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Abstract Stress relaxation of high-density polyethylene is addressed both experimentally and theoretically.
Two types of stress relaxation testing are carried out: uniaxial tensile testing at constant test specimen length
and compression testing of a 3D structure producing inhomogeneous deformation fields and relaxation. A
constitutive model for isotropic, semi-crystalline polymers is also proposed. The model has the ability to
model stress relaxation at different time scales. The developed model was implemented as a user subroutine in
Abaqus (UMAT). The implicit integration scheme including an algorithmic tangent modulus is described in
detail. The material model is calibrated by use of the uniaxial tensile tests, and the model is then validated by
simulating the compression tests of the 3D structure. The model is able to describe the uniaxial tension tests
well, and the comparison between the simulations and experimental testing of the 3D structure shows very
good agreement.

1 Introduction

Polyethylene is one of the most common polymers and is used in a vast array of consumer goods. In fact,
polyethylene and polypropylene represent about 92% of the synthetic plastics produced [23]. The mechanical
behaviour of this polymer is therefore of great practical interest. In the present study, stress relaxation in a
high-density polyethylene (HDPE) and under finite strain conditions is investigated both experimentally and
theoretically.

Polyethylene (PE) that solidifies at rest forms a spherulitic microstructure, which is essentially isotropic
from amechanical point of view [28]. PE is a very ductile polymer and can be deformed up to 100% of straining
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and beyond. At large strains, this means that the crystallites are disrupted, and the polymer chains align in the
direction of deformation. The microstructural processes associated with large straining of HDPE and other
semi-crystalline polymers have been documented in a number of studies (e.g. [3,4,10,21,28,38,39]). With
regard to the macroscopic mechanical response, PE shows a strong strain rate dependence, and increasing
strain-rate generally causes loss of ductility [19,50,57].

Due to its wide usage and industrial importance, polyethylene is one of the most investigated polymers.
Different aspects of themechanical behaviour ofHDPEhave been investigated in previous studies, including the
response duringmonotonic loading [13,43,47,66] aswell as during creep and relaxation loading [17,27,42,62].

In applications, polyethylene often undergo large deformations, and constitutive models based on a theory
for finite strains are therefore needed. Many modelling approaches are based on the multiplicative decompo-
sition of the deformation gradient into elastic and inelastic parts [11,30,37]. Some models are derived on the
basis of microstructural considerations, and mixture theory is often used to account for the contributions from
the amorphous and crystalline phases, e.g. Parks and Ahzi [46], Lee et al. [36], van Dommelen et al. [16],
Nikolov et al. [43], Dusunceli and Colak [18], Selles et al. [56], and Sreejith et al. [63]. Most models, however,
are more phenomenologically oriented, and many models have been proposed over the last years, e.g. Ayoub
et al. [6], Zeng et al. [66], Balieu et al. [7], Pouriayevali et al. [48], Shojaei and Li [58], Uchida and Tada [65],
Krairi and Doghri [29], Abdul-Hameed et al. [1], Garcia-Gonzalez et al. [22], Ayadi et al. [5], Barriere et al.
[9], Qi et al. [49], Barba et al. [8], Felder et al. [20], Cundiff et al. [14], Hao et al. [25], Satouri et al. [55], Song
et al. [61], Makki et al. [40], Reuvers et al. [51], Zeng et al. [67].

The models listed in the previous paragraph can all be said to be Lagrangian in the sense that they depend
on measures of total and inelastic deformation. The model proposed here is Eulerian in the sense that all state
variables are defined in the current state of the material (cf. [44]), and the evolution of elastic deformations
is prescribed directly. The basic framework of the model has been established before (e.g. [2,32–35,52–54]).
In these previous works, the same basic Eulerian framework has been applied for modelling residual stresses
in metals during melting and solidification [32], general directional hardening [33], residual stresses at welds
[35], volumetric inelasticity in semi-crystalline polymers [34], and stress relaxation and damage in semi-
crystalline polymers [2]. In the present work, the ability to model stress relaxation at multiple time scales is
added. The proposed model is calibrated by use of uniaxial tensile tests, both monotonic loading tests and
stress relaxation tests. Relaxation at different initial stress levels and for different time periods is considered.
The material model is also implemented in Abaqus as a user subroutine (UMAT), i.e. a fully implicit numerical
implementation, including an analytic tangent modulus. The mechanical response of a 3D geometry is also
tested experimentally, and these results are used to validate the material model.

The paper is organised as follows: Sect. 2 describes the experimental setups. The constitutive model is
presented in Sect. 3. The new features of the proposed material model are demonstrated in Sect. 4. In Sect. 5,
the material model is compared to and calibrated by use of uniaxial tensile test results. In Sect. 6, the UMAT
implementation is validated by applying it to compression testing of a 3D structure. Section7 contains a
discussion and some concluding remarks.

2 Experiments

2.1 Uniaxial tensile tests

The uniaxial tensile stress relaxation tests used in the present work have been published previously in a master
thesis [24]. These tests were performed on high-density polyethylene (HDPE), which is a semi-crystalline
polymer. The HDPE used had a melt flow index of 26g/10 min (190 ◦C, 2.16 kg) and a density of 0.953 g/cm3.
The test specimen used followed the standard ISO 527-2-1BA and is shown in Fig. 1. The specimen was flat
with a rectangular cross-section, and the specimens were punched out from test plates with a thickness of
T0 = 0.60 mm. The test plates were manufactured through injection-moulding (ISO 294-5). The width of the
specimen in the test region wasW0 = 5.0 mm and the initial distance between the grips in the testing machine
was L0 = 60 mm. The resulting initial cross-sectional area in the test region was A0 = W0T0 = 3.0 mm2.

During the tests, force versus time was recorded using a load cell and a computer. The raw data from the
tests consisted of force versus time data, F(t), and load-line displacement versus time data, δ(t).

The information above is enough to establish the nominal stress vs. engineering strain relation for the
different load cases and also the evolution of the engineering stress versus time at different constant engineering
strain levels.
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Fig. 1 Test specimen used in tensile tests

Fig. 2 3D geometry tested in compression

For all the tests, the grip separation rate was δ̇ = 30 mm/min. This resulted in an engineering strain rate in
the test specimens of δ̇/L0 = 0.00833/s.

In the stress relaxation tests, the test specimen was first loaded up to a prescribed force, F0. After that,
the grip separation in the testing machine was kept constant, and the evolution of force, F(t), was registered.
Results from 5 different initial force levels are presented: F0 = 30 N, 40 N, 60 N, 65 N, and 69 N. In general,
three tests for each load-case were performed.

2.2 Compression testing of 3D geometry

A 3D geometry was also manufactured using injection-moulding and using the samematerial as in the uniaxial
tensile testing, see Fig. 2. Figure 2a shows an example of the physical specimen, both the whole specimen and
the cross-section of the specimen. Figure 2b shows the setup for the compression test. The 3D geometry was
loaded in compression between two rigid blocks, as indicated in Fig. 2. The applied force, F(t), and the load-
line displacement, δ(t), were registered. The tests were performed in displacement control. The 3D geometry
was loaded in compression up to a prescribed force F0 and using the displacement rate δ̇ = 0.2 mm/s. Two
target forces were used: F0 = 150 N and 200 N. Once the target force had been attained, the displacement
was kept constant for a time of 3h, allowing the geometry to relax, corresponding to a decreasing force F(t).
After 3h, the geometry was unloaded by moving the cross-head of the testing machine back to δ = 0 using
the same displacement rate as during loading, i.e. δ̇ = −0.2 mm/s.
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3 Constitutive model

3.1 Kinematics

The position of a material point in the deformed configuration is denoted by the vector x, and the velocity

is v = ẋ, where ˙
(•) denotes differentiation with respect to time. The velocity gradient L and the rate of

deformation tensor D are defined by

L = ∂v
∂x

, D = 1

2
(L + LT ) . (1)

The deformation state of the material is decomposed into its volumetric and distortional parts. The elastic
distortional deformation ismodelled by the symmetric, positive definite, unimodular tensor B̄e (i.e. detB̄e ≡ 1).
The entity B̄e can be interpreted as the elastic left Cauchy–Green deformation tensor in the Lagrangian theory.
The evolution of this tensor is given by

˙̄Be = LB̄e + B̄eLT − 2

3
(D : I)B̄e − Γ Āp, Γ ≥ 0, (2)

where Q : R = tr(QRT) (Q and R are just two general second-order tensors), and I is the second order unit
tensor. The first two terms in (2) on the right hand side can be seen as being related to objectivity. The third term
ensures that B̄e remains unimodular, i.e. detB̄e = 1. Finally, the fourth term is where the actual constitutive
behaviour comes into play. A detailed description of how the present Eulerian formulation of kinematics relates
to the more standard Lagrangian formulations is provided in “Appendix A”.

The rate of (distortional) inelastic deformations is defined byΓ ≥ 0, which plays the role of the plasticmul-
tiplier in standard Lagrangian formulations of plasticity. The direction of inelastic deformations is determined
by the tensor Āp, which takes the form

Āp = B̄e −
(

3

B̄
−1
e : I

)
I, (3)

where

Āp : B̄
−1
e = 0. (4)

This choice of Āp ensures that B̄e remains unimodular. Furthermore, in standard formulations of plasticity, the
directions of plastic deformations are usually derived from a plastic potential (the yield criterion in the case
of associative formulations). In the present formulation, the direction of plastic/inelastic deformations, Āp, is
not related to any plastic potential but is simply prescribed directly according to (3).

Moreover, the volumetric part of the deformation, the dilatation J , evolves according to

J̇

J
= D : I. (5)

In the present model, the yield criterion is formulated in strain space. The equivalent elastic distortional
deformation, corresponding to the von Mises stress in stress-based formulations, is given by

γe = 1

2

√
3

2
B̄

′
e : B̄

′
e, (6)

where

B̄
′
e = B̄e − 1

3
(B̄e : I)I (7)

is the deviatoric part of B̄e. Below, (•)′ is used to denote the deviatoric part of (•), in accordance with the
definition in (7). Also, the equivalent rate of total distortional deformation is defined as

ε̇ =
√
2

3
D′ : D′, (8)

where D′ is the deviatoric part of D.
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3.2 Strain energy and stress

The strain energy of the material, Σ , defined per unit mass, is taken to be

ρ0Σ = μ

2
(α1 − 3) + K

2
(J − 1)2, (9)

i.e. a standard neo-Hookean material is adopted. Above, ρ0 is the density of the material in the reference
configuration, α1 = B̄e : I is the first invariant of B̄e, and μ and K are the positive shear and bulk moduli
of the material. The dilatation, J , is taken to be purely elastic, i.e. inelastic deformations are taken to be
incompressible.

Assuming isothermal conditions, the rate of material dissipation requires that

T : D − ρΣ̇ = . . . =
{

T − ρ

ρ0

(
μB̄

′
e + K (J − 1)J I

)}
: D

+ ρμ

2ρ0
Γ (Āp : I) ≥ 0, (10)

where T is the symmetric Cauchy stress, and ρ = ρ0/J is the current density of the material. The Cauchy
stress is taken to be

T = μ

J
B̄

′
e + K (J − 1)I, (11)

and the von Mises stress σe is defined by

σe =
√
3

2
T′ : T′. (12)

In the last term of (10),μ, ρ, ρ0, and Γ are all positive constants or variables. Also, since B̄e is unimodular,
Āp : I ≥ 0 holds. Taken together, these properties ensure that the dissipation in (10) is always non-negative.

For the numerical implementation of the model, to be discussed in a later section, the Kirchhoff stress, τ ,
is also introduced as

τ = JT, (13)

and when comparing the model to experiments, the first Piola–Kirchhoff stress is used, i.e.

P = τF−T, (14)

where F is the deformation gradient.

3.3 Inelastic deformations

The rate of inelastic deformations, Γ , is expressed as

Γ = Γvp + Γr, (15)

where Γvp accounts for short-term viscoplasticity, and Γr accounts for long-term stress relaxation. The specific
forms for Γvp and Γr are chosen according to

Γvp = (a0 + b0ε̇)〈γe − κ〉, (16)

Γr =
n∑

i=1

ci 〈γe − ζi 〉, (17)

where κ and ζi are hardening variables, and a0, b0, and ci are material constants. Specifically, a0 and b0 govern
the rate-dependent and rate-independent short-term inelastic response of the material, respectively, whereas
ci can be seen at time constants for the relaxation behaviour of the material. The model is taken to consist of
n relaxing terms/units, which enables modelling of stress-relaxation at different time-scales. The hardening
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variable κ models isotropic hardening in strain space. The hardening variables ζi are more abstract, but model
a type of hardening associated with the relaxation in the material.

The Macaulay brackets 〈•〉 are defined by
〈x〉 = max(x, 0). (18)

The evolution of the hardening variables κ and ζi are governed by the functions

κ̇ = ξΓvp, (19)

ξ̇ = mΓvp(ξs − ξ), (20)

ζ̇i = ni ε̇(ζs,i − ζi ) · Θ(γe − ζi ), (21)

where m ≥ 0 and ni ≥ 0 are hardening rates, ζs,i are the saturated values of the hardening variables, and
Θ(•) is the Heaviside step function. The rate of the evolution of κ is governed by the additional state variable
ξ , which evolves to the saturated value ξs. This is a convenient way to model the hardening of the present
material. The initial values of the respective hardening variables are denoted by κ0, ξ0, and ζi0.

In principle, (20) can be solved analytically, such that ξ is expressed as a function of the time integral of
Γvp. But in the present implementation (as will be shown below), the differential relation in (20) is used, since
history variables are avoided in the present model formulation.

3.4 Summary of material model

The model contains the following state variables and non-standard kinematic entities:

– B̄e: elastic distortional deformation
– α1: first invariant of B̄e
– J : elastic dilatational deformation
– Ap: direction of inelastic deformation
– Γ : rate of inelastic deformation
– Γvp: rate of short-term viscoplasticity
– Γr: rate of long-term stress relaxation
– κ: isotropic hardening
– ξ : state variable controlling the rate of isotropic hardening
– ζi : relaxation hardening
– γe: equivalent distortional elastic deformation
– ε̇: equivalent rate of total distortional deformation

In addition, the model contains the following model parameters:

– μ: shear modulus
– K : bulk modulus
– a0: controls the rate of rate-dependent viscoplasticity
– b0: controls the rate of rate-independent plasticity
– m: controls the rate of isotropic hardening
– ci : controls the rate of relaxation
– ni : controls the rate of relaxation hardening
– ξs: maximum rate of isotropic hardening
– ζs,i : saturated value of relaxation hardening

4 Model behaviour in simple load cases

The behaviour of the proposed model is illustrated for some simple load cases, i.e. uniaxial tension, biaxial
tension, and simple shear. The numerical implementation of these simple load cases is described in “Appendix
B”. Uniaxial and biaxial loading are applied in terms of a prescribed strain ε11 (ε22 = ε11 for biaxial loading),
and for simple shear, the shear angle γ is instead prescribed. The shear modulus and Poisson’s ratio were set to
μ = 300MPa and ν = 0.4, respectively. This gives a bulkmodulus of K = 2μ(1+ν)/3(1−2ν) = 1400MPa.
These elastic constants are listed in Table 1.



Experimental and theoretical study of stress relaxation

By use of Γvp, rate-independent as well as rate-dependent inelasticity can be modelled. Yielding starts
when γe exceeds κ0. The material hardening is modelled by κ , and the hardening rate is governed bym and the
state variable ξ . The parameter a0 models the viscoplasticity, and b0 governs the rate-independent plasticity.
The set of viscoplastic model parameters that is used in this study of the model behaviour is listed in Table 2.

The ability to model stress relaxation at different time scales is a new aspect of the present model. The
contribution of Γr is therefore demonstrated. Figure 3 shows the stress response when the strain is increased
quickly and then held at a constant level. The elasticity constants in Table 1 and the viscoplasticity parameters
in Table 2 are applied. For the stress relaxation behaviour, only one relaxation term is used (n = 1), and
ζs,1 = 0.06.

The Γr-term causes stress relaxation. The relaxation behaviour for three different choices of c1 is shown,
i.e. c1 = 1/s (solid lines), 3/s (dashed lines), and 10/s (dotted lines). Two values of the hardening rate n1 are
explored, i.e. n1 = 1 (blue lines) and 10 (red lines). It is clear from Fig. 3, that increasing c1 causes the stress to
relax faster to the equilibrium stress level. Also, increasing n1 causes the equilibrium stress level to increase.

More relaxation units are now activated, and the three relaxation units listed in Table 3 are added to the
model parameters. The elastic constants in Table 1 together with the inelasticity parameters in Tables 2 and 3
together constitute the set of model parameters that provided the best fit of the model to the experimental data,
as will be shown in the next section. For now, the proposed model is explored a bit further for different types
of loading.

Figure 4 shows the response of the model for some different simple load-cases. Figure 4a shows the
response of the model in uniaxial tension, biaxial tension, and simple shear during cyclic loading. The material
is first loaded well into the plastic regime, then unloaded and reloaded in compression or the opposite shearing
direction in the case of simple shear. The material is then unloaded and reloaded in tension/positive shearing
again. As expected, the curve for biaxial loading (red line) produces the highest stresses, whereas simple shear
produces the lowest stresses (green line).

Figure 4b demonstrates the model response in the case of repeted loading in uniaxial tension. The material
is first loaded up to a strain of ε11 = 0.2, then unloaded to 0.18, reloaded to 0.4, unloaded to 0.38, etc.

Table 1 Parameters for elastic behaviour

μ (MPa) ν (–) K (–)

300 0.4 1400

Table 2 Parameters for viscoplastic behaviour

a0 (1/s) b0 (–) κ0 (–) m (–) ξ0 (–) ξs (–)

3 1200 0.005 1.3 0.021 0.0006

Fig. 3 Parametric study for the relaxation behaviour (parametres in Tables 1 and 2 applied): n1 = 1 (blue lines) and n1 = 10 (red
lines); c1 = 1/s (solid lines), c1 = 3/s (dashed lines), c1 = 10/s (dotted lines) (Color figure online)
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Table 3 Parameters for relaxation

c1 (1/s) c2 (1/s) c3 (1/s)
1 0.05 0.00003
n1 (–) n2 (–) n3 (–)
9 26 2.5
ζs,1 (–) ζs,2 (–) ζs,3 (–)
0.06 0.02 0.1

Fig. 4 Model responses using the parameters in Tables 1, 2 and 3: a responses in uniaxial tension (blue line), biaxial tension (red
line), and simple shear (green line) (loading rate: ε̇11 = γ̇ = 0.01/s); b uniaxial tension response during repeated cyclic loading
(ε̇11 = 0.1/s); c uniaxial tension response for loading rates ε̇11 = 0.01/s (blue line), 2.3 × 10−5/s (red line), and 7.7 × 10−7/s
(green line) (Color figure online)
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Fig. 5 Stress–strain response in monotonic uniaxial tensile tests. Strain-rates: ε̇11 = 0.0004/s (experiments: blue lines, model
prediction: green solid line), and ε̇11 = 0.0083/s (experiments: red line, model prediction: green dashed and dotted lines) (Color
figure online)

Figure 4c again shows a case of cyclic loading in uniaxial tension but in this case for three different
loading rates. The first loading rate (ε̇11 = 0.01/s, blue line) is a moderate loading rate, where short-term
viscoplasticity primarily governs the material response. The other two lines (red and green) show the model
response at lower loading rates where stress relaxation comes into play. The red and green lines represent the
cases ε̇11 = 2.3×10−5/s and 7.7×10−7/s, respectively, which correspond to completing the load cycle in 24h
and in 30 days, respectively. It is clear from Fig. 4c that stress relaxation generally decreases the magnitude
of the stress levels during the load cycle.

5 Model calibration

5.1 Prerequisites

The proposed constitutive model was calibrated using experimental uniaxial tensile tests. Two types of tests
were used: monotonic loading at constant strain rate and relaxation testing at fixed test specimen length. These
test data came from two sources: the master thesis by Görtz [24] that was described in Sect. 2, and another
experimental study by Abelen and Kroon [2] on the same material. Görtz [24] performed testing both in terms
of monotonic loading at constant strain rate as well as stress relaxation testing. The output from this study
was nominal/engineering stress versus either strain or time. In the study by Abelen and Kroon [2], digital
image correlation (DIC) was used to establish the true stress in the specimen, and this study produced data
in terms of true (Cauchy) stress versus strain. The data from Görtz [24] are therefore represented by the first
Piola–Kirchhoff stress, P11, whereas the data from Görtz [2] come in terms of the Cauchy stress, T11. These
data are compared to the corresponding stress measures from the model.

5.2 Comparison with uniaxial tensile tests

Themodel is first compared to themonotonic stress–strain tests and also the relaxation tests.As indicated above,
the model parameters that provided the best fit to the experimental data are listed in Tables 1, 2 and 3. Three
terms in the expression forΓr were needed to be able to fit all of the relaxation data (n = 3). The optimisation of
themodel parameterswas performedmanually.When plotting the results, the engineering strain, ε11 = F11−1,
is again used. Stresses are represented both by the Cauchy stress, T11, and the nominal/engineering stress, P11,
as indicated above.

In Fig. 5, the experimental results for the case of monotonic loading at two different loading rates are shown
together with the model response. The result for the higher loading rate is from Görtz [24] and the result for
the lower loading rate is from Abelen and Kroon [2]. In the tests with the lower loading rate, 8 specimens
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were tested, and DIC (digital image correlation) and manual thickness measurements of the specimens during
the test enabled determination of the true stress–strain response. The dispersion in these results (blue lines)
is very low, as can be seen in Fig. 5. The uniaxial test carried out in Görtz [24] only included measurement
of the evolution of the force, and together with the initial cross-sectional area, the nominal stress could be
established. As can be seen in Fig. 5, the true stress (solid green line) increases monotonically with the strain,
whereas the nominal stress (green dashed line) reaches a peak and then starts to decrease (both in experiments
and model prediction). The calibrated model is able to reproduce the stress–strain responses in the experiments
very well at both loading rates.

The data from Görtz [24] (red line) are only shown up to the point of necking, since beyond necking,
the engineering stress–strain results are more or less meaningless (unless the necking behaviour is analysed
in more detail). The associated model prediction (dashed green line) reaches a peak and then decreases. It is
emphasised, that this decrease in the model prediction is related to the fact that cross-sectional area changes
are not accounted for in the engineering stress, and hence, this decrease in the numerical prediction has
nothing to do with necking. (We are just simulating one material element and not the whole test specimen.)
Furthermore, the green dotted line is the predicted true stress response at the higher loading rate, illustrating
that the (predicted) true stress increases monotonically also at the higher loading rate.

In the relaxation tests, the material was loaded at a specified deformation rate up to a prescribed force,
and then the grips in the testing machine were kept fixed. The force relaxation was registered. Figure 6a–d
demonstrate the outcome from these tests together with the fitted model response. Results are shown in terms
of nominal stress, P11, versus time. In most of these tests, 3 tests were performed for each load-case, except for
the long-term test in Fig. 6d, where only two tests were performed. The experimental data points in Fig. 6a–d
represent the average results from the tests. The dispersion in these tests was very low.

The short-term stress relaxation is shown inFig. 6a, i.e. stress relaxation during thefirst 350 s. The agreement
between experiments and model is excellent for the two lower load-cases. For the two higher load-cases, the
model overpredicts the initial relaxation somewhat. Figure 6b shows a close-up of the response of the material
during the first 100 s. Overall, the model does a good job of predicting the initial relaxation observed in the
tests.

The medium-long stress relaxation is shown in Fig. 6c. In this case, there are only three load cases. The
agreement between model and experiments is generally good, even though the long-term stress level is slightly
overestimated by the model in the lowest load case.

In Fig. 6d, the long-term relaxation behaviour is shown. Due to the length of this experiment, it was only
carried out for one force level, i.e. F0 = 65 N. As can be seen from Fig. 6d, the agreement between model and
experiments is good.

In Fig. 6a, c, and d reference curves (dashed lines) are also included. These curves show what the predicted
responsewould be if the relaxation is turned off. The dashed lines in Fig. 6a shows the outcome for the respective
load levels if c1 = c2 = c3 = 0 is applied. There is some relaxation present anyway, which is associated with
viscoplasticity and the parameter a0. However, the continued stress relaxation cannot be captured if c1, c2, and
c3 are turned off.

The dashed lines in Fig. 6c show the outcome if c1 is set according to Table 3, but c2 = c3 = 0 is applied.
In this case, the mid-range relaxation behaviour cannot be properly captured. Finally, the orange dashed line
in Fig. 6d illustrates the outcome for the case F0 = 65 N when c1 and c2 are chosen according to Table 3 but
c3 is turned off. The long-term relaxation is not captured by the model then.

6 Model validation using 3D geometry

6.1 Preliminaries

The material model was implemented in Abaqus [26] as a user subroutine (UMAT). The numerical implemen-
tation of the stress update algorithm and the consistent (algorithmic) tangent stiffness is described in detail in
“Appendix C”.

6.2 Problem formulation

The implemented model is applied to the problem illustrated in Fig. 7, i.e. the compression test of a 3D
geometry is simulated. The FE representation of the 3D geometry is shown in Fig. 7a, and the FE problem
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Fig. 6 Comparison between experiments (symbols) and model predictions (solid lines) for relaxation tests: a short-term response
for F0 = 30 N (blue), 40 N (red), 60 N (green), and 69 N (magenta); b close-up of the first 100s of the short-term response in (a);
c medium-long response for F0 = 40 N (red), 60 N (green), and 69 N (magenta); d long-term response for F0 = 65 N (orange)
(Color figure online)

to be solved is shown in Fig. 7b. The geometry is placed between to rigid blocks. The contact between the
HDPE geometry and the rigid blocks is taken to be friction-less. The whole geometry was discretized using
about 89,000 8-node linear elements, and the analyses were carried out as quasi-static, implicit simulations.
The simulations of the compression tests took about 4h on a standard computer (no parallelization), and on
the average about 60 load increments were used to simulate the loading-unloading procedure.
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Fig. 7 a Mesh of 3D geometry; b FE problem

6.3 Results

The compression tests described in Sect. 2 were simulated. Figure 8 shows contours of the vonMises stress, σe,
and the hardening variable, κ , at different stages of the simulation. A cross-section of the geometry is shown,
i.e. the interior of the geometry is seen. Just as in the experiments, the displacement rate during loading and
unloading was δ̇ = 0.2 mm/s.

At t = 0, the whole geometry is stress-free and no hardening has taken place, i.e. κ = κ0 = 0.005. At time
t = 6.4 s, the target force, F0 = 200 N, has been reached. This is the point when the structure experiences
the highest stresses, and the peak stress reaches a value of about 25 MPa. Some inelastic deformations have
taken place, and some hardening has taken place. For t > 6.4 s, the applied displacement, δ, is kept constant,
and the structure experiences stress relaxation. At the end of the relaxation phase, at t = 3 h, the applied force
has decreased to a value of about 77 N, which is less than half of F0. During the relaxation phase, inelastic
deformations take place, which results in material hardening. The peak value of κ is about 0.025 at the end of
the relaxation phase. The last stage of the loading cycle consists of unloading of the geometry. Some parts of
the structure have undergone significant inelastic deformations and associated material hardening. However,
this does not result in any significant residual stresses after the external load has been removed, as can be seen
in the lowest figure in Fig. 8.

Figure 9 shows comparisons between the simulations and experiments in terms of the force response during
tests with F0 = 150 N and 200 N. Three tests were performed for each target stress F0. The experimental
results are indicated by solid blue lines (F0 = 150 N) and solid red lines (F0 = 200 N). Model predictions are
indicated by magenta dashed lines (F0 = 150 N) and green dashed lines (F0 = 200 N).

Figure 9a shows the evolution of the force, F , as a function of time, t . Time goes from 0 to 3h, which
means that the initial loading phase is hardly visible. For the case F0 = 200 N, the force starts at 200 N and
decreases down to about 77 N after 3h. In other words, the material experiences significant stress relaxation.
The three experimental curves (solid red lines) arewell collected. Themodel overestimates the initial relaxation
compared to the experiments, but at the end of the relaxation process, the model prediction is quite close to the
experimental stress level. The same conclusions hold for the case F0 = 150 N, i.e. the experimental results
show a low dispersion. The force decreases from 150 N to about 60 N at the end of the relaxation process. The
model again overestimates the initial relaxation, but at the end of the relaxation phase, the model agrees very
well with the experimental force level.

Figure 9b essentially shows the same information as in Fig. 9a, but in Fig. 9b, the horizontal axis shows
the logarithm of time instead. In Fig. 9b, it can be seen that in the very beginning of the relaxation process, the
model actually underestimates the relaxation, but after about 100s the model instead starts to overestimate the
relaxation. It should also be noted that the experimental curves have been translated in the horizontal direction
(t-dimension) so that they reach the peak force at the same time as the simulations.

In Fig. 9c, force versus displacement results are shown. In this diagram, it can be seen even more clearly
that the experimental curves exhibit an initial non-linearity. In the experiments, the specimens always undergo
some initial adjustments, which causes this initial non-linearity. Again, in order to help the comparison between
model and experiments, the experimental curves were shifted in the displacement dimension so that the peak
force in the experiments appears at the same displacement as in the simulations. In the force-displacement
diagram, the experimental curves show some dispersion. The overall impression is that the model seems to
somewhat underestimate the initial stiffness of the structure. As noted earlier, the total amount of relaxation
is very well predicted by the model. From Fig. 9c it is also evident that the final unloading path is relatively
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Fig. 8 Contours of σe and κ for a load cycle with F0 = 200 N

well predicted by the model. The experiments show a non-linear unloading path, whereas the model response
is virtually linear. But the value of δ that results in zero force during unloading is well predicted by the model
and occurs at about δ = 0.5 mm and 0.8 mm for F0 = 150 N and 200 N, respectively.

7 Discussion

Theproposedmodel is intended tomodel the rate- andhistory-dependent response of semi-crystalline polymers,
and this includes stress relaxation. In general, stress relaxation in polymers is caused by time-dependent
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Fig. 9 Force relaxation of 3D geometry for two different initial loads, F0. F0 = 150 N: tests (solid blue lines) and model
prediction (dashed magenta line), F0 = 200 N: tests (solid red lines) and model prediction (dashed green line). a Force response
versus time; b force response versus logarithm of time; c Force response versus load-line displacement (Color figure online)

rearrangements of the long, entangled polymer chains, where the polymer network reorganises itself in order
to minimise the elastic energy. But the details of this process are more complicated. Doi and Edwards [15]
suggested three basic mechanisms for stress relaxation in the amorphous phase, i.e. (a) relaxation between
entanglements in order to re-establish a constant chain density, (b) chain retraction inside a deformed (and
imagined) ‘tube’ in the material, and (c) chain disengagement from the ‘tube’ by a reptation process. These
three steps would then be characterised by three different relaxation times. For semi-crystalline polymers, the
situation is even more complex. Studies suggest that stress relaxation can be associated with the formation
of microvoids in the amorphous phase in between the crystallites in the microstructure [12,56]. Furthermore,
partial crystallisation of the amorphous phase is another mechanism that could cause stress relaxation [31,41,
64].

There are other models available in the literature that essentially set out to accomplish the same thing
as the present model, and some of these were mentioned briefly in Sect. 1. An alternative Eulerian approach
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was proposed by Simo [60]. However, in Simo’s model, the yield criterion is formulated in stress space.
Furthermore, the evolution of inelastic deformations is derived from a plastic potential and the principle of
maximum plastic dissipation is applied in Simo’s work, which is not the case in the present work. With regard
to Lagrangian models, van Dommelen et al. [16] proposed a micromechanically motivated constitutive model
for semi-crystalline polymers. van Dommelen et al. [16] make use of the multiplicative decomposition of the
deformation gradient into elastic and inelastic parts, i.e. F = FeFi. They use mixture theory to represent the
contribution to the total stress from the two phases (crystalline and amorphous), and crystal plasticity is used
for modelling the inelastic deformations of the crystalline phase. Ayoub et al. [6] also proposed a model for
semi-crystalline polymers that is valid for finite strains and based on the multiplicative split of the deformation
gradient. Ayoub et al. [6] propose a three-phase material where the total stress is produced by a ‘molecular
network resistance’, an ‘amorphous intermolecular resistance’, and a ‘crystalline intermolecular resistance’.
This translates into three spring-dashpot units carrying the load in parallel, which among other things enables
modelling of stress relaxation at different time scales. Other models exist that use more or less the same
basic theoretical frameworks as the two models mentioned above. Both of these models are Lagrangian in
the sense that their constitutive framework depends on the reference state through state variables like the
total deformation gradient and the plastic/inelastic part of the deformation gradient. In contrast, the model
proposed here is Eulerian in the sense that it only depends on state variables that are defined in the current
state of the material. One attractive feature of the Eulerian framework is that the state variables are—at least
in principle—measurable in the current state of the material. For example, the elastic strains (i.e. B̄e and J )
can be measured directly by experimental techniques, such as diffraction methods. In contrast, total strains
or plastic strains (in Lagrangian models) cannot be directly measured from the current state of the material.
Furthermore, inelastic deformations are often taken to be incompressible, and another difference between the
frameworks can be found in how this incompressibility is treated numerically. In numerical implementations
of Lagrangian formulations of inelasticity, special numerical schemes must be used for ensuring that the plastic
deformations remain incompressible (detFi = 1). In the present Eulerian formulation, this issue simply never
arises. The evolution laws in the present Eulerian formulation are also formulated in strain space, in contrast
to the two Lagrangian formulations above, which are formulated in stress space. This also means that the
numerical implementation of inelasticity becomes somewhat simpler.

The experimental results presented here can to some extent be compared to other studies. Drozdov and
Christiansen [17] investigate themonotonic stress–strain response and also the stress relaxation of high-density
polyethylene. At the strain rate 0.01/s, Drozdov and Christiansen [17] get an engineering stress peak of about
20 MPa. This stress peak is slightly lower than what was seen in the present study (23 MPa) at a slightly lower
strain rate (0.0083/s). Drozdov and Christiansen [17] also perform stress relaxation tests, but they consider
stress relaxation starting from an engineering stress of about 20 MPa, which is lower than in the present study.
When starting a relaxation test at 20 MPa and then keeping the applied strain constant, the stress has relaxed
to below 10 MPa after about 3000s. The results from Drozdov and Christiansen [17] are consistent with the
results in the present study.

The rate aspect of the relaxation behaviour in the model is primarily governed by the ci -constants. For the
present set of experiments, three relaxation terms (n = 3) were needed to describe the relaxation behaviour
for all time ranges. The optimal values of these parameters were c1 = 1/s, c2 = 0.05/s, and c3 = 0.00003/s.
Inversion of these values gives an estimate of the time constants of the microstructural relaxation processes
involved. Hence, the inverted values are 1/c1 = 1 s, 1/c2 = 20 s, and 1/c3 ≈ 33,000 s≈ 9.3 h≈ 0.4 days. It is
difficult to say in detail what the microstructural processes are, but this observation illustrates the complicated
rate-dependence that these materials exhibit.

In the simulations of the 3D geometry, the simulations seemed to underestimate the initial stiffness of
the structure. This could be due to the fact that the contact between the geometry and the rigid plates was
taken to be friction-less. Introducing friction in the contact will make the simulated structure stiffer. Another
reason why the simulation underestimated the structural stiffness could be that the inelasticity in the proposed
model is pressure-independent. The hydrostatic stress usually has an impact on the inelastic flow in polymers,
meaning that a positive hydrostatic stress facilitates inelastic flow whereas a negative hydrostatic stress has
the opposite effect. Previous studies have also confirmed that there is such an effect in polyethylene [42,62].
In the present study, the material model was calibrated by use of tensile tests, whereas the validation was
performed by exposing the 3D geometry to compression loading. It could be expected that the model would
then overestimate the relaxation of the 3D geometry compared to experiments. An overestimation of the
relaxation was indeed observed but only after some time of relaxation. Overall, the present results suggest that
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the relaxation properties of the present material in tension and compression are not too different, at least not
within the stress and strain regimes considered here.

In the simulations, linear 8-node elements with incompatible modes were used. A limited mesh study was
also carried out, where the element size in the regions with the largest deformations was decreased by a factor
2. This did not have any significant influence on the force response of the structure. In some regions of the
3D structure, the material undergoes large plastic deformations, and the material response is therefore close
to near incompressible. In the element formulation in Abaqus, selectively reduced integration is applied, i.e.
reduced integration is applied to the volumetric terms. This is done in order to prevent volumetric locking.
Taken together, significant mesh-dependence should not be an issue in the present simulations.

In summary, the stress relaxation behaviour of HDPE has been studied both experimentally and theoret-
ically. An Eulerian constitutive model for isotropic polymers was proposed. The model was able to describe
the uniaxial tension results well, and it was also able to predict the behaviour of a 3D structure exposed to
compression.
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Appendix A: Relation between Eulerian and Lagrangian formulations of kinematics

In the Lagrangian formulations, use is made of entities that are connected to the reference configuration of
the material. Hence, the deformation gradient is defined as F = ∂x/∂X, where x and X are the current and
reference position vectors, respectively. A common strategy is then to decompose the deformation gradient
into elastic and inelastic parts, according to F = FeFi, where Fe and Fi are the elastic and plastic/inelastic
parts, respectively [11,30,37]. The elastic and plastic right Cauchy–Green deformation tensors are Ce = FT

e Fe

andCi = FT
i Fi, respectively, and the elastic left Cauchy–Green deformation tensor isBe = FeFT

e . The velocity
gradient L and the rate of deformation tensor D are defined by L = ḞF−1 = ∂v/∂x and D = (L + LT)/2,
respectively.
The evolution of inelastic deformations can be modelled by the constitutive relation Ċi = Γ Ar, where Ar is

a second-order tensor, and Γ > 0 is scalar function. The evolution of Ci can be expressed as

Ċi = ˙
FT
i Fi = . . . = FT

i F−1
e

(
LBe + BeLT − Ḃe

)
F−T
e Fi. (22)

Choosing Ar according to

Ar = FT
i

(
I − 3C−1

e

C−1
e : I

)
Fi (23)

leads to

Ḃe = LBe + BeLT − Γ

(
Be − 3I

B−1
e : I

)
, (24)

http://creativecommons.org/licenses/by/4.0/
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which can be seen as an evolution law for Be. The unimodular version of Be is B̄e = Be/J 2/3. Then, using the
relation

˙̄Be = Ḃe

J 2/3
− 2

3
(D : I)B̄e, (25)

where incompressibility of inelastic deformations has been assumed, (24) can be recast into (2).

Appendix B: Numerical implementation of simple load cases

Thematerial model behaviour is explored for three types of simple load cases: uniaxial tension, biaxial tension,
and simple shear. In a uniaxial tension/compression test, the components of the deformation gradient and rate
of deformation tensor are given by

F =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ2

⎤
⎦ , D = L = ḞF−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ̇1

λ1
0 0

0
λ̇2

λ2
0

0 0
λ̇2

λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (26)

where a Cartesian coordinate system X1 − X2 − X3 has been assumed, λ1 is the stretch in the X1-direction
where the tension or compression is applied, and λ2 denotes the transverse stretches in the traction-free X2-
and X3-directions. The components of the unimodular elastic left Cauchy–Green deformation tensor are

B̄e =

⎡
⎢⎢⎢⎣

λ2e1 0 0

0
1

λe1
0

0 0
1

λe1

⎤
⎥⎥⎥⎦ , (27)

where λe1 is the elastic stretch in the X1-direction.
Time is discretized using a time stepΔt , and discrete time steps are denoted by tn , where n = 0, 1, 2, 3, . . . and
t0 = 0. Eqs. (2), (5), (19), (20), and (21) are discretized using an implicit scheme. Together with the boundary
condition T22 = T33 = 0, the discretized problem to be solved can be stated as

J (tn) − J (tn−1) − Δt (D(tn) : I) = 0, (28)

λe1(tn) − λe1(tn−1) − λe1(tn)D
′
11(tn)Δt +

λe1(tn)(λ3e1(tn) − 1)Γ (tn)Δt

1 + 2λ3e1(tn)
= 0, (29)

μ(1/λe1(tn) − α1(tn)/3) + K (J (tn) − 1)J (tn) = 0. (30)

For a given time step tn and a given value λ1(tn), (28)–(30) are solved for λ2(tn), λe1(tn), and J (tn).
For the cases of biaxial tension and simple shear, the deformation gradient takes the forms

F =
⎡
⎣λ1 0 0

0 λ1 0
0 0 λ2

⎤
⎦ , F =

⎡
⎣ 1 γ 0
0 1 0
0 0 λ2

⎤
⎦ , (31)

respectively, where λ1 and γ are the two prescribed deformation variables, and λ2 responds to satisfy the
boundary condition T33 = 0. The velocity gradient then takes the forms

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ̇1

λ1
0 0

0
λ̇1

λ1
0

0 0
λ̇2

λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

, L =
⎡
⎢⎣
0 γ̇ 0
0 0 0

0 0
λ̇2

λ2

⎤
⎥⎦ , (32)
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and B̄e takes the forms

B̄e =

⎡
⎢⎢⎣

λ2e1 0 0
0 λ2e1 0

0 0
1

λ4e1

⎤
⎥⎥⎦ , B̄e =

⎡
⎣β11 β12 0

β12 β22 0
0 0 β33

⎤
⎦ , (33)

respectively, where β33(β11β22 − β2
12) = 1. For the case of biaxial tension, the same set of equations, i.e.

(28)–(30), needs to be solved, but (29) now instead takes the form

λe1(tn) − λe1(tn−1) − λe1(tn)D
′
11(tn)Δt

+λe1(tn)(λ6e1(tn) − 1)Γ (tn)Δt

2(2 + λ6e1(tn))
= 0. (34)

For simple shear, (29) expands to three equations, one equation each for the variables β11, β22, and β12,
respectively. These three equations are

β11(tn) − β11(tn−1) − 2γ̇ β12(tn)Δt + 2

3

λ̇2

λ2
β11(tn)Δt

+ Γ

(
β11(tn) − 3β33(tn)

1 + β2
33(tn)(β11(tn) + β22(tn))

)
Δt = 0, (35)

β22(tn) − β22(tn−1) + 2

3

λ̇2

λ2
β22(tn)Δt

+ Γ

(
β22(tn) − 3β33(tn)

1 + β2
33(tn)(β11(tn) + β22(tn))

)
Δt = 0, (36)

β12(tn) − β12(tn−1) − γ̇ β22(tn)Δt + 2

3

λ̇2

λ2
β12(tn)Δt

+ Γβ12(tn)Δt = 0. (37)

Appendix C: Numerical implementation of material model

We consider a time step that starts at t = tn , ends at t = tn+1, and where the time increment is Δt = tn+1 − tn .
At t = tn , the set of values {J (tn), B̄e(tn), κ(tn), ξ(tn)} is known, and the numerical integrator determines the
values of these quantities at the end of the time step, i.e. {J (tn+1), B̄e(tn+1), κ(tn+1), ξ(tn+1)}. The numerical
algorithm follows the works by Simo [59], Papes [45], and Rubin and Papes [54]. In the following, entities are
assumed to be associated with time t = tn+1 unless otherwise indicated.
The relative deformation gradient is defined as Fr(t) = F(t)F−1(tn). This entity satisfies the evolution

equation and initial condition

Ḟr = LFr, Fr(tn) = I. (38)

The relative dilatation is Jr = detFr. The exact solution of (5) is given by

J = Jr J (tn). (39)

The unimodular part of Fr is F̄r = J−1/3
r Fr. The elastic trial solutions B̄

∗
e(t) and B̄

′∗
e (t) are defined by the

expressions

B̄
∗
e(t) = F̄rB̄e(tn)F̄

T
r , B̄

′∗
e (t) = B̄

∗
e(t) − 1

3
(B̄

∗
e(t) : I)I, (40)

with B̄
′∗
e (t) satisfying the evolution equation and initial condition

˙̄B′∗
e = LB̄

∗
e + B̄

∗
eLT − 2

3
(D : B̄

∗
e)I − 2

3
(D : I)B̄

′∗
e , (41)
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B̄
′∗
e (tn) = B̄

′
e(tn). (42)

The trial equivalent distortional elastic strain is given by

γ ∗
e = 1

2

√
3

2
B̄

′∗
e : B̄

′∗
e . (43)

It can be shown that the deviatoric part of the evolution Eq. (2) becomes

˙̄B′
e = LB̄e + B̄eLT − 2

3
(D : B̄e)I − 2

3
(D : I)B̄

′
e − Γ B̄

′
e. (44)

Then, the evolution in (44) is approximated by

˙̄B′
e ≈ ˙̄B′∗

e − Γ B̄
′
e. (45)

Using a backward Euler approximation of the derivative, the solution of (45) is written in the implicit form

B̄
′
e = λB̄

′∗
e , (46)

with

λ = 1

1 + ΔΓ
, ΔΓ = ΔtΓ (tn+1). (47)

Then with the help of (6) and (46), it follows that

γe = λγ ∗
e . (48)

The evolution of κ in (19) is approximated as

κ = κ(tn) + ξΔΓvp, (49)

where

ξ = ξ(tn) + mξsΔΓvp

1 + mΔΓvp
(50)

is an implicit estimate of ξ based on (20), and ΔΓvp = ΓvpΔt . Furthermore, an implicit estimate of ζi can be
obtained:

ζi = ζi (tn) + niζs,iΔε

1 + niΔε
, (51)

where Δε = ε̇Δt . For the evaluation of ε̇, an objective estimate of D is needed, and this estimate is given by

D ≈ 1

2Δt
(Br − I) , Br = FrFT

r . (52)

We also have

ΔΓ = ΔΓvp + ΔΓr, (53)

where ΔΓr = ΓrΔt . The evolution of ΔΓvp and ΔΓr is given by

ΔΓvp = (a + bε̇)Δt︸ ︷︷ ︸
ah

〈λγ ∗
e − κ︸ ︷︷ ︸
gvp

〉 = ah〈gvp〉, (54)

and

ΔΓr =
n∑

i=1

ciΔt〈λγ ∗
e − ζi︸ ︷︷ ︸
gr,i

〉 = λγ ∗
e Δt

n∑
i=1

ciΘ(gr,i )

︸ ︷︷ ︸
dh

− Δt
n∑

i=1

ciζiΘ(gr,i )

︸ ︷︷ ︸
eh
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= dhλγ ∗
e − eh, (55)

whereΘ(x) is theHeaviside step function.When both (54) and (55) are active, these equations need to be solved
for ΔΓvp and ΔΓr using a non-linear, iterative solution method. When ΔΓvp = 0, we have that ΔΓ = ΔΓr
and λ = 1/(1 + ΔΓr), and the solution for ΔΓr can be expressed on closed form according to

ΔΓr = −1 + eh
2

+
√

(1 + eh)2

4
+ dhγ ∗

e − eh. (56)

Once ΔΓ has been determined, B̄
′
e(tn+1), ξ(tn+1), and κ(tn+1) can also be determined. Finally, α1 can be

determined from the third-order polynomial

detB̄e = det
(

B̄
′
e + α1

3
I
)

= . . .

=
(α1

3

)3 − 1

2

(
B̄

′
e : B̄

′
e

) (α1

3

)
+ detB̄

′
e = 1, (57)

where B̄
′
e is given by (46), and B̄e(tn+1) has then also been defined.

An analytic expression for the algorithmic tangent modulus is also derived. In order to simplify the notation,
a number of help variables, (•)h, are introduced.
The updated Kirchhoff stress ultimately depends on Fr, and the variation of τ is given by

δτ = ∂τ

∂Fr
: δFr =

(
∂τ

∂Fr
FT
r

)
: (

δFrF−1
r

)
. (58)

The consistent tangent modulus, C, can then be identified as

C = 1

J

∂τ

∂Fr
FT
r . (59)

Differentiation of τ yields

∂τ

∂Fr
= μ

∂B̄
′
e

∂Fr
+ K (2J − 1)I ⊗ ∂ J

∂Fr
. (60)

Recalling that the current value of J is given by J = J (tn)Jr, it follows that

∂ J

∂Fr
= J (tn)

∂ Jr
∂Fr

= J (tn)JrF−T
r = JF−T

r , (61)

and hence,

∂ J

∂Fr
FT
r = J I. (62)

Moreover, we have

∂B̄
′
e

∂Fr
=

∂
(
λB̄

′∗
e

)
∂Fr

= λ
∂B̄

′∗
e

∂Fr
− λB̄

′
e ⊗ ∂ΔΓ

∂Fr
. (63)

Differentiation of (40) yields

∂B̄
∗
e

∂Fr
= −2

3
B̄

∗
e ⊗ F−T

r + 1

J 2/3r

∂
(
FrB̄e(tn)FT

r

)
∂Fr

, (64)

where

∂
(
FrB̄e(tn)FT

r

)
∂Fr

= (I � Fr + Fr ⊕ I) B̄e(tn), (65)
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and the notation (Q � R)i jkl = Qik R jl and (Q ⊕ R)i jkl = Qil R jk has been introduced for convenience. It
then follows that

D = ∂B̄
′∗
e

∂Fr
FT
r

= I � B̄
∗
e + B̄

∗
e ⊕ I − 2

3

(
I ⊗ B̄

∗
e + B̄

∗
e ⊗ I

)
+ 2

9

(
B̄

∗
e : I

)
I ⊗ I. (66)

Differentiation of (54) and (55) yields

(
1 + ah

dκ

d(ΔΓvp)

)
︸ ︷︷ ︸

sh

d(ΔΓvp) = bΔtgvpdε̇ + ahλdγ
∗
e − ahλγed(ΔΓ ), (67)

d(ΔΓr) = dhλdγ
∗
e − qhΔt2dε̇ − dhλγed(ΔΓ ), (68)

where

dκ

d(ΔΓvp)
= ξ(tn) + 2mξsΔΓvp − m(κ − κ(tn))

1 + mΔΓvp
, (69)

qh =
n∑

i=1

cini (ζs,i − ζi )

1 + niΔε
Θ(gr,i ). (70)

Inserting the expressions in (67) and (68) into the differential version of (53) gives

(
1 + λγe

(
ahΘ(gvp)

sh
+ dh

))
︸ ︷︷ ︸

uh

dΔΓ = λ

(
ahΘ(gvp)

sh
+ dh

)
︸ ︷︷ ︸

zh

dγ ∗
e

+
(
bΔt〈gvp〉

sh
− qhΔt2

)
︸ ︷︷ ︸

th

dε̇, (71)

which is also valid when ΔΓvp and/or ΔΓr are zero. The differentials dγ ∗
e and dε̇ are given by

dγ ∗
e = 3

8γ ∗
e

B̄
′∗
e : dB̄

′∗
e , (72)

dε̇ = 1

3Δt2ε̇
(B′

rFr) : dFr, (73)

where B′
r is the deviatoric part of Br. This gives

H = ∂ΔΓ

∂Fr
FT
r = 1

uh

(
3zh
8γ ∗

e
B̄

′
e : D+ th

3Δt2ε̇
B′
rBr

)
. (74)

Finally, the tangent tensor C can be expressed as

C = μλ

J

(
D− B̄

′
e ⊗ H

)
+ K (2J − 1)I ⊗ I. (75)
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