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Abstract—This paper proposes a novel federated learning
methodology, called FedRepo, that copes with concept drift issues
in a statistically heterogeneous distributed learning environment.
The proposed horizontal federated learning methodology, based
on random forest (RF), can be used for collaborative training and
maintenance of a dynamic repository of federated RF models,
each one customized to a group of clients/devices. The clients are
grouped together if their performance patterns with respect to the
global RF model are similar. The performance of the customized
RF global models is continuously monitored during the inference
phase and the repository is accordingly adapted to mitigate the
detected concept drift. The proposed methodology is studied and
evaluated against an electricity consumption forecasting use case.
The evaluation results demonstrate clearly that the proposed
methodology is able to deal with concept drift issues in an
effcient and adequatefashionwithout compromising the overall
performance of the distributed environment.

Index Terms—federated learning, concept drift, clustering,
random forest, particle swarm optimization, distributed learning

I. INTRODUCTION

Federated learning is already widely used paradigm in
very diverse distributed and privacy-sensitive application con-
texts [1], [2]. Distributed environments are typically charac-
terised by very dynamic and heterogeneous in nature data
sources and thus often suffer from concept drift, i.e., an
evolution of the data that invalidates the data model [3]. This
may lead to substantial performance degradation and needs
to be dealt with via the development of dedicated concept
drift detection and mitigation strategies [4]. Dealing with
concept drift artifacts is however, still not widely explored
area of research in federated learning (FL) context. Algorithm
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adaptability, particularly in the temporal dimension [5], [6] is
underrepresented in the literature.

Concept drift is defned by change in the underlying distri-
bution generating the data [3], [7]. This underlying distribution
can often not be directly measured, but can be characterized as
the context in which an asset is performing. In this paper, we
will study how FL can be used to build and maintain robust
electricity consumption forecasting models. The electricity
consumption is infuenced by external factors, like the seasons,
which are known but also by hidden contextual factors, like
the inhabitants’ occupation or the replacement of household
appliances that alter the overall consumption and temporal
fngerprint of the consumption. Furthermore, the consump-
tion patterns of different households are very different and
therefore, training only one single model for all households
might result in a too complex model to be trained on a
distributed device with limited resources. Hence, in order to
forecast electricity consumption in a federated fashion, model
retraining needs to be performed on regular basis.

In this paper, we introduce a concept drift detection and
mitigation methodology in a horizontally federated fashion
based on RF regression models. In general, they are distin-
guished to be either vertically or horizontally federated. In the
case of horizontally federated models, data sets share the same
feature space but differ in data samples, whereas in the vertical
scenario, the federated models are applicable to the cases that
the data sets share the same sample space but differ in feature
space [8]. The proposed methodology, called FedRepo, can
collaboratively train and continuously adapt a repository of
federated RF models, each one associated with a group of
similar clients. Two clients are considered to be similar if they
demonstrate similar global model performance behaviour.

Even though the FedRepo is described and evaluated in a
regression task scenario, the same methodology can be used
for classifcation by using a proper evaluation metric. The
obtained evaluation results show that the FedRepo is able
to handle adequately concept drift phenomena in electricity
consumption forecasting tasks.

mailto:veselka.boeva@bth.se
mailto:anna.hristoskova@sirris.be


The paper is organized as follows. We frst describe related
approaches in the feld in Section II and general preliminaries
and defnitions in Section III, before describing our own ap-
proach in detail in Section IV. In Section V the implementation
details and the results are described, before concluding in
Section VI.

II. RELATED WORK

In this section, we explore some existing approaches in
the feld of federated learning. An extensive overview of the
current state-of-the-art in the feld of distributed ML can be
found in [9]. Another recent comprehensive surveys of the
existing research and future research directions of FL are
provided in [10], [11]. Our further discussion in this section is
focused on three topics related to our work: (1) random forest
based FL approaches, (2) federated load forecasting and (3)
concept drift detection and mitigation in FL.

A. Federated Random Forest

FL based on random forest is nowadays a very intensive re-
search feld due to the parallel nature of random forest models.
In [12], a federated learning approach for intrusion detection
based on random forest (RF) is studied. For each client, a
RF model is trained on its specifc data, and subsequently, all
clients send their RF models to the centralized server to be
combined in a global RF. Finally, the global RF is sent back
to the clients. In [13], a vertical tree-based FL model, called
Federated Forest, is proposed. The authors develop a secure
cross-regional ML system that allows a learning process to
be jointly trained over different regions’ clients with the same
user samples but different attribute sets.

The authors of [14] propose a new privacy-protected fed-
erated personalized RF model based on the federated forest
approach of [13]. In their work, local sensitivity hashing is
used for calculating the similarity between different users.
Based on this similarity, a subset of the top-k most similar
users is selected for training the federated forest model in
iterative fashion. In [15], a distributed machine learning system
based on local random forest algorithms created with shared
decision trees through the blockchain is introduced.

B. Federated load forecasting

With the implementation of smart grid applications, electric-
ity consumption forecasting became more and more important.
In [16], Fernandez et al. compare the performance of different
FL architectures combined with different privacy preserving
techniques on the same data set as the one used for validating
our approach (see Section IV-A). Similarly, in the work of
Briggs et al. [17] different federated clustering methods for
neural network based load forecasting are discussed. For both
publications, the clustering is static and is not adapted over
time as it is assumed that the underlying distributions will not
change. This where our approach is different by dynamically
maintaining (retraining) the models affected by concept drift.

C. Concept Drift in Distributed Context

In [18], a novel FL algorithm introducing an extension
of the most widely used Federated Averaging (FedAvg) al-
gorithm [2], is proposed. The algorithm, called Adaptive-
FedAvg, is able to operate with non-stationary data generating
processes affected by concept drifts by varying the learning
rate accordingly.

The authors in [6] used the Adaptive-FedAvg algorithm as
baseline to compare against their FedDrift approach, where
they consider distributed concept drift in a sense that the
time of drift can be different in different devices as well as
the source and target distributions can differ across clients.
They identify this distributed concept drift by evaluating newly
arrived data in the distributed devices against a set of federated
models locally and then performing a hierarchical clustering
on the losses in order to re-cluster the federated devices.

In [5], the authors introduce another extension of the
FedAvg algorithm to be able to learn under concept drift.
The algorithm is extended to deal with continual single-task
problems, i.e. all the client devices share the same goal, but
the underlying joint distribution of data might be non-IID
(independent and identically distributed) and can change over
time.

In [19], the problem of drift adaptation is identifed as a
time-varying clustering problem. The authors propose two new
clustering algorithms for reacting to drifts based on local drift
detection and hierarchical clustering.

Notice that most of the above mentioned FL solutions are
aimed at the concept drift detection and mitigation during the
training phase. Our work instead introduces a FL methodology
that is able to deal effciently with concept drift issues at the
inference phase.

III. PRELIMINARIES AND DEFINITIONS

In this section, we frst briefy describe some preliminaries
of a baseline FL method [1]. Further, we introduce the different
methods used in our concept-drift mitigation methodology,
namely Random Forest models, Particle Swarm Optimisation
(PSO) and its binary extension. Finally, we defne the problem
which we attempt to tackle in this work.

A. Baseline FL algorithm

Federated learning or collaborative learning aims to leverage
information in a distributed system in the learning procedure
while still keeping the data distributed across the devices in
the system [1], [2]. The general idea is to transfer model
information instead of the actual data samples collected on the
devices. With this approach, it is possible to train a common
model even on privacy-sensitive data, e.g., on usage data,
without violating privacy regulations. In the general approach
the aim is to train a unifed model, that performs equally
well on each client’s private data. However, the heterogeneity
of data across devices can lead to degraded performance
of traditionally built FL models. Therefore, for increased
computational effciency and predicting power in the context
of heterogeneous devices it is useful to personalize the derived



global model [20]. Most of these approaches are based on
gradient-based deep-learning approaches [20], [21], [22].

B. Random Forest

For supervised regression and classifcation tasks, random
forest models [23] have been widely used. A random forest
model is a ensemble of decision tree predictors while for each
of these trees, the split features and values are determined
from random subsets of the overall data, the so-called bagging
approach. In that way the single trees in the forest are
decoupled and over-ftting is prevented.

C. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary com-
putation method introduced in [24]. In order to fnd a (near-
)optimal solution, PSO updates the current generation of
particles (each particle being a candidate solution) using the
information about the best solution obtained by each particle
and the entire population. Each particle is a point in an n-
dimensional space. The i-th particle is initialized with random
positions Xi and velocities Vi at time point t = 0. The basic
update equations for the d-th dimension of the i-th particle are

vid(t + 1) = w · vid(t) + c1 · φ1 · (pid − xid(t)) + 
(1)

c2 · φ2 · (pgd − xid(t)) 

xid(t + 1) = xid(t) + vid(t + 1). (2)

The variables φ1 and φ2 are uniformly generated random num-
bers in the range [0, 1], c1 and c2 are acceleration constants,
w is the inertia weight [25]. Pg is the best particle position
found so far within the population and Pi is the best position
discovered so far by the corresponding particle. The frst part
of equation (1) represents the inertia of the previous velocity,
the second is the personal experience of the particle, the third
part represents the cooperation among particles.

In [26], Kennedy et al. describe an adapted version of
the classical PSO algorithm, called binary PSO, in which the
components of xij ∈ Xi, j = 1, ..., n are restricted to the set
{0, 1}. In the binary PSO, the velocity defnes the probability
that the particle position component xij is switched from 1
to 0 and vice versa. In [26], the authors suggest to use the
sigmoid function sig(x) = (1+exp(x))−1 for calculating the
velocity.

In the standard approach of PSO, the number of clusters
is constant and needs to be predefned. For most real-world
problems though, it is impossible to determine the number
of clusters upfront and the assumption that this number is
constant for all times is not reasonable.

In this paper, we make use of the approach described
by Omar et al. [27] that dynamically determines the best
number of clusters. In that approach, a subset of data vectors
is randomly selected as cluster centroids. The length of this
subset is defned by the maximum number of clusters, which
is a parameter to set. This parameter also sets the dimension
of the particle’s lengths. The actual position xij of particle
i equals 1 if cluster Cj , determined by the cluster centroid

corresponding to this position, is part of the solution. Every
particle thus proposes a clustering solution.

The binary approach is then applied multiple times as in
the original PSO approach (cf. III-C), converging every time
to an optimal clustering solution. For this, a cluster evaluation
metric is used. In between two iterations, the cluster centroids
which are not part of the optimal solution are removed
and replacements are randomly chosen from the data. Two
stopping criteria should be defned: one for the binary PSO
itself, and another for the amount of times it should be applied.
A patience value is set for both in order to make use of early
stopping in case of convergence.

D. Problem Defnition

This work is focusing on the detection and mitigation of
concept drift in a distributed setup in a privacy-preserving and
scalable fashion. Different devices collect the same kind of
data while their distributions are highly heterogeneous and
might vary over time. In contrast to the traditional supervised
FL setting, the here proposed concept drift mitigation strategy
does not have as a goal to fnd a stationary global model that
performs well for all the workers (devices), but aims at training
and continuously adapting a repository of global models, one
per a group of similar devices, instead. The main challenge
in this setup is how to dynamically maintain this repository
in order to ensure that each global federated model performs
well for each device in the cluster associated with this model.

The proposed method is able to identify similar devices in
a dynamic manner without sharing the devices’ data with one
another and storing it on a central device.

IV. MATERIALS AND METHODS

A. Data and Use Case

Our approach is evaluated against the regression problem
of forecasting the electricity consumption of a heterogeneous
set of households. Electricity consumption data contains a
lot of private information and can be used for classifying
households into their socio-economic situation [28]. For this
reason, a central collection of electricity consumption data
with a comparably high temporal resolution (in the study of
[28] a resolution of 30 minutes was used) is not favorable
but instead, a federated approach should be used for gathering
insights.

In this paper, the data collected by the UK Power Networks
led Low Carbon London project [29] is used. It consists of
5,567 households in London representing a balanced sample
representative of the Greater London population with a 30-
minutes granularity between November 2011 and February
2014. For validating our methodology, we have randomly
selected 300 households for which we have ensured that the
data is available until at least 01/2014. For these households,
a repository of federated models will be trained in order to
forecast the consumption within the next 30 minutes.



B. Concept Drift Detection and Mitigation Methodology

In this section, we consider a set of M distributed devices
(referred below as clients/workers) for which a repository of
federated RF models will be trained. This repository will be
dynamically adapted in order to best refect the changing local
operating context of the workers.

Our methodology is actually built around the dynamic
maintenance and adaptation of three repositories residing in
a central node, e.g., in the cloud:

• Θ is a repository of workers, which contains at any
moment in time the workers for which new federated
models need to be constructed.

• Φ is a repository of global federated RF models, which
contains at any moment in time the active (deployed)
federated models. More concretely, for any K < M :

Φ = {(Φk, Θk, sk)| k = 0, . . . ,K}, 

where Θk contains the workers for which the RF feder-
ated model Φk is active and sk = #Θk/M is the model
support, i.e., it expresses the relative spread of the model
among the whole population of workers.

• Γ is a repository of tree models, which aggregates at
any moment in time subsets of tree models Γi (for
i = 1, . . . ,M ), one subset per worker, i.e. Γ = 
{Γ1, . . . , ΓM }. Γi is a subset of randomly selected trees
from the local RF models of each worker θi and supposed
to be used for the construction/update of the global
federated model.

The proposed concept drift detection and mitigation
methodology, referred to as FedRepo, will continuously update
the above described repositories during the use of the federated
models based on continuous monitoring and evaluation of the
models’ performance. The FedRepo consists of four main
steps: initialization, model training, context-aware inference
and dynamic model maintenance. These are elaborated below.

1) Initialisation: This step is performed in the central node.
The repository of federated RF models is empty since
no RF models have been constructed yet, i.e., Φ = ∅.
Analogously, the workers’ repository contains all avail-
able workers since for all of them the federated models
still need to be constructed, i.e., Θ = {θ1, . . . , θM } and
the repository of tree models is composed of M empty
sets, one per worker, i.e., Γ = {Γ1, . . . , ΓM }, where
Γi = ∅, for i = 1, . . . ,M .

2) Training: In this step, the model and worker repositories
are updated such that devices similar with respect to
the model performance are assigned to the same cluster
of workers and hence collaboratively build and share
the same RF federated model. For this, as described in
Algorithm 1, the following steps are executed:

a) Local Model Training: Each worker in Θ trains its
local RF model on a pre-defned part of its data
(train set). Another part (test set) is left aside to be
used later for the evaluation of the global model.
Subsequently, as a result of the training phase,

Algorithm 1 Training - Central node
Require: Θ, Φ, Γ 

1: Γ ← T reeRepositoryUpdate(Θ, Γ) 
2: Φ0, s0 ← F ederatedModelConstruction(Θ)
3: Ξ ← {} 
4: for all θ ∈ Θ do
5: ξθ ← EvaluationFeatureV ectorConstruction(Φ0) 
6: Ξ ← Ξ ∪ ξθ 
7: end for
8: C ← binary PSO (Ξ) (cf. [26])
9: for all c ∈ C do

10: Θc ← {θi ∈ c}
11: Φc, sc ← F ederatedModelConstruction(Θc)
12: Φ ← Φ ∪ {(Φc, Θc, sc)}
13: Θ = Θ − Θc 
14: end for
15: s0 = 0 
16: return Φ 

#Θ different RF local models are generated, one
per worker and each one composed of the same
number of P trees. The workfow is described in
Algorithm 2.

b) Tree repository update: Each worker in Θ selects
randomly a portion of Q trees from its local RF
model and sends them to the central node. The
central tree repository Γ is updated by replacing
the sets of trees donated previously by the workers
in Θ (Q per worker) with the newly selected trees.
Note that Q must be at least P/M in case P > M 
and at least 1 in case P ≤ M or formally Q ≥ 
1 + P/M (cf. Algorithm 3).

c) Federated Global Model Construction/Update:
From the set of trees consisting of all Γi (for
i = 1, . . . ,M ) in Γ, P trees are randomly sampled
and aggregated to construct the global federated
model. This global model is added to the model
repository Φ, i.e., Φ = Φ ∪ {(Φ0, Θ, s0)}, and
s0 = #Θ/M as shown in Algorithm 4. The
overall model is used for clustering the workers
(see below), for benchmark and for managing cold
start cases.

d) Evaluation Feature Vector Construction: The
global federated RF model Φ0 is applied to each
worker’s private test data (cf. Algorithms 1 and 5).
In this way, a P -dimensional evaluation feature
vector ξk = (ξk 

1 , . . . , ξP ), i.e., one evaluation scorek 
per tree, is derived for each worker θk. The evalua-
tion vectors are sent back to the central node, whereS 
they are stacked in a matrix Ξ = ξk,k=1,...,M 
needed as an input for the PSO algorithm. The
evaluation metric deployed depends on the specifc
task and can be chosen accordingly. One logical
choice is the error rate score of each individual
tree of Φ0 for each worker.



Algorithm 2 Local Model Training - Worker
Require: P, Q 

1: rf ← RandomF orest(P ) 
2: rf.train(Dk 

train) 
3: T = random.sample({t ∈ rf}) with #T = Q 
4: return T 

Algorithm 3 Tree Repository Update - Central node
Require: Θk, Γ 

1: for θk ∈ Θk do
2: Γk ← {} 
3: Γk ← Local Model Training − W orker(P, Q) 
4: Γ ← Γ ∪ Γk 
5: end for
6: return Γ 

e) Local Node Clustering: In order to derive personal-
ized models for a set of similar workers, the work-
ers are subsequently split into K non-overlapping
clusters. These are obtained by applying the binary
PSO algorithm on the evaluation feature vectors
calculated in the previous step. The binary PSO
clustering has the advantage that the number of
clusters does not need to be predefned.

f) Federated Cluster Models Construction: For each
cluster k = 1, . . . ,K, a federated RF model Φk is
built following the procedure described in step (c)
above (”Federated Model Construction”). Hence,
the trees contributed by all private workers in
Θk, i.e., the trees contained in the respective Γi 
(θi ∈ Θk) are pooled together and reshuffed.
Subsequently, P trees are randomly sampled to
create the federated RF model Φk. This model
is associated with an initial support score sk = 
#Θk/M .

g) Repository Update: The repository of federated RF
models Φ is extended by adding the newly obtained
federated cluster (customized) models, i.e. Φ = Φ∪ 
{(Φk, Θk, sk)}, for k = 1, . . . ,K. The repository
of workers is reset, i.e., Θ = ∅. The support of the
global federated RF model Φ0 is also reset to zero,
i.e., s0 = 0.

Algorithm 4 Federated Model Construction - Central node
Require: Θk 

1: ϕ ← {} 
2: for θk ∈ Θk do
3: ϕ ← ϕ ∪ Γi 
4: end for
5: Φk ← random.sample(t ∈ ϕ) with #t = P 
6: sk ← #Θk/M 
7: return Φk, sk 

Algorithm 5 Evaluation Feature Vector Construction - Worker
Require: Φ0 

1: for p in Φ0 do
′ 2: y ← Φ0[p].predict(Dk )test 

3: ξ ← evaluate(y, y ′ ) ∀y ∈ Dk 
test 

4: end for
5: return ξ 

Algorithm 6 Context-aware Inference - Central node
Require: Φ 

1: for all {(Φk, Θk, sk)} ∈ Φ do
2: for all θiin Θk do
3: e, y ← Inference(Φk) 
4: if e is True then
5: Θ ← Θ ∪ θi 
6: Θk ← Θk − θi 
7: s0 ← s0 + 1/M 
8: sk ← sk − 1/M 
9: end if

10: end for
11: end for
12: return Φ 

3) Context-aware Inference: Each worker θi (i = 
1, . . . ,M ) receives the parameters of its cluster federated
model. At each inference step, each worker calculates
the residual between the predicted and observed values
for the previous inference step as it is shown in Al-
gorithms 6 and 8. If the worker’s residual is above a
threshold δ, that is determined by the model’s perfor-
mance on the test set (cf. Local Model Training), this
information is communicated to the central node and the
following steps are conducted:

a) Global Model Activation: The overall federated
global model Φ0 is activated for the worker in
question, i.e., θi is added to Θ and the support
of Φ0 is updated accordingly, i.e., s0 = s0 +1/M .

b) Model Parameter Update: The parameters of
the corresponding (cluster) federated model
(Φk, Θk, sk) are updated, i.e., θi is removed from
the list of private workers Θk for this model and
the model support is reduced accordingly such
that sk = sk − 1/M . Each time the parameters
of a federated model in the repository Φ are
updated the dynamic model maintenance needs to
be executed.

4) Dynamic Model Maintenance: This fnal step concerns
the identifcation of federated models in Φ with rela-
tively low support, possibly due to concept drift (cf.
Algorithm 7). Subsequently, a trace of the associated
workers is kept in Θ and if this grows above a certain
predefned volume ∆, training for the affected workers
is invoked.

a) Workers’ Repository: For each federated cluster



Algorithm 7 Dynamic model maintenance - Central node can be part of a shared repository built on information from
Require: Φk similar devices or activate the federated global model in case

1: for {(Φk, Θk, sk)} ∈ Φ do its performance is degrading before being assigned to a new
2: if sk < z then repository. Third, the number of models is not predefned
3: Θ ← Θ ∪ Θk and constant, as the binary PSO allows a fexible number
4: s0 ← so + #Θk/M of clusters. With this, any fexible change in behaviour is
5: sk ← 0 captured. Finally, as the worker clustering is performed on
6: end if the model performance only, it is not necessary to share the
7: end for actual patterns of the workers’ data with the central node.
8: if s0 > ∆ then
9: for {(Φk, Θk, sk)} ∈ Φ do V. IMPLEMENTATION AND RESULTS

10: Φ = Φ − (Φk, Θk, sk|sk < z) In this section, we describe how to use the FedRepo method-
11: end for ology on the example of the UK household electricity data [29]
12: end if as described in Section IV-A. We explain and discuss the
13: T raining − Central Node(Θ, Φ) main steps of the approach elaborated in Section IV-B, namely
14: F ederated global model update − Central Node(Θ) Model Training, Context-aware Inference and Dynamic Model
15: return Φ Maintenance.

Algorithm 8 Inference - Worker A. Model Training

Require: Φk In order to derive a repository of federated models from
′ 1: y ← Φk.predict(Dk )test the local models of the workers for predicting the electricity

2: ρ ′ ← |y − y ′ | consumption of the next 30 minutes, the following steps are
3: δ ← µ(ρ ′ ) + 3σ(ρ ′ ) ∀y ∈ Dk 

test executed. For the implementation, we use a subset of 300
′′ 4: y ← Φk.predict(Dk 

t−1) with t − 1 being the timestamp households (i.e., workers).
of the last measurement 1) Local Model Training: First, each worker θk in the

5: ρ ← |y − y ′′ | ∀y ∈ Dk 
t−1 repository of workers Θ with #Θ = 300 is triggered to

6: return ρ > δ, y ′′ perform a training of a local RF model with P = 100 trees on
its predefned training data set Dk 

train. We use three months
of data, namely January to March 2012 as training data.

model (Φk, Θk, sk) ∈ Φ (k = 1, . . . , K), if its With these parameter settings, each worker in Θ contributes
support sk is smaller than a predefned threshold 1+P/M , which is 2, randomly sampled trees to its respective
z its workers are added to the workers’ repository, Γi in the tree repository.
i.e., if sk ≤ z then Θ = Θ ∪ Θk. 2) Global Model Initialisation: The global model is ini-

b) Cluster Model De-Activation: The federated cluster tialised in the central device such that only one model Φ0 is
model Φk is de-activated by resetting its support active. This global model is derived from the selected local
sk = 0. The overall federated global model Φ0 is trees of all workers by concatenating them into an overall RF
activated for the workers in Θk and the support of model containing P trees. Note, that in our case the sum of
Φ0 is updated accordingly, i.e., s0 = s0 +#Θk/M . all randomly selected trees, i.e., the amount of trees in all Γi 

c) Federated Models’ Repository: If the support s0 combined is bigger than P , and therefore a random subset of
of the overall federated global model Φ0 is above P trees is selected.
the predefned threshold ∆, the federated models’ The global federated model Φ0 is on the one hand used
repository is updated by pruning away all the for newly installed devices, for which no data is available
models with low support, i.e., yet in order to overcome the cold-start problem in real-

Φ = {(Φk, Θk, sk)| sk > z}, k = 1, . . . , K world environments and on the other hand, for evaluating its
performance on the workers’ test data.

Subsequently, proceed with training with the newly 3) Evaluation Vector Construction: In order to divide the
arrived data for the workers in Θ. workers in Θ into different groups of workers, the model Φ0 is

The above introduced FL method has several advantages sent to all workers in Θ where their performances are evaluated
for tackling distributed concept drift. First of all, the concept against a dedicated test data set Dk for each worker θk. Thetest 
drift detection comes with a very small overhead, as during test data set contains the data from April 2012, thus one month
the regular inference phase not only the actual forecast values after the training dataset.
are calculated, but additionally the residuals. Based on the The performance of each tree of the global model Φ0 
residuals, the concept drift is detected locally, while the is evaluated on each worker’s test data by calculating the
repositories are updated in the central node. root mean squared error (RMSE) of the original signal and

Furthermore, the concept drift is not assumed to happen at the value forecasted by that tree. The RMSE is useful for
the same time across different workers. Instead, each worker regression tasks. In case of a classifcation model, we can
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use an alternative evaluation metric. The evaluation vector
ξk = (ξk 

1 , . . . , ξP ), containing the RMSE for each tree on thek 
test data set of worker θk, is calculated. This vector is sent
to the central device, which collects all vectors ξk, ∀k ∈ Θ 
and stacks them into a matrix Ξ ∈ RM×P . Before this matrix
is used to perform the PSO clustering, the evaluation vectors
are z-normalized. Figure 1 shows the distance matrix derived
from Ξ in an example implementation using 50 households.

The intuition behind using the evaluation vectors instead of
the actual consumption is two-fold: (i) Privacy is protected
by design, since no consumption data has to be transferred to
the central device; (ii) Clustering the workers on their perfor-
mance vectors instead consumption patterns allows to identify
common behavioural patterns even though the consumption
measurements themselves are different.

4) Local Node Clustering: The PSO is initialised with
npart = 200 particles with random positions. We set the
maximum number of clusters to be 15 in the case of 300
workers. Swarm parameters are set to w = 0.72 and c1 = 
c2 = 1.49, as suggested in [30]. No velocity clamp is defned.
A patience of 50 iterations is used for the binary PSO, and
the re-initialisation of centroids is stopped after 3 iterations
without improving the best solution. The silhouette score [31]
using cosine distance is used to determine the best clustering
solution.

In the case of retraining the federated model repository
once the threshold number of workers in Θ exceeds ∆, the
clustering approach described above will only be performed

′ on M ≤ M workers in Θ. At that moment, the previous four
months of data are used to train and test the new local models,
similar as during the initialisation: three months for training,
one month for testing. In this way, the train and test sets are
always of the same length in case of retraining.

5) Federated Cluster Models Construction: A number of
customized (cluster) RF models Φk for k = 1, . . . ,K can
be derived, one for each cluster of workers. Notice that each
model Φk contains P trees, randomly sampled from the Q = 
1 + #Θk/P trees each worker in Θk contributed. Given that
the number of workers is probably not equal across clusters,
the weight with which each worker contributes to its federated
cluster model varies for the different clusters. 11 clusters are
found with different sizes ranging from 6 to 76 workers.

In Figure 2, the RMSE of the local, static cluster and
overall global models for each worker on a validation data set
Dval (May 2012 - December 2013) is depicted per cluster.
The overall global and static cluster models are resulting
from the initial training phase. Both the local and the static
cluster models exhibit comparable performance. Evidently, the
customized cluster models are able to capture adequately the
workers’ behaviour and can compete with the locally trained
models.

B. Context-aware Inference

In order to identify and mitigate concept drift, for each
worker the federated model is continuously evaluated on
batch data collected on the local devices. For the electricity

Fig. 1. An example pairwise distance matrix derived from Ξ for 50
households. The color intensity indicates the cosine distance between the z-
normalized performance vectors of length P = 100 for each pair of workers.

Fig. 2. RMSE on the validation data set for the locally trained model (dotted),
the static cluster models (continuous) and the overall global model (dashed).
The static cluster models demonstrate better performance than the overall
global model almost for all workers, especially well seen in the red cluster.
Evidently, the customization of the workers’ models has a positive effect on
the performance. In addition, the performance of the local and static models
are very similar for most workers, indicating that the static cluster models
represent the consumption patterns equally well.

consumption data, the performance is measured each day in
a rolling fashion for a window size of three days. This value
is compared against the worker-specifc threshold δ defned
by the 3σ-threshold on the RMSE in the test set. In case
the threshold is exceeded, the worker is removed from the
current cluster and for that worker, the global federated model
is activated. In Figure 3, an example for a degrading model is
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Fig. 3. Dynamic Model Maintenance for worker MAC004563 shows the
improvements of the model with maintenance (green) compared to the model
without maintenance/drift mitigation (purple). The dashed horizontal line gives
the threshold δ.

illustrated for worker MAC004563 by monitoring the RMSE
value over time for the model without maintenance, i.e., static
(purple) and active, i.e., dynamically updated, (green). We can
clearly see how the performance of the static model degrades
with time and how the daily RMSE value grows above the
threshold δ in March 2013. The active model though performs
better and from April 2013 on, it stays below the threshold and
its RMSE is signifcantly lower than the one produced by the
model without maintenance.

C. Dynamic Model Maintenance

We choose the threshold z = 0.033 for repositories with
low support to be pruned away and ∆ = 0.2 in Θ to start the
retraining. These values were set to correspond to sensible
worker amounts for both thresholds (10 and 60 workers,
respectively) in the setting of 300 total workers.

Using these values, at the frst model maintenance step, the
workers in the smaller repositories with 6, 8 and 9 workers
and hence a support of 0.02, 0.027 and 0.03, respectively, are
pruned away as they are smaller than z. For these workers, the
global model is activated and they are added to the repository
Θ. Note though, with these 23 workers the support of Θ 
is 0.077, i.e., smaller than ∆. Hence, the retraining is not
yet executed. In order to analyse the effect of the dynamic
maintenance, we calculate the difference between the absolute
error of both the static and the dynamic model. Figure 4
shows the median difference, with a positive value indicating
that the error was smaller for the dynamic model. Of course,
this comparison can only be made for those households that
enter maintenance at some point. The fgure shows that for
most households undergoing maintenance, the performance
increased. To demonstrate this effect, the distribution of the
values in Figure 4 is shown in Figure 5. When a one-sided
sign test is performed, the null hypothesis can be rejected at
a signifcance level of 0.05, indicating that the maintenance

Fig. 4. The effect of dynamic maintenance for those households whose models
undergo maintenance during the process. A positive value indicates that the
residual was smaller for the dynamic cluster model.

Fig. 5. The distribution of the dynamic maintenance effects seen in Figure 4.
A sign test with null hypothesis H0 : µef f ect ≤ 0 returns a p-value of
0.0028.

effect tends to increase the performance, i.e., the dynamic
model outperforms the static model.

In addition, Figure 6 depicts the evolution of the daily
median residuals (static vs. dynamic cluster models) over all
households involved in maintenance across the validation data
set. It is interesting to observe the very clear positive effect
on the performance of the dynamic maintenance interventions
(vertical lines). Note that the static and dynamic cluster models
differ in performance already from the very beginning due to
the fact that three workers’ clusters are pruned immediately
after initial training. Thus for those three clusters (23 workers)
the overall global model gets activated, which results in a
better performance for the dynamic cluster models already
from the very beginning of the validation data set. This is
confrmation that replacing poorly performing cluster models
with the overall global model while waiting for re-training to
happen is effective way to initiate mitigation of concept drift
from the moment it is detected. The so initiated mitigation
process is completed with the re-training step.

D. Statistical Evaluation

It is necessary to demonstrate via statistical evaluation
that: 1) both (static and dynamic cluster models perform
consistently better than the overall global model; 2) the
dynamic maintenance strategy does not degrade the overall
model performance. For this purpose, the RMSE of all models



Fig. 6. The daily median residual over all households involved in maintenance
across Dval. Both the residuals resulting from the static and dynamic
cluster models are shown. Vertical lines indicate timestamps when retraining
occurred.

(overall global, static and dynamic cluster models) on Dval 
after the initial training phase was tracked over 100 runs. To
manage computation times, a reduced set of 50 households
was used for this experiment. Randomness is introduced over
the runs by the training of local trees (random bagging), which
infuences the subsequent steps in the workfow.

Subsequently, the distributions of both cluster (static and
dynamic) models vs. the overall global model and also against
each other per household were compared performing 4 sign
tests with null hypotheses:

1) H01 : µglobal ≤ µstatic 
2) H02 : µglobal ≤ µdynamic 
3) H03 : µstatic ≤ µdynamic 
4) H04 : µdynamic ≤ µstatic 

where µglobal, µstatic and µdynamic are the medians of the
RMSE distribution over 100 runs for the global, static and
dynamically maintained model, respectively. The alternative
hypothesis for each test states the opposite as the null hypoth-
esis, e.g., Ha1 : µglobal > µcluster. The tests are performed
at a signifcance level of 0.05.

The sign test was chosen as it is a non-parametric test that
does not make assumptions on the shape of the distributions
[32]. For test 1, the calculated p-value resulted signifcant for
38 out of 50 households, rejecting the null hypothesis in favour
of the alternative hypothesis, i.e., µglobal is signifcantly higher
than µstatic. For test 2, the p-values were signifcant for 36
households, i.e., the dynamic cluster models have signifcantly
lower RMSE than the overall global model. For both tests
3 and 4, 8 households had a signifcant p-value, while 19
households did not need maintenance in all 100 runs. In this
context, a statistically (sample set of 50 households is probably
not large enough) sound comparison between the static and
dynamic cluster model performance is not really possible.
However, there is no evidence that the dynamic maintenance
is degrading the overall performance.

E. Computational evaluation

Our evaluation strategy is designed to study and evaluate
two main characteristics of the proposed FL approach: cus-
tomization and adaptability. More specifcally, our algorithm
is able to train a repository of federated forest models, each
one customized to a group of similar devices. In addition,
this repository is able to adapt dynamically to the data shift

by troubleshooting and retraining worse performing models.
The experiments were performed in Python by extending the
Scikit-Learn framework [33] on a MacBook Pro with 16 GB
memory and an Apple M2 chip. For the settings described
above, the full workfow for the 300 households and 2 years
of data with 30 minutes granularity takes approximately 3
hours, including 8 retraining events. The framework comes
with a low communication overhead. Namely, it needs per
client the following messaging: 1) triggering the training with
a specifc set of parameters; 2) communicating the selected
trees to the central node and 3) sharing the federated cluster
(customized) model from the central node to each client. This
is substantially fewer than training a gradient-based model
in a federated fashion, where each training round requires
communication.

VI. CONCLUSION

Concept drift detection and mitigation in FL settings is not
suffciently explored problematics in the scientifc literature.
In this paper, we contribute to this research area by intro-
ducing a FL methodology, FedRepo, that is capable to detect
concept drift during model inference phase and additionally
provide with an effcient mitigation procedure by maintaining
a dynamic repository of customized FL models. The federated
models are constructed in a privacy-by-design fashion and in
addition, each model is built and customized to a cluster of
similar clients. The performance of the built federated models
is continuously monitored and they are adapted accordingly to
the identifed shift in the clients data. The proposed method-
ology is evaluated on an electricity consumption forecasting
task. The experimental results have shown that the dynamic
model maintenance indeed leads to improved results in case
of detected concept drift.

Our future plans are aimed at studying and further eval-
uation of the proposed FedRepo methodology performance
in other applied distributed scenarios. The two main char-
acteristics of the proposed methodology, customization and
adaptability, will be further explored and benchmarked to
the similar properties proposed by other concept-drift robust
federated learning strategies.

NOMENCLATURE

∆ Worker repository threshold
Γ Repository of tree models
Dtest Test set
Dtrain Train set
Dval Validation set
Φ Repository of federated models
Φ0 Global federated model
Φk Federated model of cluster k 
Θ Repository of workers
Θk Workers contained in cluster k 
Ξ Collection of evaluation vectors per worker
ξ P -dimensional evaluation vector
K Number of deployed federated models
M Total number of workers



P Number of trees per model
sk Model support of cluster k 
z Model support threshold
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