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Abstract—Recent research has demonstrated that Non-
Identically Distributed (Non-IID) data can negatively impact
the performance of global models constructed in federated
learning. To address this concern, multiple approaches have
been developed. Nonetheless, previous research lacks a cohesive
overview and fails to uniformly assess these strategies, resulting
in challenges when comparing and choosing relevant options for
real-world scenarios. This study presents a structured survey
of cutting-edge techniques for handling the Non-IID data, ac-
companied by proposing a metric to develop a standardized
approach for assessing data skew and its harmony with the
appropriate approach. The fndings affrm the metric’s suitability
as a heuristic for assessing data skew in distributed datasets
without having insight into client data, serving both scientifc and
practical purposes and thus supporting the selection of handling
strategies. This preliminary research establishes the foundation
for discussing standardizing methodologies for evaluating data
heterogeneity in federated learning.

Index Terms—Federated Learning, Non-IID, Data Skew De-
tection, Standardization, Taxonomy

I. INTRODUCTION

The advent of Big Data [1], and the decentralization of
data sources has given birth to federated learning (FL). This
innovative machine learning paradigm enables multiple clients
(nodes or workers) to collaboratively train a global machine
learning model locally while preserving individual data privacy
and without compromising client’s data [2]–[6].

However, ensuring a uniform data distribution among clients
is uncommon and not guaranteed in real scenarios. Indeed,
data across clients usually exhibits distinct characteristics
known as Non-Independent and Identically Distributed (Non-
IID) [7], indicating variations in statistical attributes such as
uneven feature distributions, imbalance classes, or differences
in data quantity. The empirical evidence presented in the litera-
ture highlights the signifcant impact of Non-IID data on model
performance within the FL context [8]–[10]. This phenomenon
introduces unique challenges to the FL landscape.

A recent study by Hsieh et al. shed light on the signifcant
detrimental effects of Non-IID data characteristics on the
effcacy of the global FL model [8]. Therefore, numerous
techniques have been proposed to tackle the issues arising from

data heterogeneity. However, the current research landscape
needs to be more cohesive, with many strategies developed in
isolated contexts and requiring a unifed evaluation criterion.
This situation challenges researchers and practitioners as they
seek to understand, compare, and select the most appropriate
approach for their specifc use cases. Moreover, there remains
a pressing need for a holistic research perspective, given the
piecemeal strategies often developed in siloed contexts, each
crying out for a unifed evaluation benchmark.

Considering the research gap in this area, our study aims
to provide an overview of the existing techniques to tackle
non-IID data in the FL context, with the intention of bridging
knowledge gaps. Moreover, and more signifcantly, this re-
search proposes a novel metric to measure data skewness con-
sistently. Using simulated data sets, we validate this metric’s
effectiveness and applicability, aiming to present a heuristic
tool for assessing data heterogeneity without the need for
direct access to client-specifc data sets.

Our main vision motivating this work extends beyond
clarifying the challenges of non-IID data and their implications
on the ML model performance. It aims to pave the way for
a standardized approach to evaluate data heterogeneity within
FL frameworks. This standardization is of essential importance
for Non-IID data new approaches progress within FL settings,
facilitating greater consistency in model performance and
providing practitioners with the guidance needed to make
informed decisions regarding data handling strategies based
on the characteristics of their distributed data sets.

The structure of this paper is as follows: We start by draft
the problem statement and motivation scenario in Section
II. In Section III, we present a comprehensive taxonomy
that categorizes the existing literature. the proposed approach
and the experimental settings described in IV. Next, both
the validation of the proposed approach and the fndings are
discussed in Section V. Finally, in Section VI, and we draw
our conclusions and future work in Section VI.

II. PROBLEM FORMULATION

This paper focuses on analyzing the cutting-edge techniques
for handling the Non-IID data in FL settings by classifying
them in a taxonomy and experimentally evaluating them to
propose best practices and develop a standardized approach



for assessing data skew and its harmony with the appropriate
approach.

Non-IID data distributions can introduce multiple challenges
in FL solution. Among the various facets of Non-IID, the most
challenging form of data skew is typically label distribution
skew or class imbalance across edge clients. many factors
cause this, including the following:

Diverse Real-world Scenarios: Different clients (like mo-
bile devices or sensors) can have data from vastly different
distributions in many real-world applications. For example, a
health monitoring device from an elderly person will generate
a different set of health data compared to that from a teenager.

Model Convergence: Models can struggle to converge or
might converge to a suboptimal solution when a signifcant
class imbalance exists across clients. Some clients might have
samples from only a subset of classes, making the global
model biased if not handled appropriately.

Model Performance: In imbalanced client classes, the
global model’s performance might be excellent for frequently
represented classes but poor for under-represented classes.

Client Participation Bias: If only a subset of clients with
a particular data skew participate more frequently in the
federated learning rounds, it can introduce further bias into
the model.

To understand this issue better, consider the following
scenarios on the challenge presented by label distribution skew
in FL. Suppose there are C clients, K classes, and the data at
each client c is represented by Dc, and the overall dataset by
D. The distribution of class k at client c is denoted by pc,k.

Consider that for a certain client c and class k, pc,k = 0,
meaning that client c has no samples of class k.

In the FL paradigm, each client trains a model on its
local data and subsequently sends the model updates to the
server. The server updates the global model by averaging these
updates (using the FedAVG algorithm). Mathematically, the
global model M is given by:

CX1 
M = Mc

C 
c=1 

where Mc is the model trained on the data of client c.
Performance Implications of Skew Given that client c 

lacks representation for class k, the model Mc might perform
poorly on class k. This performance gap is integrated into
the global model during averaging, leading to suboptimal
performance for class k even if other clients have data from
that class.

To quantify this, let accc,k be the accuracy for class k for
client c and acck be the corresponding accuracy for the global
model. Owing to the absence of data for class k at client c,
accc,k could be substantially lower than the average accuracy
across clients. Consequently, the aggregated global model’s
accuracy for class k may suffer:

CX1 
acck < accc,k

C 
c=1 

This inequality signifes a performance decrement for class k 
in the global model, especially when there’s a large discrep-
ancy in accc,k values among clients.

Moreover, the issue of statistical divergence between
clients.This issue can be measured using the Kullback-Leibler
(KL) divergence. Given two clients c1 and c2, the divergence
due to label distribution skew is defned as:� �X pc1,kDKL(pc1 ||pc2 ) = pc1 ,k log (1)

pc2,kk 

This equation quantifes how the distribution of one client
diverges from another.

Also, the error introduced during the model aggregation
phase due to skew can be defned. Let’s denote the true global
model as M∗ and the aggregated model as M . The error,
represented by E, due to data skew in the aggregation process
is:

E = ∥M − M ∗ ∥ (2)

This error E quantifes the difference between the ideal global
model and the model aggregated considering the data skew.

Data skew affects the test accuracy. Consider an IID test
dataset Dtest. The test accuracy of the global model is
expected to decrease with increasing skew. Let the accuracy
of model M on Dtest be denoted by acc(M, Dtest). It can be
postulated that:

acc(M, Dtest) decreases with increasing data skew. (3)

This mathematical exposition underscores the challenge
presented by label distribution skew in FL. Models from
clients with skewed distributions can adversely affect the
performance of the global model. Addressing these skews may
require sophisticated aggregation methods or data resampling
strategies.

Despite the literature efforts, addressing data skew remains
a primary concern in ensuring the robustness and fairness of
FL models. Moreover, the literature lacks standardized criteria
to handle this challenge. This research gap was the main
motivation behind our study. In the next section, we will
classify the proposed solutions in the literature in a taxonomy
followed by experiments to evaluate different datasets using
several aggregation algorithms.

III. STATE-OF-THE-ART TAXONOMY

Several existing techniques are proposed in the literature
to handle Non-IID data, with some directly tailored to Non-
IID scenarios and others having indirect applications. This
diversity can pose challenges for researchers seeking to select
an appropriate strategy and understand the landscape compre-
hensively. Therefore, our main contribution in this paper is
the development of a comprehensive taxonomy rooted in the
current state-of-the-art techniques for managing Non-IID data.
This structured taxonomy was established through a systematic
literature review classifcation, employing the snowball sam-
pling approach that began with two foundational overview pa-
pers and extended to encompass subsequent relevant literature.
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Fig. 1. Taxonomy of strategies for handling Non-IID data

Figure 1 illustrates the taxonomy, elucidating the procedures
of individual methods, referencing their original contributions,
and highlighting potential challenges associated with their
implementation.

As the main criteria to categorize the strategies, the position
in the ML process was chosen as proposed by H. Xuming
et al. [11]. These strategies are applied before or during the
initialization of the training to prepare the data set and are
labeled as “heterogeneous reduction strategies.” Meanwhile,
more robust methods to deal with Non-IID during training are
called “handling strategies during training” [11]. In the second
level, they are clustered by their approach to setting up a robust
training environment.
The frst cluster of heterogeneous reduction strategies is “data
augmentation.” Duan et al. propose an augmentation method
that enriches client data with client-specifc synthesized data
to reduce the degree of heterogeneity [12], whereas other
data-sharing strategies use one globally-shared data set that
contains all labels with homogeneous distribution. The global
dataset, with the size of 1-20% of all client data depending
on the specifc strategy, is used to train the initial model and
distributed to all clients [13]. The distribution of data raises
privacy concerns [14], and distributing the potentially very
high amount of data produces a communication overhead that
could overwhelm clients, especially in a cross-device setting.

Client selection-based methods are chosen based on dif-
ferent criteria for training in each communication round that
work well together based on different metrics concerning
the composition of their data. Context-based client selection
chooses different clients in each communication round based
on information about their respective data composition, which
raises privacy concerns [15]. Deep learning-based client selec-

tion does not need this a priori information but can result in
communication overhead [11]. Resource-based client selection
does not necessarily aim for better handling of Non-IID data
but can help in this regard [16], [17]. All methods have in
common that maintaining one global model tends to produce
a bias and overftting towards “good” clients. A combination
with other methods like data-sharing is recommended.s

The initial model gets trained with a benchmark data set and
gets forwarded with the associated validation score by direct
data preprocessing. In the following training, clients only use
the data which produces a similar loss with the forwarded
model. This approach results in solid bias, and the model qual-
ity heavily depends on the benchmark data set more than data-
sharing. Indirect data preprocessing is, essentially, context-
based client selection while using encrypted information about
the client’s data composition [11].

Handling strategies during training aim to be more robust
against Non-IID data than FedAvg without additional measure-
ments. The frst cluster is concentrated on neural networks
and provides methods that alter the behavior of the local
training of neural networks. With group normalization, K.
Hsieh et al. offer an alternative to the highly vulnerable batch
normalization [8]. Meanwhile, S. Wiedemann et al. uses model
compression, which tends to be more robust against Non-IID
data as a side effect [18]. Especially when combined with other
strategies, these methods can produce improved results.

Clustering strategies give up the premise that the result of
FL is one global model but aim to deliver multiple models
that better ft each client group than one universal global
model could ever offer. The presented clustering strategies
have in common that they work without the necessity to
have insight into the client data composition in contrast



to some client selection methods. Weight-based clustering
groups clients based on the weights they send after the initial
communication rounds as a metric for the similarity of their
data. Hierarchical clustering can be applied, which merges
the most similar clusters iteratively to reduce the number
of clusters until a set number of clusters or the maximum
dissimilarity between clients in one cluster is reached [19].
Model-loss-based clustering works similarly, but instead of
using all weights for clustering uses only the communicated
model-loss [11]. After the initial clustering, each cluster gets
trained independently and receives its global model. Neither
privacy nor communication overhead are issues, as the latter is
only of signifcance during the clustering itself. Unfortunately,
for future deployment, every user has to be placed in the ftting
cluster for which he needs a suffcient personal data set.

Under “adaptive federated learning,” alternatives to the
benchmark aggregating function “FedAvg” [20] are listed.
”FedProx” [21] is listed as the most popular to limit the
weight divergence using a regularisation term [22] and by that
ensure convergence of the training [23]. To obtain a better
representation through a wider variety of aggregation func-
tions the common alternatives “FedMedian” [24], “FedAvgM”
[25], “FedOpt” [26] and “FedAdam” [27], [28] were used in
the later experiment as well. On the other hand, Federated
Multitask Learning lets the clients share their respective mod-
els and continue developing them with local updates before
sending them to the aggregator. This strategy reduces weight
divergence between the clients, and the communication rounds
can be lowered. However, the proposed methodology with
clustering tends to isolate heterogeneous clients, which can
produce models with a substantial divergence in quality [11].

Knowledge distillation also works with local updates but
uses one or multiple teacher clients to carry out the local
updates more controlled. Model distillation can achieve satis-
fying improvements as well. W. Ouyang et al. promote transfer
learning in cases with a strong label-distribution skew [29]–
[32].

Based on this overview, we further analyze which strategy
performs best for a given level of data skew. Nevertheless, as
this paper presents early-stage research, only limited methods
were conducted.

IV. METHODOLOGY

As shown previously, there is a variety of different
strategies for dealing with Non-IID data. Previous studies
have not evaluated these methods with a consistent framework,
making it diffcult to compare and select them for practical
real-world situations. In addition, differences in the degree of
heterogeneity of the data have not been considered. Therefore,
in the following, the authors examine, how well-selected
strategies perform compared to each other and for different
levels of heterogeneity in data sets.

A. EVALUATION OF HETEROGENEITY

To attain the aforementioned objective, a specifc metric
is needed. Existing research has presented very few ideas
for assessing the degree of heterogeneity in federated
environments. Of the few concepts that have been presented,
no standard has yet been established, which makes the
comparability of data sets used to evaluate Non-IID handling
strategies almost impossible. Therefore, we adapt an existing
concept at frst to subsequently present it as a standard for
determining the degree of heterogeneity. For this purpose, we
adapt the “model traveling” [8] approach presented by Hsieh
et al. to develop a metric for determining data skew in yet
unknown federated environments. For the model traveling,
a predefned initial model is trained on a randomly selected
client for a suffciently high number of epochs. Subsequently,
the trained model is transferred to each client. The clients
evaluate the trained model on their local data and report the
achieved accuracy back to the server. Our contribution to
this is that based on the transmitted accuracies a key metric
(data skew) is calculated. The metric enables comparability
between Non-IID data sets and allows evaluation of the
degree of heterogeneity present in federated environments
without requiring insight into the clients’ data, which is
a necessity in the context of Federated Learning. For the
purpose of this paper we introduce data skew as the following
metric:

max(∆Accuracy pairwise)
DAT ASKEW = 1 Pn 

(Accuracy Clienti)n i=0 

As a frst input variable the maximum pairwise deviation of
the accuracy score over all clients (including the client on
which to initial model was trained) is consulted. For strongly
heterogeneous data sets this variable can approximate 1.
For example, in the case of pathological Non-IID data sets
where every client has strictly distinct labels which no other
client shares the initial model might get an accuracy-score
close to 1 on the client it was trained on while it may reach
an accuracy of nearly 0 on another client. The maximum
pairwise deviation is being consulted so the accuracies in
between don’t matter in this case. To put this into relation
the average accuracy over all clients is used otherwise there
would be a strong bias towards environments with a high
average accuracy. To give an example with numbers: Let the
pairwise deviation of the accuracies in two given setups be
0.2. But in the frst environment the average accuracy over
all clients is 0.6 while in the second setup it is 0.1. With the
presented metric the second environment gets evaluated with
a data skew value of 2, while the frst achieves a much lower
value of 0.33. The experiment later on will show that even
a value of 0.33 is high enough to beneft from strategies to
reduce the effect of the heterogeneous distribution of the data.
The metric serves the purpose of this paper as an indicator
of the level of data skew to evaluate which of the presented
strategies is appropriate for a given scenario.
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Fig. 2. Data partitioning of MNIST using different alpha-values for inhomogeneity simulation

B. EXPERIMENTAL SETUP

Our study has associated different degrees of data skew
with each aggregation strategy to validate the proposed ap-
proach within FL settings. We conducted these experiments
using three well-known datasets widely recognized in the
community: CIFAR10, CIFAR100, and MNIST. For our
experiments, we utilized a Convolutional Neural Network
(CNN) model as described in Table I.

The results obtained in this study serve as a benchmark
and a valuable reference for researchers, offering guidance on
selecting an appropriate skew strategy to handle non-IID data
grounded in a thorough dataset evaluation effectively. All ex-
periments in this study were conducted on a machine equipped
with the following specifcations: Intel(R) Core(TM) i7-
10870H, CPU @ 2.20GHz 2.21 GHz, 16 GB RAM, and
NVIDIA GeForce RTX 3060 Laptop GPU.

We employed a random data partitioning approach across
ten clients to simulate a federated learning environment.
This partitioning scheme encompasses two distinct cases: (1)
near homogeneous partitioning (IID), and (2) heterogeneous
partitioning (Non-IID). Following the methods proposed by
Yurochkin et al. and Wang et al., we utilized the Dirichlet
distribution to allocate data to each client, with the allocation
being determined by the dataset and a corresponding α-value
[33] [34]. It’s worth noting that higher α-values result in more
homogeneous data distribution. For the frst near-homogeneous
case, we set α to 1,000,000. For the second case, we employed
smaller α-values ranging from 0.01 to 10, generating varying
degrees of data skew within the datasets. This data partitioning
approach primarily targets skew in label and sample volume
distribution, ensuring that each client retains the entirety of
the features without introducing skew in feature distribution.

The data splits for the two respective α-values are illustrated
in Figure 2, wherein the left panel, α=1,000,000 represents the
near homogeneous edge case. In contrast, in the right panel,
α=1 represents a more realistic distribution for real-world

applications. Moreover, in Figure 2, each label (10 lables) of
the MNIST dataset is represented in a distinct color, and the
corresponding number of data samples assigned to each client
is depicted.

With the synthetically generated Non-IID datasets in place,
we examined and compared various non-IID data handling
strategies in terms of kappa, accuracy and F1 measure to
validate their effectiveness in tackling this issue in FL context.
To ensure comparability and applicability to other research,
we have adopted commonly used model parameters frequently
used in FL studies [35] . In our conducted experiment,
we simulate a federated learning scenario where a vanilla
CNN model is trained independently locally by ten clients.
We executed 10 communication rounds and 5 local epochs
throughout the training process. It’s important to note that
our computational resources imposed these limitations on the
study.

Subsequently, we will use several existing non-IID data
handling strategies in the literature. Specifcally, we will ex-
amine the performance of FedProx [21], FedAdam [27], [28],
FedAvgM [25], FedOpt [26], and FedMedian [24], utilizing
the default parameters as provided by Flowers framework [36],
across various α-values and datasets. It’s important to note
that the FedAvg strategy will also be used as a benchmark
to provide a comparative baseline, disregarding the non-IID
data issue. Table II reports the model Accuracy, F1-Score and
Kappa values obtained from the experiments, which will serve
as a reference for identifying the most effective strategies in
addressing different levels of data heterogeneity.

V. RESULTS AND ANALYSIS

The experimental results validate the effcacy of our pro-
posed metric, Dataskew, in gauging the heterogeneity preva-
lent within distributed datasets. Intriguingly, while reliably
assessing heterogeneity, our method operates without needing
direct insight into client-specifc data. Thus, both from a
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TABLE I
THE CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURE USED IN THIS STUDY TO VALIDATE THE PROPOSED APPROACH.

Layer Type Input dimension Output dimension Activation
Conv1 Conv2d (32, 3/1*, 32/28*, 32/28*) (32, 6, 28/24*, 28/24*) ReLU
MaxPool1 MaxPool2d (32, 6, 28/24*, 28/24*) (32, 6, 14/12*, 14/12*) None
Conv2 Conv2d (32, 6, 14/12*, 14/12*) (32, 16, 10/8*, 10/8*) ReLU
MaxPool2 MaxPool2d (32, 16, 10/8*, 10/8*) (32, 16, 5/4*, 5/4*) None
Flatten View (32, 16, 5/4*, 5/4*) (32, 400/256*) None
Fully Connected (FC1) Linear (32, 400/256*) (32, 120) ReLU
Fully Connected (FC2) Linear (32, 120) (32, 84) ReLU
Fully Connected (FC3) Linear (32, 84) (32, 10/100*) None

* It’s worth noting that the confguration of the output layer varies depending on the number of labels present in the dataset, which includes CIFAR10,
CIFAR100, and MNIST.

Fig. 3. Performance of the used aggregation strategies for MNIST

practical and theoretical standpoint, Dataskew emerges as a
compelling heuristic for this context.

Across three diverse datasets, the behavior of the metric
aligns with our expectations. The metric’s value gravitates
towards zero in scenarios with near-uniform data distributions.
Conversely, the metric exhibits an upward trend as the dataset’s
heterogeneity intensifes. A notable observation from Table 2
is the discernibly lower Dataskew for the CIFAR10 dataset at
an α value of 100 in comparison to 1,000,000. This can be
attributed to the marginal variance that the data split introduces
at these particular α values. This observed higher Dataskew
at α=100, relative to α=1,000,000, is likely a consequence of
random data fuctuations. The synthesis parameter, α, used to
generate data splits, is available in our study’s context. How-
ever, this parameter remains elusive in real-world applications
where client data remains inaccessible. The Dataskew metric,
given its commendable correlation with the α-value, emerges
as a potent tool to bridge this informational chasm.

As elucidated in Figure 3 for the MNIST dataset at alpha-
values of 1 and 1,000,000, the convergence dynamics of
different aggregation methodologies furnish valuable insights.
Given MNIST’s computationally amenable nature, we ramped

up the communication rounds to a century to guarantee con-
vergence. For the sake of clarity, the initial communication
rounds, which demonstrate homogenous convergence trends
across strategies, have been eschewed. Similarly, FedAdam,
which paradoxically showcased deteriorating accuracies with
escalating communication rounds—possibly a fallout of lever-
aging built-in default parameters—is excluded. A juxtaposition
of the convergence patterns for disparate alpha-values vividly
underscores the repercussions of Non-IID data. As hetero-
geneity escalates, palpable fuctuations in the global model’s
quality become evident. Notably, FedAdam and FedAvgM
are particularly susceptible to this volatility. However, other
aggregation strategies exhibit resilience and consistency, even
under pronounced Non-IID conditions. To render a more
holistic evaluation of aggregation strategies, especially from
a long-term perspective, we advocate for an augmentation in
communication rounds, surpassing the 100 mark.

All four algorithms perform well when there is no data skew
(alpha = 1.000.000). However, as the data skew increases, the
performance of FedAvg and FedProx deteriorates. FedMedian
and FedOpt, on the other hand, are able to maintain good
performance even when the data skew is high.
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TABLE II
EXPERIMENTAL RESULTS AFTER 100 COMMUNICATION ROUNDS, BLUE VALUES SHOWING MAXIMUM RESULTS, RED VALUES SHOWING MINIMUM

RESULTS.

Achieved Accuracy [%]
F1-Score

Data set α dataskew Kappa

FedAvg
µ=0.01

FedProx
µ=0.1 µ=0.5 FedAdam FedAvgM FedMedian FedOpt

38.0% 39.0% 21.2% 24.7% 25.2% 33.1% 24.9% 28.1%
0.01 3.899 0.496 0.513 0.285 0.271 0.044 0.472 0.248 0.405

0.190 0.224 0.110 0.067 0.005 0.183 0.137 0.163

CIFAR10 0.1 2.245
39.6%
0.456

48.0%
0.547

37.7%
0.371

20.6%
0.185

16.6%
0.132

46.6%
0.542

44.5%
0.465

47.3%
0.534

0.246 0.317 0.251 0.064 0.035 0.296 0.267 0.311
55.0% 58.9% 49.4% 14.0% 21.6% 54.5% 60.0% 55.6%

1 0.725 0.567 0.617 0.519 0.053 0.199 0.565 0.622 0.579
0.481 0.524 0.419 0.0 0.138 0.472 0.529 0.485
58.3% 59.4% 50.1% 9.8% 50.8% 56.0% 61.1% 58.9%

10 0.188 0.583 0.597 0.495 0.018 0.397 0.566 0.613 0.588
0.535 0.546 0.443 0.0 0.343 0.509 0.565 0.541
61.0% 60.6% 47.3% 9.6% 35.9% 57.4% 58.9% 61.0%

100 0.088 0.608 0.602 0.462 0.034 0.326 0.577 0.589 0.608
0.567 0.562 0.413 -0.007 0.288 0.526 0.543 0.566

61.2% 59.7% 10.1% 11.1% 43.7% 56.4% 61.0% 60.2%
1,000,000 0.194 0.611 0.596 0.021 0.039 0.425 0.565 0.609 0.601

0.569 0.552 0.0 0.012 0.375 0.515 0.566 0.557
8.9% 9.4% 11.6% 0.1% 1.1% 8.0% 5.2% 8.7%

0.01 8.907 0.100 0.124 0.147 0.0 0.015 0.110 0.053 0.103
0.075 0.081 0.101 -0.001 0.007 0.065 0.041 0.074

CIFAR100 0.1 3.827
17.0%
0.178

20.2%
0.243

18.3%
0.218

0.8%
0.001

6.2%
0.075

15.0%
0.187

14.9%
0.149

17.2%
0.203

0.156 0.187 0.169 0.001 0.051 0.136 0.135 0.159
22.2% 24.8% 17.5% 0.4% 4.8% 19.3% 23.9% 25.6%

1 0.800 0.223 0.258 0.167 0.0 0.033 0.197 0.238 0.266
0.213 0.239 0.166 0.0 0.038 0.183 0.229 0.247
24.2% 23.4% 1.2% 1.1% 7.3% 22.1% 23.7% 26.1%

10 0.442 0.238 0.227 0.001 0.0 0.069 0.220 0.233 0.252
0.234 0.226 0.004 0.0 0.063 0.213 0.229 0.253
24.9% 24.4% 0.7% 1.3% 10.1% 21.6% 24.4% 25.8%

100 0.374 0.239 0.231 0.0 0.001 0.089 0.214 0.233 0.249
0.241 0.236 0.0 0.005 0.092 0.208 0.236 0.250
25.5% 27.4% 1.0% 1.2% 12.5% 20.9% 24.5% 25.0%

1,000,000 0.318 0.245 0.256 0.002 0.007 0.115 0.209 0.237 0.240
0.247 0.266 -0.001 0.002 0.116 0.201 0.237 0.242
52.5% 83.3% 39.6% 20.0% 30.8% 67.6% 40.7% 37.4%

0.01 10 0.607 0.901 0.503 0.254 0.414 0.731 0.463 0.438
0.040 0.325 0.094 0.042 0.008 0.203 0.002 0.004

MNIST 0.1 2.005
92.6%
0.942

97.4%
0.983

91.3%
0.947

87.7%
0.916

90.0%
0.880

96.1%
0.976

98.3%
0.990

97.9%
0.987

0.863 0.951 0.815 0.775 0.793 0.906 0.947 0.954
98.2% 98.9% 97.0% 89.2% 94.9% 98.5% 98.6% 98.5%

1 0.668 0.983 0.989 0.971 0.895 0.950 0.986 0.986 0.985
0.978 0.987 0.963 0.869 0.938 0.982 0.982 0.981
98.8% 98.8% 97.8% 12.0% 97.5% 98.8% 99.0% 99.2%

10 0.029 0.988 0.988 0.978 0.057 0.975 0.988 0.990 0.992
0.987 0.986 0.975 0.045 0.972 0.987 0.989 0.991
99.0% 99.1% 97.9% 92.7% 97.5% 99.0% 99.2% 99.0%

100 0.024 0.990 0.991 0.979 0.927 0.975 0.990 0.992 0.990
0.989 0.990 0.977 0.919 0.972 0.989 0.991 0.989
98.9% 98.9% 98.1% 11.9% 97.2% 98.7% 98.8% 99.0%

1,000,000 0.025 0.989 0.989 0.981 0.046 0.972 0.987 0.988 0.990
0.988 0.987 0.978 0.023 0.969 0.985 0.986 0.988



Hence, Figure 3 demonstrates that data skew can signif-
cantly impact the performance of FL algorithms. It also shows
that there are algorithms that can be used to mitigate the effects
of data skew.

Moreover, our benchmarking experiments in Table II offer
pivotal insights, especially pertinent for datasets exhibiting
extremities in Dataskew values. For instances with Dataskew
values ranging between 2 and 10, FedProx, particularly at
lower µ values, consistently outstrips FedAvg, reiterating its
superiority in high heterogeneity contexts. Meanwhile, for
datasets with minimal skewness (values below 0.5), FedAvg
produces commendable results, albeit marginally overshad-
owed by FedOpt, hinting at the latter’s potential robustness
in low heterogeneity settings. The performance spectrum for
Dataskew values nestled between 0.5 and 2, especially with
respect to FedMedian, warrants more exhaustive exploration
to discern overarching patterns. As we advance in this research
trajectory, we remain optimistic about our metric’s sustained
correlation with actual data heterogeneity. However, more
empirical evaluations, especially with real-world datasets, are
imperative to cement its universality.

Overall, the table shows that FedMedian and FedOpt are
good choices for FL applications with a data skew risk. If
computational effciency is essential, then FedMedian is a
good choice. If performance is the most crucial consideration,
then FedOpt is a good choice.

In future work, we anticipate that the metric will continue
to correlate well with the actual heterogeneity in the data set.
Further test series with other handling strategies and other data
sets, especially real world data sets, are needed to determine
if the selection of the best strategy correlates adequately with
the introduced metric or whether additional parameters are
necessary to make a fnal decision. Table 2 contains the
preliminary results.

VI. CONCLUSIONS AND FUTURE WORK

Over recent years, federated learning (FL) has emerged
as a promising paradigm for privacy-preserving distributed
machine learning. However, the challenge posed by non-
IID data has consistently undermined its potential in various
applications. In addressing this issue, this paper has made a
signifcant contribution by proposing a novel metric to quantify
data heterogeneity in distributed datasets, thereby flling an
existing void in the literature.

Our systematic review and state-of-the-art taxonomy of non-
IID data handling strategies offer a valuable resource for
researchers and practitioners. This foundation assists in the
informed selection of appropriate strategies contingent on the
level of data skewness in specifc datasets. By providing clarity
on this front, our work facilitates more pragmatic decision-
making when navigating the complexities of non-IID data in
real-world federated learning deployments.

This research signifes a substantial advancement towards
a systematic approach for assessing and managing non-IID
data in FL, further deepening our comprehension of its
ramifcations and offering means to counteract its effects.

Notwithstanding these contributions, areas for future explo-
ration remain evident. There is potential in broadening the
spectrum of strategies evaluated, refning the proposed metric
for broader applicability, and investigating clustered aggrega-
tion and data-sharing nuances. One limitation worth addressing
in subsequent studies is our model’s susceptibility to single
outliers, especially in expansive cross-device settings. Such
endeavors will undeniably fortify the robustness and reliability
of FL models in the face of data heterogeneity.
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