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A B S T R A C T

Background: The most common degenerative condition in older adults is dementia, which can be predicted
using a number of indicators and whose progression can be slowed down. One of the indicators of an increased
risk of dementia is sleep disturbances. This study aims to examine if machine learning can predict dementia
and which sleep disturbance factors impact dementia.
Methods: This study uses five machine learning algorithms (gradient boosting, logistic regression, gaussian
naive Bayes, random forest and support vector machine) and data on the older population (60+) in Sweden
from the Swedish National Study on Ageing and Care — Blekinge (𝑛 = 4175). Each algorithm uses 10-fold
stratified cross-validation to obtain the results, which consist of the Brier score for checking accuracy and the
feature importance for examining the factors which impact dementia. The algorithms use 16 features which
are on personal and sleep disturbance factors.
Results: Logistic regression found an association between dementia and sleep disturbances. However, it is
slight for the features in the study. Gradient boosting was the most accurate algorithm with 92.9% accuracy,
0.926 f1-score, 0.974 ROC AUC and 0.056 Brier score. The significant factors were different in each machine
learning algorithm. If the person sleeps more than two hours during the day, their sex, education level, age,
waking up during the night and if the person snores are the variables that most consistently have the highest
feature importance in all algorithms.
Conclusion: There is an association between sleep disturbances and dementia, which machine learning
algorithms can predict. Furthermore, the risk factors for dementia are different across the algorithms, but
sleep disturbances can predict dementia.
1. Introduction & background

Sleep is a state of reduced mental and physical activity and is a vital
part of everyday activities. When sleep is insufficient, several issues
appear, such as impaired learning and increased risk of stress-related
diseases such as mood disorders and cardiovascular diseases [1–3].

The older population, adults 60+, have additional problems with
sleep and sleep disturbances. They are more prone to sleep distur-
bances, such as insomnia [4]. These problems combined can lead to
and increase the risks for other diseases. A common one among older
adults is dementia.

Sleep deficit and bad sleeping habits are risk factors for demen-
tia [5–8]. However, sleep is not the only risk factor for dementia.
Education, age and one’s sex are other factors that contribute to the
risk level of a given individual [9–11].
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The National Board of Health and Welfare in Sweden reports that
around 130,000 to 150,000 individuals suffer from dementia, and this
number is expected to double by 2050 [12]. Comparably, other high-
income regions, such as Western Europe and North America, have a
higher prevalence rate of dementia-related disease (see Fig. 1). Further-
more, this paper only utilizes data on the older population that resides
in Blekinge, Sweden.

As data is available on the older population, we can make inferences
from several aspects of their lives. Machine learning (ML) is one method
that utilizes the data to find patterns. ML is a program that uses experi-
ence to learn and predict based on its experiences [13]. These programs
can find patterns in the data and thus explain or find associations.

Several studies in the reviewed literature (see Section 2) have
examined sleep and dementia. Several of these use ML to study the
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Fig. 1. Worldwide prevalence of dementia [14] The colour grade as indicated in the
legend, varies from blue (low prevalence) to red (high prevalence).

association between sleep and dementia. However, they use other
features, methodological approaches and other sleep aspects, such as
REM sleep. Therefore using machine learning with different features
on other sleep aspects is beneficial.

Because of the risks, the high prevalence rate, data availability
and the research gap, investigating ML prediction of dementia based
on sleep is worthwhile. Can machine learning predict dementia and
examine which sleep disturbance factors indicate dementia? These are
the main issues at hand.

1.1. Dementia

Dementia is a term that is described as a group of symptoms,
such as cognitive disabilities and memory loss, that occur due to
some structural changes in the brain [15,16]. Dementia is prevalent
in the following diseases, namely (sorted in order of prevalence),
Alzheimer’s disease (50%–75%), vascular dementia (20%), dementia
with Lewy bodies (5%) and frontotemporal dementia (5%) [17,18]. A
few prevalent symptoms of dementia are memory loss (often short-term
memory), confusion, repetition when speaking, personality change and
poor judgment [16,19,20].

Dementia occurs because of changes in some brain regions that
lead to neurons and their subsequent connections stopping working.
Although the exact reason for these changes remains unknown, several
factors have shown indications to decrease the risk and prevalence of
dementia, such as leading a healthy lifestyle [19].

Studies have shown that lifestyle factors have decreased the risk
and prevalence of dementia. However, a review of the current research
concludes that there is inconclusive evidence of these lifestyles [21].
The silver lining is that some results are ‘‘encouraging but inconclusive’’
and could show a causational relationship with dementia. There are
many recommendations for further research, such as social engagement
interventions, depression treatment, dietary interventions and sleep
quality interventions [21].

At present, dementia remains incurable, but some treatments can
help alleviate its symptoms. One such symptom is sleep disturbances,
which can be managed through either pharmacological or non-
pharmacological means [22]. As Dodson and Zee [23] mention, starting
with non-pharmacological approaches, such as establishing good sleep
hygiene, avoiding bright light in the evening, and increasing light expo-
sure in the morning, is a reasonable approach. If these methods prove
ineffective, only then pharmacological interventions, like melatonin,
may be appropriate.

1.2. Sleep

Sleep is crucial for everyone, without it we experience mental
fatigue, impaired learning, and increased risk of stress-related diseases
such as mood disorders and cardiovascular diseases [1–3]. The number
2

Fig. 2. SNAC-B study’s process, [29].

of hours a given person varies, but adults, both young and old, gener-
ally need seven or more hours per day [24,25]. This study categorizes
sleeping into three categories, sleep disturbances, sleep quality, and
sleep behaviours.

First of all, sleep disturbances include several issues concerning
sleep, namely, initiation and maintenance of sleep, excessive sleep,
dysfunctional sleep-wake schedule, and other issues that relate to
sleep [26]. In summary, this category encompasses all issues associated
with an increase in sleep disturbances.

Sleep quality means how adequate the sleep was. It is a metric that
involves all factors of the sleep experience. The quality depends on the
individual’s experience and satisfaction, sleep latency and efficiency are
two aspects that can measure sleep quality [27].

Lastly, behaviours are how one has acted during the day in factors
that influence sleep. For example, has the individual exercised or begun
to sleep at a suitable time? This study’s primary focus is on features of
sleep disturbances.

1.3. Dataset

1.3.1. SNAC-B
A primary part of this thesis is the data. Reliable and trustworthy

data from patients is needed to conclude anything of importance.
Therefore, the data comes from the Swedish National Study on Aging
and Care in Blekinge (SNAC-B) [28].

SNAC is a long-term longitudinal study that started in 2001 and is
still ongoing (2022). The study is national and happens in four areas of
Sweden: Blekinge, Kungsholmen, Nordanstig, and Skåne.

The participants in the study are aged 60 to 99 (see Fig. 2). The
study consists of two parts, the baseline and the re-examinations.
The baseline is where new participants enter the study. This process
happens every six years and introduces older adults aged 60 and 81,
except for the first baseline, where new participants are aged 60–99.
The re-examination occurs every three years. However, only people
aged 81 and older do the re-examinations every third year. The younger
adults (<81) do the re-examination every sixth year until they become
81 years old.

The study bases its results on samples from older adults. Collecting
the data happens via questionnaires, surveys, interviews, and clini-
cal examinations, where the aim is to sample information on social
conditions, health, diseases, and functional capacity.

This study primarily focuses on the data of participants’ sleep dis-
turbances. It is important to note that the data used in this paper is
a compounded version of SNAC-B’s longitudinal data, which does not
consider the original longitudinal approach.

1.3.2. Measurements
Classifying the participant’s cognition is vital. Therefore, we use

the Mini-Mental State Examination combined with the Clock-test score.
Both tests are robust when screening for dementia [30,31] and are
significantly improved when using both in combination [32].
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Table 1
The sleep and personal-related variables utilized in the experiment and analysis, from the SNAC-B dataset.
ID Description Type Values

Personal features
Sex The participants’ sex Nominal Male/Female
AGE The participants’ age Discrete 60–99
A1 The participants’ civil status Nominal 1–4
C51_Education The participants’ highest completed education Ordinal 1–8
Dementia If a given participant is in the dementia class Nominal Yes/no

Sleep features
D31 Trouble falling asleep Nominal Yes/no
D32 Taking/addiction to sleeping medicine Nominal Yes/no
D33 Waking up during the night Nominal Yes/no
D34 Difficulty falling asleep because of stress/mood Nominal Yes/no
D35 Difficult sleeping because of pain/itching Nominal Yes/no
D36 Trouble falling asleep after waking during the night Nominal Yes/no
D37 Waking up early Nominal Yes/no
D38 Feeling tired and sleeping more than 2 h during daytime Nominal Yes/no
D39 Frequency of taking sleep medicine Ordinal 1–5
D40 Hours of sleep per night Continuous 0–24
E36 Snoring Nominal Yes/no
E135 Sleep quality Ordinal 0–6
Fig. 3. Histogram, dementia class distribution.

The threshold for being classified as having dementia is to have an
MSE score lower than 24 out of 30 [33] and a Clock-test score of less

han 8 of the maximum score of 10 [34].
Of the 4175 samples in the dataset, 247 participants met the re-

uirements to be in the dementia class. However, this creates an
mbalanced dataset which needs resolving (see Section 1.3.3). Further-
ore, the experiment uses 16 features for measuring sleep disturbances,

eneral sleep quality, and personal parameters (see Table 1).

.3.3. Data characteristics
The original dataset has 3208 participants. Each participant can

ave one or several samples. Therefore there are 5033 samples to use
efore dataset cleaning.

The dataset cleaning consists of removing invalid data samples. The
nvalid ones do not have an MMSE and Clock-test score. Without these
est scores, the study cannot label each participant’s cognition. There
as a total of 858 invalid samples.

After the dataset cleaning, there were 1821 participants from the
NAC study and 4175 samples (see Table 2).

However, two issues appear with the features: missing values and
n imbalanced dataset. KNN imputation solves the issues with missing
alues, where it fills the data cells with generated values. The other
roblem is the data imbalance between the two groups, the healthy
roup and the dementia group (see Fig. 3). ADASYN solves this issue
y using oversampling, which creates new samples based on the current
ata. This process will even out the class distributions.
3

Table 2
SNAC-B participants.

Age Participants Percent

60 444 10.63
66 577 13.82
72 603 14.44
78 468 11.21
79 2 0.05
80 44 1.05
81 488 11.69
83 20 0.48
84 524 12.55
86 26 0.62
87 416 9.96
89 2 0.05
90 294 7.04
92 11 0.26
93 151 3.62
95 6 0.14
96 74 1.77
98 3 0.07
99 19 0.46
102 3 0.07

1.4. Data pre-processing

Machine learning needs data, which is where it learns from. The
data quality affects the final results [35]. Because of this, pre-processing
of the data is vital. With it, we can mitigate several issues, and it may
drastically change the final prediction positively or negatively [36].

1.4.1. K-nearest neighbour imputation
K-nearest neighbour (KNN) imputation is an algorithm for handling

missing data in a dataset. Imputation is a technique to handle missing
data by assigning values to the missing fields. Several studies [37–
39] have confirmed that KNN imputation is a robust and accurate
imputation algorithm. The algorithm functions as follows [37]:

1. Determine parameter 𝐾, (𝐾 = 5, in this study)
2. Calculate the Euclidean distance, for each missing data instance

𝑑 = |𝑥 − 𝑦| =

√

√

√

√

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (1)

where:
𝑛 = Data’s dimensions
𝑥 = A point
𝑦 = A point



Computers in Biology and Medicine 171 (2024) 108126J. Nyholm et al.

1

e
s
s
n
d

p
T
(

𝑁

𝛾

2

a
i
o
p
i
a
v
e
B
u

d
d
m
d
a

h
i
r
e
p
m
e
m

o

l
a
b
o

s
d
s
P
s
a

a

3. Calculate the value of the missing cell, which is based on the
mean of the nearest neighbours

𝑧 = 1
𝐾

𝐾
∑

𝑖=1
𝑥𝑖 (2)

where:
𝑧 = Missing data cell
𝑚𝑖 = K-Nearest neighbour’s value

1.4.2. ADASYN
The adaptive synthetic (ADASYN) is an algorithm which handles

imbalanced datasets. It solves this issue by adaptively generating data
based on the distribution of the original dataset [40]. Several stud-
ies [41–43] have used ADASYN in medical and other ML studies with
good results. The algorithm functions as follows:

1. Calculate the class imbalance

𝑑 =
𝑚𝑠
𝑚𝑖

, 𝑑 ∈ [0, 1] (3)

where:
𝑚𝑠 = Minority class examples
𝑚𝑖 = Majority value examples

2. If 𝑑 < 𝑑𝑡ℎ, then 𝑑𝑡ℎ is the threshold for the tolerated ratio of class
imbalance

(a) Calculate how many synthetic data points that are to be
generated, for the minority class

𝐺 = (𝑚𝑖 − 𝑚𝑠) × 𝛽 (4)

where:
𝛽 = Is the desired balance level after generation, 𝛽 = 1
means a fully balanced dataset
𝑚𝑖 = Majority value examples

(b) For each point in the minority class find the K-nearest
neighbours and calculate the ratio

𝑟𝑖 =
𝛥𝑖
𝐾

, 𝑖 = [1,… , 𝑚𝑠], 𝑟𝑖 ∈ [0, 1] (5)

where:
𝛥𝑖 = KNN for each example that belongs to the majority
class

(c) Normalize 𝑟𝑖, so 𝑟𝑖 is a density distribution of (∑𝑖 𝑟𝑖 = 1)

𝑟𝑖 =
𝑟𝑖

∑𝑚𝑠
𝑖=1 𝑟𝑖

(6)

(d) Calculate how many data points are to be generated for
each minority example 𝑥𝑖

𝑔𝑖 = 𝑟𝑖 × 𝐺 (7)

where:
𝐺 = Minority’s class total of data which will be generated
(see Eq. (4))

(e) For each minority class example 𝑥𝑖, generate 𝑔𝑖 data
examples
Loop from 1 to 𝑔𝑔𝑔𝑖𝑖𝑖:

i. Randomly choose an example 𝑥𝑧𝑖 from the KNN for
example 𝑥𝑖

ii. Generate the data

𝑠𝑖 = 𝑥𝑖 + (𝑥𝑧𝑖 − 𝑥𝑖) × 𝜆 (8)

where:
𝐺 = 𝜆 is a random number, 𝜆 ∈ [0, 1]
4

w

.4.3. Statistical power
Ensuring credible results require adequate statistical power. The

ffect size is one part of calculating the power. It is the relational
trength between two variables in a given population. As the effect
ize is unknown, it is preferred to choose a minimal value that does
ot overestimate the relationship [44], in this case, between sleep
isturbances and dementia. Thus it is given a value of 𝛾 = 0.05.

With these assumptions, the data groups minimally need 512 data
oints per group (see Eq. (9)), with 1024 data points in the experiment.
he dataset has 4175 data points, so the statistical power is adequate
𝛿 ≥ 0.8).

= 2
(

𝛿
𝛾

)2
= 2

( 0.8
0.05

)2
= 512 (9)

where:
𝑁 = Number of subjects
𝛿 = Statistical power
= The effect size

. Related works

The use of technology to enhance different fields is commonplace,
nd medicine is no exception. Several works for predicting or diagnos-
ng dementia with machine learning already exist. Most studies focus
n ML that uses binary or multivariate classification to decide if a
atient has a high predicted risk of dementia. Another commonality
s the frequent use of supervised ML algorithms. The most common
lgorithms in the reviewed literature (in sorted order) are support
ector machine (SVM) with thirteen usages, random forest (RF) with
ight usages, logistic regression (LR) with seven usages, Gaussian naive
ayes (GNB) with three usages and extreme Gradient Boosting with two
sages.

Dementia is a complex disorder that can be affected by how we live
uring our entire lifetime, and many factors contribute to a high risk of
eveloping dementia [11]. Before anyone develops dementia, they have
ild cognitive impairment (MCI), which can lead to further cognitive
ecline. Many risks exist for this, the topmost being age, depression,
nxiety, mental health, sleep disturbances, and exercise [45,46].

For dementia, the risk factors are similar. Age, exercise, education,
ypertension, body mass index, diabetes, depression and the partic-
pant’s sex are some risk factors for dementia [9,47]. Furthermore,
esearch into dementia in men and women shows that some risk
lements are different between the sexes. Financial problems, regular
hysical activity, and Schuster-social support score are risk elements for
en, whilst depression, hypertension, and alcohol abstention are risk

lements for women [48]. Two additional factors impact both sexes,
oderate physical activity and cognitive engagement [48].

The risk factors can also divide themself into three categories, based
n one’s age, early life (<45 years of age), midlife (45–65 years of age)

and later life (>65 years of age) [11]. Early life has one risk factor, less
education. Midlife has five risks, hearing loss, traumatic brain injury,
hypertension, >21 alcohol units consumed per week and obesity. Lastly,
ater life has two factors which are smoking and depression. These risks
nd those in the previous paragraph conclude that dementia is affected
y our accumulated lifestyles, which also means one can lower the risk
f developing dementia.

There is an abundance of risk factors, which are composed of
everal other elements. Therefore, it exists many methods of predicting
ementia. One common approach is utilizing metrics from the brain
uch as Electroencephalogram (EEG), resonance imaging (MRI) and
ositron emission tomography (PET). EEG is a testing method where
everal electrodes are placed on the patient’s scalp to measure brain
ctivity. This test, combined with ML, has seen encouraging results.

Several studies [49,50] have been able to classify, with various
lgorithms, dementia in patients. One study has measured the EEG

hilst the patients are asleep to classify MCI with promising results [7].
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Another method is medical imaging using either MRI or PET. These
methods have also been effective at classifying dementia and differenti-
ating between different forms of dementia [51–53]. Further, combining
MRI and EEG to train an ML model has promising results. The research
indicates that combining both metrics leads to increased accuracy
versus using either of the metrics by itself [54].

A final method that relies on biomarkers is classification through
genes. They also impact dementia, and identifying dementia in genes
in combination with ML is another promising field of dementia classi-
fication. Several studies [55–57] have conducted experiments based on
this. Gene classification could also be a cheaper alternative to the more
expensive medical imaging techniques [57].

Identifying dementia is not only possible through various biomark-
ers. It also shows itself through a change in behaviour, worse memory
and several more symptoms. Therefore, studies have examined speech
and eye-tracking and if they can identify dementia.

In the reviewed literature, speech has the most research of the
previously described methods. Several studies [58–61] have classified
MCI and dementia through the patients’ speech patterns. Further, this
method is an accessible and low-cost alternative, which can happen
without the patients being physically present.

Eye-tracking does not have as much research, but it has positively
classified MCI. The eye-tracking happened as the subjects were reading
to capture the data, and the ML model finally had an accuracy of a
maximum of 86% [62].

As discussed above, identifying dementia can happen using several
methods. However, this study focuses on dementia and sleep distur-
bances. Sleeping disturbances and deprivation are both factors which
can promote brain damage, which can lead to dementia [10]. Further,
dementia patients have less rapid eye movement (REM) sleep than
others, which leads to a lack of this type of sleep [10].

Several studies have examined sleep and its association with demen-
tia [5–7,63–66]. Using REM sleep as a feature to examine dementia has
had a good result and showed that it was a high accuracy factor when
predicting dementia [6].

Various forms of sleep disturbances is another factor related to
dementia. Sleep fragmentation [64], sleep-disordered breathing [63],
and sleep disturbances [65,66] have an association with dementia or
cognitive decline. A study measured the participants using a wrist-
band with sensors and an unsupervised ML algorithm [5]. The study
could classify severe dementia patients with an accuracy of 91% and
mild dementia subjects with 87% accuracy. This approach presents an
affordable and non-invasive method of additional diagnosis help for
dementia.

These studies show that dementia presents itself in various forms,
and sleeping is one of them. Sleep and dementia have an association
with each other, and continuing research into this is the focus of this
study.

3. Research methodology

3.1. Research questions

The thesis has four RQs, four primary and two sub-questions. The
sub-questions will answer the main RQ and use the experiment results
as its data and motivation for its answers.

Research question 1: What is the association between sleep and
dementia in older adults?

Research question 2: To what extent can machine learning predict
dementia in older adults based on their sleep disturbances?

Research question 3: What are the sleep disturbance factors that
lead to an increased risk of cognitive decline in older adults?

Research question 3a: To what extent do the algorithms’ feature
importances conclude the same result?
Research question 3b: What are the primary sleep disturbance
features that increase the risk of conceiving dementia?
5

Research question 4: Which machine learning algorithm has the
best mean prediction accuracy when predicting dementia in older
adults based on their sleep disturbances?

3.1.1. Research question 1
RQ1: What is the association between dementia and sleep based on older

dults?
Investigation of this question is vital to know if there is an asso-

iation between sleep and dementia. Multiple studies (see Section 2)
ave reported an association between the two factors. Nonetheless, this
Q aims to give credibility or contradict the association based on the
NAC-B data.

Other studies have not used the same combination of sleep features.
f an association exist between SNAC-B’s sleep features and dementia,
t will also give the other RQs more credibility and worth.

.1.2. Research question 2
RQ2: To what extent can machine learning predict dementia in older

dults based on their sleep disturbances?
The question’s primary concern is the accuracy of the ML prediction.

f the results are inaccurate, concluding any reliable results from the
odels will be difficult. Therefore, this question is necessary for the

tudy. Furthermore, we can also find the most accurate model in the
tudy.

.1.3. Research question 3
RQ3: What are the topmost sleep disturbance factors that lead to an

ncreased risk of dementia in older adults?
To further give insight into if or how sleep influences dementia, we

eed to know which features have a higher risk. Feature importance is
term that explains this for ML. It demonstrates which features have

he highest impact on the model.
Because of the reasons above, it is worthwhile to answer this RQ.

he answer can indicate or give insight into the association between
leep disturbances and dementia.

.1.4. Research question 3a
RQ3a: To what extent do the algorithms’ feature importances conclude

he same result?
The ML algorithms might conclude different results in the fea-

ure importances. The algorithms build their models differently, which
ould result in differences in the final results. If the algorithms have
he same conclusion, we can easily determine which factors have the
ighest impact. However, if they do not, it is worthwhile to see which
lgorithms do and do not have the same results.

.1.5. Research question 3b
RQ3b: What are the primary sleep disturbance features that increase the

isk of conceiving dementia?
This question needs the result from RQ3a (see Section 3.1.4). If that

uestion concludes that the algorithms have the same conclusion in all
eature importances, then this question is simple to answer. However,
f they do not, the answers become inconclusive. Concluding which
lgorithms have the correct feature importance and which do not is
utile. However, indicating which factors regularly have a high impact
s possible.

.1.6. Research question 4
RQ4: Which machine learning algorithm has the best mean prediction

ccuracy when predicting dementia in older adults based on their sleep
isturbances?

All algorithms have differences in how they achieve their task.
hese differences make them adept in certain areas whilst not in others.
o these differences make a vast difference in the results, and if they do,
hich is the best-suited algorithm for this task? The result can indicate
hich ML algorithm is the best suited for prediction in this area.
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3.2. Variables

The independent variables are the patients’ data, whilst the depen-
dent variable is the mean Brier score (see Eq. (10), [67]) of the ML
model for RQ2 (see Section 3.1.2) and the mean permutation feature
importance per feature (see Eq. (11), [68]) for RQ3a and RQ3b (see
Sections 3.1.4 & 3.1.5).

The Brier score is a metric that assesses the accuracy of predictions.
It always gives a value between zero and one, where zero is a perfect
prediction. To obtain the final Brier score, we utilize 10-fold stratified
cross-validation and calculate the mean of the ten results. The cut-
off value in the hypotheses is 0.25, which gives the score when the
prediction has a 50% chance of right or wrong ((0.5 − 1)2 = (0.5 −
0)2 = 0.25). There are some issues with this metric. If the dataset is
small (< a few hundred) [69] and if the probabilities are very low or
high [70,71]. These issues resolve themself because of the sufficiently
large dataset (𝑛 = 4175) and the distribution of all samples. The samples
from a population will have normality because of the central limit
theorem [72]. Therefore, the low and high probabilities should be small
and not have a high impact on the result.

The mean permutation feature importance per feature gives a set of
values with the size of the number of features. The result is a set where
each entry is the mean of a given feature’s feature importance per
cross-validation fold. Because this thesis uses 10-fold stratified cross-
validation, there will be ten values per feature, which, after calculation,
become the mean value at a given position in the set. All features in the
set undergo this process to obtain a final set of values.

𝐵𝑆 = 1
𝑁

𝑁
∑

𝑖=1
(𝑓𝑖 − 𝑜𝑖)2 (10)

where:
𝑁 = Number of observations
𝑓 = Predicted probability of classification
𝑜 = Outcome of the event (0 if happened, 1 otherwise)

𝑖𝑗 = 𝑠 − 1
𝐾

𝐾
∑

𝑘=1
𝑠𝑘,𝑗 (11)

where:
𝑖𝑗 = Importance
𝐾 = Repetitions
𝑠 = 𝑅2 regression score
𝑗 = A given feature of the dataset

3.3. Performance metrics

Using other performance metrics shows how the algorithms perform
in a broader spectrum. Therefore, the thesis utilizes accuracy (see
Eq. (12)), f1-score (see Eq. (15)) and ROC AUC for the descriptive
statistics (see Section 4.1). Additionally, several studies in the reviewed
literature (see Section 2) use the metrics described above. Further,
including these metrics facilitates easier comparisons of this thesis with
future studies.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(13)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(15)

where:
𝑇𝑃 = True positive
𝑇𝑁 = True negative
𝐹𝑃 = False positive
𝐹𝑁 = False negative
6

Table 3
Sklearn parameters.

Algorithm Class name None-default
parameters

GB [73] GradientBoostingClassifier random_state = 0

GNB [74] GaussianNB

LR [75] LogisticRegression solver = ‘‘liblinear’’
random_state=0

RF [76] RandomForestClassifier random_state = 0

SVM [77] svm.SVC kernel = ‘‘linear’’
probability = True
max_iter = 10000000

Fig. 4. K-fold stratified cross-validation, [78].

3.4. Experimental instrumentation

The required materials for this experiment are a computer for
execution and the ML code (link).

The ML code uses Python 3 as its programming language and scikit-
learn as the ML library. RF, SVM, GB, LR and GNB are the chosen
algorithms (see Table 3) because of their wide use in related studies
with satisfactory results.

All algorithms use the ‘‘random_state’’ to have consistent randomiza-
tion. LR and SVM have additional parameters to enable correct func-
tionalities. LR’s ‘‘liblinear’’ solver uses a one-vs-rest approach. There-
fore, it trains different binary classifiers for each class, which is the
primary reason behind using this solver.

The change in SVM’s ‘‘kernel’’ and ‘‘probability’’ parameters is
necessary to collect the probabilities that the Brier score needs. Fur-
thermore, the ‘‘max_iter’’ is set to 10 million because of the converging
time.

Further, the model will use 10-fold stratified cross-validation (see
Fig. 4) to ensure a higher result validity, which ensures that each set
has approximately the same percentage of each class as the original
one [78].

3.5. Hypotheses

The thesis has four primary hypotheses (see Sections 3.5.1, 3.5.2,
3.5.8 and 3.5.9). However, RQ2 has five sub-hypotheses (see Sections
3.5.3–3.5.7) to conclude if each algorithm’s prediction accuracy is
adequate. Each hypothesis has a null- and alternative hypothesis.

3.5.1. Hypothesis 1
This hypothesis answers RQ1 (see Section 3.1.1) and uses multiple

regression to investigate the association between sleep disturbances
and dementia. After the regression, each factor will perform a t-test
to calculate if its coefficient equals zero.

𝐻0 There is no association between dementia and sleep distur-
bances in adults aged 60 and higher.

https://gitlab.com/JoelNyholm/masters-thesis/-/blob/main/master.py
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𝐻1 There is an association between dementia and sleep distur-
bances in adults aged 60 and higher.

𝐻0 ∶ ∀𝑓 ∈ 𝐹 , 𝑓 = 0 𝐻1 ∶ ∀𝑓 ∈ 𝐹 , 𝑓 ≠ 0

= The set of all sleep disturbances
= A given sleep disturbance

.5.2. Hypothesis 2
RQ2 has five hypotheses (see Sections 3.5.3–3.5.7), one for each

L algorithm. Each hypothesis examines if the given algorithm has
n equal, worse or better accuracy than a random classifier, where
he Brier score is the metric employed to assess the accuracy of each
lgorithm.

.5.3. Hypothesis 2a
𝐻0 Gradient boosting predicts as well as a random classifier.
𝐻1 Gradient boosting accurately predicts dementia based on

older adults’ sleep disturbances.
𝐻2 Gradient boosting does not accurately predict dementia based

on older adults’ sleep disturbances.

0 ∶ 𝜇𝐺𝐵 = 0.25 𝐻1 ∶ 𝜇𝐺𝐵 < 0.25 𝐻2 ∶ 𝜇𝐺𝐵 > 0.25

here:
𝐺𝐵 = Mean Brier score of gradient boosting

.5.4. Hypothesis 2b
𝐻0 Logistic regression predicts as well as a random classifier.
𝐻1 Logistic regression accurately predicts dementia based on

older adults’ sleep disturbances.
𝐻2 Logistic regression does not accurately predict dementia

based on older adults’ sleep disturbances.

0 ∶ 𝜇𝐿𝑅 = 0.25 𝐻1 ∶ 𝜇𝐿𝑅 < 0.25 𝐻2 ∶ 𝜇𝐺𝐵 > 0.25

here:
𝐿𝑅 = Mean Brier score of logistic regression

.5.5. Hypothesis 2c
𝐻0 Gaussian naive Bayes predicts as well as a random classifier.
𝐻1 Gaussian naive Bayes accurately predicts dementia based on

older adults’ sleep disturbances.
𝐻2 Gaussian naive Bayes does not accurately predict dementia

based on older adults’ sleep disturbances.

0 ∶ 𝜇𝐺𝑁𝐵 = 0.25 𝐻1 ∶ 𝜇𝐺𝑁𝐵 < 0.25 𝐻2 ∶ 𝜇𝐺𝑁𝐵 > 0.25

where:
𝜇𝐺𝑁𝐵 = Mean Brier score of gaussian naive Bayes

3.5.6. Hypothesis 2d
𝐻0 Random forest predicts as well as a random classifier.
𝐻1 Random forest accurately predicts dementia based on older

adults’ sleep disturbances.
𝐻2 Random forest does not accurately predict dementia based on

older adults’ sleep disturbances.

𝐻0 ∶ 𝜇𝑅𝐹 = 0.25 𝐻1 ∶ 𝜇𝑅𝐹 < 0.25 𝐻2 ∶ 𝜇𝑅𝐹 > 0.25

where:
7

𝜇𝑅𝐹 = Mean Brier score of random forest
3.5.7. Hypothesis 2e
𝐻0 Support vector machine predicts as well as a random classi-

fier.
𝐻1 Support vector machine accurately predicts dementia based

on older adults’ sleep disturbances.
𝐻2 Support vector machine does not accurately predict dementia

based on older adults’ sleep disturbances.

𝐻0 ∶ 𝜇𝑆𝑉𝑀 = 0.25 𝐻1 ∶ 𝜇𝑆𝑉𝑀 < 0.25 𝐻2 ∶ 𝜇𝑆𝑉𝑀 > 0.25

where:
𝜇𝑆𝑉𝑀 = Mean Brier score of support vector machine

3.5.8. Hypothesis 3
This hypothesis answers RQ3a (see Section 3.1.4). The test has

two parts, an ANOVA test to see if the feature importance results of
all algorithms are equal. If the results are equal, the tests end here.
Otherwise, the study uses a Tukey test to see the differences between
groups or which ML algorithms have the same results for a given
feature.

𝐻0 The ML algorithms’ feature importances have no difference
between algorithms

𝐻1 The ML algorithms’ feature importances have differences be-
tween algorithms

𝐻0 ∶ 𝑀𝑅𝐹 = 𝑀𝑆𝑉𝑀 = 𝑀𝐺𝐵 = 𝑀𝐺𝑁𝐵 = 𝑀𝐿𝑅

𝐻1 ∶ 𝑀𝑅𝐹 ≠ 𝑀𝑆𝑉𝑀 ≠ 𝑀𝐺𝐵 ≠ 𝑀𝐺𝑁𝐵 ≠ 𝑀𝐿𝑅

where:
𝑀𝑅𝐹 = Median feature importance per feature for random forest
𝑀𝑆𝑉𝑀 = Median feature importance per feature for support vector
machine
𝑀𝐺𝐵 = Median feature importance per feature for gradient boosting
𝑀𝐺𝑁𝐵 = Median feature importance per feature for gaussian naive
Bayes
𝑀𝐿𝑅 = Median feature importance per feature for logistic regression

3.5.9. Hypothesis 4
This hypothesis answers RQ4 (see Section 3.1.6). This test uses

either ANOVA or Kruskal–Wallis, depending on the normality of the
data. The purpose is to see if the Brier scores are equal or not. If they
are unequal, then one or more algorithms have a significant difference
between their scores. Therefore the thesis uses the post-hoc Tukey
test to detect and assess the pairwise comparisons between algorithms.
Which obtains which algorithm or algorithms have statistically lower
Brier scores and, thus, are more accurate than the remaining ones.

𝐻0 The ML algorithms’ Brier score has no difference between
algorithms

𝐻1 The ML algorithms’ Brier score has differences between algo-
rithms

𝐻0 ∶ 𝜇𝑅𝐹 = 𝜇𝑆𝑉𝑀 = 𝜇𝐺𝐵 = 𝜇𝐺𝑁𝐵 = 𝜇𝐿𝑅

𝐻1 ∶ 𝜇𝑅𝐹 ≠ 𝜇𝑆𝑉𝑀 ≠ 𝜇𝐺𝐵 ≠ 𝜇𝐺𝑁𝐵 ≠ 𝜇𝐿𝑅

where:
𝜇𝑅𝐹 = Mean Brier score for random forest
𝜇𝑆𝑉𝑀 = Mean Brier score for support vector machine
𝜇𝐺𝐵 = Mean Brier score for gradient boosting
𝜇𝐺𝑁𝐵 = Mean Brier score for gaussian naive Bayes

𝜇𝐿𝑅 = Mean Brier score for logistic regression
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Table 4
Experiment design (hypothesis 2).

Cross-validation fold Mean brier score for each algorithm

1 ✓

2 ✓

3 ✓

4 ✓

5 ✓

6 ✓

7 ✓

8 ✓

9 ✓

10 ✓

3.6. Experiment design

The experiment consists of two sub-experiments which happen con-
currently. The first concerns the algorithms’ prediction accuracy, mea-
sured using the Brier score. This part uses one factor with two treat-
ments (see Table 5). The Brier score of each algorithm is the dependent
variable, whilst the patient dataset is the independent variable.

However, as there is only one dataset and using all data is beneficial
to both the ML models’ training but also for increased validity, we
cannot divide the data between the algorithms. Therefore using a
completely randomized design, crossover design, or similar designs is
wasteful and not done. Thus, all algorithms will use the same data (see
Table 4).

The second sub-experiment concerns the feature importance of the
five algorithms. One factor with five treatments (see Table 5) is the
design for this part. The dependent variable is the set of all mean
feature importance for each algorithm, whilst the independent is the
patient dataset. As with the previous experiment part, no division of
the data happens.

The experiment happens as follows and is completed after these
steps:

1. Start the Python program
2. Using 10-fold stratified cross-validation, all three algorithms:

(a) Trains their model on the training set
(b) Tests their model on the test set
(c) Calculates all metrics

3. The program records the results to file

.7. Analysis procedure

The statistical analysis uses Stata 17 as its primary program and has
wo steps. The first is descriptive statistics. Here the calculated metrics
re presented in tables and figures to understand how the data behave
nd looks. A Shapiro–Wilks test for normality is taken to examine if the
ata has a normal distribution.

The second part is hypothesis testing. This thesis has four primary
ypotheses, and examining them happens in this phase. RQ1 uses mul-
iple logistic regression to investigate the association between dementia
nd sleep disturbances. The assumption of linearity of the independent
ariables, independent observations and multicollinearity is satisfied.

RQ2 uses several t-tests to see if the mean Brier score for each
lgorithm is equal to the hypothesized value.

RQ3a uses 16 Kruskal–Wallis tests to see if the feature importance
edians are statistically equal.

RQ4 uses the ANOVA and the Tukey post-hoc tests to determine if
he Brier scores are equal among the algorithms. However, if the null
ypothesis is accepted, then the test stops, which concludes that there
s not enough evidence to infer that a difference in accuracy exists. In
he opposite case, the Tukey test presents the pairwise difference in
ccuracy across the algorithms.
8

Lastly, all tests use a significance level of 0.05 (𝛼 = 0.05).
Table 5
Experiment design (hypothesis 3).

Cross-validation fold RF GB LR SVM GNB

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓

3.8. Validity threats

3.9. Threats to conclusion validity

The conclusion validity concerns the relationship between the treat-
ment and its outcome, where we want to establish if there is a statistical
relationship within the given significance level.

The primary issue with this threat is the reliability of the data.
The data in the study is from SNAC-B, which provides data on various
factors of older adults. However, one primary issue is missing data
values in several features.

Another issue is the dataset imbalance of dementia participants and
healthy participants. Both of these issues need resolving, which the
KNN-imputation and ADASYN algorithms handle. Both algorithms use
the original dataset as the basis for the data generation.

3.10. Threats to internal validity

The internal validity concerns that the relationship between treat-
ment and outcome is casual and not a result of a factor which has not
been controlled or is unmeasured. There are two issues in this category,
selection and mortality.

The selection threat concerns the natural variation in humans, and
the selection process from a population may influence the results. The
data in the study comes from stratified sampling, where we partition
the population into subcategories or strata and use random sampling
within each.

Mortality concerns issues with participants leaving the study due
to several reasons. The data from SNAC-B are of older adults. Thus,
the participants have a high mortality rate. The issue is that if several
participants in a strata leave the study, that stratum may then become
underrepresented and could skew the results.

These issues mitigate themselves because SNAC-B uses random
stratified sampling, which mitigates under-representative and non-
representative populations.

3.11. Threats to construct validity

Construct validity addresses the relationship between theory and
observation. If there is a casual relationship, then two things need
confirmation. Firstly, the treatment reflects the cause, and secondly,
the outcome reflects the effect. Divergent validity is the primary issue
in this category.

Divergent validity concerns measuring a construct which relates to
another one. This thesis uses personal, sleep behavioural and sleep
quality factors. As the experiment uses all of these features simultane-
ously, the results can conclude a different cause and effect than the real
one. However, this study also examines other sleep features which can
impact or describe the reason for sleep disturbances. Therefore, there
is a combination of the features in the dataset. Additional studies can
examine which specific factors in each category affect the cause and

effect.
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Table 6
Performance metrics results (mean ± std. dev.) across algorithms.

Algorithm Mean accuracy Mean exec. time Mean f1-score Mean Brier score Mean ROC AUC
[%] [ms]

GB 0.929±0.028 1189.971 ± 15.335 0.926±0.031 0.056±0.020 0.974±0.018
LR 0.708±0.085 38.818 ± 3.900 0.720±0.074 0.194±0.042 0.772±0.107
GNB 0.747±0.089 3.531 ± 0.456 0.753±0.095 0.190±0.070 0.814±0.107
RF 0.890±0.052 867.974 ± 18.656 0.877±0.068 0.087±0.027 0.962±0.022
SVM 0.703±0.083 88 400.330±5003.151 0.725±0.069 0.197±0.038 0.767±0.107
Fig. 5. Box charts for the performance metrics results.

.12. Threats to external validity

External validity concerns the generalization of the result. One issue
ppears in this section, the interaction of selection and treatment.

This threat is the effect of having participants from a population
hat does not represent the genuine population. However, as the data
omes from SNAC-B, which uses stratified sampling, this issue resolves
tself. The problem in this thesis is more concerned with the high
ortality rate, which can underrepresent some strata and, therefore,
ot accurately represent the population. This issue also resolves itself
y recurrently adding new participants to the SNAC-B study.

. Results & Analysis

.1. Descriptive statistics

This section presents all the results from the experiment and how
he data behaves. GB was the most accurate algorithm (see Table 6).
urther, the Shapiro–Wilks test for normality for all performance met-
ics and feature importances shows if the data has a normal distribution
see Tables 8 & 7, bold cells does not have normality).

Several histograms (see Figs. 6, 7, 8 & 9), a box chart (see Fig. 5), a
ar chart (see Fig. 10), ROC curves (see Fig. 11) and confusion matrices
see Fig. 12) show how the experiment’s data behaves per algorithm.

The results table (see Table 6) shows the mean accuracy, execution
ime, F1-score, Brier score and ROC AUC of all algorithms with their
espective standard deviations. The results demonstrate that GB and
F perform the best, whilst LR and SVM are the worst-performing
lgorithms. These results can be seen graphically in the box chart below
see Fig. 5).

Many of the algorithms’ feature importances do not follow a normal
istribution (see Table 7). Therefore a parametric test is not viable
o assess hypothesis 3, and a non-parametric alternative is employed
nstead.

The majority of the performance metrics have a normal distribution
see Table 8), thus enabling using parametric tests for hypotheses 2a–2e
nd 4. The distributions can also be seen in the histograms below (see
igs. 6, 7, 8 & 9).

The feature importance between the algorithms varies. Two themes
ppear LR, GNB, and SVM have more similar feature importances,
hilst GB’s and RF’s importances have similarities. The variation cre-
tes an ambiguity between the risk factors. However, we can observe
9

hich factors are the topmost from the graph.
Table 7
P-values for Shapiro–Wilks test on feature importance across algorithms (bold cells do
not have normality).

Feature GB LR GNB RF SVM

A1 0.105 0.988 0.584 0.689 0.285
Age 0.322 0.012 0.001 0.307 0.210
C51 0.563 0.719 0.034 0.221 0.960
D31 0.638 0.002 0.265 0.422 0.002
D32 0.007 0.493 0.385 0.292 0.509
D33 0.626 0.011 0.094 0.740 0.007
D34 0.997 0.096 0.983 0.867 0.057
D35 0.503 0.190 0.005 0.436 0.162
D36 0.140 0.878 0.824 0.714 0.492
D37 0.223 0.015 0.300 0.609 0.897
D38 0.301 0.318 0.732 0.202 0.618
D39 0.861 0.970 0.841 0.254 0.681
D40 0.287 0.008 0.842 0.812 0.659
E135 0.901 0.865 0.018 0.066 0.026
E36 0.813 0.702 0.808 0.270 0.883
Sex 0.041 0.003 0.865 0.426 0.224

Table 8
P-values for Shapiro–Wilks test on performance metrics across algorithms (bold cells
do not have normality).

Algorithm GB LR GNB RF SVM

Accuracy 0.692 0.998 0.998 0.057 0.444
Exec. Time 0.131 0.529 0.529 0.254 0.436
F1-score 0.465 0.775 0.775 0.020 0.671
Brier score 0.199 0.993 0.993 0.171 0.323
ROC AUC 0.006 0.881 0.881 0.356 0.569

Fig. 6. Histogram of accuracy across algorithms.

Fig. 7. Histogram of F1-score across algorithms.

As seen in the result table (see Table 6) and box chart (see Fig. 5),
GB and RF perform better than the remaining algorithms. This pattern
is further seen in the confusion matrices and ROC chart below (see
Figs. 12 & 11).
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Fig. 8. Histogram of Brier score across algorithms.

Fig. 9. Histogram of ROC AUC across algorithms.

Fig. 10. All feature’s feature importances across algorithms.

Fig. 11. ROC curves across algorithms with 10-fold cross-validation.

Fig. 12. Confusion matrices across all algorithms (using mean values of the 10-fold
cross-validation).

5. Hypotheses testing

5.1. Hypothesis 1

An analysis of the association between sleep disturbances and de-
mentia was conducted using multiple logistic regression. The model
has a statistically better fitness than an empty model 𝜒2(12, 𝑛 = 2779) =
51.19, 𝑝 < 0001, Pseudo 𝑅2 = 0.0565. However, of the 12 variables, only
10
Table 9
Logistic regression on sleep disturbance features, hypothesis 1.

Feature Odds ratio Std. Err. p-value 95% CI

D31 0.165 0.305 0.589 [−0.434, 0.763]
D32 −0.030 0.488 0.952 [−0.986, 0.927]
D33 0.291 0.262 0.266 [−0.221, 0.804]
D34 0.134 0.261 0.609 [−0.379, 0.646]
D35 −0.353 0.260 0.175 [−0.863, 0.157]
D36 −0.019 0.298 0.949 [−0.603, 0.565]
D37 −0.164 0.220 0.455 [−0.596, 0.267]
D38 −1.285 0.240 0.000 [−1.755, −0.815]
D39 0.027 0.136 0.842 [−0.240, 0.295]
D40 0.105 0.084 0.209 [−0.059, 0.270]
E135 −0.100 0.103 0.331 [−0.302, 0.102]
E36 0.824 0.229 0.000 [ 0.376, 1.272]

Table 10
t-tests on the Brier score across all algorithms, hypothesis 2.

Algorithm p-value 𝜇 ≠ 0.25 p-value 𝜇 < 0.25 p-value 𝜇 > 0.25

GB 0.000 0.000 1.000
LR 0.002 0.001 0.999
GNB 0.024 0.012 0.988
RF 0.000 0.000 1.000
SVM 0.002 0.001 0.999

two were statistically significant (see Table 9, bold cells are significant).
Namely, if the participant snores (𝑝 < 0.001) and if they are tired and
thus sleep more than two hours during the day (𝑝 < 0.001). However,
as the confounding variables are constant and uncontrolled, they can
affect the association.

As the model can find an association between sleep disturbances
and dementia, we reject hypothesis 1’s null hypothesis and accept the
alternative one (see Section 3.5.1).

5.2. Hypothesis 2

Five one-tailed t-tests were performed (see Table 10), one for hy-
potheses 2a–2e (see Sections 3.5.3, 3.5.4, 3.5.5, 3.5.6 & 3.5.7). All
t-tests reject the null hypothesis that the average Brier score is 0.25.
All tests also show that the Brier score is less than 0.25. Therefore, we
accept the alternative hypothesis (𝐻1) for all hypotheses.

5.3. Hypothesis 3

16 Kruskal–Wallis tests, one for each feature in the ML models, show
a statistically significant difference in 11 of the 16 features between the
five ML algorithms (see Table 11, bold cells does not reject hypothesis
3’s 𝐻0). D35, D37, D39, D40 and E135 were the five features that did
not meet the required significance level. Because most features differed
significantly, we can reject hypothesis 3’s null hypothesis and accept
the alternative (see Section 3.5.8).

5.4. Hypothesis 4

A one-way ANOVA test determines that the Brier score for each
algorithm is significantly different, 𝐹 (4, 45) = 25.09, 𝑝 = 0.000. Because
of the significant difference, we can reject hypothesis 4’s null hypoth-
esis and accept the alternative one (see Section 3.5.9). Furthermore, a
Tukey post-hoc test shows the pairwise difference in the Brier score of
the five algorithms. RF and GB have a statistically lower Brier score
than SVM, GNB and LR (see Table 13 and Fig. 13).

Because of the significant difference in the Tukey test, GB and RF
perform better than the other algorithms. A two-sample t-test assessed
the Brier score between GB and RF. There was a significant result that
the algorithms do not have an equal Brier score (𝑝 < 0.0083). Further,
the test concludes that GB has a significantly smaller Brier score than
RF (𝑝 < 0.0042). Therefore, GB has a significantly better accuracy
performance than the remaining algorithms (see Table 12).
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Table 11
Kruskal–Wallis test on the feature importances, hypothesis 3.

Feature p-value 𝜒2(4) Rank sum

GB LR GNB RF SVM

Sex 0.000 34.563 431 126 227 357 134
Age 0.000 39.822 77 397 282 133 386
A1 0.000 20.408 216 176 221 438 224
C51 0.000 22.413 115 330 352 160 318
D31 0.006 14.346 205 179 326 371 195
D32 0.037 10.222 220 343 160 315 238
D33 0.044 9.824 321 219 317 270 149
D34 0.002 17.026 267 139 392 281 198
D35 0.325 4.654 314 245 193 296 227
D36 0.023 11.356 201 191 350 329 205
D37 0.197 6.030 250 181 304 317 224
D38 0.000 24.257 388 198 175 367 147
D39 0.222 5.711 276 209 204 338 249
D40 0.167 6.469 323 175 243 302 233
E36 0.003 15.796 235 212 229 415 184
E135 0.704 2.173 304 210 242 258 262

Table 12
ANOVA test on the Brier scores, hypothesis 4.

Sum of squares df F p-value

Between groups 0.185 4 25.09 0.000
Within groups 0.083 45

Table 13
P-values for the post-hoc Tukey test, hypothesis 4.

Algorithm pair Contrast Std. err. t p-value

LR vs. GB 0.138 0.019 7.210 0.000
GNB vs. GB 0.135 0.019 7.010 0.000
RF vs. GB 0.031 0.019 1.620 0.490
SVM vs. GB 0.141 0.019 7.350 0.000
GNB vs. LR −0.004 0.019 −0.190 1.000
RF vs. LR −0.107 0.019 −5.580 0.000
SVM vs. LR 0.003 0.019 0.140 1.000
RF vs. GNB −0.103 0.019 −5.390 0.000
SVM vs. GNB 0.006 0.019 0.340 0.997
SVM vs. RF 0.110 0.019 5.730 0.000

6. Discussion

Key findings

• An association between sleep disturbance and dementia
exists.

• Additional research is needed to discover more fitting
sleep disturbance factors

• Identified several sleep disturbance risk factors, which
have an association with dementia.

• All five algorithms can predict dementia. However, the
results from this study show that gradient boosting (GB)
performs best.

6.1. Association of sleep disturbances and dementia

An association between sleep disturbances and dementia exists (see
ection 5.1). The regression model is significant but had a minimal
ffect size (Pseudo 𝑅2 = 0.0565). The result concludes the existence

of an association, but all the features are not fitting, which can be
issues such as highly correlated and incorrect predictor variables [79].
Other features could find a more fitting association. Nonetheless, the
association between sleep and dementia is consistent with current
research [5–7,63–66], even though it is minimal.
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Fig. 13. Pairwise comparison of the Brier score, hypothesis 4.

6.2. Machine learning algorithm’s accuracy

Another finding is that all algorithms can predict dementia better
than a random classifier based on sleep factors (see Section 5.2). GB is
the most accurate ML algorithm in the study (see Table 6 & Section 5.4),
with the highest accuracy, F1-score, Brier score and ROC AUC.

The study’s results and analysis compare the ML algorithms with
a random classifier. All algorithms perform better than one. However,
their worth in practice is hard to determine. To be useful in practice, we
need further research on which sleep-related features impact dementia.

Furthermore, the algorithms create different models and have differ-
ent feature importance. Because of the feature importance differences,
the results became harder to interpret. Even though the algorithms can
predict dementia with their given model, other features could improve
it and provide more consistent results across algorithms.

The prediction accuracy of the algorithms in the paper and reviewed
research are inconsistent. Most studies with multiple ML algorithms
have SVM as the best or close to the best algorithm based on predictive
accuracy [7,46,57,61,62]. The results of this study show that SVM is the
worst algorithm.

One reason can be the difference in the data and sampling. The
studies with SVM have not examined dementia with sleep but dementia
with other factors such as EEG. Additionally, other studies without
SVM [45,47] show that a version of GB outperforms RF, which is
consistent with this study.

Furthermore, the oversampling techniques (see Section 1.4) impact
the data and ML algorithm’s results, several suggestions exist for using
resampling to combat the bias towards the majority class and thus the
adverse effects of vast class imbalances [80–82].

Lastly, an issue exists for two algorithms, which is the probability
estimation of SVM and GNB. GNB is known to be a poor estimator [83],
which can influence its probability estimation and, thus, the results of
the feature importance and Brier score. SVM also has the issue with
probability estimation [84], which leads to the same possible faults.

6.3. Risk factors for dementia

The feature’s feature importance varies vastly (see Fig. 10 & Sec-
tion 5.3). There are two themes in the results. RF’s and GB’s feature
importances are similar, and LR’s GNB’s and SVM’s feature impor-
tances are alike. Which features have the correct feature importance is
ambiguous. However, the variables that consistently have the highest
feature importance in all algorithms are: If the person sleeps more than
two hours during the day, their sex, education level, age, waking up
during the night and if the person snores. Therefore we conclude that
these are the highest risk factors of the 16 features in the paper.
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Current research also has the same results for personal risk factors
as this study. As described above, age, sex, and educational level are
highly important features, which is consistent with current research [9,
11,47].

However, other factors affect sleep. Physical activity and mental
health are risk factors for dementia [9,47,48], and they both have
a bidirectional association with sleep [85,86]. Because of the bi-
directionality, assessing if mental and physical health or sleep is the
primary risk becomes arduous. However, if one’s sleep quality becomes
disturbed, it can be an early sign of issues which can increase one’s risk
of dementia. As described earlier (see Section 1.1), there are indications
that leading a healthy lifestyle can decrease the risk and prevalence of
dementia [19].

7. Conclusion

7.1. Summary

This study examines the association between sleep and dementia
using several machine-learning algorithms. The algorithms are gradient
boosting, logistic regression, Gaussian naive Bayes, random forest and
support vector machine. Further, this paper uses data from SNAC-B
(Swedish National Study on Aging and Care — Blekinge), a long-term
longitudinal study on the older population in Blekinge, Sweden.

A controlled experiment is the chosen method. The primary goal is
to obtain each algorithm’s feature importance and Brier score, which
the hypotheses use. The experiment has 4175 samples, 16 features and
uses 10-fold stratified cross-validation to collect the results.

The result concludes that gradient boosting was the most accurate
model with 92.9% accuracy, 0.926 f1-score, 0.974 ROC AUC and 0.056
Brier score. It further establishes that there is an association between
sleep disturbances and dementia. However, which factors that are
significant were different in each machine-learning algorithm. If the
person sleeps more than two hours during the day, their sex, education
level, age, waking up during the night and if the person snores are the
variables that most consistently have the highest feature importance in
all algorithms.

7.2. Impact

The results of this study have the same conclusions as the re-
viewed literature. There is an association between sleep and dementia.
However, as in the other studies, the association is small, and which
exact sleep factors that influence dementia are hard to determine.
Furthermore, this study shows an indication that machine learning can
help with the screening of dementia patients.

7.3. Future works

The study’s results show an association between sleep disturbance
and dementia. However, the association is small and further studies
should use other features to examine the association further. Addition-
ally, using data from different countries than Sweden would improve
the generalizability of the results.

Using other machine learning algorithms or artificial neural net-
works to compare their performance accuracy would be beneficial to
examine which functions the best in the given field.

Furthermore, studies with concept drift can examine if predictor
features change over time. Thus correcting for this can improve learn-
ing [87]. Research on concept drift exists in areas such as software
quality assurance [88], but examining if this functions well for medical
applications would be valuable.

Lastly, the oversampling technique can influence the results, in-
cluding other would be beneficial, such as cluster-based adaptive data
augmentation (CADA) [89], synthetic minority oversampling tech-
nique (SMOTE) [90] and other newer techniques, for example, MA-
12
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