereby providing a multifaceted understanding
essential for both researchers and practitioners in the field. The table encapsulates areas
such as network slicing vulnerabilities, authentication weaknesses, data privacy concerns,
security issues in mMTC, edge computing security risks, man-in-the-middle attacks, and
SDN risks.

Table 2. Fifth-generation security challenges.

5G Security Challenge Citation(s)

Network slicing vulnerabilities Mathew, A. (2020, March) [56], Wijethilaka, S.; Liyanage, M. (2021) [57],
Salahdine, F., Liu, Q., Han, T. (2022) [58] , Wu, T. Y., Jie, T. F. (2022) [59].

Authentication weaknesses Basin, D., et al. (2018) [60]. Behrad, S., et al. (2019) [61], Sharma, et al. (2019) [62].
El Idrissi, et al. (2017) [63].

Data privacy concerns Ahmad, I., et al. (2018) [6], Liyanage, M., et al. (2018) [64], Khan, R., et al. (2019) [4].

Security issues in mMTC Hu, J., et al. (2022) [65], Chan, W. M., et al. (2023) [66], Salva-Garcia, P., et al. (2019) [67]

Edge computing security risks Sha, K., et al. (2020) [68], Zhang, J., et al. (2018) [69], Xiao, Y., et al. (2019) [70],
Sha, K., et al. (2020) [68]

Man-in-the-middle attacks in 5G Conti, M., et al. (2016) [71], Kaplanis, C. (2015) [72], Mitev, M., et al. (2019) [73]

SDN Risks Al Hayajneh, A., et al. (2020) [74], Hasneen, J., Sadique, K. M. (2022) [75]

Throughout the historical evolution of mobile networks, various strategies for securing
these networks have been trialed, some proving to be more effective than others. The
evaluation of these strategies offers valuable insights into the successful elements of security
measures, as well as potential pitfalls to be avoided in the future. One of the significant
successful strategies that have proven their effectiveness over time is the use of encryption.
This is a measure that has been utilized since the advent of 2G networks, which transitioned
from analog to digital data, thus increasing the risks of data interception and tampering.
This led to the deployment of encryption algorithms, which have progressively become
more sophisticated and robust as technology evolved from 2G to 4G [46,49].

Consequently, in 4G networks, advanced encryption standards were implemented,
providing a significant level of protection for data. Another successful strategy has been the
incorporation of mutual authentication between the user and the network. This strategy
emerged in the 3G era and was carried over into 4G networks. Mutual authentication
ensures that both the user and the network are legitimate, reducing the risk of unauthorized
access and impersonation attacks. On the flip side, the transition from a traditional network
architecture to an all-IP network architecture, particularly evident in 4G networks, has
presented a significant pitfall [48,49]. While it facilitated higher data speeds and a seamless
transition between different types of data services, it concurrently increased the network’s
attack surface. This heightened exposure to security threats like denial-of-service (DoS)
and man-in-the-middle (MitM) attacks brought to light that the reliance on encryption and
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authentication alone is not sufficient for ensuring network security [60,71]. This pitfall
signaled the necessity for an integrated, multilayered approach to security, incorporating
additional measures such as intrusion detection systems, firewalls, and anomaly detection
technologies. The adoption of such an approach, initially in the 4G networks, revealed the
value of these complementary measures in enhancing network security and addressing a
broader range of threats.

However, there is an evolving role of encryption in countering threats: firstly, the
encryption in 2G networks, where encryption made its notable debut during the 2G era,
particularly focusing on ensuring data confidentiality during transmission. However, as
our review uncovered, many of these early encryption protocols, like the A5/1 used in GSM,
were susceptible to breaches as hackers grew more sophisticated [47]. Secondly, 3G and 4G
encryption. With 3G and 4G, encryption techniques underwent a radical transformation.
Smith and White elucidated how algorithms became more intricate, aiming to ensure
not just confidentiality but also data integrity and authentication. The fourth generation,
for instance, leveraged advanced encryption standards (AESs), which provided a robust
defense against intrusions. This was a response to the increasingly complex software-based
attacks that networks faced [76]. A comparison of the transformation in mobile network
security and encryption strategies across generations is shown in Table 3.

Further, 5G encryption employs a multifaceted approach that leverages a variety of
cryptographic techniques. For instance, the use of end-to-end encryption is now more
prevalent, and in some instances, mandatory, in order to shield data from potential threats
at all points of the transmission chain. Moreover, the inclusion of hardware-based secu-
rity features like Trusted Execution Environments (TEEs) synergizes with cryptographic
protocols to provide a fortified layer against physical and software-based attacks [77]. In
addition, 5G aspires to be a harbinger of a new era in mobile network security, adopting
a more comprehensive, layered, and agile encryption strategy to counter a broader array
of threat vectors. This is evinced by the comparative analysis illustrated in Table 3, where
the evolutionary trajectory of mobile network encryption strategies across generations
is elucidated.

Table 3. 1G to 4G Security threats and encryption strategies [16,17,50,76,78,79].

Aspects 1G Networks 2G Networks 3G and 4G Networks

Nature of threats

Predominantly hardware-based
vulnerabilities, such as physical
tampering and unauthorized
access.

Transition from analog to digital
led to software-based threats.

Sophisticated software-based
threats, including IP-specific
attacks, due to transition to
all-IP networks.

Typical threats
Frequency interference,
eavesdropping, and unauthorized
physical access.

Data interception, message
tampering, and software
vulnerabilities, such as
buffer overflows.

Mobile malware, IP spoofing,
phishing, man-in-the-middle
attacks, and application-layer
vulnerabilities.

Role of encryption
Minimal or absent; lack of
standardized encryption
protocols.

Introduction of encryption
algorithms like A5/1 in GSM,
albeit some were vulnerable.

Robust encryption standards such
as AES and 3DES; enhanced focus
on data integrity and user
authentication.

Countermeasures
Physical security measures, such
as locked cabinets and controlled
access to network facilities.

Introduction of firewalls,
intrusion detection systems
(IDSs), and periodic
security audits.

Multilayered security protocols,
intrusion prevention systems
(IPSs), real-time monitoring,
and regular updates.

Table 3 offers an in-depth comparative analysis across mobile generations in terms of
the nature of threats, typical threats encountered, role of encryption, and countermeasures
adopted. In particular, the table highlights how threats have evolved from being pre-
dominantly hardware-based in 1G networks to increasingly sophisticated software-based
attacks in 3G and 4G networks. Concurrently, encryption strategies have also undergone a



Electronics 2023, 12, 4604 13 of 44

transformation: from minimal or absent standardized protocols in 1G to robust, multilay-
ered encryption and security protocols in the latest generations. Countermeasures have
similarly progressed, with a transition from rudimentary physical security approaches in
1G to real-time monitoring and multilayered security protocols in later generations.

3.3. Fifth-Generation Security Architecture

The security architecture of 5G networks is an intricate assembly designed to address
the multifarious challenges brought forth by the next generation of connectivity (see
Figure 5) [80]. The architecture is constructed on three pivotal components, each serving
as a bulwark against specific sets of vulnerabilities and threats. In this section, we will
expound upon each of these core components in greater detail.

3.3.1. Authentication Framework

In 5G networks, the Authentication and Key Agreement (AKA) protocol serves as the
cornerstone for secure communication. It has undergone substantial revisions compared
to its 4G counterparts to address emerging security challenges: (1) Home network-based
authentication: The authentication in 5G is primarily orchestrated by the home network
rather than the serving network, a shift that eliminates several risks associated with rogue
base stations. (2) SUPI (Subscription Permanent Identifier): A key feature introduced in 5G
AKA is the use of SUPI. SUPI allows the home network to securely identify and authenticate
a user, thereby creating an additional layer of security. (3) Extensibility: The AKA protocol
in 5G is designed to be extensible, providing a framework that can adapt to future security
requirements without necessitating a complete architectural overhaul [60,61].

3.3.2. Network Slicing Security

The advent of network slicing is one of the defining features of 5G networks, allowing
operators to create isolated “slices” of the network for different applications or services:
(1) Isolation of slices: Each network slice operates as an autonomous entity with its own
resources and network functions. This enables the implementation of slice-specific security
policies. (2) Adaptive security measures: The security protocols can be tailored for each
slice, accommodating varied requirements ranging from low-latency, high-reliability slices
to slices designed for mMTC. (3) Resource allocation: The dynamic resource allocation
capabilities of network slicing also extend to security resources, allowing for real-time
adjustments in response to detected threats [56–59].

3.3.3. Service-Based Architecture (SBA) Security

The fifth generation introduces the SBA, which radically departs from the hierarchical
architectures seen in earlier generations: (1) Granular security controls: SBA allows for the
application of security policies at a much finer granularity, made possible by its modular
construction. Each service can be individually secured, which allows for enhanced flexibil-
ity in dealing with specific vulnerabilities. (2) Service-to-service communication: In SBA,
services communicate through well-defined interfaces, often secured by contemporary
security protocols like Transport Layer Security (TLS). This compartmentalization pro-
vides a more robust defense against potential attack vectors. (3) Decoupling of functions:
The decoupling of network functions in SBA permits easier updates and modifications,
thereby enabling quick responses to emerging security threats without affecting the overall
network performance [81,82].

3.4. Implications for 5G Security

The security strategies of mobile networks have critical implications for the develop-
ment and implementation of security measures in 5G networks. A primary implication
drawn from the historical successes is the persistent need for strong encryption and au-
thentication measures. Given the expanded connectivity, higher speeds, and increased
volume of data associated with 5G, the importance of these fundamental security measures
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is heightened. More than ever, users need to be assured of the integrity and confidentiality
of their data. Consequently, 5G security architectures are expected to incorporate even
more advanced encryption algorithms and multifactor authentication methods that are
robust against emerging threats [6,37,51].

The pitfalls encountered during the evolution of mobile networks, notably during the
transition to an all-IP network architecture in 4G, serve as a stark reminder of the impor-
tance of a holistic, multilayered approach to security [76]. Given the extensive connectivity,
numerous devices, and diverse applications envisaged for 5G, the associated security chal-
lenges are even more complex [37,51]. It necessitates an integrated security approach that
combines traditional measures like encryption and authentication with cutting-edge mea-
sures such as network slicing, AI and ML algorithms for anomaly detection, and advanced
privacy-preserving techniques. Network slicing, for instance, allows the separation of
different services onto individual network slices, thus isolating critical services and limiting
the potential impact of a security breach [66]. AI and ML algorithms can be employed to
learn normal network behaviors, identify anomalies that could signal a potential security
threat, and initiate appropriate responses [37]. Advanced privacy-preserving techniques
can provide better protection for user data, addressing the ever-growing concerns over
data privacy in the age of the IoT and big data. Another critical implication is the need
for adaptability and continuous evolution of security measures to respond to the ever-
changing threat landscape. Fifth-generation networks, given their extensive connectivity
and diverse applications, are expected to face new and potentially unforeseen security
threats [6,51]. This necessitates proactive measures that can quickly identify, respond to, and
neutralize such threats, demonstrating the need for dynamic, adaptive, and self-learning
security systems.

4. Security Threat Landscape in 5G Networks
4.1. Evolution of Threat Landscape

The evolution of mobile networks from 1G to 5G technology presents an expanded
threat landscape due to the network’s complexity, enhanced functionalities, and the array
of devices connected to it. As networks have become more sophisticated, so too have the
potential threats [46]. The shift from 2G’s digital framework to 3G’s IP-based services
expanded the threat landscape to include issues such as malware and phishing [50]. The
advent of 4G, with its all-IP structure, heightened vulnerability to IP-specific attacks like
DoS and MitM attacks. The decentralized, software-driven architecture of 5G further
amplifies these risks, introducing advanced cyber threats related to edge computing and
supply chain vulnerabilities. The large-scale integration of IoT devices into 5G networks
also increases the potential for botnet attacks and data privacy breaches [68].

In addition, security measures have adapted over time. Basic techniques like fre-
quency hopping were sufficient for addressing 1G’s primary concerns of eavesdropping
and unauthorized access. The introduction of encryption algorithms in 2G provided a
foundational layer of security, which had to be further reinforced in 3G through robust
encryption and mutual authentication mechanisms. The complex threat environment of
4G required even stronger measures, incorporating advanced technologies like machine
learning for anomaly detection [50,76]. ENISA [35], the European Union’s cybersecurity
arm, released a threat landscape report for 5G networks, evaluating the risks associated
with the fifth generation of mobile communication networks (5G), as shown in Figure 3.

4.2. Threat Landscape in 5G Networks

There are a number of key areas of concern within the 5G security landscape. First
and foremost is the threat of cyberattacks, with the aim of either disrupting network
operations or gaining unauthorized access to sensitive data. Cyberattacks can take many
forms, from distributed denial-of-service (DDoS) attacks, which aim to overwhelm network
resources and disrupt services, to advanced persistent threats (APTs), which are long-term
targeted attacks that seek to remain undetected while siphoning off data or damaging
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network operations [83]. Another area of concern in 5G networks is the threat to user
privacy. With an increased amount of data being transferred and processed, there is a
corresponding increase in the risk of unauthorized data access or leakage [64]. Given the
range of services and applications running on 5G networks, from IoT devices to mission-
critical communications, ensuring the privacy of user data is of paramount importance.
Further, the enhanced capabilities of 5G networks, such as network slicing and the use
of edge computing, while offering significant benefits, can also introduce new security
vulnerabilities [56,57]. For instance, the virtualization of network functions may open
up new vectors for cyberattacks. Meanwhile, the use of edge computing, while reducing
latency, may increase the attack surface by distributing data processing and storage across
numerous devices and locations [68,69].

Table 4 encapsulates this evolutionary path, identifying the key security threats and
features pertinent to each mobile network generation. Initial 1G networks were focused
mainly on analog voice services, offering a somewhat insular threat landscape that chiefly
included risks like eavesdropping. The digital revolution heralded by 2G prompted novel
security concerns related to data interception but also marked the debut of encryption
algorithms such as A5/1 as a countermeasure. The introduction of broadband and IP-
based services in 3G extended the threat landscape to include malware, phishing, and
data leakage, counterbalanced by enhanced security features like robust encryption and
mutual authentication. With 4G’s all-IP network structure, the threats evolved to include
DoS, MitM, and data sniffing attacks, necessitating advanced security measures such
as stronger encryption algorithms and firewalls. Lastly, 5G presents a decentralized,
software-driven architecture, introducing a panoply of advanced cyber threats ranging
from edge computing vulnerabilities to large-scale botnet attacks. This complexity is met
with equally sophisticated countermeasures, including zero-trust architecture and AI-based
anomaly detection.

Table 4. The evolution of the threat landscape from 1G to 5G networks [35,78,79].

Generation Threat Landscape and Security Features

1G Primarily focused on analog voice services, leading to limited security concerns. Risk of eavesdropping
due to the lack of encryption.

2G Transition to digital communication led to data interception threats. Security measures include encryption
algorithms such as A5/1 to counteract these risks.

3G
Introduction of broadband and IP-based services expanded the threat landscape to include malware,
phishing, and data leakage. Security enhancements like robust encryption and mutual authentication
were deployed.

4G All-IP network structure brought new threats like DoS, MitM, and data sniffing attacks. Advanced security
measures such as stronger encryption algorithms and firewalls were introduced.

5G

Decentralized and software-driven architecture gives rise to advanced cyber threats, including edge
computing vulnerabilities and supply chain attacks. IoT integration amplifies risks like large-scale botnet
attacks and data privacy breaches. Countermeasures include zero-trust architecture and AI-based
anomaly detection.

4.3. Fifth-Generation Network Potential Vulnerabilities

The versatile and advanced features of 5G networks, while propelling significant
improvements in terms of connectivity, speed, and user experience, simultaneously pave
the way for a multitude of potential vulnerabilities. These vulnerabilities, due to the broad
attack surface and the complexity of the 5G system, can emerge at various layers and
interfaces of the network.

Device-level vulnerabilities: The anticipated explosion of connected devices, par-
ticularly under the proliferation of the IoT in the 5G era, inherently expands the attack
surface. Each connected device, ranging from smart home appliances to industrial sensors,
represents a potential point of vulnerability. The security protocols of these devices, often



Electronics 2023, 12, 4604 16 of 44

low-powered and with minimal security features, can be exploited by malicious entities,
thus allowing unauthorized access into the network [84].

Software and virtualization vulnerabilities: The shift towards SDN and NFV in 5G
networks, while improving network flexibility and management, opens new potential
security holes. The possibility of software bugs, misconfigurations, and the lack of physical
control over virtualized functions could lead to security breaches. Furthermore, these
centralized functions could present single points of failure, where compromises can have
widespread effects [74,75].

Network slicing vulnerabilities: Although network slicing provides a platform for cus-
tomized and isolated services, it also introduces security risks. An adversary gaining access
to one network slice could exploit inter-slice vulnerabilities, affecting other slices and possi-
bly leading to cross-slice attacks. Therefore, securing slice isolation becomes critical [56–59].

Edge computing vulnerabilities: While edge computing provides benefits in terms of
latency and bandwidth utilization, it also places data and computation closer to potential
attack points. This shift exposes the network to additional local breaches and data leaks,
mandating advanced security solutions at the edge [68–70].

Radio interface vulnerabilities: The use of new radio technologies such as massive
MIMO and mmWave can introduce vulnerabilities related to signal interception and jam-
ming. Also, these technologies, while improving network capacity and speed, could
potentially be exploited to launch DoS attacks [84,85].

Supply chain vulnerabilities: The global and complex nature of the 5G supply chain
can present significant security risks. The compromise of hardware or software at any
point in the supply chain, such as the inclusion of malicious code or the installation of
hardware backdoors, can lead to widespread network vulnerabilities [80]. Table 5 provides
a summary of the key security threats in 5G networks, their potential impacts, and specific
attack methods and techniques [85,86].

Table 5. Summary of the key security threats in 5G networks, their potential impacts, and attack
methods and techniques.

Security Threat Description Potential Impact Attack Methods and
Techniques

Cyberattacks
[83,87]

Threats aimed at disrupting
network operations or gaining
unauthorized access to sensitive
data, including DDoS attacks
and APTs.

Network disruption, data
breaches, service
degradation.

DDoS attacks leveraging higher
bandwidth in 5G. APTs using
techniques like social
engineering, zero-day exploits,
and rootkits.

User privacy [4,6,64]

Risk of unauthorized data access or
leakage due to increased data
transfer and processing on
5G networks.

Data breaches, privacy
violations, identity theft.

Unauthorized data access or
eavesdropping. Data leakage
through insecure channels.

Security vulnerabilities
[56–59,74,75,84–86]

5G’s capabilities like network
slicing and edge computing
introduce new vulnerabilities.
Virtualized network functions and
data distribution can be exploited.

Network compromise, data
breaches, system instability.

Exploiting virtualized network
function vulnerabilities.
Unauthorized access via edge
computing devices. Targeting
insecure network slices.

IoT devices
[68,71–74,88]

Proliferation of IoT devices with
weak security can be targeted to
compromise the network or for
unauthorized data access.

Botnet creation, network
compromise, data theft.

Creating botnets through
vulnerable IoT devices.
Exploiting weak IoT security.
Unauthorized access via
compromised IoT devices.
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Table 5. Cont.

Security Threat Description Potential Impact Attack Methods and
Techniques

Cloud services and edge
computing [68–70]

Enhancing performance but
expanding the attack surface by
distributing data processing
and storage.

Data breaches, service
disruption,
unauthorized access.

Targeting cloud vulnerabilities.
Unauthorized access via edge
computing devices. Attacks
against distributed
cloud services.

SDN and NFV [89–91] Decentralization and virtualization
create new attack points.

Network compromise, data
breaches, system instability.

Exploiting SDN vulnerabilities.
Targeting NFV infrastructure.
Unauthorized access through
virtualization.

Network slicing [56–59]

Enhances security through
compartmentalization. However,
poor slice isolation or
misconfigurations can lead to risks.

Unauthorized access, lateral
movement, data breaches.

Exploiting misconfigured
network slices. Unauthorized
access through vulnerable slices.
Lateral movement
between slices.

Potential attackers
[87,92]

Threats from cybercriminals,
state-sponsored attackers, or
insiders (like employees).

Varied, based on attacker
objectives.

Cybercriminal tactics like
malware, ransomware, DDoS.
APT techniques like zero-days,
rootkits. Insider threats
exploiting or misusing access.

Attack methods
[5,71–73,83,89,93]

Methods like DDoS due to higher
bandwidth, man-in-the-middle
attacks via IoT and edge computing,
APTs, and software vulnerabilities
from SDN and NFV.

Diverse, based on method.

DDoS attacks to overwhelm
resources. Man-in-the-middle
attacks for data interception.
APTs for prolonged access.
Exploiting SDN and NFV
software vulnerabilities.

Table 5 delineates the key security threats in 5G networks, offering a comprehensive de-
scription of each threat, its potential impact, and prevalent attack methods and techniques.
The threats range from cyberattacks aimed at disrupting network operations to potential
vulnerabilities inherent in 5G’s capabilities like network slicing and edge computing. Other
notable concerns include the proliferation of the IoT devices with weak security and the
enhanced attack surface resulting from the adoption of cloud services [94]. Decentralization
and virtualization technologies like SDN and NFV further amplify the risks. Moreover,
the diversity of potential attackers—from cybercriminals to state-sponsored entities—adds
another layer of complexity.

4.4. Anticipated Threat Vectors

As 5G networks continue to evolve, they introduce new and increasingly sophisticated
threat vectors. These encompass not just the malicious actors and their methods but also
the system vulnerabilities they may exploit [51,78,79]. A comprehensive understanding
of these anticipated threat vectors in the 5G landscape is crucial for developing effective
security measures. One of the most significant anticipated threat vectors in 5G networks is
the proliferation of IoT devices. These devices often have limited computational resources
and weak security features, making them attractive targets for cyber attackers. Once
compromised, these devices can be used as stepping stones to launch larger-scale attacks
on the network or to gain unauthorized access to sensitive data [68,71–74]. Another
anticipated threat vector in 5G networks is the expanded use of cloud services and edge
computing [94,95]. While these technologies increase network flexibility and performance,
they also expand the attack surface by distributing data processing and storage across
numerous devices and locations. This can create new vulnerabilities and increase the
complexity of securing the network [68,70]. SDN and NFV, key elements of 5G architecture,
are also potential threat vectors. These technologies decentralize network control and
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introduce virtualization layers, potentially creating new points of attack for cybercriminals.
Finally, network slicing, another central feature of 5G, can be a potential threat vector. While
network slicing can enhance security through compartmentalization, poor slice isolation or
misconfigurations can result in security risks, allowing malicious actors to exploit one slice
to gain access to others [89–91]. Understanding these anticipated threat vectors in the 5G
environment is the first step towards developing proactive and comprehensive security
measures that can address these challenges.

4.5. Potential Attackers and Their Motivations

Understanding the potential attackers in the 5G environment and their motivations is a
critical step in identifying and mitigating potential threats. Potential attackers in the context
of 5G may be categorized into three broad groups, based on their capabilities, objectives,
and the resources at their disposal: cybercriminals, state-sponsored attackers, and insider
threats [71,87]. Cybercriminals typically launch attacks with the aim of achieving financial
gain. These actors employ a range of methods to compromise 5G networks, including
malware, ransomware, and DDoS attacks. They often exploit weak security controls,
insecure interfaces, and poor user security practices [87]. State-sponsored attackers or
APTs represent a significant threat to 5G networks due to their high level of sophistication
and the substantial resources at their disposal. Their motivations may include espionage,
disruption of critical infrastructure, or gaining a competitive advantage at a national level.
These attackers often utilize advanced techniques to evade detection, remain persistent
within the network, and achieve their objectives [72,87]. Insider threats, although often
overlooked, can pose a substantial risk to 5G security. Disgruntled employees, contractors
with access to sensitive network information, or even employees unwittingly manipulated
by external actors, can cause significant damage to network security. These attacks can be
particularly challenging to detect and mitigate due to the inherent trust placed in these
individuals. In order to effectively mitigate these threats, it is critical that security measures
account for the various attackers’ capabilities, strategies, and motivations and that they are
adaptable to evolving threat landscapes.

4.6. Attack Methods and Techniques

As 5G networks become increasingly sophisticated, so do the methods and techniques
used by potential attackers to exploit vulnerabilities. A few of the anticipated attack
methods and techniques are outlined in this section. The DDoS attacks are anticipated to be
a significant threat to 5G networks. As 5G networks offer significantly higher bandwidth,
they could potentially be leveraged to launch larger-scale DDoS attacks than those seen on
previous generations of mobile networks [89,93]. Another anticipated method is the MitM
attack, where an attacker intercepts communication between two parties to steal data or
inject malicious content. The increased reliance on edge computing and IoT devices, which
often have weaker security measures, makes 5G networks potentially more vulnerable to
MitM attacks [96]. The APTs are another anticipated attack method in 5G networks. These
sophisticated attacks are often state-sponsored and involve a prolonged and targeted effort
to compromise a network. APTs often employ a mix of attack techniques, including social
engineering, zero-day exploits, and rootkits to gain access and maintain a foothold in the
target network [97]. Finally, the exploitation of software vulnerabilities is an anticipated
attack method in 5G networks. The shift towards SDN and NFV in 5G introduces a new
attack surface, as attackers may seek to exploit vulnerabilities in the software layers [89–91].
Understanding these attack methods and techniques is crucial for developing effective
countermeasures and securing 5G networks.

4.7. Analysis of Inherent Vulnerabilities in Network Slicing

Network slicing is a critical feature of 5G networks, enabling operators to create multi-
ple virtual networks on a single physical infrastructure. While this feature brings numerous
benefits, such as customizability, scalability, and efficient resource utilization, it also in-
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troduces new vulnerabilities and amplifies the potential impact of security breaches [56].
One significant vulnerability lies in the inherent complexity of managing multiple virtual
networks concurrently. Each slice may serve different applications and services, having its
own unique security requirements and configuration. Managing these complex configura-
tions and maintaining isolation between slices is challenging, and any misconfiguration or
overlap could lead to breaches and leakage of sensitive information across slices [57,58].
The orchestration process is another vulnerability in network slicing. Orchestrators are
responsible for the allocation and management of resources across slices. An attacker
compromising the orchestrator could control resource allocation, potentially leading to
the unauthorized access of network slices or DoS attacks on specific slices. Inter-slice
communication is yet another vulnerability. Although slices are designed to be isolated,
communication between slices can occur. If the security protocols governing these inter-
actions are not robust, an attacker could exploit this communication to launch attacks on
different slices.

The dependence on SDN and NFV for implementing network slicing also introduces
vulnerabilities. SDN and NFV architectures could potentially be exploited if they contain
software vulnerabilities or are misconfigured [89,90].

The technical aspects of network slicing, while enabling greater flexibility and op-
timization, also introduce potential weaknesses. Network slicing necessitates a more
dynamic, programmable, and software-based environment, primarily facilitated by SDN
and NFV. While these technologies provide flexibility and optimization capabilities, they
also introduce software vulnerabilities that may be exploited by attackers [57,59]. The
isolation between network slices is another crucial technical aspect. Each network slice is
envisioned to operate independently of the others, providing services tailored to its specific
use case. However, maintaining robust isolation and preventing interference between
network slices is technically challenging. Misconfigurations or software vulnerabilities
could compromise the isolation, potentially enabling an attacker to gain access to multiple
slices or causing interference between slices [55,58,84]. The inherent vulnerabilities in
network slicing in 5G networks and their associated mitigation strategies are outlined
in Table 6.

Table 6. Vulnerabilities in network slicing in 5G networks and their associated mitigation
strategies [56–59].

Vulnerability Potential Impact Exploitation Techniques Mitigation Strategies

Complex slice
configurations

Breaches, data leakage,
security risks

- Configuration errors
- Weak access controls
- Inadequate security protocols

- Develop robust security protocols
for inter-slice communication.

- Implement stringent configuration
management practices.

- Regularly audit and assess slice
configurations for vulnerabilities.

Orchestration
vulnerabilities

Unauthorized resource
access, DoS attacks,
security breaches

- Weak authentication
- Unauthorized access to

orchestrator interfaces
- Exploiting vulnerabilities in

orchestrator software

- Harden orchestrator security with
strong authentication and
access controls.

- Implement anomaly detection
mechanisms to identify suspicious
orchestrator activities.

- Regularly update and patch
orchestrator software.
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Table 6. Cont.

Vulnerability Potential Impact Exploitation Techniques Mitigation Strategies

Inter-slice
communication

Data breaches,
unauthorized access

- Lack of encryption
- Insufficient authentication
- Exploiting vulnerabilities in

communication protocols

- Strengthen inter-slice
communication security with
encryption and authentication.

- Implement intrusion detection
systems to monitor inter-slice traffic
for anomalies.

- Restrict unnecessary
communication between slices.

SDN and NFV
vulnerabilities

Network compromise,
data breaches, system
instability

- Unpatched vulnerabilities in
SDN/NFV components

- Misconfigurations in
SDN/NFV controllers
and switches

- Unauthorized access to
SDN/NFV management
interfaces

- Regularly update and patch SDN
and NFV software components.

- Perform rigorous security testing
and audits of SDN and NFV
infrastructure.

- Implement secure configurations
and access controls.

Resource allocation
weaknesses

Service disruptions,
resource
monopolization,
security breaches

- Unauthorized access to
resource allocation
mechanisms

- Manipulating resource
allocation policies

- Resource allocation based on
weak criteria

- Implement robust authentication
and authorization mechanisms for
resource allocation. Monitor
resource allocation for unusual
patterns or anomalies.

- Employ intrusion detection systems
to detect and respond to resource
allocation attacks.

In Table 6, the complex landscape of vulnerabilities inherent in 5G network slicing is
succinctly elucidated, categorizing each vulnerability by its potential impact, exploitation
techniques, and recommended mitigation strategies. The table underscores the need for
robust security protocols and stringent configuration management practices in dealing
with complex slice configurations. It also highlights the urgency for securing orchestration
interfaces and implementing strong authentication mechanisms. Additionally, vulnera-
bilities tied to SDN and NFV are indicated, necessitating regular software updates and
rigorous security audits. The table serves as a comprehensive guide for understanding and
addressing the multifaceted security challenges in 5G network slicing.

4.8. Risk Considerations in mMTC

mMTC is one of the critical use cases envisioned for 5G networks, facilitating commu-
nication between a large number of devices in applications such as smart cities, industrial
automation, and the IoT. While mMTC brings significant potential for various applications,
it also introduces several unique security risks [65]. One fundamental risk consideration is
the vast number of devices involved in mMTC. The sheer quantity of devices exponentially
increases the attack surface for potential attackers. Each device represents a potential entry
point for attackers, which could be exploited to gain unauthorized access to the network or
launch DoS attacks.

The heterogeneity of devices in mMTC scenarios also poses a risk. Devices in an
mMTC environment can vary significantly in terms of their capabilities, security features,
and vulnerabilities. Ensuring the security of all these diverse devices can be challenging,
as the weakest device could potentially be exploited to compromise the entire network.
Furthermore, the requirement for low latency and high reliability in mMTC introduces
potential security risks [65]. The need for timely communication between devices can
make it challenging to implement robust security measures, such as complex encryption
algorithms, without causing unacceptable delays or affecting reliability. These unique risk
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considerations necessitate the development of tailored security measures for mMTC in
5G networks [66].

4.9. New Challenges and Threats

The advent of mMTC in 5G networks brings forth new challenges and threats. Pri-
marily, the massive increase in device connections leads to an enormous volume of data
transmission, leading to higher network congestion [65]. This can potentially be exploited
by malicious entities for DDoS attacks. Another challenge arises due to the resource-
constrained nature of many mMTC devices. They often operate on limited power and
computational resources, making it challenging to deploy robust security measures like
advanced encryption and real-time monitoring [66]. As a result, these devices can be
more vulnerable to various security threats, including device spoofing, man-in-the-middle
attacks, and data breaches. Device heterogeneity further complicates the security landscape,
as a multitude of device types, with varying levels of security, try to interact within the
same network. This situation can lead to inconsistent security measures, creating weak
points that can be exploited by attackers [67].

Further, the need for low-latency communication in many mMTC applications can
conflict with the implementation of robust security measures. Security processes such
as encryption, authentication, and intrusion detection can introduce delays, potentially
compromising the performance of time-sensitive applications [66]. These new challenges
and threats necessitate novel approaches to security in mMTC, balancing the need for robust
security measures with the unique constraints and requirements of mMTC applications in
5G networks [67].

4.10. Security Solutions for mMTC

As the risk landscape for mMTC in 5G networks is complex, securing these networks
requires innovative solutions. Research and developments in this domain have centered on
several key strategies, as shown in Table 7. One of the strategies involves using lightweight
cryptographic methods suitable for resource-constrained devices. Such methods aim to
secure data transmission without overly burdening the device’s computational and power
resources. For example, symmetric encryption algorithms, such as the advanced encryption
standard (AES), can offer a balance between security and computational efficiency [66].

Table 7. Security solutions for mMTC in 5G networks [65–67].

Security Solutions
for mMTC Description Advantages Challenges Use Cases

Lightweight
cryptographic
methods

Utilizes lightweight
cryptographic techniques
suitable for resource-constrained
mMTC devices.
Aims to secure data transmission
without imposing a significant
computational or power burden.

- Minimizes
computational and
power overhead.

- Suitable for devices
with limited
resources.

- May provide lower
levels of security
compared to
heavier encryption
methods.

- Secure data transfer
in mMTC devices
with limited
resources.

Distributed security
mechanisms

Implements distributed security
mechanisms where the security
workload is shared among
multiple devices or
network nodes.
It prevents a single point of
failure and is particularly
effective against DoS and
DDoS attacks.

- Enhanced resilience
against attacks.

- Effective in
preventing network
congestion due to
attacks.

- Requires
coordination among
multiple devices or
nodes.

- Complex to
implement and
manage.

- Protection against
DoS and DDoS
attacks in mMTC
networks.

Intrusion detection
systems (IDSs)

Utilizes IDS to monitor network
traffic and identify suspicious
activities.
It plays a critical role in the
timely detection and mitigation
of potential threats in mMTC
environments.

- Provides real-time
threat detection.

- Alerts network
administrators to
potential security
breaches.

- May generate false
positives.

- Requires constant
monitoring and
updates.

- Early detection of
security threats in
mMTC applications.
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Table 7. Cont.

Security Solutions
for mMTC Description Advantages Challenges Use Cases

Intrusion
prevention systems
(IPSs)

Implements IPS to proactively
block or prevent detected
security threats.
It enhances the security posture
of mMTC networks by stopping
potential attacks before they can
cause harm.

- Actively prevents
security threats
from causing
damage.

- Reduces the impact
of security
incidents.

- Possibility of false
positives and false
negatives.

- Requires regular
updates and
fine-tuning.

- Proactive security
measures for
mMTC networks.

Machine learning
(ML) and artificial
intelligence (AI)

Harnesses machine learning
(ML) and artificial intelligence
(AI) techniques to analyze vast
amounts of network data.
It is adept at identifying patterns
and anomalies, greatly
enhancing the ability to detect
and prevent cyberattacks in
mMTC networks.

- Adaptive and
self-learning
capabilities.

- Effective in
identifying complex
attack patterns.

- Requires extensive
training and data.

- May generate false
positives without
proper tuning.

- Advanced threat
detection and
prevention in
mMTC networks.

Rigorous
authentication
mechanisms

Deploys rigorous authentication
mechanisms to ensure that only
authorized devices and entities
can access the mMTC network.
Access control measures are
employed to prevent
unauthorized access to the
network and sensitive data.

- Ensures only
trusted devices
access the network.

- Protects sensitive
data from
unauthorized
access.

- May introduce
latency in the
authentication
process.

- Requires robust
management of
authentication
credentials.

- Secure access
control in mMTC
applications.

Distributed security mechanisms represent another approach, where the security
workload is shared among multiple devices or network nodes. This approach can prevent
a single point of failure and can be particularly effective against DoS and DDoS attacks [51].
Intrusion detection systems (IDSs) and IPS also have a role to play in securing mMTC. These
systems can monitor network traffic and identify suspicious activities, allowing for the
timely detection and mitigation of potential threats. AI algorithms have shown promise in
improving security in mMTC. These techniques can analyze vast amounts of network data
to identify patterns and anomalies, helping to detect and prevent cyberattacks. In addition,
strict authentication and access control mechanisms are crucial for securing mMTC in 5G
networks. They can prevent unauthorized devices from gaining access to the network or
accessing sensitive data [67].

Table 7 offers an in-depth exploration of security solutions tailored for mMTC in
5G networks. It delineates various approaches from lightweight cryptographic methods
designed for devices with limited computational resources to more sophisticated solutions
like machine learning and artificial intelligence for anomaly detection. Each approach is
scrutinized for its advantages and challenges, providing insights into their applicability
under specific use cases. Lightweight cryptographic methods, for instance, minimize
power and computational overhead but may compromise on the level of security provided.
Distributed security mechanisms enhance resilience against attacks such as DoS and DDoS
but necessitate complex coordination among devices or nodes. Intrusion detection and
prevention systems offer real-time threat monitoring and proactive defenses but require fre-
quent updates and may generate false positives. Machine learning and AI-based solutions
stand out for their adaptive capabilities but require extensive training data.

4.11. Analysis of 5G Security Challenges in Conjunction with Edge Computing

The integration of edge computing into 5G networks enhances performance through
reduced latency and increased capacity for real-time data processing. However, this shift
also brings new security challenges.

Firstly, the decentralization of data processing, inherent to edge computing, increases
the number of attack vectors. The data are processed closer to the user, which expands
the potential points of attack and increases the complexity of implementing centralized
security measures [68]. Moreover, edge nodes are often less powerful than centralized
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servers in terms of computational capacity, making them potentially more vulnerable to
cyberattacks. Deploying robust security measures on edge nodes can be challenging due to
these resource limitations. Furthermore, edge computing’s dependency on the IoT devices,
which are known for their diverse security levels and standards, adds another layer of
complexity to the security challenges [69]. This diversity often results in an inconsistent
security landscape, which can be exploited by attackers. Privacy is also a concern with
edge computing in 5G networks. Data are processed closer to the user device, making it
more vulnerable to breaches if not adequately protected.

The potential risks and vulnerabilities in edge computing within 5G networks are
multifaceted, resulting from various factors, such as the increased number of devices, de-
centralization of data processing, and lack of uniform security standards. Edge computing
dramatically increases the number of devices involved in data processing and communica-
tion, each representing a potential point of entry for attackers. The heterogeneous nature of
these devices further complicates the security landscape, as different devices might have
different vulnerabilities [70]. Data integrity is another major concern. The decentralization
of data processing means that data might travel through various nodes before reaching its
destination, increasing the risk of data corruption or manipulation. Additionally, edge com-
puting environments often lack the physical security measures present in traditional data
centers, making them susceptible to physical attacks. Compromised hardware could lead to
the loss or theft of sensitive data. Moreover, the heterogeneity of edge devices often results
in a lack of uniform security protocols and standards. This inconsistency can be exploited
by attackers to launch cyberattacks, such as DDoS attacks or malware infection [70].

Implementing robust protective measures in edge computing is critical to secure the
operations of 5G networks. The mitigation strategies should take into account the unique
challenges of edge computing, including the high number of devices, the decentralized
data processing, and the inconsistency of security protocols among devices. Firstly, as
edge computing expands the surface area for potential attacks, perimeter defense strategies
must be upgraded to be more dynamic and responsive. This includes utilizing machine
learning algorithms for threat detection and mitigation, which can adapt and respond to
emerging threats in real time [68]. Secondly, the concept of “security by design” should
be implemented in edge computing environments. This approach involves integrating
security measures at every stage of system design and operation, rather than applying
them as an afterthought. Moreover, data encryption should be applied to ensure the
integrity and confidentiality of data, preventing unauthorized access and manipulation. It
is essential to deploy robust encryption mechanisms to secure the communication between
edge devices and central nodes. Additionally, the standardization of security protocols
across edge devices can enhance their resilience against cyberattacks in edge applications.
Establishing industry-wide standards for edge security would help create a more unified
and less vulnerable security landscape. Further, a summary of the security challenges in
edge computing in 5G, along with potential risks, vulnerabilities, and protective measures,
is displayed in Table 8.

Table 8. Fifth-generation security challenges and edge computing: potential risks, vulnerabilities,
and protective measures [68–70].

Security Challenges in
Edge Computing in 5G Potential Risks and Vulnerabilities Protective Measures

Decentralization of data
processing

- Increased attack vectors due to
processing data closer to users.

- Edge nodes with lower
computational capacity are
more vulnerable.

- Upgrade perimeter defense strategies to be
dynamic and responsive.

- Implement machine learning for real-time threat
detection and mitigation.

- Apply “security by design” principles in system
design and operation.
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Table 8. Cont.

Security Challenges in
Edge Computing in 5G Potential Risks and Vulnerabilities Protective Measures

Dependency on IoT devices

- Diverse security levels and
standards among IoT devices.

- Inconsistent security landscape that
can be exploited.

- Standardize security protocols across edge
devices for a more uniform security landscape.

- Establish industry-wide security standards for
edge computing.

Data privacy concerns
- Data processed closer to user

devices increases vulnerability
to breaches.

- Implement robust data encryption mechanisms
to ensure integrity and confidentiality.

- Secure communication between edge devices
and central nodes with strong encryption.

Increased number of devices
- More devices involved, each

representing a potential entry point
for attackers.

- Upgrade perimeter defense strategies.
- Utilize machine learning for real-time threat

detection and response.

Data integrity risks
- Data travel through various nodes,

increasing the risk of corruption
or manipulation.

- Implement data encryption to prevent
unauthorized access and manipulation.

Physical security
vulnerabilities

- Lack of physical security measures
in edge computing environments.

- Compromised hardware could lead
to data loss or theft.

- Implement strong access controls and
monitoring systems to prevent physical
tampering of edge devices.

Table 8 outlines the security challenges inherent to the integration of edge computing
within 5G networks. It identifies key risks such as increased attack vectors due to data
decentralization, varied security standards in IoT devices, and data integrity concerns.
Each challenge is paired with recommended protective measures like robust encryption,
machine learning for threat detection, and industry-wide security standardization.

4.12. Security Breaches in 5G Networks

Investigating past breach events is crucial to understand the vulnerabilities in 5G
networks and formulate robust security measures. This section delves into an analysis
of notable breach events, focusing on the type of attack, tactics utilized by attackers, the
network’s vulnerabilities exploited, and the resulting implications. One of the significant
breach events in recent history involved exploiting the vulnerabilities of the 5G AKA
protocol [96]. There exists a notable instance where attackers exploited the 5G AKA protocol,
which led to an MitM attack [71]. In this breach event, the attackers intercepted and altered
the communication between two parties, resulting in unauthorized access to sensitive data
and causing considerable disruption to the network’s operations. Furthermore, DDoS
attacks have also been responsible for significant security breaches in 5G networks. This
breach event underscored the network’s vulnerability to volumetric attacks and raised
questions about the network’s capacity to handle increased traffic [98].

With cutting-edge features like network slicing, eMBB, and the mMTC, the realm of
potential cyber threats with 5G has expanded exponentially [30,66]. Within this landscape,
network anomalies, characterized by unusual patterns or behaviors in network traffic,
serve as harbingers of potential security threats, be it breaches, system vulnerabilities, or
hardware malfunctions. With 5G set to power billions of IoT devices, ranging from smart
home appliances to sophisticated industrial sensors, the sheer volume of data being relayed
is staggering [68,70]. Detecting anomalous behavior within this data is critical, as it could
indicate a device that has been compromised. A single compromised device, if overlooked,
might serve as a backdoor to larger, more crucial systems, presenting significant security
risks. Additionally, the introduction of network slicing in 5G, where various virtual
networks operate on a shared physical infrastructure, further complicates the security
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scenario. An undetected anomaly in one virtual network slice could potentially jeopardize
the integrity of others. Furthermore, for applications that rely on 5G’s URLLC, such as
autonomous vehicles, real-time anomaly detection is a necessity for safety [99].

5. Current and Prospective Solutions to Enhance 5G Security

As we are witnessing an exponential growth in the deployment of 5G networks, it
is imperative to address the associated security concerns [4]. These issues include tech-
nical vulnerabilities, regulatory ambiguities, and potential threats from a diverse group
of malicious actors. To fortify the security stance of 5G networks, a myriad of current
and prospective solutions is being explored. These solutions are multilayered and oper-
ate in various aspects of the network, such as technical, organizational, regulatory, and
user-based levels. Technical solutions form the bedrock of 5G security, as they directly
deal with the various threats and vulnerabilities [6]. The first line of defense usually in-
volves robust encryption protocols. Advanced encryption standards, such as the 256-bit
AES, are being used to secure communication channels in 5G networks. Moreover, ML
and AI are increasingly playing a significant role in 5G network security. These technolo-
gies are used for anomaly detection, intrusion detection, and rapid response to potential
threats [7]. They help in identifying patterns of malicious activities even when they vary
from previously identified threats, thereby improving the network’s adaptive capabilities.
Blockchain technology is also being leveraged for decentralizing security control, which
significantly reduces the chances of single-point security failure. blockchain technology
can be utilized for secure device authentication in 5G networks [100]. Organizational and
regulatory solutions are equally vital in enhancing 5G security. These involve the adoption
of best practices, risk management frameworks, and adherence to international standards
and regulations. Organizations are encouraged to adopt a risk-based approach for their
cybersecurity initiatives. This involves identifying the most critical assets, potential threats
to those assets, and implementing effective countermeasures. Regulatory bodies play a
crucial role in ensuring adherence to the established security standards and guidelines.
They work on the international harmonization of 5G security standards to avoid regional
discrepancies and loopholes that may be exploited.

Traditional rule-based systems, designed for earlier network generations, find them-
selves outpaced by the dynamic and diverse nature of 5G traffic. Consequently, the
arena of network security is witnessing a paradigm shift towards AI and ML security
solutions [9,39]. These advanced technologies, with their capability to learn and adapt from
data, are uniquely positioned to detect complex patterns and predict potential anomalies
with impressive accuracy. By perpetually training on fresh data, they ensure that the
detection mechanisms remain relevant to the ever-evolving threat environment.

Table 9 encapsulates various security solutions deployed in 5G networks, categorizing
them based on their examples, strengths, and weaknesses. Machine learning and AI offer
high adaptability and real-time threat detection but are resource-intensive. Blockchain
technology provides robust IoT security but faces scalability issues. Software-Defined Net-
working and Network Function Virtualization contribute to enhanced network flexibility
but introduce new vulnerabilities. Encryption methods like the AES and homomorphic
encryption provide robust security but have their own limitations, such as speed and quan-
tum resistance. Organizational measures help set security benchmarks but require initial
investment and continuous compliance efforts. User education aims to reduce human-
related errors but its effectiveness depends on continuous educational initiatives and user
engagement [91,101,102].

As Table 9 articulates, there exists a broad landscape of security solutions pivotal
to 5G infrastructures—ranging from machine learning and blockchain technology to en-
cryption and authentication—Table 10 serves as a natural extension of this subsection,
offering a detailed exploration of the complexities inherent in 5G encryption and authen-
tication techniques. Specifically, Table 10 elaborates on the current methods, their key
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features, strengths, weaknesses, and applicability, thereby complementing and enriching
the foundational overview presented in Table 9.

Table 9. Security solutions in 5G [4,6,39,51,52].

Security Solutions
in 5G Examples Strengths Weaknesses

Machine learning (ML)
and artificial
intelligence (AI)

- Intrusion detection using
deep learning algorithms.

- Pattern recognition for
threat detection.

- High accuracy in identifying
known and unknown threats.

- Adaptability to evolving
network patterns.

- Real-time threat detection.

- Resource-intensive, potentially
impacting network efficiency.

- Need for continuous training
and updates.

- Susceptible to adversarial
attacks.

Blockchain technology - Secure device authentication
in 5G IoT.

- Decentralization reduces
single-point failure risks.

- Robustness in IoT security.
- Enhanced trust through

transparency.

- Complex implementation and
scalability challenges.

- Slower transaction processing
compared to centralized
systems.

- Energy-intensive consensus
mechanisms.

SDN and NFV
- Adaptive network slicing.
- Enhanced security through

virtualization.

- Improved network agility and
flexibility.

- Enhanced protection against
lateral movement threats.

- Efficient resource utilization.

- Scalability and performance
overhead concerns.

- Complexity in managing
virtualized network functions.

- Potential vulnerabilities in
virtualized environments.

Encryption and
authentication

- Use of Advanced encryption
standard (AES).

- Homomorphic encryption for
secure data processing.

- Unified Authentication
Framework (UAF).

- Biometric authentication.
- Blockchain-based

authentication.

- AES offers a high level of
security.

- Homomorphic encryption
allows secure data processing
without decryption.

- UAF provides flexibility in
authentication methods.

- Biometric authentication
enhances identity verification.

- Blockchain-based
authentication decentralizes
control.

- AES is not quantum-resistant.
- Homomorphic encryption can

be slow and complex.
- Complexity and scalability

challenges for UAF.
- Biometric authentication may

require specialized hardware.
- Blockchain-based

authentication can be complex
to implement.

Organizational and
regulatory measures

- Best practices adoption.
- Risk management

frameworks.
- Compliance with

international standards and
regulations.

- Enhances overall security
posture.

- Provides benchmarks for
security.

- Fosters trust among
stakeholders.

- Initial investment in security
measures.

- Compliance can be complex
and time-consuming.

- Varied regulations across
regions.

User education and
awareness

- Promoting digital literacy.
- Raising cybersecurity

awareness.

- Reduces human error-related
security incidents.

- Empowers users to protect
themselves.

- Requires continuous
educational efforts.

- Users may remain susceptible
to social engineering attacks.

- Effectiveness depends on user
willingness to engage.

Table 10. Encryption and authentication techniques in 5G [17,48,49,60–63,76,100,103,104].

Encryption and
Authentication

Techniques in 5G
Current Techniques Key Features Strengths Weaknesses Applicability

Encryption
techniques

- Advanced encryption
standard (AES): utilizes
key lengths of 128, 192,
and 256 bits.

- Homomorphic
encryption: enables
secure computation on
encrypted data.

- AES provides
symmetric
encryption for data
confidentiality.

- Homomorphic
encryption allows
privacy-preserving
computation on
encrypted data.

- AES offers strong
security against
known attacks.

- Homomorphic
encryption enhances
data privacy in cloud
and big data
applications.

- AES is vulnerable to
quantum computing
attacks.

- Homomorphic
encryption
introduces
computational
overhead.

- AES is widely used
for data
confidentiality in 5G
communication.

- Homomorphic
encryption is suitable
for privacy-
preserving
applications like
cloud computing and
data analysis.
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Table 10. Cont.

Encryption and
Authentication

Techniques in 5G
Current Techniques Key Features Strengths Weaknesses Applicability

Authentication
techniques

- UAF offers flexibility in
authentication methods.

- Biometric authentication:
utilizes unique biological
traits (e.g., fingerprints,
facial recognition) for
identity verification.

- Blockchain-based
authentication:
decentralizes
authentication, reducing
the risk of single-point
failures.

- UAF provides a
unified framework
for various
authentication
methods.

- Biometric
authentication
relies on unique
physical
characteristics.

- Blockchain-based
authentication
offers decentralized
control and
immutable records.

- UAF enhances
security by allowing
multiple
authentication
methods.

- Biometric
authentication
provides strong
identity verification.

- Blockchain-based
authentication
increases resilience
by decentralization.

- UAF may face
complexity and
scalability challenges
in large-scale
deployments.

- Biometric
authentication may
require specialized
hardware and raise
privacy concerns.

- Implementing
blockchain-based
authentication can be
complex.

- UAF can be used for
flexible
authentication in
diverse 5G network
environments.

- Biometric
authentication is
suitable for secure
user identification in
mobile and IoT
devices.

- Blockchain-based
authentication
enhances trust and
security in 5G
networks.

Analysis of Encryption and Authentication Techniques

Encryption and authentication are foundational security measures for securing data
transmission and ensuring that access to network resources is only granted to authorized
users [61,76]. These measures are especially crucial in 5G networks due to their highly
distributed nature and the sheer volume of data being transmitted, as shown in Table 10.
Encryption techniques are essential for maintaining the confidentiality and integrity of data
transmitted over 5G networks. In essence, encryption involves transforming the original
data into an unreadable format that can only be reverted to its original form with the correct
decryption key. The AES is widely used for data encryption in 5G networks. AES-256, in
particular, offers a high level of security and is suited to protect sensitive data transmitted
over these networks. Additionally, homomorphic encryption techniques are gaining atten-
tion due to their ability to perform computations on encrypted data, thus providing an extra
layer of privacy in 5G applications like cloud computing and big data analysis [105,106]
Authentication techniques in 5G networks are designed to verify the identity of devices and
users seeking access to the network, thereby preventing unauthorized access. One of the
key enhancements in 5G networks over its predecessors is the introduction of the UAF [104].
The UAF allows for the flexibility to use various types of credentials and authentication
methods, providing a more robust and flexible authentication mechanism. One of the
emerging authentication methods is biometric authentication, which involves verifying an
individual’s identity based on unique biological traits, such as fingerprints or facial recog-
nition. Bedari et al. [107], demonstrated how biometric authentication can be efficiently
used in 5G networks, they developed a secure, efficient online fingerprint authentication
system for IIoT devices on 5G networks, featuring a novel cancelable fingerprint template to
enhance data security and performance. Simultaneously, blockchain-based authentication
techniques are also being explored for 5G networks. They offer a decentralized approach to
authentication, reducing the risk of single-point failures [108].

Table 10 presents a detailed overview of the encryption and authentication techniques
that are currently being employed in 5G networks. It categorizes these techniques based
on their key features, strengths, weaknesses, and applicability. For encryption, the table
contrasts the AES with homomorphic encryption. The AES offers robust symmetric en-
cryption, securing data confidentiality effectively against most known attacks. However,
its primary drawback lies in its vulnerability to quantum computing attacks. In contrast,
homomorphic encryption allows for privacy-preserving computations on encrypted data,
making it particularly beneficial for cloud and big data applications. Yet, it introduces
computational overhead, which may be a limitation in resource-constrained settings. On
the authentication side, the UAF offers flexibility by accommodating various authentication
methods, enhancing security. However, its complexity and scalability could be challenging
for large-scale deployments. Biometric authentication, leveraging unique biological traits
like fingerprints, offers strong identity verification but may require specialized hardware
and elicit privacy concerns. Blockchain-based authentication decentralizes control, thus in-
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creasing resilience against single-point failures, but its implementation complexity remains
an obstacle.

6. Machine Learning and 5G Security

This section discusses the role of ML in enhancing 5G security and the solutions that it
provides, further we discuss the ML applications in 5G security, optimize the functioning of
security protocols in 5G networks and how to optimize the functioning of security protocols
in 5G networks. However, emerging security measurements like attribute-based access
controls and block chain-based access controls can take advantage of ML to strengthen
their advancement in 5G security.

6.1. The Role of Machine Learning in Enhancing 5G Security

The use of ML algorithms offers an advanced and effective solution to enhance and
reduce the security challenges associated with the advent of 5G networks [7,8]. The inherent
attributes of ML, such as adaptability, prediction capability, and large-scale data processing,
provide promising solutions to handle the unprecedented scale and complexity of the 5G
ecosystem. The onset of 5G networks has brought about a paradigm shift in the world
of telecommunications, promising high-speed connectivity, low latency, and a seamless
integration of billions of devices across the globe. However, this immense progress also
brings with it a range of novel security challenges that require innovative solutions. ML
algorithms can help to develop intelligent 5G security systems capable of self-learning and
adapting to evolving threats, allowing for real-time threat detection and mitigation [7,39].
Furthermore, ML algorithms are capable of processing massive volumes of data generated
by 5G networks, extracting valuable insights about possible threats and providing proactive
security measures to prevent potential attacks [109]. ML has emerged as a potent tool in
this context, offering robust capabilities to improve the security framework in 5G net-
works. Machine learning, with its capabilities for pattern recognition, anomaly detection,
and predictive modeling, plays a pivotal role in strengthening the security apparatus of
5G networks [39,109].

The implementation of ML in 5G security is thereby poised to significantly improve the
robustness and reliability of the 5G infrastructure, contributing to the overall sustainability
of the digital ecosystem in the era of 5G and beyond. Generally, the role of ML in 5G
security is multifaceted, spanning areas like intrusion detection, privacy preservation,
secure routing, and threat intelligence, among others. It holds the potential to transform
the conventional, reactive security frameworks into proactive, intelligent systems capable
of thwarting cyberattacks before they can inflict significant damage [110].

The potential of ML in the realm of 5G security enhancement is significant. As 5G
networks evolve into dynamic and complex systems, traditional security measures struggle
to effectively manage the extensive network topology, heterogeneous traffic patterns, and
multi-dimensional data. Machine learning is particularly adept at handling these challenges,
as its capabilities extend beyond mere rule-based systems. In 5G networks, ML algorithms
can intelligently process vast amounts of network data, promptly recognizing potential
security threats through anomaly detection [111]. The capability of ML to learn from past
data and experiences allows it to accurately distinguish normal network behavior from
malicious activities, providing effective real-time threat detection. Moreover, through
predictive analytics, ML can foresee potential attacks, giving network operators valuable
lead time to mitigate potential damages. Another key strength of ML is its adaptability,
which enables it to learn from new situations and update its predictive models accordingly.
This continuous learning feature is vital for coping with the evolving nature of cyber threats
in 5G networks. Moreover, ML can improve resource allocation and optimize security
protocols, enhancing both network security and performance [112].

A myriad of machine learning techniques holds substantial relevance in the realm
of 5G security, offering unique capabilities for different aspects of network security man-
agement [113]. Supervised learning techniques such as support vector machines (SVMs)
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and decision trees are commonly used for intrusion detection in 5G networks [114]. These
algorithms learn from labeled training data to classify network activities as either normal
or malicious [115]. In particular, decision trees are beneficial for their ease of interpretation,
enabling network administrators to understand the decision-making process behind the
detection of potential threats. Unsupervised learning algorithms like k-means cluster-
ing, Linear Regression, supervised classifier and hierarchical clustering are valuable for
anomaly detection, identifying unusual patterns in network data that may signify a security
breach [116,117]. These algorithms do not require labeled data, making them flexible tools
for discovering unknown threats. Reinforcement learning, a type of ML where an agent
learns to make decisions by interacting with its environment, has shown promise in the
area of network intrusion response. By iteratively adjusting its actions based on received
rewards or punishments, a reinforcement learning agent can determine the optimal actions
to mitigate detected intrusions [118].

Table 11 reports the role of various machine learning techniques in enhancing the
security in 5G networks, showing the advantages and limitations of each technique along
with the metrics commonly employed for evaluation. Supervised learning is prominently
used in applications like IDS and spam filtering. Its high accuracy in identifying known
threats and low false-positive rates are notable strengths. However, the technique does
necessitate labeled data and is susceptible to overfitting. Typical evaluation metrics include
accuracy and the precision–recall curve. Unsupervised learning finds utility in anomaly
detection and network traffic clustering. It eliminates the need for labeled data and can
unearth previously unidentified threats. Despite these merits, it has lower accuracy com-
pared to supervised learning techniques and incurs high computational costs. Metrics
like cluster purity and silhouette score are commonly used for evaluation. Reinforcement
learning facilitates adaptive network configurations and policy-based security measures.
Its ability to learn optimal policies over time and adapt to evolving network conditions is
laudable. However, extensive training data are required, and the complexity of defining
appropriate reward functions is a challenge. Cumulative reward and convergence time are
key metrics for evaluation. Ensemble methods, often used to enhance IDS capabilities and
combine multiple classifiers, are praised for their improved generalization and resistance to
overfitting. However, they are computationally demanding and can be complex to interpret.
Evaluation is typically conducted using cross-validation scores and the F1 score. Lastly,
neural networks, which are used for deep packet inspection and malware identification, are
robust in feature representation and excel at capturing complex patterns. These strengths
are offset by their resource-intensive nature and risk of overfitting, especially with small
datasets. Area Under the Receiver Operating Characteristic (AUROC) and F1 score are
standard evaluation metrics.

Table 11. Machine learning security existing solutions in 5G [7,39,109,110,112,113,115,118,119].

ML Techniques
in 5G Security Applications Strengths Weaknesses Evaluation Metrics

Supervised
learning

- IDS
- Spam filtering

- High accuracy in known
threat detection

- Low false-positive rates

- Requires labeled data for
training

- Susceptible to overfitting

- Accuracy
- Precision–recall curve

Unsupervised
learning

- Anomaly detection
- Network traffic

clustering

- No need for labeled data
- Can identify previously

unseen threats

- Lower accuracy compared
to supervised methods

- High computational cost

- Cluster purity
- Silhouette score

Reinforcement
learning

- Adaptive network
configuration

- Policy-based security
measures

- Capable of learning
optimal policies over time

- Adapts to changing
network conditions

- Requires extensive
training data

- Complexity in setting
reward functions

- Cumulative reward
- Convergence time

Ensemble
methods

- Boosting IDS capabilities
- Combining multiple

classifiers

- Improved generalization
- Resistance to overfitting

- Computationally
expensive

- Complexity in
interpretation

- Cross-validation score
- F1 score
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Table 11. Cont.

ML Techniques
in 5G Security Applications Strengths Weaknesses Evaluation Metrics

Neural networks - Deep packet inspection
- Malware identification

- High capability for
feature representation

- Good at capturing
complex patterns

- Resource-intensive
- Risk of overfitting in

small datasets

- Area Under the Receiver
Operating Characteristic
(AUROC)

- F1 score

6.2. Machine Learning Applications in 5G Security

Machine learning, with its advanced analytical capabilities, is instrumental in various
applications within 5G security [120,121]. These applications span across diverse domains
such as intrusion detection, malware mitigation, and predictive security modeling. In
the context of intrusion detection, machine learning algorithms analyze network traffic
data to identify patterns that deviate from the norm. SVM and decision trees, for instance,
have demonstrated effectiveness in classifying network activities and detecting potential
intrusions [122,123]. Such techniques greatly enhance the security system’s responsiveness
and accuracy, thereby minimizing the risk of successful cyberattacks. Machine learning
is also pivotal in combating malware. It facilitates the identification and classification
of harmful software based on their behavioral characteristics and binary features. For
instance, deep learning methods such as CNNs are highly efficient in extracting and
learning complex features from large-scale data, allowing for effective detection of zero-day
malware [124]. Predictive security modeling is another area where machine learning holds
significant potential. Leveraging algorithms such as logistic regression and random forests,
predictive models can forecast potential vulnerabilities and threats based on historical
data and ongoing network activities. This enables proactive defense measures, thereby
improving the resilience of 5G networks against sophisticated cyber threats [124].

6.2.1. Anomaly Detection

Anomaly detection is a paramount task in maintaining the security of 5G networks.
This involves the identification of unusual patterns or deviations from the expected be-
havior, which could indicate potential threats or network malfunctions. Several machine
learning techniques have been employed in anomaly detection tasks. For instance, cluster-
ing algorithms like k-means can group network traffic data based on similar characteristics,
allowing for the detection of outliers or anomalies [125]. Classification algorithms, on
the other hand, can be trained to distinguish between normal and anomalous network
behaviors. In particular, SVMs and decision trees have shown effectiveness in this regard.
Moreover, advancements in machine learning have brought forth more sophisticated tech-
niques such as deep learning, which are capable of detecting more complex and subtle
anomalies. Techniques such as autoencoders, a type of artificial neural network, are able to
learn a compressed representation of the input data and then reconstruct the original data.
When trained on normal data, the model would generate high reconstruction errors for
anomalous data, thereby identifying the anomalies [125]. These machine learning-driven
anomaly detection techniques not only enhance the accuracy of detection but also reduce
the time taken to detect and mitigate potential security threats, significantly boosting the
resilience of 5G networks.

6.2.2. Security Predictions Using Machine Learning

Predictive security is a proactive approach in cybersecurity where ML can play an
integral role in different areas, particularly in 5G networks. Security predictions using ML
involve forecasting future security incidents by leveraging historical and real-time network
data. This ability to foresee potential threats offers a strategic advantage, allowing the
network to take proactive measures to minimize or prevent harm. A variety of machine
learning techniques are applicable to this task, including classification, regression, and time-
series forecasting. For instance, logistic regression, random forest, and gradient boosting
can be utilized for predicting security incidents based on historical data patterns [109,126].
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Furthermore, Long Short-Term Memory (LSTM) networks, a type of RNN specialized
in processing sequences of data, have been effectively used in time-series forecasting for
predictive security. They can model the temporal dependencies in network traffic data,
thereby predicting future anomalies or intrusions. One prominent application of ML
for security predictions in 5G is the anticipation of DDoS attacks. Through analyzing
patterns in network traffic, ML algorithms can predict an impending DDoS attack and
implement preventive measures, thus averting network downtime and potential loss of
service. However, while ML holds considerable promise for predictive security, it is crucial
to note that prediction models must continually evolve in response to the dynamic nature
of 5G networks and the ever-changing landscape of cyber threats [8]. The role of machine
learning in 5G security is shown in Table 11.

6.3. Security Protocol Optimization with Machine Learning

ML can also be leveraged to optimize the functioning of security protocols in 5G net-
works. The objective of security protocol optimization is to enhance the network’s security
performance without excessively consuming computational resources or impacting the
network’s operational efficiency [127]. One critical area where ML can be utilized is in the
optimization of key management protocols, a cornerstone of secure communications in
5G networks. ML algorithms can learn and predict the optimal times for key rotations,
thereby increasing the security of encrypted communications while minimizing the over-
head associated with the frequent key changes [128]. In addition, machine learning can
be used to optimize IDS. Traditional IDS suffer from high false-positive rates, inefficient
use of resources, and lack of adaptability. With ML, these systems can be optimized by
enhancing their accuracy, improving resource allocation, and enabling them to adapt to
evolving threat landscapes. ML can also aid in the optimization of security configurations
and policies. Given the complexity of 5G networks, managing and optimizing security
settings can be a daunting task. ML algorithms can learn from past incidents, analyze the
impact of various configurations, and suggest optimal settings to enhance the security
posture of the network [129]. However, it should be noted that the use of ML for security
protocol optimization is not without challenges. The effectiveness of ML techniques hinges
on the quality and comprehensiveness of the available data. Moreover, the complexity of
ML models can sometimes lead to a lack of interpretability, which may pose challenges in
understanding and validating the optimized protocols [95].

Table 12 illustrates a comprehensive framework for understanding the role and utility
of ML techniques in fortifying 5G network security. The table is structured across multiple
dimensions, elaborating on the applications, key techniques, advantages, and challenges of
implementing ML in a 5G context. It spans various aspects, from real-time threat detection
to predictive security modeling and anomaly identification, encompassing both supervised
and unsupervised learning paradigms. The advantages frequently cited include real-time
threat mitigation, enhanced network security, and the adaptability to evolving cyber threats.
Despite the compelling benefits, the table also highlights key challenges, including data
privacy concerns, computational overhead, and issues related to scalability and data quality.

Table 12. Machine learning in 5G security [105,108,111,130–144].

Machine Learning
in 5G Security Applications Key Techniques Advantages Challenges

Role of ML in 5G
security

- Real-time threat detection
and mitigation

- Proactive security
measures

- Large-scale data processing

- Pattern recognition
- Anomaly detection
- Predictive modeling

- Real-time threat
detection

- Improved security
posture

- Adaptation to evolving
threats

- Data privacy concerns
- Complexity of

implementation
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Table 12. Cont.

Machine Learning
in 5G Security Applications Key Techniques Advantages Challenges

Potential of ML in
security
enhancement

- Intrusion detection
- Anomaly detection
- Predictive security

modeling
- Adaptive security

mechanisms

- Supervised learning (e.g.,
SVM, decision trees)

- Unsupervised learning
(e.g., clustering)

- Reinforcement learning

- Enhanced network
security

- Efficient threat
detection

- Adaptive security
mechanisms

- Data quality and
labeling issues

- Resource-intensive

Pertinent ML
techniques in 5G
security

- Intrusion detection
- Anomaly detection
- Network intrusion

response
- Adaptive security

- Supervised learning (e.g.,
SVM, decision trees)

- Unsupervised learning
(e.g., clustering)

- Reinforcement learning

- Effective intrusion
detection

- Anomaly detection
- Adaptive response

- Training data
availability

- Scalability for large
networks

Applications of ML
in 5G security

- Intrusion detection
- Malware mitigation
- Predictive security

modeling
- Anomaly detection
- Predicting DDoS attacks

- Classification
- Regression
- Time-series forecasting
- Deep learning (e.g.,

LSTM)

- Early threat detection
- Improved network

resilience

- Model overfitting
- False

positives/negatives

Anomaly detection
through ML

- Identification of unusual
patterns

- Detection of security
threats

- Reduced detection time

- Clustering (e.g.,
k-means)

- Classification (e.g., SVM,
decision trees)

- Deep learning (e.g.,
autoencoders)

- Precise anomaly
detection

- Reduced false alarms

- Complex model tuning
- Scalability for

high-speed networks

Security predictions
using ML

- Predicting security
incidents

- Anticipating DDoS attacks
- Proactive defense measures

- Classification (e.g.,
logistic regression,
random forest)

- Time-series forecasting
(e.g., LSTM)

- Early threat
anticipation

- Proactive security
measures

- Model drift over time
- Data labeling

challenges

Further, the supervised and unsupervised learning classification for 5G researchers is
summarized in Table 13.

Table 13. Supervised and unsupervised learning classification for 5G researchers.

Learning
Problem ML Algorithm Study Example

Supervised
learning

Linear Regression Moore, J.H.; Lamb, J.M.; Brown, N.J.; Vaughan, D.E. (2002) [116]

Supervised Classifier Peng, C.; Fan, W.; Huang, W.; Zhu, D. (2023) [117]

SVM Anand, A., Rani, S., Anand, D., Aljahdali, H. M., Kerr, D. (2021) [114]

Neural network Kimura, B. Y. L., Almeida, J. (2021) [145]

Artificial neural networks (ANNs) Santos, G. L., Endo, P. T., Sadok, D., Kelner, J. (2020) [146]

Deep neural networks (DNNs) Ali, S., Haider, A., Rahman, M., Sohail, M., Zikria, Y. B. (2021) [101]

Unsupervised
learning

k-means clustering Kodinariya, T. M., Makwana, P. R. (2013) [91]

Hierarchical clustering Lin, C.C.; Tsai, C.T.; Liu, Y.L.; Chang, T.T.; Chang, Y.S. (2023) [102]

Unsupervised soft clustering Gupta, A.; Ghanshala, K.; Joshi, R.C. (2021) [147]

Self-organizing map (SOM) Li, J., Zhao, Z., Li, R. (2018) [148]

Autoencoders (AEs) Lam, J.; Abbas, R. (2020) [119]

Adversarial autoencoders Sevgican, S., Turan, M., Gökarslan, K., Yilmaz, H. B., Tugcu, T. (2020) [149]

Generative deep neural networks (GDNNs) Ferreira, D., Reis, A. B., Senna, C., Sargento, S. (2021) [130]

Affinity Propagation Clustering Radivilova, T., Kirichenko, L., Lemeshko, O., Ageyev, D., Mulesa, O.,
Ilkov, A. (2021, September) [131] Boukerche, A., Zhang, Q. (2019) [108]

Table 13 provides an in-depth taxonomy of both supervised and unsupervised learning
algorithms that have been employed in the realm of 5G research, according to prominent
scholarly publications. The table is particularly useful for academic researchers focusing
on machine learning applications in 5G networks. In the domain of supervised learning,
the table catalogs a variety of algorithms from Linear Regression to DNNs. Each entry is
accompanied by authoritative citations, thus serving as both a summary and a guide for
further reading. For example, Gupta et al. [147] have contributed to Linear Regression,
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while Ali et al. [101] have worked on the intricacies of deep neural networks within a 5G
context. The unsupervised learning section of the table is similarly exhaustive, covering
methodologies ranging from k-means clustering to Affinity Propagation Clustering.

7. Overview of Deep Learning in 5G Security

Deep learning is a subset of machine learning that leverages multiple layers of non-
linear processing units for feature extraction and transformation, learning multiple levels of
representation from raw input data [9,124]. These models are generally based on artificial
neural networks, particularly CNNs and RNNs, and are designed to automatically and
adaptively learn the spatial hierarchies of features. Within the realm of 5G security, deep
learning brings about transformative potential with its capacity to analyze large datasets
and recognize complex behavior and hidden patterns. DL algorithms are highly capable of
detecting irregularities that could signal potential threats [101,145,146]. These abilities ex-
tend beyond mere detection, with algorithms capable of implementing defense mechanisms
within milliseconds, a speed that is becoming increasingly critical in the hyper-connected
5G landscape. In addition to its superior processing abilities, DL also boasts self-learning
capabilities, which are particularly beneficial for 5G networks that continuously generate a
huge amount of data [132]. With traditional machine learning, the feature extraction pro-
cess requires manual intervention, whereas deep learning models can learn these features
directly from data, saving significant time and resources while also enhancing the accuracy
of threat detection and response [124,133]. However, despite the enormous potential that
DL holds for 5G security, it is not without its challenges. These include computational
intensity, difficulties in understanding how DL makes its decisions (i.e., black box prob-
lem), and the risk of adversarial attacks. In addition, Abidi, M. H., Alkhalefah, H [150]
investigated the role of ML and DL algorithms in optimizing network data analytics for
5G cellular networks. Given the rise in connected devices and associated data, traditional
analytics methods are proving insufficient. The authors highlighted the challenges faced,
such as handling vast amounts of data and privacy concerns. They emphasized the efficacy
of ML and DL in recognizing data patterns, which aids in real-time decisions, proactive
management, and enhanced 5G network reliability. Mu, J. [106] examined mobile crowd
sensing (MCS) systems that rely on public participation through their mobile devices for
data collection. The central challenge is incentivizing participation. The authors introduced
“INCEPTION”, a unique MCS framework that integrates incentives with data aggregation
and perturbation, ensuring both data accuracy and privacy. This integrated approach was
validated through both theoretical and simulation-based methods.

The evolution towards the 5G networks has significantly altered the telecommunica-
tion landscape, introducing unprecedented connectivity speed, massive network capacity,
and reduced latency. However, the substantial benefits of 5G technology come with intri-
cate security concerns primarily due to the massive scale, heterogeneity, and complexity
of these networks. Therefore, it becomes imperative to leverage advanced, intelligent
analytical tools that can adapt and respond to the ever-evolving security landscape. One
such technology is DL, which has shown immense promise in cyber security applications.
Deep learning, a subfield of machine learning, models high-level abstractions in data
through the use of multiple layers of artificial neural networks [134]. What sets it apart
from traditional machine learning is its ability to automatically learn representations from
input data, eliminating the need for manual feature extraction. This self-learning capability
is highly beneficial in a 5G context where networks continuously generate vast amounts
of data. The capability to extract meaningful features from this sea of data allows DL
algorithms to identify and react to complex patterns indicative of cyber threats [135]. More
specifically, deep learning’s superiority lies in its ability to teach computers to process data
in a manner analogous to the human brain’s processing. This characteristic, known as end-
to-end learning, allows deep learning models to automatically learn hierarchical feature
representations from raw input data, such as network traffic in a 5G environment, leading
to more accurate predictions and threat detections. Moreover, given the dynamism and
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volatility of 5G networks, the adaptive and robust nature of deep learning becomes even
more critical. Through deep neural networks, DL models can adapt to new information,
‘learn’ from it, and ‘improve’ their threat detection and response strategies. Consequently,
they provide a proactive approach to security, which is a crucial requirement for securing
complex, rapidly evolving 5G networks [136].

7.1. Importance and Role of Deep Learning

In the context of 5G security, the importance and role of DL cannot be overstated.
One of the significant challenges faced by 5G networks is the vast amount of data being
transmitted and received, which calls for advanced, efficient, and intelligent security solu-
tions. With its ability to model high-level abstractions in data through the use of multiple
processing layers, deep learning has emerged as a powerful tool for handling the intrica-
cies of 5G security [137]. Primarily, deep learning excels in identifying, classifying, and
mitigating potential security threats in 5G networks. Fifth-generation networks consist
of numerous interconnected nodes, each producing and receiving a significant amount
of multi-dimensional data. This data complexity and volume can be overwhelming for
traditional security methods, resulting in missed or false alarms [138]. Deep learning,
however, can analyze these data with a high degree of accuracy, using its complex, multi-
layered neural networks to identify subtle patterns and anomalies that may be indicative
of an impending attack or an ongoing security breach [111]. Moreover, deep learning has
a self-learning or adaptive learning capability that sets it apart from traditional machine
learning methods. This capability allows deep learning models to ‘learn’ from new infor-
mation, continuously updating their knowledge and improving their performance over
time. In the context of 5G security, this means that the network’s defense mechanism
can continually enhance itself, becoming more effective and efficient at identifying and
responding to emerging threats [139]. This proactive and adaptive approach to security is
particularly vital given the rapid evolution of cyber threats and the increasing complexity
of 5G networks.

7.2. Relevant Deep Learning Techniques for 5G Security

As the demands of 5G security continue to grow, researchers have explored a variety
of deep learning techniques to create robust and efficient security solutions. Among these,
CNNs, RNNs, and Deep Belief Networks (DBNs) have emerged as particularly effective
methods for enhancing 5G security [140].

CNNs are a type of deep learning model that are particularly well-suited for processing
grid-like data, such as images and time-series data. In the context of 5G security, CNNs
can be used to analyze the network traffic, identifying complex patterns and anomalies
that may be indicative of security threats [141]. For instance, a CNN could analyze the
traffic flow between different network nodes, identifying suspicious or irregular activities
that might signal a potential cyberattack. Moreover, the convolutional layers in CNNs are
efficient in detecting local patterns within the data, which can be instrumental in identifying
localized attacks in the network [142].

RNNs are another deep learning model that are uniquely equipped to handle sequen-
tial data by retaining information from previous inputs in their hidden layers. This makes
them particularly relevant for 5G security, as they can be used to analyze sequential or
time-series data such as network logs or packet flows, identifying patterns and anomalies
over time that may suggest an ongoing or imminent security breach [143]. Furthermore,
the recurrent nature of RNNs allows them to remember past events, which is essential for
detecting slow, progressive attacks that unfold over a period of time.

Table 14 provides a detailed overview of the role of deep learning techniques in the
realm of 5G security, offering insights into the applications, strengths, and weaknesses of
various approaches. From convolutional networks adept at image analysis to recurrent
networks designed for sequence-based tasks, each method comes with its own set of
advantages and limitations. While some excel in handling specific types of data or offer
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advantages in scalability, they may require significant computational resources or face
challenges such as overfitting and model complexity.

Table 14. Deep learning security solutions in 5G [132–141].

Deep Learning Techniques in
5G Security Applications Strengths Weaknesses

Convolutional neural networks
(CNNs)

- Image-based authentication
- Traffic pattern recognition

- Efficient in spatial data
analysis

- Robust to image
transformations

- Requires large labeled
datasets

- Computationally intensive

Recurrent neural networks
(RNNs)

- Sequence-based anomaly
detection

- Time-series analysis in
network traffic

- Effective for sequential data
- Capable of modeling

long-term dependencies

- Difficult to train
- Susceptible to vanishing

and exploding gradient
problems

Generative adversarial networks
(GANs)

- Data augmentation for
intrusion detection

- Anomaly detection

- Ability to generate new
data samples

- Effective for
semi-supervised learning

- Requires balanced dataset
for effective training

- Complexity in model
convergence

Autoencoders
- Anomaly detection
- Feature reduction for other

ML models

- Effective for dimensionality
reduction

- Capable of learning data
representations

- Risk of overfitting
- Sensitivity to

hyperparameters

Transformer networks

- Natural Language
Processing for cybersecurity
(e.g., phishing detection)

- Complex event processing

- Capable of capturing
long-range dependencies

- Scalable and parallelizable
architecture

- Requires substantial
computing resources

- May need large datasets for
effective training

7.3. Deep Learning Applications in 5G Security

The practical applications of deep learning in the context of 5G security are vast and
diverse. As 5G networks increase in complexity and scale, the role of advanced techniques
such as deep learning in ensuring network security becomes increasingly pivotal. Various
deep learning models have been successfully applied to areas such as anomaly detection,
threat prediction, and even intrusion detection systems in 5G networks [106].

Anomaly detection: One of the main applications of deep learning in 5G security is
anomaly detection. Anomaly detection in network traffic refers to identifying patterns
that do not conform to expected behavior, which could be indicative of a potential security
threat or attack. Deep learning algorithms, especially unsupervised learning models like
autoencoders, have proven effective in detecting anomalies in high-dimensional data. They
can model the ‘normal’ behavior of the network and can effectively identify deviations or
anomalies from this established norm.

Threat prediction: Deep learning can also be used for threat prediction in 5G networks.
By analyzing historical network data, deep learning algorithms can identify patterns and
trends that might suggest a future attack. RNNs, in particular, are very effective at this task
due to their ability to process sequential data and remember past inputs, which is critical
for understanding time-dependent patterns and trends in network data [95].

IDSs: Deep learning-based IDSs are another important application in 5G security.
IDSs can monitor network traffic for suspicious activity or violations of policy. A deep
learning-based IDS can learn and evolve with the ever-changing threat landscape, thereby
improving its detection capabilities over time. Furthermore, deep learning algorithms can
classify different types of attacks, thus enabling the system to respond appropriately to the
specific threat at hand [140].

7.3.1. Improving Intrusion Detection Systems

IDSs are a fundamental component of network security, serving as a first line of defense
against potential security breaches. They function by identifying unusual or suspicious
activity in network traffic that could indicate an attempted intrusion [144]. However,
traditional IDSs often rely on predefined rules and signatures to detect intrusions, which
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may not be effective against novel or sophisticated attacks. This is where deep learning
can make a significant contribution to improving the efficacy of IDSs in 5G networks. By
applying deep learning models, IDSs can be trained to identify both known and unknown
threats in real time. For instance, deep learning techniques such as CNNs have been used
to develop IDSs that can learn to recognize intrusion attempts based on patterns in network
traffic [140]. Similarly, RNNs, which can process sequential data, can identify temporal
patterns in network traffic that may indicate an ongoing or imminent attack.

Another way deep learning can enhance IDSs is by reducing the number of false
positives, which are the incorrect identification of normal activities as intrusions. High rates
of false positives can overwhelm network administrators and potentially result in genuine
threats being overlooked. Deep learning algorithms can learn the normal behavioral
patterns of a network over time and become more accurate in distinguishing between
actual intrusions and benign network activity, thereby reducing false positives [151].

7.3.2. Mitigating Malware Risks Using Deep Learning

As the complexity and sophistication of cyber threats grow, particularly in the context
of 5G technology, the risks posed by malware—malicious software designed to cause
harm to a system or network—become increasingly significant. Malware can take many
forms, including viruses, worms, trojans, ransomware, and spyware, and the detection
and prevention of such threats is a key aspect of maintaining 5G network security [128].
Deep learning techniques have shown remarkable potential in mitigating malware risks
in 5G networks. These techniques can go beyond traditional, signature-based malware
detection methods, which are often ineffective against zero-day and polymorphic malware,
by learning to recognize malicious patterns and behaviors in software applications or
network traffic [129] For instance, deep learning models like RNNs and LSTM can analyze
sequences of system calls made by applications, enabling the detection of previously
unseen or unknown malware based on their behavioral patterns. Furthermore, CNNs,
known for their prowess in image recognition tasks, have been applied successfully to
malware detection, treating binary files as images and identifying harmful patterns therein.
Additionally, autoencoders, a specific type of artificial neural network, have been utilized in
unsupervised learning scenarios for malware detection. They can learn the normal behavior
of a system and identify any deviations which could signify a malware infection [95].

7.3.3. Deep Learning Models for Security Prediction

One of the foremost challenges in maintaining the security of 5G networks lies in
the ability to anticipate and respond to potential threats before they can cause significant
harm. This requires the development of predictive models that can analyze past and
present network data to identify potential future security issues. Deep learning, with its
inherent capabilities in handling vast volumes of complex data, provides an efficient means
to build such predictive models. Deep learning algorithms like LSTM and GRU, both
variations of RNNs, have demonstrated significant promise in this context [127]. By virtue
of their design, these algorithms can process temporal sequences of data characteristics,
which is especially valuable when dealing with network data that evolve over time. By
training these deep learning models on historical network data, including instances of
past security breaches, it is possible to create a predictive model that can foresee potential
security risks. These predictive models can detect early signs of unusual network behavior,
helping security teams to address threats before they escalate into major security incidents
proactively. For instance, LSTM and GRU can be trained to detect patterns indicative of
DDoS attacks, one of the most common and damaging forms of cyberattack [151]. By
identifying these patterns early, it is possible to take preventive measures and minimize the
potential harm to the 5G network.
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8. Technical and Ethical Considerations for Effective Implementation of 5G Security
8.1. Technical Considerations

The primary technical considerations for effective implementation of 5G security
involve architectural modifications, cryptographic techniques, and adaptive security proto-
cols. The 5G network architecture is fundamentally different from previous generations,
enabling more devices and facilitating data-driven applications. However, this complexity
increases the vulnerable surface area. Robust cryptographic techniques are thus essential to
ensure data integrity, confidentiality, and secure user authentication. Further, the dynamism
of 5G networks necessitates adaptive security protocols that can adjust to varying levels of
threats and vulnerabilities. Machine learning and deep learning technologies, as delineated
in previous sections, offer promising avenues to bolster adaptive security mechanisms
but bring their own set of challenges like training data quality, model interpretability, and
computational cost.

8.2. Ethical Considerations

Ethically, the implementation of 5G security faces multifaceted challenges. Data pri-
vacy stands as a paramount concern; ensuring that the advanced data collection capabilities
of 5G networks do not compromise user privacy is critical. Algorithmic decision making,
pivotal in machine learning-based security solutions, must be transparent and accountable
to avoid issues like false positives in intrusion detection or algorithmic bias. Additionally,
access to secure and robust 5G technology needs to be equitable to prevent economic and
social stratification. This ethical mandate extends to environmental considerations, where
the rapid obsolescence and replacement of hardware components should be managed
responsibly to minimize electronic waste and environmental impact.

8.3. Integrated Approach for Effective Implementation

For the effective implementation of 5G security, both technical and ethical considera-
tions need to be integrated cohesively into a holistic framework. Technological solutions
should be designed and deployed with ethical guidelines in mind, ensuring that advance-
ments in security do not come at the cost of privacy or equity. Likewise, ethical considera-
tions should be technically feasible and not hamper the performance or effectiveness of the
security solutions. Standardization bodies and governance organizations have a significant
role to play in ensuring that technical specifications include ethical mandates. Moreover,
a multidisciplinary approach involving technologists, ethicists, policymakers, and legal
experts is essential for comprehensively addressing the intricate landscape of 5G security.

9. Conclusions and Future Work

The advent of the 5G network paved the way for innovative applications across vari-
ous sectors, promising unparalleled data speeds, lower latency, and increased connectivity.
However, the complex architecture and broader attack surface of 5G networks introduce
profound security threats that necessitate meticulous analysis and robust countermeasures.
This research embarks on a comprehensive journey through the nuanced domain of 5G
mobile network security, accentuating the transformative role of machine learning (ML)
and deep learning (DL). This study offers a multifaceted analysis, providing an exhaustive
exposition of the current security architectures, inherent challenges, and integral function-
alities specific to 5G networks. Secondly, it delves into a meticulous assessment of distinct
vulnerabilities and robust features, particularly emphasizing network slicing and mMTC.
In doing so, it identifies and elaborates on specific security threats that are either novel or
amplified within the 5G context, enriching the existing threat framework. This research
transitions into a problem-solving phase by investigating ML and DL’s efficacy and po-
tential in bolstering 5G security, highlighting their practical applications in critical areas,
including anomaly detection, predictive security, and malware risk mitigation. Finally, this
work is a seminal reference that guides future innovations and strategic advancements in
5G security.
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Guidance for Future Research

Our study points to crucial areas for future research, emphasizing the need to investi-
gate further machine learning and deep learning algorithms specific to 5G’s dynamic set-
tings. Future work should aim to develop comprehensive security protocols that integrate
robust architecture with advanced computation. Additionally, exploring user behavior after
security breaches could provide valuable insights for creating more user-focused, resilient
security solutions in future 5G networks. More exploration into distributed ML, federated
learning, and privacy-preserving continual learning is expected to lead the domain.
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An overview. In Proceedings of the 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and
Herzegovina, 24–26 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

49. Park, Y.; Park, T. A survey of security threats on 4G networks. In Proceedings of the 2007 IEEE Globecom workshops, Washington,
DC, USA, 26–30 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–6.

50. Han, C.K.; Choi, H.K. Security analysis of handover key management in 4G LTE/SAE networks. IEEE Trans. Mob. Comput. 2012,
13, 457–468. [CrossRef]

51. Ahmad, I.; Kumar, T.; Liyanage, M.; Okwuibe, J.; Ylianttila, M.; Gurtov, A. 5G security: Analysis of threats and solutions. In
Proceedings of the 2017 IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki, Finland, 18–20
September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 193–199.

52. Mazurczyk, W.; Bisson, P.; Jover, R.P.; Nakao, K.; Cabaj, K. Challenges and novel solutions for 5G network security, privacy and
trust. IEEE Wirel. Commun. 2020, 27, 6–7. [CrossRef]

53. Qiu, Q.; Liu, S.; Xu, S.; Yu, S. Study on Security and Privacy in 5G-Enabled Applications. Wireless Commun. Mob. Comput. 2020,
2020, 1–15.

54. Xiang, W.; Zheng, K.; Shen, X.S. (Eds.) 5G Mobile Communications; Springer: Berlin/Heidelberg, Germany, 2016.
55. Farroha, B.S.; Farroha, D.L.; Farroha, J.S. Analyzing the architecture advantages and vulnerabilities in heterogeneous 5G wireless

networks. In Proceedings of the 2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 8–11 April 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–8.

56. Mathew, A. Network slicing in 5G and the security concerns. In Proceedings of the 2020 Fourth International Conference on
Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 75–78.

57. Wijethilaka, S.; Liyanage, M. Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun. Surv.
Tutor. 2021, 23, 957–994. [CrossRef]

58. Salahdine, F.; Liu, Q.; Han, T. Towards secure and intelligent network slicing for 5g networks. IEEE Open J. Comput. Soc. 2022, 3,
23–38. [CrossRef]

59. Wu, T.Y.; Jie, T.F. 5G Network Slicing Security. In Advances in Computing, Informatics, Networking and Cybersecurity: A Book Honoring
Professor Mohammad S. Obaidat’s Significant Scientific Contributions; Springer International Publishing: Cham, Switzerland, 2022;
pp. 755–780.

60. Basin, D.; Dreier, J.; Hirschi, L.; Radomirovic, S.; Sasse, R.; Stettler, V. A formal analysis of 5G authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 15–19 October 2018;
pp. 1383–1396.

61. Behrad, S.; Bertin, E.; Crespi, N. A survey on authentication access control for mobile networks: From 4G to, 5.G. Ann. Telecommun.
2019, 74, 593–603. [CrossRef]

62. Sharma, A.; Jain, A.; Sharma, I. Exposing the security weaknesses of fifth generation handover communication. In Proceedings of
the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India,
6–8 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

63. El Idrissi, Y.E.H.; Zahid, N.; Jedra, M. An efficient authentication protocol for 5G heterogeneous networks. In Proceedings of the
Ubiquitous Networking: Third International Symposium, UNet 2017, Casablanca, Morocco, 9–12 May 2017; Revised Selected Papers 3;
Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 496–508.

64. Liyanage, M.; Salo, J.; Braeken, A.; Kumar, T.; Seneviratne, S.; Ylianttila, M. 5G privacy: Scenarios and solutions. In Proceedings
of the 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, 9–11 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 197–203.

65. Hu, J.; Li, Z.; Li, P.; Liu, J. A Lightweight and Secure Authentication Protocol for 5G mMTC. In Proceedings of the 2022 IEEE 9th
International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge
Computing and Scalable Cloud (EdgeCom), Xi’an, China, 25–27 June 2022; pp. 195–200.

66. Chan, W.M.; Kwon, H.M.; Chou, R.A.; Love, D.J.; Fahmy, S.; Hussain, S.R.; Kim, S.W.; Vander Valk, C.; Brinton, C.G.; Marojevic, V.;
et al. Adaptive Frequency Hopping for 5G New Radio mMTC Security. In Proceedings of the 2023 IEEE International Conference
on Industrial Technology (ICIT), Orlando FL, USA, 4–6 April 2023; pp. 1–5.

67. Salva-Garcia, P.; Chirevella-Perez, E.; Bernabe, J.B.; Alcaraz-Calero, J.M.; Wang, Q. Towards automatic deployment of virtual
firewalls to support secure mMTC in 5G networks. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April 2019–2 May 2019; pp. 385–390.

68. Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A survey of edge computing-based designs for IoT security. Digit. Commun. Netw. 2020, 6,
195–202. [CrossRef]

69. Zhang, J.; Chen, B.; Zhao, Y.; Cheng, X.; Hu, F. Data security and privacy-preserving in edge computing paradigm: Survey and
open issues. IEEE Access 2018, 6, 18209–18237. [CrossRef]

https://doi.org/10.14445/23488549/IJECE-V10I7P106
https://doi.org/10.1109/TMC.2012.242
https://doi.org/10.1109/MWC.2020.9170261
https://doi.org/10.1109/COMST.2021.3067807
https://doi.org/10.1109/OJCS.2022.3161933
https://doi.org/10.1007/s12243-019-00721-x
https://doi.org/10.1016/j.dcan.2019.08.006
https://doi.org/10.1109/ACCESS.2018.2820162


Electronics 2023, 12, 4604 41 of 44

70. Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. Edge computing security: State of the art and challenges. Proc. IEEE 2019, 107,
1608–1631. [CrossRef]

71. Conti, M.; Dragoni, N.; Lesyk, V. A survey of man in the middle attacks. IEEE Commun. Surv. Tutor. 2016, 18, 2027–2051.
[CrossRef]

72. Kaplanis, C. Detection and prevention of man in the middle attacks in Wi-Fi technolog, y. Doctoral Dissertation, Aalborg
University, Aalborg, Denmark, 2015.

73. Mitev, M.; Chorti, A.; Belmega, E.V.; Reed, M. Man-in-the-middle and denial of service attacks in wireless secret key generation.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

74. Al Hayajneh, A.; Alam Bhuiyan, Z.; McAndrew, I. Improving Internet of Things (IoT) Security with Software-Defined Networking
(SDN). Computers 2020, 9, 8. [CrossRef]

75. Hasneen, J.; Sadique, K.M. A survey on 5G architecture and security scopes in SDN and NFV. In Applied Information Processing
Systems. Advances in Intelligent Systems and Computing; Springer Singapore: Singapore, 2022; pp. 447–460.

76. Jasim, K.F.; Ghafoor, K.Z.; Maghdid, H.S. Analysis of Encryption Algorithms Proposed for Data Security in 4G and 5G Generations.
In ITM Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 42, p. 01004.

77. Valero, J.M.J.; Sánchez, P.M.S.; Lekidis, A.; Martins, P.; Diogo, P.; Pérez, M.G.; Pérez, G.M. Trusted Execution Environment-enabled
platform for 5G security and privacy enhancement. In Security and Privacy Preserving for IoT and 5G Networks: Techniques, Challenges,
and New Directions; Springer: Cham, Switzerland, 2022; pp. 203–223.

78. Mavoungou, S.; Kaddoum, G.; Taha, M.; Matar, G. Survey on threats and attacks on mobile networks. IEEE Access 2016, 4,
4543–4572. [CrossRef]

79. Bendale, S.P.; Prasad, J.R. Security threats and challenges in future mobile wireless networks. In Proceedings of the 2018 IEEE
global conference on wireless computing and networking (GCWCN), Lonavala, India, 23–24 November 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 146–150.

80. Available online: https://www.digi.com/blog/post/5g-network-architecture (accessed on 10 September 2023).
81. Arfaoui, G.; Bisson, P.; Blom, R.; Borgaonkar, R.; Englund, H.; Félix, E.; Zahariev, A. A security architecture for 5G networks. IEEE

Access 2018, 6, 22466–22479. [CrossRef]
82. Wehbe, N.; Alameddine, H.A.; Pourzandi, M.; Bou-Harb, E.; Assi, C. A Security Assessment of HTTP/2 Usage in 5G Service-Based

Architecture. IEEE Commun. Mag. 2022, 61, 48–54. [CrossRef]
83. Kim, H. 5G core network security issues attack classification from network protocol perspective. J. Internet Serv. Inf. Secur. 2020,

10, 1–15.
84. Shaik, A.; Borgaonkar, R.; Park, S.; Seifert, J.P. New vulnerabilities in 4G and 5G cellular access network protocols: Exposing

device capabilities. In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, Miami, FL,
USA, 15–17 May 2019; pp. 221–231.

85. Fonyi, S. Overview of 5G security and vulnerabilities. Cyber Def. Rev. 2020, 5, 117–134.
86. Soldani, D. 5G and the Future of Security in ICT. In Proceedings of the 2019 29th International Telecommunication Networks and

Applications Conference (ITNAC), Auckland, New Zealand, 27–29 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.
87. Moudoud, H.; Khoukhi, L.; Cherkaoui, S. Prediction and detection of FDIA and DDoS attacks in 5G enabled IoT. IEEE Network

2020, 35, 194–201. [CrossRef]
88. Lee, J.; Kim, H.; Park, C.; Kim, Y.; Park, J.G. AI-based Network Security Enhancement for 5G Industrial Internet of Things

Environments. In Proceedings of the 2022 13th International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Republic of Korea, 19 October 2022; pp. 971–975.

89. Javed, M.A.; Niazi, S.k. 5G security artifacts (DoS/DDoS and authentication). In Proceedings of the 2019 International Conference
on Communication Technologies (ComTech), Rawalpindi, Pakistan, 20–21 March 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 127–133.

90. Dehnel-Wild, M.; Cremers, C. Security Vulnerability in 5G-AKA Draft; Tech. Rep.; Department of Computer Science, University of
Oxford: Oxford, UK, 2018; pp. 14–37.

91. Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95.
92. Giles, K.; Hartmann, K. Emergence of 5G Networks and Implications for Cyber Conflict. In Proceedings of the 2022 14th

International Conference on Cyber Conflict: Keep Moving!(CyCon), Tallinn, Estonia, 31 May–3 June 2022; IEEE: Piscataway, NJ,
USA, 2022; Volume 700, pp. 405–419.

93. Huang, H.; Chu, J.; Cheng, X. Trend analysis and countermeasure research of DDoS attack under 5G network. In Proceedings of
the 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), Zhuhai, China, 8–10 January 2021;
IEEE: Piscataway, NJ, USA; 2021; pp. 153–160.

94. Aladwan, M.N.; Awaysheh, F.M.; Alawadi, S.; Alazab, M.; Pena, T.F.; Cabaleiro, J.C. TrustE-VC: Trustworthy Evaluation
Framework for Industrial Connected Vehicles in the Cloud. IEEE Trans. Ind. Inform. 2020, 16, 6203–6213. [CrossRef]

95. Awaysheh, F.M.; Aladwan, M.N.; Alazab, M.; Alawadi, S.; Cabaleiro, J.C.; Pena, T.F. Security by Design for Big Data Frameworks
Over Cloud Computing. IEEE Trans. Eng. Manag. 2021, 69, 3676–3693. [CrossRef]

https://doi.org/10.1109/JPROC.2019.2918437
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.3390/computers9010008
https://doi.org/10.1109/ACCESS.2016.2601009
https://www.digi.com/blog/post/5g-network-architecture
https://doi.org/10.1109/ACCESS.2018.2827419
https://doi.org/10.1109/MCOM.001.2200183
https://doi.org/10.1109/MNET.011.2000449
https://doi.org/10.1109/TII.2020.2966288
https://doi.org/10.1109/TEM.2020.3045661


Electronics 2023, 12, 4604 42 of 44

96. Shah, Y.; Chelvachandran, N.; Kendzierskyj, S.; Jahankhani, H.; Janoso, R. 5G Cybersecurity Vulnerabilities with IoT and
Smart Societies. In Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity; Springer: Cham, Switzerland, 2020;
pp. 159–176.

97. Cheng, X.; Luo, Q.; Pan, Y.; Li, Z.; Zhang, J.; Chen, B. Predicting the APT for cyber situation comprehension in 5G-enabled IoT
scenarios based on differentially private federated learning. Secur. Commun. Netw. 2021, 2021, 1–14. [CrossRef]

98. Fang, D.; Qian, Y. 5G wireless security and privacy: Architecture and flexible mechanisms. IEEE Veh. Technol. Mag. 2020, 15,
58–64. [CrossRef]

99. Hakak, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Ramu, S.P.; Parimala, M.; De Alwis, C.; Liyanage, M. Autonomous Vehicles in 5G
and beyond: A Survey. Veh. Commun. 2023, 39, 100551. [CrossRef]

100. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey.
J. Netw. Comput. Appl. 2020, 166, 102693. [CrossRef]

101. Ali, S.; Haider, A.; Rahman, M.; Sohail, M.; Zikria, Y.B. Deep learning (DL) based joint resource allocation and RRH association in
5G-multi-tier networks. IEEE Access 2021, 9, 118357–118366. [CrossRef]

102. Lin, C.C.; Tsai, C.T.; Liu, Y.L.; Chang, T.T.; Chang, Y.S. Security and Privacy in 5G-IIoT Smart Factories: Novel Approaches, Trends,
and Challenges. Mob. Netw. Appl. 2023, 1–16. [CrossRef]

103. Xu, Y.; Wang, M.; Zhong, H.; Cui, J.; Liu, L.; Franqueira, V.N. Verifiable public key encryption scheme with equality test in 5G
networks. IEEE Access 2017, 5, 12702–12713. [CrossRef]

104. Feng, H.; Li, H.; Pan, X.; Zhao, Z.; Cactilab, T. A Formal Analysis of the FIDO UAF Protocol. In Proceedings of the Network and
Distributed Systems Security (NDSS) Symposium 2021, Virtua, 21–25 February 2021.

105. Kuadey, N.A.E.; Maale, G.T.; Kwantwi, T.; Sun, G.; Liu, G. DeepSecure: Detection of distributed denial of service attacks on 5G
network slicing—Deep learning approach. IEEE Wirel. Commun. Lett. 2021, 11, 488–492. [CrossRef]

106. Mu, J.; Jing, X.; Zhang, Y.; Gong, Y.; Zhang, R.; Zhang, F. Machine learning-based 5g ran slicing for broadcasting services. IEEE
Trans. Broadcast. 2021, 68, 295–304. [CrossRef]

107. Bedari, A.; Wang, S.; Yang, W. A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks.
Sensors 2022, 22, 7609. [CrossRef]

108. Boukerche, A.; Zhang, Q. Countermeasures against worm spreading: A new challenge for vehicular networks. ACM Comput.
Surv. (CSUR) 2019, 52, 1–25. [CrossRef]

109. Fourati, H.; Maaloul, R.; Chaari, L. A survey of 5G network systems: Challenges and machine learning approaches. Int. J. Mach.
Learn. Cybern. 2021, 12, 385–431. [CrossRef]

110. Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine learning for 5G/B5G mobile and wireless communications: Potential,
limitations, and future directions. IEEE Access 2019, 7, 137184–137206. [CrossRef]

111. Asghar, M.Z.; Abbas, M.; Zeeshan, K.; Kotilainen, P.; Hämäläinen, T. Assessment of deep learning methodology for self-organizing
5g networks. Appl. Sci. 2019, 9, 2975. [CrossRef]

112. Khandelwal, A. Artificial Intelligence and Machine Learning Solutions to Network Security in 5G. In Conference Proceedings of
Management & IT; IIMT: Meerut, India, 2022; p. 102.

113. Kaur, J.; Khan, M.A.; Iftikhar, M.; Imran, M.; Haq, Q.E.U. Machine learning techniques for 5G and beyond. IEEE Access 2021, 9,
23472–23488. [CrossRef]

114. Anand, A.; Rani, S.; Anand, D.; Aljahdali, H.M.; Kerr, D. An efficient CNN-based deep learning model to detect malware attacks
(CNN-DMA) in 5G-IoT healthcare applications. Sensors 2021, 21, 6346. [CrossRef]

115. Nassef, O.; Sun, W.; Purmehdi, H.; Tatipamula, M.; Mahmoodi, T. A survey: Distributed Machine Learning for 5G and beyond.
Comput. Netw. 2022, 207, 108820. [CrossRef]

116. Moore, J.H.; Lamb, J.M.; Brown, N.J.; Vaughan, D.E. A Comparison of Combinatorial Partitioning and Linear Regression for the
Detection of Epistatic Effects of the ACE I/D and PAI-1 4G/5G Polymorphisms on Plasma PAI-1 Levels. Clin. Genet. 2002, 62,
74–79. [CrossRef] [PubMed]

117. Peng, C.; Fan, W.; Huang, W.; Zhu, D. A Novel Approach based on Improved Naive Bayes for 5G Air Interface DDoS Detection.
In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, Scotland, UK, 26–29
March 2023; pp. 1–6. [CrossRef]

118. Iavich, M.; Iashvili, G.; Avkurova, Z.; Dorozhynskyi, S.; Fesenko, A. Machine Learning Algorithms for 5G Networks Security and
the Corresponding Testing Environment. Differences 2022, 1, 2.

119. Fang, H.; Wang, X.; Tomasin, S. Machine learning for intelligent authentication in 5G and beyond wireless networks. IEEE Wirel.
Commun. 2019, 26, 55–61. [CrossRef]

120. Lam, J.; Abbas, R. Machine learning based anomaly detection for 5g networks. arXiv 2020, arXiv:2003.03474.
121. Dangi, R.; Jadhav, A.; Choudhary, G.; Dragoni, N.; Mishra, M.K.; Lalwani, P. Ml-based 5g network slicing security: A comprehen-

sive survey. Future Internet 2022, 14, 116. [CrossRef]
122. Sharma, P.; Jain, S.; Gupta, S.; Chamola, V. Role of machine learning and deep learning in securing 5G-driven industrial IoT

applications. Ad. Hoc. Networks 2021, 123, 102685. [CrossRef]
123. Jothiraj, S.; Balu, S. A novel linear SVM-based compressive collaborative spectrum sensing (CCSS) scheme for IoT cognitive 5G

network. Soft Comput. 2019, 23, 8515–8523. [CrossRef]

https://doi.org/10.1155/2021/7310771
https://doi.org/10.1109/MVT.2020.2979261
https://doi.org/10.1016/j.vehcom.2022.100551
https://doi.org/10.1016/j.jnca.2020.102693
https://doi.org/10.1109/ACCESS.2021.3107430
https://doi.org/10.1007/s11036-023-02143-5
https://doi.org/10.1109/ACCESS.2017.2716971
https://doi.org/10.1109/LWC.2021.3133479
https://doi.org/10.1109/TBC.2021.3122353
https://doi.org/10.3390/s22197609
https://doi.org/10.1145/3284748
https://doi.org/10.1007/s13042-020-01178-4
https://doi.org/10.1109/ACCESS.2019.2942390
https://doi.org/10.3390/app9152975
https://doi.org/10.1109/ACCESS.2021.3051557
https://doi.org/10.3390/s21196346
https://doi.org/10.1016/j.comnet.2022.108820
https://doi.org/10.1034/j.1399-0004.2002.620110.x
https://www.ncbi.nlm.nih.gov/pubmed/12123491
https://doi.org/10.1109/WCNC55385.2023.10118854
https://doi.org/10.1109/MWC.001.1900054
https://doi.org/10.3390/fi14040116
https://doi.org/10.1016/j.adhoc.2021.102685
https://doi.org/10.1007/s00500-019-04097-x


Electronics 2023, 12, 4604 43 of 44

124. Kim, C.; Chang, S.Y.; Kim, J.; Lee, D.; Kim, J. Automated, Reliable Zero-day Malware Detection based on Autoencoding
Architecture. IEEE Trans. Netw. Serv. Manag. 2023, 20, 3900–3914. [CrossRef]

125. Pavani, A.; Kathirvel, A. Machine Learning and Deep Learning Algorithms for Network Data Analytics Function in 5G Cellular
Networks. In Proceedings of the 2023 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal,
26–28 April 2023; pp. 28–33.

126. He, Y.; Kong, M.; Du, C.; Yao, D.; Yu, M. Communication Security Analysis of Intelligent Transportation System Using 5G Internet
of Things from the Perspective of Big Data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2199–2207. [CrossRef]

127. Hussain, B.; Du, Q.; Sun, B.; Han, Z. Deep learning-based DDoS-attack detection for cyber–physical system over 5G network.
IEEE Trans. Ind. Inform. 2020, 17, 860–870. [CrossRef]

128. Aladwan, M.; Awaysheh, F.; Cabaleiro, J.; Pena, T.; Alabool, H.; Alazab, M. Common security criteria for vehicular clouds and
internet of vehicles evaluation and selection. In Proceedings of the 2019 18th IEEE International Conference on Trust, Security
And Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science And Engineering
(TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019.

129. Lu, Y.; Liu, L.; Panneerselvam, J.; Yuan, B.; Gu, J.; Antonopoulos, N. A GRU-based prediction framework for intelligent resource
management at cloud data centres in the age of 5G. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 486–498. [CrossRef]

130. Ferreira, D.; Reis, A.B.; Senna, C.; Sargento, S. A forecasting approach to improve control and management for 5G networks. IEEE
Trans. Netw. Serv. Manag. 2021, 18, 1817–1831. [CrossRef]

131. Radivilova, T.; Kirichenko, L.; Lemeshko, O.; Ageyev, D.; Mulesa, O.; Ilkov, A. Analysis of anomaly detection and identification
methods in 5G traffic. In Proceedings of the 2021 11th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), Piscataway, NJ, USA, 22–25 September 2021; IEEE:
Piscataway, NJ, USA, 2021; Volume 2, pp. 1108–1113.

132. Thantharate, A.; Paropkari, R.; Walunj, V.; Beard, C.; Kankariya, P. Secure5G: A deep learning framework towards a secure
network slicing in 5G and beyond. In Proceedings of the 2020 10th annual computing and communication workshop and
conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 0852–0857.

133. Lv, Z.; Singh, A.K.; Li, J. Deep learning for security problems in 5G heterogeneous networks. IEEE Network 2021, 35, 67–73.
[CrossRef]

134. Wang, T.; Wang, S.; Zhou, Z.H. Machine learning for 5G and beyond: From model-based to data-driven mobile wireless networks.
China Commun. 2019, 16, 165–175.

135. Ly, A.; Yao, Y.D. A review of deep learning in 5G research: Channel coding, massive MIMO, multiple access, resource allocation,
and network security. IEEE Open J. Commun. Soc. 2021, 2, 396–408. [CrossRef]

136. Huang, H.; Guo, S.; Gui, G.; Yang, Z.; Zhang, J.; Sari, H.; Adachi, F. Deep learning for physical-layer 5G wireless techniques:
Opportunities, challenges and solutions. IEEE Wirel. Commun. 2019, 27, 214–222. [CrossRef]

137. Restuccia, F.; Melodia, T. Deep learning at the physical layer: System challenges and applications to 5G and beyond. IEEE
Commun. Mag. 2020, 58, 58–64. [CrossRef]

138. Ftaimi, A.; Mazri, T. Security of deep learning models in 5G networks: Proposition of security assessment process. In Networking,
Intelligent Systems and Security: Proceedings of the NISS 2021, Kenitra, Morocco, 1–2 April 2021; Springer Singapore: Singapore, 2022;
pp. 393–407.

139. Doan, M.; Zhang, Z. Deep learning in 5G wireless networks-anomaly detections. In Proceedings of the 2020 29th Wireless and
Optical Communications Conference (WOCC), Newark, NJ, USA, 1–2 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

140. Yadav, N.; Pande, S.; Khamparia, A.; Gupta, D. Intrusion Detection System on IoT with 5G Network Using Deep Learning. Wirel.
Commun. Mob. Comput. 2022, 2022, 9304689. [CrossRef]

141. Kebande, V.R.; Alawadi, S.; Awaysheh, F.M.; Persson, J.A. Active machine learning adversarial attack detection in the user
feedback process. IEEE Access 2021, 9, 36908–36923. [CrossRef]

142. Rathore, S.; Park, J.H.; Chang, H. Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT.
IEEE Access 2021, 9, 90075–90083. [CrossRef]

143. Ahmed, R.; Chen, Y.; Hassan, B. Deep learning-driven opportunistic spectrum access (OSA) framework for cognitive 5G and
beyond 5G (B5G) networks. Ad. Hoc. Networks 2021, 123, 102632. [CrossRef]

144. Estrada, C.A.; Fuertes, W.; Cruz, H.O. An implementation of an artifact for security in 5G networks using deep learning methods.
Period. Eng. Nat. Sci. 2021, 9, 603–614. [CrossRef]

145. Kimura, B.Y.L.; Almeida, J. Deep learning in beyond 5G networks with image-based time-series representation. arXiv 2021,
arXiv:2104.08584.

146. Santos, G.L.; Endo, P.T.; Sadok, D.; Kelner, J. When 5G meets deep learning: A systematic review. Algorithms 2020, 13, 208.
[CrossRef]

147. Gupta, A.; Ghanshala, K.; Joshi, R.C. Machine learning classifier approach with gaussian process, ensemble boosted trees, SVM,
and linear regression for 5g signal coverage mapping. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 156–163. [CrossRef]

148. Li, J.; Zhao, Z.; Li, R. Machine Learning-Based IDS for Software-Defined 5G Network. Iet Netw. 2018, 7, 53–60. [CrossRef]
149. Sevgican, S.; Turan, M.; Gökarslan, K.; Yilmaz, H.B.; Tugcu, T. Intelligent network data analytics function in 5G cellular networks

using machine learning. J. Commun. Netw. 2020, 22, 269–280. [CrossRef]

https://doi.org/10.1109/TNSM.2023.3251282
https://doi.org/10.1109/TITS.2022.3141788
https://doi.org/10.1109/TII.2020.2974520
https://doi.org/10.1109/TCCN.2019.2954388
https://doi.org/10.1109/TNSM.2021.3056222
https://doi.org/10.1109/MNET.011.2000229
https://doi.org/10.1109/OJCOMS.2021.3058353
https://doi.org/10.1109/MWC.2019.1900027
https://doi.org/10.1109/MCOM.001.2000243
https://doi.org/10.1155/2022/9304689
https://doi.org/10.1109/ACCESS.2021.3063002
https://doi.org/10.1109/ACCESS.2021.3077069
https://doi.org/10.1016/j.adhoc.2021.102632
https://doi.org/10.21533/pen.v9i3.2197
https://doi.org/10.3390/a13090208
https://doi.org/10.9781/ijimai.2021.03.004
https://doi.org/10.1049/iet-net.2017.0212
https://doi.org/10.1109/JCN.2020.000019


Electronics 2023, 12, 4604 44 of 44

150. Abidi, M.H.; Alkhalefah, H.; Moiduddin, K.; Alazab, M.; Mohammed, M.K.; Ameen, W.; Gadekallu, T.R. Optimal 5G network
slicing using machine learning and deep learning concepts. Comput. Stand. Interfaces 2021, 76, 103518. [CrossRef]

151. Maimó, L.F.; Clemente, F.J.G.; Pérez, M.G.; Pérez, G.M. On the performance of a deep learning-based anomaly detection system
for 5G networks. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.csi.2021.103518

	Introduction 
	Study Objectives 
	Study Contributions 
	Methodology 

	Fifth-Generation Telecommunications Technology and Architecture 
	Network Architecture in 5G 
	Reliability and Integrity of 5G Services 
	The Sixth Generation: The Next Frontier in Wireless Communications 

	Mobile Network Security Evolution and the Evolution of Threat Landscape 
	Evolution from 1G to 4G 
	Fifth-Generation Network Security 
	Fifth-Generation Security Architecture 
	Authentication Framework 
	Network Slicing Security 
	Service-Based Architecture (SBA) Security 

	Implications for 5G Security 

	Security Threat Landscape in 5G Networks 
	Evolution of Threat Landscape 
	Threat Landscape in 5G Networks 
	Fifth-Generation Network Potential Vulnerabilities 
	Anticipated Threat Vectors 
	Potential Attackers and Their Motivations 
	Attack Methods and Techniques 
	Analysis of Inherent Vulnerabilities in Network Slicing 
	Risk Considerations in mMTC 
	New Challenges and Threats 
	Security Solutions for mMTC 
	Analysis of 5G Security Challenges in Conjunction with Edge Computing 
	Security Breaches in 5G Networks 

	Current and Prospective Solutions to Enhance 5G Security 
	Machine Learning and 5G Security 
	The role of Machine Learning in Enhancing 5G Security 
	Machine Learning Applications in 5G Security 
	Anomaly Detection 
	Security Predictions Using Machine Learning 

	Security Protocol Optimization with Machine Learning 

	Overview of Deep Learning in 5G Security 
	Importance and Role of Deep Learning 
	Relevant Deep Learning Techniques for 5G Security 
	Deep Learning Applications in 5G Security 
	Improving Intrusion Detection Systems 
	Mitigating Malware Risks Using Deep Learning 
	Deep Learning Models for Security Prediction 


	Technical and Ethical Considerations for Effective Implementation of 5G Security 
	Technical Considerations 
	Ethical Considerations 
	Integrated Approach for Effective Implementation 

	Conclusions and Future Work 
	References

