
Blekinge Institute of Technology Research Reports – 2024:01 1

Sustaining Arm’s Length Cost Allocations for Highly
Integrated Development Functions—An Explorative Case
Study of Transfer Pricing for InnerSource Communities*

Oliver Treidler Tom-Eric Kunz Maximilian Capraro Michael Dorner

Abstract

Most contemporary developments in transfer pricing relate to intangibles. Appropriately coping with
increasingly highly integrated value chains constitutes another driving force. This article examines the
application of the arm’s length principle in the context of a related-party transaction characterized by
integrated collaboration among decentralized business units and the joint utilization and development
of intangibles. While the underlying theoretical transfer pricing concepts will be touched upon, we aim
to present a case-based application of the arm’s length principle. The pragmatic approach presented
in this article aims to support practitioners navigating the tradeoff between finding arm’s length solu-
tions for increasingly complex, digitized organizations and effectively utilizing available internal data
for transfer pricing purposes.

While the OECD recently started tinkering with formulary apportionment approaches for marketing
intangibles in the context of the Pillar 1 reforms, day-to-day transfer pricing remains focused on apply-
ing transfer prices that are commensurate with the arm’s length principles. As such, Chapter VI of the
OECD Transfer Pricing Guidelines of 2017 remains perhaps the most important source of reference for
practitioners when it comes to intangibles.1 The same applies to Chapter VIII when it comes to cost
contribution arrangements (CCAs). For this article, it is deemed sufficient to limit the references to
Chapter VI and Chapter VIII of the OECD guidelines.

1 Integrated Software Development—A Working Definition of In-
ner Source Communities

Identifying arm’s length transfer prices is a highly context-specific exercise and one-size-fits-all ap-
proaches are seldomly appropriate, especially when operating outside of the TNMM (CPM) context that
is narrowly focused on determining arm’s length net margins for routine entities (tested parties). In
introducing our fictional case study, it is thus imperative to emphasize that it reflects a highly simplified
and generic InnerSource community [1]. In a nutshell, an InnerSource community can be understood
as an open-source ecosystem within an MNE, which is based on the Leitmotiv of granting free access
to technical software components to all members of the community, which, in turn, contributes to the
further development and refinement of the components by making novel contributions and improve-
ments. This Leitmotiv also illustrates that the contributions made within the community are driven by
an inherent self-interest of the respective development. While the transfer pricing implications (arm’s
length allocation of economic benefits) will be addressed below, it must be clear from the start that—at
its core—InnerSource has deep cultural and philosophical implications for adopting organizations. The

*This article first appeared in MNE Tax on May 25, 2022.
1The OECD guidelines were updated in January 2022 (as this article was prepared), but the concepts discussed herein remain

valid, and thus, the references were sustained.



Blekinge Institute of Technology Research Reports – 2024:01 2

concept needs to be embraced by management and the entire organization to sustainably contribute to
commercial success sustainably [2].

Organizations that adopt InnerSource often differ from one another. InnerSource is used in organizations
of various sizes (from SMEs with under 500 employees to conglomerates with tens of thousands of
employees) operating in a variety of sectors such as information technology, financial services, healthcare
and pharmaceuticals, industrial and manufacturing, retail and e-commerce and others [3].

Organizations observed a variety of benefits from adopting InnerSource practices:

• More cost-effective—Because InnerSource enables more collaboration among an organization’s teams,
it reduces duplicate work and local workarounds for company-global problems—leading to more effi-
cient and, overall, less costly software development.

When using an InnerSource component, teams do not have to request features from other—potentially
busy—teams but can contribute needed changes themselves without wasting time. This can lead to a
significant increase in time-to-market for teams using InnerSource components.

• Shared effort and costs—By contributing to an InnerSource component jointly with other teams or
providing its own InnerSource components, a team can share development effort and risk with other
parties in the InnerSource community.

• Knowledge sharing and improved quality—The intricate interplay between users, contributors, and
maintainers of an InnerSource component (see section Y) leads to an increased flow of know-ledge
and information through an organization, resulting in improved quality of the software components
and ultimately products.

While many InnerSource communities will exhibit broadly similar properties, a careful analysis must be
conducted in each individual case. In this context, it is particularly important to be aware that the scope
of applying a CCA-type of solution will hinge on ascertaining the tested transaction sharing the same
core properties of the fictional InnerSource community introduced in the following.

The main characteristic features of software development within an InnerSource community can be
summarized as follows:

• R&D-specific—Inner source is limited to (software) development functions. Downstream business
processes (such as distribution of the software or products featuring software components) are in-
dependent of InnerSource practices. While the development function is thus highly integrated, with
regard to other functions, the level of collaboration (integration) between legal entities within a group
will (often) not reflect a highly integrated value chain.

• Fine-grained—The contributions to an individual InnerSource component (project) are often small
(incremental) improvements. Individual developers may merely contribute a small sub-functionality
or fix a bug of an existing issue relevant to their work.

• Role-based—Developers, each of whom can be associated with different legal entities and/or busi-
ness units within the MNE organization, may simultaneously take on multiple roles in an InnerSource
community. As such, they are often active in communities for different software components, reflect-
ing the complex, product-oriented organizational set-up often encountered in decentralized software
development. Therefore, a role-based view needs to be adopted to appropriately capture the activity
(as well as the related costs and value contributions) of individual developers to a specific software
project.

Considering that the role-based perspective is a unique feature of InnerSource, a brief introduction to
archetypical roles is essential. The informal groups that form around individual software components
within the InnerSource community can be divided into four non-exclusive roles: providers, users, contri-
butors, and maintainers.



Blekinge Institute of Technology Research Reports – 2024:01 3

Providers initially make a software component available to the InnerSource community. Subsequently,
every member of the community can select these software components and use them as tools for their
own work or as a component in products (in the role of the user) and contribute improvements to them
(in the role of the contributor). These contributions are checked for quality by particularly experienced
developers (in the role of maintainer). Often, but not always, the providers will also act as maintainers
for the component they had initially provided to the InnerSource community. In some cases, the main-
tainer will integrate the new contributions into the existing software component. In principle, employees
from all entities of an MNE adopting InnerSource can simultaneously hold several roles regarding one
or more InnerSource components at the same time.

Another important component-independent role is the so-called Inner Source Program Office (ISPO).
An InnerSource community is a coordinated initiative to promote inner-source practices within an orga-
nization. As such, the ISPO performs functions critical to the successful adoption of InnerSource. Often,
the role of the ISPO is organizationally located as a standing department close to the CTO. It is to be
noted that the ISPO does not act as the owner (entrepreneur) of the community and that different legal
entities can jointly perform the role (activities) of an ISPO both in a formalized or informal manner.

2 Initial Transfer Pricing Considerations

From a transfer pricing perspective, the most intriguing (challenging) feature of InnerSource is that
employees from multiple related entities closely collaborate on one specific stage of the value chain. The
complexities encountered when dealing, for example, with matrix organizations are exacerbated by the
fact that individual employees may simultaneously assume multiple component-specific roles.

Given these properties, appropriately delineating the tested transaction is conceptually not exactly a
straightforward task. Pursuant to paragraph 3.9 of the OECD guidelines, the arm’s length principle
should be applied on a transaction-by-transaction basis. For the case at hand, strict adherence to a
transaction-by-transaction approach would, however, imply the necessity to conduct a separate valua-
tion of the contributions to, and benefits derived from, each software component (arguably including an
analysis of legal ownership and DEMPE functions pursuant to Chapter VI Section B of the OECD guide-
lines). Looking closely at the Leitmotiv of InnerSource and the economically relevant characteristics (in
the sense of paragraph 1.36 of the OECD guidelines), however, we would suggest that adopting an ag-
gregated perspective constitutes the more reliable and sensible application of the arm’s length principle
in the context of InnerSource. Specifically, the tested transaction should be conceived as the framework
governing the rules of the communities agreed by the participants. In other words, independent parties
would base their decision for participating in an InnerSource community on whether they reasonably
anticipate that the costs (contributions) individual participants need to bear will be in a commercially
sensible (advantageous) proportion to the benefits derived from the participation. As such, the deci-
sion to agree to an InnerSource community’s governing framework closely mirrors the preconditions for
applying a CCA pursuant to Chapter VIII of the OECD guidelines.

Applying the provisions of Chapter VIII to InnerSource thus seems sensible. Because of the nature of
the collaboration, (component-specific) one-sided transfer pricing methods are not deemed conceptu-
ally suitable (no clear-cut tested party) and would be impractical to implement on a transaction-by-
transaction basis. A two-sided approach (applying the profit split method) would also be conceptionally
questionable, as only one distinct function of the value chain (development) is subject to the InnerSource
community. Consequently, the correlations of contributions to the InnerSource community to the ulti-
mate profitability of the separate legal entities (business units) will generally be too weak, especially
when considering that the decisions (risks) relating to the utilization of individual components as well
as the (more complex) downstream activities are allocated to the separate legal entities. Also, valuation
methods, i.e., valuing individual software components (and deriving license fees), will generally not be
a good fit for InnerSource, as it is rather an exception that patents protect the relevant InnerSource
components themselves.



Blekinge Institute of Technology Research Reports – 2024:01 4

The highly integrated development function within the community is characterized by the collaboration
among the participating entities being focused on creating mutual benefits. As such, one of the most
important prerequisites of applying a CCA, the alignment of commercial interest, is fulfilled. This can
best be visualized by thinking of a club among equals in which the member entities have the same rights
and obligations in using the software components without being subjected to a hierarchy, in contrast to
traditional service transactions, such as contract development, which are characterized by a principal
assigning specific tasks to the service provider. While establishing the applicable cost base for a service
transaction is rather straightforward, the delineation of cost components in the context of a CCA requires
a more nuanced analysis, i.e., it must be defined which costs (activities) of a member are qualified as
contributions for which the other members are willing to pay. In addition to identifying the relevant costs,
it must be analyzed whether the contributions of individual members of the community can reasonably be
valued at costs or whether (some) contributions contain more commercial value (often due to utilizing
unique intangibles) that would require a higher compensation at arm’s length as the benefits derived
from having access to the contributions exceed costs.

In setting up a transfer pricing structure for a CCA or InnerSource, it is thus essential to address the
question of whether the costs borne by participants making contributions correspond (in the sense of
being proportionate) to the benefits derived by other participants. If the relationship between costs and
benefits is not (at least approximately) proportional, the imbalance must be corrected (adjusted) through
balancing payments. Applied to InnerSource, we will thus primarily have to address the challenge that
not all users are necessarily also contributors to a specific component. Since corresponding users only do
not actively contribute to components or provide any other service in return for utilizing the contributions
of the other members, they must be given special consideration in the transfer pricing context to ensure
that these “users only” participants (of each InnerSource component) appropriately share in the costs of
the community.

On the other hand, it must also be ensured that participants cannot push costs into the cost pool, which
are related to contributions that do not convey a commercial benefit to other participants (i.e., no or
very few users of a specific InnerSource component other than its provider), as otherwise, the total cost
pool would potentially be ballooning and render joining the community unattractive and contradict the
community ethos (akin to a prohibitive entrance fee to a club).

Notably, the identified challenges are not only relevant for transfer pricing practitioners but also for
management advocating the adoption of an InnerSource, as respective rules will contribute to facilitat-
ing the perception of enforcing fairness (prevent free-riding). As the mutual benefits are commercially
dependent on members collaborating and exchanging ideas, the effectiveness of InnerSource depends
on defining rules of the game that facilitate an inclusive collaboration.

3 An Illustrative Case Study

The following fictitious case study will prototypically illustrate that the internal data available within an
InnerSource community (specifically, so-called patch-flow data [1]) will generally be sufficient to address
the challenges from a transfer pricing perspective appropriately.

3.1 Properties of the Inner Source Community

The functional and risk analysis can generally be conceived as the centerpiece for any transfer pricing
analysis. While each InnerSource initiative will inevitably have idiosyncratic properties, it can reasonably
be assumed that the relative importance of the archetypical roles introduced above will be similar. In this
article, we confine the analysis to an abbreviated RACI analysis, focusing on delineating which processes
(functions) are attributable to the individual roles—introduced above2. It must be kept in mind that, as

2In day-to-day practice, the scope of the analysis should be enhanced and substantiated by interviews with members of the
respective InnerSource community.



Blekinge Institute of Technology Research Reports – 2024:01 5

emphasized above, individual employees will often simultaneously perform multiple roles in the context
of multiple InnerSource components.

The relevant processes (functions) to be analyzed, as well as the working assumptions (characteristics)
of our representative InnerSource community, can be summarized in Table 1. The five main processes
are labeled A to E, the sub-processes, if any, are labeled by a consecutive number. Again, it would
be conceptually feasible to extent the analysis by identifying further sub-processes, but for a high-level
transfer pricing analysis the analysis presented below is deemed sufficient.

Table 1 and Table 2 summarize the result of our case study’s indicative functional and risk analysis.
To assess, at least indicatively, the value-added contributions of individual roles by applying the RACI
methodology, it should be noted that for

R (responsible) follows with somewhat higher value-added as it involves operational—often
routine—functions;

A (accountable) reflects (strategic) ownership and the respective management and supervisory
function;

C (consulted) reflects special, valuable input in the context of InnerSource, such as en-
trepreneurial decisions of unique know-how.

I (informed) is deemed characterized as the lowest value-added as it involves minimal and
(often) passive participation;

The RACI analysis illustrates the integrated nature of cooperation within the InnerSource community.
Specifically, it illustrates that all participants are expected to assume the roles of provider, contributor,
and user in different constellations depending on the specific component. It further illustrates that while
the user is completely autonomous with respect to the utilization of a component (D1), it does, when
viewed as a stand-alone role, not contribute to the main value-added process of the community (B1
– B3). As such, the analysis reemphasizes the need for imbalances within the community (user only)
to be addressed by balancing payments. The commercialization (based on components derived from
InnerSource) is considered as downstream function—independent of InnerSource—with all members of
the community acting as entrepreneurs for their respective business (unit).

Another key aspect highlighted in the RACI analysis is that the component-independent role of the ISPO
requires special consideration. In this context, it is noteworthy that the role of ISPO is focused on fa-
cilitating efficient operations. However, neither the respective management functions (C1 – C3) nor the
protection functions (E1 and E2) are deemed core functions of the ISPO in the case at hand. Notably,
to adhere to the Leitmotiv of InnerSource, all members need to voluntarily embrace the strategic frame-
work and the respective governing rules (indicated by C in C1). As such, it is deemed appropriate
to compensate the ISPO for the component independent support functions at cost (i.e., qualifying the
costs incurred for allocation through the cost pool)3. In respect to the provider, it is noteworthy that the
contribution for A1 and A2 can be measured on a stand-alone basis, adhering to the working assumption
formulated above a valuation at cost appears sensible4.

3.2 Validating Application of a CCA Framework

A key feature of CCAs is the sharing of contributions (paragraph 8.5 OECD guidelines). In the case
at hand, the contributions can be determined using the patch-flow method for measuring InnerSource
collaboration: The patch flow is the flow of code contributions across organizational boundaries [1].

3Specifically, the costs for performing a code review (B2) attributable to the maintainer function can be reliable assessed based
on actual (estimated) time spend. A mark-up on costs is not deemed to be required in the case at hand. One reason is that in most
cases (as assumed for our case study), the employees performing the role of maintainer will be employed by a legal entity that also
employs (a substantial number of) individuals using InnerSource components from the InnerSource community.

4The costs of developing the initial seed (A1) and providing a component to the InnerSource community (A2) are assumed to
be available based on internal cost accounting data (What is the cost of an engineer per hour?) and component-specific planning
and tracking information (How many engineers worked on the component for how long?).



Blekinge Institute of Technology Research Reports – 2024:01 6

InnerSource Process Description

A Initial provision of an InnerSource component
A1 Developing seed component Development of the initial software component (“seed”) [4]. The value (as

opposed to the costs incurred) of initial software development can often (not)
be reliably estimated—as for any software.A specific feature of a software
component might be highly relevant to the success of one business unit’s
mission and insignificant to this of another. We are not aware of a method
to (semi-)automatically quantify the benefit derived from a specific software
component or feature.

A2 Provision for the InnerSource
community

Making the software accessible to the InnerSource community, it is necessary
to provide the component as InnerSource software (e.g., minimizing technical
dependencies, designing guidelines for contributions, writing guidelines and
tutorials for usage, setting up the project page or wiki, ...).

B Code Contributions (Patch Flow)
B1 Performing code contribution Writing and contributing a code contribution (e.g., fixing a bug or adding

functionality to a software). For this case study, we assume that for a period
of time (i.e., the first year after provision), the provider will still make a large
majority of contributions. The share of contributions from other contributors
gradually increases over time.

B2 Review of code contribution Performing quality control (so-called “code review”) of contribution and share
feedback, which allows the contributors to learn and improve.

B3 Integration or rejection of
code contribution

Deciding whether to integrate the contribution and, if necessary, exercising
the respective integration. One core assumption is that most rejected code
contributions have no value to an InnerSource component – even if costs were
incurred (this assumption is deemed consistent with the safeguard against
ballooning the cost pool).

C Management of the InnerSource program
C1 Management of the Inner-

Source program
Overall strategic responsibility (budgeting, goal setting, etc.) for adopting
InnerSource in the MNE.

C2 Operating infrastructure Operating the necessary infrastructure for hosting InnerSource components
and collaborating on them (e.g., code hosting platforms like Github Enterprise
or Gitlab).

C3 Internal marketing & coach-
ing

Promoting the InnerSource program (and thus indirectly the InnerSource
components) and explaining InnerSource practices within the MNE.

D Utilization
D1 Utilization of an InnerSource

component
As emphasized above, the decision to use InnerSource components and how
to utilize them is—without limitations—at the discretion of the individual
members of the InnerSource community.

E Application for patents, protective measures
E1 Filing for patents Patents can be neglected for this case study: We assume that InnerSource

components themselves are not protected by patents, while products built on
top of them might be protected directly by legal entities in the role of user
(see D above).

E2 Technical protective measures Technical protective matters can be neglected for this case study since these
are taken by default as part of the operation of the MNE’s software develop-
ment infrastructure.

Table 1: Typical processes in InnerSource projects and programs.



Blekinge Institute of Technology Research Reports – 2024:01 7

Inner source process Component-
independent

Component-specific

ISPO Member Provider User Contri-
butor

Main-
tainer

A1 Developing initial seed component R A

A2 Provision for the InnerSource community I R

B1 Performing code contribution I R R A

B2 Review of code contribution I I C R

B3 Integration/rejection of code contribution I I R A

C1 Management of InnerSource program R A C

C2 Operating development infrastructure R C I

C3 Internal marketing & coaching R A R

D1 Utilization of an IS component R A

E1 Filing for patents A I

E2 Technical protective measures A R

Table 2: Roles and their functions and risks in typical InnerSource processes.

Measuring the patch flow allows for both a detailed and an aggregated breakdown of the collaboration
within the InnerSource community.

For the development of intangible goods, each participant is contractually granted a property right in
the intangible resulting from the CCA’s activities (or a right to use or exploit depending on legal circum-
stances). As each member of the InnerSource community has the right to use or exploit the developed
software, there is no need to pay a license fee or any other consideration for the use of the developed
software (paragraph 8.11 OECD guidelines).

According to OECD guidelines paragraph 8.12, a CCA differs from any other intragroup transfer of prop-
erty or services in that part or all of the consideration intended by the participants is the expected mutual
and proportionate benefit from the pooling of resources and capabilities, i.e., exactly what constitutes
the Leitmotiv of InnerSource (see Section 2).

Based on the above, the following guiding principle seems most appropriate for the arm’s length design
of the InnerSource transfer pricing system, “those who use but do not contribute must pay.”

Conversely, however, this also means that costs individual members incur for contributions that are
exclusively in the member’s own interest—or relate to clearly identified InnerSource components—may
not be transferred to a general cost pool; i.e., the costs qualified for allocation among InnerSource
participants are thus deliberately limited. Therefore, it is necessary to ensure a sufficiently differentiated
collection of (value) contributions for an appropriate delineation of costs or benefits. In the interests of
proportionality, it should be noted that the level of detail of the analysis should be based on business
considerations—i.e., an evaluation should be carried out based on data that is collected for business
reasons.

The guiding principle emphasizes the community idea as well as the inherent self-interest of the entities
to participate in such a community. It is thus consistent that the determination of compensation payments
is not based on a stand-alone market value for individual contributions (e.g., for the providers on process
A1 or individual contributions B1), which neither by applying a CUP nor valuations can be reliably
determined. Instead, the arm’s length compensation payments can appropriately be derived based on



Blekinge Institute of Technology Research Reports – 2024:01 8

the recorded costs as well as from the distribution of roles within the InnerSource community assumed
by employees associated with specific legal entities. In our view, three interrelated implications are
applicable to operationalize the guiding principle:

• Legal entities are users of, and contributors to (or providers of), an InnerSource component at the
same time. In such a case, no compensation for contributions is due to the imminent self-interest of
the contributing entities. Possibly, reimbursement of a part of the costs might be due in case legal
entities that exclusively act as users can be identified (see next point).

• Legal entities identified as users only of an InnerSource component. In such a case, the users must
bear an appropriate part of the costs incurred by the provider(s) and contributor(s). The respective
balancing payments should ideally be calculated to appropriately capture the proportionate benefit
(e.g., share or intensity of utilization).

• A legal entity that is only a provider/contributor and not a user. In this case, the provider/contributor
would have to be reimbursed separately as an external service provider (contract developer or service
provider outside of the CCA). The costs would have to be distributed within the community (see also
paragraphs 8.14 and 8.17 of the OECD guidelines)5.

The maintainer as a component-specific role needs to receive special consideration since the maintainer
has to bear additional (review) costs because of its central function for the benefit of all users (review
of the contributions, quality assurance by a decision on integration of the contribution the users need to
pay an arm’s length compensation for these functions).

In addition to determining arm’s length balancing payments on component-specific data, an arm’s length
remuneration for the component-independent functions of the ISPO must be determined.6

3.3 Utilizing Patch Flow Data to Calculate Adjustment Payments

The relevant patch flow data is available and can be extracted for transfer pricing purposes. By analyzing
the data, three distinct tiers can be identified to determine balancing payments commensurate with
the underlying assumption that those who use but do not contribute must pay (see above). Figure 1
illustrates this assumption by the intersection.

Thus, only the respective non-intersections (non-hatched area) are relevant for balancing payments
(compensation) and must be determined. In the context of the right set of contributors, the data anal-
ysis must focus on whether the entity contributes within other projects/components or, in general, only
provides contributions without any interest in utilizing components and actively participates in the com-
munity. The latter case reflects a distinct transaction characterized as a provision of services (contract
developer). Therefore, it would have to be reimbursed separately and costs would be borne by the whole
community (see above).

The balancing payment consists of two elements, whereas Element I, in connection with the right set of
users, is about the compensation for only utilizing an InnerSource component, i.e., no contribution of
value (code), thus balancing code contributions of the other members. In the case of code contributions,
assuming that the provider/contributor is a user within the overall community, no cost markup is required
here; rather, the ACTUAL or standard costs are to be applied.

Element II of the balancing payment is for the compensation of the maintainer activity (value-added).
Since the maintainer has to bear additional (review) costs due to its central function for the benefit

5For simplicity, we do not elaborate on this issue. However, analysis of the patch flow would easily allow for identifying
respective entities. For transfer pricing purposes, it is deemed critical to keep service providers (contract developers) outside of the
scope of the CCA. As the Leitmotiv does not apply to the service providers (they do not share in the mutual benefits), they do not
qualify as CCA members.

6For the purpose of the case study, we assume that the costs for operating the development infrastructure (C2) are fixed and
set by the ISPO. As these costs have pass-through character and do not reflect valuable contributions of the community members,
it seems appropriate to isolate these costs from the calculation of balancing payments.



Blekinge Institute of Technology Research Reports – 2024:01 9

Analysis of patch-flow [1]

Interpretation

Solution balance payment

Intersection as Leitmotiv

In line with the self-interest as
a contributor and user within a
component, no balancing pay-
ment is necessary. Due to the
Leitmotiv and nature of an In-
nerSource community, the in-
tersection makes up the major
part and limits the need for
balancing payments to a mini-
mum.

⇒ Not entering the cost pool
for balancing payments.

Contributors only

Analysis whether overall active
community member or service
provide

⇒ Either balancing payment
by users of that component or
distinct transaction to be priced
separately.

Users only

Users only must appropri-
ately share in the costs of code
contributions (no free riding
in the community). Also, all
component-specific users will
share in the initial costs (of
provider) to a limited extent
to ensure no costs are pushed
into the cost pool that does not
convey a commercial benefit.

⇒ The actual or standard costs
are to be applied and enter the
cost pool for balancing pay-
ments.

Element I: Users only for the component-specific code-contributions. Initial costs
are to be shared between Users of that component.

Element II: Maintainer review costs. Since the maintainer has to bear additional
review costs for the benefit of all users, the respective users need to pay an arm’s
length compensation for these.

Element I

Contributors Users

Figure 1: Overview from analysis of patch-flow data [1] and its interpretation to balance payments
as solution.



Blekinge Institute of Technology Research Reports – 2024:01 10

of all users (review of the contributions, quality assurance by the decision on the integration of the
contribution the users need to pay an arm’s length compensation for these. The review costs are to be
shared between the users of the component. For that, there are two options: Options A is a lump-sum
as a percentage charging of labor costs for maintainers (e.g., 10% of labor time), bandwidth, or tiering
if applicable. Option B is the approximation of costs by number of reviews and their average duration.
Due to the asynchronous nature, measurement can be difficult and must be assessed on a case-by-case
basis. It is assumed that if there is more than one legal entity with a maintainer role, they all contribute
the same share to the code review.

4 Conclusion

While the case study presented here constitutes an admittedly simplified and idealized situation, the core
insights and conclusions should provide sensible guidance for further discussions and refinement, which
most importantly needs to facilitate an intense discussion between the companies using InnerSource and
transfer pricing experts. On the one hand, companies using InnerSource need to grasp the fact that
the tax implications of the collaboration (sharing and joint development of intangibles) are inescapable,
largely because InnerSource—from a tax perspective—is not equivalent to open sourcing vis-a-vis third
parties (thus free access is not commensurate with arm’s length conditions). On the other hand, tax
practitioners and tax authorities need to understand and embrace the Leitmotiv of InnerSource. Based
on such an understanding, it should follow that—for tax purposes—the intersection illustrated in the
above section must be accepted as justifiably being out of scope for balancing payments. While defining
the intersection precisely will remain a challenge, it should first and foremost be understood that Inner-
Source is not about shifting profits and eroding tax bases, as no participating entity will surrender highly
valuable intangibles to other entities (especially not to entities lacking economic substance that might
be in tax-friendly jurisdictions). Thus, tax authorities need to understand that the stakes are not as high
as compared to other IP transactions in the realm of transfer pricing. For companies using InnerSource,
such a mindset and framework would constitute an enormous relief, as the uncertainty as well as risks
and complexities currently being associated with transfer pricing inhibit the adoption of InnerSource to
the detriment of efficiencies. The underlying proposition of harnessing the benefits of InnerSource is that
all participating companies will eventually exhibit an improved bottom line, which, in turn, should also
appease the taxman.

Oliver Treidler is the managing director at TP&C GmbH. Contact him at ot@tp-and-c.de. Tom-Eric Kunz
is a consultant with TP&C GmbH. Contact him at tk@tp-and-c.de. Maximilian Capraro is a member at
InnerSource Commons, a non-profit foundation connecting practitioners and those who want to learn about
InnerSource. Contact him at max@capraro.net. Michael Dorner is a software engineering researcher with
Blekinge Institute of Technology, Sweden. Contact him at michael.dorner@bth.se.

References

[1] Maximilian Capraro, Michael Dorner, and Dirk Riehle. “The patch-flow method for measuring in-
ner source collaboration”. In: Proceedings of the 15th International Conference on Mining Software
Repositories - MSR ’18. ACM Press, 2018, pp. 515–525. DOI: 10.1145/3196398.3196417.

[2] Maximilian Capraro and Dirk Riehle. “Inner Source Definition, Benefits, and Challenges”. In: ACM
Computing Surveys 49 (4 Dec. 2016), pp. 1–36. DOI: 10.1145/2856821.

[3] InnerSource Commons. State of InnerSource 2021. https://innersourcecommons.org/learn/
research/state-of-innersource-survey-2021/. 2021.

[4] Klaas-Jan Stol et al. “Key Factors for Adopting Inner Source”. In: ACM Transactions on Software
Engineering and Methodology 23 (2 2014), pp. 1–35. DOI: 10.1145/2533685.

ot@tp-and-c.de
tk@tp-and-c.de
max@capraro.net
michael.dorner@bth.se
https://doi.org/10.1145/3196398.3196417
https://doi.org/10.1145/2856821
https://innersourcecommons.org/learn/research/state-of-innersource-survey-2021/
https://innersourcecommons.org/learn/research/state-of-innersource-survey-2021/
https://doi.org/10.1145/2533685

	Integrated Software Development—A Working Definition of Inner Source Communities
	Initial Transfer Pricing Considerations
	An Illustrative Case Study
	Properties of the Inner Source Community
	Validating Application of a CCA Framework
	Utilizing Patch Flow Data to Calculate Adjustment Payments

	Conclusion

