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A cognitive deep learning approach 
for medical image processing
Hussam N. Fakhouri 1, Sadi Alawadi 2,3*, Feras M. Awaysheh 4, Fahed Alkhabbas 5,6 & 
Jamal Zraqou 7

In ophthalmic diagnostics, achieving precise segmentation of retinal blood vessels is a critical yet 
challenging task, primarily due to the complex nature of retinal images. The intricacies of these images 
often hinder the accuracy and efficiency of segmentation processes. To overcome these challenges, 
we introduce the cognitive DL retinal blood vessel segmentation (CoDLRBVS), a novel hybrid model 
that synergistically combines the deep learning capabilities of the U-Net architecture with a suite of 
advanced image processing techniques. This model uniquely integrates a preprocessing phase using a 
matched filter (MF) for feature enhancement and a post-processing phase employing morphological 
techniques (MT) for refining the segmentation output. Also, the model incorporates multi-scale line 
detection and scale space methods to enhance its segmentation capabilities. Hence, CoDLRBVS 
leverages the strengths of these combined approaches within the cognitive computing framework, 
endowing the system with human-like adaptability and reasoning. This strategic integration enables 
the model to emphasize blood vessels, accurately segment effectively, and proficiently detect vessels 
of varying sizes. CoDLRBVS achieves a notable mean accuracy of 96.7%, precision of 96.9%, sensitivity 
of 99.3%, and specificity of 80.4% across all of the studied datasets, including DRIVE, STARE, HRF, 
retinal blood vessel and Chase-DB1. CoDLRBVS has been compared with different models, and the 
resulting metrics surpass the compared models and establish a new benchmark in retinal vessel 
segmentation. The success of CoDLRBVS underscores its significant potential in advancing medical 
image processing, particularly in the realm of retinal blood vessel segmentation.

Artificial intelligence (AI) and cognitive computing have revolutionized various sectors, including medicine, 
pharmacy, and healthcare, in the realm of big  data1. While AI operates on algorithms and patterns, cogni-
tive computing takes it further, mimicking the human brain’s reasoning processes and adaptability to deliver 
more nuanced solutions. Together, their transformative power is redefining modern medical image processing, 
streamlining processes, enhancing accuracy, and potentially saving lives. The synergy between AI, cognitive 
computing, and medical imaging offers robust tools that extend and amplify human capabilities in diagnosing 
and treating various  diseases2.

In this regard, recent medical imaging technology advancements allow us to capture retina details with 
unprecedented  clarity3. Nevertheless, research is still seeking more accuracy and efficiency due to the domain’s 
natural complexities. For instance, retinal blood vessel segmentation demands precise differentiation of these 
vessels, which presents numerous  challenges4. Traditional manual and semi-automatic methods, plagued by 
inefficiency and proneness to errors, falter, especially when faced with the voluminous data churned out by 
modern imaging  systems5.

The convergence of AI’s algorithmic and cognitive computing ushers a transformative shift using the amal-
gamation of hybrid models. With the capacity to learn, adapt, and discern complex patterns from vast datasets, 
this confluence is reshaping  healthcare6. Tasks like image segmentation, disease identification, and prognosis 
prediction have recently seen a significant infusion of AI and cognitive computing principles. AI, specially trained 
on extensive retinal image datasets, can refine its accuracy in blood vessel delineation, converting raw data into 
actionable  insights7. Also, convolutional neural networks (CNNs) stand out for their adeptness in image analysis 
due to their hierarchical data  learning6.
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Deep learning, enriched with cognitive approaches, can surpass traditional methods in accuracy and efficiency 
for retinal blood vessel  segmentation8. However, exploring the full capability of combining AI and cognitive com-
puting in diagnostics and mitigating vision loss is still far from its potential. Various deep learning architectures 
have been used for retinal blood vessel segmentation, such as convolutional neural networks (CNNs)9, fully 
convolutional networks (FCNs)10, and U-nets11. These architectures are trained on different datasets of retinal 
images labeled with the location of blood vessels, allowing them to learn to identify the vessels in new  images8 
accurately. Automatic analysis of the retinal vascular tree by image processing techniques is essential for many 
clinical investigations and constitutes a field of scientific research  leading12. Detection and characterization of 
small blood vessels on retina images are essential in diagnosing certain diseases, such as diabetes or hypertension. 
The current state of the art indicates that methods based on supervised learning currently have the best perfor-
mance. However, accurate segmentation of retinal blood vessels is a crucial step in diagnosing and monitoring 
various ocular diseases like diabetic retinopathy and glaucoma.

Nevertheless, the task is challenging due to the intricate and varying structure of the retinal blood vessels, the 
presence of pathologies, and differences in image quality. While demonstrating promise, current methods still 
need to be revised regarding sensitivity, specificity, and robustness to image variations. Dash et al.13 highlights a 
pressing need for an advanced, reliable, and more precise retinal blood vessel segmentation technique to address 
these challenges. Thus, this research proposes a new hybrid model for retinal blood segmentation and tries to 
answer the following questions.

This research aims to address the previous concern and propose an innovative approach called CoDLRBVS to 
improve the detection and segmentation of fine retinal vessels by integrating deep learning methods(i.e., U-Net 
architecture) with diverse image processing techniques, such as matched filter (MF), multi-scale line detection, 
scale space representation, and morphological operations. Each technique contributes to creating an approach 
that emulates human cognition and adaptability in processing complex visual information such as medical 
images. In our proposed approach, the matched filter and multi-scale line detection are calibrated to amplify the 
initial segmentation of blood vessels, integrating cognitive principles to interpret intricate patterns and enhance 
contrasting features, much like the human visual system. Subsequently, the U-Net architecture, revered for its 
efficacy in biomedical image segmentation, refines these results by learning hierarchical features and making 
informed decisions, reflecting human-like analytical reasoning.

Moreover, scale space representation is implemented to analyze blood vessels at varied scales, mirroring the 
human ability to perceive objects at different distances and sizes, and morphological operations are employed to 
refine the segmentation results by eliminating noise and filling gaps, emulating the human brain’s inherent ability 
to filter out irrelevant information and focus on the essential. The culmination of these techniques is expected to 
yield a system that transcends the current paradigms in segmentation methods regarding accuracy, sensitivity, 
and specificity, facilitating early detection and intervention for retinal diseases. Hence, CoDLRBVS provides a 
unique integration of a pre-processing phase using the MF for feature enhancement. Also, CoDLRBVS includes 
a post-processing phase employing morphological techniques (MT) to refine the segmentation output. Finally, 
it incorporates multi-scale line detection and scale space methods to enhance segmentation capabilities.

The main contribution of this paper is CoDLRBVS, an innovative approach to improve the detection and 
segmentation of fine retinal vessels. Compared to our approach, most existing approaches fail to handle retinal 
images’ intrinsic variability and complexity. CoDLRBVS integrates deep learning methods, mainly U-Net archi-
tecture, and diverse image processing techniques to address such shortcomings and achieve better results. The 
developed model exhibits robust performance across different retinal image datasets and under various image 
quality conditions, as proved by our experiments. CoDLRBVS achieved high segmentation performance with 
a mean accuracy of 96.7% across all datasets. Additionally, the model supports the adaptation to various sizes 
of retinal blood vessels by effectively incorporating adaptive techniques like scale space and multi-scale line 
detection into the U-Net architecture.

The remainder of this paper is organized as follows: “Background and related work” provides background 
on retinal imaging, cognitive computing, image pre-processing techniques, and convolutional neural networks 
and explores the related work in the field. Next, we introduce the proposed approach and its main phases in 
“CoDLRBVS approach”. The datasets used in the study, experimental settings, approach evaluation, and the 
obtained results are described in “Result analysis and experiment description”. Finally, we conclude the paper in 
“Conclusion”, draw the main finding, and outline potential future work direction.

Background and related work
In this section, we present background about closely related fields, including retinal imaging, cognitive comput-
ing, and image pre-processing techniques in medical image processing. Additionally, we discuss studies related 
to our work.

Background
Retinal imaging
Ophthalmologists rely on retinal imaging because it enables them to diagnose and treat eye disorders at an early 
stage. Retinal imaging plays a crucial role in health prediction enabled by deep learning  techniques14. There are 
multiple types of retinal imaging methods, including the following  ones14: (1) fundus photography. It is the most 
frequent form of retinal imaging, which results in a color picture of the retina. Its primary applications are in the 
early detection and follow-up of retinal disorders. (2) optical coherence tomography. It produces cross-sectional 
images of the retina, enabling the measurement of retinal thickness and the identification of minor structural 
changes that may not be detectable with conventional imaging techniques. The macular hole, macular pucker, 
and macular edema are all disorders that benefit greatly from this diagnosis and treatment method. (3) Adaptive 
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optics in imaging. This cutting-edge method provides real-time correction for optical flaws in the eye and results 
in cellular-level retina imaging.

Cognitive computing
It simulates human thinking processes in computers, employs self-learning algorithms for utilizing data mining, 
pattern recognition, and natural language processing. Gudivada et al.15 provided insights into its relevance in 
diagnosis assistance, drug discovery, and patient management. The authors emphasized its potency in processing 
complex medical imaging datasets, making it suitable for retinal vessel segmentation.

Beyond data analysis, cognitive computing holds transformative potential for patient care, research, and 
healthcare operations in many areas, including RNA  sequencing16,17. Srivani et al.18 illustrated its pivotal role in 
patient-centric care, spotlighting its capability in predicting patient needs and shaping care plans, especially in 
managing chronic diseases. Similarly, Kumar et al.19 elaborated on system’s efficacy in adaptability in dynamic 
healthcare settings for predicting patient inflow, optimizing hospital resources, staffing, and bed allocation. 
Sathananthavathi and Indumathi showcased potential of retinal imaging  in20,21.  In20, the authors integrated 
cognitive systems with image processing for retinal vessel segmentation. Whereas  in21, the authors utilized cogni-
tive computing to discern anomalies in retinal images linked to diabetic retinopathy, highlighting the adaptive 
evolution of cognitive models for improved accuracy over time.

Deep learning techniques, especially CNNs, have made remarkable strides in medical imaging. With recent 
progress in CNN architectures, there has been a surge in precise image segmentation. For instance, Chen et al.22 
enhanced the U-Net structure tailored for retinal blood vessel segmentation by integrating with conventional 
image processing. Traditionally, vessel segmentation has utilized techniques like adaptive thresholding and 
morphological operations and notably, the outcomes were enhanced when integrated with machine learning 
techniques. Wang et al.23 demonstrated innovative use of cognitive systems with generative adversarial networks 
for medical image augmentation. Similarly, Nahiduzzaman et al.24 illustrated the benefits of integrating cognitive 
systems with CNNs in chest X-ray imaging, using cognition to understand anomalies and direct the CNNs more 
accurately. Furthermore, Shrma et al.25 spotlighted the advantages of integrating cognitive systems and neural 
architectures in ultrasound imagery, demonstrating cognitive systems’ potential in aiding deep learning models 
to discern ambiguous regions, and consequently honing segmentation and classification.

Image pre‑processing techniques
Image pre-processing techniques play prominent role in enhancing the quality of the images, which is crucial 
for accurate diagnosis and treatment  planning26,27. The normalization techniques enable the adjustment of pixel 
intensity of medical images to a standard range, resulting in improving the contrast and making the details 
more visible. This technique is useful in medical scenarios where images suffer from poor contrast mainly due 
to the imaging  environment28. It exploits linear or non-linear adjustments to improve images’ clarity for medical 
analysis  purposes29.

Color space conversion is another important pre-processing step in medical imaging. This step is important in 
scenarios where color information is crucial, such as in histology images or stained tissue  samples30. Converting 
images into appropriate color spaces (e.g., from RGB to the CIE Lab* color space) would enable medical profes-
sionals to study specific features more  effectively31. Moreover, matched filters is another technique applied in the 
medical imaging to enhance specific patterns, such as the detection of microcalcifications in mammograms or 
blood vessels in retinal images. Using the cross-correlation between the image and a predefined pattern, matched 
filters can suppress the noise and detect and spotlight areas of  interest32.

To identify and analyze structures of various sizes and orientations in medical images (e.g., such as blood 
vessels, neural pathways, or skeletal structures), multi-scale line detection technique cab be  applied33. For this 
purpose, this technique involves examining images at multiple scales or  resolutions34. This technique is useful 
in complex and critical medical scenarios such as detecting tumors and classifying  tissues35.

Convolutional neural networks
CNN is a class of deep learning algorithms designed to automatically and adaptively learn spatial hierarchies 
of features. Thus, CNN are suitable for analyzing visual  data36. U-Net is one of the most notable CNN architec-
tures for medical image  segmentation11. The U-Net is useful to achieve more accurate segmentations in case 
less training data is available. It is commonly used in fields, including magnetic resonance imaging, computed 
tomography, and microscopy. Other commonly used CNN architectures applied in the medical imaging domain 
include  SegNet37, V-Net38, and  DeepLab39.

Related work
Soares et al.40 developed a supervised technique for the segmentation of vessels. The technique exploits a two-
dimensional Gabor wavelet and a selection of morphological variables. The experiments results indicated that 
the technique was effective in separating the vessels from the backdrop. Staal et al.41 proposed an unsupervised 
and automated method for vessel segmentation. The method achieved reliable performance by utilizing a com-
bination of line detectors and the hysteresis thresholding of the vessel’s likelihood map.

Dash et al.42 present a method to enhance the performance of curvelet transform. To improve retinal blood 
vessel segmentation, the method enables the fusion of curvelet transform and the Jerman filter, while the Mean-
C threshold is used for the segmentation purpose. Further,  in43, the authors developed an automated method to 
extract the blood vessels from fundus. For this purpose, the method integrates discrete wavelet transform and 
Tyler Coye algorithm. Additionally, the methods exploits the gamma correction to enhance the images contrast. 
Furthermore,  in44, the authors proposed a model for enhancing abnormal retinal images containing low vessel 
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contrasts. For this purpose, the proposed approach exploits both a fast guided filter and a matched filter for 
improving the performance measures for vessel extraction.

The current state of art indicates that methods based on supervised learning currently have the best 
 performance8. Those methods are based on patches of real-size images and use CNNs and start with classifying 
each pixel of the image according to a fixed centered pixel  neighborhood11. Unsupervised learning algorithms 
represent another approach to segment retinal vessels. They are capable of automatically segmenting vessels 
without requiring annotated training data. Frangi vesselness filter is a well-known unsupervised learning method 
designed to enhance vessel-like structures in  images45. Fraz et al.46 developed an ensemble classification method 
that exploits a combination of boosting and random forests ML algorithms with a novel set of rotating invariant 
features. The method achieved an improved performance over the other state-of-the-art techniques. Recently, 
several deep learning-based methods have been introduced to address the issue of retinal vessel segmentation. 
Orlando et al.47 proposed deep learning based approach that exploits a U-Net architecture. The proposed model 
was trained end-to-end on a large dataset and showed superior performance compared to other techniques. 
Melinscak et al.48 developed an approach based on multi-scale line detection and used it for segmentation of 
retinal blood vessels. The authors validated their approach by conducting experiments on four publicly available 
datasets and reported competitive results.

Further, CNNs have been extensively applied in retinal blood vessel  segmentation49. They are designed to 
automatically and adaptively learn spatial hierarchies of features, making them exceptionally suited for image 
recognition tasks. Their architecture, which allows for the simultaneous examination of several scales, improves 
the detection of both small and large blood  vessels45. Furthermore, the FCNs have also been utilized for the same 
 purpose50. The main advantage of applying FCNs is that they support end-to-end and pixels-to-pixels learning 
without the need for patch extraction and selection. Consequently, this makes the segmentation process more 
 efficient10. The U-net architecture is specifically designed for biomedical image segmentation. This makes it one 
of the most successful implementations of  FCNs11. The U-net architecture consists of two paths where the first is a 
contracting path that capture the context. Whereas, the second is a symmetric expanding path that enables precise 
localization. Consequently, this unique architecture enables an effective retinal blood vessel segmentation process.

Moreover, methods based on the integration of deep learning and classical image processing techniques have 
also been proposed. For instance, Li et al.51 developed a framework that integrates CNNs and scale-space theory 
for blood vessel segmentation. Similarly, Zhang et al.52 introduced the LCU-Net, a novel low-cost U-Net based 
approach for the environmental microorganism image segmentation task. The approach extends and improves 
the traditional U-Net architecture by integrating inception and concatenate operations, which enables it to 
address the single receptive field’s limitations and high memory cost.  In53, the authors conducted a comprehensive 
review considering different techniques, including conventional multilayer perceptrons, convolutional neural 
networks, and visual transformers. The findings of the review highlights the critical role of neural networks in 
various applications, including environmental pollution control and disease prevention.

Chen et al.54 developed IL-MCAM, a framework for colorectal histopathology image classification. The frame-
work exploits interactive learning and multi-channel attention mechanism to enhance the images’ classifica-
tion accuracy. Li et al.55 conducted a comprehensive review of automated image analysis techniques. The study 
discusses the progression of ML techniques and their integration into whole-slide image analysis. Additionally, 
it outlines the developments and challenges in feature extraction, segmentation, and classification methods. 
Finally, the optimization of retinal blood vessel segmentation has recently been widely used in many  fields56,57. 
It also has been used for tuning the hyper-parameter of deep learning  algorithms36, which can further enhance 
the blood vessel model.

To summarize, although several approaches have been proposed to enable the automated retinal blood vessel 
segmentation, they often fall short in handling the intrinsic variability and complexity of retinal images. Many 
existing models lack the adaptability to accurately segment vessels of varying sizes and shapes, or they do not 
adequately address the issues of noise and fine structure preservation in the images. Moreover, the integration 
of advanced image processing techniques with deep learning methods has not been fully explored or optimized, 
leaving potential improvements in accuracy and efficiency untapped. The reliance on single-scale methods or 
non-adaptive techniques often results in suboptimal performance, particularly in the presence of pathologi-
cal changes or varied image qualities. Furthermore, while some models demonstrate decent performance on 
specific datasets, their generalizability across different datasets and under diverse imaging conditions remains 
a significant challenge. In light of these gaps, we propose the CoDLRBVS model, a novel hybrid approach that 
combines the strengths of image processing and deep learning. Our method addresses these shortcomings by 
introducing a more adaptable, robust, and precise segmentation solution, setting a new standard for accuracy 
and performance in retinal blood vessel segmentation.

CoDLRBVS approach
The CoDLRBVS introduces an innovative approach to improve the detection and segmentation of fine retinal 
vessels by integrating deep learning algorithms, precisely the U-Net architecture model, with various image 
processing techniques. These techniques include matched filter, multi-scale line detection, scale space, and 
morphological operations as shown in algorithm 1. While each method contributes distinct advantages, their 
combined utilization significantly influences the final output of the approach.

For instance, applying the matched filter significantly improves the visibility and contrast of blood vessel 
structures’ essential details by amplifying the visibility of the vessels’ patterns and enhancing their detectabil-
ity. The multi-scale line detection method allows the model to analyze the image at different scales. It ensures 
accurate detection and segmentation of vessels with various thicknesses that address the inherent diversity in 
vessel diameters. The U-Net model is designed explicitly for semantic segmentation tasks. Its encoder–decoder 
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architecture enables it to capture local and global contextual information, which contributes to accurately seg-
menting the blood vessels.

Additionally, the scale-space analysis allows the model to effectively capture the vessel structures at distinct 
scales, considering both vessel size variations and thickness. Ultimately, leveraging morphological techniques 
refines the segmented vessel map by eliminating noise, filling gaps, enhancing both the overall connectivity 
and smoothness of the segmented vessels. These methods improve the CoDLRBVS’s robustness against noise, 
anomalies, and image variations, which are well-known issues in medical images.

Algorithm 1.  Retinal blood vessel segmentation using CoDLRBVS model.
By seamlessly incorporating these techniques with cognitive computing attributes, there is a notable increase 

in the accuracy and robustness of blood vessel segmentation. Moreover, the approach exhibits enhanced resilience 
against common challenges in medical images, such as noise and anomalies. This human-centred integrated 
approach holds transformative potential across various medical domains, spanning disease diagnosis, monitor-
ing, surgical planning, and developing innovative treatment methodologies. Figure 1 illustrates the CoDLRBVS 
approach abstract diagram, while algorithm 1 shows the CoDLRBVS detailed steps.

The proposed approach involves three distinct phases; each phase comprises various steps as described below:

• Preprocessing phase: This phase consists of five steps, each one associated with specific techniques to preproc-
ess the retinal images and then use them in the segmentation phase, However, an illustration of the model 
preprocessing steps output result is shown in Fig. 2. The individual preprocessing steps are explained below: 

1. Initialize the environment parameters and load the medical images. Then, to ensure uniformity in 
feature range and have a common scale, each retinal image is preprocessed and normalized using Eq. 
(1). 

 where I is the original image, µ represent the mean pixels value, σ is the standard deviation, and Inorm 
represents the normalized image.

2. Perform the color space conversion to extract relevant channels that contain blood vessels.
3. Apply the matched filter technique, where the match filter bank is designed based on typical blood vessel 

profiles, such as line shapes of varying widths. The input image undergoes convolution with this filter, 
and the maximum response across the filter is computed for each pixel using Eqs. (2 and 3). To design a 
matched filter bank, let’s suppose F = {f1, f2, . . . , fN } be a set of N matched filters designed using blood 
vessel profiles. Convolve the input image using the filter bank; suppose R(i, j, k) represents the response 
of the k-th filter for pixel (i, j) in the convolved image as shown in Eq. (2). 

(1)Inorm =
I − µ

σ

(2)R(i, j, k) = Inorm ∗ fk(i, j)
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Figure 1.  The CoDLRBVS steps to segment blood small vessel in retinal images.

Figure 2.  Illustration of the model preprocessing steps output result.
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 where ∗ represent the convolution operation. Then, compute the maximum response M(i, j) for pixel 
(i, j) across the filter bank as shown in Eq. (3): 

 where k = 1 to N  . This process generates a “matched filter response” image, highlighting potential 
blood vessel locations.

4. Integrate a multi-scale line detection technique, such as a Hessian-based method or a Steerable filter, as 
shown in Eq. (4). The detections from each scale are combined into a “line detection response” image, 
which further helps identify blood vessel locations. Let’s suppose L(i, j, s) represent the line detection 
response at pixel (i, j) for scale s . 

 where LineDetection() denotes the line detection algorithm applied to the normalized image Inorm.
5. Create the scale-space representation of the image according to Eq. (5), by generating a series of images 

that represent the original image at various scales. These representations are combined to highlight 
blood vessels, enhancing the visibility of their structures. 

 where S = {S1, S2, . . . , SM} represents a set of M scale-space images representing the original image at 
different scales, and ScaleSpace() generates the m-th scale-space image for the normalized image Inorm.

• Segmentation phase: In this phase, we train the U-Net model with residual connections using the images 
generated from the prior steps, where the ground truth vessel segmentation is known. The U-Net model’s 
convolution operation helps the model recognize patterns and features indicative of blood vessels using Eq. 
(6). Incorporating the residual connections enhances the approach’s capacity to learn more complex features 
and representations of the data, including detecting small blood vessels. 

 where I ′ is the convolved image, I is the original image, K is the convolution kernel, and k is the size of the 
kernel. After completing the U-Net training process, we evaluate the model’s performance on unseen images 
using several metrics, including accuracy, precision, F1 measure, Kappa, and others. This evaluation offers 
valuable insights into the model’s ability to identify and segment retinal blood vessels accurately.

• Postprocessing phase: In this phase, we use morphological techniques to enhance the output of the segmenta-
tion obtained from the U-Net model ( V ), including removing noise from vessels or filling gaps to improve the 
quality and connectivity of the segmented vessels. Subsequently, the postprocessing stage involves applying 
a threshold to the final output to create a binary segmentation image, as shown in Eq. (7). This thresholding 
step transforms the segmented vessel probabilities into a binary map, classifying pixels as either vessel or 
non-vessel. 

 where Threshold() converts the pixel value V(i, j) to a binary value based on a predefined threshold.

Result analysis and experiment description
Datasets
We evaluated the CoDLRBVS approach in terms of performance and effectiveness using several metrics over 
widely known benchmark datasets for blood vessel segmentation, such as DRIVE (Digital Retinal Images for 
Vessel Extraction)  dataset58, CHASE_DB1  dataset59, High-Resolution Fundus (HRF) Image  Database2, STARE 
(STructured Analysis of the Retina)  dataset60, and the Retina Blood  Vessel61, Table 1 provides more details 
about the used datasets, such as the number of training and testing samples, image height and width. How-
ever, the DRIVE database contains 20 retinal images captured using a Canon CR5 camera in a 24-bit color 
space. Each image comes with expert annotations of vascular segmentation, serving as ground truth for per-
formance  evaluation58. Similarly, the CHASE_DB1 dataset offers 28 high-resolution images of multi-ethnic 

(3)M(i, j) = max
k

R(i, j, k)

(4)L(i, j, s) = LineDetection(Inorm, s)

(5)Sm(i, j) = ScaleSpace(Inorm,m)

(6)I ′x,y =

k∑

i=−k

k∑

j=−k

Ix+i,y+j · Ki,j

(7)B(i, j) = Threshold(V(i, j))

Table 1.  Overview of the compared with retina vessel segmentation datasets.

Dataset H × W Imgs Train Test

DRIVE58 584 × 565 40 20 20

STARE60 605 × 700 20 10 10

CHASE_DB159 960 × 999 28 20 8

Retina Blood  Vessel61 584 × 565 120 100 20

HRF2 2336 × 3504 45 30 15
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children’s retinas, each with two sets of manual segmentations, providing a rich ground for algorithm testing 
and  validation59. The HRF image database, known for its detailed imagery used in various comparative studies, 
is a valuable resource for algorithm  evaluation60. With its 20 retinal fundus images, the STARE dataset provides 
additional variance and challenges, including images with and without pathology, crucial for assessing the adapt-
ability and robustness of the segmentation  algorithm60. Further, the 100 retinal images  from61 offer additional 
challenges for retinal blood vessel segmentation, contributing significantly to developing and evaluating advanced 
segmentation  algorithms61.

Algorithm evaluation and discussion
The CoDLRBVS approach has been validated from different angles using various metrics across all earlier-
mentioned datasets, such as (1) the Jaccard index (Eq. 8), which evaluates the similarity between the predicted 
segmentation and the ground truth to give a clear understanding of the overlap between segmented and actual 
vessels. (2) The F1 score (Eq. 9) harmonizes precision and recall, reflecting the accuracy and thoroughness of 
covering vessel pixels. (3) Sensitivity (Eq. 10) is vital for ensuring no vessel regions are missed, significant in 
diagnostic contexts. (4) Precision (Eq. 11) is critical in clinical settings to minimize false positives and avoid 
misdiagnosis. (5) Accuracy (Eq. 12) reflects overall correctness, while (6) the Kappa coefficient (Eq. 13) provides a 
normalized measure of agreement between the model prediction and the ground truth. (7) Area under the curve 
(AUC) is essential for understanding trade-offs at various thresholds. (8) Specificity (Eq. 14) measures correct 
identification of non-vessel areas, and finally, (9) average frames per second (FPS) (Eq. 15) indicates computa-
tional efficiency, which is essential for real-time applications. Therefore, these metrics provide a comprehensive 
evaluation framework for our approach.

where J is the Jaccard index, A is the set of true positives, and B is the set of predicted positives.

where F1 is the F1 score, precision is the proportion of true positive predictions in all positive predictions, and 
recall is the proportion of true positive predictions in all actual positives.

where recall is the true positive rate, TP is the number of true positives, and FN is the number of false negatives.

where precision is the proportion of true positives in the predicted positive cases, TP is the number of true posi-
tives, and FP is the number of false positives.

where Acc. is the accuracy of the model, TP is the number of true positives, TN is the number of true negatives, 
FP is the number of false positives, and FN is the number of false negatives.

where κ is the Kappa coefficient, po is the relative observed agreement among raters, and pe is the hypothetical 
probability of chance agreement.

where specificity is the true negative rate, TN  is the number of true negatives, and FP is the number of false 
positives.

where FPS is the average frames per second, Total Frames is the total number of frames or images processed, 
and Total Time is the total time taken for processing.

Table 2 reports different performance metrics used to evaluate the CoDLRBVS approach across various reti-
nal image datasets, including DRIVE, CHASE, HRF, retinal blood vessel and STARE datasets. The results show 
that the proposed approach achieved a high accuracy of 0.9903% over the retinal blood vessel images dataset 
that contains the largest number of images, which is 100 images, and this is due to the fact that it was trained 
more than other datasets, and this indicates that training the model with more images results in more accurate 
results, further CoDLRBVS achieved an accuracy of 0.9629%, 0.9619%, 0.9581%, 0.9655% over DRIVE, CHASE, 

(8)J =
|A ∩ B|

|A ∪ B|

(9)F1 = 2×
Precision× Recall

Precision+ Recall

(10)Recall =
TP

TP + FN

(11)Precision =
TP

TP + FP

(12)Acc. =
TP + TN

TP + TN + FP + FN

(13)κ =
po − pe

1− pe

(14)Specificity =
TN

TN + FP

(15)FPS =
Total Frames

Total Time
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HRF, and STARE dataset respectively, underscore its effectiveness in accurately segmenting blood vessels. Such 
robustness across datasets suggests the CoDLRBVS’s generalizability and adaptability to different imaging con-
ditions and vessel structures. The results also show that the model achieved very good Precision results over all 
datasets, where it achieved 0.9301% on the Retinal Blood Vessel and close to or exceeding 0.9% on the other 
datasets, including 0.9080% on STARE, highlight the approach proficiency in identifying true positive pixels 
across varied datasets, reducing false positives significantly. The Sensitivity of the model remains consistently 
high, with 0.9927%, 0.9961%, 0.9954%, 0.9947%, 0.9909% over the retinal blood vessel, DRIVE, CHASE, HRF, 
and STARE dataset respectively, indicating the CoDLRBVS’s ability to detect the majority of actual vessel pixels, a 
testament to the U-Net’s feature-learning capabilities and the effectiveness of the scale space representation. fur-
ther the results in Table 2 show that the specificity has a wider variation with 0.7972% on the retinal blood vessel 
dataset, 0.8048% on DRIVE, lower values on CHASE_DB and HRF datasets, and a significantly higher 0.9708% 
on STARE, reflecting a challenge in distinguishing non-vessel regions across different datasets, which could be 
attributed to dataset-specific characteristics and noise factors. This metric’s variation underscores the need for 
dataset-specific adjustments to optimize the model’s performance. Moreover, CoDLRBVS achieves commend-
able F1 scores, indicating a balanced precision and recall, with the highest being 0.8473% on the DRIVE dataset 
and a close 0.8469% on STARE. The Jaccard index also demonstrates the model’s segmentation accuracy, with 
the highest value of 0.6820% on DRIVE and a comparable 0.7014% on STARE. The average frames per second 
(FPS) values, with the highest 0.966867% on DRIVE and 0.924556% on STARE, indicate the model’s efficiency, 
suggesting its potential for real-time applications. In addition, the integration of matched filter, multi-scale line 
detection, and U-Net, along with strategic post-processing, offers a comprehensive approach that caters to the 
nuances of retinal blood vessel segmentation. Figures 3, 4 , 5 and 6, shows the results of the vessel segmentation 
method from studied datasets. In all figures; (A) shows the original RGB image; (B) shows the ground truth 
images, which are manually segmented by experts; (C) shows the vessel segmentation results of the proposed 
model, highlighting the algorithm’s performance in accurately delineating blood vessels.

As it can be seen in Figs. 3 , 4, 5 and  6, that the resulted images (c) serves as a testament to the model’s pro-
ficiency in segmenting retinal blood vessels, exhibiting a high degree of detail with both central and peripheral 
vessels crisply outlined against the contrasting background. The continuity and uniformity of the vessel struc-
tures, mirroring the ground truth with notable precision, highlight the model’s capability to capture essential 
details necessary for accurate segmentation.

As it can be seen in Table 3, which illustrates the comparison results of CoDLRBVS performance with differ-
ent vessel segmentation methods using the DRIVE dataset. The proposed CoDLRBVS model demonstrates high 
sensitivity, with a score of 0.9961%, indicating its outperforming capability in correctly identifying retinal blood 
vessels. This metric is significantly higher than the other listed methods, which range between 0.64 and 0.74%, 
suggesting that CoDLRBVS is particularly effective at minimizing false negatives and reliably detecting even 
the most delicate vessels. However, while its accuracy is competitive at 0.9629%, indicating a high overall rate of 
correct predictions, its specificity is comparatively lower at 0.8048%. This lower specificity implies a higher rate 
of false positives, meaning the model might sometimes mistakenly identify non-vessel areas as vessels.

As it can be seen in Table 4, which displays the performance of the CoDLRBVS with other compared algo-
rithms over the STARE dataset, CoDLRBVS also exhibits outstanding sensitivity at 0.9909%, significantly higher 
than other methods, which range from approximately 0.6751 to 0.7769%. Furthermore, in terms of accuracy, 
CoDLRBVS performs well with a score of 0.9655%, suggesting that it generally makes correct predictions. This 
indicates that the model has reliable performance in segmenting retinal blood vessels. The model’s specificity 
is also high at 0.9708%, denoting its ability to identify non-vessel areas over the STARE dataset correctly. This 
specificity is competitively placed within the range of other methods, which mostly fall between 0.9550 and 
0.9819%. When comparing methods across the board, it’s evident that while many provide balanced performance, 
CoDLRBVS’s standout feature remains its exceptional sensitivity, making it a potentially valuable tool for medical 
imaging tasks where missing a small detail can lead to significant consequences.

The results in Tables 5 and 6 show that the CoDLRBVS model exhibits a very high sensitivity of 0.9954% 
and 0.9947% in both CHASE DB1 and HRF datasets respectively, whereas in term of accuracy, the CoDLRBVS 
model achieved 0.9619% and 0.9581% which is considered comparable with other models, where its values range 

Table 2.  CoDLRBVS model metric results over DRIVE, CHASE_DB, HRF, DRIVE retinal blood vessel, and 
STARE dataset.

Metric DRIVE CHASE_DB HRF Retinal blood vessel STARE

Jaccard 0.6820 0.5276 0.4713 0.6717 0.7014

F1 0.8473 0.6903 0.6372 0.7763 0.8469

Recall 0.8048 0.5568 0.5035 0.7972 0.9708

Precision 0.9699 0.9094 0.8888 0.9301 0.9080

Accuracy 0.9629 0.9619 0.9581 0.9903 0.9655

Kappa 0.8248 0.6713 0.6170 0.8055 0.8290

AUC 0.8904 0.7761 0.7491 0.8849 0.9308

Sensitivity 0.9961 0.9954 0.9947 0.9927 0.9909

Specificity 0.8048 0.5568 0.5035 0.7972 0.9708

Average FPS 0.9669 0.8179 0.8279 0.8383 0.9246
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from 0.94 to 0.97%. However, combining matched filters, multi-scale line detection, u-net architecture, scale 
space, and morphological techniques has contributed to robust feature recognition and precise vessel detection 
in CoDLRBVS, ensuring minimal false negatives. However, the CoDLRBVS model’s specificity is notably lower 
than other methods. While the model excels at detecting vessels (high sensitivity), it also tends to mark non-
vessel elements as vessels (lower specificity). This could be due to the nature of the dataset.

The proposed model, however, maintains high performance, demonstrating a balanced and robust approach 
to retinal vessel segmentation. This balanced performance is due to the integration of deep learning U net with 
various techniques, each contributing to different aspects of the segmentation of retinal blood vessels. whereas, 
the matched filter and multi-scale line detection techniques are used in the pre-processing stages of the model. 
The matched filter is designed to respond maximally to typical blood vessel profiles, enhancing the image’s vessels. 
multi-scale line detection, on the other hand, identifies vessels of varying widths across the image. Combining 
these two methods benefits the model due to the fact that both methods facilitate model sensitivity to the presence 
of vessels and adaptivity to their varying widths, where the single-scale or non-adaptive methods might miss.

Figure 3.  Illustration of retinal images (A), ground-truth (B) and output images after segmentation (C) over 
DRIVE dataset.
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Further, applying the U-Net architecture, a deep learning model, plays a crucial role in segmenting the blood 
vessels. Its ability to learn and extract high-level features from the retinal images contributes to the high sen-
sitivity of the CoDLRBVS hybrid model. The U-Net architecture, with its encoding and decoding pathways, is 
designed specifically for segmentation tasks, and it utilizes the spatial information in the image, which is crucial 
for precise segmentation. The U-Net’s ability to generalize and learn complex representations likely contributes 
to the CoDLRBVS hybrid model’s superior accuracy results.

Furthermore, the scale space representation technique helps handle the varying size of retinal blood vessels. It 
generates images representing the original image at different scales, which is particularly beneficial for capturing 
both larger vessels and smaller, more intricate vascular structures. This likely contributes to the model’s balanced 
performance in terms of sensitivity and specificity, as it helps ensure that vessels of all sizes are accounted for in 
the segmentation. Finally, the morphological techniques are applied in the post-processing stage to refine the 
segmentation. Morphological operations can remove noise (small false-positive detections) and fill in gaps in 
detected vessels (false negatives), leading to a cleaner and more accurate final segmentation. It is worth noting 
that it would be interesting to extend our research on a federated learning  scale85–87.

Conclusion
This paper presents CoDLRBVS, a pioneering cognitive-based deep learning model for medical image processing, 
namely retinal blood vessel segmentation. Our approach combines (1) a Matched Filter to detect segmentation 
in noisy data. It works by designing a filter that matches the shape of the signal being transmitted or received. (2) 
Multi-scale line detection, a technique to capture the vessels at different angles at that point. (3) U-Net architec-
ture, a deep learning semantic segmentation technique. (4) Scale space for handling images at different scales, 
suppressing fine-scale structures. Moreover, (5) morphological techniques extract features based on an image’s 
topographic surface. Our model demonstrates a remarkable balance across performance metrics, achieving 
notable mean accuracy of 96.7%, precision of 96.9%, sensitivity of 99.3%, and specificity of 80.4% across all of 
the studied datasets, positioning it as a strong contender among existing state-of-the-art methods. The model’s 
high specificity significantly mitigates false positives, which is vital for precise segmentation. Hence, the novelty 
of our approach lies in its balanced performance, avoiding the common trade-offs among sensitivity, specificity, 
and accuracy observed in other methods. This balance reflects the model’s robustness and the efficacy of integrat-
ing various techniques following the cognitive computing principles. Hence, CoDLRBVS improves the accuracy 
and efficiency of retinal image analysis and enhances the ability to detect and diagnose retinal diseases. Future 
work will broaden dataset testing to enhance our model’s versatility and incorporate cutting-edge techniques 
and architectures to refine its performance.

Figure 4.  Illustration of retinal images (A), ground-truth (B) and output images after segmentation (C) over 
HRF dataset.
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Figure 5.  Illustration of retinal images (A), ground-truth (B) and output images after segmentation (C) over 
CHASE dataset.
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Figure 6.  Illustration of retinal images (A), ground-truth (B) and output images after segmentation (C) over 
HRF dataset.

Table 3.  Performance of multiple vessel segmentation methods using the DRIVE dataset.

Method Sensitivity Accuracy Specificity

Niemeijer et al.62 0.6898 0.9417 0.9696

Martinez-Perez et al.63 0.7246 0.9344 0.9655

Ramlugun et al.64 0.6413 0.9341 0.9767

Fraz et al.4 0.7152 0.9430 0.9768

Soares et al.40 0.7230 0.9446 0.9762

You et al.65 0.7410 0.9434 0.9751

Marin et al.66 0.7067 0.9452 0.9801

Yali Zhao et al.67 0.7359 0.9418 0.9720

Staal et al.41 0.7194 0.9442 0.9773

Mendonca et al.68 0.7344 0.9452 0.9764

Zhang et al.69 0.7120 0.9382 0.9724

Li et al.70 0.7154 0.9343 0.9716

Fraz et al.46 0.7406 0.9480 0.9807

Ricci et al.71 – 0.9595 –

Proposed CoDLRBVS 0.9961 0.9629 0.8048
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Data availability
The data used in this study are available on the following websites: https:// paper swith code. com/ datas et/ drive-
https:// www. kaggle. com/ datas ets/ abdal lahwa gih/ retina- blood- vesselhttps:// www. kaggle. com/ datas ets/ prado 
sh123/ retin al- vessel- segme ntati on- combi nedhttps:// www. kaggle. com/ datas ets/ rasha sarha nalha rthi/ chase- db1.
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Table 4.  Comparison with existing retinal vessel segmentation methods using STARE dataset.

Method Sensitivity Accuracy Specificity

Martinez-Perez et al.63 0.7506 0.9410 0.9569

Fraz et al.4 0.7311 0.9442 0.9681

Marin et al.66 0.6944 0.9526 0.9819

Mendonca et al.68 0.6996 0.9440 0.9730

Staal et al.41 0.6970 0.9516 0.9810

You et al.65 0.7260 0.9497 0.9756

Hoover et al.60 0.6751 0.9267 0.9567

Yali Zhao et al.67 0.7769 0.9364 0.9550

Zhang et al.69 0.7171 0.9483 0.9753

Li et al.70 0.7191 0.9407 0.9687

Soares et al.40 0.7103 0.9480 0.9737

Fraz et al.46 0.7548 0.9534 0.9763

Ricci et al.71 – 0.9584 –

Proposed CoDLRBVS 0.9909 0.9655 0.9708

Table 5.  Comparison with existing retinal blood vessel segmentation methods using CHASE database.

Method Sensitivity (SE) Accuracy (ACC) Specificity (SP)

Human observer 0.74 – 0.97

Orlando et al.47 0.72 – 0.97

Karn et al.72 0.78 0.97 0.97

Zhang et al.73 0.77 0.96 0.98

Fraz et al.74 0.72 0.95 0.97

Roychowdhury et al.75 0.75 0.94 0.96

Fraz et al.12 0.72 0.94 0.97

Roychowdhury et al.76 0.72 0.95 0.98

Azzopardi et al.77 0.72 0.94 0.96

Chakraborti et al.78 0.53 0.93 0.95

Fan et al.79 0.65 0.95 0.97

Biswal et al.80 0.76 – 0.97

Proposed CoDLRBVS 0.9954 0.9619 0.5568

Table 6.  Blood vessel segmentation comparison on HRF database. Significant values are in [bold]. 
*Performance based on single database. **Performance based on cross database.

Method Sensitivity Accuracy Specificity

Jiang et al.81∗ 0.8010 0.9650 0.8010

Joshua82 0.8059 0.9688 0.9826

Orlando et al.47 0.7874 – 0.9584

Jiang et al.81∗∗ 0.7686 0.9662 0.9826

Zhou et al.83 0.8015 0.9544 0.9699

Odstrcilik et al.84 0.7794 – 0.9650

Proposed CoDLRBVS 0.9947 0.9581 0.5035

https://paperswithcode.com/dataset/drive
https://www.kaggle.com/datasets/abdallahwagih/retina-blood-vessel
https://www.kaggle.com/datasets/pradosh123/retinal-vessel-segmentation-combined
https://www.kaggle.com/datasets/pradosh123/retinal-vessel-segmentation-combined
https://www.kaggle.com/datasets/rashasarhanalharthi/chase-db1
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