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Abstract—Federated learning is a technique that allows to
collaboratively train a shared machine learning model across
distributed devices, where the data are stored locally on devices.
Most innovations the research community proposes in federated
learning are tested through custom simulators. An analysis of
the literature shows the lack of workbench platforms for the
performance evaluation of FL projects. This paper aims to fll
the gap by presenting FLWB, a general-purpose, confgurable,
and scalable workbench platform for easy deployment and
performance evaluation of Federated Learning projects. Through
experiments, we demonstrated the ease with which a FL system
can be implemented and deployed with FLWB.

Index Terms—Federated Learning, performance evaluation,
microservice, security

I. INTRODUCTION

Artifcial intelligence is innovating with cutting-edge suc-
cess in several application felds, including security and de-
fense [1]–[3]. The recent advances in the Internet of Things
(IoT) require moving intelligence to the edge devices. Feder-
ated learning is a technique that allows to collaboratively train
a shared machine learning model across distributed devices,
where the data are stored locally on devices [4], [5]. Most
innovations the research community proposes in federated
learning are predominantly tested through simulation, typically
programmed in Python. This observation has led us to raise
the following questions: Do there exist workbench platforms 
for performance evaluation of FL projects? Is it possible to 
implement federated learning patterns in a real-world, ready-
to-deploy environment without necessitating the development 
of custom software tailored to each pattern? Consequently,
designing a scalable, microservices-based, general-purpose,
and easily expandable architecture for performance evaluation
of federated learning projects was conceived.

To answer the above research questions, this work proposes
FLWB a workbench platform that is easily confgurable and
allows the deployment of FL projects in a real-world environ-
ment. At the best of our knowledge, the only platform created
with a similar intent is Flower [6]. Flower is conceived as an
easy-to-use framework for non-expert developers who want
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to assemble existing components with limited confguration
control. On the contrary, FLWB allows a fne-grained confg-
uration of its components; it allows extending the platform
codebase; and it could be deployed on computing environ-
ments ranging from a laptop, an on-premise server/cluster, or
on the cloud. Moreover, clients can run on any edge device or
emulated platform.

In the remainder of the paper, we describe the design and
implementation of FLWB and, by implementing the FedCo [7]
and FedAvg [5] FL algorithms, we demonstrated the ease with
which a pattern can be incorporated into the developed feder-
ated learning platform. Moreover, we measured and compared
the performance of FedCo and FedAvg in a real environment.

The paper is organized as in what follows. Firstly, we
introduce the concept of FL architectural patterns (Section II),
then we present the general architecture of the FLWB platform
(Section III) and the functionalities implemented (Section IV).
Finally, we discuss experimental results (Section V).

II. FEDERATED LEARNING ARCHITECTURAL PATTERNS

The lifecycle of an FL system consists of the following
phases: model initialization, model training, model aggrega-
tion, model evaluation, model deployment, and system mon-
itoring. Depending on the specifc FL algorithm, each phase
can be designed and implemented in many ways, i.e. adopting
a different pattern. Authors in [8] classifed the patterns used
in literature into four categories: client management, model
management, model training, and model aggregation. In the
design and implementation of our platform, we focus on the
subset of these patterns listed in Table I. The model deploy-
ment aspects, which involve integrating the trained model into
a target application or environment, are not included in the
scope of this work.

III. FLWB ARCHITECTURE

Figure 1 provides an overview of the main components of
the FLWB platform. To build the FLWB platform we used a set
of industry-standard technologies designed to provide scalabil-
ity, fexibility, and reliability to machine learning applications.
We adopted a microservice architecture, using Java as the main
programming language and the SpingBoot framework. More-
over, some functionalities in support of the Client management
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TABLE I: Federating Learning Patterns considered in the design and implementation of the FLWB platform

Pattern category Pattern
Client Management Registry maintains the information of all the participating client devices for client management

Selector actively selects the client devices for a certain round of training according to the predefned criteria to increase model
performance and system effciency (flters clients)
Cluster groups the client devices (i.e., model trainers) based on their similarity of certain characteristics to increase the model
performance and training effciency

Model Management Message compressor offers the possibility to compress model data
Model co-versioning registry stores and aligns the local models from each client with the corresponding global model versions for
model provenance and model performance

Model Training Heterogeneous data handler solves the non-IID and skewed data distribution issues through data volume and data class addition
while maintaining the local data privacy

Model Aggregation Async aggregator performs aggregation asynchronously whenever a model update arrives without waiting for all the model updates
every round to reduce aggregation latency

and the Model aggregation patterns are designed as Function
as a Service, implemented using the Fission framework. That
allows more fexibility in developing specifc FL algorithm
functionalities, for example, to implement distance metrics or
aggregation functions.

To manage microservices and functions, we use Kubernetes,
which allows for the deployment, scaling, and management of
containers across multiple nodes. To manage the infrastructure
changes and automate deployments, a GitOps approach is
used, with ArgoCD as the GitOps tool. Finally, the installation
and confguration of the platform are automated using Ansible,
an open-source automation tool that enables the provisioning
and management of servers and infrastructure at scale.

To enable event-driven communication among microser-
vices we use Apache Kafka, which allows microservices
to communicate in real-time, providing a scalable, fault-
tolerant, and asynchronous communication solution. Kafka’s
publish-subscribe model enables a one-to-many distribution
of messages and asynchronous processing of data, which can
further improve the effciency and scalability of the FLWB
platform and also for decoupling of services, which reduces
the complexity of the platform and makes it easier to maintain
and update over time. This can also help scale individual
services independently without affecting the rest of the FLWB

Fig. 1: FLWB platform architecture

platform.
To improve the performance and scalability of FLWB, we

introduced an in-memory cache for frequently used data and
data needing quick access. The cache is implemented using
the Redis in-memory data store.

To persist data, FLWB adopts two different solutions. Con-
fgurations and operation data are retained in a PostgreSQL
database. Datasets and models are stored in MinIO, an open-
source object storage system. In the context of federated
learning, object storage technology offers signifcant advan-
tages in terms of scalability and cost-effectiveness compared
to alternatives like block and fle storage. Federated learning
involves the exchange of model updates among numerous
clients, making the virtually unlimited scalability of object
storage an ideal choice for handling the growing volumes of
model-related data.

On the client side, the FLWB provides fexibility in the
choice of the programming language used as long as the client
follows the communication protocol defned by the platform
itself. We implemented the client in Python and deployed it as
a Docker container. Clients are highly confgurable to adapt to
the specifcation of the FL algorithm. For example, clients can
decide to use data compression techniques or can customize
the number of training epochs and the rest of the training
parameters to allow clients to balance the computational effort
involved in training their models against the accuracy of the
results obtained.

IV. FLWB MICROSERVICES

In this section, we describe the main FLWB’s microservices
and functions.

A. The Joiner microservice 
This microservice is responsible for handling client requests

to join a project. Each client can participate in one or multiple
projects, meaning they can contribute to training one or more
machine learning models. The Joiner ensures that clients can
seamlessly integrate with the federated learning system and
effectively share their local updates by exchanging the project
confguration. We introduce the concept of Join tokens, which
enables clients to request participation in a federation and en-
able fltering to exclude clients with unsuitable characteristics.
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B. The ProjectManager microservice 
It is responsible for managing the state transitions of

projects throughout the federated learning process. The differ-
ent states include idle, clustering, collecting, and aggregating,
each representing a distinct phase of the process, as in Figure
2.

Fig. 2: The project stages fow

In the idle state, only clients joining or leaving actions are
taken. The project transitions to the clustering state when it
needs to perform client selection tasks, which means starting a
new aggregation cycle. The primary objective of this phase is
the election of clients for the training process, which is done by
the Sentinel job (see Section IV-F). Next, the project enters the
collecting phase, during which it receives model updates from
the clients. Upon meeting a triggering condition, it transits
to the aggregating state, aggregating client-received updates.
After the aggregation, the process returns to the clustering 
state for another epoch or moves to the idle state if the
training is complete. By managing these state transitions, the
ProjectManager ensures a smooth, coordinated, and effcient
learning process. Moreover, the ProjectManager is in charge of
informing other microservices are about creating or modifying
a project’s confguration by publishing events containing only
the necessary information for each specifc service.

C. The Registry microservice 
This microservice serves as the directory for clients within

the federated learning system. Its primary function is to keep
track of clients, the projects they are involved in, and the
clusters they belong to. It is essential to note that even
in a classic federated learning confguration without explicit
clustering, there is still a single cluster containing all clients:
the concept is just pushed to the most generic meaning. The
Registry allows monitoring client’s joining events (from the
Joiner), listening to clustering events (from Sentinel), and
assisting in validating model download and upload requests.

D. The Downloader and Uploader microservices 
These microservices manage the download and upload of

models and datasets to and from clients within the federated
learning system. They also handle the authorization required
for these operations, ensuring that only authorized clients can
access the necessary resources.

E. The Aggregation microservice 
The Aggregation microservice monitors the progress of

local model updates and determines when the conditions for
aggregation have been met. Upon reaching the aggregation

condition, it triggers the EpochRunner function, which carries
out the actual aggregation of the local models.

After the local models are aggregated, the Aggregation
microservice assesses the next steps for the project. It decides
whether to return to the clustering phase for the next epoch
by relaunching the Sentinel job or to transition the project to
the IDLE state if the training is complete. In this way, the Ag-
gregation microservice ensures smooth coordination between
different phases of the federated learning process, contributing
to the overall performance of the resulting machine learning
models. By managing the project’s state transitions and coor-
dinating the execution of various functions, this microservice
plays a critical role in the successful implementation of
federated learning projects.

F. The Sentinel microservice 
Sentinel is a Kubernetes job that runs at the beginning

of each training epoch and is a core part of the platform.
It is responsible for selecting clients for the learning phase
by retrieving them from the Registry microservice using the
platform’s only API call and executing a pipeline of operations
that ends with selecting clients.

The pipeline consists of a variable number of operators,
including:

• Selection: selects a certain number of clients (from 1 to
all).

• Filter: selects clients based on specifc flters on their
properties.

• Clustering: clusters clients using pre-implemented al-
gorithms such as K-Medoids; the base case is a no-
clustering confguration that just creates a single cluster
with all the clients inside. Sentinel can also utilize the
Distance function to retrieve distances between clients
and perform clustering based on the distance between
models, or to elect the most representative clients.

• Validation: selects the best clustering confguration based
on a quality function such as Silhouette Index. It is a
container for the Clustering operator. In fact, the base
case, the one in which no validation is specifed, means
that the frst clustering result is fne. However, if multiple
confgurations are defned for validation, the Clustering
operator executes all of them for evaluation.

• Assignment: reassigns clients to different clusters after a
clustering operation in a previous epoch, to keep all the
clients tied to their closer cluster.

• Election: the last operator in a pipeline; it selects clients
to be included in the learning phase based on specifc
criteria.

The list of operators for the Sentinel job can be extended
by implementing new operators in the code. The operators
have a precedence or priority, as it would not make sense
to flter clients after clustering, for example. The pipeline of
operators in Sentinel is fexible and extensible, and operators
have defned precedence to ensure processing coherence. Each
operator in the pipeline has a property called epochs, which
defnes a condition that, if satisfed, enables the execution



I I 

of the operator for the specifc epoch. Using this property,
it is possible to defne operators to be executed only in the
initialization phase and others in the iteration phase of an ML
algorithm, like in [7] and [9].

G. Distance Function 
The Distance function retrieves all the local models pro-

duced by the clients from an object storage, in this case,
MinIO, and calculates the distance between them using the
cosine similarity metric. This function is particularly useful
when clustering clients and determining how similar or differ-
ent the local models are.

H. Epoch Function 
On the other hand, the ’Epoch’ function is used to aggregate

the local models for a given epoch of a project’s aggregation
cycle. The function takes in the local models produced by
the clients and aggregates them using a specifed method.
Currently, the function averages the local models’ weights to
produce an average model, but other averaging methods could
be implemented, such as a weighted average based on certain
clients’ parameters.

V. EXPERIMENTAL EVALUATION

A. The Use Case 
We decided to implement the FedCO algorithm proposed

in [9] and the baseline FL algorithm, FedAvg [5]. The im-
plementation of FedCo leverages the Client clustering pattern,
while the implementation of FedAvg leverages the Client reg-
istry pattern. Our goal is to investigate if FedCO, deployed in a
real environment, keep reducing the communication overhead,
as demonstrated by the simulation results. Experiments are
conducted using the MNIST [10] and the RunOrWalk [11]
datasets.

Clients participating in the federation implement the LZMA
model compression [12], the Stochastic Gradient Descent
Classifer (SGDClassifer python library), and a Neural Net-
work with 11 layers (using the Keras sequential model library).
SGDC is trained and tested on both the RunOrWalk and
MNIST datasets, while the Neural Network is trained and
tested only on the MNIST datasets.

B. Performance Metrics and Experiments Setup 
To evaluate the performance, we consider the network usage 

measured by counting the bytes sent and received by the
clients during each communication round (the psutil library
is used). This information will help assess the effciency and
resource usage of the federated learning system from the
client’s perspective.

Additionally, the F1-score of the global model allows us to
evaluate the effectiveness of the federated learning system. On
the server side, we use testing sets, comprising approximately
the 30% of the datasets, to assess the performance of the
trained models. This approach ensures a fair evaluation of the
model’s ability to generalize to unseen data and provides a

TABLE II: Total network usage. FedCO versus FedAvg im-
plementation

Dataset Model FedAvg FedCO Variation
RoW SGDC 20 MB 3.4 MByte -83%

MNIST SGDC 150 MByte 20 MByte -86%
MNIST NN 5 Gbyte 830 MByte -83%

reliable measure of the system’s overall success in achieving
its learning objectives.

Experiments are conducted running 60 clients for 25 epochs.
The compressed size of the models is 350 Bytes for SGDC
trained on RunOrWalk, 64 KBytes for SGDC trained on the
MNIST dataset, and 1.6 MBytes for the Neural Network
trained on the MNIST dataset.

For lack of space, we comment only on the network
usage in what follows. The F1-score measured in the real
implementation and with the simulation are comparable.

C. Client registry patter – FedAvg 
When trained with the Run or Walk dataset, each client

exchanges an average of 350KB of data over 25 epochs. In
total, the consumption for 60 clients over 25 rounds amounts to
21MB. Given the size of the compressed model (350Bytes),
the total amount of model data transferred over 25 epochs
is about 1Mbyte: it is evident that the majority of network
consumption is due to communication overhead introduced by
the real system components.

When dealing with the MNIST dataset, the situation changes
dramatically with a total network consumption of 150MB,
amounting to a substantial 2.5MB per client. In this case,
considering the average weight of the compressed model is
64KB, the overhead due to the platform reduces to 36% of
the overall network traffc.

Finally, when the MINST dataset is used to train the clients’
Neural Networks, the resulting model size is 1.6MB. The
network usage per client for three complete cycles of aggre-
gation is about 85MB, and the overall network consumption
is 5.1GB. Finally, considering the total amount of model data
transferred is 4.8GB, the system overhead became negligible
(only 6% of the overall network traffc).

D. Client Clustering patter – FedCO 
In Table II are compared the network usage of the FedAvg

and the FedCO implementations. FedCO confrms its capa-
bility to reduce network consumption in a real deployment.
When clients’ local models are trained with the Run or Walk
dataset, the total data transferred amounts to 3.4MB, repre-
senting a reduction of approximately 83% compared to the
FedAvg implementation. Taking for granted the use of LZMA
compression (also used in the Client Registry strategy), this
reduction in data consumption can be clearly and exclusively
attributed to selecting the most representative clients from the
second epoch onwards in each aggregation cycle.

On the MNIST dataset, we observe the same behavior, but
with larger numbers due to the signifcantly larger model.
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Fig. 3: FedAvg (a) versus FedCO (b), training an SGDC model
with MNIST dataset.

(a) (b)

Fig. 4: FedAvg (a) versus FedCO (b), training a Nerutal
Network model with MNIST dataset.

Additionally, when examining network load distribution, a
reduced number of representative clients can be seen com-
pared to the RunOrWalk case, almost half. This leads to an
interesting result: with the same number of epochs considered,
in this case, the network consumption is 20MB, again with an
86% reduction in network traffc. Figure 3 shows how the
different clients contribute to network traffc. While in the
FedAvg implementation, all the clients contribute similarly to
the network traffc, cf. Figure 3(a), with FedCO 10 clients
contributed for about the 50% of the whole traffc. Figure 3(b)
shows this behavior. Note that clients are sorted by the amount
of network traffc.

The reduction in network traffc is also confrmed for the
Neural Network model. As Figure 4(b) shows, the behavior
is similar to the previous case. Specifcally, FedCo exchanged
830MB over all the experiments, that is the 17% of the traffc
produced by the FedAvg. Indeed, we measured a total of
830MB exchanged over all the experiments.

VI. CONCLUSIONS

The design and implementation of FLWB and the deploy-
ment of FedCo [7] and FedAvg [5] FL algorithms demon-
strated the ease with which a pattern can be incorporated into
the developed federated learning platform, either by simply
describing its properties within the process confguration - if
the desired patterns are already implemented within the plat-
form - or by directly developing and extending the platform’s
codebase. This fexibility highlights the adaptability of the
realized system, allowing it to accommodate diverse learning

scenarios and requirements by incorporating various patterns
and confgurations as needed.

Secondly, the implementation in a real environment con-
frmed the performance results obtained by simulation, which
is a dramatic reduction of network consumption (83%−86%).

Finally, analyzing the algorithms in the real environment
allowed quantifying the overhead introduced by the platform.
This is an important aspect that permits investigating how to
optimize the implementation.
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