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ABSTRACT Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar
objects or scenes. Due to the proliferation of touch-screen devices, sketching has become more accessible
and therefore has received increasing attention. Deep learning has emerged as a potential tool for SBIR,
allowing models to automatically extract image features and learn from large amounts of data. To the best
of our knowledge, there is currently no systematic literature review (SLR) of SBIR with deep learning.
Therefore, the aim of this review is to incorporate related works into a systematic study, highlighting the
main contributions of individual researchers over the years, with a focus on past, present and future trends.
To achieve the purpose of this study, 90 studies from 2016 to June 2023 in 4 databases were collected
and analyzed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
framework. The specific models, datasets, evaluation metrics, and applications of deep learning in SBIR are
discussed in detail. This study found that Convolutional Neural Networks (CNN) and Generative Adversarial
Networks (GAN) are the most widely used deep learning methods for SBIR. A commonly used dataset is
Sketchy, especially in the latest Zero-shot sketch-based image retrieval (ZS-SBIR) task. The results show
that Mean Average Precision (mAP) is the most commonly used metric for quantitative evaluation of SBIR.
Finally, we provide some future directions and guidance for researchers based on the results of this review.

INDEX TERMS Sketch-based image retrieval, SBIR, SLR, PRISMA, deep learning.

I. INTRODUCTION
Text-based image retrieval (TBIR) [1], [2] and content-based
image retrieval (CBIR) [3], [4] are dominant paradigms in the
field of image retrieval. TBIR facilitates the identification of
images relevant to a given natural language query by utilizing
the query itself. CBIR employs inherent content features of
an image for similarity matching. These features encom-
pass attributes like color, texture, shape, structure, and other
higher-level characteristics extracted from the image [5],
[6]. However, in practical scenarios, users may encounter
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challenges when attempting to articulate the desired image
solely through keywords. Moreover, locating a suitable nat-
ural image that precisely encapsulates the user’s retrieval
intent can be a complex endeavor [7]. An alternative approach
involves users expressing their retrieval objectives through
hand-drawn sketches. SBIR emerging as a distinct iteration
of CBIR assumes significance within the field of computer
vision. This research integrates methodologies from diverse
areas, including image processing [8], [9], pattern recogni-
tion [10], [11], and human-computer interaction (HCI) [12],
[13]. SBIR empowers users to search for similar images
through sketches. Users can depict the object or scene of
interest by sketching fundamental lines, outlines, or defining
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TABLE 1. Summary of the SBIR challenges.

key shapes. This novel mode of retrieval enriches the interac-
tive and communicative dimensions of image retrieval.

However, unlike natural images with rich color and tex-
ture information, sketches are sparse, abstract, and limited
by the unique characteristics of the creator, making SBIR
challenging. We summarize the challenges faced by SBIR in
TABLE 1, which are mainly divided into feature extraction,
cross-domain retrieval, limited data, and interaction design.

To address the above issues, researchers have beenworking
on SBIR for decades. Manual methods and cross-domain
deep learning methods are classified as two main cate-
gories of solutions. Early research performed image retrieval
by manually extracting edge contours from natural images,
which was limited by the matching of the extracted edge
maps of natural images with sketches with large changes and
ambiguities [14], [15], [16]. In recent years, due to the rapid
development of deep learning technology, it has achieved
state-of-the-art performance in various computer vision tasks.
Artificial neural networks eschew the need for handcrafted
features, instead autonomously acquiring intricate and com-
plex features. This also brings new possibilities to SBIR
research.

The general strategy of SBIR is to retrieve similar target
images from the data pool based on sketch queries. SBIR
is challenging because the system’s input is a sparse and
abstract sketch, and the output is a natural image composed
of dense pixels that belong to entirely different domains.
The most common strategy for SBIR with deep learning
is to train the joint embedding space and perform nearest
neighbor retrieval to solve the cross-domain problem. This
solution focuses on the design of the network architecture
and loss function. Typical examples are the Siamese network
and the Triplet network, as shown in Fig. 1. A Siamese
CNN aims to learn a target space in which the distances of
similar sketch-image pairs are reduced, and the distances of
dissimilar sketch-image pairs are enlarged [17]. The Siamese
network architecture inputs sketch S and edge map of the
natural image I into the same two CNNs. Y is a binary label.
When S and I belong to the same category, the value is 0.

FIGURE 1. Illustrations of siamese network and triplet network.

Otherwise, the value is 1. W is the parameter to be learned.
Therefore, the loss function can be written as

L (W ) =

N∑
i=1

l(W , (S, I ,Y )i) (1)

where (S, I, Y )i is the i-th training sample. The CNN with
triplet architecture is an extension of the Siamese CNN and
is trained with sketches, natural images of the same category
as the sketches, natural images of different categories from
the sketches, and then ranked using a distance metric com-
parison. The triplet network uses three branches with input
data of sketch S, positive image P, and negative imageN [18].
The triplet loss function guides the training. The triplet loss
function is defined as:

L =
1
2N

N∑
i=1

max
[
0,m+ |Si − Pi|2 − |Si − Ni|2

]
(2)

where m is the distance margin. Due to their excellent per-
formance, triplet networks are the most commonly used
model framework in SBIR. Another strategy is to use a
generative method to convert a sketch into a pseudo-image,
extract the features of the pseudo-image and the natural
image, and compare the similarity. Conditional GAN gener-
ates pseudo-images by modeling the conditional distribution
of the real image conditional on the sketch. This strategy
transforms the cross-domain problem into a retrieval problem
for the same domain.
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FIGURE 2. Distribution of web of science articles about SBIR
from 2013 to 2022.

This research conducts a SLR on SBIR with deep learning.
By analyzing previous works, this study has made it possible
to emphasize existing research gaps in specific areas of deep
learning methodology.

The main contributions of this study are as follows:
1) A comprehensive SLR incorporating 90 primary studies,

structured following the PRISMA framework, providing a
thorough and organized synthesis of existing research;

2) A detailed analysis of SBIR in deep learning, explor-
ing the distinct dimensions: approaches, datasets, evaluation
metrics, and potential applications;

3) An overview of a new perspective on the future research
of SBIR.

The structure of this paper is organized as follows.
Section II reviews the related work. Section III presents the
research methodology adopted in conducting the systematic
review. Section IV is an overview of the existing approaches.
Section V contains the results and discussion, and Section VI
offers the conclusion and limitation.

II. RELATED WORK
Indeed, by typing ‘‘sketch-based image retrieval’’ into Web
of Science and setting the period from 2012 to 2022, the
results obtained are visualized in terms of publication years
on the horizontal axis and the number of records searched
on the vertical axis, which shows that the level of publication
activity in SBIR-related areas of research has been increasing,
as shown in Fig. 2.

In this section, we discuss the related survey and review
that examined SBIR. Indu and Kavitha [19] outlined the
aim of SBIR methods, analyzed and reviewed diverse image
retrieval approaches encompassing TBIR, CBIR, and SBIR.
As a comprehensive review, the paper does not delve into
the intricate details of individual works but strives to offer an
exhaustive assessment of prevalent traditional image retrieval
systems. It primarily focuses on methodologies, approaches,
and the challenges associated with devising effective retrieval
systems. Li and Li [7] provided a comprehensive review
of SBIR by analyzing representative papers that have stud-
ied the SBIR problem. The paper endeavors to address two

pivotal yet under-discussed inquiries prevalent in the liter-
ature: the primary objectives of SBIR and the overarching
methodology guiding SBIR. It systematically arranges and
scrutinizes the reviewed papers in chronological order, elu-
cidating these critical aspects by offering comprehensive
answers to the above questions. The paper also discusses
the recent trend of Fine-grained sketch-based image retrieval
(FG-SBIR) Zhang, et al. [20] conducted a comprehen-
sive literature survey on recent developments in freehand
sketch recognition research encompassing fundamental tech-
nologies and benchmark datasets. The survey delves into
previous studies and recent progress within the field, catego-
rizing recent research into two primary domains: SBIR and
FG-SBIR. The paper provides specific recommendations and
methodology evaluation criteria for readers desiring to pursue
similar research and discusses promising directions for future
research tasks in sketch recognition Ji [21] concentrated on
the deep learning-oriented sketch retrieval approach, exam-
ining associated research endeavors covering deep feature
extraction models, coarse-grained and fine-grained retrieval
using deep learning, and category generalization. The paper
summarizes the challenges encountered and forecasts poten-
tial future research directions Xu, et al. [22] provided a
thorough review of the literature on deep learning approaches
for free-hand sketch data and the applications that they
enable. Through a rigorous taxonomy and experimental
evaluation, the survey includes existing datasets, research
subjects, and novel approaches. The survey also covers the
inherent characteristics and specific limitations of free-hand
drawing data, emphasizing the primary contrasts between
sketch and pictures. The survey encourages future effort by
discussing bottlenecks, outstanding challenges, and poten-
tial community research topics. Finally, the study provides
TorchSketch, the first open-source deep learning framework
built on PyTorch and available for future sketch research and
applications. TABLE 2 lists surveys and reviews on SBIR in
recent years. In this table, each paper was reviewed, taking
into account the publication year, main topic, review types,
and limitations.

Examining the above papers, several defects are found.
These are all review and survey papers that provide a
broad overview, can cover a wide range of research, and
may not follow a systematic approach. The article selec-
tion process also needs to be clarified and may sometimes
introduce personal biases or limitations due to the high
level of subjectivity. No SLR on SBIR using deep learning
was found. Our research investigates publications published
between 2016 and June 2023. PRISMA procedure for SLR is
employed to review 90 baseline articles. We have explored
SBIR in five aspects: deep learning approaches, datasets,
evaluation metrics, application, and future directions of SBIR
in deep learning.

III. RESEARCH METHODOLOGY
This systematic review conforms to the PRISMA state-
ment which provides the guidelines for the review in this
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TABLE 2. Summary of the related works.

paper. PRISMA Statement proposes three distinct advan-
tages: (1) the establishment of research questions (RQs) that
allow systematic research, (2) the recognition of inclusion
and exclusion criteria for the systematic review, and (3) the
attempt to examine an extensive database of scientific litera-
ture in a definite time it offers [23].

A. RESEARCH QUESTIONS
The following RQs are developed to guide the systematic
review, as shown in TABLE 3.

B. SEARCH STRATEGY
In order to conduct this study, four platform databases were
used which are Web of Science, IEEE Xplore, ScienceDi-
rect, and ACM Digital Library. All the database selected
is well-known databases that index significant journals and

TABLE 3. Research questions of SLR.

TABLE 4. Selected keywords in the different groups.

conference papers in the fields of science and technology,
as well as based on the analysis of preliminary investigation
results. The search was conducted in June 2023 and was
limited to studies around 8 years that were published between
2016 to June 2023. Only the English language was utilized,
and TABLE 4 showcases the keywords employed for query
execution. Keywords within each group are linked using the
OR operator, while the groups themselves are connected
using the AND operator, forming a comprehensive search
query. The final row in TABLE 4 demonstrates the amalga-
mation of keywords from various groups to create a unified
query executed across all four bibliographic databases. Since
the ScienceDirect database limits the use of up to 8 log-
ical operators in advanced searches, we deleted the three
acronyms CNN, RNN, and GAN for the query, and the rest
of the query content was consistent with other databases.

After conducting the search query, 275 papers were
obtained, as illustrated in Fig. 3. Subsequently, redundant
studies present in multiple databases were identified, and
only unique copies were preserved within EndNote for each
primary sample. As part of the process to remove duplicate
records, 38 studies were excluded.

C. SELECTION CRITERIA AND SELECTION PROCESS
The articles retrieved from the databases were screened in
accordance with the PRISMA 2020 guidelines, as depicted
in the flowchart and described in detail in Fig. 3. A total of
275 articles were obtained, distributed as follows: 55 from
Web of Science, 90 from IEEE Xplore, 63 from Science
Direct, and 67 from ACM Digital Library. Results were
imported into an EndNote X9.1 library, where duplicate stud-
ies were subsequently eliminated. The resultant records were
then transferred to Microsoft Excel for further processing.
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FIGURE 3. The PRISMA 2020 workflow depicting the identification, screening, eligibility, and inclusion process for the
SLR.

1) SCREENING (STEP1: SCREENING BY TITLE & ABSTRACT)
After removing 38 duplicates, 237 articles remained. Subse-
quently, 123 articles were excluded based on title and abstract
criteria, leaving 114 studies for full-text analysis.

2) SCREENING (STEP2: SCREENING BY EXCLUSIVE
CRITERIA)
We use the following inclusion criteria:

• The article topic must include sketch-based image
retrieval.

• The article must be published from 2016 to June 2023.
•The articlemust be published in a journal or a conference.
• The article must be written in English.
We use the following exclusion criteria:
• The articles that use deep learning techniques but do

not address SBIR or study SBIR but are not related to deep
learning methods are excluded.

• The articles written in languages other than English are
excluded.

We could not obtain [24] and [25] and report them as not
eligible, but the abstracts are highly relevant to SBIR. Out of
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the remaining 112 papers, 22 were excluded for four specific
reasons, while 90 papers were ultimately retained. Thirteen
papers were excluded because they were not from journals
or conferences (n = 13), and an additional four papers were
excluded as they were reviews (n = 4). The third reason was
‘‘the paper was not written in English’’ (n= 1), and the fourth
reasonwas ‘‘the paper did not include SBIR or deep learning’’
(n = 4).

D. QUALITY VERIFICATION
This section describes how to estimate bias risk. The SLR col-
lected search results from each database in EndNote format.
A single individual conducted the selection process utilizing
EndNote and Excel tools. To ensure accuracy, all authors
performed a double-check of the sorting results for quality
assurance.

IV. OVERVIEW OF THE EXISTING APPROACHES
A. DEEP LEARNING
Deep learning, a subset of machine learning, has become
the most popular learning technology for large-scale appli-
cations. With the rapid development of deep learning theory,
there has been an explosive growth in image applications
using neural networks. Recently, advanced deep learning
techniques like CNN [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], Recurrent Neural Network
(RNN) [30], [31], [32], and others have demonstrated remark-
able success in image retrieval. The primary advantage lies
in these methods’ ability to directly learn features from both
sketches and images, and end-to-end feature learning is sig-
nificantly better than shallow features. Some deep learning
approaches are given below.

1) CNN
Deep CNNs have shown robust performance across diverse
computer vision tasks, surpassing traditional methods in
numerous applications. Comprising convolutional, pooling,
and fully connected (FC) layers, CNNs efficiently uncover
significant data features [33]. Layers close to the input
learn low-level general features, while higher layers in the
network learn more complex features of the data. The con-
volutional layer performs feature extraction by combining
convolution operations and activation functions. Filters and
feature maps are included in the convolution operation. A fil-
ter is a collection of weights applied to an input, and a
feature map is the output of that filter. Furthermore, the
pooling procedure is employed to do down sampling since
it aids in the detection of features. The output is then
processed via a non-linear activation function as it creates
non-linearity in the output. Following the convolutional layer,
a FC layer is employed; by adding FC layers, the network
can learn themapping between features and targets. Sketch-a-
Net [11] is the first CNN designed for sketches that surpasses
the human recognition rate, providing new possibilities
for SBIR.

2) RNN
RNN is a neural network model used to process sequence
data [34]. It consists of an input layer that receives sequence
data, such as a sequence of strokes of a sketch; a hidden
layer that captures the temporal dependencies present in the
sequence; and an output layer that produces an output based
on the hidden state. The emergence of SketchRNN [35]
makes the research on sketch representation no longer just
static images, but into the vector format of dynamic strokes
in time series.

3) GAN
The emergence of GAN can better achieve domain invariance
of features, so it is widely used in cross-domain retrieval
problems [36]. GAN consists of a generator and a discrimi-
nator. In an SBIR task, the generator receives an input sketch
or sequence of sketches and attempts to generate an image
that matches it. The discriminator is used to distinguish
whether the image generated by the generator is a real image.
It receives an input image and outputs a probability that
represents the probability that the input image is an image
in the real data set. The generator fools the discriminator
by generating more realistic images, while the discriminator
tries to distinguish between generated images and real images
more accurately. The introduction of sketch-Gan [37] proves
that the representation learned by GAN can be effectively
used for sketch retrieval, and also proves that it is more stable
in rotation, translation and scaling problems.

4) HASHING
The hash algorithm transforms high-dimensional image data
into low-dimensional binary codes, ensuring that comparable
images possess similar codes within the hash space. Widely
applied for accelerating image and sketch similarity calcula-
tions, this algorithm enables rapid image retrieval. Notably,
Deep Sketch Hashing (DSH) [38] represents the initial hash-
ing approach employing an end-to-end deep architecture
explicitly tailored for category-level SBIR. DSH adeptly
captures cross-modal similarities and semantic correlations
between distinct categories.

B. DATA COLLECTION
Since sketching is a dynamic process, the sketch storage for-
mat can be either a static raster image composed of pixels or a
vector image composed of a sequence of strokes. The primary
method of data collection is crowd-sourcing drawing [39],
and the whole process is time-consuming and labor-intensive,
especially for the dataset of the FG-SBIR task. There are also
methods of web crawling or online drawing games [35].
During the process of creating a Sketchy database [26],

the criteria defined in ‘‘How do humans draw objects?’ [8]
were followed during the category selection phase, adding the
‘‘sketchability’’ criterion. During the photo selection stage,
parts of the content were eliminated based on requirements,
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and volunteers then annotated each photo using a subjec-
tive ‘‘sketchability’’ score. To achieve fine-grained retrieval,
the sketch collection process employs a strategy of creating
sketches based on specific photos. Specifically, workers were
prompted with a photo, then hidden, and then asked to draw a
sketch corresponding to the image frommemory. Each sketch
is stored in SVG format with timing details.

When the Queen Mary University of London (QMUL)
shoe and QMUL chair database [10] collects natural images,
they are selected from UT-Zap50K and IKEA, Amazon, and
Taobao shopping websites to cover different types and styles
of images as much as possible. Sketches are collected by
volunteers drawing sketches of the presented images on a
blank canvas on a tablet. During data annotation, a subset of
triples is selected, and a human annotator annotates attributes,
generates candidate photos and triplet annotations for the
sketch.

The user interface sketch dataset [12] was specifically
crafted to facilitate the advancement of sketch-based data-
driven design applications. This collection encompasses
sketches akin in style and semantic nature to those generated
by UI designers. Due to the absence of extensive public
datasets featuring UI sketches alongside corresponding UI
screenshots, the dataset’s creation engaged four designers
via Upwork. The dataset comprises sketches, each completed
in an average time of 4.1 minutes, meticulously selected to
represent 23 app categories found in the Google Play Store,
demonstrating high levels of design quality.

C. EVALUATION
To determine the performance and effectiveness of the SBIR,
it needs to be evaluated. Evaluation methods are usually
categorized as quantitative and qualitative.

Quantitative evaluation: use metrics such as mAP, Recall,
and Precision for sketch retrieval tasks to compare the state-
of-the-art methods and quantify the effectiveness of this SBIR
method.

Qualitative Evaluation: during SBIR research by visually
comparing the retrieved images with real images or ana-
lyzing the discriminative and authenticity of the generated
image features, highlighting the effectiveness of the proposed
method in terms of better retrieval results. It can also be done
by collecting subjective feedback from the users, including
their satisfaction, usability, and preference for the retrieval
results. Qualitative analysis helps to understand the strengths
and limitations of the method.

Qualitative and quantitative evaluations usually comple-
ment each other, with quantitative evaluations providing
objective performance measures and qualitative evaluations
providing insights into user experience and application sce-
narios. To better evaluate sketch retrieval methods and
applications from the perspective of professional users, some
studies also employ expert evaluation. For example, by invit-
ing some users with relevant industry experience to conduct
actual evaluations and asking them to provide comments on
the retrieval process and results [12].

FIGURE 4. The accumulation of conference and journal papers from
2016 to June 2023.

V. RESULTS AND DISCUSSION
Ninety compliant articles were finally obtained according
to the steps in Fig. 3. The articles selected for review were
analyzed, summarized, and discussed. Categorized into con-
ferences and journals based on the type of article, and Fig. 4
shows the number of conference and journal articles pub-
lished between 2016 and June 2023. Research has been
increasing using deep learning for SBIR tasks in recent years.

A. RQ1: WHAT ARE THE EXISTING DEEP LEARNING
APPROACHES IN SBIR?
For the RQ1, TABLE 5 summarizes the deep learning meth-
ods used for SBIR. Based on the difficulty and complexity
of the retrieval task, SBIR can be broadly categorized into
coarse-grained retrieval, fine-grained retrieval and zero-shot
retrieval. Coarse-grained SBIR, which can also be referred
to as category-level SBIR, is given a sketch as a query,
finds images similar to it based on the features of the sketch
and returns a ranked list of images. If the photos in the
ranked list have the same category label as the query, the
retrieval result is correct. However, in FG-SBIR, also known
as instance-level SBIR, the retrieval accuracy hinges on the
correctness of the returned image result, requiring it to match
the query sketch’s specific instance pair. Zero-shot retrieval
requires the system to perform image retrieval without a
training sample. This means that the system should be able
to understand an unseen sketch when seeing it and find
images similar to it from a library of unseen images. It is
useful for real-time scenarios in practical applications where
it is difficult to train comprehensively for all possible sketch
styles. TABLE 5 shows that CNN is the most commonly used
deep learning method for SBIR, whether it is coarse-grained
retrieval, fine-grained retrieval, or zero-shot retrieval. In addi-
tion to the use of CNNs, the study also extensively used them
in conjunction with RNNs, GANs, attention mechanisms,
hashing algorithms, and using multimodal fusion methods.
The study found that CNNs are most widely used when it
comes to coarse-grained retrieval. At fine-grained retrieval,
CNNs remain the most popular, while the performance
of CNNs combined with attention mechanisms is favored.
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TABLE 5. Summary of deep learning methods used for SBIR.

In zero-shot retrieval, the advantages of GAN are exploited,
and many advanced deep learning models such as Trans-
former, Variational Autoencoder (VAE) are also introduced
to solve the ZS-SBIR task.Most of the SBIRmethods include
data preprocessing, andmany studies have used CNNs in con-
junction with re-ranking of user feedback in others methods.

1) APPROACHES USED IN COARSE-GRAINED SBIR
TABLE 5 and Fig. 5 show that one of the most commonly
used deep learning methods for SBIR in coarse-grained
retrieval is the CNN. It is widely used for its special ability
to find important features in sketch image data Qi et al. [17]
first applied CNNs to category-level SBIR by proposing a
CNN based on Siamese networks. Two CNNs connected
by a loss function pull the output feature vectors of similar
input sketch image pairs closer together and push dissimilar
sketch image pairs further apart Xinggang et al. [41] used
sketches and natural images to co-train CNNs, prior to which
a specific image scaling method and a multi-angle voting
scheme were designed for image data to be used together

for SBIR Bui et al. [18] proposed a triplet ranked CNN for
SBIR to learn embeddings between sketches and images with
significantly improved performance. Experiments exploring
different sharing levels between sketch and image edge graph
branches show that partially shared weights have superior
performance over fully shared and no sharing. The index
storage is also reduced from 3200 bits to 56 bits using
PCA and dimensional quantization, achieving a compact
representation with accuracy. The excellent performance of
triplet networks has played an important role in subsequent
research, and many works have built on it to explore SBIR
even further Seddati et al. [49] proposed quadruplet net-
works based on triplet networks, which make full use of
global and local information to provide better embedding
of data Yan et al. [27] used CNN models combined with
classification loss and histogram loss, and their experimental
results show that the joint loss learns cross-domain embed-
ded features better than a single loss function. Inspired by
triplet ranking [18], Bui et al. [44] learns joint embeddings
using both contrast loss and triplet loss, compares different
weight sharing, downscaling, and training data preprocess-
ing strategies, and investigates cross-class generalization
capabilities. The triplet architecture with GoogleNet branch-
ing structure with partially shared weights performs best
Deng et al. [40] utilized the multi-layer attribute framework
to derive profound semantic features from images, intend-
ing to bridge the domain gap between sketches and natural
images. Their devised multi-layer deep neural network not
only extracts multi-layer features from sketches but also
captures binary edge maps from natural images. Merely
employing these multi-layered visual representations of both
sketches and natural images yields remarkable retrieval
outcomes Ahmad et al. [9] conducted CNN fine-tuning
employing an image augmentation dataset inclusive of nat-
ural images, edge maps, hand-drawn sketches, as well as
decolorized and de-textured images. Their findings illustrate
a notable enhancement in retrieval performance upon inte-
grating color information into sketches. Moreover, the extent
of this improvement is directly correlated with the quantity of
added color information Song et al. [46] introduced an edge-
guided cross-domain learning network aimed at minimizing
the domain gap. Within a triple network, they incorpo-
rated edge map information to enhance the SBIR task. This
was achieved through the introduction of an edge guidance
module designed to fuse natural images with their corre-
sponding edge maps. Additionally, they implemented a shape
regression module, which delved into exploring the shape
similarities existing between sketches and natural images
Huang et al. [12] presented Swire, a sketch-based UI retrieval
approach empowering designers to interact with extensive UI
datasets using sketches. Swire incorporates a neural network
structured into two identical sub-networks, reminiscent of the
VGG-A deep convolutional neural network. These distinct
networks, featuring diverse weights, aim to encode matching
pairs of screenshots and sketches utilizing similar values.
Zhang et al. [47] proposed a hybrid CNN structure consisting
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FIGURE 5. Distribution of coarse-grained SBIR approaches.

of A-Net and S-Net, with different branches dealing with
appearance information and shape information respectively.
Given that triplet networks are so popular in SBIR tasks,
Seddati et al. [52] enhanced the SBIR pipeline performance
by exploring multiple aspects, including embedding normal-
ization, model sharing, margin selection, batch size, hard
mining selection, and the number of hard triplets utilized
during training. Furthermore, they introduced an innovative
methodology for constructing SBIR solutions adaptable for
deployment on low-power systems.

Inspired by the success of CNN architectures on a variety
of computer vision tasks, researchers have begun to explore
whether sketch image data can be similarly applied to these
models. Many of these pre-trained models are publicly avail-
able, so some studies have conducted experiments using them
as initial networks. Lei et al. [42] used the VGG19 network
pre-trained on image data as the initialization network. Use
generalized boundary extraction methods to generate sketch
approximations. The sketch approximation data is then fed
into the pretrained network for fine-tuning. The results show
that using image data as auxiliary data can improve the ability
of sketch feature extraction. The extracted sketch features
are strongly correlated with the boundaries of the corre-
sponding images Kumar et al. [45] employed the Siamese
CNN in SBIR to acquire the feature space for both sketch
input queries and images using transfer learning techniques.
They utilized the pre-trained VGG19 model to extract feature
descriptors from sketches and images Devis et al. [50] used
the pre-trained VGG19 network and the cosine similarity
function to find similarities between sketches and image
databases, further demonstrating the effective use of transfer
learning in SBIR.

There is a certain time order when drawing a sketch, so the
data recorded in the form of stroke order in the SBIR problem
is the key information for sketch retrieval. RNN models the
time series by linking previous stroke information and the
current sketch state. Long Short-Term Memory (LSTM) is a
special type of RNN that can solve the long-term dependency
problem He et al. [53] introduced the Deep Visual-Sequential
Fusion model (DVSF), a sketch recognition framework

combining CNN and RNN. They employed three-way CNNs
to extract visual features, feeding them into a visual mod-
ule comprising stacked residual FC layers. Subsequently,
these features were passed into the sequential module, which
comprised a specialized RNN known as Residual LSTM,
culminating in the final prediction Collomosse et al. [32] pro-
posed LiveSketch, which makes the query a dynamic iterative
process through visual suggestions, reducing the ambiguous
nature of the sketch itself. The research approach uses a triplet
convolutional network architecture, combined with an RNN-
based VAE, using sketch stroke vector queries to search target
images, and real-time clustering to produce possible results.
Back-propagation through possible results disrupts the stroke
sequence input and guides continuous query improvement.
The subsequent Gated Recurrent Unit (GRU) generally out-
performs LSTM by learning a reduced number of parameters.
Jia et al. [54] introduced a Sequential Double Recurrent Neu-
ral Network (SD-RNN) architecture for sketch recognition,
leveraging this advantage. The sketched shapes and textures
of the five images constructed from accumulated strokes are
fed to two cascaded GRUs, which are classified based on the
output.

Besides its remarkable advancements in image generation
research, the adversarial learning principles of GAN offer
innovative solutions across various image-related research
domains Guo et al. [55] utilized the conditional generative
adversarial network (cGAN) to produce synthetic images
from input sketches. They employed the VGG encoder to pro-
cess both synthetic and real images, culminating in the devel-
opment of the interactive SBIR system known asMindReader
Sharma et al. [56] implemented the task of querying floor plan
image retrieval through hand-drawn sketches through recur-
rent GAN and CNN Sabry et al. [58] based on the features
obtained by the unsupervised learning information maxi-
mization GAN (InfoGAN) model to meet the user’s needs
for retrieval of large-scale data sets Xu et al. [57] employed
hand-drawn sketches to address remote sensing image search
challenges. They devised a novel Sketch-Based Remote Sens-
ing Image Retrieval (SBRSIR)model that learned a deep joint
embedding space, integrating discriminative loss to foster
domain-invariant representations through adversarial train-
ing. Additionally, they contributed sketch and remote sensing
image datasets to SBRSIR and established a baseline for
future researchers in the field Bai et al. [59] employed deep
neural networks to extract features, utilizing the same net-
work structure without sharing parameters. They augmented
these networks with domain classifiers to create an adversar-
ial network. The mutual adversarial training between domain
classifiers and feature extractors facilitated the learning of a
shared feature space suitable for both sketches and natural
images. To streamline the network with fewer parameters
while ensuring accurate feature extraction, the study utilized
the lightweight MobileNet model for extracting features from
different modality data.

In order to solve the problem of high computational
effort and parameter redundancy, Lu et al. [60] proposed
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Domain-Aware Squeeze-and-Excitation (DASE) network
that can emphasize different channels based on domain
knowledge. With the criterion that the maximum intra-class
distance is less than the minimum inter-class distance, Multi-
plicative Euclidean Margin Softmax (MEMS) introduces the
margin to optimize the feature space.

Hash technology maps high-dimensional image features
into low-dimensional binary codes, so that similar images
have similar codes in the hash space, achieving fast similarity
retrieval. As the number of digital images continues to grow,
resulting in some retrieval time and efficiency issues, hashing
algorithms have attracted attention in the SBIR research field
Liu et al. [38] introduced DSH, a deep hashing framework
designed for rapid SBIR. Their research focused on encoding
sketches and natural images using a semi-heterogeneous deep
architecture featuring auxiliary sketch-tokens. This approach
effectively mitigates geometric distortion between the two
modalities. DSH demonstrates advantages in retrieval accu-
racy as well as time and storage complexityWu and Xiao [61]
proposed a deep hashing framework that uses a prototype
hash code set to constrain feature representation, and maps
data from two different domains of sketches and natu-
ral images to a common Hamming space to achieve good
retrieval performance.

Some studies use deep learning techniques in addition
to a combination of traditional methods of SBIR, multi-
modal information fusion, and re-ranking Huang et al. [62]
used low-level visual features and convolutional kernel net-
work (CKN) to capture local visual information, CNN
captured semantic information of sketches and images, and
finally obtained deep discriminative representation through
multi-modal feature fusion to narrow the visual and semantic
gap in SBIR Huang et al. [64] introduced a deep cross-modal
correlation learning technique aimed at investigating the cor-
relation between visual and semantic features within sketches
and images, thereby mapping them into a shared space. They
combined various methods to construct a real-time SBIR
framework that involves mining multi-modal attributes. Typ-
ically, SBIR re-ranking methods employ relevance feedback
for re-ranking. Relevant information is gathered from the ini-
tial retrieval outcomes, forming the foundation for subsequent
re-ranking processes Huang et al. [63] introduced an SBIR
re-ranking optimization technique utilizing sketch-like trans-
formations and deep feature representation via deep visual
semantic descriptors. They employed an efficient deep visual
semantic descriptor capable of encoding both low-level and
high-level features of sketches and sketch-like images derived
from original natural images. Their approach involved con-
structing a clustering-based re-ranking optimization method
to dynamically adjust image similarity within the ranking
list. However, a drawback of this method lies in its limited
consideration of the abundant semantic information con-
tained within annotated photos Wang et al. [29] captured
semantic information from both types of data by training
CNNs separately for sketch classification and natural image
classification. They employed a proposed category similarity

FIGURE 6. Distribution of FG-SBIR approaches.

measure to re-rank preliminary test results, aiming to improve
system performance. The combination of SBIR training and
reranking improves the results by further refining the initially
learned embedding space.

2) APPROACHES USED IN FINE-GRAINED SBIR
Sketches are more likely to convey fine-grained information
compared to text and tags. FG-SBIR is highly regarded for
its value in business applications, but is more complex and
therefore more challenging than the need for category-level
retrieval. The distribution of various approaches is shown in
Fig. 6.

Shi et al. [65] introduced an image retrieval method termed
FAIR, employing Freak and ANN-based techniques. Image
features were extracted and transformed into binary descrip-
tors, mimicking human retina recognition. Artificial neural
networks were utilized to handle extensive data for feature
classification. While FAIR proved effective in accuracy, its
time efficiency lacked objectivity.

Addressing the problems of cross-domain retrieval, highly
abstract sketches, and scarcity of training data in FG-SBIR,
Yu et al. [10] solved these problems for the first time.
They introduced a database containing two categories of
shoes and chairs along with rich annotation information,
developed a deep triplet model for fine-grained retrieval,
investigated novel data augmentation strategies, and con-
tributed to the realization of SBIR for commercial appli-
cations Portenier et al. [67] proposed an interactive image
retrieval system reordered by sketching and semantic clus-
tering, using the power of CNNs to refine the query results,
and ultimately designing a user study to demonstrate the
effectiveness of the approach. Considering the limitations
of digital manga retrieval, [69] constructed an interactive
manga retrieval system based on sketches by extracting
features of sketches and manga images using two differ-
ently trained CNNs Xia et al. [28] utilize the same and
homogeneous three-branch Triplet network and implement
a ranking method that accounts for both shape and color
matching to accomplish fine-grained retrieval. The use of
edge maps in instance-level SBIR systems poses challenges,
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requiring pre-training of significant edge map data and sen-
sitivity to edge map quality. To overcome these limitations,
Lin et al. [71] propose an end-to-end iSBIR system called
TC-Net, which incorporates a triplet Siamese network and
an auxiliary classification loss that eliminates the need for
edge maps Qi et al. [72] proposed a personalized SBIR
approach that incorporates a deep full convolutional neu-
ral network as a general model and a personalized model
using transfer learning to achieve fine-grained image seman-
tic features. The personalized model is trained based on
user-selected images and user history feedback, allowing the
system to learn the user’s intent and provide more optimal
search results. Zhang et al. [51] introduced a groundbreaking
weakly-supervised deep architecture named the landmarks-
aware network. This network comprises two primary mod-
ules: the representative landmarks discovering module and
the category-aware representation learning module. Through
extensive SBIR task experiments, the paper validates the
effectiveness of the proposed method. In Black et al. [66]
research they match the relative positions of multiple objects
in addition to matching the main object contained in the
image. The visual features are encoded by training a CNN
that aggregates these features into spatial descriptors, which
in turn encode spatial relationships and appearance. Focusing
on exploring the use of local features to solve the problem
of fine-grained retrieval, Xu et al. [73] introduced the Local
Aligned Network (LANet) to address the FG-SBIR problem
by identifying matching pairs of sketches and photographs
with shared fine-grained details. Additionally, to resolve
spatial misalignment issues between sketches and pho-
tographs, they proposed the Dynamic Local Aligned Network
(DLA-Net) and achieved superior performance compared to
humans in QMUL FG-SBIR, QMUL Handbag, and Sketchy
datasets.

Muhammad et al. [30] developed a model based on
RNN to determine stroke retention or deletion, trained a
sketch abstraction model by reinforcement learning (RL),
fed images and generated edge maps into the abstraction
model but trained FG-SBIR only for a given photo, and
used three-branch CNN learning for comparing joint embed-
dings of the photos and sketches. Experiments demonstrate
that FG-SBIR models can now be trained using only pho-
tos. Noting the important impact of sketch integrity and
sketch-drawing quality on SBIR systems, Choi et al. [31]
proposed the first stroke-guided SBIR system. The system’s
primary stroke guidance network comprises a Siamese CNN
and an LSTM network. Employing a stroke loss function
enables comparison between the next stroke feature vectors
of the CNN and LSTM networks. Through deep binary
hash retrieval, the system effectively navigates extensive
databases and promptly provides target guidance sketches
for stroke guidance stages in real-time Wang, et al. [74]
designed a framework that employs deep reinforcement atten-
tional regression to support on-the-fly image-based retrieval.
A hybrid loss function was developed which will be used
to train RL agents for dynamic ranking rewards and for

supervised learning for updating RNNs. Based on this tech-
nique, Mohian and Csallner [75] present PSDoodle, the first
system that allows on-screen interactive searching through
interactive sketches. it achieves similar search accuracy to
SWIRE, with a much reduced search time.

Yang et al. [77] incorporated the CNN model into the
edge branch of DA-SBIR. They integrated dark region infor-
mation into FG-SBIR and employed the SGAN module to
efficiently distinguish between the edge structure and dark
region information. This approach aimed to enhance retrieval
accuracy without compromising convenience Zhou et al. [78]
effectively narrowed the gap in the sketch image domain
by using GAN for stroke coordination, CNN for feature
extraction and fine-tuning, and aligning the sketch and natural
image to the same stroke style domain Zhang et al. [79]
proposed deformable triplet CNNs combining depth features
and attribute features using the generation of pseudo-sketches
instead of the traditional method in the preprocessing step.

According to visual habits, people do not directly process
the global scene, but preferentially capture local salient parts.
Attention models have been widely studied in various vision
problems [116], [117], [118], [119]. The most prevalent
attention model utilized is soft attention, which, due to its
differentiable nature, can be seamlessly learned alongside
the rest of the network in an end-to-end fashion. Typically,
soft attention models are designed to learn attention masks
assigning varying weights to distinct regions of the image.
Hard attention models only indicate one region at a time
and are usually learned using reinforcement learning because
they are non-differentiable Song et al. [83] add an attention
model to each branch based on multi-branch CNN, focusing
on specific local discriminative information. Using a short-
cut connection architecture to feed details into the attention
module, a higher-order learnable energy function (HOLEF)
is introduced to model correlation, which in turn enhances
robustness Shaojun et al. [81] mainly solve the Sketch Re-ID
problem, and in order to validate the generalization ability of
the model, experiments are also performed on SBIR related
datasets, where the framework employs CNN combined with
a spatial attention module using a gradient reverse layer to
reduce the domain gap Yu et al. [80] designed the attention
module for FG-SBIR based on the Siamese network, and
extensive experiments on QMUL FG-SBIR database proved
the effectiveness of the model Chaudhuri et al. [84] solved the
problem of cross-modal retrieval of photo-sketched remote
sensing (RS) data via CNN combined with cross-attention
networks Dawei et al. [82] proposed a multi-granularity
association-learning method for FG-SBIR to bring the joint
embedding space representation of incomplete and complete
sketches closer for dynamic retrieval.

Self-attention, a prominent attention mechanism, gained
recognition through the Transformer proposal [120], which
has found applications not only in natural language process-
ing [121], [122] but also in computer vision. In image-related
data, self-attention contributes to improving neural network
feature extraction capabilities. Chen et al. [86] highlighted
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the importance of channel context and spatial sequence infor-
mation by strengthening both channel attention and spatial
attention modules. They integrated a Transformer into their
model to enhance its ability to comprehend spatial sequence
data and introduced Mutual Loss to bolster intra-class dis-
crimination.

Ribeiro et al. [89] introduced the Scene Designer, a model
utilizing hand-drawn sketches to both search for and generate
the appearance and relative positions of multiple objects.
This approach involves learning embeddings through a hybrid
combination of graph neural network (GNN) and Trans-
former architecture. These embeddings capture the entirety
of the scene layout from either complete or partial sketch
compositions. Future exploration could focus on deploying
this interactive model within creative practice.

Chen et al. [90] proposed an asymmetrical disentanglement
scheme and a dynamic updatable auxiliary sketch (A-sketch)
modality for photo disentanglement to solve the asymmetry
between sketch and imagemodalities. Problem. The proposed
visual converter-based method achieves better performance
than CNN.

In their proposition of the Multi-Level Region Matching
model (MLRM) [87], two integral components contribute to
its architecture. The initial segment involves the Discrim-
inative Region Extraction module (DRE), responsible for
extracting multi-level CNN-based features. The subsequent
segment, the Region and Level Attention module (RLA)
utilizes a transformer encoder to assign distinct weights to the
transformed multi-level region features. The method’s effec-
tiveness is validated across a combined dataset comprising
five different datasets.

There have also been some studies at fine-grained retrieval
focusing on the impact of multimodal information and
re-ranking models on SBIR retrieval Yanfei et al. [92]
proposed Deep Cascaded Cross-modal Ranking Model
(DCCRM) constructs representations of sketches, images
and annotations to learn deep associations between mul-
timodal information. Image visual features are extracted
using pre-trained and fine-tuned GoogLeNet, image semantic
features are described using Skip-thought, multimodal infor-
mation is co-learned in Deep Multimodal Embedding Model
(DMEM), and Deep Triplet Ranking Model (DTRM) is uti-
lized to improve retrieval efficiency. Bhattacharjee et al. [93]
proposed a graph-based re-ranking method using Sketch-
a-Net and CNN to obtain shape and appearance features
while considering the query as a sub-graph selection prob-
lem Pang et al. [94] employed an unsupervised embedding
network and a dynamically parameterized feature extractor
equipped with triplet loss for FG-SBIR. The unsupervised
embedding network employs an encoder-decoder framework
to map sketches into visual trait descriptors. Meanwhile,
the dynamically parameterized feature extractor adapts the
feature extraction and retrieval processes based on the gener-
ated descriptor. Deep CNN feature extractors are used in the
FG-SBIR model to find the photo that minimizes the distance
to the query sketch, and the model is trained in a supervised

FIGURE 7. Distribution of ZS-SBIR approaches.

way on the training sketch categories Sabry et al. [95] tack-
led the challenges in Facial Sketched-Real Image Retrieval
(FSRIR) and bridged the research gap in content-based
similarity matching and retrieval. They expanded the Chi-
nese University Face Sketch (CUFS) dataset, introduced the
Extended Sketched-Real Image Retrieval (ESRIR) dataset,
and introduced three novel systems for sketched-real image
retrieval. These systems are based on convolutional autoen-
coder, InfoGAN, and Vision Transformer (ViT) unsupervised
models tailored for large dataset.

3) APPROACHES USED IN ZERO-SHOT SBIR
Zero-shot learning in computer vision refers to recognizing
objects for which no examples have been seen during the
training phase. ZS-SBIR addresses the limitation of tradi-
tional SBIR methods that rely on a large amount of sample
data with the same category annotations. It can retrieve rele-
vant images from a gallery without any example or training
data. In recent years, many methods for ZS-SBIR have been
proposed to address the modality gap and semantic gap prob-
lems. The distribution of various ZS-SBIR approaches is
shown in Fig. 7.

In the CNN model-based approach, Tursun et al. [96]
proposed a framework that includes three kinds of losses. The
first one is domain-balanced quadruplet loss, which solves
the imbalance problem in the underlying triplet loss. The
second is the semantic classification loss which is used to
learn semantic features. The third is the semantic knowledge
preservation loss which preserves the knowledge learnt from
the pre-trained model used. Experiments have shown that the
introduction of each loss has led to new enhancements. Based
on intermediate and advanced CNN feature embeddings,
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Chaudhuri et al. [97] proposed BDA-SketRet that performs
two-layer domain adaptation to progressively align spatial
and semantic features of visual data pairs.

Xu et al. [100] introduced a two-branch CNN-RNN net-
work architecture, capturing both the static and temporal
patterns of sketch strokes. Their experiments investigate the
acquisition of sketch-oriented semantic representations in
two distinct settings: hash retrieval and zero-shot recognition.
These evaluations extend to millions of abstract sketches
generated from real-time online interactions.

Modelling the joint distribution between sketch and
image using GAN can significantly reduce the domain gap
between sketches and images [101]. Continuing previous
SBIR research, [102] [103] simplifies the SBIR problem
to an image-to-image retrieval problem by synthesizing
image samples from sketch features. From only focus-
ing on one-side mapping of multimodal features to class
embeddings to emphasizing the correlation between them,
Xu, et al. [104] combined multimodal feature synthesis,
knowledge transfer and common subspace learning to suc-
cessfully transfer knowledge to unseen classes Dutta and
Akata [105] focuses on the any-shot SBIR task, which com-
bines zero-shot and few-shot learning and aims to accurately
predict the class of a query and retrieve relevant images. The
paper introduces an innovative approach called SEM-PCYC,
a semantically aligned paired cycle-consistent generative
adversarial network. This model effectively maps sketches
and images into a shared semantic space, enhancing their
alignment and ensuring greater consistency between the two.
The proposedmodel achieves state-of-the-art performance on
three popular datasets for any-shot SBIR and introduces the
few-shot setting for SBIR, which enables the model to handle
queries with very few examples.

In addition to using GANs for the ZS-SBIR task, Graph
Convolutional Networks can also be utilized to pair sketches
and images in their shared semantic space. The ZS-SBIR
framework proposed in [107] introduced a cross-modal atten-
tional learning strategy based on cross-modal ternary loss,
while using GCN to propagate semantic information into the
shared space and Hashing to shorten retrieval time.

CNNs, limited by their local convolutional operations,
face constraints in modeling the global structural infor-
mation of objects. Yet, this global structural information
holds significance in the ZS-SBIR task, as it serves as
a critical indicator for correlating images and sketches.
Transformer is capable of modeling global structural infor-
mation, and it has emerged as an effective alternative to
the CNN framework. Tian et al. [108] model the global
context using a global self-attention mechanism and pro-
pose a Transformer-based approach called Three-Way Vision
Transformer (TVT). Fusion and distillation tokens are also
added so that they complement each other. Inter-modal and
intra-modal alignment is performed without loss of unifor-
mity to learn multimodal hyperspheres to bridge the modal
gap between sketch and image modalities. Utilizing ViT’s
capacity for global structure modeling in handling generic

cross-domain retrieval tasks, Tian et al. [109] introduced the
Structure-Aware Semantic-Aligned Network (SASA). This
novel approach aims to retain global structural informa-
tion and accomplish cross-domain alignment of multi-source
data using an efficient domain-biased sampling strategy
Song et al. [110] proposed a framework called Local Fea-
ture Contrastive Network (LFCN) that utilized transformers
to obtain similarity scores of local features in cross-modal
image retrieval scenarios in order to narrow the domain gap.
It is also demonstrated that the potential risk of overfitting
can be reduced by transferring limited knowledge to unseen
categories and through assisted learning.

Existing approaches propose various ways to address the
modal gap, e.g., using category language information, gen-
erative architectures. However, these approaches still do not
adequately consider distinguishability and generalizability.
There are also works that improve the generalization capabil-
ity in the direction of knowledge distillation Tian et al. [111]
proposed Relationship-Preserving Knowledge Distillation
(RPKD) for ZS-SBIR. It preserves instance-level inter-
class relations without semantic similarity, contrast relation
preservation and local relation preservation for teacher
networks that mimic rich knowledge Wang et al. [112]
propose Prototype-based Selective Knowledge Distillation
(PSKD). For teacher modelling, PSKD utilizes variants of
the Transformer module to capture contextual information
from images and sketches with a multi-tailoring strategy;
and category prototyping to mitigate domain gaps. Teacher-
student optimization through a combination of these designs
Tian et al. [113] propose a new method called Adaptive
Balanced Discriminability and Generalizability (ABDG).
ABDG utilizes a two-stage knowledge distillation scheme,
a task-specific teacher model, and an entropy-based weight-
ing strategy to balance the learning of discriminability and
generalizability for each instance. The aim is to achieve
state-of-the-art performance in ZS-SBIR by considering both
discriminative and generalization properties.

The answer to RQ1 shows that the use of deep learning
methods in SBIR has continued to increase over the years.
For SBIR tasks, no matter what network structure is used,
since sketches and natural images belong to two different
domains, at least two network branches are usually needed
to process different types of data in order to better bridge the
domain gap, which is the reasonwhymanymethods are based
on Siamese, Triplet, and Quadruplet-ranking methods. The
current new trend is to use multimodal data for retrieval in
the study of SBIR. However, the number of articles on SBIR
using multimodal data and deep learning methods is still
relatively small. Although scientific research methods and
reasonable retrieval strategies are used whenever possible,
it is still possible to miss some valuable research.

B. RQ2: WHAT ARE THE MAJOR STANDARD DATASETS
FOR SBIR IN THE LITERATURE?
In order to meet the needs of large-scale deep network train-
ing in the SBIR study, RQ2 answered the datasets used in
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the study and further analyzed the details of the data using
in various types of SBIR tasks. TABLE 6 summarizes the
name, scale, number of categories, and public availability of
the sketch dataset.

As can be seen from TABLE 6 and Fig. 8, Sketchy and
Flickr 15k are widely used by researchers because they
contain a wide variety of sketches and corresponding nat-
ural images, and they are open to the public and serve
as benchmarks for many studies. The CNN model pro-
cesses the sketch as a static raster image, and Sketchy is
often used for model training and testing. The QuickDraw
dataset contains considerable sketch data, which is crowd-
sourced by different users and can be publicly accessed.
The data is a sequence of strokes consisting of coordi-
nates and timestamps. Research methods using RNN models
often use the QuickDraw data set because they focus on the
stroke sequence of sketches. The QMUL dataset is widely
used for its high-quality images, including QMUL Shoe,
QMUL-ShoeV2, QMUL Chair, QMUL ChairV2 and QMUL
Handbag datasets, etc. They come with detailed annotations,
including attribute labels, which are valuable for training and
evaluating fine-grained retrieval models. Therefore, methods
used for FG-SBIR, especially those combined with attention
mechanisms, usually use the QMUL series of datasets. The
latest research direction, ZS-SBIR, often conducts exper-
iments on the benchmark Sketchy extension, TU Berlin
extension, and QuickDraw extension dataset to verify the
effectiveness of the method.

C. RQ3: WHAT ARE THE VARIOUS METRICS FOR
EVALUATING THE PERFORMANCE OF SBIR?
SBIR involves retrieving images from sketches drawn by
users that match their intent. In this case, in order to more
comprehensively evaluate the performance and effect of the
algorithm, most studies adopt a combination of quantitative
and qualitative evaluation. Quantitative evaluation measures
system performance through digital indicators and quan-
titative methods. As depicted in TABLE 7, many studies
utilize common quantitative evaluation metrics such as mAP,
Recall@K and Precision@K. In the case of query sketches,
any image among the initial K retrieved images sharing the
same category as the query sketch qualifies as a matching
result [92]. Recall@K indicates the percentage of relevant
images retrieved among all relevant images within the top K
positions and is used to evaluate the probability of detecting
a positive sample correctly. It is defined as:

Recall =
TP

TP+ FN
(3)

where TP is the true positive sample, and FN is the false
negative sample, which is the number of true positive sam-
ples assigned with false labels. Precision@K represents the
percentage of relevant images among those retrieved within
the top K positions, measures how accurately the systemfinds

positive examples, and is defined as:

Precision =
TP

TP+ FP
(4)

where TP stands for True Positive, and FP stands for False
Positive. mAP is a comprehensive metric that considers both
precision and recall aspects. This is more in line with practical
needs. Users have limited energy to view search results, and
the system can put the most relevant images at the front. mAP
can be calculated in the following way:

mAP =

∑S
q=1 Avg (Pr (q))

S
(5)

wherePr(q) denotes the retrieval accuracy of the query sketch
q, Avg() denotes the average, and S denotes the number of
query sketches.

Some CNNs for category-level retrieval also prefer to
quantify the Kendal score by comparing the ranked lists
obtained by the proposed new method with the rankings of
the users identified as the ‘‘ground-truth’’. The Kendal rank
correlation coefficient for SBIR is defined as (6):

τ =
nc − nd

[(N − U) (N − V )]
1
2

(6)

where nc denotes the number of consistent, nd denotes the
number of inconsistent, N denotes the number of possible
pairs in the set of different elements, U denotes the list of the
number of tied pairs in the baseline ranking, and V denotes
the number of tied pairs in the ranked list of the proposed
method.

When SBIR is combined with Hashing, the memory loads
and retrieval time of the system are often evaluated. Because
hashing methods map high-dimensional feature vectors into
compact binary codes, searches for similar items in large
databases can be made faster, running efficiently without
performance degradation or crashes due to excessive memory
consumption. Therefore, evaluating retrieval time and mem-
ory load is critical to evaluating the efficiency gains achieved
through hashing. Quantitative evaluation helps provide spe-
cific performance data to quantify the performance of the
methods involved in TABLE 5 on different datasets.

Qualitative evaluation is based on subjective judgement
and intuition to assess system performance. Such evalua-
tion methods may include visual displays [73], [90], [109],
[110], [111], [113], user studies [75], [76], etc. We observed
that most of the studies conducted qualitative evaluation
by displaying top k’s visualized retrieval results. Qualita-
tive assessment can reveal issues that cannot be captured
by quantitative evaluation, such as how users feel when
using a sketch image retrieval system, how easy it is to
interact, and whether the system meets their expectations
Xinggang et al. [41] conducted qualitative assessments by
visualizing the model’s filters and the diverse extracted
features. The GAN-based method [55] demonstrated gen-
erated images that were semantically consistent with the
input sketch and consistent with the content of the target
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TABLE 6. Summary of the sketch datasets.
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TABLE 6. (Continued.) Summary of the sketch datasets.

image during qualitative evaluation Tian et al. [111] show the
results of the visualization of the RPKD method on Sketchy.
Qualitative analyses revealed that sketch query and retrieval
results are more similar in shape and structure than category
information. The reason for this problem may be due to the
highly abstract nature of sketches. Also, they visualized the
distribution of unseen data from random samples of graph
images and sketches using the t-SNE tool. From these qual-
itative evaluations, it is easy to recognize that high-quality
queries are crucial for retrieving the correct candidates, and
that redundant noise and over-abstracted low-quality queries
tend to cause erroneous retrieval results. For the ZS-SBIR
task, when the gallery contains all candidate images, the
retrieval results for queries targeting the unseen class tend
to have results that are visually highly similar to the seen
class.

Although the focus of SBIR research is mainly related to
methods, data, and user interfaces, hardware platforms also
play an essential role in the efficiency and effectiveness of
SBIR systems. Deep learning SBIR algorithms are compu-
tationally demanding. Utilizing Graphics Processing Units
(GPUs) can significantly accelerate computation compared
to traditional Central Processing Units (CPUs) due to their
parallel processing capabilities [96], [115]. SBIR systems

typically require significant memory resources, especially
with large image databases. Memory limitations will affect
the database size that can be indexed efficiently or the com-
plexity of the models that can be used. Experiments have
demonstrated that deep hashing architectures in SBIR enable
retrieval that outperforms general deep learning methods in
terms of time complexity and storage complexity, saving
nearly four orders of magnitude in memory load and retrieval
time [38], [61] and achieving real-time performance even
for retrieval from large, multi-million scale databases like
QuickDraw [100]. Hardware limitations of mobile and tablet
devices may affect the development and performance of
SBIR applications designed for these platforms [75], [76].
Optimizing algorithms for mobile devices is critical; oth-
erwise, providing real-time performance in SBIR systems
may be difficult, which can affect the user experience, espe-
cially in interactive applications that must respond quickly
to sketching queries. SBIR systems often rely on stylus or
touch-based input devices for sketching. Compatibility with
various input devices and their integration with hardware
platforms is critical for a good user experience. Addressing
these issues involves a combination of hardware platforms,
algorithm optimization, and software development practices
to utilize available resources efficiently.
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FIGURE 8. Method-data association diagram.

D. RQ4: WHAT ARE THE POTENTIAL APPLICATIONS FOR
SBIR USING DEEP LEARNING?
SBIR using deep learning has shown great potential as
another image retrieval solution in addition to TBIR and

CBIR. By reviewing the research on SBIR in recent years,
Question 4 will outline some future potential applications.

Applications in e-commerce. Shoppers search for prod-
ucts that meet their wishes through hand-drawn sketches.

VOLUME 12, 2024 14863



F. Yang et al.: SLR of Deep Learning Approaches for SBIR: Datasets, Metrics, and Future Directions

TABLE 7. Evaluation metrics covered in the papers reviewed. For example, when you are walking on the street and like
someone else’s clothes but are too embarrassed to take pic-
tures to get pictures, you can use the SBIR method. This
makes the online shopping experience more interactive and
personalized. FG-SBIR lays the foundation for the promotion
of this application [28].

Application in children’s education. By tracing shadow
lines that guide the image across the canvas, children’s
hand sketches retrieve rich visual content, allowing them to
explore a wide range of visual references to enhance their
learning [31].

Applications in medical diagnosis. Doctors and other pro-
fessionals can use hand-drawn sketches to retrieve relevant
medical images to aid medical diagnosis. Promote medical
research and education by searching for case images similar
to this content based on hand-drawn sketches [141].

Applications in law enforcement. Law enforcement agen-
cies can use SBIR to help identify suspects or missing persons
based on sketches when investigating offenses. This tech-
nology may assist in criminal investigations and forensic
reconstructions [58].

Applications in art and design. Artists, designers, and
architects can quickly search for visual references using SBIR
systems. This can help with ideation, concept development,
and the creation of new designs or artwork [76].

E. RQ5: WHAT ARE THE FUTURE DIRECTIONS FOR SBIR
USING DEEP LEARNING?
Sketch as a modality has its limitations, such as its inability
to reflect the texture and color of natural images and the
distortion of sketches caused by different drawing abilities.
In view of this, future SBIR research directions, especially
FG-SBIR, should integrate color or texture information to
improve performance [28]. From an HCI perspective, creat-
ing interactive interfaces that allow users to refine or modify
retrieval results using sketch input can enhance the user expe-
rience [12]. Additionally, integrating sketch information with
other modalities such as attributes, text descriptions, or audio
helps generate more diverse and contextual results [31], [80],
[105]. The popularity of smart terminals and HCI tech-
nologies drives the idea that our research should be more
orientated towards generalized SBIR tasks and that explor-
ing scene-level SBIR is more in line with real-world needs,
in which sketches and images can contain multiple instances
of objects and, in particular, new requirements for explor-
ing retrievals that contain non-rigid objects are being put
forward [142].

Currently, supervised CNN is mostly used to solve the
SBIR problem, which relies on labeled data sets. In the future,
weakly supervised or unsupervised learning methods can be
exploredmore to reduce the reliance on large labeled datasets,
making SBIRmore accessible and adaptable to various fields.
At the same time, we encourage the use of QuickDraw’s
large-scale fine-grained data sets as a research benchmark.
The content of its sketches is closer to the uneven levels of
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ordinary people and more consistent with actual situations.
The combination of FG-SBIR and the attention mechanism
effectively improves the retrieval results, but the combination
of the attention mechanism lacks effective interpretability.
Future focus on the interpretability of methods could play an
important role in critical applications such as forensics and
medical imaging. Most studies include data preprocessing,
and it is recommended to jointly train preprocessing and
models into a unified deep framework [79]. ZS-SBIR can be
extended to handle more complex cross-modal retrieval tasks,
such as retrieval involving multiple modalities. In the future,
we can evaluate the SBIR-based approach in progressively
more challenging and realistic environments, exploring other
modalities to improve retrieval performance and enable more
natural and intuitive interaction with the system. Another
direction is to develop a Data-Free Learning (DFL) approach
for SBIR, which utilizes pre-trained unimodal classification
models to learn the cross-modal metric space for retrieval
without accessing the training data. Accessing paired photo
sketch datasets in current research is challenging, so this data-
free learning approach is practical for data-scarce tasks like
SBIR [143].

VI. CONCLUSION AND LIMITATION
This paper presents a systematic literature review of deep
learning methods in the field of SBIR. This SLR was con-
ducted to highlight the existing research gaps in the specific
area of deep learning methodology and to provide use-
ful information on the factors influencing potential future
research. This review analyzed 90 relevant papers collected
based on the PRISMA framework (2016 to June 2023) in five
aspects: the SBIR approach, the dataset, evaluation metrics,
the applications, and future directions. Overall, deep learning
methods for SBIR provide better performance and accuracy
than traditional manual feature methods. The deep learning
methods are all equally capable of retrieving the target image
based on the input sketches used in the model. The most
effective deep learning methods for SBIR are CNN-based
methods. The hierarchical structure of CNN helps the model
to automatically extract and learn the abstract features of
the sketch. In addition, RNN and Transformer are able to
model the sequence information of sketches and capture the
dependencies between sequences. We observed that Sketchy,
the most commonly used sketch dataset, contains multimodal
data including sketches, associated textual descriptions, and
natural images associated with them, and it is valuable in
studying cross-modal retrieval. It is also seen that the factors
affecting SBIR are based on the relevance of the model, the
data, and the way it is evaluated in relation to other factors.
It is also shown that the research direction for SBIR using
deep learning methods lies in how to improve the work-
ing model and utilize multimodal information in order to
improve accuracy and provide more possibilities for commer-
cial applications of image retrieval. This SLR will be useful
for researchers interested in SBIR methods, data, evaluation
approaches, and future trends.

Regarding the limitations of this paper, our study only
covers the relatively recent period from 2016 to June 2023 and
does not cover the full range of SBIR studies involving deep
learning. Furthermore, in this review paper, four valid sci-
entific databases were used to search for papers and other
databases could be used to supplement the search in the
future. Only journals and conference papers published in
English were used in this paper. No other publications, such
as books and non-English papers, were used. Five RQs were
mentioned and answered in this paper, but many questions are
worth pondering under this research topic, such as comparing
different loss functions. SBIR is relevant to the research on
recognition, detection, classification, and segmentation of
sketches, and future research can compare and migrate with
algorithms related to these researches.
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