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Abstract

Software-Defined Networking (SDN) modernizes network control, offering stream-
lined management. However, its centralized structure makes it more vulnerable to
Distributed Denial of Service (DDoS) attacks, posing serious threats to network sta-
bility. This thesis explores the development of a DDoS attack prevention technique
in SDN environments using the Ryu controller application. The research aims to ad-
dress the vulnerabilities in SDN, particularly focusing on flooding and Internet Pro-
tocol (IP) spoofing attacks, which are a significant threat to network security. The
study employs an experimental approach, utilizing tools like Mininet-VM (Virtual
Machine), Oracle VM VirtualBox, and hping3 to simulate a virtual SDN environment
and conduct DDoS attack scenarios. Key methodologies include packet sniffing and
rule-based detection by integrating Snort IDS (Intrusion Detection System), which
is critical for identifying and mitigating such attacks. The experiments demonstrate
the effectiveness of the proposed prevention technique, highlighting the importance
of proper configuration and integration of network security tools in SDN. This work
contributes to enhancing the resilience of SDN architectures against DDoS attacks,
offering insights into future developments in network security.

Keywords: DDoS Attacks, Software Defined Networking, Snort IDS, Network Se-
curity
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Chapter 1

Introduction

1.1 Background and Motivation

In the world of network technology, Software-Defined Networking (SDN) has emerged
as a groundbreaking paradigm, offering a transformative approach to network man-
agement and operation. This innovative framework has fundamentally redefined the
architecture of networking by decoupling the control and data planes, leading to a
more flexible, efficient, and programmable network environment. SDN’s centralized
control mechanism enables network administrators to dynamically adjust network
behaviors to meet changing needs, facilitating improved resource utilization, easier
network management, and enhanced user experiences.

However, the very features that make SDN so advantageous also introduce new
vulnerabilities, particularly in the context of network security. Among these, Dis-
tributed Denial of Service (DDoS) attacks represent a significant threat. DDoS at-
tacks are notoriously known for their ability to flood networks with overwhelming
traffic, disrupting services and causing extensive damage. In the context of SDN,
these attacks can exploit the centralized nature of the control plane, potentially
crippling the network’s operational capabilities.

The heightened susceptibility of SDN to DDoS attacks necessitates the devel-
opment of effective and resilient defense mechanisms. Traditional network security
solutions often fall short in addressing the unique challenges posed by the SDN ar-
chitecture. Therefore, there is a pressing need for innovative strategies specifically
tailored to protect SDN environments against the scourge of DDoS attacks. This
research endeavors to address this gap by exploring and developing a prevention
technique that is not only effective in mitigating DDoS attacks but also congruent
with the intrinsic properties of SDN.

This research investigates the specific threats posed by flooding and IP spoofing
attacks, which cause service interruptions and manipulate network communication
by using false IP addresses. To detect and mitigate both flooding and IP spoofing
attacks, the study explores the implementation of Snort IDS (Intrusion Detection
System), a widely used open-source tool designed to identify and respond to various
types of network threats. The significance of this research is underscored by the
increasing reliance on SDN in various critical sectors, including data centers, enter-
prise networks, and cloud computing services. Ensuring the security and reliability
of SDN is paramount, not just for maintaining operational efficiency but also for
safeguarding sensitive data and critical infrastructure against the disruptive and po-
tentially catastrophic impacts of DDoS attacks. This study aims to contribute to the

1



2 Chapter 1. Introduction

field by presenting a comprehensive approach to fortifying SDN against these threats,
thereby enhancing the overall resilience and dependability of network infrastructures
in the face of evolving cyber threats.

1.2 Aim and Objectives
The purpose of this study is to thoroughly examine DDoS attacks in the context of
SDN. By conducting a systematic investigation and experiments, the thesis aims to
improve our comprehension of different aspects of DDoS attacks in SDN setups. This
includes understanding their different types, assessing their impact, and developing
methods to detect and prevent them effectively.

To accomplish the main goal of this research, the following specific objectives are
formulated:

1. To investigate how to detect the occurrence of flooding and IP spoof-
ing attacks.
Explore existing detection methods for identifying flooding and IP spoofing
attacks in traditional networking environments and adapt and extend these
methods to the SDN paradigm, considering the unique characteristics and ca-
pabilities of SDN architectures.

2. To explore different DDoS attack mitigation techniques in SDN.
Understand the strengths and weaknesses of current approaches within the
unique context of SDN architectures. Based on this comprehensive evaluation,
develop and propose a mitigation technique to effectively counteract DDoS
threats.

3. To conduct experimental evaluations and to analyze and interpret
findings.
Design and implement a controlled experimental setup to simulate various
DDoS attack scenarios in an SDN environment and analyze the experimen-
tal results while SDN is under attack and mitigation.

1.3 Research Questions
The following research questions are formulated to achieve the above objectives:

1. To what extent does integration of Snort IDS in SDN demonstrate
effectiveness in detecting flooding and IP spoofing attacks?
To assess the capabilities of the Snort IDS in identifying and mitigating the
specific DDoS attack types prevalent in SDN environments, thereby gauging
its applicability as an intrusion detection solution within such contexts.

2. How can Snort IDS be integrated into an SDN environment to con-
figure a mitigation technique for flooding and IP spoofing attacks?
To configure an SDN attack detection and prevention technique and test the
configured technique in a controlled experimental setup.
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3. Find the effects of flooding and spoofing attacks on SDN environment
while under attack and mitigation
To analyze the impact of flooding and spoofing attacks on SDN environment
while under attack and mitigation in a controlled experimental setup.

1.4 Outline
The thesis is organized into several chapters, each focusing on distinct aspects of
DDoS attacks in SDN.

Chapter 2: Methodology and Related Work - This chapter presents a liter-
ature review of existing research and methods in the field of SDN, DDoS attacks,
and IDS. It highlights various approaches and methodologies used by researchers and
practitioners.

Chapter 3: Key Technologies - This chapter introduces the basic concepts and
technologies related to SDN, including an overview of the SDN architecture, devices,
and protocols. It also explores the vulnerabilities in SDN, specifically focusing on
DDoS attacks and the role of Intrusion Detection Systems (IDS), with a detailed
analysis of Snort IDS.

Chapter 4: Method - The methodology of the research is outlined in this chapter.
It describes the research design, tools, and technologies utilized in the study, includ-
ing the configuration of the SDN environment, the installation of Snort IDS, and the
setup of the Ryu controller application.

Chapter 5: Results - This chapter reports on the experimental results obtained
from implementing and testing the DDoS attack prevention techniques in an SDN
environment. It includes detailed analysis and discussion of the findings from various
experiments.

Chapter 6: Discussion - The implications and significance of the experimental
findings are discussed in this chapter. It provides an interpretation of the results in
the context of SDN security and DDoS attack prevention.

Chapter 7: Conclusions and Future Work - The final chapter concludes the
thesis with a summary of the findings, their implications for network security, and
suggestions for future research directions in the field.



Chapter 2
Methodology and Related Work

This chapter discusses about the research methodology used and also summarizes
related papers in the field of SDN

2.1 Methodology
For an overview of the existing research in SDN, DDoS attacks, and mitigation, a
literature review is conducted. It aims to provide a comprehensive understanding
of the advancements, challenges, and methodologies in the realm of SDN and DDoS
mitigation techniques. The review also identifies gaps in current research, offering
insights into potential areas for further investigation and development in the field.
This process is crucial for grounding the thesis in the existing body of knowledge.

The databases used to collect the research papers are IEEE Explore, Google Scholar,
and Science Direct. To achieve a thorough and relevant review, the research papers
were selected based on specific search criteria. These included the use of certain
search strings such as

1. "Software-Defined Networking AND DDoS Mitigation"

2. "Ryu Controller Application AND DDoS Prevention"

3. "SDN Security Measures AND Distributed Denial of Service"

4. "DDoS Attack Detection in SDN Environments"

5. "Ryu SDN Controller AND Network Security"

6. "DDoS Resilience Techniques in Software-Defined Networks"

7. "Performance Analysis of SDN under DDoS Attacks"

8. "Effective DDoS Handling in SDN with Ryu Controller"

Establishing clear inclusion criteria is crucial for ensuring the relevance and qual-
ity of literature in the study. This approach helps in filtering and selecting studies
that are directly pertinent to the research objectives, providing a focused and robust
foundation for the analysis. The criteria followed for this study is as follows:

1. Papers specifically addressing DDoS attacks in SDN.

4



2.2. Summaries of related papers 5

2. Research focusing on the use of the Ryu controller for network security or DDoS
mitigation.

3. Articles written in English.

4. Recent publications, preferably within the last ten years, to ensure up-to-date
information.

5. Literature providing comparative analysis of different DDoS mitigation tech-
niques in SDN environments.

The process involved a careful screening of abstracts to identify papers that di-
rectly related to the thesis topic, followed by an in-depth study of these selected
papers. This approach ensured that the literature review was not only comprehen-
sive and current but also directly aligned with the research questions and objectives
of the thesis.

2.2 Summaries of related papers

The paper [8], discusses a DDoS mitigation solution using OpenFlow. OpenFlow
monitors traffic flow statistics to detect potential DDoS attacks. It can mirror traf-
fic for suspicious flows to an IDS integrated into the OpenFlow controller, which
then analyzes the traffic to identify attack sources. The paper proposes two meth-
ods for DDoS attack identification in traffic flows: analyzing packet symmetry and
temporarily blocking outgoing traffic to identify persistent sources. These methods
are incorporated into custom OpenFlow controller software. The effectiveness of this
approach is tested through experiments and simulations.

The paper [21], explores a DDoS mitigation approach using SDN. It introduces
a scheme that blocks DDoS attacks from botnets in an SDN environment using
standard OpenFlow interfaces. The method emphasizes minimal server involvement,
operating through a DDoS blocking application on the SDN controller. Key features
include monitoring network traffic, identifying bots, and redirecting legitimate traf-
fic. The system’s effectiveness is demonstrated through emulation in Mininet, high-
lighting its potential in countering sophisticated botnet-based DDoS attacks without
statistical anomalies.

The paper [24], presents a comprehensive defense mechanism against DDoS at-
tacks in SDN environments. It highlights the advantages of SDN in combating DDoS
attacks, such as centralized control and network programmability. The paper out-
lines a framework involving various modules like binding, location tracking, packet
filtering, and port statistic queries. These modules work together to detect and mit-
igate DDoS attacks effectively. The paper includes a case study demonstrating the
proposed defense mechanism’s effectiveness in a simulated SDN environment.

The paper [11], presents a modular architecture for detecting and mitigating net-
work anomalies in SDN environments, leveraging OpenFlow and sFlow protocols. It
introduces a method to decouple data collection from the SDN control plane, improv-
ing scalability and reducing controller overload. The approach employs an entropy-
based algorithm for anomaly detection, and its effectiveness is validated through
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experiments with real network traffic. The paper demonstrates how the proposed
method effectively mitigates detected anomalies using flow table modifications in an
SDN environment.

The paper [23], proposes FL-GUARD, a system for detecting and preventing
DDoS attacks in SDN. The system uses dynamic IP address binding to address
IP spoofing and employs a C-SVM algorithm for attack detection. It leverages the
centralized control of SDN to issue flow tables for blocking attacks at the source port.
Experimental results demonstrate the effectiveness of FL-GUARD, highlighting its
modular design which facilitates future improvements.

The paper [47], proposes an innovative approach for DDoS attack detection within
SDN environments. It introduces a distributed detection mechanism that operates
at the edge switches of an SDN network, using an entropy-based model to identify
anomalies indicative of DDoS attacks. This method significantly reduces the com-
munication load between switches and the central controller, and is shown to detect
attacks effectively and with high accuracy, addressing the challenges of scale and
responsiveness in large SDN deployments.

The paper [6], introduces a comprehensive system for detecting and mitigating
DDoS attacks in SDN environments. The system, named SD-Anti-DDoS, consists
of four modules: attack detection trigger, attack detection, attack traceback, and
attack mitigation. It utilizes a neural network-based approach for attack detection
and leverages the unique properties of SDN for efficient attack traceback and mit-
igation. The paper evaluates the system’s effectiveness in a testbed environment,
demonstrating its capability to rapidly initiate attack detection and accurately trace
and block attack sources.

The paper [27], presents a novel approach for defending against DDoS attacks
in SDN based Content Delivery Network Interconnection (CDNi) systems. The pro-
posed mechanism integrates OpenFlow table tweaking and a unique marking path
map in the ALTO server for enhanced defense. It focuses on the security of con-
tent provider servers by using protection switches and a Management Information
Base (MIB) in the SDN controller for traffic assessment. This multi-layered defense
strategy aims to efficiently secure CDNi networks against DDoS attacks.

The paper [36], focuses on DDoS attack detection and mitigation in SDN envi-
ronments using machine learning. It introduces a discrete scalable memory-based
support vector machine algorithm for detecting DDoS threats and outlines a mitiga-
tion architecture. The approach includes preprocessing using Spark standardization,
feature extraction using semantic multilinear component analysis, and classification
with high accuracy. The effectiveness of this method is demonstrated using the KDD
dataset in an SDN environment.

The paper [54], proposes a novel mechanism for cyberattack mitigation in IoT
networks using SDN and Network Function Virtualization (NFV). The approach
employs virtual IoT honeynets, which are dynamically deployed and managed to
distract and analyze attackers, providing enhanced security for IoT systems. The
framework integrates with existing SDN and NFV infrastructures, offering a scalable
and effective solution for protecting IoT networks against various cyber threats.

The paper [45], examines the implications of cloud computing and SDN on DDoS
attack defense mechanisms. It highlights how the integration of cloud computing
and SDN introduces new challenges and opportunities for DDoS defense. The paper
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proposes a novel DDoS attack mitigation architecture, DaMask, which employs a
graphical probabilistic inference model for attack detection and a flexible control
structure for rapid and specific attack response. The architecture’s effectiveness
is validated through simulations, demonstrating its potential in addressing security
challenges in modern network paradigms.

The paper [10], introduces OPERETTA, an OpenFlow-based solution for miti-
gating TCP SYN flood attacks in SDN environments. OPERETTA is implemented
in the SDN controller to manage incoming TCP SYN packets and filter out fake
connection requests. The solution is designed to work in heterogeneous networks
and can be implemented in both centralized and decentralized SDN architectures.
The paper demonstrates OPERETTA’s effectiveness through simulations, showing
improved resilience to TCP SYN flood attacks with reduced CPU and memory con-
sumption.

The paper [48], presents a novel security networking mechanism for defending
against DDoS attacks in SDN. This mechanism, called SDSNM, focuses on redefin-
ing network architecture to remove or restrict the conditions necessary for DDoS
attacks. The paper details the system’s design, using OpenFlow and cloud comput-
ing technologies, and evaluates its effectiveness through a prototype implementation.
The SDSNM system demonstrates a significant improvement in attack detection and
mitigation, showcasing its potential for scalable and effective DDoS defense in SDN
environments.

The paper [39] focuses on developing an autonomic DDoS mitigation mechanism
leveraging the SDN paradigm. It proposes a distributed collaborative framework
allowing customers to request DDoS mitigation services from ISPs. This framework
enables ISPs to redirect anomalous traffic to security middleboxes while maintaining
privacy and legal compliance. The paper’s preliminary analysis indicates SDN’s
promising potential in enabling autonomic mitigation of DDoS attacks and other
large-scale threats.

The paper [41], proposes a reference architecture for defending against Low and
Slow DDos (LSDDoS) attacks in Software Defined Infrastructure (SDI) environments.
It details two specific architectures: a performance model-based approach and an ap-
proach using Commercial Off-The-Shelf (COTS) components. The paper introduces
the concept of a "Shark Tank," a monitored environment for analyzing suspicious
traffic. This work demonstrates a novel approach to detecting and mitigating LSD-
DoS attacks by leveraging SDI capabilities.

The paper [51], addresses the vulnerability of SDN-based IoT systems to new-flow
attacks, which exhaust network resources by generating a high volume of unmatched
packets. It proposes a Smart Security Mechanism (SSM) that leverages standard
SDN interfaces for efficient attack detection and mitigation. The mechanism em-
ploys a low-cost monitoring method and dynamic access control, significantly en-
hancing the system’s ability to identify and respond to such attacks in SDN-based
IoT environments.

The paper [16], proposes an automated DDoS mitigation and traffic manage-
ment system for SDN environments. It combines hierarchical clustering-based traffic
learning, blacklist integration, and dynamic server capacity invocation to effectively
defend against packet and bandwidth flooding attacks. The system is tested on a
physical SDN testbed, demonstrating its ability to maintain service quality during
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DDoS attacks, with varying levels of effectiveness depending on the attack type and
complexity.

The paper [46] presents a new architecture for a hybrid honeypot system based
on SDN. This architecture aims to improve upon traditional hybrid honeypots by
enhancing network topology simulation and attack traffic migration, using the expan-
sibility and controllability of the SDN controller. The proposed system can simulate
large, realistic networks to attract attackers and redirect high-level attacks to a high-
interaction honeypot for detailed analysis. The paper validates the effectiveness of
this system through experiments conducted on the Mininet platform.

The paper [50] addresses the vulnerability of SDN controllers to DoS and DDoS
attacks. It introduces FlowRanger, a novel algorithm that prioritizes routing re-
quests based on the likelihood of them being attack attempts. The algorithm clas-
sifies requests into multiple buffer queues with varying priorities, thereby enhancing
the controller’s ability to handle legitimate requests under attack. Simulation re-
sults demonstrate FlowRanger’s effectiveness in improving request serving rates and
reducing the impact of DoS attacks on controllers in SDN environments.

The paper [53] presents OrchSec, a network security architecture integrating net-
work monitoring and SDN control functions. OrchSec utilizes the flexibility and
control offered by SDN to develop and deploy security applications effectively. The
architecture is designed to address the shortcomings in current security approaches
by providing a modular and extensible framework for network monitoring, traffic
analysis, and security enforcement, demonstrating its effectiveness through proto-
type applications and experiments.



Chapter 3

Key Technologies

This chapter discusses the key technologies relevant to SDN, its fundamental prin-
ciples, the vulnerabilities inherent in SDN architectures, and the nature of DDoS
attacks. It also delves into the functionalities of Snort IDS.

3.1 Introduction to SDN

Imagine a world where network management is as dynamic and adaptable as the data
it handles - welcome to the revolutionary realm of SDN, where flexibility and control
redefine the future of connectivity. SDN represents a paradigm shift in the evolution
of networking technology. Emerging in the early 21st century, SDN redefined network
management and operations, offering a level of flexibility and control previously
unattainable with traditional networking methodologies.

In the early days of computing, networks were simple and limited to single build-
ings or rooms. They used basic equipment like hubs and repeaters, which had limited
control capabilities. As technology and organizations grew, more complex network
designs emerged, introducing routers and switches. These devices could intelligently
forward data packets based on Internet Protocol (IP) and Media Access Control
(MAC) addresses, marking a significant advancement in networking [28].

The rapid growth of the Internet in the late 20th century brought a flood of
data traffic, posing new challenges for network management. Traditional network-
ing systems, where control and data functions were intertwined in each device as
shown in Figure 3.1, struggled to adapt quickly to changing demands, revealing
their limitations. SDN emerged as a groundbreaking solution to these challenges. It
separated the control plane (responsible for traffic management decisions) from the
data plane (handling actual traffic). This architecture allowed a central controller
to dynamically adjust network behavior, providing unprecedented adaptability and
efficiency [4].

The roots of SDN date back to the 1980s and 1990s when the concept of central
network control and programmable networks was explored. However, SDN didn’t
find its true purpose until the rise of cloud computing and data-center virtualization.
These developments created a perfect use case for SDN and propelled its popularity.

Key milestones in the formalization of SDN included the development of the
OpenFlow protocol and the establishment of the Open Networking Foundation (ONF)
in 2008. OpenFlow, originating from Stanford University’s clean slate project, played
a crucial role in standardizing SDN protocols and enabling network experimentation.

9
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Figure 3.1: Traditonal Networking vs Software-Defined Networking

SDN’s adoption was further accelerated by its ability to break free from propri-
etary vendor technologies and protocols. It leveraged commodity IT equipment for
core functions, such as firewalls and middle-boxes, making it attractive to network
operators due to its flexibility and cost-effectiveness. Additionally, SDN’s open-
ness encouraged networking research, enabling data collection and experimentation
through open interfaces.

3.2 Fundamentals of SDN

SDN is a network architecture concept that aims to make networks more agile and
flexible. ONF is a non-profit consortium dedicated to the development, standard-
ization, and commercialization of SDN. As defined in ONF, SDN is the physical
separation of the network control plane from the data plane, and the control plane
controls several forwarding devices [1].

SDN is a transformative approach to networking that is structured around three
key layers: the application plane, the control plane, and the data plane. This layered
model optimally reinvents and automates network infrastructure, allowing for greater
flexibility and efficiency. Figure 3.2 demonstrates the core SDN architecture.

1. Data Plane: The data plane, also known as the infrastructure layer, comprises
network devices like switches, routers, and access points. These devices are
responsible for transporting user information through the network. In SDN, the
traditional fixed functionality of these devices is replaced by a set of instructions
from the control plane [14]. This means the same hardware can function as
a router, a firewall, or any other network device, depending on the network
manager’s configuration.

2. Control Plane: Central to SDN, the control plane is responsible for the cen-
tralized control of the entire information flow within the data plane. It contains
policies for data forwarding or diversion, flow tables, and provides a compre-
hensive view of the network. This is hosted in an SDN controller. The con-
trol plane communicates with the data plane through Southbound Application
Programming Interfaces (APIs) (such as OpenFlow), allowing the controller to
send policies and configurations to data plane devices [31]. The separation of
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the control and data planes is crucial for enhancing network programmability
and management.

3. Application Plane: The application plane is where the development of vari-
ous applications occurs. These applications facilitate communication and inter-
action with the entire network architecture, supported by Northbound APIs.
This layer gains an abstract perspective of the network, ranging from the dis-
tribution of connected devices to the collection of network behavior statistics.
The development of high-level applications, often created and implemented by
open-source communities, contributes to standardization and adds features like
secure encryption and portability.

Figure 3.2: SDN Architecture

SDN Interfaces/APIs:

1. Southbound Interface (SBI) : The SBI is an open, vendor-agnostic interface
between the control and data planes. It generalizes device functionality to
the controller, allowing the controller to communicate flow rules, retrieve flow
statistics, and implement application-defined policies [2]. OpenFlow is the most
widely accepted industry standard for the SBI, addressing challenges like device
heterogeneity and protocol support.

2. Northbound Interface (NBI) : The NBI is used by applications in the
management plane to interact with the control plane [19]. It offers necessary
abstractions for programming language and controller platform independence,
similar to operating system (OS) standards. The development of a common
NBI is ongoing, with its importance lying in application portability, interoper-
ability, and overall network management.

3. East/Westbound Interfaces (WBI): In large-scale networks, multiple SDN
controllers may be used, each managing a set of data plane devices. East and
WBI facilitate information exchange between these controllers to maintain a
global network view. The WBI is used between two SDN controllers, while the
Eastbound interface communicates between the SDN control plane and legacy
distributed control planes [52].
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3.3 SDN Devices and Protocol

3.3.1 SDN Controller

The SDN controller, also known as the Network Operating System (NOS), is the
cornerstone of any SDN infrastructure. It is pivotal in providing a global view of the
network, encompassing data plane SDN devices and connecting these resources with
management applications. The controller’s role extends to executing flow actions as
dictated by application policy among the network devices.

Toplogy and Traffic Flow Management:
The controller’s core functionalities revolve around managing network topology and
traffic flow. This is achieved through a link discovery module that transmits inquiries
and receives packet_in messages, enabling the controller to construct and maintain
an accurate network topology. The topology manager further assists in decision-
making processes to find optimal network paths, adhering to quality-of-service (QoS)
and security policies [56].

Statistics Collection and Queue Management:
Controllers often feature dedicated modules for collecting performance data and man-
aging different incoming and outgoing packet queues. These modules play a crucial
role in network performance optimization and efficiency.

Flow Management:
A significant aspect of the controller’s role is interacting directly with the data plane’s
flow entries and tables. This interaction primarily occurs through the SBI, enabling
precise control and management of network flows [30].

3.3.2 SDN Switch

architecture of SDN, figure 3.2 In the world of SDN, the SDN switch plays a pivotal
role in the actual data movement across the network, complementing the strategic
control exerted by the SDN controller. The efficacy of an SDN environment is greatly
influenced by the capabilities of these switches, particularly their speed in forwarding
data and their ability to interact effectively with the SDN controller. This interac-
tion and performance are especially critical in networks supporting delay-sensitive
and packet loss-sensitive applications, such as in industrial automation systems, in-
teractive video platforms, and online surgical operations.

SDN switches (shown in the architecture of SDN, Figure 3.2) are broadly categorized
into two distinct types, each with unique characteristics and operational paradigms:
software switches and hardware switches.

Software Switches primarily operate by maintaining their flow tables in Syn-
chronous Dynamic Random Access Memory (SDRAM) [42]. When a packet arrives
at a software switch, it is matched against the flow table entries (FTE) processed by
the Central Processing Unit (CPU). In cases where no matching FTE is found, the
packet is forwarded to the SDN controller. The controller then provides feedback
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Figure 3.3: OpenFlow Switch

and forwards information to the switch, subsequently updating the software flow ta-
ble. The packet processing logic in such switches is implemented in software, often
optimized through sophisticated software libraries. Examples of software switches
include Open vSwitch (OVS), Pantou/OpenWRT, ofsoftswitch13, and Indigo, which
typically operate on commodity hardware platforms such as desktops equipped with
multiple network interface cards (NICs). Figure 3.3 demonstrates the architecture
of OpenFlow Switch.

Hardware Switches, in contrast, are characterized by their embedded packet pro-
cessing functions in specialized hardware. This hardware comprises layer two for-
warding tables using Content-Addressable Memories (CAMs), layer three forward-
ing tables using Ternary Content-Addressable Memories (TCAMs), and Application-
Specific Integrated Circuits (ASICs) [12]. The FTEs in hardware switches are stored
in CAMs and TCAMs, and the packets are processed by ASICs. Notably, these
switches are also equipped with SDRAM and CPU, facilitating the maintenance of
flow tables in both TCAM and SDRAM. Hardware switches, such as the Mellanox
SN2000 series, NoviFlow NoviSwitch class, HP ProCurve J9451A, and Juniper Juno
MX-Series, are capable of line-speed packet matching owing to the efficiency of CAM
and TCAM. However, limitations in TCAM capacity often arise due to cost, size, and
energy consumption considerations. In contrast, SDRAM, while cheaper and con-
suming less power, offers more flexibility for implementing complex actions through
software [35].

The choice between software and hardware switches in an SDN has profound impli-
cations on the overall network performance. Analytical modeling, particularly using
queueing theory, provides a framework for characterizing the performance of these
switches. Such modeling is instrumental in guiding network engineers through bench-
marking switch performance and conducting sensitivity analyses. These models help
identify critical performance-influencing factors and support strategic decisions re-
garding the deployment of hardware versus software switches in specific operational
contexts.
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3.3.3 OpenFlow Protocol

OpenFlow, a critical component within the SDN paradigm, stands as the most widely
accepted and deployed open southbound standard for SDN. Its role as the founda-
tional protocol for SDN is underscored by its ability to define general packet for-
warding processes, establish forwarding policies, track the forwarding process, and
dynamically control it.

Fundamental Concepts of OpenFlow

The key abstraction in OpenFlow involves packet processing, flow management, and
matching criteria [29]. A packet, comprising a header, payload, and optionally a
trailer, is treated as the basic unit for forwarding. The packet header embeds all
control information, which is utilized by forwarding devices to identify the packet
and decide on processing actions.

Flows represent series of packets following a similar pattern. The Flow Table in
OpenFlow contains a list of Flow Entries, each defining a specific pattern of packets
and how they should be processed. Flow Entries are prioritized and equipped with
counters for tracking packets. Matching is a crucial process in OpenFlow, involving
the comparison of incoming packets against the predefined patterns in Flow Entries.

Actions and Forwarding in OpenFlow

Actions in OpenFlow can include forwarding packets to a port, modifying packets,
or changing their state. Actions are organized into Lists or Sets, where the former
can include duplicated actions for cumulative effects, and the latter ensures each
action occurs only once. Instructions in Flow Entries describe the specific OpenFlow
processing for matched packets, including actions like forwarding or modifying the
packet’s state [20].

The Forwarding Pipeline in OpenFlow is a series of linked flow tables used in the
packet forwarding process. Pipeline processing begins at the first ingress table and
proceeds through subsequent tables based on the outcome of matches. The pipeline
fields represent values attached to the packet during this process.

OpenFlow Communication Mechanisms

The OpenFlow Connection is the primary channel for message exchange between
a switch and a controller. It can be implemented using various network transport
protocols and identified uniquely through a Connection Uniform Resource Identi-
fier (URI). OpenFlow protocol defines three types of messages: controller-to-switch,
asynchronous, and symmetric, each serving different purposes like querying switch
status, expressing control commands, or exchanging lightweight information [3].

OpenFlow Controllers manage multiple switches via these connections, and each
switch can establish multiple connections with different controllers. These connec-
tions ensure robust and reliable management of the switches.

OpenFlow Tables and the Forwarding Pipeline

OpenFlow tables are crucial in defining how packets are processed. Each flow entry
within these tables comprises match fields, a priority, and instructions. The match
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fields include elements like the ingress port, packet headers, and metadata from
previous steps. The flow entry is uniquely identified by its match fields and priority,
with a special table-miss entry handling packets that do not match any other entries.

The forwarding process involves traversing all flow tables in a pipeline manner,
with each step including matching against a flow table and applying associated in-
structions. The egress tables are configured for specific forwarding actions, and the
entire process is guided by the instructions associated with matched entries.

Fail-Secure and Fail-Standalone Modes

OpenFlow also outlines operational modes for switches in case of lost connections to
controllers. In the fail-secure mode, the switch continues to operate normally but
drops unmatched packets. In contrast, the fail-standalone mode enables the switch
to function as a legacy Ethernet switch or router, depending on the configuration.

3.3.4 Packet flow in SDN

This section explains the packet flows in the SDN environment.

Packet Arrival at SDN Switch:

A data packet enters an SDN switch. This is the point of entry for traffic in an
SDN environment. The switch represents the data plane in SDN, responsible for
forwarding packets based on instructions from the control plane.
Flow Rule Check:

The switch checks its Flow Table for a matching rule for the packet’s header (source,
destination, type of service, etc.). If a Flow Rule Exists: The switch already knows
how to handle this packet type based on previous instructions from the controller.
It processes the packet accordingly (e.g., forwarding, dropping) and updates local
counters for network management (like traffic volume, number of packets, etc.). If
No Flow Rule Exists: This indicates a new type of traffic for which the switch has
no predefined action.

Interaction with the Controller:

The switch sends a Packet-In message to the SDN controller, which includes the
packet’s metadata. The controller, embodying the centralized intelligence of the
network, analyzes this information. It might undertake further network-wide analysis
or communication, such as sending ARP requests to discover routes or gather network
status.

Controller Decides on Actions:

Based on its comprehensive view of the network, the controller determines the best
course of action for the packet. This could involve choosing the most efficient route,
applying security rules, or implementing QoS policies. The controller then sends
back instructions to the switch, often in the form of new flow rules.

Updating the Switch’s Flow Table:

The switch receives the new flow rules and updates its Flow Table. These rules are
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Figure 3.4: Flowchart for packet flow

essentially programming the switch on how to handle this and similar packets in the
future. The action might include forwarding the packet to a specific port, modifying
the packet, or even dropping it.

Processing Subsequent Packets:

Once the new rule is in place, similar packets are processed quickly without involving
the controller, as the switch now has the necessary instructions. This reflects the
SDN’s ability to adapt and learn from network traffic, optimizing packet handling
over time.

The controller can make real-time decisions based on network conditions, traffic
patterns, and policies. It’s not just about forwarding packets but managing the
network intelligently. Network behavior can be changed through software without
altering physical devices, allowing for rapid deployment of new services or changes.

In summary, the flowchart represents a simplified yet comprehensive view of packet
processing in an SDN environment, illustrating the principles of centralized con-
trol, programmability, and intelligence that are central to SDN’s transformative im-
pact on networking.
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3.4 Vulnerabilities in SDN

SDN introduces unique security risks due to its distinct architecture, specifically
the separation and centralization of its control and data planes. This section ex-
plores these vulnerabilities, highlighting the potential security threats inherent in
SDN frameworks.

Weak Authentication and Encryption: SDN controllers, being central to
network operations, are susceptible to weak authentication mechanisms and incom-
plete encryption processes. Weak authentication refers to scenarios where the secu-
rity measures are insufficient relative to the value of the protected assets. Incomplete
encryption, meanwhile, can lead to unauthorized access, as hackers may bypass au-
thentication systems to access sensitive information.

Information Disclosure: SDN’s architecture can unintentionally disclose sen-
sitive information, leading to unauthorized access and potential control over network
traffic. This risk is amplified by the centralized nature of the control plane, which,
if compromised, can have widespread implications across the network.

Controller Vulnerabilities: The controller’s pivotal role in SDN makes it a
prime target for attacks. Any compromise in the controller’s integrity can lead to ma-
nipulated data flows, severely impacting network functionality. Comparisons among
different SDN controllers, like Floodlight and OpenDaylight, show varying degrees of
vulnerability, emphasizing the need for robust security measures in controller design
and implementation.

Threats Across the layers of SDN:
Control Plane: Attacks on the control plane can include network manipulation,

where attackers compromise the controller to create false network data, leading to
further network attacks.

Data Plane: In the data plane, threats like traffic diversion and side channel
attacks can redirect or eavesdrop on network traffic, exploiting vulnerabilities in
network elements.

Application Plane: The application plane is also vulnerable, with threats like
app manipulation allowing attackers to access SDN applications and perform unau-
thorized actions.

Broad Categories of Threats:
Attacks on communications within the control plane and between controllers

and networking devices. There are insufficient security mechanisms to ensure trust
between the controller and applications. Potential for faked traffic flows and ex-
ploitation of weaknesses in switches. The unique structure of SDN, while offering
several advantages in network management, also introduces specific vulnerabilities
that require careful consideration and robust security solutions to mitigate. Under-
standing and addressing these vulnerabilities is crucial for the secure deployment and
operation of SDN architectures.

3.5 DDOS attacks

Denial of Service (DoS) and DDoS attacks are major concerns for organizations and
individuals as they can cause significant disruption to the availability of network
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resources. These attacks are designed to overload a network resource, making it
unavailable to its intended users [7]. In this thesis, we are going to simulate one of
these attacks. It is essential for organizations to be aware of the different types of
DoS and DDoS attacks and to have the necessary defenses in place to protect their
networks.

A DoS attack is a type of cyber-attack that aims to make a network resource or
service unavailable to its intended users. This is typically achieved by overwhelming
the target with a flood of traffic, making it difficult or impossible for the resource to
handle legitimate requests [26].

A DDoS attack is a variation of a DoS attack in which the traffic is generated
from multiple sources, making it more difficult to mitigate. DDoS attacks can be
launched from a botnet, which is a group of compromised devices controlled by the
attacker. These attacks can cause significant disruption to the availability of network
resources and services, resulting in financial losses and reputational damage for the
targeted organizations [40].

There are several types of DoS and DDoS attacks, including:
Volume-based attacks: These attacks aim to saturate the network bandwidth

of the target, such as a flood of traffic from multiple sources.
Protocol-based attacks: These attacks exploit weaknesses in the protocols

used by a network resource, such as a SYN flood attack that targets the Transfer
Control Protocol (TCP) protocol.

Application-layer attacks: These attacks target specific vulnerabilities in web
applications, such as an HTTP flood attack [43].

In SDN, the attack plane is part of the architecture that is responsible for enforc-
ing the network’s security policies and protecting the network from malicious traffic.
This can include firewalls, intrusion detection and prevention systems, and traffic
filtering mechanisms. In SDN, the attack plane is integrated with the control plane
to enable real-time monitoring and response to security threats [18]. The SDN archi-
tecture allows for a more flexible and efficient approach to network security, enabling
organizations to more effectively detect and respond to DoS and DDoS attacks more.

3.5.1 TCP SYN Flood attack

TCP SYN Flood attack is a type of DoS attack that leverages the TCP three-
way handshake during the establishment of a TCP connection, with the aim of
overwhelming the targeted server’s resources and causing it to become unresponsive.
Generally, for a TCP connection, the client sends a SYN packet to the open port
on a server. Then the server acknowledges the connection by sending a SYN-ACK
packet in return to the client and the server stores the information of this connection
in a Transmission Control Block (TCB). This process i.e client sending a SYN and
receiving a SYN-ACK from the server and the server storing this information in TCB
is called Half-Open Connection (HOC). And after this, the client then responds to the
server with an ACK packet to establish the connection. If the ACK is not received,
after a certain amount of time the HOC will be closed. This process of connecting
the client to the server through SYN, SYN-ACK, and ACK is called a three-way
handshake [34].
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The SYN Flood attack can be done by sending a huge number of SYN packets to
the server. The IP addresses of these SYN packets are usually spoofed. As the server
does not know about this spoofing, it sends SYN-ACK packets to all the SYN packets
it received thereby establishing a huge number of HOCs which in turn creates a huge
amount of TCBs. Due to the huge amount of SYN packets, the server’s resources are
quickly exhausted because of the occupation by useless TCBs. Because of resource
exhaustion, a legitimate client cannot connect a TCP connection with the server [9].

3.5.2 Internet Control Message Protocol (ICMP) Flood

ICMP [33] is a protocol within the TCP/IP model that employs client/server ter-
minology. All IP-enabled end systems and intermediary devices, such as routers,
frequently utilize ICMP servers for network troubleshooting purposes. This protocol
is employed to identify and report issues within the network or intermediary devices,
including routers, hubs, and switches.

ICMP operates as one of the network layer protocols in the TCP/IP model. De-
spite belonging to the network layer, its communications are not directly transmitted
to the data link layer. Instead, messages are encoded into IP datagrams before being
sent to the lowest layer. The protocol field carries a value of one, indicating that the
IP data represents an ICMP message category.

Ping flood attacks, also known as ICMP flood attacks, are a common type of
cyber threat that uses the ICMP. With its ICMP_ECHO_REQUEST packets, col-
loquially known as "ping" packets, ICMP is essential for network diagnostics and
communication, testing the availability of remote hosts. In the context of cyberse-
curity, attackers may modify these packets to launch DDoS attacks, which attempt
to disrupt the normal operation of a target’s network.

In a typical ICMP flood attack scenario [25], the attacker deliberately distributes
ICMP_ECHO_REQUEST packets across the victim’s network using broadcast IP
addresses. This method ensures that packets are delivered to all machines within the
specified network. In response, the machines send ICMP_ECHO_REPLY packets
back to the victim in response to the forged source address. When orchestrated on a
large scale, this surge of traffic can quickly exceed the victim’s bandwidth, resulting
in service degradation or, in extreme cases, a complete denial of service.

3.5.3 UDP Flood attack

The UDP flood attack [49] is a type of DDoS attack in which the attacker sends out a
large stream of UDP (User Datagram Protocol) packets from their arsenal of attack
resources. In this attack, the attacker can choose to flood a specific or random port
on the victim’s system with UDP packets. When a system receives a UDP packet,
it usually tries to figure out what kind of application is waiting on the destination
port. When the system determines that no application is expected, it sends an ICMP
(Internet Control Message Protocol) packet in response.

The attacker uses deceptive techniques such as spoofed IP addresses to send
these packets repeatedly until the entire bandwidth is consumed, forcing the victim
to suspend normal operations. This onslaught of UDP packets drains the victim’s
resources and impairs its ability to function normally.
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3.5.4 IP spoofing attacks

IP source address spoofing is a malicious technique where attackers manipulate pack-
ets by using false IP source addresses to conceal their identities and launch various
attacks, such as DDoS and reflected amplification DDoS [55]. This threat arises
due to the lack of validation for the packet’s IP source address in Internet packet
forwarding, allowing attackers to exploit vulnerabilities. There are three types of IP
spoofing scenarios based on the attacker’s location:

1. Host-Based Attack:
Attackers forge packets with specified or random IP source addresses to shift
responsibility to innocent parties. This type includes common attacks like
DDoS and reflected amplification DDoS.

2. Router-Based Attack:
Attackers exploit vulnerabilities in routers or key routing devices to gain control
privileges or modify forwarding functions. This attack is more challenging due
to enhanced security measures on these devices by network administrators.

3. Flow-Based Attack (Man-in-the-Middle Attack):
Attackers position themselves halfway through the packet flow, taking control
of key routing devices like wireless access points. They capture, alter, and
replay packets with forged IP source addresses to achieve their malicious goals.

3.6 Snort IDS
Snort IDS, an open-source IDS widely used for network security. We discuss the im-
portance of IDS and the features that make Snort a popular choice among security
professionals. In today’s rapidly evolving cybersecurity landscape, intrusion detec-
tion plays a crucial role in safeguarding network infrastructures. IDSs are designed
to identify and respond to unauthorized activities and potential threats. Snort IDS
is a widely recognized and utilized open-source IDS solution due to its flexibility,
extensibility, and powerful detection capabilities [37].

3.6.1 Types of IDS

IDSs can be categorized into three main types: network-based IDS (NIDS), host-
based IDS (HIDS), and hybrid IDS (HIDS/NIDS). Snort IDS falls under the NIDS
category, where it monitors network traffic in real-time to detect and alert adminis-
trators about suspicious activities.
NIDS is a type of IDS that monitors network traffic to detect and respond to poten-
tial threats and unauthorized activities. NIDS focuses on analyzing network packets
and identifying suspicious patterns or anomalies that may indicate an ongoing attack
or security breach. Snort IDS, a widely used open-source IDS solution, falls under
the NIDS category. Snort IDS operates by capturing packets from the network in-
terface and analyzing their contents in real-time. It employs various techniques to
inspect network traffic and identify potential threats. Some of the key features and
methodologies employed by Snort NIDS are:



3.6. Snort IDS 21

• Packet Sniffing: Snort captures packets from the network interface and pre-
processes them to ensure accurate analysis. This preprocessing may include
tasks like defragmentation, TCP stream reassembly, and IP defragmentation.

• Rule-Based Detection: Snort utilizes a rule-based detection engine to match
network traffic against a set of predefined rules. These rules, written in the
Snort rules language, specify patterns, signatures, or anomalies associated with
known attacks or suspicious activities. Administrators can customize and con-
figure these rules based on their specific security requirements.

• Traffic Analysis: Snort analyzes the contents of captured packets to extract
relevant information and identify potential threats. It examines the header and
payload of packets, decodes various network protocols, and applies protocol-
specific rules for deeper inspection. By inspecting network traffic at this level,
Snort can identify malicious activities or deviations from expected network
behavior.

• Alerting and Logging: When Snort detects suspicious activity based on the
defined rules, it generates alerts and logs the relevant information. These alerts
can be customized to specify severity levels and appropriate actions to be taken.
By providing real-time alerts and detailed logging, Snort enables administrators
to respond promptly to potential threats and investigate security incidents.

The network-based approach of Snort IDS allows it to monitor network traffic at a
central point, making it particularly suitable for large-scale networks. By analyzing
network packets and employing rule-based detection, Snort can identify a wide range
of attacks, including known signatures and anomalous behavior. Its flexibility and
extensibility, combined with the active user community, have contributed to the
popularity of Snort as a powerful NIDS solution [5].

Figure 3.5: Snort Architecture

In Figure 3.5, the Snort Architecture is depicted as a structured workflow de-
signed for network traffic analysis and intrusion detection. The process begins with
the ’Network Traffic’ entering the system, which is then passed through a ’Packet
Decoder’. The decoder’s role is to interpret the raw data packets and convert them
into a format that can be further processed.

From there, the preprocessed traffic flows into the ’Preprocessor’ stage. This
module is responsible for performing a variety of functions such as reassembly of
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fragmented packet streams, decoding application layer protocols, and performing
protocol normalization to prepare the traffic for the next stage.

The core of the architecture is the ’Detection Engine’, which receives the prepro-
cessed packet data. Utilizing the set of defined ’Rules’, which act as the criteria for
detecting suspicious activities, the engine scrutinizes the packet data against these
rules to identify any potential threats or intrusions.

In the event of a detection, the information is sent to the ’Logging and Alerting
System’. This subsystem is crucial for the notification and recording of incidents.
Depending on the configuration, the system can generate alerts in real-time or log
the events for later review.

Finally, the ’Output Modules’ determine how the alerts or logs are presented or
communicated to the network administrator or other security information and event
management systems. The output can be customized to suit various formats and
protocols as required by the organization’s security infrastructure.

Through this structured process, as demonstrated in Figure 3.5, Snort is able to
effectively analyze network traffic and alert administrators of any malicious activity,
thereby providing a critical layer of security for network environments.

3.6.2 Advanced Features and Performance Analysis of Snort
IDS

We explore the additional capabilities that enhance Snort’s detection capabilities
and discuss performance considerations when deploying Snort in large-scale network
environments. Furthermore, we analyze the effectiveness and limitations of Snort
IDS based on empirical performance evaluations.

Advanced Features of Snort IDS

• Protocol Awareness: Snort IDS possesses protocol awareness, allowing it to
analyze network traffic based on specific protocols. This feature enables deeper
inspection and detection of protocol-specific attacks, enhancing the overall ef-
fectiveness of the IDS.

• Flow Analysis: Snort can analyze traffic flows and detect patterns of suspi-
cious behavior by tracking connections between hosts and monitoring traffic
between them. Flow analysis helps identify attacks that span multiple packets
and provides a more comprehensive understanding of potential threats.

• Payload Inspection: Snort’s payload inspection capabilities enable the detec-
tion of attacks embedded within packet payloads. It can identify specific pat-
terns, signatures, or anomalies within the data payload, allowing for the detec-
tion of sophisticated attacks that may attempt to evade traditional signature-
based detection methods.

Performance Considerations

• Hardware Acceleration: To handle high-speed network traffic, Snort IDS
can be enhanced with hardware acceleration techniques. By offloading some
processing tasks to specialized hardware, such as NICs with built-in packet
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processing capabilities, Snort can achieve higher throughput and minimize the
impact on overall system performance.

• Distributed Deployment: For large-scale network environments, Snort IDS
can be deployed in a distributed manner. By distributing the workload across
multiple sensors, it is possible to handle high traffic volumes effectively. Proper
load balancing and coordination between distributed sensors are crucial to
maintaining the overall performance and accuracy of the IDS.
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Method

This chapter details the implementation process and the tools used in conducting
the experiments, highlighting their integral role in achieving the aims of the thesis.
It provides an in-depth explanation of the experimental setup, illustrating how each
component contributes to the evaluation and/or development of Snort IDS integra-
tion and DDoS attack prevention in an SDN environment.

4.1 Research Design

This study adopts an experimental approach to evaluate the effectiveness of Snort
IDS integration and DDoS attack prevention technique. This approach is chosen
for its precision in measuring the system’s response under controlled conditions,
replicating various DDoS attack scenarios within a simulated SDN environment.

The experimental setup involves configuring a virtual SDN environment using
Mininet-VM, hosted on Oracle VM VirtualBox. This environment includes a net-
work topology representative of real-world SDN configurations, managed by the Ryu
controller. The integration of Snort IDS with Ryu is a critical component of this
setup, designed to detect and mitigate DDoS attacks. The experiments involve sim-
ulating various types of DDoS attacks using hping3, allowing us to test the detection
capability of Snort IDS and attack prevention capability of Ryu application within
the SDN context. This setup not only tests the functionality of individual compo-
nents but also assesses their interoperability and collective efficiency in a realistic
network scenario.

4.2 Tools and Technologies

This section details the specific tools and technologies integral to the experimental
setup.

4.2.1 Mininet-VM

Mininet [15], is a network emulation tool which is used to evaluate SDN architecture
and its designs. It emulates a computer ethernet network by using a computer
instead of physical hardware of switches, routers, links, and network cards. This is
useful because it allows a user to evaluate both the feasibility and performance of a
design before making large-scale hardware investments. Mininet follows an emulation

24
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strategy which relies on concurrent processes running on a single computer rather
than real-time equipment. This allows one to assess how a design operates as the
size of a network grows.

Mininet is instrumental for the experimental setup, creating a realistic and cus-
tomizable virtual SDN environment. It allows for the simulation of various network
topologies and scenarios, vital for testing the efficacy of our Snort integration and
DDoS attack prevention under different network conditions.

4.2.2 Oracle VM VirtualBox

Oracle VM VirtualBox [17], is a free and open-source virtualization software for the
x86 platform. It acts as a hypervisor or virtual machine (VM) manager, allowing the
user to create a virtual environment in which many OS can operate simultaneously.
The host OS is the original OS of the user’s device on which VirtualBox is installed,
whereas the OS or groups of OS that operate on the VM are referred to as guest OS.

VirtualBox is an excellent choice because it supports a wide range of OS as its
host, including Windows, Linux, and macOS. By simply halting the system, the
application allows the user to control system execution and processes.

Oracle VirtualBox serves as the virtualization platform for Mininet-VM, provid-
ing a stable and isolated environment for our SDN simulations. Its flexibility and ease
of use are crucial in facilitating the creation and management of different network
configurations.

4.2.3 PuTTY

PuTTY [44], is a free and open-source terminal emulator, serial console, and net-
work file transfer application. It is primarily used to connect to distant computers
or network devices via secure shell (SSH), Telnet, or serial connections. PuTTY is
widely used in the IT and system administration community to access and manage
remote servers and network equipment. Support for multiple authentication mech-
anisms (e.g., passwords, SSH keys), session logging, dynamic port forwarding (SSH
tunneling), and the ability to define numerous terminal settings are among PuTTY’s
primary features.

4.2.4 Xming X server

Xming X server(X11) or simply X [13], is the name of software used to create graph-
ical user interfaces (GUIs). It is most commonly used in unix systems, where it is
practically universal. It uses a client-server approach and is made up of multiple
distinct components such as an X server, an X protocol, an Xlib library, and so on.
This X protocol, transmitted via Inter Process Communication (IPC) or TCP/IP,
allows a running application to be displayed on a machine other than the one from
which it was launched.

Xming provides access to an XDMCP (X display manager is a system process in
a graphical system X window that allows users to log in from a local computer or
a computer network) session running on a remote computer with another X server
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and allows users to start, see, and manipulate with remote X applications via SSH
tunneling. This is feasible with PuTTY when X11 forwarding is enabled.

PuTTY and Xming X Server are used for remote access and graphical interface
support, respectively. PuTTY enables secure access to the Mininet-VM, allowing for
command-line interactions with the SDN setup. Xming provides a graphical interface
to visualize the network topology and monitor real-time network statistics, which is
vital for analyzing the network’s behavior during DDoS attack simulations.

4.2.5 Ryu Controller

Ryu [38], is a SDN framework built on components. Ryu delivers software com-
ponents with well-defined APIs that allow developers to easily design new network
management and control applications. Ryu supports a variety of network device
management protocols, including OpenFlow, Netconf, OF-config, and others. Ryu
fully supports OpenFlow 1.0, 1.2, 1.3, 1.4, 1.5, and Nicira Extensions.

The Ryu controller, at the heart of our SDN setup, is responsible for managing
network flows and making real-time decisions. Its integration with Snort IDS is key
to our strategy, enabling dynamic response to potential DDoS attacks. The Ryu
controller is responsible for managing the flow control within the network. For this
research, the Ryu controller has been specifically configured to integrate with our
DDoS mitigation strategy. Its adaptability and compatibility with various network
applications make it an ideal choice for this experiment.

4.2.6 hping3

hping3 is a network tool that can send customized ICMP / UDP / TCP packets
and display target responses in the same way that ping does with ICMP replies. It
supports fragmentation as well as arbitrary packet body and size, and it can be used
to transfer files over supported protocols. hping3 can be used to test firewall rules,
perform (spoofed) port scanning, test network performance using various protocols,
do path MTU discovery, execute traceroute-like actions under various protocols,
fingerprint remote OS, audit TCP/IP stacks, and so on.

hping3 is employed to simulate DDoS attacks within our SDN environment. This
tool allows for the generation of high volumes of network traffic, mimicking various
forms of DDoS attacks. By using hping3, one can effectively test the responsive-
ness and efficiency of the proposed DDoS attack prevention under different attack
scenarios.

4.3 Configuring the SDN environment

Configuring the SDN environment was a multi-step process that required careful
installation and setup of various software and tools on a laptop with 8GB RAM,
internet connectivity, and the following specific configurations and installations:

⋄ Oracle VM VirtualBox was installed from the official VirtualBox website.



4.4. Installation of Snort IDS 27

⋄ Mininet-VM was downloaded from Mininet’s GitHub releases and imported
into VirtualBox with adjustments made to the VM’s system settings to allocate
5160 MB of RAM and 6 processors, maximizing video memory for display.

⋄ Network settings were configured for NAT with SSH port forwarding from host
port 2223 to guest port 22.

⋄ PuTTY and Xming X Server were installed from PuTTY’s official website and
a verified source, respectively, to facilitate remote access and graphical interface
display.

⋄ hping3 was installed in Mininet-VM using the command ’sudo apt-get install
hping3’.

⋄ Ryu controller was installed via Git with the commands provided, setting up
the necessary SDN controller application.

⋄ PuTTY was configured with the hostname ’mininet@localhost’ and port ’2223’,
with X11 forwarding enabled to connect to Xming X Server.

⋄ The environment variable ’DISPLAY’ was set to the host’s IP and display
number to establish a connection to the X Server.

After executing these steps, the SDN environment was fully configured, opera-
tional, and ready for future configurations and experiments.

4.4 Installation of Snort IDS

Snort is installed from the official Snort website. The installation process on Ubuntu
involves several steps, beginning with system updates and prerequisite installations:

1. System Updates: The process commenced with updating the OS to ensure
all packages were current, using the commands:

sudo apt-get update && sudo apt-get dist-upgrade -y

2. Setting Timezone: Correct timezone settings are crucial for accurate times-
tamping in logs:

sudo dpkg-reconfigure tzdata

3. Installing Dependencies: Necessary libraries and tools were installed to
support Snort functionality:
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sudo apt-get install -y build-essential autotools-dev
libdumbnet-dev libluajit-5.1-dev libpcap-dev \
zlib1g-dev pkg-config libhwloc-dev cmake liblzma-dev
openssl libssl-dev cpputest libsqlite3-dev \
libtool uuid-dev git autoconf bison flex libcmocka-dev
libnetfilter-queue-dev libunwind-dev \libmnl-dev ethtool libjemalloc-dev

4. Directory Preparation for Snort Files: A directory was created to store
the Snort source files and dependencies:

mkdir ~/snort_src
cd ~/snort_src

5. DAQ Installation: The Data Acquisition library required by Snort was down-
loaded and installed:

wget https://www.snort.org/downloads/snortplus/libdaq-3.0.13.tar.gz

6. Downloading and Installing Snort: The latest version of Snort was then
compiled and installed:

https://www.snort.org/downloads/snortplus/snort3-3.1.77.0.tar.gz

7. Verification of Snort Installation: The installation was verified by checking
the version of Snort installed:

/usr/local/bin/snort -V

8. Installation of rules: The command used to the rules installation for the
attack detection is as follows:

wget https://www.snort.org/downloads/community/snort3-community-rules.tar.gz

4.4.1 Integration of Snort IDS

As mentioned in [32], there are two options to integrate Snort IDS in the SDN
environment, to put Ryu and Snort IDS on same machine or different machines.
But the Ryu documentation [32], suggests to use Snort IDS and Ryu on different
machines. So for all the experiments in this thesis, Snort IDS is integrated with
the SDN switch in the SDN architecture. Following command is added to the Ryu
controller configuraton.
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socket_config = {’unixsock’: False}

These following commands launch the Snort IDS on the SDN switch and alerts are
generated to the controller.

sudo snort -c \usr\local\etc\snort\snort.lua -i s1-eth1 -A unsock -l \tmp
sudo python pigrelay.py

The pigrelay.py script can be cloned from [22]. The script sets up a Unix Domain
Socket (SOCKFILE) to listen for Snort alerts. It creates a network socket to connect
to a specified controller IP address and port. It continuously listens for Snort alerts
on the Unix Domain Socket. When a Snort alert is received, it sends the alert data
to the specified controller via the network socket.

4.5 Configuring Ryu Controller Application

The Ryu controller application, an essential component of our SDN architecture,
was configured to manage network traffic and enforce security policies. It operates
as the brain of the SDN, interacting with network devices via OpenFlow protocols
to dynamically control data flows based on pre-defined rules.

4.5.1 Formation of mininet network

In the Mininet-based network configuration algorithm, the setup begins with the
importation of necessary modules. These modules are the building blocks for network
emulation, providing tools for creating and managing virtual network components
such as nodes, switches, and controllers, as well as for user interaction through the
command-line interface (CLI). Once the modules are imported, the main function,
myNetwork(), is defined to encapsulate the entire network setup process, ensuring a
clean and organized script.

Within the myNetwork() function, a new Mininet object is instantiated without
a predefined topology, allowing for a custom network design specified by the user.
The network’s IP base is set to 10.0.0.0/8, a common private IP address range,
providing ample addresses for network expansion. Following the initial setup, the
script logs the addition of a remote controller—this is a crucial step, as the controller
is responsible for managing the flow of packets across the network. The remote
controller is defined with specific attributes such as name, type, communication
protocol, and port number, which allows it to communicate with the virtual switches
within the emulated network.

The algorithm proceeds with the addition of network components, including OVS
kernel switches and host nodes, each assigned unique identifiers and IP addresses.
The interconnections between these components are established through bidirectional
links, which are essential for the flow of data packets. As each component is added,
the script logs the event, providing real-time feedback during the network’s con-
struction. After the topology is built and all components are added, the network
is initiated. This involves starting the remote controller and associating it with the
switches to handle network traffic based on predefined or dynamic rules.
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Algorithm 1 Algorithm for sdn network in mininet
1: Import required Mininet modules for network setup and control.
2: Define myNetwork for setup; initialize Mininet with specified IP base
3: Log and add a named remote controller with protocol and port
4: Log switch addition; add two OVSKernelSwitches
5: Log host addition; add three hosts with unique IPs
6: Log link creation; connect hosts and switches
7: Log network start; build with all components
8: Link switches to remote controller for management.
9: Log setup, launch CLI for network interaction.

Finally, the Mininet CLI is launched, granting the user direct interaction with
the emulated network for testing or modification purposes. Once the user exits the
CLI, the script gracefully terminates the network and performs cleanup operations,
ensuring that no residual processes are left running. The script’s entry point sets
the logging level to ’info’, which controls the verbosity of the output, and calls the
myNetwork() function to kick-start the network setup, thus completing the algo-
rithm’s execution. This methodical approach allows for a controlled and repeatable
process for network emulation and testing, crucial for network design and research.

Figure 4.1: SDN Architecture using miniedit

The figure 4.1 displays the creation of basic SDN architecture that can be used
for the experiments in Mininet. The network simulation script topo.py from 4.2 is
created using the miniedit.py script.

The figure 4.2 depicts the successful execution of a network simulation script
(topo.py) in a Mininet environment. The script is initiated with elevated privileges
using the sudo command. Following this, the Mininet CLI presents a series of in-
formational messages that outline the sequential steps taken to configure the virtual
network.
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Figure 4.2: Mininet console after initiating the network

Once the network is started, the CLI provides feedback on the status of the network
elements, including hosts, switches, and controllers. This feedback is critical for ver-
ification and debugging purposes. For instance, it confirms the successful startup
of network components, as indicated by the prompt messages "Starting network",
"Starting controllers", and "Starting switches".
The final stage of the simulation involves testing the connectivity between all hosts
using the pingall command. The console output clearly shows that all hosts (h1, h2,
and h3) are able to communicate with one another, as evidenced by the successful
ping tests and the report of "0% dropped" packets. This indicates that the network
is fully operational, and all hosts are reachable, confirming the correct setup and
functionality of the network as intended by the topo.py script.

4.5.2 Ryu Controller Aplication

In the outlined algorithm, the process begins with the importation of essential li-
braries from the Ryu framework. These libraries provide the foundation for appli-
cation development, event handling, protocol management, and packet processing
within the SDN controller. The SimpleSwitch13 class is then defined to encapsulate
the network management logic, inheriting from the RyuApp base class and specify-
ing the OpenFlow protocol version 1.3 to ensure compatibility with corresponding
network switches.

Initialization of the application includes the creation of a dictionary that maps
MAC addresses to ports, enabling the switch to learn the network’s topology and
effectively route packets. The switch_features_handler method configures the ini-
tial flow entries for the switch, defining default actions for unmatched packets and
typically forwarding them to the controller. For this study, the idle_time parameter
is considered, which indicates how long the flow can remain inactive without any
new packets matching its characteristics. This setup is critical for handling subse-
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quent network traffic that does not fit existing flow criteria. The core functionality of

Algorithm 2 SimpleSwitch13 Ryu App for Network Management
1: Import Ryu base, event, handler, protocol, and packet libraries.
2: Define SimpleSwitch13 class inheriting from RyuApp.
3: Specify OpenFlow protocol version 1.3.
4: Initialize mac_to_port dictionary within the constructor.
5: Define switch_features_handler to set up table-miss flow entries.
6: Define add_flow to add flow entries to the switch.
7: Define packet_in_handler to handle incoming packets.
8: Check for truncated packets and print warning if necessary.
9: Parse packet and extract ethernet, IP, and port information.

10: Learn source IP to avoid flooding for subsequent packets.
11: Determine output port based on destination IP.
12: Create action to output packet to determined port.
13: Install flow to switch if destination is known and not a flood action.
14: Check for IP protocol and create match criteria for IP packets.
15: Check buffer ID and send flow modification message to switch.
16: Assemble packet out message and send to switch if needed.

the application is captured within the packet_in_handler method, which deals with
packets that the switch cannot process without further instructions. This method
parses the packets, extracting Ethernet and IP data, and makes decisions based on
the source and destination MAC addresses. The controller employs a learning strat-
egy to record the ports associated with source MAC addresses, thus optimizing the
flow of traffic by reducing unnecessary packet flooding across the network.

The algorithm then dictates how to handle known destinations by directing traffic
through predetermined ports and setting up new flow entries for unknown destina-
tions to prevent future packet-in events for the same flow. For IP packets, match
criteria are established based on IP addresses, facilitating the creation of flow rules
that enhance network efficiency. When a packet does not match any flow entry and
the switch has not buffered it, the controller sends a packet-out message to the ap-
propriate port, thus ensuring continuous traffic flow while the switch updates its
flow table with the new rule. This methodical approach enables the Ryu controller
to manage network traffic dynamically, adapt to changes, and maintain efficient data
transmission throughout the network.

After implementing the algorithm for network management using the Ryu frame-
work, the Figure 4.3 depict the successful operation of the Ryu application. The
live output from the Ryu controller indicates that the switchconfiguration.py script
is actively processing packets within the emulated network. Each line of the console
output presents a packet transaction, clearly showing the source and destination IP
addresses, along with the output port number. This level of detail illustrates the
controller’s ability to make intelligent forwarding decisions in real-time, effectively
routing packets between hosts in the network.
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Figure 4.3: Output in RYU controller

The figure 4.4 provides a snapshot of the OpenFlow switch’s flow table. The sudo
ovs-ofctl dump-flows s1 command has been executed to retrieve the current flow en-
tries on the switch ’s1’. The output reveals several flow entries with specific match
criteria based on source and destination IP addresses. Each entry also specifies an
action, such as forwarding out on a particular switch port, which aligns with the
designed behavior of the SimpleSwitch13 application to reduce packet flooding. The
presence of these flow entries confirms that the Ryu application is not only receiving
and processing packets but also successfully installing flow rules to optimize network
traffic.
The detailed information from figure 4.3 and 4.4 provides a comprehensive overview

Figure 4.4: Flowrules in SDN Switch

of how the Ryu controller interacts with network switches to manage traffic flows.
The flow rules installed by the Ryu application contribute to the efficiency of the
network by ensuring that packets are routed correctly, thus avoiding the overhead of
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processing similar packets multiple times at the controller. This approach not only
minimizes latency and maximizes throughput but also demonstrates the controller’s
capacity to maintain a dynamic and responsive network environment. The success-
ful execution and output signify that the Ryu application is functioning as intended,
with the SDN controller maintaining a robust network state through proactive man-
agement of the data plane.

4.5.3 Configuration of Ryu to mitigate IP spoofing

Ryu controller application is configured to prevent IP spoofing, as shown in Algo-
rithm 1. The basic concept of preventing IP spoofing is explained. As stated in
Section 3.3.1, for every first packet received from a new host by the switch, the
switch sends a packet_in message to ask the controller what action to take on the
packet received and the controller sends a message to the switch to have an entry for
a flow rule into flow table about which action to take on the packet received from
the new host. But, according to the configuration in Algorithm 3, the first packet
received from the new host is held by the controller and if a second packet is received,
only then a message is sent from the controller to the switch to have an entry for
a flow rule into the flow table on what action to take on the packet received from
that host. In this way, as spoofed IP flooding sends single packets from random IP
addresses, every single packet received from a spoofed IP is dropped.

Algorithm 3 Configuring Ryu Controller to Block IP Spoofing
1: Initialize the Ryu application and set up data structures
2: Establish a connection to the switch and send a feature request
3: for each packet received do
4: Extract source IP address
5: if source IP address is new then
6: Record the source IP address
7: if a second packet from the same source IP is received then
8: Send flow rule to switch for the source IP
9: else

10: Drop the packet to prevent IP spoofing
11: end if
12: else
13: Apply action based on existing flow rules
14: end if
15: end for

Figure 4.5 extends the process outlined in Section 3.3.4, with additional secu-
rity measures integrated into the SDN environment to prevent IP spoofing attacks.
When a packet arrives at the SDN switch, the integrated Snort IDS evaluates it for
potential security threats, including IP spoofing. The Snort system scrutinizes the
packet’s source IP address to confirm its authenticity. If an IP spoofing attempt is
detected, the system triggers a security protocol. Upon detection of IP spoofing, the
system generates alerts for the controller. These alerts lead to immediate actions to
mitigate the attack. In this configuration, the controller acts according to algorithm
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Figure 4.5: Flowchart for IP spoof mitigation configuration

3. If no IP spoofing is detected, the switch proceeds to check its Flow Table for a
matching flow rule to determine how to handle the packet. If the switch does not
have a predefined action, it refers to the SDN controller. The controller instructs
the switch to add a new flow rule to handle the packet. The switch updates its Flow
Table with the new instructions from the controller.
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4.5.4 Configuration of Ryu to mitigate Flooding attacks

In the proposed Algorithm 4 for Ryu Controller Configuration for Flood Mitigation
in an SDN environment, the approach extends the SimpleSwitch13 application to
include a monitoring component. This extension involves initializing a dedicated
thread for flood detection. The algorithm handles state changes in datapaths by
registering or unregistering them based on their state (MAIN_DISPATCHER or
DEAD_DISPATCHER). Additionally, it periodically requests flow and port statis-
tics from each datapath. In case of flood detection, the algorithm redirects packets
matching certain criteria to the controller and modifies the flow entry to prevent
forwarding, thereby mitigating the flood risk. This proactive approach to flood miti-
gation enhances network security by dynamically managing and adjusting to network
conditions.

Algorithm 4 Ryu Controller Configuration for Flooding
1: Extend base SimpleSwitch13 application for monitoring
2: Initialize monitoring thread for flood detection
3: Upon State Change Event:
4: if datapath enters MAIN_DISPATCHER then
5: Register datapath
6: else if datapath enters DEAD_DISPATCHER then
7: Unregister datapath
8: end if
9: while true do

10: Sleep for a predefined monitoring interval
11: for each datapath do
12: Send request for flow and port statistics
13: end for
14: Sleep for a short interval before next iteration
15: end while
16: Upon Flow Statistics Reply Event:
17: for each flow with priority 1 do
18: Redirect matching packets to the controller
19: Modify flow entry to prevent forwarding
20: Log modification action
21: end for

Figure 4.6 builds upon the previous section 3.3.4 by incorporating Snort IDS
within the SDN switch to prevent flooding attacks. When a packet enters an SDN
switch with an integrated Snort IDS, the switch is prepared to handle both standard
packet processing and security monitoring for abnormal traffic patterns indicative of
a flooding attack. If a flooding attempt is detected, the system triggers a security
protocol. Upon detection of flooding, the system generates alerts for the controller.
These alerts lead to immediate actions to mitigate the attack. Which includes the
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Figure 4.6: Flowchart for flooding mitigation configuration

controller asking for the existing flow rules in the SDN switch. Then, the SDN switch
sends the existing flow rules to the controller for further analysis. Then the controller
acts according to algorithm 4. If there are no signs of flooding, the switch proceeds
to act as mentioned in section 3.3.4
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4.5.5 Configuration of Ryu to mitigate flooding and IP spoof-
ing

In this section, the Ryu controller application is configured in such a way that it
mitigates flooding and IP spoofing attacks simultaneously. The algorithm 5 explains
how the Ryu application is configured. The Ryu controller is initialized, setting up
the required data structures that will hold the state and configuration of the network.
The controller then establishes a connection with the SDN switch by sending a feature
request. This request is designed to retrieve the switch’s capabilities and prepare it
for subsequent configuration commands.

To address the issue of flooding, the controller initializes a monitoring thread.
This thread operates independently of the main packet processing functions, allowing
for continuous network monitoring without impacting regular operations. For each
incoming packet, the Ryu controller extracts the source IP address to determine its
legitimacy. This step is crucial for identifying potential IP spoofing attempts. If the
source IP address is not already recorded in the controller’s memory, it is considered
new and is logged. If a subsequent packet from the same source IP address is received,
it implies that the source is a repeated visitor. In this case, the controller sends a
flow rule specific to that source IP to the switch. This flow rule instructs the switch
on how to handle packets from this source in the future, usually allowing them to
pass without further controller intervention. Here, the controller acts in the two
configurations mentioned above in Section 4.5.3 and 4.5.4.
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Algorithm 5 Configuring Ryu Controller to Block IP Spoofing and Flooding
1: Initialize the Ryu application and set up data structures
2: Establish a connection to the switch and send a feature request
3: for each packet received do
4: Extract source IP address
5: if source IP address is new then
6: Record the source IP address
7: if a second packet from the same source IP is received then
8: Send flow rule to switch for the source IP
9: else

10: Drop the packet to prevent IP spoofing
11: end if
12: else
13: Apply action based on existing flow rules
14: end if
15: end for
16: Initialize monitoring thread for flood detection
17: Upon State Change Event:
18: if datapath enters MAIN_DISPATCHER then
19: Register datapath
20: else if datapath enters DEAD_DISPATCHER then
21: Unregister datapath
22: end if
23: while true do
24: Sleep for a predefined monitoring interval
25: for each datapath do
26: Send request for flow and port statistics
27: end for
28: Sleep for a short interval before next iteration
29: end while
30: Upon Flow Statistics Reply Event:
31: for each flow with priority 1 do
32: Redirect matching packets to the controller
33: Modify flow entry to prevent forwarding
34: Log modification action
35: end for



Chapter 5
Experiments and Results

This chapter discusses the results of various experiments conducted to evaluate the
effectiveness of Snort IDS, and different configurations of Ryu controller application
in an SDN environment under different attack scenarios, such as IP spoofing and
flooding attacks. It provides detailed analyses of these experiments, including the
methodology, attack simulations, data collection, and the performance of Snort IDS,
configured Ryu application in detecting and mitigating these attacks.

5.1 Experiments

5.1.1 Experiment 1: Evaluation of Snort3’s Detection Capa-
bilities

5.1.1.1 Objective

The primary objective of Experiment 1 is to assess the efficacy of Snort3 in identifying
and differentiating various forms of network attacks, specifically focusing on flooding
and spoofing scenarios.

5.1.1.2 Attack Simulation

A series of controlled network attacks are simulated to test Snort3’s detection capa-
bilities. These attacks encompass a range of flooding and spoofing techniques using
different protocols.

• Flooding Attacks: TCP, UDP, and ICMP flooding attacks are simulated
to evaluate Snort3’s response to high-volume traffic intended to overwhelm
network resources.

• Spoofing Attacks: IP address spoofing attacks are executed to test Snort3’s
ability to identify packets with forged sender addresses, which are commonly
used in various cyber attacks.

Table 5.1 in the document provides detailed information on the specific commands
used to initiate each type of attack.

Snort IDS is deployed on the ’s1-eth0’ interface of the network switch with the
command:

sudo -c /usr/local/etc/snort/snort.lua -i s1-eth0 -a alert_fast

40
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Table 5.1: Commands used for different types of attacks

Attack Command
ICMP flood hping3 –icmp –flood dst_ip
ICMP spoof hping3 –icmp –flood –rand-source dst_ip
TCP flood hping3 –flood -S -p 80 dst_ip
TCP spoof hping3 –flood -S –rand-source -p 80 dst_ip
UDP flood hping3 –udp –flood -p 161 dst_ip
UDP spoof hping3 –udp –flood –rand-source -p 161 dst_ip

Table 5.2: Table explaining the command used to implement Snort IDS

Flag Description
-c Specifies the path to the Snort configuration file.
-i Specifies the interface on which Snort should be implemented
-a Specifies the location where Snort should log alerts (alert_fast logs alerts on console).

5.1.1.3 Results

The results of the experiment are presented in Figures 5.1 to 5.6. Each figure corre-
sponds to a specific type of attack and demonstrates the effectiveness of Snort IDS
in detecting these attacks.

Figure 5.1: ICMP Flood Alerts

Figure 5.1 shows the result obtained for the ICMP flood attack. It demonstrates
that Snort IDS successfully generated alerts for ICMP flood detection. The figure
shows two ICMP alerts generated for each ICMP flooding packet that enters the
SDN environment.
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Figure 5.2: ICMP Spoof Alerts

Figure 5.2 shows the result obtained for the ICMP spoofing attack. It demon-
strates that Snort IDS successfully generated alerts for ICMP spoofing detection.
The figure shows the CLI output for the two ICMP spoof alerts generated for each
of the spoofed packets entering the network.

Figure 5.3: TCP Flood Alerts

Figure 5.3 shows the result obtained for the TCP flood attack. It demonstrates
that Snort IDS successfully generated alerts for TCP flood detection. The figure
shows each alert generated for each of the TCP flood packet that entered the SDN
environment.

Figure 5.4 shows the result obtained for the TCP spoofing attack. It demonstrates
that Snort IDS successfully generated alerts for TCP spoofing detection. The figure
shows the CLI output for each of the alert generated for each TCP spoofed packet
entering the network.
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Figure 5.4: TCP Spoof Alerts

Figure 5.5 shows the result obtained for the UDP flood attack. It demonstrates
that Snort IDS successfully generated alerts for UDP flood detection. The figure
shows the two alerts generated for each of the UDP flood packet that is entering the
SDN environment.

Figure 5.5: UDP Flood Alerts

Figure 5.6 shows the result obtained for the UDP spoofing attack. It demonstrates
that Snort IDS successfully generated alerts for UDP spoofing detection. The figure
shows the CLI output for each alert received for each UDP-spoofed packet entering
the network.

These results collectively provide insights into the effectiveness of Snort3 in de-
tecting various types of network attacks, supporting the evaluation’s objectives.

The results of Experiment 1 demonstrate Snort3’s effectiveness in detecting var-
ious network attacks, including flooding and spoofing scenarios. These findings are
essential in assessing the reliability of Snort3 as a network IDS.
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Figure 5.6: UDP Spoof Alerts

In the case of flooding attacks, Snort3 successfully detected and generated alerts
for TCP, UDP, and ICMP flooding attacks. This indicates its capability to identify
high-volume traffic intended to overwhelm network resources, which is a common
tactic employed by malicious actors.

Moreover, Snort3 exhibited proficiency in detecting spoofing attacks involving
forged sender IP addresses. In both ICMP and TCP spoofing scenarios, the IDS was
able to identify packets with spoofed addresses, highlighting its ability to counteract
such deceptive tactics commonly employed in cyberattacks.

The results presented in Figures 5.1 to 5.6 confirm Snort3’s capability to effec-
tively detect and respond to network attacks, thereby enhancing network security.
The system’s ability to generate alerts promptly upon detecting suspicious activity
provides network administrators with valuable information to respond to potential
threats promptly.

Furthermore, it is worth noting that Snort3’s performance in this experiment was
evaluated under controlled conditions. Real-world network environments may pose
additional challenges, and further testing is necessary to assess its performance in
diverse and dynamic network settings.

In conclusion, Experiment 1 demonstrates that Snort3 is a robust and reliable
network IDS capable of effectively identifying and differentiating various forms of
network attacks, including flooding and spoofing attacks. These findings underscore
its significance as a valuable tool for enhancing network security and mitigating
potential threats. Future research can focus on extending this evaluation to more
complex and realistic network scenarios.
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5.1.2 Experiment 2: Impact and Mitigation of IP Spoofing
Attacks on SDN

5.1.2.1 Objective

Experiment 2 is designed to analyze the effects of IP spoofing attacks on SDN per-
formance and the efficacy of mitigation technique employed through the integration
of Ryu controller applications and Snort IDS.

5.1.2.2 Attack Simulation and Mitigation Deployment

IP spoofing attacks were conducted within the established SDN environment to eval-
uate their impact. After initial observations, these attacks were executed again, this
time in conjunction with the Algorithm 3 Ryu controller configuration, to understand
the differing effects under this altered setup.

The performance metrics considered to be analyzed in this experiment are as
follows:

• Average Time: The average response time taken for 100 requests from legit-
imate clients will be measured. This measurement will be taken under vary-
ing stress conditions, specifically by incrementally increasing the number of
attackers from 1 to 10. This approach helps in understanding how network
performance is impacted by escalating levels of attack.

• Resource Utilization of Switch s1: The CPU and memory utilization of
switch s1 will be closely monitored. This data is crucial for assessing the
operational efficiency and resource management of the network infrastructure
under spoofing attacks.

• Flow Rules Dynamics: The changes in the number of flow rules within the
SDN environment both during the attack phase and after the implementation
of the mitigation strategy are observed. This observation aims to shed light on
the network’s adaptability and response to security breaches.

5.1.2.3 Results

Average Time Analysis with Increasing Attackers: The graph from Figure
5.7 depicts the average response time as the number of attackers scales up. The
"orange" line shows the environment’s performance under attack without any mit-
igation strategies in place. Here, a clear trend is visible where the average time
increases with a little fluctuation as the number of attackers grows. This indicates
a direct correlation between the number of attackers and the network’s increased
latency, demonstrating the detrimental impact of IP spoofing attacks on the SDN’s
performance.

The "blue" line illustrates the scenario where the mitigation technique is employed
against the IP spoofing attack. As observed, the average time initially increases as
the number of attackers rises from 1 to 2, suggesting that while mitigation is effective,
it does have some impact on processing time. However, from 3 attackers onwards, the
time increases only slightly towards 10 attackers when compared with the effect under
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attack, indicating that the mitigation measures are scaling effectively to counteract
the additional load imposed by the increasing number of attackers.

Figure 5.7: A graph which depicts the average time with increase in number of
attackers under IP spoofing attack and under mitigation

CPU and Memory Utilization: The two graphs from Figures 5.8 and 5.9
depict the CPU and memory utilization of a network device under two conditions:
when under an IP spoofing attack, and when mitigation is implemented.

Figure 5.8: A graph which depicts the percentage of CPU Utilization of Switch under
IP spoofing attack

In the Figure 5.8, the "orange" line shows CPU utilization under an IP spoofing
attack, which increases sharply as time progresses, indicating a substantial compu-
tational overhead as the network responds to the attack. The "blue" line displays
CPU utilization when the IP spoofing mitigation technique is employed, which is
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only slightly increased towards the end, suggesting that the attack’s impact on the
CPU is minimal when the mitigation technique is employed.

Figure 5.9: A graph which depicts the percentage of Memory Utilization of Switch
under IP spoofing attack

In the Figure 5.9, the "orange" line and "blue" line represent memory utilization
under IP spoofing attack and under IP spoofing mitigation technique, respectively.
In Figure 5.9, it can be observed that the orange line is increased to more than 100
percent, i.e., 138, to the end of the graph because the switch is overwhelmed with so
many flow rules when under attack. The memory reached more than 100 percent,
that is, until 140 because, as the SDN environment is implemented in VirtualBox,
the memory is dynamically allocated, which is why it was possible to reach more
than 100 percent. Memory usage appears unaffected by the mitigation process; it
only goes up to 20 percent of the memory assigned. It can be observed from the
blue line that it gradually increased to 20 percent as time progressed when the SDN
environment was employed with the IP spoofing mitigation technique.

Flow Rules Analysis: The two graphs in Figures 5.10 and 5.11, present the
number of flow rules added to switch in an SDN environment under two conditions:
during an IP spoofing attack and when IP spoofing mitigation strategy is applied.

The first graph, Figure 5.10, shows a linear and continuous increase in the number
of flow rules over 10 minutes. This trend suggests that as the attack continues, the
system is constantly generating new flow rules to handle the traffic. This could
potentially lead to network performance issues due to the processing overhead of
managing a large number of flow rules.

The second graph, Figure 5.11, depicts a very different pattern. Here, there is a
sharp rise in the number of flow rules within the first two minutes, reaching a peak
and then sharply declining almost back to baseline levels by the four-minute mark.
This spike implies the network’s immediate response to the attack, where mitigation
mechanisms are activated. The subsequent drop indicates that the network is able
to stabilize by effectively neutralizing the threat and then reducing the number of
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Figure 5.10: A graph which depicts the number of flow rules with time increasing
under IP spoofing attack

flow rules to a normal operating level.
The number of flow rules increases linearly with time due to same number of

packets being sent by the attacker periodically throughout the experiment, reflecting
the SDN controller’s attempt to manage the growing number of traffic flows, which
could be a result of the attack’s complexity and the controller’s efforts to maintain
network order.

Flow Rules Variation with Mitigation (Figure 5.11): An initial surge
in the number of flow rules is observed, which quickly peaks and then diminishes.
This pattern represents the rapid deployment of mitigation technique followed by a
stabilization of the network, suggesting an effective mitigation response.

Figure 5.11: A graph which depicts the number of flowrules with time increasing
under mitigation
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There was a constant increase until the first minute, and that increase dropped
between the first and second minute comparatively because the mitigation technique
was implemented and it took some time to remove the already existing flow rules
considering the idle_time parameter which is 120 seconds considered for our Ryu
controller configuration.

5.1.3 Experiment 3

5.1.3.1 Objective

The primary goal of Experiment 3 is to analyze the effect of flooding attacks on
SDN performance and the efficacy of the mitigation technique employed through the
integration of the Ryu controller and Snort IDS.

5.1.3.2 Attack simulation

Flooding attacks were conducted within the established SDN environment to evaluate
their impact. After initial observations, these attacks were executed again, this time
in conjunction with the Algorithm 4 Ryu controller configuration, to understand the
differing effects under this altered setup.

5.1.3.3 Results

The graph provided, Figure 5.12, illustrates the response times of an SDN environ-
ment subjected to a flooding attack, comparing periods with and without mitigation
efforts.

Figure 5.12: A graph which depicts the average time with increase in number of
attackers under flooding attack and under mitigation

The "orange line" represents the average response time of the network while it is
under a flooding attack. There is a clear upward trend as the number of attackers
increases, with the response time escalating significantly. This pattern indicates that
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the network is increasingly strained as more malicious requests flood the system,
leading to a degradation of performance for legitimate traffic.

The "blue line" shows the average response time when mitigation strategies are
implemented. Despite the increasing number of attackers, the response time remains
consistently low, with only a slight, almost negligible, upward trend. This consistency
demonstrates the effectiveness of the mitigation techniques in place, which manage
to keep the network’s response time stable and within acceptable limits, even as the
attack intensifies.
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Discussion

6.1 Introduction

In this section, it is explored why SDN is particularly susceptible to DDoS attacks,
a focus stemming from SDN’s centralized control architecture. The literature review
highlights both the innovative potential and the security challenges of SDN, leading
to a comprehensive experimental investigation. The experiments specifically address
how various DDoS attacks, such as TCP, UDP, and ICMP spoof and flood, signifi-
cantly impact SDN. These findings not only elucidate the process of packet handling
under attack conditions but also offer insights into effective mitigation strategies,
enhancing our understanding of SDN’s security landscape.

The research is focused exclusively on spoofing and flooding attacks (ICMP, TCP,
UDP) on SDN. This selection was based on the observation that other forms of at-
tacks have a relatively minimal impact on SDN architectures. Spoofing and flooding
attacks are particularly pertinent due to their ability to exploit the centralized na-
ture of SDN, overwhelming the control plane and disrupting network operations.
This targeted approach in our study allows for a deeper, more relevant analysis of
the most critical vulnerabilities facing SDNs today, providing valuable insights for
developing robust defense mechanisms. The integration of Snort IDS in SDN envi-
ronments offers a strategic advantage, particularly in the context of research focused
on mitigating spoofing and flooding attacks.

Snort’s exceptional protocol analysis and content-matching capabilities align seam-
lessly with the need to address critical vulnerabilities in SDNs. Its customizabil-
ity and open-source nature allow for tailored defense mechanisms against rapidly
evolving network threats, including those prevalent in SDN architectures. Snort’s
efficiency in processing large volumes of traffic with minimal latency is vital for
maintaining the performance and integrity of SDNs, emphasizing its suitability for
real-time intrusion detection and immediate response in such dynamic network en-
vironments.

The selection of Mininet as the primary tool for SDN simulation in our research
is grounded in several key reasons, especially when compared to our experience with
OMNeT++. While we initially considered OMNeT++ for its comprehensive simula-
tion capabilities, we encountered significant challenges in successfully implementing
SDN within it. The primary issue was the reliance on third-party resources for SDN
integration, which proved to be unreliable in OMNeT++. This led us to pivot to-
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wards Mininet. Mininet is selected as it stands out for its specialized focus on SDN.
It offers a more straightforward and reliable platform for creating realistic SDN en-
vironments, allowing us to simulate a network on a single machine with minimal
resource utilization. This ease of use, combined with its robust support for SDN
technologies like OpenFlow, makes Mininet an ideal choice for conducting detailed
and effective SDN research.

The selection of the Ryu controller for our SDN experiments was primarily driven
by its strong OpenFlow compatibility, essential for effective network flow manage-
ment in SDN environments. Ryu’s modular design offers unparalleled flexibility and
customizability, allowing us to tailor the controller to our specific experimental needs.
Its user-friendly Python-based framework facilitates ease of development, making it
accessible even to those with limited programming expertise.

For our experimentation, we utilized a simple SDN architecture within a Mininet
virtual machine on VirtualBox, constrained by limited resources. This setup was
chosen as it realistically reflects the challenges of setting up extensive network simula-
tions with numerous hosts and switches in a resource-constrained environment. This
approach allows us to focus on the core aspects of SDN vulnerabilities to spoofing and
flooding attacks while acknowledging the limitations imposed by our experimental
setup.

6.2 Evaluation of Experiments

6.2.1 Evaluation for Experiment 1

Experiment 1, focusing on the evaluation of Snort3’s detection capabilities, directly
aligns with the first objective and partially with the second objective of this research.
It contributes to the investigation of detection methods for flooding and IP spoof-
ing attacks in an SDN environment and explores the integration of Snort IDS as a
mitigation technique.

The experiment used controlled simulations of various flooding (TCP, UDP,
ICMP) and spoofing attacks. This approach allowed for a thorough assessment of
Snort3’s ability to identify and differentiate between these types of attacks.Snort3
demonstrated its effectiveness by successfully generating alerts for each type of sim-
ulated attack. This indicates its proficiency in recognizing high-volume traffic and
forged sender addresses characteristic of flooding and spoofing attacks.

The deployment of Snort IDS on the ’s1-eth0’ interface showcases the practical
aspect of integrating intrusion detection systems within an SDN setup. The success-
ful detection of all simulated attacks underlines the potential of Snort IDS to be a
reliable component in an SDN environment for mitigating DDoS attacks.

The results confirm the capability of Snort3 to operate effectively in an SDN en-
vironment. It detects diverse attack scenarios, thus addressing a significant concern
in SDN security. The accurate detection of flooding attacks, which involve over-
whelming network resources with high-volume traffic, indicates Snort3’s robustness
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in managing and analyzing large-scale data flows, a critical requirement in SDN. The
ability to identify spoofed packets reinforces the efficacy of Snort3 in handling more
sophisticated forms of cyber threats, where attackers mask their identity.

These findings are integral to understanding the practical application and reliabil-
ity of Snort3 as a network IDS within the SDN framework. It provides a foundation
for developing more advanced security measures and protocols in SDN.

6.2.2 Evaluation for Experiment 2

Experiment 2’s focus on analyzing the impact and mitigation of IP spoofing attacks
on SDN directly contributes to the second and third objectives of the study. It not
only explores DDoS attack mitigation technique in SDN but also conducts a thorough
experimental evaluation to analyze and interpret the findings.

The experiment involved conducting IP spoofing attacks within an SDN setup and
employing a combination of Ryu controller applications and Snort IDS for mitigation.
This provided a practical scenario to evaluate the effectiveness of these techniques.
The use of Algorithm 3 Ryu controller configuration for mitigation demonstrated
how specific strategies could be integrated into SDN for handling spoofing attacks,
revealing both the strengths and weaknesses of these approaches. The experiment
focused on various metrics like average response time, resource utilization of Open-
Flow Switch, and flow rules dynamics. These metrics were critical in understanding
how the SDN environment responds to attacks and mitigation efforts.

The increase in average response time, CPU, and memory utilization under attack
conditions (as shown in Figures 5.7, 5.8, and 5.9) indicates the detrimental impact of
IP spoofing attacks on network performance. The less effect on average response time,
CPU, and memory utilization under mitigation (as seen in the respective figures)
demonstrates the effectiveness of the employed mitigation strategy. This suggests
that while mitigation impacts processing time, it is capable of scaling effectively to
handle increased attack loads.

The variation in the number of flow rules under attack and mitigation conditions
(Figures 5.10 and 5.11) provides insights into the SDN controller’s adaptability. The
initial surge in flow rules followed by a rapid decline under mitigation suggests an
effective and efficient network response to neutralize threats.

6.2.3 Evaluation of Experiment 3

Experiment 3’s focus on analyzing the effect of flooding attacks on SDN perfor-
mance and the efficacy of mitigation techniques aligns with the study’s first and
second objectives. It also contributes to the third objective by providing experimen-
tal evaluations and analyses.

The experiment involved simulating flooding attacks within the SDN environ-
ment. This approach was essential for investigating the detection capabilities of the
network in the face of high-volume traffic. The results from the experiment, par-
ticularly the escalated response times under attack, underscore the necessity and
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challenge of detecting flooding attacks in SDN. It highlights the importance of ef-
fective detection methods in maintaining network integrity. The integration of the
Ryu controller (Algorithm 4) and Snort IDS in the experimental setup provided a
practical framework to assess the mitigation strategies against flooding attacks. The
consistently low response times during mitigation, despite the increasing number of
attackers, demonstrate the robustness of the techniques employed in safeguarding
the SDN environment.

The significant increase in response time under flooding attack conditions (as
shown in Figure 5.12) clearly illustrates the vulnerability of SDN environments to
such high-volume traffic scenarios. The stable and low response times during miti-
gation, even with a rising number of attackers, are indicative of the effectiveness of
the mitigation strategies. This demonstrates the potential of the Ryu controller and
Snort IDS in maintaining network performance under stress.

The results show that the implemented mitigation techniques are practically ef-
fective. This is crucial for real-world applications in SDN environments where the
predictability of the response under attack is vital. The experiment provides valuable
insights into the resilience of SDN architectures against flooding attacks. The ability
to maintain consistent performance in attack scenarios is key to the reliability and
trustworthiness of SDN systems.

6.3 Evaluation of Research questions

After extensive research and experimentation, this study successfully achieved its
aim, which was to comprehensively examine the DDoS attacks and to develop ef-
fective methods for detecting and preventing such attacks, addressing the research
questions formulated for this study.

For RQ1, "To what extent does integration of Snort IDS in SDN demonstrate effec-
tiveness in detecting flooding and IP spoofing attacks?", experiment 1 was conducted
to thoroughly examine the Snort IDS’s effectiveness in detecting ICMP, TCP, UDP
flooding and spoofing attacks. The results of Experiment 1 demonstrate Snort3’s
effectiveness in detecting all the flooding and spoofing scenarios. These findings are
essential in assessing the reliability of Snort3 as a network IDS.

For RQ2, "How can Snort IDS be integrated into an SDN environment to configure
a mitigation technique for flooding and IP spoofing attacks?", the study started ex-
ploring various mitigation techniques that already exist and found that there is scope
to develop a simple controller configuration. Then, the Ryu controller application
is chosen to be configured for this study. Firstly, the Ryu controller application is
configured in such a way that it mitigates IP spoofing attacks, then flooding attacks,
and later both attacks.

For RQ3, "Find the effects of flooding and spoofing attacks on SDN environment
while under attack and mitigation", experiments 2 and 3 are conducted to examine
the effects of flooding and spoofing attacks and also tested when the SDN environ-
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ment is employed with mitigation techniques developed for RQ2. The mitigation
techniques were successful in mitigating flooding and spoofing scenarios.

6.4 Limitations
While the thesis on SDN DDoS attack mitigation, focusing on IP spoofing and flood-
ing attacks, provides valuable insights, it’s essential to acknowledge and address po-
tential limitations to ensure a balanced interpretation of the findings.

1. Findings are specific to the experimental setup and may not be directly appli-
cable to all SDN environments or network configurations.

2. In this thesis, hping3 was employed to generate attack packets. However, it is
important to acknowledge that if an alternative network tool is chosen by an
attacker to flood the attack packets, there could be potential limitations to the
findings of this study. This is because we only used alerts which detect only
the type of payload that an hping3 command sends. More alerts should be
included to detect various attack packets for overcoming this limitation.

3. The proposed method of waiting for a response from the same IP to determine
legitimacy introduces a limitation in terms of user experience. Requiring a sec-
ond request for verification may create a suboptimal user experience, causing
inconvenience and delay for legitimate users who may not expect or tolerate
additional steps in their interactions with the network services. This limitation
underscores the importance of balancing security measures with user conve-
nience and the potential impact on overall satisfaction with the service.

4. A potential limitation arises from the dependency on a specific SDN switch
type or model in the thesis. If there is a change in the SDN switch used, the
effectiveness and compatibility of the proposed DDoS mitigation technique may
be compromised.
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Conclusions and Future Work

7.1 Conclusion

This research embarked on a comprehensive journey to explore the vulnerabilities
of Software-Defined Networking (SDN) to Distributed Denial of Service (DDoS) at-
tacks and to develop effective mitigation strategies. The significance of this work
is anchored in the pivotal role of SDN in modern network infrastructures, including
data centers, enterprise networks, and cloud services. The susceptibility of SDN to
DDoS attacks, particularly flooding and IP spoofing, posed a formidable challenge
that this study aimed to address.

Through a series of meticulously designed experiments, the research evaluated the
effectiveness of the Snort Intrusion Detection System (IDS) in detecting various forms
of DDoS attacks. The results demonstrated Snort’s robust capabilities in identifying
and alerting the controller about potential security breaches. This was particularly
evident in its success in detecting flooding and IP spoofing attacks across different
protocols, highlighting its adaptability to SDN environments.

Moreover, the study delved into the performance impacts of these attacks on
SDN. The findings revealed that DDoS attacks could significantly degrade network
performance, evidenced by increased response times and resource utilization. How-
ever, the integration of the Ryu controller with Snort IDS presented a promising
mitigation technique. This approach effectively stabilized the network under attack
conditions, as seen in the controlled CPU utilization and efficient management of
flow rules.

A critical insight from this research is the importance of tailored security solutions
in SDN environments. While traditional security measures have their place, the
unique architecture of SDN requires specialized strategies. The combined use of
Ryu controller applications and Snort IDS in this study exemplifies such approach,
offering a significant advancement in protecting SDN against DDoS attacks.

In conclusion, this research makes a substantial contribution to the field of net-
work security, particularly in the context of SDN. Placing Snort IDS in the SDN
switch’s data plane allows for the early detection of attacks, enabling swift mitiga-
tion as alerts are generated to the controller. This approach not only underscores
the heightened risks associated with the centralized control feature of SDN but also
provides a practical solution to mitigate these risks safely on the data plane, prevent-
ing the propagation of attacks deeper into the network. The success of this proposed
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mitigation technique holds immense potential for enhancing the resilience and reli-
ability of SDNs, showcasing the significance of addressing security concerns at their
inception within the network infrastructure.

7.2 Future Work
The future research building on the findings of this study can extend the scope
to address more complex network environments, which is important for the ever-
evolving landscape of cyber threats. This involves exploring the applicability of
the developed mitigation strategy in more complex network architectures. As cyber
threats continue to evolve, research must keep pace by developing advanced detection
and mitigation techniques which include focusing on DDoS attack vectors that utilize
AI and machine learning, adapting to encrypted traffic. As this study examined
the effect of DDoS attacks in SDN in the data plane, the future research can be
focused on finding the effect of the attacks on contol plane. Testing and comparing
the performance of various SDN controllers beyond Ryu in DDoS mitigation would
provide a broader understanding of their strengths and weaknesses.
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