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Abstract: While current video quality assessment research predominantly revolves around resolutions
of 4 K and beyond, targeted at ultra high-definition (UHD) displays, effective video quality for mobile
video streaming remains primarily within the range of 480 p to 1080 p. In this study, we conducted
a comparative analysis of the quality of experience (QoE) for widely implemented video codecs
on mobile devices, specifically Advanced Video Coding (AVC), its successor High-Efficiency Video
Coding (HEVC), and Google’s VP9. Our choice of 720 p video sequences from a newly developed
database, all with identical bitrates, aimed to maintain a manageable subjective assessment duration,
capped at 35–40 min. To mimic real-time network conditions, we generated stimuli by streaming
original video clips over a controlled emulated setup, subjecting them to eight different packet-loss
scenarios. We evaluated the quality and structural similarity of the distorted video clips using
objective metrics, including the Video Quality Metric (VQM), Peak Signal-to-Noise Ratio (PSNR),
Video Multi-Method Assessment Fusion (VMAF), and Multi-Scale Structural Similarity Index (MS-
SSIM). Subsequently, we collected subjective ratings through a custom mobile application developed
for Android devices. Our findings revealed that VMAF accurately represented the degradation in
video quality compared to other metrics. Moreover, in most cases, HEVC exhibited an advantage
over both AVC and VP9 under low packet-loss scenarios. However, it is noteworthy that in our test
cases, AVC outperformed HEVC and VP9 in scenarios with high packet loss, based on both subjective
and objective assessments. Our observations further indicate that user preferences for the presented
content contributed to video quality ratings, emphasizing the importance of additional factors that
influence the perceived video quality of end users.

Keywords: QoE metrics; video quality assessments; HEVC and AVC comparison; mobile codecs
efficiency; multimedia streaming; QoE IFs

1. Introduction

The affordability of handheld mobile devices with internet availability has resulted in
the tremendous growth of multimedia traffic. More brands are turning towards content
creators for the promotion of their products, and the quality of content with good end-user
experience is the key to success due to severe competition among monetized offerings. The
anticipated global monthly data usage is 19 GB in 2023 as per the latest mobile data traffic
forecasts [1,2]. There is a shift towards the consumption of multimedia, especially video
streaming and gaming, on mobile devices. The global mobile-gaming market has already
reached around 185 billion US dollars as of 2022 and is expected to grow three-fold by the
end of 2027 [3–5]. The ascent of multimedia and gaming on mobile phones is emblematic
of a transformative shift in how individuals engage with digital content and entertainment.
The convergence of powerful hardware, intuitive user interfaces, and a thriving app ecosys-
tem has turned mobile devices into multifunctional entertainment hubs. This paradigm
shift can be attributed to several key factors. Firstly, the increasingly sophisticated mobile

Electronics 2024, 13, 329. https://doi.org/10.3390/electronics13020329 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020329
https://doi.org/10.3390/electronics13020329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8929-4911
https://orcid.org/0000-0003-4327-117X
https://doi.org/10.3390/electronics13020329
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020329?type=check_update&version=1


Electronics 2024, 13, 329 2 of 17

hardware, equipped with high-resolution displays, robust processors, and advanced graph-
ics capabilities, has created an ideal platform for delivering visually immersive multimedia
and gaming experiences [6,7]. Secondly, the availability of high-speed internet connectivity,
particularly the widespread deployment of 4G and the emergence of 5G networks, has en-
sured seamless streaming and online multiplayer gaming experiences [8,9]. Moreover, app
marketplaces, such as Apple’s App Store and Google Play, have fostered an environment
where developers can innovate and publish an extensive array of multimedia and gaming
applications, meeting diverse user preferences. As a result, mobile phones have become a
primary medium for entertainment consumption, reshaping the dynamics of the media
and gaming industries [10,11]. Thus, the success of any social media application with video
at its core relies on choosing the correct platform, codecs, and optimizations to adapt to
end-to-end network quality parameters.

Taking into consideration the aforementioned factors, we conducted an analysis of
the performance of the most widely employed video codecs across diverse hardware and
software platforms, particularly in the context of video streaming and mobile gaming.
Video codecs are fundamental in the compression and transmission of digital video content,
and the comparison between the AVC (Advanced Video Coding, H.264), HEVC (High-
Efficiency Video Coding, H.265), and VP9 codecs has attracted significant attention. While
HEVC and VP9 may indeed offer superior coding efficiency with respect to compression,
AVC maintains a dominant market share of nearly 80% in the mobile device sector [12].
This prevalence can be attributed to its lower processing overhead, resulting in reduced
computational demands—a vital consideration for mobile devices. This paper presents
a comprehensive codec comparison, evaluating both objective and subjective quality of
experience (QoE) metrics to gauge user perception. Additionally, we analyzed the impact of
human-influencing factors, such as user contentment with the displayed material, on video
quality assessments. Beyond the conventional mean opinion score (MOS), we incorporated
the Good or Better (GoB) and Poor or Worse (PoW) metrics, which are highly recommended
for delivering a more transparent and well-rounded assessment of user ratings [13,14].
Our findings affirm that, regardless of its age, AVC demonstrated a superior performance,
at least on mobile devices, owing to its optimization and lower computational demands.
Moreover, our results underscore the significance of human-influencing factors and their
potential to impact video quality ratings.

The paper is structured as follows: In Section 2, we offer an overview of the back-
ground and a concise exploration of relevant technologies. Section 3 provides comprehen-
sive details of the experimental setup, including all of the parameters. Section 4 presents
the assessment outcomes, accompanied by essential explanations. Lastly, Section 5 outlines
the conclusions drawn from our study.

2. Background

In this section, we focus on the video codec standards, the QoE perspective for quality
comparison, and the role of additional impact factors. A summary of previous work
relevant to this paper is also discussed.

Significant research has been conducted to evaluate the performance disparities be-
tween HEVC, VP9 and AVC across various scenarios encompassing bitrate, quality opti-
mization, and computational overhead. These investigations spanned from QoE assess-
ments on high-definition displays to crowdsourced studies. Several widely-used databases
are currently available employing emulated testbeds, although their focus predominantly
centers on HTTP adaptive streaming [15–17]. Therefore, a noticeable research gap exists
regarding the impact of these codecs’ performance specifically on mobile devices, utilizing
a database obtained within an emulated network, employing the conventional RTSP/UDP
approach for prospective benchmarking purposes.

Song et al. [18] modeled the performance of AVC, HEVC, and VP9, observing that
VP9 and HEVC exhibited a superior bitrate performance of 33% to 44%, respectively,
across multiple resolutions compared with AVC. However, the database used in their
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study was solely comprised of encoded videos generated locally, lacking consideration
of computational overhead. Casas et al. [19] measured QoE provision on smartphones,
employing lab-based assessments and user ratings garnered through crowdsourcing. Their
evaluation encompassed platforms like YouTube, WhatsApp, and Facebook accessed via
Chrome and Google Maps. Notably, this study did not delve into the analysis of underlying
codecs or specialized applications for quality assessment. Some other research studies
have focused on codec performance within vehicular networks and live video broadcasting
on mobile devices, exploring platforms such as Periscope and Facebook Live. These
studies emphasized the performance evaluation of communication protocols like Real-time
Messaging Protocol (RTMP) and HTTP Live Streaming (HLS), and were not focused on
underlying codec performance [20–22].

2.1. Video Codecs

Video coding standards are primarily evaluated based on compression performance
alongside the ability to maintain video quality. The implementation of coding standards
within an application is extremely important by maintaining the defined syntax of bit-
stream and the decoding process, while encoders generate standard-compliant bitstream
and thus determine compression performance. This is primarily the reason that old codec
with a relatively higher degree of optimizations within an application, over the years, may
outperform the new codec with better theoretical compression efficiency.

2.1.1. AVC and HEVC

H.264/MPEG-4-AVC [23] was launched back in 2004 and is still a widely used video
coding standard over diverse platforms. According to Bitmovin’s Video Developer Report,
H.264 (AVC) is the world’s most popular codec with an estimated 90% of videos using it.
Most modern devices with a heterogeneous platform support AVC, and due to the low
computational overhead as compared to its rivals, this makes it a first choice for mobile-
based applications [12]. AVC leverages both spatial and temporal redundancy reduction
techniques to compress video data effectively. Spatial compression is facilitated through
intra-frame coding, which encodes each frame independently. Temporal compression, on
the other hand, is achieved through inter-frame prediction, where subsequent frames are
predicted based on preceding frames, and only the differences (residuals) are encoded.
Additionally, AVC employs predictive coding, which involves predicting pixel values
based on neighboring pixels, thereby reducing the amount of information that needs to be
transmitted. The codec also features advanced entropy coding techniques, such as context-
adaptive binary arithmetic coding (CABAC), which adaptively encodes symbols based on
the context, resulting in more efficient coding. AVC’s versatility is evident in its support for
a wide range of video resolutions and bit rates, rendering it suitable for diverse applications,
from low-resolution video conferencing to high-definition video streaming [24,25].

HEVC, also known as H.265, represents a significant advancement in video compres-
sion standards. Developed through a collaborative effort between the ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG), HEVC
was introduced to address the growing demand for more efficient video compression
while maintaining high-quality video [26]. HEVC introduces coding tree units (CTUs),
enabling more flexible partitioning of coding units and improving compression efficiency.
It employs quad-tree block partitioning, variable block sizes, and a wider range of pre-
diction directions, enhancing its ability to capture intricate motion in video [27]. HEVC’s
advanced compression capabilities make it well-suited for ultra-high-definition (UHD)
video content, as it can deliver the same quality video at approximately half the bit rate of
its predecessor, H.264.

2.1.2. VP9

Google’s VP9 is an open-source video codec that has emerged as a significant player
in the domain of video compression, particularly in web-based video streaming and mobile
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gaming. Designed as a royalty-free alternative to established standards like H.264 and
H.265, VP9 is part of Google’s WebM project, which aims to provide efficient and high-
quality video codecs for web applications. VP9 employs a variety of advanced techniques
to achieve its compression goals. These include both intra-frame and inter-frame coding,
enabling efficient compression by encoding individual frames independently and using
inter-frame prediction to reduce redundancy. The codec supports a range of block sizes,
allowing it to adapt to various types of video content. A notable advantage of VP9 is its
capability to handle higher resolutions and bit depths, making it particularly suited for ultra-
high-definition (UHD) content [28,29]. This feature, combined with its open-source nature,
has made VP9 a popular choice for streaming and web video applications like YouTube.
However, the codec may face challenges related to hardware decoder support on different
devices, as Apple devices do not support VP9. Despite this, VP9 remains a significant
contender in the landscape of video codecs, offering efficient compression while avoiding
licensing costs, which is particularly advantageous for web-based video streaming.

2.2. QoE Perspective

The term QoE is defined by ITU-T as “The degree of delight or annoyance of the user
of an application or service” [30], with reference to the full definition, which continues with
“It results from the fulfillment of his or her expectations with respect to the utility and/or
enjoyment of the application or service in the light of the user’s personality and current
state” [31]. QoE offers a spectrum of objective metrics aimed at gauging user perception
regarding video quality through various tools. However, the most dependable measure
resides in direct user interaction, achieved by conducting subjective assessments.

2.3. Objective Metrics

Evaluations of video quality can be categorized as full-reference, reduced-reference,
or no-reference, contingent upon the accessibility of original videos for reference. The
complexities inherent in aggregating video databases and the limited availability of full-
reference necessitate the development of diverse methodologies for gauging no-reference
bitstream data such as progressive downloads, image quality assessments, and adaptive
video streaming [32–34]. Our research focuses on mobile devices, prioritizing lifelike
resolutions for video streaming. We have constructed a video stimuli database within an
emulated network environment, guaranteeing the availability of extensive full-reference
data for our evaluations. The objective metrics employed in evaluating QoE span various
families, such as structural similarity metrics encompassing methodologies like the Multi-
Scale Structural Similarity Index (MS-SSIM), among others. Additionally, within the realm
of principle quality metrics, notable members include the Peak Signal-to-Noise Ratio
(PSNR) and Video Multi-method Assessment Fusion (VMAF), etc. [35]. These full-reference
metrics primarily function to measure the disparity between the original frames and those
received, constituting the video stream. Notably, different video codecs tend to yield
distinct distortions, posing a challenge for these metrics. This study integrates MS-SSIM,
VMAF, PSNR, and Video Quality Metric (VQM) methodologies to ascertain video quality,
considering the nuanced implications of codec-induced distortions.

2.3.1. PSNR and MS-SSIM

SSIM and PSNR are the prevailing objective metrics for quantifying image and video
quality owing to their computational simplicity and extensive historical benchmarking,
among other factors. A multitude of scientific publications have evaluated the merits and
demerits of these metrics. A comprehensive synthesis of these deliberations is available via
the MSU Graphics and Media Lab Video Group link, drawing insights from an analysis
encompassing 378 articles [36]. MS-SSIM is an enhancement of the traditional structural
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similarity index by using sub-sampling on multiple stages and involves structural distortion
measurement instead of the error [37]. The MS-SSIM is defined as follows:

MS-SSIM =
1
N

N

∑
i=1

[
SSIMi(L) · (MS-SSIMi(C))

β
]

(1)

where:

MS-SSIM = Multi-Scale Structural Similarity Index

N = Number of scales

i = Scale index, ranging from 1 to N

SSIMi(L) = SSIM at scale i for the luminance (luma) component

MS-SSIMi(C) = Contrast component of MS-SSIM at scale i

β = Weighting parameter

2.3.2. VQM and VMAF

VQM assesses the perceptual impact of video distortions, encompassing aspects
such as blurring, irregular motion, global noise, block distortion, and color aberrations,
combining these factors into a unified metric. Empirical testing outcomes demonstrate a
strong alignment between VQM scores and subjective evaluations of video quality, leading
to its adoption by ANSI as a benchmark for objective video quality assessment [35,38].

VMAF is a video quality metric developed by Netflix in collaboration with multiple
research groups, notably the Laboratory for Image and Video Engineering (LIVE) at The
University of Texas. The metric measures information fidelity loss, loss of details, impair-
ments, and temporal difference based on luminance [39]. It tends to outperform other
metrics in both Netflix tests and other video quality tool benchmarks [40,41].

2.4. Subjective Metrics

The Mean Opinion Score (MOS) serves as the prevailing subjective metric employed to
quantize user perception regarding a stimulus and has found extensive adoption within the
industry for assessing speech and video quality [30]. Several studies delve into the efficacy
of MOS, debating whether the disparity between ratings like “Good” and “Excellent”
equates to the difference observed between “Poor” and “Bad”. Conversely, other research
explores the relevance of MOS in accurately predicting user perception towards stimuli,
highlighting its potential in assessing acceptability [42–44]. On the other hand, many
factors can influence user ratings, like the user background and test environment. The term
influence factor (IF) is defined as “any characteristic of a user, system, service, application,
or context whose actual state or setting may have influence on the Quality of Experience
for the user” [31].

In this paper, we analyzed the impact of user liking (delight) towards the shown
content on her video quality ratings, which resulted in multiple sub-groups. So, apart from
standard statistical computations, we calculated one-way ANOVA to analyze the difference
and statistical relevance of our results when there were more than three sub-categories.
One-way ANOVA can be easily calculated from the mean-squared error and is commonly
derived as shown below:

MSE =
∑k

i=1 ∑ni
j=1(Xij − X̄i)

2

N − k
where N is the total number of observations. k is the number of groups or treatments. ni is
the number of observations in the i-th group. We can compute the overall sample mean
X̄ and the between-group variability, also known as the Mean Squared Treatment MST, is
provided by the following:
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MST =
∑k

i=1 ni(X̄i − X̄)2

k − 1

The test statistic for one-way ANOVA is the ratio of the between-group variability to
within-group variability, known as the F-statistic:

F =
MST
MSE

Under the null hypothesis, the F-statistic follows an F-distribution with (k − 1, N − k)
degrees of freedom. We can compare the calculated F-statistic to the critical value from the
F-distribution table to make a decision. If F > Fα, we reject the null hypothesis in favor of
the alternative.

3. Experimental Setup

This section describes the reasons for the choice of video stimuli for this paper, the de-
tails about the emulated network, induced transmission impairments, and the methodology
used for conducting the subjective assessment.

3.1. Video Selection

Drawing from our prior experiences and ongoing discussions pertaining to prolonged
subjective assessments involving numerous video stimuli lasting a few seconds each [45,46],
it was observed that users tend to become bored and start losing focus, which may affect
their ratings. Consequently, we created a database by selecting four original video clips
from the xiph.org test suite, resulting in a database of 112 video stimuli after distortions
to maintain a reasonable duration for the subjective assessment process. The technical
specifications of these videos are available in Table 1.

Table 1. Reference video specifications.

Name Length Seconds f ps Resolution

Ducks 10 50 1280 × 720
Johnny 10 60 1280 × 720

KristenAndSara 10 60 1280 × 720
Vidyo1 10 60 1280 × 720

The source video sequences are in color-sensitive raw format, i.e., YUV4Mpeg (.y4m).
All four videos belong to YUV 4:2:0 color space with three different temporal and spatial
characteristics, as per ITU-T P.910 recommendations [47]. All four videos are different from
each other in terms of spatial characteristics. The spatial and temporal details of these
videos can be found in these articles [48–50]. AVC and HEVC videos were encoded using
libx264 and libx265 video coding libraries, respectively, with Matroska [51] as the container,
whereas the VP9 videos were encoded using the libvpx-vp9 library and WEBM [28] as
the container. Although the most common resolution for video streaming over mobile
devices was still hovering around 480 p, we chose the 720 p resolution, which was the most
common resolution for video streaming on mobile devices for applications like YouTube
over high-speed 4G/5G networks or Wifi [52,53].

The sample frames from the original source sequences are shown in the Figure 1.
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(a) Ducks (b) Johnny (c) KristenAndSara (d) Vidyo1

Figure 1. Frames from reference videos.

As the focus of the research was on additional influencing factors and to remain
focused on the benchmarking of objective and subjective metrics, apart from the Ducks
video, the remaining three videos fell in the low temporal index. The Ducks video had
medium spatial and temporal effects, while Johnny, KristenAndSara, and Vidyo1 belonged
to different categories in terms of their spatial index.

3.2. Emulated Testbed and Network Impairments

The experimental setup used for collecting the video stimuli can be categorized into
four groups [44]:

1. to compress the test media using different codecs, resolutions, bps, and frame rates
into the local machine. The benchmarking of the resultant video and compression
efficiency is used to determine the quality of the video codec.

2. to use the real-time network and streaming videos using different parameters men-
tioned above and collecting the stimuli on the end-devices.

3. to use simulation software to stream stimuli with different codec settings on a depicted
network with varying transmission impairments.

4. to use an emulated testbed for real network experience with an opportunity for
repeatable results.

We adopted the emulated network approach to replicate the real network conditions
and manage issues like priorities associated with video packets in a repeatable environment.
The setup used for establishing the emulated network is shown in the Figure 2.

Figure 2. Video streaming setup: emulated approach.

The emulated testbed consists of a streaming media server, a network emulator, and a
client. The test network is designed to identify the effect of packet loss on the quality of
videos encoded in H.264, H.265, and VP9. The apparatus is designed to stream HD videos
from the FFmpeg [54] streaming server to a client encoded with different video codecs
using RTSP protocol through a network emulator (NetEm) [55], where different network
impairments have been imposed on the passing traffic and the distorted video stream is
captured by the client. FFmpeg supports all of the latest codecs, including H.264, H.265,
and VP9. It also supports all types of UDP and TCP streaming protocols. Another notable
advantage of this testbed lies in its capacity for adaptation to facilitate the deployment and
exploration of forthcoming codecs, such as Versatile Video Coding (VVC) [56] once they
attain stable implementations and become officially available on open-source platforms
like FFmpeg. NetEm is responsible for routing between the server and client using multiple
network interfaces; hence, it acts as an interface between the media server and streaming
client. The details of the used hardware/software can be found in Table 2.
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Table 2. Hardware Specifications for the emulated testbed.

Specifications Streaming Server Traffic Shaper Client

Platform HP ProLiant DL120 Dell OptiPlex 9020 Dell OptiPlex 3050 (AIO Series)
Processor Intel Xeon E5-1620 Intel Core i7 3.6 GHz-Quad Core Intel Core i7 3.4 GHz-Quad Core

RAM 16 GB DDR4 8 GB DDR3 8 GB DDR4
OS Windows 10Pro Fedora 31 (Server Edition) Windows 10Pro

Storage 512 GB SSD 500 GB HDD 7200 RPMs 256 GB SSD
Software FFMPEG 4.3.1 NetEm Kernel Version 5.5.8 FFMPEG 4.3.1

We chose nine packet loss scenarios ranging from 0% to 10% for streaming videos on
the emulated setup. There was no delay or jitter associated with the video stimuli used in
this experiment. The main reason for this choice was the length of the subjective assessment
due to the benchmarking of three codecs. To obtain the objective metrics mentioned in
Section 2.3. we used the MSU Video Quality Measurement Tool (VQMT) 13.1 free version,
which has some limitations compared with the Pro version but provides correct results,
unlike the Demo version [57].

3.3. Subjective Assessment

While we analyzed the codecs with both objective and subjective metrics along with
the additional influence factor of delight on a mobile device, we developed an Android
application for conducting the subjective assessment and Google Firebase [58] was used
for the collection of results. The assessments were conducted on a Samsung Note 10
Lite (SM-N770F/DS) mobile with 8 GB of RAM. Because of the nature of the experiment,
it was not possible to conduct the assessment in the perceptual lab, but the methods
for conducting the individual assessments and rating scales were used as per the ITU-T
P.910 [47] and ITU-R BT.500-14 [59] recommendations. Prior to each assessment, a training
session was conducted wherein users received comprehensive instructions, both verbally
and in written form, as illustrated in Figure 3. Moreover, subjective assessments were
carried out in accordance with the research ethics principles outlined by the Swedish
Research Council [60]. In the next step, test media without distortions were shown to the
user, and they were asked whether they liked it or not based on a binary scale of “Yes” or
“No”. The users were also requested to provide their ranking of the content based on their
delight towards the shown content on a 1–9 point scale. These ratings were scaled down to
five-point scale with a step size of 0.5 using the formula 5 − (9 − R)/2, where R stands for
delight rating on the nine-point scale. This conversion helped us in comparing the effect of
content delight with corresponding MOS. This categorization also helped us increase the
number of users in each sub-category. The basic user data along with influence factors were
taken from the users, as shown in Figure 3. The stimuli encoded with different codecs and
packet loss ratios but belonging to the same group, i.e., Johnny, etc., were shown randomly
to the subjects. The users were provided the choice to take a break after watching the first
two sets of videos and the majority of users took a 3–5 min break. The user ratings for
video quality were obtained using the Single-Stimulus method on a five-point Absolute
Category Rating (ACR) scale.

The selection of test media for this paper comprised a total of 112 videos, includ-
ing the originals, resulting in a total assessment time of around 35–40 min. A total of
51 participants rated the test media, resulting in the compilation of 5712 assessments. Dur-
ing post-evaluation, three outliers were detected and subsequently excluded from the
dataset. Out of the remaining 48 subjects, 20 males and 28 females participated, with
a mean age of 22.52 and mode 21. The majority of participants were Bachelor’s stu-
dents of information technology and were aware of the issues related to the quality of
multimedia streaming.
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(a) ACR Scale (b) Training Session

(c) User Info (d) MOS

Figure 3. Mobile App for subjective assessment.

4. Results and Discussion

The foremost thing to mention is the encoding delay experienced by the streaming
server. As the processing of videos was conducted in batches, we noticed that AVC had
the least computing overhead compared with HEVC and VP9. In our experience, the
encoding delay of HEVC was 3–4 times higher than the AVC. The time taken for VP9
was slightly better than HEVC, but still far greater than that for AVC. This may be one
of the foremost reasons for the resilience of AVC for low computing devices nowadays.
The dataset of the streamed videos was analyzed before the subjective assessment. It was
noted that because of the high temporal and spatial effects of the Ducks video, the results
were not consistent with the other three videos with somewhat similar characteristics. It
is important to mention that some videos like Duck_AVC at 0.7%, Johnny_VP9 at 0.5%,
KristenAndSara_AVC at 0.7%, and Vidyo1_HEVC at 0.1% were of a low quality compared
with the proceeding high-loss video. This shows the effect of high-priority packet loss
associated with different types of encoding frames.
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4.1. Objective Assessment

The results of the objective metrics are shown in Figure 4. AVC outperformed VP9
and was slightly better or on par with HEVC for most of the cases. When considering
video quality evaluation and benchmarking through subjective assessments, it is crucial
to note that the VMAF metric offered the most dependable estimation of video quality
compared with the other metrics. Our findings reveal that because of the nature of the
stimuli, MS-SSIM stood out as the least reliable metric. It encountered challenges in
accurately quantifying video degradation across various packet loss scenarios, leading to
predominantly consistent and flat trends in results, as illustrated in Figure 4. In the case of
KristenAndSara_AVC at 0.7% and Vidyo1_HEVC at 0.1%, we observed that VMAF could
correctly depict the change compared with both PSNR and VQM. We can easily say that
within the context of the VQMT implementation used in this paper, VMAF emerged as the
optimal metric for quantifying video quality in multimedia streaming. Moreover, these
findings were in harmony with related research [40,61].

(a) MS-SSIM (b) PSNR

(c) VMAF (d) VQM

Figure 4. Ratings of objective metrics.

4.2. Subjective Ratings

A comparison of the three codecs for packet loss concerning MOS is shown in Figure 5.
There are three major observations from the results:

1. Overall, AVC outperformed both HEVC and VP9 in terms of human ratings.
2. HEVC outperformed AVC or was on par in low packet-loss scenarios, but its perfor-

mance deteriorated when the packet loss reached around 0.7%.
3. VP9 tended to perform better in a higher packet-loss environment, but still could not

match the ITU-T codecs.

When comparing the objective and subjective results, a significant observation arose:
the MOS ratings notably mirrored the genuine degradation of video quality, particularly
evident at low packet-loss ratios, in contrast with the majority of objective metrics discussed
in the previous section. Considering the computational overhead associated with HEVC
and VP9, as outlined in Section 4, it becomes apparent that the performance gains for HEVC
were not substantial. This lack of significant performance improvement was among the



Electronics 2024, 13, 329 11 of 17

reasons for the enduring popularity and resilience of AVC on mobile platforms as of 2023.
Moreover, it also shows that for mobile devices with the requirements of computational
and power efficiency, AVC will remain the most popular codec in the near future. The
values of GoB and PoW metrics are shown in Table 3.

(a) MOS_Ducks (b) MOS_Johnny

(c) MOS_KristenAndSara (d) MOS_Vidyo1

Figure 5. MOS of subjective assessment.

Table 3. GoB and PoW metrics.

AVC HEVC VP9

Stimuli PL% GoB% PoW% GoB% PoW% GoB% PoW%

Jo
hn

ny

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 62.5% 4.2%
0.3% 91.7% 0% 100% 0% 0% 25%
0.5% 43.8% 2.1% 64.6% 0% 0% 97.9%
0.7% 62.5% 0% 2.1% 50% 0% 100%
1% 39.6% 0% 0% 93.7% 0% 95.8%
3% 0% 91.7% 0% 100% 0% 100%
5% 0% 100% 0% 100% 0% 100%
10% 0% 100% 0% 100% 0% 100%

K
ri

st
en

A
nd

Sa
ra

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 52.1% 4.2%
0.3% 50% 0% 100% 0% 2.1% 52.1%
0.5% 22.9% 8.3% 0% 18.8% 0% 75%
0.7% 0% 22.9% 0% 66.7% 0% 95.8%
1% 0% 47.9% 0% 68.7% 0% 89.6%
3% 0% 100% 0% 77.1% 0% 95.8%
5% 0% 100% 0% 95.8% 0% 100%
10% 0% 100% 0% 100% 0% 100%
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Table 3. Cont.

AVC HEVC VP9

Stimuli PL% GoB% PoW% GoB% PoW% GoB% PoW%

V
id

yo
1

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 10.4% 22.9%
0.3% 60.4% 0% 81.3% 0% 0% 89.6%
0.5% 22.9% 0% 52.1% 4.2% 0% 93.8%
0.7% 35.4% 0% 35.4% 18.8% 0% 87.5%
1% 16.7% 0% 0% 100% 0% 89.6%
3% 0% 100% 0% 100% 0% 100%
5% 0% 100% 0% 100% 0% 100%
10% 0% 100% 0% 100% 0% 100%

It is evident that the GoB percentage remained satisfactory up to a 0.5% packet loss.
Additionally, the figures revealed a significant degradation in video quality when using the
VP9 implementation in our testbed, even at low packet-loss ratios. These metrics offer a
more meaningful and comprehensible insight compared with MOS values in our evaluation.

4.3. Impact of Delight of Shown Video Content

Apart from video quality, numerous human and system influence factors may affect
user ratings [62,63]. We used the input from the users towards their delight for the shown
content on a binary and ordinal scale, as described in Section 2. The results of the MOS
values based on user delight with error bars are shown in Figure 6.

The effect of delight on the shown content and its impact on MOS was evident.
Although there were only two groups of results for the binary scale, we calculated one-way
ANOVA to observe the statistical relevance of the results. In the case of the Ducks video
for AVC, apart from packet loss ratios of 0.3 and 0.5%, the remaining ratings are either
statistically relevant or very close to being relevant, i.e., α = 0.05. It is very important to
mention that for the Johnny video, where the majority of subjects did not like the content,
the impact was negligible for most of the scenarios. In the case of KristenAndSara and
Vidyo1, with almost the same amount of delight, the impact was statistically significant for
some medium and high packet-loss ratios. These results were in line with our previous
work, where we observed that people showing delight towards a particular content were
more critical if the video quality was degraded to a level where their viewing experience
was disturbed [64]. To investigate this behavior, we also used the user ratings towards the
shown content on a 1–9 ordinal scale. The results for the Ducks video for HEVC and VP9
are shown in Table 4.

The issue here was a smaller number of subjects in each group due to the nine
subgroups, i.e., Dislike Extremely, Dislike Very Much, Dislike Moderately (n = 3), Dislike
Slightly (n = 4), Neutral (n = 4), Like Slightly (n = 5), Like Moderately (n = 11), Like Very Much
(n = 10), and Like Extremely (n = 11) where n shows the number of users within the each
group. Because of such a small sample size, we observed higher values of alpha for most of
the scenarios, which were significant on the binary scale in terms of user’s delight. So, to
highlight the impact of delight towards the shown content, we plotted the mean values for
the user ratings of one scenario where we found a higher significance level compared with
the binary scale, i.e., packet loss at 1%. The results are shown in Figure 7.

It is observed that the users who showed extreme delight regarding the content were
more critical when the quality degraded below a certain level. It is important to mention
that this trend was consistent in most of the results, with varying significance. This shows
that delight towards the content can influence user ratings and people are more sensitive to
the video quality of the content they particularly enjoy.
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(a) MOS_Ducks (b) MOS_Johnny

(c) MOS_KristenAndSara (d) MOS_Vidyo1

Figure 6. MOS of subjective assessment based on Delight for AVC.

(a) Ducks_HEVC (b) Ducks_VP9

Figure 7. Mean plot of delight for Ducks video.

Table 4. One way ANOVA for Ducks Video.

Codec Packet Loss Ratio Delight Ratings_Sig Delight_Sig

HEVC
0.5% 0.077 0.041
1% 0.227 0.044
3% 0.011 0.050

VP9

0.3% 0.20 0.056
0.5% 0.360 0.028
0.7% 0.018 0.011
1% 0.273 0.005
3% 0.430 0.004
5% 0.011 0.050

5. Conclusions

In this study, we conducted performance benchmarking of the AVC, HEVC, and
VP9 codecs on a mobile device. This evaluation encompassed both objective metrics
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and subjective assessments, considering various packet loss ratios within an emulated
network environment. Our analysis focused on the prevailing video streaming resolution
for high-speed networks on handheld devices. Our findings revealed that videos streamed
using the AVC codec exhibited superior quality and greater resilience to transmission
impairments. While HEVC occasionally matched or surpassed the AVC performance
under low packet-loss conditions, its substantial computational overhead and subsequent
power consumption offset this advantage. Conversely, VP9 consistently underperformed
in comparison with other codecs across the spectrum of test scenarios. Additionally, we
observed limitations in the accuracy of objective metrics, with VMAF emerging as the most
reliable metric in our study.

In line with existing research, we found that user delight played a significant role in
the user ratings of the shown video. Statistical significance was evident in most cases, and
users exhibited heightened scrutiny of video quality degradation once they had a strong
affinity for the content. This underscores the significance of human-related factors and the
necessity for collecting user input beyond conventional MOS ratings. Ultimately, our work
highlights the importance of incorporating these user-related influences into future models
to enhance the accuracy of user-perception predictions.
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