
IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY SECTION

Received 22 November 2023, accepted 6 December 2023, date of publication 18 December 2023,
date of current version 21 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3343910

Synthetic SAR Data Generator Using
Pix2pix cGAN Architecture for Automatic
Target Recognition
GUSTAVO F. ARAUJO 1, RENATO MACHADO1, (Senior Member, IEEE),
AND MATS I. PETTERSSON 2, (Senior Member, IEEE)
1Aeronautics Institute of Technology (ITA), São José dos Campos 12228-900, Brazil
2Blekinge Institute of Technology (BTH), 371 79 Karlskrona, Sweden

Corresponding author: Gustavo F. Araujo (gustavo.farhat@gmail.com)

This work was supported in part by the Brazilian Air Force; in part by the Brazilian Agencies National Council for Scientific and
Technological Development (CNPq); in part by the Ministry of Science, Technology and Innovation (MCTI); in part by the
Swedish-Brazilian Research and Innovation Centre (CISB), Saab AB; in part by the Coordination for the Improvement of Higher
Education Personnel (CAPES) under Finance Code 001 (Pro-Defesa IV); and in part by the São Paulo Research Foundation (FAPESP)
under Grant 2020/09838-0 (BI0S-Brazilian Institute of Data Science).

ABSTRACT Synthetic Aperture Radar (SAR) technology has unique advantages but faces challenges in
obtaining enough data for noncooperative target classes. We propose a method to generate synthetic SAR
data using a modified pix2pix Conditional Generative Adversarial Networks (cGAN) architecture. The
cGAN is trained to create synthetic SAR images with specific azimuth and elevation angles, demonstrating
its capability to closely mimic authentic SAR imagery through convergence and collapsing analyses. The
study uses a model-based algorithm to assess the practicality of the generated synthetic data for Automatic
Target Recognition (ATR). The results reveal that the classification accuracy achieved with synthetic data
is comparable to that attained with original data, highlighting the effectiveness of the proposed method in
mitigating the limitations imposed by noncooperative SAR data scarcity for ATR. This innovative approach
offers a promising solution to craft customized synthetic SAR data, ultimately enhancing ATR performance
in remote sensing.

INDEX TERMS Automatic target recognition, classification, conditional generative adversarial networks,
data augmentation, Pix2Pix, synthetic aperture radar, synthetic data.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) is a remote sensing technol-
ogy used for decades in civil and military applications. SAR
systems employ onboard radars on aircraft and satellites,
transmitting pulses towards the ground. The backscattered
signals, once received by the radar, are processed to
produce representative images of the ground and targets
located in the illuminated area [1]. SAR technology presents
some particular capabilities compared to other technologies,
such as optical and thermal imaging systems, producing
high-resolution terrain images, regardless of whether clouds
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cover the illuminated region. It can also operate at night,
as it is an active sensor and, therefore, does not need
sunlight to illuminate the targets. Another important feature
of SAR is its ability to differentiate target materials. The
dielectric coefficient of each material plays an important role
in attenuating more or less the backscattered signal [2].

A. AUTOMATIC TARGET RECOGNITION
Due to its particular capabilities, SAR is widely used in
Automatic Target Recognition (ATR) applications. ATR is
used to solve a series of everyday problems in which
automatisms are created to recognize patterns in images and
associate them with classes of interest. Among the main
applications, we can highlight search and rescue services,
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traffic control, vessel monitoring, environmental policing,
catastrophes monitoring, autonomous vehicles navigation,
area security, and military operations [3].

ATR is subdivided into three sequential steps: detection,
discrimination, and classification. In the detection, the main
objective is to figure out the target candidates. Then, the
discrimination algorithms evaluate the target candidates,
rejecting those that do not fit to the sought pattern. Finally,
after going through a training phase, the classification
algorithms assign a label to each candidate target, associating
it with a class [4].

B. CLASSIFICATION OF NONCOOPERATIVE TARGETS
Target classification algorithms must first be submitted to
a very careful learning process to present reliable results.
In such a learning process, whatever the approach is, there
must be a variety of target samples relative to different poses
that the target may appear in the image for each class of
interest. We can find some SAR image datasets addressing
ATR applications containing samples of targets [5], [6],
where controlled campaigns were made with SAR systems
mounted on aerial platforms, varying the azimuth or elevation
angles relative to the target by one degree.

However, in the real world, target classes of interest are
rarely cooperative and, therefore, not available for conducting
a controlled experiment. In addition, some noncooperative
targets are seldom exposed, making the image acquisition
of those targets impracticable for training the classification
algorithms. One possible approach is to use Electromagnetic
Computing (EMC) software to produce synthetic data. Using
a Three-dimensional Computer-Aided Design (3D-CAD)
representative of the class of interest, the software simulates
the transmission and reception of the radar signal, varying the
angle of incidence relative to the target. With the synthetic
raw data, a SAR image processing algorithm can be applied
to generate a simulated SAR image.

It should be noted that even EMC software that uses
asymptotic electromagnetic scattering prediction codes is
characterized by a high runtime cost. They demand a
long processing time and require memory and processing
resources, sometimes making the application impractical.

C. PROPOSED METHOD FOR SYNTHETIC SAR DATA
GENERATION
This paper proposes an alternative method for generating
synthetic data of noncooperative targets with specific eleva-
tion and azimuth angles. A self-imposed constraint concerns
the uncooperative characteristic of the considered targets.
In such a case, measured data do not qualify as training inputs,
so only synthetic data is used as input. Note that the proposed
method is intended to be something other than self-sufficient
in synthetic data generation since it uses synthetic data seeds
as input.

The proposed approach aims to generate tailored synthetic
data to alleviate the workload of the EMC software and

to fill datasets with adequate missing data. The proposed
method uses Conditional Generative Adversarial Networks
(cGAN) to generate tailored synthetic data. Training with the
synthetic data previously generated by the EMC software,
the cGAN assimilates how small variations of the incidence
angles impact the resulting SAR image. According to the
pattern used during training, appropriate synthetic EMC data
are presented as input to the cGAN, generating synthetic data
whose targets are presented with parameterized elevation and
azimuth angles.

Preliminary results, which suggested the possibility of
applying the proposed method to ATR, can be found in [7].

D. OUTLINE
Section II presents the theoretical background of SAR and
some applications in SARATRwith GAN/cGAN. Section III
introduces the methodology, presenting the original pix2pix
cGAN and the modifications made in the algorithm for
generating SAR synthetic data. The experiments carried out
in this work are presented in Section IV, where we present
the SARmodel-based classification algorithm and the dataset
used as a reference, the synthetic data generation process,
and the analysis of the results. Finally, Section V presents the
conclusions and final remarks.

II. GAN AND CGAN APPLICATIONS IN SAR ATR
To understand the growing importance of using cGANs in
SAR ATR, we present some technologies that preceded it in
the context of Artificial Intelligence (AI).

A. THEORETICAL BACKGROUND
Frank Rosenblatt, of the Cornell Aeronautical Laboratory
at Cornell University, devised the Perceptron in 1957 under
the sponsorship of the United States Naval Research, aiming
to create a computer that could learn by trial and error,
just as a human does [8]. The Perceptron was conceived
as a simplified mathematical version of a brain neuron.
It takes values as inputs, weights them, sums all the weighted
values, and activates when the sum exceeds a threshold.
The limitation of the Perceptron, given its single neuron
architecture, led to the development of Neural Networks
(NN): an arrangement of neurons where the output of
one neuron is connected to the input of another. Using
different activation functions, NN can capture nonlinear data
characteristics and be used in regression and classification
problems [9].
Regarding the image classification problem, Neural Net-

works, by directly connecting each pixel of an image to a
neuron, present good results for classifying small images.
However, the same performance cannot be obtained with
larger images. To get around this problem, Cun et al. proposed
the Convolutional Neural Networks (CNN) [10]. CNN can
be used in images where objects appear in different sizes,
perspectives, and positions. Unlike NN, which connects
image pixels directly to neurons, CNN employs a series of
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FIGURE 1. Example of a GAN generator training with MNIST dataset.

image transformations, creating features connected to input
neurons.

Goodfellow et al. proposed the first Generative Adversarial
Networks (GAN) [11]. Inspired by the concept of game
theory, they developed a CNN arrangement whose networks
improve their performance by competing with each other.
The two networks composing a GAN are the generator (G)
and the discriminator (D). The generator aims to create
samples that resemble those of the dataset so that it can
deceive the discriminator, which, in turn, classifies samples
as true or fake [11]. Performance optimization deals with two
problems. The first one concerns the generator to minimize
log(1− D(G(z))). Starting from a random noise vector z, the
generator learns to map an output image G(z). D(G(z)) is the
probability that G(z) is derived from the dataset X . In Fig. 1,
we can see an example used to generate digits according to
the Modified National Institute of Standards and Technology
(MNIST) dataset [12]. The generator training is carried out in
cycles by sending its generated samples to the discriminator,
which assigns the probability of each sample belonging to the
dataset.

The optimization also deals with the maximization of
log(D(x)), which is the probability that samples x belonging
to the dataset X are classified as such. As shown in Fig. 2,
the discriminator is fed with samples originating from the
dataset (x) and samples created by the generator (G(z)) so that
each sample is labeled either one or zero, which means the
probability of being true (dataset sample) or fake (generated
sample), respectively. The discriminator then performs the
learning process, improving it as the samples created by the
generator also improve reliability. The objective function of
this optimization process can be written as

V (G,D) = Ex[log(D(x))]+ Ez[log(1− D(G(z)))], (1)

where E denotes the expectation operator, and the decision
rule consists in argminGmaxD V (G,D).

Conditional Generative Adversarial Networks (cGAN) are
modified GAN arrangements that learn a mapping from
observed data x ∼ X to another domain y ∼ Y . The
generator network (G), taking x as input, is trained to produce
outputs G(x) that cannot be distinguished from dataset
data y by an adversary-trained discriminator network (D).

FIGURE 2. Example of a GAN discriminator training with MNIST dataset.

FIGURE 3. Example of a cGAN generator training applied for image
translation.

Fig. 3 and 4 show respectively examples of cGAN generator
and discriminator training applied to a problem for translating
satellite images to map drawings [13].

The objective function of a cGAN can be expressed by

V (G,D) = LcGAN(G,D), (2)

where the Loss Function is given by

LcGAN(G,D)=Ex,y[log(D(x, y))]+Ex[log(1− D(x,G(x)))].

(3)

The decision rule consists in argminGmaxD V (G,D).

B. LITERATURE REVIEW
Since Goodfellow et al. introduced the first Generative
Adversarial Networks (GAN), some works have addressed
applications of those network types in SAR ATR [11].
Guo et al. were the first to implement an end-to-end GAN to
simulate SAR images based on real images [14]. Lewis et al.
investigated the use of GANs to make simulated data
more realistic and, therefore, better suited to develop ATR
algorithms for real-world scenarios [15]. They compared
the use of two different GAN architectures to perform
this task. In [16], Huang et al. presented a hierarchical
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FIGURE 4. Example of a cGAN discriminator training applied for image
translation.

GAN network model for generating high-resolution SAR
images. In [17], Zhai et al. proposed a method to generate
SAR image templates of targets from multiple angles. They
used a Bayesian network to construct a GAN, in which
the generative model and recognition model parameters are
pre-trained with general datasets to obtain a GAN model
that can generate SAR images from different azimuth angles.
Zhang et al. proposed a semi-supervised transfer learning
method based on GANs [18]. The discriminator of their GAN
is redesigned with an encoder and a discriminative layer
to make it capable of learning the feature representation of
input data with unsupervised settings. In [19], Zheng et al.
introduces a SAR ATR algorithm based on the combination
of semi-supervised CNN and dynamic multi-discriminator
GAN. In [20], Luo et al. proposed a method synthesizing
minority class data by using Progressive Growing of GANs
(PGGAN) for imbalanced SAR target recognition. Guo et al.
presented a robust SAR ATR method via adversarial learning
to integrate data denoising, feature extraction, and classi-
fication into a unified framework for joint learning [21].
Mao et al. developed a target recognition method of SAR
image based on Constrained Naive Generative Adversarial
Networks (CN-GAN) and Convolutional Neural Networks
(CNN) [22]. In [23], Vint et al. designed a framework
to perform SAR-based ATR in low-resolution Foliage
Penetrating SAR images. They investigated the potential use
of CNN and GANs to address the target recognition problem.

In [24], Hu et al. derived a deep generation as well as a
recognition model based on Conditional Variational Auto-
Encoder (CVAE) and GAN. A feature space for SAR-ATR
was built based on the proposed CVAE-GAN model. Oh and
Kim proposed a novel GAN-basedmulti-task learning (MTL)
method for SAR target image generation, called PeaceGAN,
that has two additional structures, a pose estimator and
an auxiliary classifier, at the side of its discriminator to
effectively combine the pose and class information via
MTL [25]. Du and Zhang built a UNet-GAN to refine the
generation of the SAR-ATRmodel adversarial examples. The
UNet learns the separable features of the targets and generates
the adversarial examples of SAR images [26]. In [27], Du et
al. proposed a multi-constraint GAN (MCGAN) model,
which can provide high-quality normalized images as the
supplementary training dataset. They used an encoder to learn
the features of the real images to enhance the similarity. Then,
the encoded features were mixed with noise and category
labels as the input of the generator to improve the diversity
and category correctness. In [28], Ma et al. introduced an
Open Set Recognition (OSR) method based on multi-task
learning, developed from GAN, to overcome the problem
of a classifier encountering targets from unseen categories
and classifying them incorrectly. In [29], Du et al. proposed
an Adversarial Encoding Network (AEN) that extracts
physical-related features from simulated images for data
augmentation through the adversarial learning of the encoder
and the discriminator. Isola et al. investigated conditional
generative adversarial networks (cGAN) as a general-purpose
solution to image-to-image translation problems, proposing
the pix2pix cGAN [13]. In [30], Grohnfeldt et al. presented
the first cGAN architecture that was specifically designed to
fuse Sentinel’s SAR and optical multi-spectral (MS) image
data to generate cloud- and haze-free MS optical data from
a cloud-corrupted MS input and an auxiliary SAR image.
In [31], He and Yokoya also simulated Sentinel’s optical
image from SAR data using cGAN. In [32], Bittner et al.
introduced a new approach to generate an artificial Digital
Surface Model (DSM) with accurate and realistic build-
ing geometries from City Geography Markup Language
(CityGML) data by training a proposed cGAN architecture.
Niu et al. adopted a cGAN to transform the heterogeneous
SAR and optical images into some space where their
information has a more consistent representation, making the
direct comparison feasible [33]. When dealing with change
detection, heterogeneous images are much more challenging
than homogeneous images. In [34], Li et al. used a pix2pix
network derived from cGAN to translate ISAR images to the
corresponding optical images. They combined the generated
and the original ISAR images to train a CNN network for
recognition. Patel et al. put forward a novel concept of
Polarimetric SAR (PolSAR) band-to-band image translation
to synthesize multi-frequency PolSAR images from a single
frequency PolSAR image [35]. They leveraged a DeepNeural
Network (DNN), particularly a cGAN to perform the task.
In [36], Ma et al. presented a weakly supervised algorithm
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to perform the segmentation task for high-resolution SAR
images. Their algorithm combines hierarchical cGAN and
conditional random fields (CRF). Bermudez et al. proposed
a new deep-learning-based framework to synthesize missing
or corrupted multi-spectral optical images using multi-
modal/multi-temporal data [37]. Specifically, they used
cGAN to generate the missing optical image by exploiting
the correspondent SAR data with SAR-optical data from
the same area at a different acquisition date. In [38],
Daquan et al. presented a Foliage Penetration (FOPEN)
target detection method based on bi-frequency SAR and
cGAN. They translate a high-frequency SAR image into a
low-frequency one by means of a cGAN. In [39], Li et al.
improved the interpretation of SAR images with a method of
SAR-to-optical image translation, implementing a modified
cGAN. Maggiolo et al. addressed the problem of automatic
registration of multi-sensor images due to the inherently dif-
ferent physical, statistical, and textural properties of the input
data [40]. For the case of Sentinel’s optical and SAR images,
they proposed a novel method based on a cGAN. Bjork et al.
studied the generation of LiDAR-predicted above-ground
biomass maps from SAR intensity images using cGAN [41].
In [42], Huang et al. proposed a novel fusion dehazingmethod
to directly restore haze-free images by using an end-to-end
cGAN. The proposed network combines the information of
both optical and SAR images to eliminate image blurring.
In [43], Wang et al. used cGAN to improve the Tomographic
SAR (TomoSAR) reconstruction with a limited number
of available SAR images. Turnes et al. proposed a novel
cGAN architecture to improve the SAR-to-optical image
translation [44]. The proposed generator and discriminator
networks rely on atrous convolutions and incorporate an
Atrous Spatial Pyramid Pooling (ASPP) module to enhance
fine details in the generated optical image by exploiting
spatial context at multiple scales. In [45], Christovam et al.
proposed the addition of a Multi-Layer Perceptron loss
function to the pix2pix cGAN objective function tackling
the cloud-removal problem. In [46], Yang et al. proposed an
improved cGAN (ICGAN) method for SAR-to-optical image
translation. Finally, Wang et al. proposed a cGAN to generate
targets with an intermediate azimuth. They used measured
data as input and fake data for data augmentation with a
feature-based classification algorithm [47].

III. METHODOLOGY
This paper proposes a methodology to generate new synthetic
data based on the following target parameters: class, elevation
angle, and azimuth angle. We disregard the use of measured
data and EMC. Only previously obtained synthetic data,
whether produced by EMC or not, can be used to generate
new synthetic data.

A. PIX2PIX CGAN
The proposed methodology is based on the pix2pix
cGAN [13]. The pix2pix cGAN is intended to be a

FIGURE 5. U-Net resulting from adding skip connections to the
Encoder-Decoder network.

general-purpose solution to image-to-image translation prob-
lems. They verified the success of applying this network in
translating images between different domains. For example,
experiments presented in [13] demonstrated the ability of
pix2pix to translate street object labels to street scenes,
building parts labels to facades, black and white images to
color images, daytime landscape images to night images,
caricatures to photos, thermal images to RGB photos and
remote sensing optical images to cartographic maps.

Their generator architecture uses an Encoder-Decoder
network [48] as a starting point, in which an input image
traverses layers down-sampling data to a bottleneck where
the process is reversed to generate the output image.
The bottleneck limits the amount of information passed
from input to output. To work around this problem, the
encoder-decoder architecture was modified to a typical
U-Net architecture [49], which includes skip connections:
connections between the mirrored input and output layers,
i.e., the layers of the same dimension, as shown in Fig. 5.
They designed a discriminator architecture focused on

local image patches called PatchGAN to model high-
frequencies. The architecture of their discriminator also
included an L1 term to force low-frequency correctness into
the Loss Function. The discriminator classifies each patch as
true or fake, averaging the entire image in a convolution way.

By adding the L1 distance, computed between the ground
truth (y) and generated (G(x)) images,

LL1(G) = Ex,y[||y− G(x)||1] (4)
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to the Loss Function (2), results the objective function of the
pix2pix cGAN

V (G,D) = LcGAN(G,D)+ LL1(G), (5)

and the decision rule consists in argminGmaxD V (G,D).

B. SAR SYNTHETIC DATA GENERATION WITH PIX2PIX
CGAN
The proposed method aims to generate SAR synthetic data
for target classes with different aspect angles (azimuth
and elevation angles) using a modified pix2pix cGAN to
perform interpolations and extrapolations. A simple linear
interpolation could not be applied to SAR data since the
backscattered signal does not vary linearly as the pose of the
target changes.

Datasets prepared for ATR are comprised of chips (image
clippings) of size H × V pixels, containing a single target
in each chip. Those targets within the chips belong to any
class (k) and appear in different aspect angles about the radar:
azimuth (φ) and elevation (ω) or depression (θ = 90◦ − ω).
The set of N classes K = {k | k ∈ Z+, k < N } depends
on the targets of interest and the application of the dataset.
The sets of poses in which the targets can appear in relation
to the azimuth angle (8) and to the depression angle (2) are
obtained by defining

8 = {φ | φi ≤ φ = φi + n1φ ≤ φf, n ∈ Z+, 1φ ∈ R+} (6)

and

2 = {θ | θi ≤ θ = θi + n1θ ≤ θf, n ∈ Z+, 1θ ∈ R+}, (7)

where φi and φf set the range of the azimuth angle span, and
1φ is the angle increment step. The variables referring to the
depression angle 2 are attributed in an analogous way to the
azimuth angle 8.

Using subsets of data chips whose class k and depression
angle θ remain constant, whereas their azimuth angles φ

vary with the same distances, we draw different interpola-
tion/extrapolation patterns. Fig.6 illustrates twelve options of
patterns using 3 (a-c), 4 (d-g), or 5 (h-l) chip subsets.

As an example, using xYx pattern (Fig. 6b), the modified
pix2pix cGAN generator can be trained to carry out
interpolations, generating SAR synthetic data chips Yφ when
the inputs are two chips containing targets of the same class
k and depression angle θ but separated by two 1φ degrees in
azimuth: xφ−1φ and xφ+1φ . The Algorithm 1 describes this
training process.

Fig. 7 illustrates how the generator is trained considering
the pattern xYx, where two synthetic data chips, xφ−1φ =

x(k, θ, φ − 1φ) = x(8, 17, 18) and xφ+1φ = x(k, θ, φ +

1φ) = x(8, 17, 20), are used as input. Note that their targets
present the same class (k = 8) and the same depression angle
(θ = 17◦), but their azimuth angles are spaced two degrees
apart: φ − 1φ = 18◦ and φ + 1φ = 20◦ (1φ = 1◦). The
generator outputs G(xφ−1φ , xφ+1φ ), which is the prediction
of Yφ = Y (k, θ, φ), i.e., Y (8, 17, 19). Yφ is then sent along

FIGURE 6. Examples of possible interpolation/extrapolation patterns.

to the discriminator with the generator input xφ−1φ and
xφ+1φ . The discriminator assigns a value between 0 and 1 to
D(xφ−1φ , xφ+1φ ,Yφ), which means the probability that Yφ

is the corresponding interpolated image. The generator then
uses this information to update its internal parameters with
the goal of maximizing D(xφ−1φ , xφ+1φ ,Yφ). This whole
process is repeated with different input pairs, varying class
and aspect angles until a predetermined number of training
epochs is reached.

In discriminator training, subsets labeled as ‘‘true’’ or
‘‘false’’ are presented to it. Both subsets contain the proper
entries of the pattern in use (Fig. 6). What differs from the
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FIGURE 7. Example of pix2pix cGAN generator training by using xYx pattern.

Algorithm 1 Generator Training (pattern xYx)
Input: x(k, θ, φ −1φ),
x(k, θ, φ +1φ),
N ▷ Number of training epochs

Output: Yφ

epoch← 1
while epoch ≤ N do

xφ−1φ ← x(k, θ, φ −1φ)
xφ+1φ ← x(k, θ, φ +1φ)
Yφ ← G(xφ−1φ , xφ+1φ )
Generator Updating← D(xφ−1φ , xφ+1φ ,Yφ)
epoch← epoch+ 1

end while

subsets is the translated image. In the case of the subset
labeled as ‘‘true,’’ the appropriate true data in the dataset
are included. In the case of the subset labeled false, the data
predicted by the generator are used.

In Fig. 8, we visualize an example of discriminator training
considering the pattern xYx, where two labeled subsets are
presented to the discriminator. Both subsets contain xφ−1φ

and xφ+1φ . However, whereas the subset labeled ‘‘true’’
includes xφ , the subset labeled ‘‘false’’ includes Yφ).
We highlight that the reason for choosing pix2pix cGAN

relies on the fact that it works with paired images. It means
the translated image (output) must be related to the source
image (input). Other types of networks are also capable of
translating images between different domains, but, working
in an unpaired way, they could not capture the features related
to each pair. For example, CycleGAN translates images
between two different domains by learning from two domains
and then translates images from one domain to another. This
way, it could not work for our proposed application since,
in our case, the supposed two domains are actually only one.
Thus, there would be nothing to be learned by the CycleGAN,

FIGURE 8. Example of pix2pix cGAN discriminator training by using
xYx pattern.

as it would be demanded to translate from one domain to
itself.

C. MODIFIED PIX2PIX CGAN
The originally designed pix2pix cGAN has some character-
istics that require adaptations or modifications to meet the
proposed methodology for generating SAR synthetic data.
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1) INPUT CHANNELS
The original pix2pix cGAN takes RGB image chips as
input, which means that the input image is made up of
three channels. The modified pix2pix cGAN considers
single-polarization SAR imaging chips as input, which are
represented in a single channel. However, the number of
input chips depends on the selected pattern (Fig.6). So, the
pix2pix cGAN is changed by assigning each input chip to a
new channel. Therefore, the number of input channels varies
according to the selected pattern.

2) OUTPUT CHANNELS
Like the input image, the output image of the original pix2pix
cGAN is also an RGB image, which has three channels.
As the result of the interpolation/extrapolation is a single
polarization SAR chip image, only one output channel is
used, and the other two are ignored.

3) CHIP SIZE
The dimensions of the chips used by the original pix2pix
cGAN are 256×256 pixels. The dataset chips (Section IV-B)
used for the experiments have dimensions of 128×128 pixels.
Therefore, the generator and discriminator architectures had
to be changed to fit their dimensions. Thus, the first and last
coding/decoding convolution stages of the generator U-Net
network were excluded, as well as the first convolution stage
of the discriminator.

IV. EXPERIMENTS AND RESULTS
In general, image generation algorithms aim to produce
fake images as similar as possible to true images. However,
a method to assess such similarity depends on the purpose and
application of the images. In most cases, especially when the
human eye is confronted with such a judgment, subjectivity
is a dominant factor that makes an accurate assessment
difficult. In this work, such difficulty does not exist since
the generated images are intended to be used as a basis
for target classification. Therefore, it is possible to compare
the results of target classification using two different sets of
data as a basis for classification: one containing only EMC
synthetic data and the other containing only fake synthetic
data whose targets have the same classes and aspect angles.
In previous work, the authors proposed an algorithm for
classifying noncooperative targets in SAR images [50]. The
proposed algorithm presents a model-based approach using
EMC synthetic data for creating models. Those models are
then used for generating and verifying hypotheses, assigning
classes and aspect angles to the target under classification [4].

A. SAR MODEL-BASED CLASSIFICATION ALGORITHM
The previously proposed SAR model-based classification
algorithm [50] is based on EMC synthetic data chips, from
which the N scattering centers of higher amplitude and
their respective coordinates are extracted. A model is created
for each combination of class and aspect angle available

in the dataset by weighting the scattering centers of the
extracted set. When a target (measured data) is submitted
for classification, its aspect angles are estimated, and the
same number of N strongest scattering centers is extracted.
Then, considering the models whose aspect angles are
within a tolerance regarding the estimated aspect angle, the
hypotheses that a target may belong to each class of interest
are constructed. Finally, through a Likelihood Ratio Test
specially designed to match the positions of the scattering
centers, the hypotheses are verified to determine the predicted
class of the target. As small variations in the acquisition
geometry substantially influence the resulting SAR image,
the lack of some models can strongly impact the performance
of the classification algorithm. As the previously proposed
algorithm is model-based, it is highly dependent on the
completeness of a dataset in relation to the existence of
synthetic data for each target class and aspect angles since
the reference models are created from those data.

B. SAMPLE DATASET
A partnership between the Wright State University and
the Air Force Research Laboratory (AFRL) resulted in the
elaboration of a dataset specially designed for automatic
target recognition applications. The dataset called Synthetic
and Measured Paired Labeled Experiment (SAMPLE) was
made available to the academic and research communities in
2019 [6]. As an upgrade of the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset [5], which
has been addressed for decades, the SAMPLE dataset results
frommeticulous work to produce reliable data. i TheMSTAR
dataset was obtained through a controlled experiment that
used an airborne radar operating in the X band. The data
set contains ten categories of military vehicle targets. The
MSTAR dataset was used to generate the SAMPLE dataset,
which has 1345 synthetic data chips (128× 128 pixels), each
containing a target (vehicle), matching classes and aspect
angles to the MSTAR measured data chips.

The SAMPLE dataset contains targets of ten different
classes (k) with depression angle (θ) varying between 14◦

and 17◦ in one-degree increments (1θ = 1◦) and azimuth
angle (φ) ranging from 10◦ to 80◦ also with increment of
one degree (1φ = 1◦). However, chips are missing for
certain combinations of class and depression/azimuth angles.
Fig. 9(a-d) details the content of the SAMPLE dataset by
representing existing chips in green and the missing chips
in red. Note that each diagram within the figure refers to
a different depression angle θ . Their columns represent the
azimuth angle φ, and their rows the target classes k .

C. CLASSIFICATION BASED ON EMC SYNTHETIC DATA
For each MSTAR measured data chip used by the SAMPLE
dataset there is a synthetic data chip comprising a simulated
target of the same class and aspect angles (depression
and azimuth). The synthetic data in the SAMPLE dataset,
produced using an Electromagnetic Computing (EMC) tool,
are very reliable because the physical characteristics of the
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FIGURE 9. Existing chips (green) and missing chips (red) in the SAMPLE dataset for the depression angle (a) θ = 14◦, (b) θ = 15◦, (c) θ = 16◦, and
(d) θ = 17◦.
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TABLE 1. Pairs of aspect angles used in the experiments.

targets have been considered to have the smallest detail
when introduced to the simulation. Characteristics of each
target section, such as geometry, materials, and dielectric
properties, were surveyed in the field and inserted into the
configuration of CAD-3D models used by the EMC tool.
Fig. 10 illustrates an example of measured and synthetic data
within the SAMPLE dataset relative to all ten classes with the
same depression and azimuth angles.

For the experiments with the model-based classification
algorithm previously proposed by the authors [50], the
EMC synthetic data contained in the SAMPLE dataset
were used as the source to create the models and thus
construct the hypotheses. The measured data from the
MSTAR dataset were subjected to classification to assess
the algorithm performance. Considering the incompleteness
of the SAMPLE dataset, the authors used only those chips
whose pairs of aspect angles exist for all ten classes of
targets. The reason for that data restriction lies in the concern
that all ten classes could be assigned to a target with
equal probability. So, inspecting the SAMPLE dataset, they
found 23 pairs of aspect angles that meet the requirement.
Consequently, 230 chips were used in their experiments. The
23 pairs of aspect angles considered in the experiments are
listed in Table 1.
Experiments with different configurations of the algorithm

were performed. One of those configurations, the Modified
Likelihood Ratio Test / Scattering Centers (MRLT/SC),
reached a Percentage of Correct Classification (PCC) of
86.96%. Given its excellent performance and ease of
application, we chose to use that configuration as a reference
for comparing results in the current work.

The scope of the research demands no leaking between
measured and simulated data, as it assumes a scenario where
no measured data is available for training. This is the reason
why we only use simulated EMC data for training. We do not
intend to assess the classification algorithm using MSTAR
data for training. The comparison in classification is done by
using MSTAR-measured data as testing images and varying
the basis for classification between EMC data and pix2pix
generated data.

D. GENERATION OF FAKE SYNTHETIC DATA
Before generating fake synthetic data, it is necessary to
prepare the EMC synthetic data of the SAMPLE dataset and
define the interpolation/extrapolation patterns to be used for
training the pix2pix cGAN. The SAMPLE dataset chips store
the complex value of each scattering center. After we convert
and assign the amplitude to each pixel, they can assume

any real value greater than zero. Since the pix2pix cGAN is
configured to handle pixel values between −1 and +1, each
EMC synthetic data chip is normalized such that,

x̃(k, θ, φ) = 2
x(k, θ, φ)−min(x(k, θ, φ))

max(x(k, θ, φ))−min(x(k, θ, φ))
− 1. (8)

According to Fig. 6, we select the patterns Yxx, xYx, and
xxY to train the pix2pix cGAN. Inspecting the SAMPLE
dataset, we found 907 subsets that fit each of those patterns.
Then, the subsets whose ‘‘Y chip’’ aspect angles were used
by the previously proposed algorithm, i.e., those listed in
Table 1, were placed aside to be used for testing. The subsets
separated for testing, according to each of the three patterns
(Yxx, xYx, and xxY), were respectively 170, 180, and 186.
Fig. 11 depicts bymeans of a diagram the distribution of chips
used by the previously proposed classification algorithm,
considering the possibility of generating them using each
pattern. It means that out of the 230 chips used previously,
222 can be generated using the three patterns together.

After removing the subsets used for testing, 727, 737,
and 721 subsets remain to be used in training patterns Yxx,
xYx, and xxY, respectively. We perform a training effort
comprising 200 epochs for the three patterns, Yxx, xYx,
and xxY. A randomly selected number of subsets equal to
the number of training subsets (737, 727, and 721) is used
in each training epoch. At the end of each training epoch,
170, 180, and 186 fake synthetic data chips are generated
for each pattern, Yxx, xYx, and xxY, respectively. In Fig. 12,
we illustrate an example where a trained xYx pix2pix cGAN
is used to generate fake synthetic data chips. We show both
input chips, the ground truth, and output (predictions) after 1,
10, 100, and 200 training epochs.

By visually inspecting the images, we assessed the output
images in different epochs. After the first training epoch,
we observed that the output image presents the target with
an aspect very close to the ground truth. However, the image
presents a general blurring. After the tenth epoch, we can
already observe an image with greater definition, even though
the background still presents a lot of blurring. After the 100th

and 200th epochs, we observed almost no difference between
the output images, which in turn are already as sharp as the
Ground Truth.

As stated at the beginning of this section, human eyes are
not the most suitable tools to measure the similarity between
the generated images and ground truth when dealing with
ATR applications. So, we performed two different analyses:
one to verify convergence along the training epochs in
producing images similar to the ground truth and another to
test the hypothesis that the generated fake synthetic data are
more similar to the ground truth than their EMC synthetic
data input. The last one is also valid to verify if the output
image is subjected to bias by collapsing to one of its inputs.

1) CONVERGENCE ANALYSIS
For each training pattern (Yxx, xYx, and xxY) and at
every training epoch, we used three metrics to assess the
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FIGURE 10. Example of measured and synthetic data chips regarding the ten classes found in the SAMPLE dataset.

FIGURE 11. Number of fake chips generated using patterns Yxx, xYx, and
xxY.

convergence of the generated image towards the ground truth.
Between each of the predicted images (fake synthetic data)
and the ground truth (EMC synthetic data), we calculated the
Mean Squared Error (MSE), Pearson’s Chi-Square statistic
test, and the correlation with the Histogram Comparison.
Figures 13, 14, and 15 plot the average MSE of 200 training
epochs for Patterns Yxx, xYx, and xxY, respectively.

Figures 13, 14, and 15 also show the impact of the clutter
by plotting its MSE. The targets were disregarded for this
analysis. Therefore, all pixels whose Euclidean distances
from the center of the chips are greater than 50 were sampled,
considering only them as part of the background, i.e., clutter.
As expected, the level of the backscattered signal on the
clutter region is very low compared to the target region.
Consequently, the average MSE of the clutter is also low
and almost constant along the training epochs. Therefore,
it shows that if the cGAN has difficulties in capturing
background randomness, there will be no substantial impacts
in minimizing the Loss Function, which will be more
sensitive to the target region since the latter has a higher signal
level.

Regardless of the pattern used, we noticed that, as the
number of training epochs increases, the MSE rapidly
converges until it reaches an optimal value in a range with

small oscillations, somewhere between 75 and 200 training
epochs.

The Pearson’s Chi-Square test was also carried out to verify
the similarity of data by considering each scattering center
location a category. The Pearson’s Chi-Square test is given
by

χ2
=

N∑
i=1

(Oi − Ei)2

Ei
, (9)

where Oi is the normalized amplitude of the ith scattering
center in the fake synthetic data (observed image) and Ei is
the normalized amplitude of the scattering center at the same
position, but in the ground truth (expected image).

Figures 16, 17, and 18 confirm the results obtained in the
MSE test. As can be seen, the results of Pearson’s Chi-Square
test demonstrate that, even though clutter has great relevance
in this statistical calculation, the differences between the
generated fake image and the ground truth converge to
minimum values as the number of training epochs increases.

Still to check the convergence of the images in relation
to the ground truth, we performed a Histogram Comparison
using the correlation coefficient as a metric. A Histogram
Comparison expresses how well two histograms match with
each other. Using the pixel amplitude data as a basis, the
images generated at each training epoch were transformed
into histograms, and the samewas done with the ground truth.
The average correlation coefficients found in each training
epoch for each of the patterns used are plotted in Fig. 19.

We can verify that for all three patterns used (Yxx, xYx,
and xxY) the correlation coefficient increases progressively,
corroborating the other two tests (Mean Square Error and
Pearson’s Chi-Square) in the conclusion that the predicted
images converge on the ground truth image.

Although this work considers a scenario in which the
targets are uncooperative and their measured data is not
available, we perform the same Histogram Comparison test,
but now we replace the ground truth (Synthetic EMC data)
with the MSTAR measured data. Fig. 20 shows as expected,
smaller correlation coefficients since MSTAR data was not
used as a basis for image prediction. However, as can be seen,
in the three patterns used (Yxx, xYx, and xxY) the results
continue to converge as training epochs progress.
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FIGURE 12. Example of fake synthetic data generation of a M35 class
target at 16◦ depression angle and 44◦ azimuth angle. From left to right
and from top to bottom: (a) and (b) two input EMC synthetic data chips
according to xYx pattern, (c) ground truth and predictions, after (d) 1,
(e) 10, (f) 100, and (g) 200 training epochs.

2) COLLAPSING ANALYSIS
Some questions may arise regarding the pix2pix cGAN
outputs, for example: Do the data generated by the pix2pix
cGAN resemble ground truth more than the inputs used for
its generation? Are the outputs just collapsing to one of their
inputs? To answer those questions, we performed an analysis
where, in addition to comparing the ground truth with the
generated image, we also compared the ground truth with

FIGURE 13. Average Mean Squared Error of 170 Yxx pix2pix cGAN
predicted images at each training epoch. Clutter MSE was computed to
investigate its impact on the chip MSE convergence.

FIGURE 14. Average Mean Squared Error of the 180 xYx pix2pix cGAN
predicted images at each training epoch. Clutter MSE was computed to
investigate its impact on the chip MSE convergence.

FIGURE 15. Average Mean Squared Error of the 186 xxY pix2pix cGAN
predicted images at each training epoch. Clutter MSE was computed to
investigate its impact on the chip MSE convergence.

the two input images used to generate the output image by
calculating their MSE.

Inspecting Fig. 21 and 22, which refer to the patterns Yxx
and xYx respectively, taking the ground truth as references,
we note that with more than 50 training epochs the pix2pix
cGAN produces output images with lower MSE compared to
the ones produced by the input images. For the xxY pattern,
shown in Fig.23, the MSE is a little smaller than the one for
the generated by fake synthetic data.

The consideration above can be confirmed by hypothesis
tests. Considering a number of training epochs greater
than 75, according to the graphs from that point on the results
stabilize around an average. We assume that those results
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FIGURE 16. Average Pearson’s Chi-Square test of the 170 Yxx pix2pix
cGAN predicted images at each training epoch.

FIGURE 17. Average Pearson’s Chi-Square test of the 180 xYx pix2pix
cGAN predicted images at each training epoch.

FIGURE 18. Average Pearson’s Chi-Square test of the 186 xxY pix2pix
cGAN predicted images at each training epoch.

FIGURE 19. Average Histogram Comparison correlation coefficient
between predicted images and ground truth at each training epoch.

follow a normal distribution. This way we can verify whether
the fake synthetic data resemble Ground Truth more than
those EMC synthetic data used as input do.

FIGURE 20. Average Histogram Comparison correlation coefficient
between predicted images and MSTAR measured data at each training
epoch.

FIGURE 21. Average Mean Squared Error between Ground Truth and: Yxx
pix2pix cGAN predicted images, input image at +1◦, and input image at
+2◦ azimuth angle.

FIGURE 22. Average Mean Squared Error between ground truth and: xYx
pix2pix cGAN predicted images, input image at −1◦, and input image at
+1◦ azimuth angle.

With a confidence level of 99% and using the t-distribution,
for each of the patterns, within the range from the 76th to
the 200th training epoch, we tested the hypotheses of the
calculated MSE between the fake synthetic data and the
Ground Truth being significantly smaller than the lowest
MSE calculated between each of its EMC synthetic data
inputs and the Ground Truth. Table 2 summarizes the tests.

As can be seen, the MSE hypotheses of the images
generated using the patterns Yxx and xYx, significantly
smaller than those of their inputs, are accepted. The same
cannot be said about the xxY pattern, as this hypothesis is
rejected.
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FIGURE 23. Average Mean Squared Error between ground truth and: xxY
pix2pix cGAN predicted images, input image at −1◦, and input image at
−2◦ azimuth angle.

TABLE 2. MSE hypothesis tests.

Answering the questions posed earlier, we can say, with
a confidence level of 99%, that the fake synthetic data
generated by Yxx and xYx pix2pix cGAN are significantly
more similar to ground truth than the EMC synthetic data
inputs. We can also conclude that the generated images do
not collapse to any of their respective inputs.

E. CLASSIFICATION BASED ON FAKE SYNTHETIC DATA
The experiments carried out in Sections IV-D1 and IV-D2
are important to show that fake synthetic data have a
better similarity to ground truth compared to any EMC
synthetic data whose target presents small angular variations.
However, those experiments are not sufficient to assess
whether fake synthetic data can efficiently replace synthetic
EMC data as the basis for a model-based target classification
algorithm. A low MSE indicates only a similarity between
the Fake synthetic data and the ground truth EMC synthetic
data as a whole. There is no guarantee that the pixels
produced by the most impactful scattering centers, which
are extremely important in producing features for the
classification algorithm, will keep the same relationship.

We designed experiments to verify the applicability of
fake synthetic data as a basis for the previously proposed
target classification algorithm. In the experiments, we tried
to replace EMC synthetic data with fake synthetic data as
much as possible. As shown in Fig. 11, eight out of the
230 chips used for testing do not have the required inputs
so that the pix2pix cGAN could generate them. Therefore,
a total of 222 fake synthetic data chips and eight original EMC
synthetic data chips were used in the experiments.

TABLE 3. Test sets used in the classification experiment and the number
of chips from each pattern compounding them.

TABLE 4. Probability of Correct Classification (PCC) using the test sets as
the basis for classification.

Considering the three sets of fake synthetic data generated
with each training pattern of the pix2pix cGAN (Yxx, xYx
and xxY), containing respectively 170, 180, and 186 over-
lapping chips, we created six test sets, each containing
222 chips of fake synthetic data. What differentiates the six
test sets is the origin of the chips that comprise them. Each
test set is populated following a different order of priority
that combines the three patterns used to generate the data.
Table 3 details the origin of the chips that comprise each test
set.

One detail should be noted: We have only 5 test sets since
test sets 3 and 4 are identical. The chips generated by both
patterns Yxx and xxY, which do not exist in pattern xYx,
do not intersect.

The same experiments performed with the previously
proposed algorithm, which originally used SAMPLE dataset
EMC synthetic data as a basis for measured data classifica-
tion, were repeated this time using each test set as the basis.
Table 4 summarizes the results obtained by detailing the
maximum PCC found for each test set of fake synthetic data
and the mean and standard deviation. In addition, it presents
the average results of all tests in the last row.

Obviously, we could not expect the results to surpass
the Percent of Correct Classification (PCC) of 86.96%
achieved when using the original EMC synthetic data from
the SAMPLE dataset. That PCC must be considered as a
ceiling because if the fake synthetic data had been generated
exactly the same as the synthetic EMC data, the same PCC
would have been reached. It makes no logical sense for the
fake synthetic data to be ‘‘more accurate’’ than the original
EMC synthetic data. Observing the maximum PCC reached
when using each of the test sets, we verify that the test
sets with the best performance (test sets 2 and 5) reached
a PCC of 85.22%, i.e., only 1.74% below the reference
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FIGURE 24. Comparison of classification results: (a) test set #1, (b) test set #2, (c) test sets #3 and #4, (d) test set #5, (e) test set #6, (f) test sets average.

value – 86.96% when using original EMC synthetic data.
However, in the worst case (test set 1), a PCC of 83.91%
was reached – 3.05% below the reference. Taking the average
of the test sets, we verified a maximum PCC of 83.99%,
representing 2.97% below the reference. Although we did
not verify optimal results, they are very close to the reference
values. Those results, presenting fake synthetic data as a good
alternative in the absence of EMC synthetic data, indicate
a real possibility that they could be used as a basis for the
classification algorithm.

Finally, to answer a question that puzzled us during the
research, we evaluated the hypothesis that the results obtained
with the fake synthetic could not significantly surpass a
simple arithmetic interpolation/extrapolation.We created one
subset of data by interpolating the same input chips we used
to generate the fake synthetic data on the xYx pattern.

By calculating

xxYx(k, θ, φ) =
x(k, θ, φ −1φ)+ x(k, θ, φ +1φ)

2
, (10)

we obtained 180 xYx pattern interpolated chips. By applying

xYxx(k, θ, φ) = 2 x(k, θ, φ +1φ)− x(k, θ, φ + 21φ),

xxxY(k, θ, φ) = 2 x(k, θ, φ −1φ)− x(k, θ, φ − 21φ),

(11)

to the patterns Yxx and xxY, we produced respectively
170 and 186 extrapolated chips.

Next, we calculated the PCC for the same test sets
described in Table 3. However, we used the subsets of
data obtained through interpolation/extrapolation. The PCC
obtained using those data as the basis for classification
are listed in the last column of Table 4. In Fig. 24, the
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graphs show the PCC achieved considering different data
sources as the basis for classification: original EMC syn-
thetic data, fake synthetic data, and interpolated/extrapolated
EMC synthetic data. Each graph shows the results of the
experiment according to each of the test sets detailed in
Tables 3 and 4.

Observing these graphs and those of the MSE analysis
(Section IV-D2), we verify that the results converge approx-
imately around the same amount of training epochs, leading
us to rely on the interval between 75 and 200 for application
purposes. Regardless of the test set, we also verify that
the PCC achieved with the fake synthetic data is always
higher than that referring to the interpolated/extrapolated
EMC synthetic data, which rules out the need for a hypothesis
test. Therefore, as the basis for classification, the fake
synthetic data leads to a significantly more accurate result
than interpolated/extrapolated EMC synthetic data.

V. CONCLUSION
This paper proposed a method that uses a modified version of
the pix2pix cGAN architecture to produce tailored synthetic
data for noncooperative targets with specific elevation and
azimuth angles. The methodology involves training the
cGAN to interpolate and extrapolate SAR images based on
input chips with different aspect angles. The convergence
and collapsing analyses demonstrate the effectiveness of the
proposed method in producing synthetic data that closely
resemble real SAR images, indicating a successful adaptation
of the cGAN approach to the SAR domain. Furthermore,
the study uses a previously proposed model-based algorithm
to evaluate the utility of the generated fake synthetic data
for target classification. Experimental results show that
the classification performance using fake synthetic data
is remarkably close to that achieved using original EMC
synthetic data, which serves as a benchmark. The article
demonstrates that the fake synthetic data approach presents
a viable alternative when EMC data is limited, and it
outperforms simple interpolation/extrapolation techniques
commonly employed. By employing cGANs to generate
synthetic data, this paper paves the way for new avenues
for enhancing target classification accuracy in SAR imagery,
particularly in scenarios where acquiring real-world data is
challenging. The findings presented in this paper shed light
on the potential of synthetic data generation techniques to
improve the performance of ATR algorithms, contributing to
advancements in remote sensing.
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