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Abstract

Context: Software quality has a multi-faceted description encompassing sev-
eral quality attributes. Central to our efforts to enhance software quality is to
improve the quality of the source code. Poor source code quality impacts the
quality of the delivered product. Empirical studies have investigated how to
improve source code quality and how to quantify the source code improvement.
However, the reported evidence linking internal code structure information and
quality attributes observed by users is varied and, at times, conflicting. Fur-
thermore, there is a further need for research to improve source code quality by
understanding trends in feedback from code review comments.

Objective: This thesis contributes towards improving source code quality
and synthesizes metrics to measure improvement in source code quality. Hence,
our objectives are 1) To synthesize evidence of links between source code metrics
and external quality attributes, & identify source code metrics, and 2) To iden-
tify areas to improve source code quality by identifying recurring code quality
issues using the analysis of code review comments.

Method: We conducted a tertiary study to achieve the first objective, an
archival analysis and a case study to investigate the latter two objectives.

Results: To quantify source code quality improvement, we reported a com-
prehensive catalog of source code metrics and a small set of source code met-
rics consistently linked with maintainability, reliability, and security. To im-
prove source code quality using analysis of code review comments, our explored
methodology improves the state-of-the-art with interesting results.

Conclusions: The thesis provides a promising way to analyze themes in
code review comments. Researchers can use the source code metrics provided
to estimate these quality attributes reliably. In future work, we aim to derive a
software improvement checklist based on the analysis of trends in code review
comments.
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Chapter 1

Introduction

1.1 Overview

Software quality is a multidimensional concept involving different perspectives
impacting various entities, including the work product, process, and resource
[67]. While software quality is not defined formally [9], previous researchers
have broadly described it as “conformance to requirements” [7], or in terms
of “fitness for use” [8] in its given context. One of the work products during
the software development is source code. Poor source code quality may lead
to unwanted technical debt [16], difficulties in modifying existing source code,
and adding new features, thus leading to cost overruns or delays in delivery.
Improving source code quality with existing resources is a crucial initiative for
practitioners, which can be achieved through various interventions, e.g., writing
better software requirements [19], improving software architecture [2], conduct-
ing code reviews [162], incorporating improved testing methods [3], software
process improvements [4] among others.

Software improvement during the development phase is essential as it reduces
the chance of problems in source code released for later stages of development,
including testing, deployment, and delivery. Among the existing practices to im-
prove source code quality, peer code review is one of the vital quality assurance
steps in software development [149, 161] where developers and code reviewers
discuss the source code quality of the submitted code changes. The feedback
given by code reviewers, called code review comments, contains a wealth of in-
formation addressing aspects of source code quality as experienced developers
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are aware of multiple essential elements of the project [148, 162, 200]. Their
feedback goes beyond the capabilities of current static analysis tools, which
have been reported to produce high false negatives [198, 199]. Beller et al. [159]
observed that among the issues fixed during the code review, 75% of the issues
related to the maintainability of the source code. In contrast, 25% of the is-
sues discussed related to improving functionality issues. Similarly, Mäntyla et
al. [155] manually analyzed discussions during code review and reported that
approximately 75% of the defects highlighted in code review discussions related
to the maintainability of the source code.

However, the wealth of information produced during the code review is not
exploited further to benefit the project with regard to creating software im-
provement opportunities. Predominantly, the reviewer feedback is usually only
utilized once. As reviewers may point out similar issues to the same or different
developers, identifying such prevalent issues can be helpful, e.g., to propose pre-
ventive measures and find systematic improvements [153]. The categorization of
code review comments to analyze common trends in review feedback that may
lead to software improvement is mainly unexplored. Furthermore, manual cat-
egorization is infeasible due to the large number of changes submitted for code
review. Practitioners, therefore, often have to rely on their subjective judgment
of what they perceive as prevalent code quality issues and, thus, what, in their
opinion, are the required improvements. To the best of our knowledge, only a
few studies [152, 153, 156] have explored the automated categorization of issues
in code review comments and investigated their evolution [170]. By studying and
categorizing issues discussed in the code review comments, project managers can
observe meaningful themes frequently highlighted by the code reviewers in code
review comments and use them as the basis for improving software development.

Quantifying the software improvement derived from the analysis of code re-
view comments is vital to underscore their effectiveness and show that such
methodology may improve source code quality. Source code metrics objectively
assess source code quality by measuring internal quality attributes to estimate
external quality attributes Ochodek et al. [36], Nuñez-Varela et al. [117]. Mea-
suring the quality of the source code helps take preventive or corrective steps to
improve the source code quality, aid the management in predicting the quality
of future releases [67], and evaluate the impact of software improvement initia-
tives or interventions. To reliably measure the potential software improvements
using analysis of code review comments on source code quality, researchers must
select source code metrics with consistent evidence of their link with external
quality attributes.
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Existing studies have investigated how poor source code structure, e.g., com-
plicated code flow or dependency among classes, negatively impacts the main-
tainability of source code [18] and may indicate the possibility of post-release
software defects [17, 141]. However, such results vary from context to context
Ochodek et al. [36], and the relationship between internal quality attributes,
measured by source code metrics, and external quality attributes is unclear.
Various existing systematic studies have characterized empirical studies inves-
tigating the relationship between source code metrics and external quality at-
tributes, and there is a need to provide an overview of source code metrics
reported in the systematic studies and characterize the relationship between
source code metrics and external quality attributes.

Thus, the licentiate thesis aims to explore potential ways to improve source
code quality using the common themes highlighted in the analysis of code review
comments and quantify source code quality. The overview of the thesis is shown
in Figure 1.1.

To identify source code metrics and characterize the relationship between
source code metrics and external quality attributes, we conduct a tertiary study
reported in Chapters 2 and 3. In Chapter 2, we analyze the reported strengths of
evidence between source code metrics, the measured internal quality attributes,
and external quality attributes and their metrics. The outcome shows moder-
ate strengths of evidence for certain metrics that have a consistent link with
external quality attributes, including maintainability and reliability. However,
there is no consistent link between source code metrics and their relationship
with external quality attributes for security, functional suitability, performance
efficacy, and usability. Chapter 3 reports a catalog of 423 source code metrics
reported in 52 secondary studies. The outcome shows that coupling, the de-
gree of inter-relatedness of code structure, is the most often measured internal
quality attribute without executing the source code. The catalog also included
complete descriptions of the source code metrics.

As mentioned, the automatic categorization of code review comments for
software improvement opportunities has largely been unexplored with only a
handful of studies on the subject [152, 153, 156, 170]. However, these studies
[152, 153, 156] require initial training datasets, which can be resource-intensive.
To our knowledge, Wen et al. [170] focused on using conventional topic model-
ing methods to categorize code review comments without the need for an initial
training dataset. However, traditional topic modeling is unsuitable for short
texts [150]. Several topic modeling methods optimized for short text have been
proposed but have yet to be used to analyze code review comments. Hence, our
first step is conducting an exploratory study (Chapter 4) to utilize a suitable



4 Introduction

topic model specifically designed for deriving themes in short texts. We analyze
code review comments from three open-source systems and study the evolution
of identified themes over 12 years. We also propose several improvements in the
adopted methodology from the state-of-the-art [170] for using topic models for
code review analysis. The outcome of this study is an improved method com-
pared to the state-of-the-art in the analysis and categorization of code review
comments.

Currently, practitioners must rely on their subjective assessment of the
prevalent code quality issues in the repositories they are reviewing. We believe
practitioners can benefit from the availability of automated data-driven methods
to identify prevalent code quality issues in their code repositories. To support
the practitioners, we designed a case study (Chapter 5) using the approach de-
scribed in Chapter 4 as our first step. In Chapter 5, we further investigated
how to support practitioners in identifying and profiling prevalent code quality
issues in code review comments. We explore if it helps to identify and profile
code review comments from abandoned and merged changes to demonstrate the
approach’s utility.

Our future work builds on Chapters 4 and 5. Both chapters utilize open-
source data without measuring or quantifying the software improvement achieved.
Furthermore, practitioners’ perceptions and the industrial relevance of the ap-
proach are yet to be evaluated. Chapters 4 and 5 leave the following questions
unanswered: 1) How effective are software improvement initiatives derived from
analyzing code review comments in improving software code quality? 2) Do
practitioners find analysis of code review comments relevant to software quality-
related challenges? With the help of answers to these questions and the findings
from the chapters mentioned above, we aim to achieve the overall goal of the
Ph.D. thesis, that is, to measure and improve the source code quality using anal-
ysis of code review comments through the introduction of relevant and focused
software improvements.

1.2 Background

1.2.1 Source code quality
According to Software Engineering Body of Knowledge [9], software quality is
not defined formally. As stated in Section 1.1, previous researchers have broadly
described it as “conformance to requirements” [7], or in terms of “fitness for use”
[8] in its given context. The literature further differentiates software quality by
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entity in focus. Fenton et al. [55] classify the measured software entities into
three broad categories, i.e., the project, the process, and the product. In this
thesis, we focus on the software quality of the software product. The ISO-
IEC 25010:2011 [70] describes software product quality as the “capability of the
software product to satisfy stated and implied needs under specified conditions.”
The ISO/IEC 25010:2011 [70] further describes the software product’s quality in
terms of eight main quality attributes or characteristics in a hierarchical format
with 32 sub-attributes. The eight main quality attributes defined by ISO/IEC-
25010:2011 [70] are maintainability, reliability, security, functional suitability,
performance efficacy, and usability, among others, for the entity of interest.

When focusing on source code as the entity of interest, we describe source
code quality in terms of product quality attributes proposed in ISO/IEC 25010:2011
[70]. We extend the analogy Boehm et al. [52] used to describe source code
quality. We ascribe source code to have high quality when it possesses the
eight product quality attributes, and the absence of product quality attributes
suggests source code to have low quality.

Several software models, in addition to the ISO/IEC 205010:2011 [70], have
also been previously proposed [72, 74, 75], which differ in the quality attributes
considered. Rashidi et al. [77] provide a good overview and comparison between
the quality attributes considered by several quality models.

1.2.2 Source code quality measurement
Once software product quality is characterized into quality attributes, measuring
the quality attributes reliably and objectively to support decision-making for
quality management purposes and establish quality benchmarks is essential.
Fenton et al. [55] categorize software quality attributes into internal software
quality attributes and external quality attributes.

Internal quality attributes of the source code relate to source code character-
istics without accounting for the execution environment. Examples of internal
quality attributes include the size of the source code, complexity, coupling, co-
hesion, polymorphism, and inheritance. Intuitively, modules with large sizes,
which are complex and have many dependencies on other modules, are difficult
to maintain.

Source code metrics are one method to measure the software’s internal qual-
ity attributes, and several source code metrics have been proposed over the
years [50, 185, 186]. One of the earliest-used source code metrics is Lines of
Code (LOC), which has been used since the late 1960’s [20]. Other source
code metrics widely used since the early days of software development include



6 Introduction

McCabe’s Cyclomatic Complexity [186] and Halstead Software Science Metrics
[185], which were well suited to procedural programming languages. The intro-
duction of object-oriented programming led to the development of new source
code metrics, including the Chidamber & Kemerer metrics [50] and Li & Henry
metrics [129]. Source code metrics form the basis for several important indi-
cators of source code quality, such as heuristics for code smell detection [56],
recommending refactoring candidates [21], and assessment of degree of technical
debt [22]. However, certain source code metrics, e.g., size metrics, have been
observed to be sensitive in different contexts [36]. Various source code measure-
ment tools are commercially available, such as PMD1 and SonarQube2, to aid
practitioners.

In contrast, external quality attributes relate to how the source code behaves
in a specific environment. Similarly, external quality attributes can be measured
using external metrics, such as the number of defects found or changes made
during a given time. Since external metrics are often harder to gather and
are only available once the source code is executed in its desired environment,
assessing external quality attributes using internal quality attributes and their
measurement has interested researchers.

1.2.3 Source code quality improvement
In this section, we present a high-level overview of some of the interventions
that have been investigated to aid in improving source code quality. Intuitively,
we consider such interventions to complement each other.

Existing studies have reported a positive impact of several ways to improve
aspects of source code quality, including well-written and traceable require-
ments [27, 28], designing flexible architecture [29], improving the coverage and
efficiency of tests [30, 31, 32], and incorporating improved software development
process [33].

This thesis focuses on one of the software quality improvement area during
the development cycle, which exploits existing resources to achieve the potential
software quality improvement and is discussed below.

Modern code review

One of the processes known to be effective in enhancing software product quality
is peer code review or code inspections [11]. The concept of code inspections,

1https://pmd.github.io/
2https://www.sonarsource.com/products/sonarqube/

https://pmd.github.io/
https://www.sonarsource.com/products/sonarqube/
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proposed by Fagan et al. [10], involved extended group review meetings to
discuss design choices and implementation details. SWEBOK [9] describes the
process to be sampling-based, led by a moderator with established rule-based
criteria. SWEBOK [190] also describes a similar yet less formal developer-led
walkthrough approach as an alternative to code inspections.

While researchers have shown that code inspections and walkthroughs have
improved software product quality by identifying defects early [12], they can be
time-consuming and expensive regarding the resources required. Over the last
decade, practitioners have adopted modern code review, a lightweight approach
to peer code review. Bird et al. [148] define a modern code review as “(1) infor-
mal (in contrast to Fagan-style), (2) tool-based, and that (3) occurs regularly
in practice”. Nowadays, modern code review is widely adopted in the industry
[13, 14, 155, 161] and has been empirically demonstrated to improve software
quality and as a medium of knowledge sharing among developers [15].

Existing literature has also discussed practices that reduce the effectiveness
of the modern code review process. Doğan et al. [23] have reported a taxonomy
of practices that reduce the effectiveness of the modern code review process from
the literature and multiple code review smells reported in eight open source
systems. Common code review smells reported [23] include poor reviews due to
large pull requests and code reviews that take longer than expected. Practices
at large companies with established code review cultures, such as Google, have
devised recommendations to limit the size of the change set to ten files for a
code review and also recommend prioritized feedback on change sets submitted
for review [24].

As the modern code review process is a collaborative process involving dis-
cussions among developers, Fatima et al. [25] have also highlighted individual,
personnel, and social factors that impact the modern code review process and
categorized nine individual factors, four social factors, and three personnel fac-
tors.

Researchers have also systematically studied the topic of modern code re-
view. Davila et al. [167] have summarized the research on modern code review
and categorized research into foundational, proposal, and evaluatory studies.
Badampudi et al. [26] systematically analyzed the researched themes in stud-
ies on modern code review and reported the alignment between research and
practitioners’ perceptions regarding the explored themes. Their survey results
observed that 92% of the 25 practitioners agree that it is essential to investigate
the impact of the code review process on source code quality.

As mentioned in Section 1.1, existing studies [155, 159, 168] have manu-
ally classified the defects found during the code review and the issues fixed
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by the code review process, thus supporting the hypothesis that code review
repositories, code review comments in particular, contain a wealth of relevant
information regarding source code quality improvement that may be further
exploited to benefit the project.

1.2.4 Natural language processing
Natural language processing (NLP) is a discipline that aims to understand data
in natural language or free text data and is considered one of the practical ap-
proaches for performing analytics in software engineering [154]. Over the years,
machine learning-based approaches have been predominantly used for under-
standing text available in natural languages. The machine learning approaches
can be broadly classified into supervised methods, where the ground truth is
known, and unsupervised techniques, where the ground truth is unknown. Es-
tablishing the ground truth by manually analyzing code review comments can be
time-intensive in our context. One of the promising unsupervised NLP methods
is the Latent Dirichlet Allocation (LDA) method [147]. LDA models the entire
corpus as a list of documents, where each document may be related to a topic.
Each document, in turn, is modeled as a set of words. LDA hypothesizes that
topics can be modeled as a group of words formed from a vocabulary of all the
words in the given set of documents. Thus, text classification tasks, i.e., which
document contains which topic, can be performed using a stochastic approach
of iteratively assigning documents to topics based on the words contained in the
document, using a prior set of topic-to-document probability (alpha) and word-
to-document (beta) probability. The choice of the number of topics to look for,
N, and prior probabilities need to be carefully selected for a meaningful analysis
[176]. Over the years, several variants of the traditional LDA, a topic modeling
method, have been proposed for specific tasks such as topic models optimized
for short-texts [150].

Using NLP methods, we assume that similar issues in source code are dis-
cussed using similar vocabulary when discussed by different reviewers. Thus,
in some instances, topic modeling may perform poorly when similar issues are
scattered over various topics, thus limiting the interpretability and effectiveness
of the approach. Additionally, the choice of the number of topics plays a signifi-
cant role in deriving valuable results. We discuss measures to reduce the impact
of these issues in Chapter 4.
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Figure 1.1: Thesis overview (Goal, objective, research questions, contributions)
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1.3 Research gaps and contribution
In this section, we discuss the research gaps and contributions of the different
chapters in the thesis. The thesis overview is presented in Figure 1.1.

1.3.1 Chapter 2
On the topic of software measurement, existing secondary studies have investi-
gated the relationship between source code metrics and software maintainability
[61, 113, 114, 115]. Jabagangwe et al. [67] focused on studying the link between
source code metrics with two external quality attributes, maintainability and
reliability, for object-oriented systems. Briand et al. [68] focused on the relation-
ship between fault-proneness and source code metrics. Similarly, several quality
standards, such as the ISO-IEC 25010:2011 [70], have provided a framework to
measure the quality of software products.

Research gap 1: While there are many secondary studies on the subject,
the evidence on the effectiveness of source code metrics to assess or predict
external quality attributes is varied and, at times, conflicting. Thus, there is
a need to systematically synthesize the evidence reported in secondary studies
for source code metrics linked with external quality attributes. We conducted
a tertiary study to categorize the strength of evidence of links between source
code metrics and external quality attributes from secondary studies.

Contribution 1: This thesis contributes by systematically synthesizing ev-
idence of links between source code metrics and external quality attributes. The
thesis further categorizes the strength of the collected evidence while consider-
ing various types of evidence. It has no limits to any particular programming
paradigm or specific to any quality attribute.

1.3.2 Chapter 3
On the topic of software measurement, several systematic studies have synthe-
sized source code metrics reported in the literature. Nunez et al. [117] mapped
300 source code metrics from four programming paradigms reported from stud-
ies between 2010 and 2015. Saraiva et al. [115] reported 67 aspect-oriented
source code metrics to measure software maintainability. Hernandez-Gonzalez
et al. [124] summarized 26 design-level source code metrics from 15 primary
studies.

Research gap 1: These studies have specified limited scope and thus do not
provide a holistic classification of the source code metrics along with their de-
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scriptions. A catalog of source code metrics reported in the systematic secondary
studies is yet to be provided, along with their definitions and the measured in-
ternal quality attribute. Hence, we conducted a tertiary study to categorize
source code metrics reported in secondary studies in software measurement.

Contribution 1: This thesis contributes by providing an extensive catalog
of source code metrics with their descriptions and the internal quality attribute
they measure with no limitation on programming paradigm and internal or
external quality attributes.

1.3.3 Chapter 4
Analyzing common themes in code review comments and their evolution may
provide meaningful insights that can lead to further software improvement.
Existing studies have classified code review comments using machine learning
methods [34, 35, 152, 153, 156]. Recently, Wen et al. [170] used traditional
topic modeling to study common themes in code review comments and their
evolution. However, more promising alternatives to traditional topic modeling
methods are yet to be explored to study the common themes in code review
comments and their evolution.

Research gap 2: It still needs to be determined how short-text topic mod-
eling can provide better results than traditional topic modeling methods to
analyze common themes in code review comments. Hence, we conducted an
exploratory study to evaluate the performance of short-text topic modeling em-
pirically and compare it with the performance of traditional topic modeling
methods.

Contribution 2: This thesis empirically evaluates four improvement sug-
gestions in analyzing common themes in code review comments and topic evolu-
tion. The thesis compares short-text and traditional topic modeling and further
highlights improvement suggestions regarding the number of topic selections.

1.3.4 Chapter 5
While the exploratory study in Chapter 4 provides several improvement sug-
gestions to the state-of-the-art [170], the study does not outline how to identify
and profile prevalent code quality issues using the stated approach from CRCs.
Furthermore, in Chapter 4, topic names were assigned using the software knowl-
edge of two authors without the involvement of a domain expert, and no qual-
ity assessment of the derived themes was performed. Based on their extensive
knowledge of the project, a domain expert may provide more informed names to
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themes, highlight the potential usefulness of the findings, and provide reflections
on the quality of the derived themes.

Research gap 3: How to derive themes from code review comments to
identify recurring code quality issues is yet to be performed. The analysis is
yet to be used to create a profile for abandoned and merged changes. We have
yet to conduct a subjective evaluation of the quality of themes derived from the
approach by a domain expert. Furthermore, gathering empirical evidence to
indicate the potential usefulness of the approach for the state of practice is yet
to be accomplished.

Contribution 3: The thesis outlines an automation approach to identify
and profile recurring code quality issues from abandoned and merged changes.
The thesis empirically evaluates the quality of the themes derived from the
approach proposed in Chapter 4. The thesis also demonstrates the potential
avenues where the proposed approach can contribute to software improvement
initiatives.

1.4 Research method

1.4.1 Tertiary literature review (Chapter 2, Chapter 3)
Chapters 2 and 3 are the outcomes of the same tertiary literature study, which is
considered a systematic way of reviewing existing secondary literature studies.
Chapter 2 synthesizes evidence of the link between internal quality attributes,
source code metrics, and external quality attributes. In Chapter 3, the ter-
tiary literature review focused on providing an extensive catalog of source code
metrics reported in secondary studies, their descriptions, and classifications.
We consider the research method appropriate for reviewing several existing sec-
ondary studies and consolidating their findings. We followed the guidelines by
Kitchenham et al. [62] to design the tertiary study.

To identify relevant secondary studies, we searched three databases, namely,
Scopus, ACM, and IEEE. The search string used during the search consisted of
three clusters related to the artifact, i.e., source code, quality, and secondary
studies, along with their synonyms. Two authors independently formulated a
quasi-gold standard (QGS) to validate the search results. We used pre-defined
inclusion and exclusion criteria to select relevant secondary studies. The data
extraction form was piloted in light of research questions before complete data
extraction. One author performed post hoc data validation on randomly selected
secondary studies. The quality assessment criteria based on York University
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Center for Reviews and Dissemination (CRD)3 was used to exclude low-quality
secondary studies.

To synthesize the results of evidence collected from included secondary stud-
ies, we utilized a "strength of evidence" criteria (see Chapter 2, Section 3.5.4)
that consists of 11 factors, including the quality DARE score, the number of
primary studies reporting the result, and the level of validation of source code
metrics reported by the secondary studies. The synthesis method’s result pro-
vides evidence of the link between source code metrics and external quality
attributes.

1.4.2 Archival study (Chapter 4)

In Chapter 4, we conducted an archival study [1] to gain an understanding
of how we can improve the design and implementation choices of analyzing
themes within code review comments and their evolution using the approach
by Wen et al. [170] as our foundation. The archival study provides design
flexibility while retrospectively evaluating the various design improvements and
their outcome. The context of our study was open-source systems. We used
scripts written in Python that utilized the REST API 4 for data collection
from projects on Gerrit5 that host code review-related data for open-source
systems. Using code review data from open-source systems provides us with a
rich data source to validate our improvement suggestions and results. The open-
source systems selected are from different application domains, with developers
with varied levels of expertise contributing to the open-source systems. The
OpenStack projects, Nova and Neutron, provide storage and network solutions
and have been previously studied related to code review [171, 172]. Similarly,
LibreOffice, an open-source office suite, has been extensively studied in several
studies [173, 174]. In Chapter 4, we analyzed 209,166 code review comments.
We quantitatively analyzed topic stability and coherence to select a suitable
number of topics, using a method similar to thematic coding to name the topics
in Chapter 4.

3The Centre for Reviews and Dissemination (CRD) suggests five questions to determine
whether to include a systematic review in their Database of Abstracts of Reviews of Effects
(DARE). https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp

4https://gerrit-review.googlesource.com/Documentation/rest-api.html
5https://gerrit-review.googlesource.com

https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp
https://gerrit-review.googlesource.com/Documentation/rest-api.html
https://gerrit-review.googlesource.com
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1.4.3 Case study (Chapter 5)

In Chapter 5, we performed an exploratory case study [54] to investigate the case
of one open-source system, JabRef, to support the practitioners; we wanted to
assess how to derive the common themes from code review comments to identify
and profile code quality issues. We selected JabRef as it has been extensively
analyzed in literature [117, 197], and a domain expert from JabRef agreed to aid
in assigning representative themes to the topics. Similar to the archival study
in Chapter 4, we used Python scripts implementing the REST API for data
collection from GitHub6 and analyzed 5,560 code review comments belonging
to three major versions of JabRef. We designed a structured questionnaire
and a separate document to collect the reflections from the practitioner. We
further demonstrated how to create profiles of common themes identified from
abandoned and merged changes.

1.5 Overview of chapters

1.5.1 Chapter 2: A tertiary study on links between source
code metrics and external quality attributes

Several secondary studies have focused on reporting evidence for the link be-
tween source code metrics and internal and external quality attributes. Such sec-
ondary studies focus on specific external quality attributes, e.g., fault-proneness
[105], or limit their scope to particular programming paradigms, e.g., object-
oriented systems [67]. However, no tertiary studies exist that systematically
collect and synthesize the links between source code metrics and external qual-
ity attributes from secondary studies.

From 15 secondary studies, our main findings show that source code metrics
are extensively linked with maintainability and reliability for object-oriented
systems. At the same time, other external quality attributes, such as security,
have received less focus in the secondary studies included. We also observed
that only a small set of source code metrics showed consistent results with
maintainability and reliability. In contrast, several source code metrics show no
consistent relationship with external quality attributes.

6https://docs.github.com/en/rest/overview

https://docs.github.com/en/rest/overview
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1.5.2 Chapter 3: A catalog of source code metrics – a
tertiary study

Since software measurement is an essential field of study, several studies have
reported source code metrics proposed over the years to measure internal quality
attributes of the source code [115, 117]. However, previous studies have not
categorized source code metrics reported from secondary studies on source code
and related domains and their descriptions in a comprehensive catalog.

From 52 secondary studies, we reported 423 source code metrics together
with their descriptions, and we categorized them based on the internal quality
attributes measured. We further analyzed the unit of code used by the source
code metrics to measure internal quality attributes. Additionally, we also re-
ported the scope of the measurement made. In the source code metrics reported
in the included secondary studies, function is the predominantly used unit of
code, while more than half of the reported source code metrics utilized class as
the scope of software measurements.

1.5.3 Chapter 4: On potential improvements in the anal-
ysis of the evolution of themes in code review com-
ments

Existing studies have aimed to classify the code review comments provided by
the code reviewers into meaningful themes. Previous studies have preferred
manual categorization [159], while others have evaluated automated natural
language processing for the categorization tasks with interesting results [153].
Other studies [34, 35, 152] have also considered using supervised machine learn-
ing to train models using multiple features, e.g., code snippets and source code
metrics, in addition to code review comments to categorize code review com-
ments and code changes automatically. To the best of our knowledge, only one
study [170] used traditional topic modeling, one of the techniques for NLP, to
study the topic evolution of common themes in code review comments, and none
of the studies have used topic modeling methods specific to short-text. Hence,
we conducted an archival study to evaluate four improvement suggestions to
improve further the methodology for studying topic evolution in code review
comments.

Section 1.4.2 mentioned that we utilized code review comments from three
open-source systems. One of the open-source systems is shared with the state-
of-the-art study on topic evolution [170]. Also, we used both traditional topic
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modeling and short-text topic modeling in our analysis to compare the results
of our improvement suggestions.

The study’s main findings are: (1) short-text modeling provides improved
topic stability [176] compared to traditional topic modeling across all three
open-source systems, thus can be further evaluated as a promising candidate to
study topic evolution of themes within code review comments; (2) two-stage se-
lection of the number of topics, N, provides a slight improvement in the average
topic stability compared to single-stage selection used previously; (3) dividing
the entire duration into multiple-windows may improve the analysis of common
themes in code review comments; (4) topic coherence can used in tandem with
topic stability when selecting suitable choice of number of topics, N. The study,
however, did not empirically evaluate the impact of dividing the entire dura-
tion into multiple windows on the analysis of common themes in code review
comments and only used a single-window approach as used by state-of-the-art
[170].

1.5.4 Chapter 5: Identifying prevalent quality issues in
code changes by analyzing reviewers’ feedback

As a follow-up to Chapter 4 (see Section 1.5.3), which presents an improved
method for analyzing common themes, we performed a case study where we
aim to support practitioners by utilizing the approach proposed in Chapter 4 to
identify and profile recurring code quality issues in code review comments. To
demonstrate the approach, we utilized code review comments from abandoned
and merged changes by using separate topic models for each set of code changes.
Existing studies have manually analyzed code review comments for reasons of
rejected and abandoned pull requests [6, 182]. However, they have not consid-
ered topic modeling to identify and profile recurring quality issues code changes
in abandoned and merged changes. Furthermore, the quality of the identified
themes has yet to be evaluated.

In Chapter 5, we identified different common themes in abandoned and
merged changes, which broadly relate to the maintainability of the source code.
The results from Chapter 5 demonstrate that the approach can be used to iden-
tify recurring code quality issues in code review comments. Furthermore, we
observed unique code quality profiles in abandoned and merged code changes.
Chapter 5 further outlines steps that can be used to implement a similar ap-
proach to other potential applications. Regarding the approach’s usefulness
for the state-of-the-practice, the identified themes can help improve “how-to”
guidelines for developers and aid in directing discussions in developer forums.
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However, further research is needed to improve the quality of the identified
themes.

1.6 Synthesis and future work
In Chapter 2, we noted that source code metrics showed consistent results with
external quality attributes, i.e., maintainability and reliability. Only a small set
of source code metrics were related to security, and in our included secondary
studies, we did not come across source code metrics linked with other external
quality attributes described in ISO/IEC 25010:2011 [70].

Two of the four themes discussed in Chapter 4, component-level logic and
inheritance, are also related to the maintainability of source code, which is con-
sistent with previous taxonomies [155, 159]. The concurrency theme can be
associated with performance-related issues. However, we found no themes re-
lated to security and other external quality attributes discussed in ISO/IEC
25010:2011 [70]. Similarly, in Chapter 5, the ten common themes from aban-
doned and merged changes broadly relate to testability, maintainability, and
code quality. The common themes in Chapters 4 and 5, performed on differ-
ent datasets, relate to source code quality; however, their potential for software
improvement is still to be evaluated.

The overall focus of the planned doctoral thesis is to understand the subject
of analyzing common themes in code review comments, operationalizing analy-
sis of common themes for software improvement, and quantifying the software
improvement achieved. Hence, future work is built upon the findings of the
studies included in this licentiate thesis.

A fundamental question that needs to be answered is whether there is an
industrial need to analyze code review comments and whether practitioners see
value in tools or dashboards that enable such an analysis. While Wen et al.’s
[170] analysis is motivated by an industrial need and the practitioner’s response
in Chapter 5 is largely positive for the analysis, the relevance for this analysis
may be specifically evaluated with more practitioners from the industry as a
basis for future work.

An interesting follow-up question to Chapters 4 and 5 studies concerns the
effectiveness of the software improvement initiatives from common themes iden-
tified in code review comments in industrial settings. Here, we refer to quan-
titatively measuring the approach’s effectiveness using source code metrics and
qualitatively evaluating practitioners’ perceptions regarding the proposed soft-
ware improvements. While the initial qualitative evaluation in Chapter 5 sug-
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gests the proposed methodology is promising, it needs to be improved, and
the results need to be generalized in industrial datasets. Among the poten-
tial applications of the proposed can be the possible optimization of existing
software improvement checklists, improvement of the onboarding information,
and focused discussion on current quality trends based on the common themes
identified in code review comments.

As mentioned in Section 1.2.3, the quality of the code review process may
impact the results we hope to achieve in the above-mentioned planned studies
and the studies included in the licentiate thesis. The presence of code review
smells may impact the common themes derived from the analysis performed
and may be less effective in deriving software improvement initiatives. Thus,
supporting and improving the code review process can improve the software
improvement initiatives we aim to derive from the proposed approach. One
method to enhance the code review process is to provide data-driven feedback
to the code reviewer regarding the historical defects in the files under review.
Currently, code reviewers only utilize their perception of historical defects to
look for functionality-related issues in the files under review. For this study,
we generate a list of fixed historical defects and the impacted files changed to
fix these defects. This list is used to support the code reviewer when reviewing
a new code change containing a file from the generated list. We hypothesize
knowing the defect history of the file under review may aid the code reviewer in
critically analyzing the submitted change for similar defects, thus improving the
code review practice. We also collect feedback from practitioners who use this
intervention and whether it helps them in improving the code review practice.
We further analyze whether there is a reduction in the code review smells from
the intervention we introduced.

In the above outline of future research, we aim to answer the following
research question in future studies:

RQ 1: What is the perception of practitioners regarding the proposed approach
to analyze common themes in code review comments to improve software
development?

RQ 2: How effective are the potential quality improvements derived from the
analysis of code review comments?

RQ 3: How can we support the code review practice by leveraging the defect
history of files?

We intend to plan a survey to assess practitioners’ perceptions regarding the
usability or practical implications of the proposed approach to analyze common
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themes in code review comments and understand the code changes using the
common themes. We aim to present the approach and results from Chapters
4 and 5 to demonstrate the effectiveness of the approach, inquire about the
possible manner in which the approach can used in the industrial setting, and
the perceived software improvement derived from the approach.

To answer the research question regarding the quality of the common themes
identified, we plan to conduct a case study where common themes in code re-
view comments are identified in industrial datasets, followed by interviews with
developers where they evaluate the quality of the common themes identified.
While the information available in code review comments is broadly known to
developers, summarizing it into a representative "to-do" list may aid in improv-
ing the overall development experience. The envisaged approach from Chapters
4 and 5 above can be used after regular intervals to update the improvement
suggestions, thus enhancing the chances that the identified software improve-
ments remain relevant to the developers as the common themes in code review
comments evolve.

The overall contribution of the future work is to (1) establish the need for
the automation approach analyzing code review comments, (2) Evaluate the
effectiveness of the software improvement initiatives derived from the analysis
of code review comments, and (3) support code reviewers with historical defects
data thus improving the code review practice and improving source code quality.

Challenges in future work

As mentioned in Section 1.2.3, the analysis of common themes relies on the
quality of code review comments. In the scenario that the project under evalua-
tion suffers from shallow reviews or any of the code review smells mentioned in
[23], we believe that the methodology proposed can reflect such a trend. Thus,
the procedure can be utilized as a data-driven approach to evaluate the quality
of the code review process and the effectiveness of the code reviews. In the case
of smaller repositories, there is a possibility of overrepresenting common themes
from a small set of code reviewers.

The development of an effective, usable tool, such as a bot service or a
dashboard, needs close interaction with practitioners to be able to capture their
specific expectations and needs from the analysis method and be able to provide
relevant common themes information in a manner that is both intuitive and
valuable.

In the planned survey, we run the risk of biasing the practitioners’ opinions
by discussing the planned tool before acquiring their feedback. Thus, such a
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survey needs to focus on the needs of practitioners while reducing the chances
of such biases. This can be both challenging and may limit the implications of
the results.

1.7 Conclusion
This licentiate thesis aims to identify and synthesize the relationship between
source code metrics and external quality attributes and explore ways to im-
prove source code quality by analyzing themes in code review. We used a
tertiary study methodology (Chapters 2 and 3) to identify and synthesize the
relationship between source code metrics and external quality attributes from
secondary studies. In Chapters 4 and 5, we used an archival and case study
approach to investigate the common themes in code review comments from
open-source systems.

Our main findings from the tertiary study show that a limited set of met-
rics from the source code metrics reported in the secondary studies report a
consistent relationship with a limited set of external quality attributes, mainly
maintainability and reliability. Thus, the source code metrics with consistent
links with maintainability and reliability may be more beneficial for software
measurement purposes than other source code metrics in the literature. Chap-
ter 4 extends the work of Wen et al. [170] and provides specific design and
analysis improvement suggestions, including a more appropriate choice of topic
modeling method compared to state-of-the-art [170]. In Chapter 5, we contin-
ued the archival analysis of common themes in code review comments and used
separate topic models to understand abandoned and merged code changes us-
ing common themes identified. We observed that common themes in abandoned
and merged code changes discuss issues broadly related to maintainability, fo-
cusing on improvement suggestions in merged changes related to writing shorter
code and using built-in tests. In contrast, abandoned changes discussed issues
related to code formatting and Java code quality.

In future work, we intend to develop a tool to automate the analysis of the
common themes in code review comments. The quality of the common themes
identified from code review comments and the practical usability of the approach
is another aspect yet to be evaluated as part of future work where we intend to
involve practitioners from the industry. Lastly, we plan to evaluate the possible
software improvements derived from analyzing the common themes identified.
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2.1 Abstract

Context: Several secondary studies have investigated the relationship between
internal quality attributes, source code metrics and external quality attributes.
Sometimes they have contradictory results.
Objective: We synthesize evidence of the link between internal quality attributes,
source code metrics and external quality attributes along with the efficacy of
the prediction models used.
Method: We conducted a tertiary review to identify, evaluate and synthesize
secondary studies. We used several characteristics of secondary studies as indi-
cators for the strength of evidence and considered them when synthesizing the
results.
Results: From 711 secondary studies, we identified 15 secondary studies that
have investigated the link between source code and external quality. Our results
show : (1) primarily, the focus has been on object-oriented systems, (2) main-
tainability and reliability are most often linked to internal quality attributes
and source code metrics, with only one secondary study reporting evidence for
security, (3) only a small set of complexity, coupling, and size-related source
code metrics report a consistent positive link with maintainability and reliabil-
ity, and (4) group method of data handling (GMDH) based prediction models
have performed better than other prediction models for maintainability predic-
tion.
Conclusions: Based on our results, lines of code, coupling, complexity and the
cohesion metrics from Chidamber & Kemerer (CK) metrics are good indicators
of maintainability with consistent evidence from high and moderate-quality sec-
ondary studies. Similarly, four CK metrics related to coupling, complexity and
cohesion are good indicators of reliability, while inheritance and certain cohesion
metrics show no consistent evidence of links to maintainability and reliability.
Further empirical studies are needed to explore the link between internal quality
attributes, source code metrics and other external quality attributes, including
functionality, portability, and usability. The results will help researchers and
practitioners understand the body of knowledge on the subject and identify fu-
ture research directions.
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2.2 Introduction
Quality evaluation of source code artifacts such as test code and source code pro-
duced during development helps in identifying future risks and judging how well
the software system will perform in use. Software quality evaluation is a context
dependent and multidimensional concept [63]. Depending on the context and
relevant perspective of quality, various measurement methods are utilised. Sev-
eral definitions of software quality have been proposed in the literature. IEEE
defines software quality as “the degree to which a system, component, or process
meets specified requirements and customer or user needs or expectations” [121].
Software quality is often described as a set of properties possessed by the soft-
ware itself. The presence or absence of these properties helps differentiate levels
of software quality.

Similarly, several quality models have been proposed that define the prop-
erties of software using different terminologies into a set of factors, attributes,
or characteristics, e.g., McCall et al. [65], Boehm et al. [52], Dromey [66] and
ISO/IEC 25010:2011 [70] (see Section 2.3.1). While the models refer to similar
basic properties, they may differ on how the properties are inter-linked, along
with the terminology used to refer to these properties. Some researchers have
used quality characteristics [110] while others preferred quality attributes [99]
when describing properties of quality. Considering that more secondary studies
use quality attributes to refer to quality factors, we use the same terminology
for consistency.

Internal quality attributes of the product relate solely to the product without
considering the environment of the product. On the other hand, external quality
attributes are described as properties of product behavior in relation to the
product’s environment [55, 64]. In the context of our tertiary study, the entity
of interest is software source code. Internal quality attributes of source code
can be assessed using code level metrics (e.g., lines of code) without executing
the code. External quality attributes, such as how code behaves in a given
environment or platform, can be measured using external metrics (e.g., number
of defects), which are only available after execution. Assessing or predicting
external quality attributes of software using internal quality attributes through
source code metrics helps us measure product quality during development which
can be invaluable considering the corrective costs related to post-deployment
defects. The internal and external product attributes are classified in Figure
2.1 along with examples of external metrics and source code metrics.

The subject of using source code metrics to assess external quality attributes
has been studied in various empirical studies [58, 59, 60]. Similarly, a large
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e.g. Number of function points

e.g. Mean time to repair

e.g. Number of defects

e.g. Coupling between objects

Figure 2.1: Classification of internal and external code quality attributes, ac-
cording to Fenton [55]
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number of secondary studies discuss utilising source code metrics as indicators
of external quality attributes [61, 68, 113, 115]. While there are many secondary
studies on the subject, the evidence on the effectiveness of source code metrics
to assess or predict external quality attributes is varied and at times conflicting.
We aim to synthesize the evidence reported in secondary studies and summarise
the source code metrics that have been linked with external quality attributes.

The remainder of the paper has the following structure. Section 2.3 presents
the related works in the field. Section 2.4 discusses the methodology used while
Section 2.8 discusses the threats to validity, followed by Section 2.5 on conduct-
ing the review. Results and analysis of the study are covered in Section 2.6 while
Section 2.7 discusses the implications of the research. Section 2.9 concludes the
study along with potential future work.

2.3 Related work
This section discusses four themes of related work for this study: relevant sec-
ondary studies on source code quality, software quality models, code quality
models, and closely related tertiary studies.

2.3.1 Secondary studies on source code quality
Several secondary studies discuss source code quality in the context of soft-
ware maintainability. The ISO/IEC 25010:2011 defines maintainability as one
of eight top-level quality attributes 1. Baldassarre et al. [61] present the results
from 28 primary studies focusing on software models used in the context of soft-
ware maintainability. Riaz et al. [113] reviewed 15 primary studies on software
maintainability prediction using source code metrics. Abílio et al. [114] review
11 primary studies that focus on feature-oriented and aspect-oriented metrics
that aid in measuring software maintainability. Saraiva et al. [115] provide a
catalog of 570 maintainability metrics for object-oriented systems. Malhotra
et al. [116] synthesizes 96 primary studies focusing on software maintainability
prediction in the early stages of development. Burrows et al. [111] review 12
primary studies that use coupling metrics as an indicator of maintainability in
the context of aspect-oriented programming. Nuñez et al. [117] provide a re-
view of the current state of object-oriented metrics. Briand et al. [68] show that
fault proneness of software may be predicted using size, coupling, and complex-

1ISO/IEC 25010:2011 refers to the same as quality characteristics.
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ity metrics. We evaluate and synthesize the varying claims and evidence in the
secondary studies linking source code metrics and external quality attributes.

2.3.2 Software quality models
The ISO/IEC 25010:2011 [70] defines the quality of software in terms of its
attributes in a revised version of the previously established ISO/IEC 9126 [69]
standard. International standards are important and common reference models
to ascertain quality parameters that are relevant to a broad set of products for
concerned stakeholders. The ISO/IEC 25010:2011 standard [70] defines software
quality in terms of eight main quality attributes, further elaborated with 32 sub-
attributes.

Several other quality models have been proposed. Grady et al. [74] have
identified FURPS or functionality, usability, reliability, performance, and sup-
portability as key attributes of quality. Soto et al. [75] define quality charac-
teristics for open-source systems as maintainability, reliability, portability, op-
erability, performance, functional suitability, security, and compatibility. Mayr
et al. [72] propose a model to operationalize the ISO-9126 quality model with
336 code level metrics for embedded software. Another attempt at bridging
the gap between ISO-9126 and the needs of the industry is presented by Manet
[73] which introduces the concept of practices or guidelines to observe a group
of metrics for better assessment of underlying code. An elaborate discussion
on several quality models along with analysis on overlapping attributes is pre-
sented by Rashidi et al. [77] and highlight that quality models differ in terms
of definitions of attributes and assessment methods.

2.3.3 Code quality models
An alternative model that supplements ISO/IEC 25010:2011 for code quality is
provided by the Consortium of Information and Software Quality (CISQ) [71].
It measures source code quality in terms of four quality attributes: reliability,
maintainability, security, and performance efficiency. Each of the quality at-
tribute is evaluated in terms of a set of properties called common weaknesses
and measured in terms of aggregated weaknesses or violations.

SQALE [76] evaluates code in term of its testability, reliability, changeabil-
ity, efficiency, security, maintainability, portability, reusability and is used by
metrics tools such as SonarQube 2.

2https://www.sonarqube.org/

https://www.sonarqube.org/
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2.3.4 Tertiary studies on related topics
The tertiary study by Lacerda et al. [56] discusses code quality from the per-
spective of code smells and code refactoring. The study analyses 40 systematic
studies and shows that code smells affect six of the 32 sub-attributes of quality,
as defined by the ISO/IEC 205010:2011. The affected attributes include under-
standability, maintainability, testability, complexity, functionality, and reusabil-
ity. The paper lists duplicated code or duplicated clones as the most reported
code smell. Source code metrics based methods are reported as one of the com-
mon methods to detect the top ten code smells. The report also summarizes
popular code smell detection and refactoring tools that may aid practitioners.
The study, however, does not investigate the link between source code metrics
and external attributes and which source code metrics are good indicators of
external quality based on the evidence in the secondary studies.

In this tertiary study, we aim to synthesize the evidence from secondary stud-
ies linking external quality attributes with source code metrics. The synthesis
includes both qualitative and quantitative evidence reported in the secondary
studies. Additionally, we also synthesize claims reported in secondary studies on
the link between external quality attributes and source code metrics. Further-
more, we evaluate the evidence with strength of evidence criterion that takes
into consideration several characteristics of the secondary studies. However, for
this study, we exclude secondary studies that only report the use of source code
metrics to assess external quality attributes. To the best of our knowledge,
there are no tertiary studies that link source code metrics with external quality
attributes reported in secondary studies.

2.4 Methodology
In this tertiary study, we pose and answer the following overarching research
question using the guidelines by Kitchenham et al. [62]:
What is the current state-of-the-literature in terms of internal quality
attributes and source code metrics that have been linked with external
quality attributes and external metrics? A significant number of secondary
studies exist on source code quality. Therefore, we answer this research question
by identifying, evaluating and synthesizing such secondary studies to answer the
following specific questions:

RQ1: What are the characteristics of the secondary studies that link internal
quality attributes and source code metrics with external quality attributes?
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RQ2: What is the efficacy of the relationship between internal quality attributes
and source code metrics with external quality attributes and external met-
rics?

RQ3: What is the efficacy of the models that use source code metrics to predict
external quality attributes?

In RQ1, we aim to cover the characteristics of the secondary studies, the
years covered by the secondary study, the aims of the secondary studies, the
type of systems, the size of systems, and the programming paradigm studied.
In RQ2, we aim to provide a comprehensive evaluation of the qualitative and
quantitative evidence-based links that associate internal quality attributes and
their metrics with various external quality attributes and their metrics. In
RQ3, we consider whether particular prediction models are better than others
in predicting external quality attributes using source code metrics.

2.4.1 Search strategy

This section presents the strategy used for searching relevant secondary studies
and formulating the search string. The search is designed to retrieve secondary
studies that report evidence linking source code metrics with external quality
attributes. In order to collect as many relevant secondary studies as possible, we
preferred a broader search strategy to collect various forms of evidence. In this
phase, we have not differentiated between secondary studies that only report
usage of source code metrics and those that report evidence.

Keyword-based search

We used keyword-based [45, 62] search in one indexing (i.e., Scopus) and two
publisher databases (IEEE Xplore and ACM digital library) as recommended
by Petersen et al. [57]. IEEE and ACM publish the most important journals
and conferences in the software engineering field [82, 83]. Moreover, Scopus is
considered as one of the largest indexing services covering papers from ACM,
IEEE, Springer, Wiley and Elsevier [48, 119].
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String construction

We used keywords and synonyms from ISO/IEC 25010:2011 [70], related key-
words from a known set of papers (see online3), and our domain knowledge.
The search string used in the study has the following three clusters of keywords:

Artifact: code, software program, software product, software application, soft-
ware system, object-oriented, aspect-oriented, feature-oriented.

Quality: quality, smell*, pattern, functional suitability, performance, efficiency,
compatibility, usability, reliability, security, maintainability, portability,
analyzability, modifiability, testability, compliance, stability, comprehen-
sion, understandability, understanding, maintenance, modularity, reusabil-
ity, changeability, evolvability, modification, evolution, readability, met-
ric*, measur*, indicator, refactoring

Systematic secondary study: systematic review, systematic literature re-
view, systematic map, systematic mapping, tertiary study, tertiary re-
view, mapping study, multivocal literature review, multivocal literature
mapping.

The search string was formed by combining the above sub-strings with a
Boolean AND operator as depicted online6. We did not consider secondary
studies shorter than eight pages as they are unlikely to contain necessary details
related to evidence between source code metrics and external quality attributes.
We restricted ourselves to papers published in peer-reviewed conferences, and
journals to report the evidence widely accepted by the research community. We
executed the search string in February 2021.

Moreover, in the final set of publications considered for selection, we added
the publications from the validation and known sets of publications (see Section
2.4.1), and the secondary studies identified by Lacerda et al. [56].

Search validation

To evaluate the effectiveness of the search string, we used a set of secondary
studies (see online6) as a quasi-gold standard (QGS) [62]. Two authors, not
involved in the design of the search string, independently formulated the vali-
dation set which comprised 11 secondary studies [49].

Our search strategy achieved a recall of 73% which is moderate. The recall
could further be improved with additional keywords. However, this led to an

3https://doi.org/10.5281/zenodo.7933498

https://doi.org/10.5281/zenodo.7933498
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Table 2.1: Inclusion/exclusion criteria used in the tertiary study

Inclusion Criteria
C0 Publications in English language and with length of at least eight pages
C1 Peer-reviewed workshop, journal or conference publications
C2 Publications claiming to have systematically studied available literature, i.e.,

systematic literature studies (SLRs or SMSs) or multivocal literature studies
(MLRs, MLMs)

C3 Papers that identify, define or measure internal quality attributes or determine
levels of code quality (e.g., work on quality measurement or code smells)

C4 Papers that relate code metrics/quality attributes/code refactoring/code smells
to external quality attributes

Exclusion Criteria
C5 Publications that are about only external quality attributes of software produc-

t/system/service, or about the quality of other artifacts like defect reports, test
code, or test cases

increase in the number of results that was impractical. Moreover, as we have
supplemented the keyword-based search with relevant secondary studies from
the tertiary studies by Lacerda et al. [56], we decided not to make this change.

2.4.2 Selection process
This section discusses the steps of the selection process.

Selection criteria

To identify relevant papers from the search results, we used the criteria listed
in Table 2.1. Papers fulfilling the boolean expression (C0 AND C1 AND C2
AND (C3 OR C4)) were selected for full-text reading. In unclear cases, we were
inclusive, i.e., when there were indications that the full-text of a paper might
contain information fulfilling C3 or C4, we retained the paper for the next phase.
Papers that did not fulfil C3 or C4 but fulfilled C5 were excluded.

Preliminary selection

Before applying topic specific selection criteria, the first author excluded publi-
cations with less than eight pages and not written in English.

Selection based on title and abstract

To check the objectivity of the criteria and whether we have a shared under-
standing of it, we performed a pilot round of the selection process [62, 78]. The
piloting step involved all four authors. 12 randomly selected papers from the
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Table 2.2: Decision rules in selection strategy based on Ali and Petersen [78]

Reviewer 2
Relevant Maybe Irrelevant

Reviewer 1
Relevant Include Include Resolve with discussion
Maybe Include Include Exclude

Irrelevant Resolve with discussion Exclude Exclude

search results were assessed independently by all authors as relevant, irrelevant
or maybe relevant. Cohen’s Kappa measure of inter-rater agreement was used
to measure the level of agreement between authors. We aimed for an inter-rater
agreement above 0.61 since it is considered a substantial agreement in literature
[80, 81].

Any disagreements during piloting provide an opportunity of reviewing or
updating the selection criteria in an iterative manner [57]. We resolved all
disagreements through discussion and referring back to the selection criteria.

Selection based on adaptive reading

As stated in Section 2.4.2, we have been inclusive when the titles and abstracts
have been insufficient to conclude the relevance of a paper. To deal with such
papers in an efficient manner, we have used a modified adaptive reading method
[79]. We first read the research questions of the secondary study to know more
about its aims and objectives, followed by the introduction and conclusion sec-
tions to decide its relevance to our study. The selection criteria listed in Section
2.4.2 were used to ascertain the relevance. Any papers excluded during this pro-
cess were reviewed by the second author to reduce the likelihood of excluding a
relevant paper.

Selection based on full-text reading

In this step, the full-text of the papers was read to extract the information
required to answer the research questions. During this step, an explicit attempt
was made to identify overlapping papers [46], i.e., multiple papers reporting the
same or extended version of a study.
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Table 2.3: Data extraction traceability with research questions

Research question Data Extracted

RQ1 What are the
characteristics of the
secondary studies that
link internal quality at-
tributes and source code
metrics with external
quality attributes?

– Metadata: (author, title, publication venues, publication date)
– Aims: (research questions of the secondary study)
– Search: (time period covered in the search, databases used).
– Code quality attribute that are the secondary study’s focus:
(from the research questions)
– Type of software system reported by the secondary study
– Programming paradigm reported by the secondary study
– Application domain considered by the secondary study
– Software size reported by the secondary study
– Type of research method used in secondary studies
– Quality of the secondary study: selection criteria, search cover-
age, quality assessment, study description and synthesis

RQ2: What is the effi-
cacy of the relationship
between internal qual-
ity attributes and source
code metrics with ex-
ternal quality attributes
and external metrics?

– Name of external quality attribute/sub-attribute
– Name and description of the external metric
– Linked to which internal attribute
– Name of source code metrics used to measure the external at-
tribute
– Description or definition of the source code metrics
– Validation status of the source code metrics
– Number of primary studies reporting the link between source
code metrics and external quality attributes
– Evidence for the reported link (e.g., claims, correlation results,
prediction results)

RQ3: What is the effi-
cacy of the models that
use source code metrics
to predict external qual-
ity attributes?

– Models used for prediction of external quality attributes
– Accuracy of the prediction models
– Datasets used for validation
– Source code metrics used for prediction

2.4.3 Data extraction

Table 2.3 presents the data extraction form and a mapping of the data to re-
spective research questions.

Piloting of data extraction

A piloting of the data extraction form was done to assess its reliability and
completeness. The first and third author independently extracted the data
from a randomly selected secondary study from the validation set to reduce the
chance of selecting a secondary study that lacks sufficient data to validate the
data extraction form. Any differences were resolved through a discussion.
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Data extraction validation

After the complete data extraction, six secondary studies were randomly selected
for validation of the extracted data by the third author. Due to the laborious
nature of extracting multiple entries of measures and metrics from secondary
studies, it was decided to mark the relevant section/tables for internal/external
quality attributes, and reported source code metrics.

2.4.4 Quality assessment of the secondary studies
The five DARE4 questions for the quality assessment of systematic reviews in
healthcare have been widely used in software engineering research [44]. For this
tertiary study, the criteria proposed by Budgen et al. [53] to answer the five
DARE questions were used (see Table 2.19 in the appendix).

Piloting of the quality assessment criteria

The quality assessment form was piloted on two randomly selected secondary
studies from our sample by the first and fourth authors.

Quality assessment validation

The first author performed the quality assessment for all included secondary
studies. Six secondary studies were randomly selected for validation by the
fourth author.

As recommended by Kitchenham et al. [62], the quality assessment score
can be utilized to remove low-quality secondary studies. This approach has
been used by other tertiary studies such as Hoda et al. [118], Barros-Justo et
al. [119] and Curcio et al. [120]. Inspired by [118, 120], we removed secondary
studies that score ≤ 1.5 (of 5), i.e., removed the papers that answered “no” to
at least two questions and scored “partial” (0.5) on other questions.

The quality DARE score of a secondary study is also used during synthesis
of results as an indicator of strength of evidence (see Section 2.4.5 and Ta-
ble 2.5). The DARE score of a secondary study is classified as high, medium
or low using the suggestion by Curcio et al. [120]. To critically appraise the
quality assessment performed by the included secondary studies, we categorized

4The Centre for Reviews and Dissemination (CRD) suggests five questions to determine
whether to include a systematic review in their Database of Abstracts of Reviews of Effects
(DARE). https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp accessed on: April 17, 2022

https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp
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the quality assessment questions used in those secondary studies. The cate-
gorized quality assessment questions primarly assess the quality of reporting.
However, focusing on methodological issues during critical quality appraisal is
more beneficial [43, 44]. More recent proposals, like QAISER [47] for appraising
systematic reviews, operationalize such assessments by going beyond reporting
quality and assessing the risk of bias. For each included secondary study, we
calculate an additional quality assessment score besides the DARE score. This
additional quality assessment score is computed as follows: we count the number
of categorized quality assessment questions used by the secondary study.

2.4.5 Collation process: attributes & metrics
This section reports the methodology used when collating extracted data related
to internal attributes, external metrics, and source code metrics, along with the
strength of evidence.

Attributes and metrics

The external quality attributes linked to the source code metrics are based on
the information available in the secondary study regarding the external metric
or dependent variable. Similarly, if reported by the study, the internal quality
attribute is extracted. In the case where a secondary study has not assigned
any internal quality attribute, and the source code metric belongs to a well-
known metric suite, we then assign the internal quality attribute based on the
description of the metric. If the metric is not part of a well-known suite, we
then attempt to extract the description from the primary study quoted by the
secondary study.

Relationship indicators quality attributes and source code metrics

The secondary studies report different types and levels of evidence when linking
source code metrics to external quality attributes. We mapped the different lev-
els of evidence reported in secondary studies as “++”, “+”, “0”, “-”, “--” and
“unclear”. For the variety (e.g. correlation results, prediction accuracy results)
of evidence reported, our interpret “++” to ’strong positive relationship’, “+”
as ’positive relationship’, “0” as ’insignificant relationship’, “-” as ’negative
relationship’, “--” as ’strong negative relationship’ and “unclear” as ’unclear
relationship’ (see Table 2.4). Different types of evidence include explana-
tory secondary studies (i.e., studies predicting external quality attributes using
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Table 2.4: Labels used indicate a relationship between external quality at-
tributes and source code metrics

Assigned
label

Evidence reported by secondary study

Exploratory secondary studies

++ Strong positive correlation (with or without significance levels reported)
Strong claims of positive relation

“+” Positive correlation (significance levels reported)
Positive correlation (no significance levels reported)
Claims of positive relation

"0"
Insignificant results (significance levels reported)
Insignificant correlation (no significance levels reported)
Claims of insignificant relation

"-"
Negative correlation (significance levels reported)
Negative correlation (no significance levels reported)
Claims of negative relation

“--”
Strong negative correlation (significance levels reported)
Strong negative correlation (no significance levels reported)
Strong claims of negative relation

"Unclear"
Unclear results (significance levels reported)
Unclear results (no significance levels reported)
Claims of unclear relation

Explanatory studies

“+” Accuracy measures (e.g., TPR, FPR, Mean ARE, AUC) reported by secondary study as
successful predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study as good predictors
using [122, 123]

“0” Accuracy measures reported by secondary study as insignificant predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study as insignificant pre-
dictors using [122, 123]

“-” Accuracy measures reported by secondary study as unsuccessful predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study as unsuccessful pre-
dictors using [122, 123]

“Unclear” Accuracy measures reported by secondary study as unclear predictors
Accuracy measures (e.g., MMRE) interpreted by our tertiary study as unclear predictors
using [122, 123]

source code metrics) report accuracy measures, while exploratory secondary
studies (i.e., studies investigating the relationship between external quality at-
tributes and source code metrics) report correlation co-coefficients or claims of
relationship.

Double counting

Double counting can occur during results aggregation in tertiary studies when
the result from the same primary study is reported by more than one secondary
study and is counted more than once. If more than one secondary study reports
the evidence of a link between source code metric and external quality attribute
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used, we also investigate if there is a risk of double counting. Thus, we consider
whether these secondary studies share any primary studies when reporting their
results. While processing the degree of overlap, we only considered overlap in
primary studies that are used to report results in the secondary studies (thus
if a primary study is found in more than one secondary study, but only one
secondary study utilises it as a source for its results while the others consider it
as reference is not considered an overlap).

In case there is no overlap, we report “No overlap.” We note the primary
study title, the author, and the year if overlap exists. We match these details
within the other secondary study to see whether the other secondary study also
uses results from the same primary study. If this is true, then based on how
the secondary study results are presented, we try to remove the overlap before
reporting the results (by counting results only once in the overlapped primary
studies). If this is possible, we adjust the result to count it only once and report
“X PS, Resolved” where X represents the number of removed studies. In case
this is not possible, we report the overlap present and use it as a factor to
downgrade the strength of evidence (see section 2.4.5).

Strength of evidence

To indicate the strength of evidence for the relationship between external quality
attributes and source code metrics discussed in the previous sections, we consid-
ered twelve factors: (1) the DARE quality score of the secondary study, (2) the
aggregate number of primary studies (within the secondary studies) reporting
the stated link between source code metric and external quality attribute, (3)
whether the secondary studies have reported and described the external met-
ric to measure the external quality attribute, (4) the degree of overlap among
secondary studies reporting the same result, (5) the additional quality assess-
ment score calculated in Subsection 2.4.4, (6) whether the secondary studies
reported the source code metrics used as validated, (7) whether the secondary
studies have provided a replication package or reported the extracted data in the
annexure, (8) whether the authors have explicitly reported any conflict of inter-
est, (9) whether secondary studies reporting correlations results have reported
if their primary studies have adjusted the results for using multiple statistical
tests. We consider three additional criteria for prediction-focused secondary
studies in addition to the eight criteria, (10) whether unbiased or unskewed
evaluation measures were used to report the quantitative evidence in secondary
studies, (11) whether the secondary studies that focus on fault-proneness or de-
fect prediction reported normalization by the size of modules in their primary
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Table 2.5: Strength of evidence criteria

Strength of
evidence

Secondary study DARE
score

AQAS* score PS in result Reported
external
metrics

Number of
“Yes” to criteria
6 to 12

Very High At least one high quality
secondary study

AQAS >= 10 PS >= 25 Yes >= 2 Yes

High
At least one high quality
secondary study

AQAS < 10 PS >= 25 No >= 2 Yes

At least one high quality
secondary study

AQAS < 10 PS >= 25 No < 2 Yes

At least one high quality
secondary study

AQAS < 10 10 < PS < 25 Yes >= 2 Yes

Moderate
At least one high quality
secondary study

AQAS < 10 PS >= 25 No < 2 Yes

At least one high quality
secondary study

AQAS < 10 10 < PS < 25 No >= 2 Yes

At least one high quality
secondary study

AQAS < 10 10 < PS < 25 Yes < 2 Yes

At least one high quality
secondary study

AQAS < 10 PS <= 10 Yes >= 2 Yes

Low
At least one high quality
secondary study

AQAS < 10 10 < PS < 25 No < 2 Yes

At least 1 high quality
secondary study

AQAS < 10 PS <= 10 No >= 2 Yes

One high or medium
quality secondary study

AQAS < 10 PS <= 10 No < 2 Yes

Very Low One high or medium
quality secondary study

AQAS < 10 PS <= 10 No < 2 Yes

AQAS*:Additional quality assessment score

studies, and (12) for secondary studies that focus on prediction, if the data used
in primary studies (as reported by secondary studies) is post-hoc or do the sec-
ondary study also report results of prediction of future faults/defects/change as
well. The criteria used are summarised in Table 2.5.

2.5 Conducting the review
The results of the overall selection process are summarised in Figure 2.2. Indi-
vidual steps of the process are described in the following sub-sections.

2.5.1 Search results
Figure 2.2 summarizes the number of results from individual databases and
the total number of unique secondary studies from the keyword-based search.
The publications from the validation set and the known set of publications are
also included. Lacerda et al. [56] is the only tertiary study close to our topic.
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Therefore, we considered including the secondary studies from their tertiary
study, which may be potentially relevant. We consider this as an acceptable
trade-off to supplement our search results while not duplicating the efforts of
Lacerda et al. [56]. Moreover, Lacerda et al. [56] only share one secondary
study with the validation set, thus improving the chances of adding potentially
relevant studies missed by the automated search. After removing the duplicated
publications, we have 711 unique publications.

913

711 548 135
Removal
based on ‘adaptive 
reading’

Removal
based on title & 
abstract

Preliminary
selection

Removal of 
duplicates

Data Extraction 
(from fulltext)

99 62 Removal
low quality studies

Removal of
Studies without
evidence

55

15

Scopus: 625
IEEE: 173
ACM: 55
Validation set: 11
Known papers: 9
Lacerda et al: 40

Evidence 
reporting

studies

Figure 2.2: Selection process results (The count depicts included secondary
studies at each stage)

2.5.2 Selection results
Before applying topic specific selection steps, the first author identified publica-
tions out of the 711 search results in Figure 2.2 that meet the selection criteria
C0 and C1 in Table 2.1. Thus, publications with less than eight pages, not
written in English or not published in a peer-reviewed venue, are excluded. A
total of 163 publications that did not meet the page and language requirements
were excluded leaving 548 secondary studies for the next phase of the selection.
Among the 163 publications removed during this phase, four were non-English
publications while the remaining were removed due to short length.

Pilot selection process

For the 12 secondary studies considered in the pilot selection, all authors agreed
on seven out of twelve secondary studies while there were disagreements on
the remaining five secondary studies, giving an initial agreement percentage of
58%. Only two out of six author-pairs had a substantial agreement, while two
author-pairs had a moderate agreement. The disagreements were resolved in a
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Table 2.6: Results after preliminary selection

S.No Decision Number
of
sec-
ondary
stud-
ies

Comment Included
after
full-
text
read-
ing

1 Exclude-Exclude 320 Excluded -
2 Exclude-Maybe 26 Review 0
3 Maybe-Maybe 5 Included 3
4 Include-Maybe 37 Included 14
5 Include-Include 78 Included 41
6 Include-Exclude 82 Review 4
- Studies in preliminary selection 548 - -

discussion and the descriptions of the inclusion/exclusion criteria were further
clarified.

Complete selection process

Next, each of the remaining 548 secondary studies were reviewed by two authors.
While the first author applied the selection criteria to all secondary studies, 182
randomly selected secondary studies were assigned to the second, third, and
fourth author, each. Table 2.2 used in [67], was utilised during the decision
making process. A secondary study was excluded if it was resolved as “irrele-
vant” and it was included if it was agreed upon as “maybe” or “included” by
both authors. In this round, the initial agreement among the author-pairs was
73%. The average of Cohen-Kappa inter-rater agreement between author-pairs
was 0.64, which is substantial agreement [80, 81].

The disagreements during this round were also resolved through discussion
among authors and was utilised to further improve the clarity of the inclu-
sion/exclusion criteria. After the study selection process, 135 secondary studies
were included, while 413 secondary studies were excluded from the list of studies.

After the conclusion of the adaptive reading step, 99 secondary studies were
retained while 36 secondary studies were identified as irrelevant to the topic.
All secondary studies identified by the first author as irrelevant were reviewed
by the second author.

The first author read the full text of 99 papers. The full text for one sec-
ondary study [84] was not available (besides our best efforts), thus it was ex-
cluded. Two papers were identified as the same secondary studies [85, 92] and
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the most recent of the two secondary studies [92] was retained. The first author
read all the papers in this phase and further identified 37 secondary studies as
irrelevant to the scope. The excluded secondary studies were reviewed by the
second and fourth author and the authors agreed on excluding 35 secondary
studies. Disagreements on the remaining two secondary studies were resolved
through a discussion leading to inclusion of both, giving 62 secondary studies
for quality assessment and data extraction.

As a reflection on the study selection process, we analysed how this final set
of 62 secondary studies were initially assessed by authors after selection based
on titles and abstract only. Of those 62 secondary studies, four secondary stud-
ies were initially assessed as “Include-Exclude,” three secondary studies were
initially assessed as “Maybe-Maybe” and 14 secondary studies were initially as-
sessed as “Include-Maybe”. Since a large number of secondary studies might
have been excluded solely based on the decision rules mentioned in Table 2.2,
we recommend that authors should include secondary studies categorized as
“Include-Maybe” and “Maybe-Maybe” for full-text reading as a large percent-
age of these secondary studies might be relevant. The authors should also care-
fully review secondary studies marked as “Include-Exclude” list as immediate
exclusion may result in the exclusion of relevant secondary studies.

2.5.3 Data extraction

Piloting of data extraction

In the piloting of the data extraction form, the authors agreed on 76% of the
data extracted for one randomly selected paper. The differences were discussed
and resolved.

Data extraction validation

In a post hoc validation of the extracted data, the third author independently
did data extraction for six secondary studies. We found that all entries related
to demographic data, internal/external attributes, reported metrics matched
between the first and third authors. However, minor differences were observed
in two fields, namely, recommendations/findings and synthesis method utilized.
The differences were discussed and corrective action was taken to resolve them.
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2.5.4 Quality assessment of the secondary studies
In the pilot round of quality assessment, there was agreement on the first and
fifth questions (see Table 2.19) related to the inclusion and exclusion criteria
and synthesis of secondary studies. The authors’ results did not match questions
two, three, and four regarding sufficient search coverage, quality assessment, and
secondary study description. After discussing the misalignment in understand-
ing, the differences were resolved.

The validation of a 10% randomly selected sample of secondary studies
showed that there was more than 80% agreement on the first two DARE ques-
tions, 66% agreement on question 3, and 50% agreement on the last two ques-
tions. A meeting was held to discuss the differences and improve the alignment
between the authors. It was observed that all disagreements were minor, e.g.,
one author assigned “yes” while the other author assigned “partly”, or when
one author has assigned “partly” the other author assigned “no” when answer-
ing questions. Based on the improved understanding, the first author reviewed
all papers assigned as “yes” for Questions 4 and 5 (see Table 2.19) of the quality
criteria. The fourth author reviewed the updated results, and all changes were
agreed upon.

After removing secondary studies with scores less than or equal to 1.5, 55
secondary studies remained. As DARE is not designed to evaluate the quality
of multi-vocal reviews, quality assessment-based selection was not applied to
MLRs. The secondary studies removed due to low DARE score are listed online6.
Detailed results of quality assessment are reported in Section 2.6.1 as part of
the characteristics of the included secondary studies.

2.5.5 Secondary studies providing links between external
quality attributes and source code metrics

From the list of 55 secondary studies, only 15 secondary studies provide evi-
dence regarding a link between external quality attributes and source code met-
rics (see Figure 2.2). These secondary studies either provide quantitative (e.g.,
correlation or prediction results) or qualitative evidence (e.g., stated claims or
comments on source code metrics as good or poor indicators) of the link between
source code metrics and external quality attributes. Forty secondary studies6

only report the usage of source code metrics for assessing or measuring external
quality attributes. These 40 secondary studies have not commented on how well
they measure external quality attributes, nor did they provide any qualitative or
quantitative evidence exploring or explaining the link between the source code
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Figure 2.3: Number of primary studies and years covered by the included sec-
ondary studies

measures and the external quality attributes. While usage alone may be con-
sidered evidence, we focus on explicitly stated evidence in this tertiary study.
We have thus identified 15 secondary studies reporting such evidence.

2.5.6 Removal of double-counting results in secondary stud-
ies

We resolved overlaps in primary studies reported by the secondary studies by
counting duplicate primary studies only once. This was possible for the case
where we could trace the evidence regarding the link between source code met-
rics and external quality attributes reported in the secondary study to the pri-
mary study included. We mitigated overlaps in primary studies between S06
and S12 (seven primary studies), S01 and S04 (nine primary studies), S12 and
S14 (one primary study), and S06 and S14 (one primary study).
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2.6 Results and analysis

2.6.1 RQ1: Characteristics of secondary studies

The 15 selected secondary studies are shown in Table 2.18. Ten of them are sys-
tematic literature reviews (SLRs) and five systematic mapping studies (SMSs).
The earliest secondary study that fulfilled our selection criteria was published in
2009. The search was performed in February 2021, which may explain why no
secondary studies from 2021 are included in our sample. The researcher’s inter-
est in software code metrics and reporting relationship with quality attributes
has been steady over the years, with nine out of 15 of the secondary studies
published between the years 2016–20.

The years covered by the secondary studies are shown in Figure 2.3. Half
of the published articles cover the years between 1998 and 2014. In their
search results, only three secondary studies had included the years prior to
1991 (when Chidamber and Kemerer metrics suite was introduced), indicating
that researchers have focused on primary studies conducted after this year.

Secondary study aims

We have analysed the research questions and stated aims from the secondary
studies based on Fenton’s classification of internal and external quality at-
tributes [55] (see also Figure 2.1). Furthermore, we classify the secondary stud-
ies in each sub-topic based on metrics utilization, i.e., whether the source code
metrics have been utilized for exploring the relationship between source code
metrics and external quality attributes (i.e., correlation studies) or explaining
the relationship between source code metrics and external quality attributes
(i.e., prediction studies).

Maintainability is the most frequently studied external attribute, with six
secondary studies investigate maintainability prediction while five secondary
studies investigate reliability prediction as depicted in Figure 2.4. One sec-
ondary study (though reports evidence for reliability) aimed to report influ-
ential metrics and their aggregation without specifying the internal or external
attributes, which we have classified as “Unclear”. Similarly, one secondary study
investigates the internal attributes of code categorized into coupling and cohe-
sion.
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Table 2.7: Databases used for automated search by secondary studies

Databases Name Studies
ACM Digital Library S01, S03, S04, S05, S06, S07, S09, S10, S11, S12, S15
EI Compendex S07, S09, S12
Google Scholar S02, S04, S06, S07, S10, S13
IEEE Xplore S01, S02, S04, S05, S06, S07, S09, S10, S11, S12, S15
Inspec S09, S12, S15
Others S01, S04, S07, S11, S12, S13
ScienceDirect – Elsevier S01, S02, S03, S04, S06, S07, S10, S12, S15
Scopus S01, S04, S05, S07, S09, S11, S13, S14, S15
Springer Link S01, S02, S04, S05, S07, S12, S15
Wiley Online Library S01, S05, S07

Systems studied

We classified the systems studied as open-source, industrial systems, or aca-
demic systems. The number of systems studied is shown in Figure 2.5. Of the
15 secondary studies, five did not mention the software systems used in their
primary studies.

Open-source systems were the most popular type of software systems studied
and were reported by nine out of 15 secondary studies, while seven out of 15
secondary studies utilised industrial systems. Academic systems were reported
by six out of 15 secondary studies. Four secondary studies use systems from
all three categories, while only two out of 15, secondary studies only use one
type of system. Sixty-five unique open-source systems were reported among
the included secondary studies. JEdit 5 is the most often reported open-source
system used by three secondary studies followed by Mozilla 6 and Apache 7.
Among the secondary studies that used public datasets, the PROMISE 8 and
NASA 9 datasets have been reported by more than three secondary studies.

Databases used

The databases used to perform an automated search by the included secondary
studies are depicted in Table 2.7. The most frequently used databases for search
in the included secondary studies are IEEE Xplore, ACM Digital Library, El-

5http://www.jedit.org/
6https://www.mozilla.org/en-US/
7https://www.apache.org/
8http://promise.site.uottawa.ca/SERepository/
9https://data.nasa.gov/

http://www.jedit.org/
https://www.mozilla.org/en-US/
https://www.apache.org/
http://promise.site.uottawa.ca/SERepository/
https://data.nasa.gov/
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sevier, and Scopus. Of the 15 secondary studies, 11 searched in IEEE Xplore
and ACM Digital library while nine selected Elsevier and Scopus. 11 out of 15
secondary studies searched in four or more databases. The highest number of
databases searched by a secondary study was nine, reported in two secondary
studies. Four secondary studies, each, searched in four databases, which is the
most common choice among the selected studies and is also recommended by sys-
tematic study guidelines [53, 62]. Among the included secondary studies, three
secondary studies searched in two or less than two databases, thus not fulfilling
the sufficient search criteria of DARE as described by Budgen et al. [53]. Six
out of 15 secondary studies searched in either three or four databases without
incorporating an extra search strategy or have performed searches in a restricted
set of venues.

Reported programming paradigms

The programming paradigms reported by each secondary study are categorized
in Table 2.10. The programming contexts observed include object-oriented (14
secondary studies), procedural languages (8), and feature-oriented (1). Of the
14 secondary studies investigating the object-oriented paradigm, six focused
solely on an object-oriented programming context. None of the secondary stud-
ies investigated links of source code metrics with external quality with focus on
aspect-oriented, functional or declarative programming paradigms. This high-
lights an important research gap for future researchers in source code metrics.
Despite the recent interest in feature-oriented development practices, only one
secondary study investigated feature-oriented programming paradigm.

Quality assessment results

After applying our quality assessment criteria mentioned in Table 2.19, quality
assessment results for the secondary studies are reported in Table 2.8. The range
of total scores for a secondary study is 0–5. Ten studies have scored above 3.5
thus are classified as high quality secondary studies according to Curcio et al.
[120] while five secondary studies are medium quality secondary studies. We
excluded seven secondary studies 6 during study selection due to a quality score
equal to or below 1.5, see Subsection 2.5.4. Interestingly, two out of ten SLRs do
not report any quality assessment of the included primary studies. In contrast,
three out of five mapping studies perform a quality assessment.

We categorized the quality assessment questions that the included secondary
studies used to evaluate the quality of their included primary studies. We cat-
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Table 2.8: Quality assessment of secondary studies

Type ID Total AQAS* Q1 Q2 Q3 Q4 Q5

SLR

S02 2.5 0 1 0.5 0 0.5 0.5
S08 2.5 0 1 0 0 1 0.5
S03 3.5 2 1 0 1 1 0.5
S07 3.5 8 1 1 0.5 0.5 0.5
S01 4 10 1 1 1 0.5 0.5
S12 4 7 1 1 1 0.5 0.5
S13 4 5 1 0.5 1 1 0.5
S15 4 0 1 1 1 0.5 0.5
S05 4.5 7 1 0.5 1 1 1
S09 4.5 7 1 0.5 1 1 1

SMS

S06 2 0 1 0.5 0 0.5 0
S11 2 0 0.5 0.5 0.5 0.5 0
S14 2 0 1 0 0 0.5 0.5
S04 4 4 1 1 1 0.5 0.5
S10 4.5 2 1 1 1 1 0.5

AQAS*:Additional quality assessment score

egorized these into 18 quality assessment questions shown in Table 2.9. Seven
secondary studies assessed whether the included primary studies clearly stated
their objectives, study limitations, and validity threats. While, four secondary
studies assessed if the primary studies justified the prediction methods used.
For each secondary study, we calculated an additional quality assessment score
beside the DARE score shown in Table 2.8. Eight of the 15 secondary stud-
ies considered whether their primary studies provided a detailed methodology,
whether the data collection steps were clearly described, and the reproducibility
of results by evaluating whether public datasets were used.

2.6.2 RQ2: Strength of evidence of link between source
code metrics, internal quality attributes, external
metrics and external quality attributes

This section presents the strength of evidence of the links between source code
metrics (described online6) and external quality attributes as reported in the
secondary studies. The strength of evidence is based on several factors, e.g.,
quality score of the secondary study, number of primary studies reporting the
evidence, status of validation of metrics as reported by secondary study (see
Section 2.4.5). The scheme used to interpret evidence reported in secondary
studies is described in Table 2.4 and strength of evidence is classified according
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Table 2.9: Categorized quality assessment questions from included secondary
studies(#SS denotes the number of included secondary studies)

S.No Quality assessment question #SS
QA1 Whether the objectives and scope of the study are stated clearly? 7
QA2 Does the study provide relevant literature? 2
QA3 Do the research questions, purposes, or hypotheses logically flow from

the introductory material?
3

QA4 Are the research questions addressed clearly? 2
QA5 Does the study have a sufficient number of citations? 2
QA6 Are the results of the study reported in a clear manner? 5
QA7 Is the programming language stated? 1
QA8 Was an analysis conducted to check for outliers in the data? (if unclear

enter No)
1

QA9 Are negative findings presented? 2
QA10 Does the study discuss how the results add to the literature? 1
QA11 Does the study provide a clear description of the external quality

attribute being investigated?
2

QA12 Does the study justify the prediction method used? 4
QA13 If a study deals with more than one prediction technique is the com-

parative analysis conducted?
3

QA14 Is there a description of limitations and threats to the validity of
research?

7

QA15 Are the data analysis techniques clearly defined and described? 2
QA16 Are the predictors effectively chosen using feature selection/ dimen-

sionality reduction techniques?
1

QA17 Did the study perform statistical hypothesis testing? 2
QA18 Whether the independent variables were clearly defined? 3

Table 2.10: Reported programming paradigms

Paradigm Studies
Object Oriented S01, S02, S03, S04, S05, S06, S07, S08,

S09, S11, S12, S13, S14, S15
Procedural S01, S02, S03, S04, S07, S11, S12, S15
Feature Oriented S03
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to Table 2.5. The reported evidence in the included secondary studies relates
to maintainability, reliability, and security attributes and their external metrics
as described in Figure 2.1.

Strength of evidence on maintainability

Nine studies report evidence on the link between source code metrics, external
metrics (see Table 2.20), and maintainability. Table 2.11 depicts results from
exploratory studies along with quality score, our interpretation of the reported
relationship and strength of evidence. Results from explanatory studies are re-
ported in Table 2.12. Of these nine secondary studies, two studies have medium
quality while seven are of high-quality.

In the exploratory secondary studies (see Section 2.4.5), four studies (S03,
S06, S08, and S09) reported correlation levels between source code metrics and
maintainability. Among these, only two studies (S08, S09) reported statistical
significance levels (p-values) for their results. One secondary study (S05) re-
ported only claims without stating evidence. Change is the most often reported
external metric used by two studies while one secondary study has maintenance
effort. Another secondary study differentiates between changes and change-
proneness, defined as the likelihood of change. Three secondary studies (S03,
S09 and S15) utilise several external metrics and present aggregated results for
external metrics. Thus, it is not possible to report individual external met-
rics used to link source code metrics with external quality attributes for these
three secondary studies. Complexity is the most investigated internal quality
attribute when linking source code metrics with maintainability.

From Table 2.11, exploratory studies on maintainability have varying strength
of evidence ranging from moderate to very low. CBO and RFC are reported
by two secondary studies to be significantly linked with maintainability with
consistent moderate strength of evidence from more than 20 primary studies.
Similarly, strong evidence suggests that inheritance measures NOC and DIT
have insignificant relation with maintainability.

Similarly, WMC-McCabe, LCOM2 and LOC show significant links with
maintainability. Interestingly, DIT has a weak positive link with maintain-
ability when external measure is either change or effort related. Several other
measures show a significant link with maintainability, including NOM, ICH,
MPC, LCOM5 and DAC, though the strength of evidence for these relation-
ships is very low.

Four explanatory studies report quantitative results linking source code met-
rics with maintainability. In Table 2.12, we report our interpretation of reported
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results (based on criteria mentioned in Section 2.4.5) linking source code met-
rics suites and prediction model used to explain the relationship with external
metric of maintainability. While all four secondary studies achieve high DARE
scores in our assessment, the overall strength of evidence of link between source
code metrics and maintainability in explanatory studies is “Low” and “very low”
since less than ten primary studies report evidence of the link.

Three accuracy measures are reported in the secondary studies: Mean Mag-
nitude Relative Error (MMRE) or Mean Absolute Relative Error (MARE), Ab-
solute Relative Error (ARE), and Ratio of true positive.10 CK metrics and Li
& Henry metrics are the most commonly used sets of metrics in explanatory
studies and are used by three secondary studies (S01, S04, S07).

The combination of CK and Li & Henry metric suites used along with pre-
diction models are largely classified as “Unclear” for sixteen different prediction
techniques. One possible explanation could be the varying effectiveness of pre-
diction models that they used in the secondary studies and the dependency on
the datasets used.

Strength of evidence on reliability

Eight secondary studies report strength of evidence on the link between source
code metrics, external metrics and reliability. Table 2.16 depicts results from
exploratory studies along with quality score, our interpretation of the reported
relationship and strength of evidence. Table 2.17 reports results from explana-
tory studies on reliability. Four out of the eight secondary studies have a medium
DARE score while the other four secondary studies have high DARE score. Sim-
ilar to the previous section, complexity is the most linked internal attribute to
reliability. Among the external measures reported, fault-proneness and number
of defects are the most associated measures.

In the exploratory studies, seven secondary studies report correlation results
for the link between source code metrics and reliability. Among these secondary
studies, only one secondary study (S09) reported confidence intervals for their
results. The other secondary studies reported the correlation results without
providing confidence intervals. Two secondary studies S02 and S14 state claims
without giving any evidence of results. Fault-proneness is the most utilised
external metric for reliability. S09 reports multiple external metrics and thus is
not possible to report individual external metric used to link source code metrics
with reliability.

10We contend that MMRE and MARE are both summary statistics based on taking nu-
merical average of a set of Absolute Relative Errors (ARE).
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Table 2.11: Strength of evidence: maintainability linked to metrics in ex-
ploratory studies

External Metrics Internal
Attribute

Source
code
metric

Secondary
studies

Overlap
in PS

DARE
score

Relationship Indication Strength
of evi-
dence

"++" "+" "0" Unclear Sig∗

Not reported in SS

Coupling CBO S03V,
S09

No H, H - - 2 9 20 Moderate

Inheritance DIT S03V,
S09

No H, H - - 24 8 6 Moderate

Inheritance NOC S03V,
S09

No H, H - - 34 8 5 Moderate

Complexity RFC S03V,
S09

No H, H - - 3 8 26 Moderate

Complexity WMC-
McCabe

S09 - H - - 1 8 28 Moderate

Size LOC S09 - H - - - - 28 Moderate
Cohesion LCOM2 S09 - H - - - 8 13 Moderate
Size NC S09 - H - - - 1 1 Moderate

Change-proneness

Coupling CBO S05 - H - - - - 11 Moderate
Inheritance DIT S05 - H - - - - 3 Low
Cohesion LCOM S05 - H - - - - 5 Low
Complexity RFC S05 - H - - - - 8 Low
Size SLOC S05 - H - - - - 14 Moderate
Complexity WMC S05 - H - - - - 10 Moderate

Change Coupling CBO S06V,
S08

No M, M 2 1 1 - - Low

Inheritance NOC S06V,
S08

No M, M - 1 2 1 - Low

Maintainenance Effort

Coupling CBO S06V - M - - - 1 - Low
Inheritance DIT S06V - M - 1 - - - Low
Cohesion LCOM S06V - M - 1 - - - Low
Inheritance NOC S06V - M - 1 - - - Low
Complexity RFC S06V - M - 1 - - - Low
Complexity WMC S06V - M - 1 - - - Low

Not reported in SS

Cohesion CAMC S09 - H - - - - 3 Very Low
Stability CoV S03V - H - 1 - - - Very Low
Complexity DAC S09 - H - - 1 1 7 Very Low
Inheritance DDC S03V - H - 1 - - - Very Low
Coupling EC S09 - H - - 1 1 - Very Low
- GoS S03V - H - 1 - - - Very Low
Cohesion ICH S09 - H - - - - 9 Very Low
- LoS S03V - H - 1 - - - Very Low
Cohesion LCOM1 S09 - H - - 3 - 6 Very Low
Cohesion LCOM5 S09 - H - - 1 - 6 Very Low
Coupling MPC S09 - H - - 1 - 7 Very Low
Inheritance NMO S09 - H - - 4 - 4 Very Low
Complexity NOM S09 - H - - - 1 7 Very Low
Cohesion TCC S09 - H - - 3 - 5 Very Low
Complexity WMC S03V - M - - 1 - - Very Low

Change

Inheritance DIT S08 - M 2 - 1 - - Very Low
Cohesion LCOM S08 - M - 2 1 - - Very Low
Complexity RFC S08 - M - 1 2 - - Very Low
Size LOC S08 - M - 2 - - - Very Low
Complexity WMC S08 - M 1 - 1 - - Very Low

Sig∗: Results do not distinguish between positive or negative correlation when reporting
significantly linked source code metrics
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Table 2.12: Strength of evidence: maintainability linked to source code metrics
in explanatory studies

External met-
rics

Source code metrics Prediction
model

Secondary
studies

DARE
Score

Relationship indicator Strength
of evi-
dence

“+” Unclear

- Halstead metrics,
LCOM, DAC &
misc metrics

SFs S15 H 1 - Very
Low

SFSf S15 H 1 - Very
Low

Change

CK & LH & Li suite ANFIS S07 H 1 - Low

CK & LH suite

GRNN S01 H - 9 Low
ANN S01 H - 3 Low
FFBN S01 H - 3 Low
MLP S01 H - 4 Low
PNN S01 H - 7 Low
KN S01 H - 7 Low
GMDH S01 H - 9 Low
RT S01 H - 5 Low
M5P S01 H - 4 Low
BN S01 H - 4 Low
SVM S01 H - 9 Low
Kstar S01 H - 9 Low
ELM S04 H - 1 Low
MLP S04 H - 1 Low
SVM S04 H - 1 Low
Neuro-
GA

S04 H - 1 Low

Neuro-
Fuzzy

S04 H - 1 Low

GMDH S04 H 1 - Low
GA S04 H 1 - Low
PNN S04 H 1 - Low
ANN S07 H - 1 Low

CK & Tang suite GRNN S07 H - 1 Low

CK Suite
ANN S07 H - 1 Low
BPN S07 H - 1 Low
PNN S07 H 1 - Low

Maintainability
Index

Halstead ’E’, Hal-
stead ’V’

Polynomial
model

S15 H 1 - Very
Low

OSAVG, CSO,
CSA, SNOC

Univariate
Linear
Regres-
sion
Analysis

S15 H 1 - Very
Low
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Table 2.13: Metrics that are good indicators of external quality attributes

External At-
tribute

Internal
Attribute

Source
code met-
rics

Secondary
studies

Relationship Indicator Strength
of Evi-
dence

“++” “+” Sig*

Maintainability

Cohesion LCOM2 S09 - - 13 Moderate
Complexity RFC S03V,

S09
- - 26 Moderate

WMC-
McCabe

S09 - - 28 Moderate

Coupling CBO S03V,
S09

- - 20 Moderate

Size LOC S09 - - 28 Moderate

Reliability

Code Churn
Changes S12 16 - - Moderate
Churn S12 15 - - Moderate
Age S12 10 - - Moderate

Cohesion
LCOM S13V - - 15 Moderate
LCOM5 S09 - - 12 Moderate
LCOM2 S09 - - 21 Moderate

Complexity

RFC S06V,
S12

51 - 5 High

WMC S06V,
S12

44 - 4 High

Cyclomatic
Complex-
ity

S12 - 43 - High

RFC S13V - - 21 Moderate
VG (Mc-
Cabe)

S09 - - 32 Moderate

WMC S13V - 21 Moderate
AMC S09 - - 35 Moderate
WMC-
McCabe

S09 - - 62 Moderate

NOM S09 - - 16 Moderate
RFC S09 - - 50 Moderate

Coupling

CBO S06V,
S12

48 - 4 High

OMMIC S09 - - 10 Moderate
CBO S13V - 23 Moderate
OCAIC S09 - - 10 Moderate
CBO S09 - - 60 Moderate

Maturity Past
Faults

S12 - 10 - Moderate

Size
LOC S12,

S14V
- 61 - High

SLOC S13V - - 16 Moderate
LOC S09 - - 58 Moderate
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Exploratory studies on reliability have varied strength of evidence ranging
from “High” to “Very low” (due to space limitations, results graded as “Very
low” are only included in the online supplement6). CBO, RFC, LOC and WMC
show positive links with reliability with consistently high strengths of evidence
from two high quality secondary studies and more than 40 primary studies.
At the same time, strong evidence suggests that LCOM, DIT, and NOC have
insignificant relationship with reliability.

Among the secondary studies with moderate strength of evidence, several
metrics including AMC, WMC-McCabe, OCAIC, LCOM2, cyclomatic complex-
ity and LOC have been significantly linked with reliability. However, TCC and
NOC, are shown to be insignificantly correlated with reliability. Thus, we rec-
ommend that TCC and NOC may not be used when assessing reliability. One
secondary study of medium quality only provides strength of evidence of a link
between code metrics, error-proneness, and bug-prediction which may be con-
sidered weak compared to the results from high quality studies.

Only one explanatory secondary study, S11, reports accuracy measures as
evidence of the relationship between source code metrics and the number of
faults as the external metric for reliability in Table 2.17. S11 reports several
different accuracy measures to describe the link between metrics and reliability.
Due to the medium DARE score and fewer primary studies reporting results,
the overall quantitative evidence is assigned as “low”.

Strength of evidence on security

One secondary study S03 with a high DARE score reports seven metrics corre-
lated with security. The relationship is summarized in Table 2.14. Four metrics
are positively linked with vulnerabilities as the sub-attribute of security. The
description of these metrics is available online6. This seems to be an intuitive
result as software code with several external configuration options may be eas-
ier to compromise or changing the externally configurable options may lower a
module’s security settings.

2.6.3 RQ3: Efficacy of prediction models
Seven out of 15 secondary studies (S01, S02, S04, S05, S07, S11 and S15) re-
ported models used to predict external quality attributes using source code
metrics. Among these, two secondary studies S11 and S15 do not compare their
effectiveness in terms of prediction accuracy due to the different focus of the sec-
ondary study. Among the studies that compare different prediction techniques
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Table 2.14: Strength of evidence: security linked with source code metrics in
exploratory studies

Ext sub-
attribute

Internal
attribute

Source code
metric

Secondary
study

PS in
Over-
lap

DARE
score

Relationship indicator Strength
of evi-
dence

“+” “0” “-”
Vulnerability Complexity Degree Central-

ity (outgoing)
S03V - H 1 - - Low

Vulnerability Complexity Eigenvector
Centrality

S03V - H 1 - - Low

Vulnerability Complexity Internal Config-
uration Options

S03V - H 1 - - Low

Vulnerability Complexity Number of In-
ternal #ifDefs

S03V - H 1 - - Low

Vulnerability Complexity Betweenness
Centrality

S03V - H - 1 - Low

Vulnerability Complexity Degree Central-
ity (ingoing)

S03V - H - 1 - Low

Vulnerability Complexity External Con-
figurations
Options

S03V - H - - 1 Low

(for description see online 6), only S02 reports the comparison for reliability,
while other secondary studies report a comparison for maintainability predic-
tion models. The results of the comparisons are shown in Table 2.15. In our
sample, PNN, GA, ANFIS, and GMDH are superior prediction techniques for
maintainability.

S01 compares the effectiveness of statistical models with machine learning
based models using UIMS and QUES data-sets along with proprietary software
and open source system. The secondary study notes that machine learning based
techniques outperform statistical models based on linear regression and multi-
ple linear regression. Among the machine learning techniques, Group Method
of Data Handling (GMDH) based models outperform other machine learning
techniques including General Regression Neural Network (GRNN), Feed For-
ward Back propagation Network (FFBN), Probabilistic Neural Network (PNN),
KStar, Kohan Network(KN) and Support Vector Machine (SVM). S01 further
observes that the effectiveness of hybrid techniques that combine statistical and
machine learning models is inconclusive.

One secondary study, S07, also reported machine learning algorithms to be
superior to statistical methods. Based on the results, Adaptive Neuro Fuzzy
Inference System (ANFIS) based models perform slightly better than Artificial
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Neural Network (ANN) and other methods reported Back Propagation Network
(BPN), PNN, and GRNN.

Another secondary study, S04, investigated machine learning based predic-
tion models and point out that the effectiveness of models is dependent on the
data-set used as well as the independent variables utilised. Among the secondary
studies, changing the data-set revealed different techniques to be superior. In
the secondary studies that use UIMS and QUES datasets, GMDH is the supe-
rior technique with better MMRE results compared to Genetic Algorithm (GA)
and PNN. Among the secondary studies that only used QUES dataset, Kstar
and Mamdani-based Fuzzy Logic (MFL) perform better than other methods.

Similarly, S05 notes that search-based machine learning algorithms such as
Bagging (BG) have better mean accuracy than SVM and k-means. In terms of
the mean area under the curve (AUC), BG, random forests (RF), and adaptive
boosting (AB) techniques are suggested to be superior.

S02 notes there is no explicit agreement on the best prediction technique for
reliability among the six different prediction techniques used. The compared
prediction techniques are Bayesian Network(BN), Neural Network(NN), Sup-
port Vector Machine (SVM), Clustering, Feature Selection (FS), and Ensemble
Learning (EL).

When comparing the prediction accuracy of ANFIS from S04 and GMDH,
GA and PNN results from S07 reporting the same combination of metrics,
GMDH achieves lower MMRE values in all the four modelling techniques, thus
can be suggested to be more suited for prediction studies. However, when
comparing different algorithms based on the varied results in our analysed sec-
ondary studies, we can suggest that the effectiveness of prediction techniques is
context-dependent and data-sensitive, and more analysis is needed in evaluating
and comparing the different techniques using similar datasets and independent
variables. Given the large variety of machine learning techniques, statistical
methods, nature-inspired techniques and hybrid methods, this can be an inter-
esting dimension for future analysis.

2.7 Discussion

The focus of our tertiary study is to provide a comprehensive evaluation of
research on source code quality by synthesizing and categorizing the state-of-
the-art literature that reports evidence-based links between source code metrics
and external quality attributes in secondary studies.
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Table 2.15: Comparison of prediction models reported

Superior
model

Models compared Secondary
study

GMDH GRNN, FFBN, PNN, Kstar, KNN, SVM S01
ANFIS ANN, BPN, PNN, GRNN S07
GMDH GA, PNN S04
BG, RF SVM, K-means S05
None BN, NN, FS, SVM, EL, Clustering S02

In this section, we reflect on our results and analyses in the light of related
literature.

Out of 55 secondary studies using source code metrics to study external
attributes, only 15 secondary studies of sufficient quality reported evidence on
the relationship between source code metrics and external quality attributes.
To better understand the relationship between source code metrics and external
quality attributes, more secondary studies are needed that synthesize available
empirical evidence (e.g., meta-analyses). The results of the present tertiary
study provides a starting point and provides information about source code
metrics that show consistent relationships with two external quality attributes;
maintainability and reliability.

2.7.1 External quality attributes

A small subset of quality attributes, namely, maintainability, reliability, and
security from ISO-IEC 25010 [70] have been reported with link of evidence with
source code metrics in our included secondary studies. All 15 secondary studies
in our sample have focused on reliability or maintainability, while security has
received considerably less focus (one secondary study). We have not found
evidence linking source code metrics with functional suitability, compatibility,
usability and other external quality attributes outlined in Figure 2.1. Colakoglu
et al. [138] also observe maintainability and reliability to be the most studied
external quality attributes.

Intuitively, we may argue that other external quality attributes such as us-
ability are less related to source code metrics and more to the user interface or
the ease of interaction. Thus, we have no secondary studies linking source code
with usability in our included studies.
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However, in other secondary studies considered during the study selection
process, source code metrics have been linked with functional correctness11 [109].
While highly relevant to our scope, this secondary study was excluded due
to a low DARE score. We suggest conducting high-quality secondary studies
on evaluating the link between source code metrics and other external quality
attributes by extending secondary studies such as [97, 109].

2.7.2 Internal quality attributes
Complexity, coupling and size are most popular among internal quality at-
tributes and have consistently predicted or assessed maintainability. Our re-
sults are in agreement with Arvanitoua et al. [99] who also report complexity,
cohesion, and coupling to be the most frequently studied internal attributes.
We also note the lack of evidence for other internal attributes such as poly-
morphism, abstraction, code churn, encapsulation, and hierarchies. Arvanitoua
et al. [99] also observe abstraction to be a less studied attribute. While poly-
morphism has not been linked to any external quality attributes in our included
secondary studies, Briand et al. [68] report polymorphism to be positively linked
to reliability. Our results show that inheritance has a weak positive link with
maintainability. One possible explanation for this could be that software sys-
tems used to study the link between DIT and maintainability have little less
variation in class hierarchies. Our results agree with Saxena et al. [142], who
also noted that inheritance metrics, namely, DIT and NOC, were noted to have
inconsistent results for fault-proneness. Catal et al. [141] noted that complexity
metrics evaluated at the method level have been predominantly used for fault
prediction. We observed a similar trend in our results, where complexity met-
rics from Halstead and McCabe have been evaluated with multiple prediction
models for fault prediction.

2.7.3 External metrics
Among the secondary studies that reported a description of the external metric,
change is described as “Lines of code added, deleted, and modified” in S01. In
contrast, S04 described it as “The number of changes made to the source code
(changes in LOC, change in modules, change in class).” Since adding comments
to a source code may also result in changes in LOC, there is a minor difference

11The secondary study defined functional correctness as “the degree to which a product
or system provides the correct results with the needed degree of precision” and quantified
functional correctness in terms of fault count, fault proneness, and fault density.
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between the two descriptions of the external metric. Similarly, S06 describes
fault-proneness as “The probability of detecting faulty classes”, whereas S14
describes it as “The probability of exhibiting a fault” without specifying the
scope of the evaluation.

Since the maintainability index [126] uses complexity and size metrics to
interpret maintainability, it is intuitively correlated to certain source code met-
rics. Thus results from prediction models that use it as a dependent variable
may be misleading. However, only one of the earliest secondary study (S15)
reports using the maintainability index as the external metric; we still feel that
the results in the tertiary study can be relied upon and utilized. This shows
that in recent years, researchers have preferred to use more accurate external
metrics instead of the maintainability index.

While the accuracy of prediction of bugs and defects is an important ele-
ment in assessing software product quality, the severity of bugs and defects also
impacts software quality. In our tertiary study, we have only found evidence of
the effectiveness of prediction. As suggested in S02, using prediction capability
and bug severity into account gives a better view of software product quality.

2.7.4 Good indicators for external attributes

In this section, we synthesize the results from the previous Sections 2.6.2 and
2.6.2. We synthesized the results with “High” or “Moderate” strength of evi-
dence and have been significantly linked with quality attributes in exploratory
and explanatory studies in Table 2.11, 2.12, 2.14, 2.16, and 2.17. Table 2.13
shows several metrics to be significantly linked with reliability and maintain-
ability. In our included secondary studies, there are no high-quality secondary
studies that report the link between source code metrics and security.

Based on the results, we can suggest using this selective set of metrics over
others as they may be better indicators of related external attributes. We note
that certain source code metrics related to cohesion, complexity, coupling, and
size can be observed to be good indicators of maintainability with consistent
strength of evidence from two high-quality secondary studies reporting results
from more than ten primary studies.

The strength of evidence for reliability is considerably richer as compared to
maintainability. Source code metrics related to code churn, cohesion, complex-
ity, coupling, maturity, and size are good indicators of reliability with consistent
strength of evidence from four high-quality secondary studies reporting results
from more than ten primary studies.
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It is interesting to note that a similar set of source code metrics are suggested
to be good indicators of both maintainability and reliability. These source code
metrics do not belong to any particular set of metric suites. Individual source
code metrics from widely popular CK, QMOOD, and Li & Henry metric suites
have been shown to have varied reported evidence. Inheritance metrics DIT and
NOC from CK metric suites have been shown to be poorly linked with main-
tainability and reliability. Variants of LCOM such as LCOM2 and LCOM5 have
been noted to be more effective indicators of cohesion attributes. Complexity
metrics can be considered as consistent indicators of quality attributes as we
note that complexity metrics have shown strong strength of evidence for both
maintainability and reliability. Code churn and past faults are also reported
as good indicators for reliability but have not shown a similar link with main-
tainability. Also, in our results, there are no source code metrics that have a
predominantly negative relation with maintainability and reliability.

2.7.5 Beyond object-oriented & static metrics
Most of the evidence available in the included studies links source code metrics
with external attributes in the object-oriented and procedural programming
paradigms. Only one secondary study investigated feature-oriented program-
ming, while none of the secondary studies focused on aspect-oriented, functional
or declarative programming. This limits the applicability of our results to other
programming paradigms, which need to be evaluated further.

Another interesting trend is that all of the evidence presented in the previous
sections is from static source code metrics. Dynamic source code metrics provide
useful information regarding the software’s run-time characteristics and software
quality during execution. Our analysis has not reported empirical evidence
of the link between dynamic source code metrics and external attributes. As
suggested by Malhotra et al. in S01 and S07, the combined use of static and
dynamic source code metrics to assess quality attributes may aid the source
code community in improving the assessment of quality attributes using source
code metrics. Tahir et al. [107] have investigated challenges in the selection and
implementation of dynamic metrics, which may explain why dynamic metrics
have been used less frequently. Several studies have investigated the effectiveness
of using in-process metrics collected during testing [139, 140] to predict post-
release software quality with promising results. The included secondary studies
have not considered using in-process metrics during testing. In-process metrics
may be good indicators of external quality attributes during testing compared
to internal code quality metrics.
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In S12, Radjenović et al. point out that in highly iterative development
environments with frequent code changes, object-oriented metrics are noted to
be less effective in assessing external quality attributes. In contrast to product
metrics, process metrics are recommended instead of object-oriented metrics
and are considered more suitable for highly iterative development environments.
Malhotra et al. (S05) also recommend using process metrics in combination with
object-oriented metrics such as CK metrics to improve the prediction ability of
the independent variables.

The ISO-IEC 25023 standard [143] has recommended several metrics for
product quality attributes identified in ISO-IEC 25010. However, one of the
challenges of using the recommended metrics from ISO-IEC 25023 is that some
are abstract and lack direct application to source code [144]. This may explain
why none of the included secondary studies reported any of the recommended
metrics from ISO-IEC 25023. The results have focused on popular metric suites
such as CK, Halstead, Li & Henry metrics for reliability and maintainability.
S02 suggests that other metrics not part of metric suites, such as LOCQ [134]
have been noted to be effective in fault-prediction and may be explored in further
studies.

2.7.6 Metrics validation

Since we have chosen to include the validity status mentioned by the secondary
studies only, the validation status of source code metrics presents only the per-
spective available through the secondary studies. We acknowledge that using
the validation status from other sources will reflect and change the results pre-
sented in Table 2.11, 2.12, 2.16, and 2.17. Metric suites such as CK metrics
[50], Li & Henry metrics [131], MOOD metrics [130] and QMOOD metrics [51]
have been empirically validated [81, 127, 128, 132, 133]. However, all the good
indicators metrics pointed out in the results (Table 2.13) remain the same as
we have included both “high” and “moderate” strength of evidence. Inciden-
tally, all source code metrics mentioned in Table 2.13 are validated based on the
information available in literature.

Certain cohesion metrics, such as LCOM, have been highlighted as theoret-
ically invalid metric for cohesion by Kitchenham et al. (S14) and thus may be
considered less effective in capturing the cohesiveness of source code. Based
on our findings, we suggest LCOM1 and LCOM2 are more suitable cohesion
metrics and indicators of reliability.
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2.7.7 Accuracy measures
The mean magnitude of residual error (MMRE) has been predominantly used
in the secondary studies reporting explanatory results related to maintainability
and reliability. The MMRE accuracy measure has been highlighted as biased
in the literature [135, 136]. Additionally, if primary studies use MMRE as a
goodness of fit criteria for model evaluation, as well as to report the prediction
accuracy, this bias may increase [145, 146]. Another reason for MMRE being
biased is that the measure does not define an upper bound for MMRE values
greater than one, while MMRE values lower than one cannot become negative;
thus, results of MMRE from models that underestimate seem more promising.
Foss et al. [137] recommend using accuracy measures after considering the
characteristics of the data. Since we can only report the accuracy measures
provided in the secondary studies, we acknowledge that data related to data-
distribution is not reported in our tertiary study.

2.7.8 Prediction models
In S01, Malhotra et al. note that machine learning models outperform statistical
models and recommend exploring hybrid prediction models for maintainability
prediction. Hybrid prediction models and ensemble learners are also recom-
mended in S07 as well. Elmidaoui et al. (S04) further note that the accuracy of
prediction models has been reported to be highly dependent on datasets used
in addition to the independent variables used. Two secondary studies have
investigated changing the datasets while using the same source code metrics
as independent variables and modeling techniques report dependency on the
datasets used. Prediction models that are accurate for a variety of datasets
may be considered more robust. According to S05, the selection of source code
metrics as independent variables for prediction models can be based on feature
selection methods to utilize only those source code metrics which contribute to
the improvement of the model and can be considered to be effective predictors.

2.7.9 Datasets used
In our included secondary studies, the datasets used in explanatory studies
have been predominantly UIMS, and QUES datasets (e.g., S01 and S05) among
other datasets. S05 point out that validation of prediction models on industrial
datasets may further improve the validity of the prediction models and may be
more relevant for practitioners. Large datasets based on languages used in prac-



2.7 Discussion 63

tice may also increase the relevance of the maintainability prediction research.
In this regard, S04 highlights the need for curated datasets (such as PROMISE
dataset). Additionally, Radjenović et al. (S12) suggest that realistic datasets
are often unbalanced, with faults occurring randomly among the software mod-
ules. Similarly, major restructuring between two software versions may change
the distribution of faults. To produce accurate fault-prediction models, the
availability of realistic unbalanced datasets is needed for model training and
validation.

2.7.10 Consistent tool support
Measurement tools used across secondary studies are not the same. Thus, mea-
surement error is possible when different tools are used to evaluate the same
datasets across studies. In S06, Tiwari et al. [98] point out that consistent
and dependable tools for coupling and cohesion metrics are needed for reliable
evaluation of source code metrics.

2.7.11 Conducting tertiary review challenges
We also want to report challenges faced during data extraction phase which
led to exclusion of relevant studies. While some secondary studies report the
evidence between external attributes and source code metrics, the method of
aggregation utilised in the secondary study makes it difficult to trace how many
primary studies have reported the relationship between specific code metrics
and external measures. Hosseini et al. [93] provide a synthesis of cross project
defect prediction studies. The meta-analysis performed is seminal work in our
opinion. However, the accuracy measures reported for different metrics could
not be traced to individual metrics along with primary studies reporting the
results. Similarly, Arvanitoua et al. [99] suggest certain metrics to be effective
in measuring maintainability, stability and changeability though do not provide
number of primary studies reporting the trend for individual metrics. Since,
one of the criterion used to establish strength of evidence was primary studies
reporting individual metrics, these secondary studies were excluded from our
analysis.

Another challenge faced during metrics aggregation is the non-standard
method used when naming source code metrics. The inconsistency in nam-
ing of code metrics leads to several issues where the same metric is described
by two acronyms or when same acronyms are assigned to two different metrics.
This observation is shared by other researchers as well including Malhotra et
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al. (S07), Sharkawy et al. (S03), and Saraiva et al. [108]. To ameliorate the
inconsistency, we also suggest an online catalog of source code metrics can be
created which consistently reports metric descriptions, validation levels, along
with alternate acronyms, and related internal attributes. This can be a difficult
task since several secondary studies such as [117] have reported 300 metrics re-
lated to different programming paradigms and [108] report 575 object-oriented
metrics for maintainability alone. Though, it could be a very effective tool for
researchers, software tool developers and practitioners in the field.

While performing the quality assessment for the secondary studies, we iden-
tified several instances that are not explicitly covered by the DARE quality as-
sessment criteria. To assess the search coverage sufficiency, the criteria assigns
“yes” to secondary studies that have “searched four or more digital libraries and
included additional search strategies OR identified and referenced all journals
addressing the topic of interest” and “partly” to “searched three or four digi-
tal libraries with no extra strategies OR searched a defined but restricted set
of journals and conference proceedings”. The cases where a secondary study
has searched in three or four digital libraries with extra search strategies (e.g.,
contacting the authors, snowballing) or when secondary studies have searched
in five databases without any extra search strategy is open to interpretation
and subject to the researcher conducting the assessment. Similarly, during as-
sessment of quality of the secondary study, we noticed that some authors have
explicitly defined the quality criteria and reported the results whereas others
only defined the criteria and not reported any results, such as, S07, possibly
due to page limitations. Since it is often the case that more than one author
is involved in the quality assessment, such instances where subject assessment
needs to be used, may lead to confusion and disagreements between the au-
thors. We suggest that such issues maybe updated in the DARE criteria and
software engineering community may evaluate other quality assessment tools
derived from mature fields such as medicine, e.g., [47], to improve the quality
assessment of secondary and tertiary studies. We also suggest that tertiary
studies should not solely rely on DARE for assessing the quality of included
secondary studies. DARE does not consider the strength of evidence of the
results reported in secondary studies, since it does not critically appraise the
quality assessment performed by the secondary studies. To perform an in-depth
evaluation of evidence from secondary studies, future tertiary studies could use
a similar method to our strength of evidence criteria (see Subsection 2.4.5), to
complement DARE.
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2.7.12 Future works
Other researchers can utilize different criteria for the strength of evidence on
the data available online6. They can customize the results to specific usage sce-
narios. Additionally, researchers can extend the same schema of evaluating the
strength of evidence to other secondary studies that have not been considered
in our tertiary study.

We have also highlighted that no secondary studies reported links between
source code metrics and external quality attributes in the aspect-oriented pro-
gramming paradigm which is a research gap that needs to be investigated. The
link between dynamic metrics and external attributes has not been reported
in the secondary studies considered. Investigating the link between dynamic
metrics and external attributes can be an interesting theme for future research.
Similarly, the use of process metrics in addition to object-oriented metrics may
be explored for suitability in assessing quality attributes in highly iterative de-
velopment environments.

We further suggest that a catalog of source code metrics with consistent
terminology and description can benefit practitioners, tool developers, and re-
searchers. Researchers can utilize the list of secondary studies that only report
using source code metrics and external quality attributes as a starting point
for creating a catalog of source code metrics. Keeping in view the limitations
raised in Section 2.8, we suggest further work to bridge the gap between syntac-
tic structural information and semantic assessment of internal quality attributes.
Fregnan et al. [39] have summarized semantic coupling metrics using machine
learning models to link similar words and documents. This may help develop
semantic cohesion metrics.

2.8 Limitations
We follow suggestions by Kitchenham et al. [43] and discuss the intentional
deviations from the systematic review guidelines [31,33] followed in the design
of the tertiary study. We also discuss possible implications of these deviations
on the study outcomes. In addition, we discuss the threat of double counting
due to overlapping primary studies (see Subsection 2.8.3).

2.8.1 Study selection
We have aimed to cover a large corpus of knowledge, however, there is a possi-
bility that we have missed a small percentage of relevant secondary studies that
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were not in English language, or due to limitations of keywords in our search
string and no snowballing on the final set of secondary studies. We believe
that such number of secondary studies are less compared to the included set of
secondary studies and unlikely to significantly alter the results presented.

2.8.2 Research validity
We acknowledge the limitation of using the DARE quality score as a measure
contributing to the strength of evidence. These scores represent the quality of a
secondary study and will abstract away the individual primary studies’ quality.
A deeper analysis can be performed where we utilise the quality of the primary
studies reporting the link between code metrics and quality attributes.

In Table 2.13, we have suggested source code metrics that are good indi-
cators of external quality attributes. Several previous studies have highlighted
that source code metrics measuring the same internal quality attribute can be
correlated [41]. Source code metrics that measure different internal quality at-
tributes have also been reported as correlated [40, 42].

Source code metrics capture syntactical structural information and thus do
not capture the source code’s semantical complexity, which limits their applica-
bility in assessing program comprehension.

Similarly, we note that the semantic cohesion of source code may differ from
syntactic structure information related to cohesion and has not been discussed
in the included secondary studies. While developers in practice may perceive
semantic cohesion differently in given contexts, they use the concept of logical
cohesion by preferring to place classes and functions with similar functionality
in the same software packages [55]. The relationship between syntactic cohesion
and external quality attributes needs to be characterized for specific contexts.
As an example, while designing libraries with particular functionality may be
considered good design practice, accessing attributes or methods from a library
may lower the overall cohesion of the calling class, thus giving a wrongful impres-
sion of cohesion and external quality attribute being measured. Therefore, we
suggest utilizing the evidence presented in our study in light of such limitations
of source code metrics.

When using source code metrics for coupling, the coupling direction needs
to be considered for a meaningful utilization of the coupling metrics. Arisholm
et al. [37] discussed how “control classes,” i.e., large classes with the bulk of
functionality that depend on several smaller classes for ancillary functionality,
may be easier to modify for inexperienced developers. Kitchenham et al. [38]
suggested CBO to be invalid as it treats inward and outward coupling similarly.
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In practice, large classes may become a “bottleneck” when they have both
high outward coupling and high inward coupling. The coupling metrics reported
in Table [13] do not capture such nuances. Practitioners should prioritize classes
with high outward and high inward coupling for refactoring or redesign, as small
changes in them may lead to multiple changes in classes linked to them.

2.8.3 Double counting
When conducting tertiary studies, there is a risk of double counting when the
same primary studies are included in more than one secondary study [46]. To
address the threat of double counting, we identified the secondary studies with
overlap of primary studies. For such cases, we ensured that the duplicate pri-
mary studies were considered only once so that the results are not inflated due
to double counting.

2.9 Conclusions
In this tertiary study, we have performed a systematic review of secondary
studies that have evidence for the link between source code metrics and external
quality attributes as classified by prevailing software quality standards. After an
extensive search, we identified 15 exploratory and explanatory secondary studies
of moderate and high quality on the subject. The linked evidence considered
includes qualitative and quantitative results of the link between source code
metrics and external quality attributes. We excluded secondary studies that
did not report any stated evidence of a relationship between source code metrics
and external quality attributes.

Results from moderate and high-quality secondary studies show that evi-
dence of a link is only available for reliability, maintainability, and security. In
contrast, other external quality attributes have not been linked with source code
metrics in the included secondary studies. Only one secondary study reported
a link with a security sub-attribute, highlighting the need for further studies
exploring how source code metrics are linked with security and other external
quality attributes.

The evidence shows that source code metrics have a varied link with external
attributes depending on the external metric used as the dependent variable for
external quality attributes. After evaluating individual results from the perspec-
tive of the overall strength of evidence, using the quality of secondary studies
and the number of primary studies reporting the results, we report consistent
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results for a limited set of source code metrics and internal quality attributes.
Good indicators of external attributes are provided in Table 2.13. Several source
code metrics have been observed to have an insignificant or unclear link with
both maintainability and reliability.

Our results aid in developing confidence in the metrics reported as good
indicators, which may be useful for future studies on the subject. Source code
metrics categorized as consistent good indicators of external quality attributes
can aid practitioners in focusing on specific source code metrics to assess the ex-
ternal quality attributes of interest. Source code metrics that are insignificantly
linked may be investigated for a link with other external attributes of quality.

In our analyzed secondary studies, the data sets used for validation impact
the effectiveness of code metrics-based prediction models. However, GMDH-
based prediction models have performed better than other models considered
on several data sets.

Software development is essentially a human-centric activity. An interesting
future research direction can be evaluating the link between source code met-
rics and external quality attributes under different development processes, e.g.,
continuous integration where source code undergoes regular updates due to a
deployment-oriented outlook. We also note that evidence of the link has been
context-sensitive. Future studies can aim to solidify evidence of the link for
specific development contexts, e.g., web development, databases development,
or mobile development. Thus, we can compare structurally and semantically
similar source code and use the source code metrics to assess product quality
objectively.
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Table 2.17: Strength of evidence: reliability linked with code metrics in ex-
planatory studies

External
metric

Metrics sets Prediction model Studies DARE
Score

Relationship indicator Strength of
evidence

“+” Unclear

Fault-prediction

6 Halstead, Mc-
Cabe, LOC and
Branch

CCA, NB, BAG, LR and BO S11 M 1 Low

BRS, EBS, EBC,
BP, BS and BR

RF, SVM and MP S11 M 1 Low

CBO, DEPTH,
LCOM and
WMC

BN S11 M 1 Low

CK metrics NB and J48 S11 M 1 Low
CK & QMOOD
metrics

LR,UR, MR, NN, DT, SVM,
BST, RF, BAG and MP

S11 M 1 Low

CK metrics J48, NB. S11 M 1 Low
Halstead, Mc-
Cabe, LOC,
CK-suite & Misc

MOPSO-N, NN, BN, NB, SVM and
DT(C45)

S11 M 1 Low

Halstead, Mc-
Cabe & LOC

AFP and ALS S11 M 1 Low
AR, DT, k-NN, NBC, SVM,
BAG and BST

S11 M 1 Low

CC, NN-filter and TNB. S11 M 1 Low
DT and K-means. S11 M 1 Low
DT(C4.5), RF, AdaCost, Adc2,
Csb2, MetaCost, Weighting, and
RUS.

S11 M 1 Low

J48 Tree, DWT and PCA. S11 M 1 Low
K-Means and X Means. S11 M 1 Low
KNN and SVM. S11 M 1 Low
LR, PR, SVR, NN, SVLR, NB and
J48 Tree.

S11 M 1 Low

MLR. S11 M 1 Low
NB and DT(C4.5) S11 M 1 Low
NB and DT(J48). S11 M 1 Low
NB, J48 and OneR S11 M 1 Low
NB, SVM and NN. S11 M 1 Low
RANQ,NB,MLP,K-NN and LR S11 M 1 Low
RF S11 M 1 Low
RF, BAG, LR, BST and NB S11 M 1 Low
RF, BAG, LR, BST and NB. S11 M 1 Low
RF. S11 M 1 Low
SA, ACP, SVM and ANN. S11 M 1 Low
Clustering(SK-means, Cluster-
ing, MDBC, RF, NB and J48
Tree.

S11 M 1 Low

NB and RF S11 M 1 Low
NB, DT(C4.5-J48), SVM and LR. S11 M 1 Low
RF, BAG, LR, BST, NB, Jrip, Ibk,
J48, Decorate and AODE

S11 M 1 Low

Halstead, Mc-
Cabe, LOC and
Branch

RF, LDF and LR. S11 M 1 Low

Halstead, Mc-
Cabe, LOC &
Misc

ANN, SVM and DT and CCN S11 M 1 Low

Halstead, Mc-
Cabe, LOC &
Misc

CA,LR,J48 and NB S11 M 1 Low

LOC, CBO,
LOCQ, WMC,
RFC, LCOM,
LCOM3, DIT &
NOC

BN S11 M 1 Low

OO & McCabe RF, LR, NB and DT S11 M 1 Low
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Table 2.18: List of selected secondary studies

# Title Study
Type

Venue Year Ref

S01 A systematic literature review on empirical
studies towards prediction of software main-
tainability

SLR Soft Computing 2020 Malhotra and
Lata

S02 Machine Learning Techniques for Software
Bug Prediction: A Systematic Review

SLR Journal of Computer
Science

2020 Saharudin et al.

S03 Metrics for analyzing variability and its im-
plementation in software product lines: A sys-
tematic literature review

SLR Information & Soft-
ware Technology

2019 El-Sharkawy
et al.

S04 Empirical studies on software product main-
tainability prediction: A systematic mapping
and review

SMS E-Informatica 2019 Elmidaoui et al.

S05 Software change prediction: A systematic re-
view and future guidelines

SLR E-Informatica 2019 Malhotra and
Khanna

S06 Coupling and cohesion metrics for object-
oriented software: A systematic mapping
study

SMS Innovations in Soft-
ware Engineering
Conference

2018 Tiwari and
Rathore

S07 Software Maintainability: Systematic Litera-
ture Review and Current Trends

SLR International Journal
of Software Engi-
neering & Knowledge
Engineering

2016 Malhotra and
Chug

S08 Software change prediction: A literature re-
view

SLR International Journal
of Computer Applica-
tions in Technology

2016 Malhotra and
Bansal

S09 Empirical evidence on the link between object-
oriented measures and external quality at-
tributes: A systematic literature review

SLR Empirical Software En-
gineering

2015 Jabangwe et al.

S10 How have we evaluated software pattern ap-
plication? A systematic mapping study of re-
search design practices

SMS Information & Soft-
ware Technology

2015 Riaz et al.

S11 Software fault prediction: A systematic map-
ping study

SMS Ibero-American Con-
ference on Software
Engineering

2016 Murillo-Morera
et al.

S12 Software fault prediction metrics: A system-
atic literature review

SLR Information & Soft-
ware Technology

2013 Radjenović et al.

S13 A systematic review of the empirical valida-
tion of object-oriented metrics towards fault-
proneness prediction

SLR International Journal
of Software Engi-
neering & Knowledge
Engineering

2013 Isong and Obeten

S14 What’s up with software metrics? – A prelim-
inary mapping study

SMS Journal of Systems &
Software

2010 Kitchenham

S15 A systematic review of software maintainabil-
ity prediction and metrics

SLR International Sym-
posium on Empirical
Software Engineering
& Measurement

2009 Riaz et al.



2.9 Conclusions 73

Table 2.19: Interpretation of the DARE criteria by Budgen et al. [53]

Criterion Score Interpretation

Inclusion
and exclu-
sion

yes The criteria used are explicitly defined in the paper

partly The inclusion/exclusion criteria are implicit
no The criteria are not defined and cannot be readily inferred.

Search cov-
erage

yes The authors have searched four or more digital libraries and included additional search strate-
gies OR identified and referenced all journals addressing the topic of interest.

partly Searched three or four digital libraries with no extra search strategies OR searched a defined
but restricted set of journals and conference proceedings.

no Searched up to two digital libraries or an extremely restricted set of journals.
Assessment
of quality

yes The authors have explicitly defined quality criteria and extracted them from each primary
study

partly The research question involved quality issues that are addressed by the study
no No explicit quality assessment of individual papers has been attempted

Study de-
scription

yes Detailed information is presented about each study

partly Only summary information is presented about the studies
no Details of the studies are not provided

Synthesis
of studies

yes The authors have performed a meta-analysis or used another form of synthesis for all the
data of the study

partly Synthesis has been performed for some of the data from some of the primary studies
no No explicit synthesis has been performed (as in a mapping study)
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Table 2.20: External quality attributes and external metrics used in the sec-
ondary studies

Study
ID

External qual-
ity attribute

External metric Description

S01 Maintainability Change Lines of code added, deleted, and modified
S02 Reliability Bugs Not provided in the secondary study
S03 Maintainability Change impact Not provided in the secondary study
S03 Vulnerability Not Reported Number of internal #ifdef-blocks, Number of internal configurations

options, Number of external configuration options, degree centrality,
eigenvector centrality, betweenness centrality

S04 Maintainability Change The number of changes made to the source code (changes in LOC,
change in modules, change in class)

S05 Maintainability Change-
proneness

Change-proneness is defined as the likelihood that a class would
change across different versions of a software product

S06 Reliability Fault proneness The probability of detecting faulty classes
S06 Maintainability Maintenance Ef-

fort
The maintenance effort is measured by the number of lines changed
per class

S07 Maintainability Change Not defined by secondary study. Only referred to as ’change’ in the
inclusion/exclusion criteria

S08 Maintainability Change Not defined in the secondary study. Only referred to as "change
prediction" in the introduction

S09 Maintainability
& Reliability

Multiple external
metrics

The secondary study combines evidence for link between external
quality attribute and source code metrics from primary studies that
use multiple external metrics to measure the external quality at-
tribute. Also, the definition of the external metric are not provided.

S10 Reliability Defects Not provided in the secondary study
S11 Reliability Fault-prediction Estimating the number of defects remaining in software systems
S12 Reliability Fault proneness Fault prediction models are used to improve software quality and

to assist software inspection by locating possible faults. A correct
service is delivered when the service implements the system function.
A service failure is an event that occurs when the delivered service
deviates from the correct/expected service. The deviation is called
an error. The adjudged or hypothesized cause of an error is called a
fault

S13 Reliability Fault proneness The paper does not define fault proneness, however, mentions “De-
fects during development are inevitable and the earlier they are
found and fixed, the lesser it costs and the higher the quality of
the products delivered”

S14 Reliability Fault proneness The probability of exhibiting a fault
S15 Maintainability Maintainability

Index
Not defined in the secondary study. In the primary studies of S15 it
is defined as MI = 171 - 5.2 ln(average Halstead volume) - 0.23 (av-
erage extended cyclomatic complexity per module) - 16.2 ln(average
count of lines of source code per module) + 50 sin(sqrt (2.4*(average
percentage of lines of comments per module)))
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A catalog of source code
metrics – a tertiary study

This chapter is based on the following paper:

Umar Iftikhar, Nauman Bin Ali, Jürgen Börstler and Muhammad
Usman. “A catalog of source code metrics – a tertiary study” In
Proceedings of the International Conference on Software Quality,
(pp. 87-106), Springer 2023.



76 A catalog of source code metrics – a tertiary study

3.1 Abstract
Context: A large number of source code metrics are reported in the literature. It
is necessary to systematically collect, describe and classify source code metrics
to support research and practice.
Objective: We aim to utilize existing secondary studies to develop a catalog
of source code metrics together with their descriptions. The catalog will also
provide information about which units of code (e.g., operators, operands, lines
of code, variables, parameters, code blocks, or functions) are used to measure
the internal quality attributes and the scope on which they are collected.
Method: We conducted a tertiary study to identify secondary studies reporting
source code metrics. We have classified the source code metrics according to
the measured internal quality attributes, the units of code used in the measures,
and the scope at which the source code metrics are collected.
Results: From 711 secondary studies, we identified 52 relevant secondary stud-
ies. We reported 423 source code metrics together with their descriptions and
the internal quality attributes they measure. Source code metrics predominantly
incorporate function as a unit of code to measure internal quality attributes.
In contrast, several source code metrics use more than one unit of code when
measuring internal quality attributes. Nearly 51% of the source code metrics are
collected at the class scope, while almost 12% and 15% of source code metrics
are collected at module and application levels, respectively.
Conclusions: Researchers and practitioners can use the extensive catalog to
assess which source code metrics meet their individual needs based on the de-
scription and classification scheme presented.

3.2 Introduction
During software development or evaluating open-source components before in-
corporating them into the codebase, measuring the quality of the software prod-
uct is essential. One of the objective methods to measure the quality of a soft-
ware product is through source code metrics.

Fenton and Bieman [55] classify quality attributes of a software product into
internal and external quality attributes. Internal quality attributes of the source
code relate to source code characteristics without accounting for the execution
environment. In contrast, external quality attributes relate to how the source
code behaves in the context of a specific environment. Several studies have
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shown a link between internal quality attributes and underlying issues in source
code, such as code smells [95] and code decay [104]. Similarly, studies have also
measured internal quality attributes to investigate the impact of code refactoring
[90]. By assessing the internal attributes of the codebase regularly, practitioners
can avoid introducing anti-patterns and incurring technical debt.

Source code metrics are often used to measure the internal quality attributes
of the software. Several source code metrics have been proposed over the years.
Some of the popular metric suites include Halstead metrics [185], McCabe com-
plexity metric [186], Chidamber & Kemerer (CK) metrics [50] and Li & Henry
metrics [129]. Source code metrics are utilized in several cases, e.g., defect
proneness [93], bug prediction [89], assessing domain-specific software [88], and
in evaluating the implementation of software product lines [86].

Source code metrics use information regarding a software product’s structure
and size and provide numerical values mapped to quality attributes [184]. While
measuring, source code metrics target various units of code. These units of
code are measured at different scope levels (e.g., at application, class, module,
or function level) to gain insight into specific aspects and areas of code. As an
illustrated example, number of methods (NOM) is described as “count of all the
methods defined in a class” [51]. In this case, we measure the size of the source
code by measuring a unit of code method, and the scope of the measurement is
at the class level.

The large number of secondary studies reporting source code metrics pro-
vides an opportunity to collect and categorize source code metrics. Through a
tertiary study, we aim to provide an extensive catalog of source code metrics re-
ported in secondary studies, their descriptions, and classifications. The catalog
of source code metrics, along with definitions and measured internal attributes,
the scope of measurement can be a starting point in identifying and selecting
suitable source code metrics for the specific measurement needs of researchers
and practitioners.

In our previous work [191], we investigated the strength of the evidence
linking source code metrics with internal and external quality attributes from
15 secondary studies. The aim of the current tertiary study is to provide an
extensive catalog of the source code metrics reported in secondary studies.

The paper is structured as follows. Section 3.3 presents the related work,
followed by Section 3.4 on methodology. We discuss the threats to validity in
Section 3.5 and the results in Section 3.6. Section 3.7 summarizes our reflections
on the results while Section 3.8 concludes the review.
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3.3 Related work

Several systematic studies have synthesized source code metrics reported in
the literature. Nunez et al. [117] conducted a mapping study that classified
more than 300 source code metrics according to four programming paradigms,
supported extraction tools, systems used for benchmarking and topics studied
from primary studies between 2010 and 2015. However, the study does not
report descriptions of the source code metrics.

Saraiva et al. [108] identified 67 aspect-oriented source code metrics to
measure software maintainability and reported 15 aspect-oriented metrics re-
ported by at least two primary studies. The study is limited to only one qual-
ity attribute, i.e., maintainability, and does not report aspect-oriented metrics
for other quality attributes. Hernandez-Gonzalez et al. [124] focused only on
design-level metrics and summarized 26 design-level source code metrics from
15 primary studies. Caulo et al. [187] proposed a taxonomy of 512 metrics that
can be used for software fault prediction. These studies have specified limited
scope and thus do not provide a holistic classification of the source code metrics
along with their descriptions.

Arisholm et al. [189] proposed a classification of dynamic coupling metrics
based on granularity, entity, and scope, though their study is limited to dynamic
coupling metrics only.

In contrast, several studies provide descriptions of the frequently used source
code metrics, including Briand et al. [68], Sharma et al. [188], Kaur et al. [192]
but only include descriptions for the source code metrics which are part of a
source code metric suite.

Lacerda et al. [56] have conducted a tertiary study on a closely related
topic of code smells and refactoring. While the tertiary study does not report
any source code metrics, the secondary studies included several source code
metrics for code smell detection and comparing refactoring improvements. As
mentioned in Section 3.4.1, we have included the secondary studies reported by
Lacerda et al. [56] in the list of publications considered for selection criteria.

To our knowledge, no systematic study reports a catalog of source code
metrics and classifies them by units of code and scope. We report source code
metrics aggregated in secondary studies, with no limitations on the years a
secondary study was published and without limiting the scope to a particular
programming paradigm. We also report descriptions of all the source code
metrics extracted in these studies. A comparison of the secondary and tertiary
studies on the subject is provided in Table 3.1.
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Table 3.1: Comparison of secondary and tertiary studies on source code metrics

Studies Source Years covered Focus Limitations
Saraiva et
al. [115]

138 primary studies 1992–2011 Aspect-oriented
metrics for main-
tainability

Other quality at-
tributes, e.g., relia-
bility are not in the
scope

Nunez et
al. [117]

226 primary studies 2010–2015 Source code met-
rics for AOP, OOP,
FOP, tools used,
datasets used

Component-based
metrics are not re-
ported, source code
metrics definitions
are not provided

Hernandez-
Gonzalez
et al.
[124]

15 primary studies 1997–2016 Design level metrics Scope focused on
design level metrics;
search years cov-
ered, primary stud-
ies used are not re-
ported

Caulo et
al. [187]

196 primary studies 1991–2017 Metrics for fault
prediction

Scope focused on
fault-prediction
source code metrics
only

Our ear-
lier study
[191]

15 secondary stud-
ies

1985–2020 (based
on the included
primary studies)

Strength of ev-
idence linking
source code met-
rics and quality
attributes

Only investigate re-
ported link between
source code metrics
and external quality
attributes

Present
study

52 secondary stud-
ies on source code

1976–2020 (based
on the included
primary studies)

Catalog of source
code metrics to
measure quality
attributes, report
various uses of
source code met-
rics, e.g., bad smells
detection

Secondary studies
used as the source

3.4 Methodology
We used the guidelines by Kitchenham et al. [62] in this tertiary study to an-
swer the following research question:

RQ 1: Which source code metrics are used in the secondary studies
to measure internal (code quality) attributes?

RQ 1.1: Which units of code are used to measure the internal (code
quality) attributes?

RQ 1.2: At which scope are the internal (code quality) attributes mea-
sured?
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3.4.1 Search strategy
We followed the guidelines by Petersen et al. [57] and searched in one indexing
(Scopus) and two publisher databases (IEEE Xplore and ACM digital library).
ACM and IEEE are among the most relevant publishers of research in software
engineering [82, 83] while Scopus is one of the largest indexing services covering
published articles from several publishers [48, 119]. Source code metrics are
often reported in the context of measuring quality attributes. Thus, we utilized
a keyword-based search [45, 62] as our primary search strategy. The search
string consisted of six blocks; the first block contains synonyms for source code,
the second block focuses on quality attributes measured, and the third block
restricts the search results to systematic studies. The remaining three blocks
limit the search results to articles and conference papers in the area of computer
science written in English. We also incorporated synonyms for metrics, such as
“measure” and “indicator” to improve the search string.

As depicted in Figure 3.1, we identified keywords from ISO/IEC 25010:2011
[70] and a set of 14 relevant papers already known to the authors due to their
domain expertise (see KnownSetOfPapers in the online supplement [193]) to
formulate our search string given in Table 3.2. The search string in Table 3.2
was also adapted to ACM and IEEE.

We used a set of 11 secondary studies (see Validation set(QGS) in the online
supplement [193]) as a quasi-gold standard (QGS) [62] to evaluate the effec-
tiveness of the search string. Two authors independently formulated the QGS,
which included of 11 secondary studies [49]. We executed the search string
in February 2021, which captured eight of the 11 (precision 1.46% and recall
73%) studies mentioned in the QGS. To improve the search coverage, we supple-
mented our search results with the secondary studies covered by Lacerda et al.
[56] as they are relevant to our topic (these studies are italicized in Table 3.8).
After removing duplicates, we found 711 unique publications (see Figure 3.2).

3.4.2 Selection process
We used the criteria described in Table 3.3 to select relevant papers from the
search results. Papers fulfilling the Boolean expression (C0 AND C1 AND C2
AND (C3 OR C4)) were selected for full-text reading. We retained papers for
the next phase if there were indications that the full text of a paper might
contain relevant information. Papers that only fulfilled C5 were excluded.

As a first step, the first author excluded publications with less than eight
pages and not written in English. We excluded systematic studies with less than
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Table 3.2: Search string used for automated search in the study

Search string
TITLE-ABS-KEY ( ( ( “code” OR “software program” OR “software product” OR “software appli-
cation” OR “software system” OR “object oriented” OR “aspect oriented” OR “feature oriented” )
AND
( “quality” OR “smell*” OR “pattern” OR “functional suitability” OR “performance” OR “effi-
ciency” OR “compatibility” OR “usability” OR “reliability” OR “security” OR “maintainability”
OR “portability” OR “analyzability” OR “modifiability” OR “testability” OR “compliance” OR
“stability” OR “comprehension” OR “understandability” OR “understanding” OR “maintenance”
OR “modularity” OR “reusability” OR “changeability” OR “evolvability” OR “modification” OR
“testability” OR “evolution” OR “readability” OR “metric*” OR “measur*” OR “indicator” OR
“refactoring” ) )
AND
( “systematic review” OR “systematic literature review” OR “systematic map” OR “systematic
mapping” OR “tertiary study” OR “tertiary review” OR “mapping study” OR “multivocal literature
review” OR “multivocal literature mapping” ) )
AND
( LIMIT-TO ( DOCTYPE , “re” ) OR LIMIT-TO ( DOCTYPE , “ar” ) OR LIMIT-TO ( DOCTYPE
, “cp” ) )
AND
( LIMIT-TO ( SUBJAREA , “COMP” ) OR LIMIT-TO ( SUBJAREA , “ENGI” ) )
AND
( LIMIT-TO ( LANGUAGE , “English” ) )

Keywords from 
14 ‘Known set 
of papers’

Keywords from 
ISO 
25010:2011 
standard

Search words 
and synonyms

Search results 

Validation set
40 secondary 
studies from 
Lacerda et al.

Final search 
results (711 
secondary 
studies)

Figure 3.1: Search string generation and validation steps
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Table 3.3: Inclusion/exclusion criteria used in the tertiary study

Inclusion Criteria
C0 Publications in English language and with length of at least eight pages
C1 Peer-reviewed workshop, journal or conference publications
C2 Publications claiming to have systematically studied available literature, i.e., systematic

literature studies (SLRs or SMSs) or multivocal literature studies (MLRs, MLMs)
C3 Papers that identify, describe source code metrics to measure internal quality attributes

or determine levels of code quality (e.g., work on quality measurement or code smells)
C4 Papers that relate source code metrics/quality attributes/code refactoring/code smells to

external quality attributes
Exclusion Criteria
C5 Publications that are about only external quality attributes of software product/sys-

tem/service, or about the quality of other artifacts like defect reports, test code, or test
cases i.e., studies not related to source code metrics

eight pages as such studies are unlikely to report sufficiently detailed literature
review methods and results. Out of the 711 search results in Figure 3.2, the
first author identified 163 publications that did not meet the page and language
requirements according to Table 3.3 and were excluded.

We conducted a pilot round of the selection process [62, 78] to improve its
objectivity and to develop a shared understanding of the topic. The piloting
step involved all four authors and 12 randomly selected papers from the search
results, which were assessed independently by all authors as relevant, irrelevant,
or maybe relevant. An initial agreement percentage of 58% was achieved, which
is moderate. To reduce the chances of misalignment between authors and to
improve the moderate initial agreement, the selection criteria were discussed
during a meeting to improve the shared understanding.

From the remaining 548 secondary studies, the first author applied the selec-
tion criteria to all secondary studies, while the second, third, and fourth author
were randomly assigned 182 secondary studies each, thus ensuring that each
publication is reviewed by two authors. Decision making process suggested by
[67, 78], was utilised. A secondary study was excluded if it was resolved as “ir-
relevant” and it was included if it was agreed upon as “maybe” or “included” by
both authors. The initial agreement among the author-pairs was 73%. The av-
erage Cohen-Kappa inter-rater agreement between author-pairs was 0.64, which
is substantial agreement [80, 81]. The disagreements during this round were re-
solved through discussion. After the study selection based on title and abstract,
413 secondary studies were excluded.

We have used a modified adaptive reading method [79] to conclude the rel-
evance of papers included in the previous step. We read the paper’s research
questions, introduction, and conclusion sections to decide its relevance. The
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selection criteria listed in Table 3.3 were used to ascertain the relevance. The
second author reviewed all papers excluded in this stage to reduce the likeli-
hood of excluding a relevant publication. During the adaptive reading of the
secondary studies, 36 secondary studies were further identified as not meet-
ing the selection criteria. These excluded studies were reviewed by the second
author leading to 99 secondary studies being retained for full-text reading.

During the full-text reading stage, the full text for one secondary study
[84] was not available (besides our best efforts), thus, it was excluded. Two
papers were identified as the same secondary studies [85, 92], and the most
recent of the two secondary studies [92] was retained. The first author further
identified 40 secondary studies as irrelevant to the scope, which the second and
fourth authors reviewed. The authors agreed on excluding 38 secondary studies.
After discussion, the remaining two secondary studies were included giving 59
secondary studies for quality assessment and data extraction.

913

711 548 135
Removal
based on ‘adaptive 
reading’

Removal
based on title & 
abstract

Preliminary
selection

Removal of 
duplicates

Data Extraction 
(from fulltext)

99 59 Removal
low quality studies

52

Scopus: 625
IEEE: 173
ACM: 55
Validation set: 11
Known papers: 9
Lacerda et al: 40

Source code 
metrics

reporting
studies

Figure 3.2: Selection process results (The count depicts included secondary
studies at each stage)

3.4.3 Data extraction
Table 3.4 presents the data extraction form used.

Piloting of the data extraction.

To validate the data extraction form, the first and third authors independently
extracted the data from a randomly selected secondary study from the validation
set [193]. The authors agreed on 76% of the data extracted for one randomly

1when no description of the source code metric was available in the secondary study, we
searched in the referenced primary studies.
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Table 3.4: Data extraction form used in the study

Data Extracted
– Metadata: (author, title, publication venues, publication date)
– Search: (time period covered in the search).
– Source code quality attribute that are the secondary study’s focus: (from the research questions)
– Name and acronym of the source code metric (any metrics for which the measured entity is source
code or its attributes).
– Description of the source code metric1.
– Name of the external quality attribute/sub-attribute (i.e., maintainability, reliability, security,
functionality, performance, compatibility, usability, or portability [55, 70]) measured by the source
code metric.
– Name of the internal quality attribute (i.e., coupling, cohesion, complexity, inheritance, or
size [55]) measured by the source code metric.
– Programming paradigm
– Application domain

selected paper. The differences were discussed and resolved. The threats related
to data validity are further discussed in Section 3.5.

Validation of the data extraction.

After data extraction by the first author on all included secondary studies,
the fourth author randomly reviewed 5% source code metrics, internal quality
attributes, and classifications assigned. The fourth author agreed with 55% of
the data entries, while there were “minor issues” with 25% and 20% data entries
highlighted as “major issues.” The authors discussed the issues in a meeting,
and the first author took remedial action to resolve the highlighted minor and
major issues throughout the dataset.

3.4.4 Quality assessment of the secondary studies.
For this tertiary study, the criteria proposed by Budgen et al. [53] to answer
the five DARE [194] questions were used (see online [193]). After piloting the
quality assessment criteria on one study to improve shared understanding, the
first author applied the DARE quality criteria on all studies followed by post-
hoc validation on 10% secondary studies by the fourth author. We used the
quality assessment score to remove low-quality secondary studies [62]. Inspired
by [118, 120], we removed secondary studies that score 1.5 (of 5).

After removing secondary studies with scores less than or equal to 1.5, 52
secondary studies remained. As DARE is not designed to evaluate the quality
of multi-vocal reviews, quality assessment-based selection was not applied to
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Table 3.5: Descriptions of units of code used for categorization

Name Description
Operators This includes mathematical, assignment and logical operation.
Operands This includes inputs and variables needed to perform a mathematical, logical or assign-

ment operation
Variables For our classification, they include attributes or variable declarations
Lines of
code

A single source code statement. This include composite code statements, logical lines
of code, executable lines of code, commands, point cut declarations

Comments Comments that are part of the source code files
Parameters Parameters include the parameters declared in method declaration, definition and its

implementation
Code
Blocks

Code block which span more than a line of code. It could be several lines of code inside
a function, code expressions, conditional blocks of code, switch statements and variation
point that span several lines of code

Functions The methods (public, private, protected, abstract, virtual, setters, getters) or operations
in a class, procedures or routines (procedural programming languages), advices (aspect
oriented programming), refined/constant/base features (feature oriented programming
(FOP))

Function
Calls

This includes the different method calls, message requests between classes, modules,
packages or components.

Classes We include sub-classes, super classes, classes that use instances of other classes, in-
herited classes, parent classes, children classes, cross-cutting concerns (aspect oriented
programming (AOP)), base/constant/refined features classes (feature oriented program-
ming (FOP))

Modules We use this terminology to loosely classify collection of classes, components, packages,
libraries, sub-packages, sub-systems

Others In the case where the software construct being measured is not clearly stated, or when
stated construct is a feature or concern.

MLRs. The secondary studies removed due to low DARE scores are listed online
[193]. Detailed results of quality assessment are also reported online [193].

3.4.5 Categorization of source code metrics.

We read all the source code metric names and their descriptions to identify
the units of code measured and the scope at which the values of source code
metrics are reported. We used a bottom-up approach to identify the units of
code stated in the source code metric descriptions. The definitions of the units
of code are shown in Table 3.5 while the definition of scope are available online
[193]. To identify unique source code metrics, we referred to the descriptions
of the source code metric. Source code metrics with the same descriptions are
treated as duplicates and are combined.
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3.5 Threats to validity
In the discussion below, we use the classification of threats by Ampatzoglou et
al. [125].

Study selection.

During study selection, we included steps to improve the objectivity of the pro-
cess. We carefully designed the inclusion/exclusion criteria before the selection
process. All authors participated in the pilot rounds, and at least two authors
evaluated the relevance of each secondary study. The inter-rater agreement was
calculated and reported for all author pairs. All secondary studies that were
excluded in the adaptive reading and full-text reading phases by the first au-
thor were reviewed by the second author. Since we excluded secondary studies
with less than eight pages, some source code metrics may be excluded from our
catalog. However, we believe the number of excluded source code metrics to be
small and unlikely to change the overall results significantly.

Data validity.

The third author validated the data extraction form designed after discussion.
We also piloted the data extraction as recommended by Kitchenham et al. [62]
on 10% of the secondary studies. A post-hoc data validation was performed on
randomly selected 5% secondary studies with corrective actions taken to resolve
the differences. As the data extraction from secondary studies is a manual
process, there is a possibility of errors in data extraction given the large data
extracted for the given study.

Research validity.

We have reported the search string used, databases used, and the inclusion/ex-
clusion criteria to improve the repeatability of the tertiary study. We regularly
updated the design document of the tertiary study and recorded all intermediate
results in the protocol document.

Double counting.

Double counting of extracted data can occur in a tertiary study when included
secondary studies use the same primary study as their source of information.
It may lead to overstating a particular result when a tertiary study aggregates
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findings from multiple secondary studies that utilized the same primary stud-
ies. To avoid double counting, we preferred not to perform any quantitative
aggregations of results across secondary studies.

3.6 Results and analysis
Of the 52 included secondary studies reporting source code metrics (see Table
3.8), 31 are systematic literature reviews (SLRs), 20 are systematic mapping
studies (SMSs), and one is a multi-vocal literature review (MLM). The earliest
study was published in 2009, and 69% (36 out of 52) were published 2015–2020.

The included secondary studies report 423 source code metrics which mea-
sure internal quality attributes at different scopes. Due to space limitations,
the complete list is available online [193]. Figure 3.3 shows a screenshot of the
online catalog. CK metrics are among the most commonly reported source code
metrics. Apart from the CK metrics suite, other frequently reported metric
suites include McCabe, and QMOOD metrics.

Among the included secondary studies, 59% (31 out of 52) secondary stud-
ies report source code metrics for specific programming paradigms such as
aspect-oriented (AOP), feature-oriented (FOP), procedural, and object-oriented
(OOP). Source code metrics used in OOP are reported in 46% (24 out of 52)
of the secondary studies, while source code metrics used in AOP are reported
in 12% (six out of 52) of the secondary studies. Eight (15%) secondary studies
report source code metrics used in the procedural paradigm, while source code
metrics used in FOP are reported in three secondary studies. Over 50 source
code metrics are reported for more than one programming paradigm.

The secondary studies use source code metrics to assess external quality at-
tributes (27 secondary studies), evaluate software-product line implementations
(four secondary studies), measure the impact of code refactoring (two secondary
studies), and detect source code smells (five secondary studies).

3.6.1 Internal quality attributes
The secondary studies report 14 quality attributes measured by source code
metrics which we mapped into six internal quality attributes, as shown in Ta-
ble 3.6. The descriptions of the internal quality attributes [193] are based on
Fenton and Bieman [55] and Bansiya and Davis [51]. Coupling, size, and com-
plexity are the most frequently reported internal quality attributes, with 161
source code metrics reporting coupling and 78 source code metrics reporting
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Figure 3.3: Screenshot of the online catalog of source code metrics
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Table 3.6: Number of unique source code metrics (column Metrics) reported in
included secondary studies, categorized by commonly referred internal quality
attributes (column Attribute)

Attribute Metrics Studies
Cohesion 56 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17,

S18, S19, S20, S22, S24, S25, S26, S27, S28, S29, S30, S31, S32, S34, S36,
S37, S38, S41, S42, S44, S46, S47, S49, S50, S51

Complexity 78 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S12, S13, S14, S15, S16,
S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31,
S32, S33, S34, S36, S37, S38, S40, S41, S42, S43, S46, S47, S48, S49, S50,
S51

Coupling 161 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17,
S18, S19, S20, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S34,
S36, S37, S38, S40, S41, S43, S44, S45, S46, S47, S49, S50, S51

Inheritance 34 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17,
S19, S20, S22, S24, S25, S26, S27, S28, S29, S30, S31, S34, S36, S37, S38,
S41, S44, S46, S47, S48, S49, S50, S51

Size 61 S01, S02, S03, S05, S06, S08, S09, S10, S11, S12, S13, S15, S16, S17, S19,
S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34,
S35, S36, S37, S38, S40, S41, S42, S43, S44, S46, S47, S48, S49, S51, S52

Others 33 S01, S02, S05, S06, S08, S09, S11, S16, S17, S19, S20, S24, S25, S26, S27,
S29, S31, S34, S36, S37, S38, S45, S49, S51

the complexity of the source code. Complexity is the most frequently reported
internal quality attribute, with 88% (46 out of 52) secondary studies reporting
source code metrics for it. Certain source code metrics are commonly reported.
Frequently reported inheritance metrics include Depth of inheritance tree (DIT)
and Number of Children (NOC). Similarly, frequently reported complexity met-
rics include Weighted method per class (WMC), McCabe’s cyclomatic complexity
(CC), and Response for a class (RFC).

3.6.2 Units of code in source code metrics to measure in-
ternal quality attributes

We identified 26 units of code utilized in the source code metrics descriptions,
which we mapped to 13 categories of units of code [193]. Source code metrics
either use a single unit of code or a combination of two or more units of code
to measure the reported internal quality attribute. Out of the 423 source code
metrics that measure an internal quality attribute, 25% (107 out of 423) of
the source code metrics incorporate multiple units of code to measure internal
quality attributes. Standalone units of code are more frequently used than
composite units of code, with 75% of source code metrics using standalone
units of code. functions (106 source code metrics) and classes (69 source code
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metrics) are among the most frequently used standalone units of code. Among
the frequently used composite units of code, classes & functions (25 source code
metrics), and functions & variables (34 source code metrics) are used together.
The frequently used units of code vary for different internal quality attributes.
Source code metrics for coupling predominantly use classes, and functions &
variables. In contrast, size-related source code metrics rely equally on lines of
code, classes, in addition to functions. Complexity-focused source code metrics
analyze the code blocks, operators & operands, and functions to measure source
code’s complexity.

3.6.3 Scope of source code metric evaluation
The identified scope [193] categorize the source code at six levels of abstraction:
application - module - class - function - code-block - lines of code. The results
of the scope are depicted in Table 3.7. Source code metrics are most frequently
evaluated at the class level, followed by module and application levels. Among
source code metrics that report internal quality attributes, 216 evaluate source
code metrics at the class level. Evaluation of source code metrics at the class
level is the predominant trend when the scope of individual internal quality
attributes is analyzed, followed by evaluation at the others and application level.
Coupling metrics have the highest percentage, 102 out of 161 (63%), among
reported internal quality attributes to be evaluated at the class level. Intuitively,
none of the source code metrics are evaluated at lines of code. Only a small
subset of source code metrics (three source code metrics) are assessed below the
function level, suggesting that the lowest meaningful scope is at the function
level.

One method to utilize the catalog is filtering the source code metrics list
using the internal quality attribute of interest, required scope, and unit of code.
The results can act as a good starting point for determining source code metrics
available for the specific needs of the catalog user. As an example, selecting
complexity as the internal quality attribute of choice, scope as function, and unit
of code as code blocks provides 21 source code metrics and their descriptions.

3.7 Discussion
Our tertiary review provides a catalog of source code metrics and their descrip-
tions for researchers and practitioners. We classified the source code metrics
based on units of code used to measure internal quality attributes and the
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Table 3.7: Scope identified for source code metrics in secondary studies

Scope Cohesion Complexity Coupling Inheritance Size Others Total
Application 6 16 16 6 15 3 62
Module 10 8 22 2 4 3 49
Class 30 23 102 20 26 15 216
Functions 4 11 1 1 4 0 21
Code Blocks 0 1 0 0 1 1 3
Others 6 19 20 5 11 11 72
Total 56 78 161 34 61 33 423

scope at which the measured values are reported. We have reported six inter-
nal quality attributes measured by source code metrics in the included studies.
However, we did not find any source code metrics for internal quality attributes
such as messaging and hierarchies, as defined in [51]. It suggests that the two
internal quality attributes are less relevant to the included secondary studies’
scope, and the two internal quality attributes have received less focus in the
literature. Our results show that almost 38% of the reported source code met-
rics relate to coupling and nearly 18% measure complexity. Arvanitoue et al.
[99] also observe complexity and coupling as the most studied internal quality
attributes.

Our results show that the CK metrics suite [50] is one of the most frequently
used metric suites, which is consistent with other studies (e.g. [117]). Compared
to Nunez et al.’s SMS [117], we report more unique source code metrics (423 in
comparison to 300) and provide descriptions for source code metrics that may
aid researchers and practitioners alike.

One of the challenges in source code metrics is the lack of standardization
of names and descriptions. Several studies [91, 115, 116] have highlighted the
inconsistency of metrics’ names and acronyms, which may lead to a prolifera-
tion of source code metrics. We report 61 unique source code metrics referred
to in the literature with more than one acronym (e.g., cyclomatic complexity is
assigned several acronyms such as CC, cyclo, MVG, and V(G)). In the cases
where the metric’s name is not specified along with the acronym, it may mislead
the audience. Using metrics’ names and descriptions, we further identified 150
source code metrics that use similar units of code while aggregating the units
of code at different scope levels (e.g., lines of code, lines of feature code, lines of
concern code). We considered these as essentially similar source code metrics
and reported them as similar source code metrics accordingly. However, we ob-
served that the lack of standardization of names of source code metrics remains
an open issue. This affects the utility provided by various source code metrics.
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We observe that the units of code and scope vary when a particular pro-
gramming paradigm is considered. Intuitively, such a variation is expected as
different programming paradigms focus more on certain scopes than others. We
note that source code metrics for feature-oriented programming are predomi-
nantly measured at the feature level or concern level, which we have classified
as others. The most often measured units of code for procedural languages
are operators & operands, which are more frequently assessed at the applica-
tion level. Source code metrics reported for the object-oriented programming
paradigm measure functions as units of code and predominantly collect metrics
at the class level of scope. One possible reason for the difference is that applica-
tions written in procedural languages have different code structure compared to
object-oriented applications, and the size of the application being investigated
may also vary.

In the included studies, we observed a lack of source code metrics explicitly
designed for contemporary programming languages, such as Python, Go, and
Kotlin. While several open-source measurement tools exist, summarising these
source code metrics may improve the utilization of appropriate source code
metrics for contemporary programming languages.

Please note that the catalog currently does not provide information about
which reported measurement tools also support source code metrics. Future
work can report the available tool support for the reported source code metrics
to improve the usability of the catalog for practitioners.

3.8 Conclusions
We analyzed 52 systematic studies reporting 423 unique source code metrics,
which we have compiled into a catalog. We have intentionally excluded metrics
related to change, architecture, and testing for the catalog. We have categorized
the source code metrics in the catalog according to the units of code and the
scope.

Our results show that source code metrics predominantly measure function-
level units of code such as methods, advices, procedures, and routines. Further-
more, source code metrics frequently report values at the class level instead of
higher scope levels, such as at the module or application level.

When reporting the catalog of source code metrics, we have not considered
the validation status of the presented source code metrics. One of the future
works can supplement the catalog to include the validation status of the reported
source code metrics, thus improving the usability of the catalog.
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Appendix

Table 3.8: List of included secondary studies (PS: No. of primary studies, QS:
Quality score)

# Title Study
type

Publ
year

PS Start
year

End
year

QS Focus

S01 A Systematic Literature Re-
view on Bad Smells-5 W’s:
Which, When, What, Who,
Where

SLR 2021 351 1990 2017 2.5 Bad
Smells

S02 Evolution of quality assess-
ment in SPL: A systematic
mapping

SMS 2020 63 2000 2019 2.5 Design
Approach
Evalua-
tion

S03 A systematic literature review
on empirical studies towards
prediction of software main-
tainability

SLR 2020 36 1990 2019 4 Maintainability

S04 Evaluating code readability
and legibility: An examina-
tion of human-centric studies

SLR 2020 54 2016 2019 3 Maintainability

S05 Software smell detection tech-
niques: A systematic litera-
ture review

SLR 2020 145 1993 2018 3 Bad
Smells

S06 A Tool-Based perspective on
software code maintainability
metrics: A Systematic Litera-
ture Review

SLR 2020 43 2000 2019 3

S07 A systematic review of soft-
ware usability studies

SLR 2020 150 1990 2016 4 Usability

S08 Metrics in automotive soft-
ware development: A system-
atic literature review

SLR 2020 38 1990 2018 3 Source
code
metrics

S09 Machine learning techniques
for software bug prediction: A
systematic review

SLR 2020 31 2014 2020 2.5 Reliability

S10 How does object-oriented
code refactoring influence
software quality? Research
landscape and challenges

SMS 2019 142 2000 2017 4.5 Refactoring

S11 Metrics for analyzing variabil-
ity and its implementation in
software product lines: A sys-
tematic literature review

SLR 2019 29 2007 2017 3.5 Source
code
metrics

S12 Software quality assessment
model: a systematic mapping
study

SMS 2019 31 1998 2015 3 Quality
assess-
ment
models
and mea-
surement

S13 A survey on software testabil-
ity

SMS 2019 208 1982 2017 2 Maintainability

Continued on next page
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Table 3.8 – Continued from previous page
# Title Study

type
Publ
year

PS Start
year

End
year

QS Focus

S14 A survey on software coupling
relations and tools

SLR 2019 136 2002 2017 2.5 Internal
quality
attributes

S15 Software quality measure-
ment in software engineering
project: A systematic litera-
ture review

SLR 2019 38 1984 2005 2 Quality
assess-
ment
models
and mea-
surement

S16 A systematic literature review
and meta-analysis on cross
project defect prediction

SLR 2019 30 2008 2015 4 Reliability

S17 Empirical studies on software
product maintainability pre-
diction: A systematic map-
ping and review

SMS 2019 82 2000 2018 4 Maintainability

S18 A systematic literature review
on the detection of smells
and their evolution in object-
oriented and service-oriented
systems

SLR 2019 78 2000 2017 4 Bad
Smells

S19 A Systematic Literature Re-
view on empirical analysis of
the relationship between code
smells and software quality
attributes

SLR 2019 74 1997 2018 5 Bad
Smells

S20 Software change prediction:
A systematic review and fu-
ture guidelines

SLR 2019 38 2000 2019 4.5 Maintainability

S21 The impact of code smells on
software bugs: A systematic
literature review

SLR 2018 18 2007 2017 2.5 Bad
Smells

S22 Mapping the field of software
life cycle security metrics

SMS 2018 71 2000 2017 3 Security

S23 Smells in software test code:
A survey of knowledge in in-
dustry and academia

MLM 2019 166 2001 2016 - Bad
Smells

S24 Coupling and cohesion met-
rics for object-oriented soft-
ware: A systematic mapping
study

SMS 2018 129 1991 2017 2 Internal
quality
attributes

S25 Empirical evaluation of the
impact of object-oriented
code refactoring on quality
attributes: A systematic
literature review

SLR 2018 76 2001 2015 4.5 Refactoring

S26 A systematic review on
search-based refactoring

SLR 2017 71 2000 2016 2.5 Refactoring

S27 Software maintainability:
Systematic literature review
and current trends

SLR 2016 96 1991 2015 3.5 Maintainability

Continued on next page



96 A catalog of source code metrics – a tertiary study

Table 3.8 – Continued from previous page
# Title Study

type
Publ
year

PS Start
year

End
year

QS Focus

S28 Metrics and statistical tech-
niques used to evaluate inter-
nal quality of object-oriented
software: A systematic map-
ping

SMS 2016 79 2004 2013 2 Internal
quality
attributes

S29 Software change prediction:
A literature review

SLR 2016 20 1998 2011 2.5 Maintainability

S30 Open source software evolu-
tion: A systematic literature
review (part 1 2)

SLR 2016 190 1997 2016 2 Software
Evolution

S31 Empirical evidence on the link
between object-oriented mea-
sures and external quality at-
tributes: A systematic litera-
ture review

SLR 2015 99 1996 2011 4.5 Muliple
External
At-
tributes

S32 Software metrics for measur-
ing the understandability of
architectural structures - A
systematic mapping study

SMS 2015 25 1990 2013 4 Maintainability

S33 How have we evaluated soft-
ware pattern application? A
systematic mapping study of
research design practices

SMS 2015 27 2000 2014 4.5 Design
Patterns

S34 Software fault prediction: A
systematic mapping study

SMS 2016 70 2002 2014 2 Reliability

S35 Software product size mea-
surement methods: A system-
atic mapping study

SMS 2014 208 1982 2014 2 Internal
quality
attributes

S36 Empirical evidence of code
decay: A systematic map-
ping study

SMS 2013 30 1999 2013 4 Bad
Smells

S37 A systematic mapping study
on software product line evo-
lution: From legacy system
re-engineering to product line
refactoring

SMS 2013 74 1997 2012 2.5 Software
Evolution

S38 Software fault prediction met-
rics: A systematic literature
review

SLR 2013 106 1990 2011 4 Reliability

S39 Software clone detection: A
systematic review

SLR 2013 213 1997 2011 3.5 Bad
Smells

S40 A mapping study to inves-
tigate component-based soft-
ware system metrics

SMS 2013 36 2000 2010 3.5 Source
code
metrics

S41 A systematic review of
the empirical validation
of object-oriented metrics
towards fault-proneness
prediction

SLR 2013 29 1995 2012 4 Reliability

S42 A systematic review of quality
attributes and measures for
software product lines

SLR 2012 35 1996 2012 3 Source
code
metrics

S43 A systematic review of studies
of open source software evolu-
tion

SLR 2010 41 1976 2009 2.5 Software
Evolution

Continued on next page
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Table 3.8 – Continued from previous page
# Title Study

type
Publ
year

PS Start
year

End
year

QS Focus

S44 A systematic review of com-
parative evidence of aspect-
oriented programming

SLR 2010 22 1997 2008 4 Source
code
metrics

S45 Software architecture degra-
dation in open source soft-
ware: A systematic literature
review

SLR 2020 74 2000 2019 4 Bad
Smells

S46 A mapping study on design-
time quality attributes and
metrics

SMS 2017 154 1976 2015 2.5 Source
code
metrics

S47 What’s up with software met-
rics? – A preliminary map-
ping study

SMS 2010 100 2000 2005 2 Source
code
metrics

S48 A systematic review of soft-
ware maintainability predic-
tion and metrics

SLR 2009 15 1985 2008 4 Maintainability

S49 Source code metrics: A sys-
tematic mapping study

SMS 2017 226 2010 2015 4 Source
code
metrics

S50 A survey of search-based
refactoring for software main-
tenance

SMS 2018 50 1999 2016 3 Refactoring

S51 A review of code smell mining
techniques

SLR 2015 46 1999 2015 3 Bad
Smells

S52 Software design smell detec-
tion: a systematic mapping
study

SMS 2018 395 2000 2017 3 Bad
Smells
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4.1 Abstract
Context: The modern code review process is considered an essential quality
assurance step in software development. The code review comments generated
can provide insights regarding source code quality and development practices.
However, the large number of code review comments makes it challenging to
identify interesting patterns manually. In a recent study, Wen et al. used
traditional topic modeling to analyze the evolution of code review comments.
Their approach could identify interesting patterns that may lead to improved
development practices.

Objective: In this study, we investigate potential improvements to Wen et
al.’s state-of-the-art approach to analyze the evolution of code review comments.

Method: We used 209,166 code review comments from three open-source sys-
tems to explore and empirically analyze alternative design and implementation
choices and demonstrate their impact.

Results: We identified the following potential improvements to the current
state-of-the-art as described by Wen et al.: 1) utilize a topic modeling method
that is optimized for short texts, 2) a refined approach for identifying a suit-
able number of topics, and 3) a more elaborate approach for analyzing topic
evolution. Our results indicate that the proposed changes have quantitatively
different results than the current approach. The qualitative interpretation of
the topics generated with our changes indicates their usefulness.

Conclusions: Our results indicate the potential usefulness of changes to
state-of-the-art approaches to analyzing the evolution of code review comments,
with practical implications for researchers and practitioners. However, further
research is required to compare the effectiveness of both approaches.

4.2 Introduction
Modern code reviews are a common step in software quality assurance [149, 158,
161]. Apart from improving software quality, modern code reviews also support
sharing knowledge with developers new to a code base [148, 162]. The reviewer
comments provided in code reviews may provide useful information for system
development and evolution. Studies have shown that approximately 75% of the
issues discussed in code review comments relate to improving the maintainability
of the software and 25% of the feedback relates to improving its functionality
[155, 159]. From the perspective of project and quality managers, it would be
interesting to identify common themes within the code review comments and
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to analyze how these themes evolve over time. Such an analysis could help
project and quality managers to understand theme evolution and aid them in
introducing systematic improvements, improving company-wide development
guidelines [153], or identifying training needs for developers.

The number of code commits and associated code reviews in medium to large
projects can lead to hundreds of code review comments [162]; thus, manually
analyzing the evolution of common themes in code review comments is infeasi-
ble. Previous studies have manually identified quality-related themes in a small
set of code review comments [155, 159]. Automatic classification of code review
comments is an open research question, and recent studies have also used ma-
chine learning approaches with promising results [153, 160, 163, 170]. Recently,
Wen et al. [170] demonstrated that traditional topic modeling approaches can
be used to identify common themes within code review comments and to analyze
their evolution over time.

In this study, we analyze the design and implementation choices in Wen
et al.’s approach to studying the evolution of common themes in code review
comments. We started by replicating the research design used by Wen et al. to
propose potential alternatives to their approach. We then empirically analyzed
each alternative to demonstrate its potential impact.

The remainder of the paper is organized as follows. In Section 4.3, we
discuss related works, whereas in Section 4.4, we cover the adopted methodology.
Section 4.5 presents our findings, followed by a discussion of the results (Section
4.6) and a discussion of threats to validity (Section 4.7). Section 4.8 concludes
the paper.

4.3 Related work

Several studies have manually analyzed code review comments. Mäntlya et
al. [155] manually analyzed nine industrial and 23 academic systems, classified
code defects discussed in code review, and proposed a taxonomy of defects
discovered in code reviews. Beller et al. [159] manually analyzed two open-
source systems and studied 1400 code changes in code review to identify fixed
code issues, thus demonstrating the practical benefits of the code review process.
Gunawardena et al. [168] provided a fine-grained taxonomy of defects discussed
in code review comments by manually analyzing 417 code review comments.
They further identify which code defects can be resolved using existing static
analysis tools to reduce the overall effort required in the modern code review
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process. However, none of these studies utilize an automated method to analyze
code review comments and thus are time intensive to implement.

In contrast, other studies have explored the feasibility of automating code
review comments. Tufano et al. [163] utilized deep learning to select candi-
date code review comments from the repository of code reviews for a given
code commit with up to 31% accuracy. Hong et al. [166] improved accuracy to
42% using a retrieval-based code review comments tool. This was further im-
proved by Zampetti et al. [169], who used cosine similarity between code review
comments and CheckStyle warning descriptions. They presented an automated
approach for configuring the CheckStyle 1 static analysis tool, achieving a preci-
sion of 61% and a recall of 52%. However, the scope of these studies is towards
automation using code review comments for automatic code review comment
generation or configuring static analysis tools, which differs from our goal of
analyzing code review comments.

Arafat et al. [156] used supervised machine learning algorithms to categorize
and predict the topics in code review comments from six closed-source systems
and reported 63% accuracy for Support Vector Machine (SVM) method. How-
ever, their approach needs a manually labeled dataset for the initial training.

Ochodek et al. [153] utilized the Bidirectional Encoder Representation from
Transformers (BERT) language model to automatically classify 2,672 code re-
view comments from three open-source systems to classify discussed topics
within code review comments and achieved an average accuracy of over 80%
when compared to manually classified code review comments. However, their
study only considers a small set of 2,672 code review comments, and its effec-
tiveness on a large dataset is yet to be evaluated.

Wen et al. [170] investigated how community and personal feedback trends
evolve as the community matures using topic modeling. They utilized Latent
Dirichlet Allocation (LDA) on one open-source system, Nova, and one closed-
sourced system to study the evolution of themes in code review comments from
2011 and 2018. They considered topic stability [176] over five runs of LDA
to select a suitable number of topics and assessed values between N=[10..50]
as the range to search for a suitable number of topics. Their results show
that the context-specific and technical feedback increases with the community’s
maturity and improved reviewer experience. Our work extends their study by
identifying decision points where other alternatives may lead to better results.
Each potential alternative proposed in this study is also demonstrated by using
code review comments from three open-source systems.

1https://checkstyle.org/

https://checkstyle.org/
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Silva et al. [154] surveyed how different topic modeling methods have been
used for various tasks in software engineering. Qiang et al. [150] provided a
taxonomy of short-text topic modeling approaches along with an open-source
Java implementation of the studied topic modeling methods and compared the
performance of eight topic modeling methods on six datasets. Their results
show that Dirichlet multinomial mixture (DMM) based models perform best on
all considered datasets. We used their survey to identify candidate techniques
to consider instead of LDA as used by Wen et al. [170].

4.4 Methodology
As stated in Section 4.2, our study explores potential improvements of the
promising approach developed by Wen et al. [170] to analyze common themes
discussed by reviewers using topic modeling. To achieve the stated study aims,
we define the following research question:

RQ1: How can we improve state-of-the-art approaches to study the
evolution of code review comments?

RQ2: Which common themes in code review comments can we iden-
tify using the suggested modifications to Wen et al.’s approach
and how do these themes evolve over time?

Using Wen et al.’s [170] research design as a baseline, we investigate possible
improvements in the choice of algorithm, the strategy of selecting a suitable
number of topics, and the approach for analyzing topic evolution. Specifically,
we compare the topic stability of topics generated by traditional topic modeling
used by Wen et al. [170] and the short-text topic modeling method summarized
by Qiang et al. [150]. Within Wen et al.’s [170] approach, we suggest alternate
strategies for selecting a suitable number of topics and an alternate method
to analyze the evolution of code review comments. An overview of the steps
followed in our study is depicted in Figure 4.1. In the figure, the approach by
Wen et al. [170] is depicted in blue, and our changes are in green.

4.4.1 Datasets
We utilized code review comments from three open-source software (OSS), two
OpenStack projects, Nova and Neutron, and LibreOffice. We included the same
open-source system, Nova, as Wen et al. [170] to compare the performance of
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Figure 4.1: Data extraction, pre-processing and topic modeling process, based
on Wen et al. [170]

the short-text modeling method and LDA. The OpenStack community develops
various storage and networking solutions and has been previously investigated
in the studies on the code review process [171, 172]. The code review process of
LibreOffice2, an open-source office suite, also has been studied in the literature
by several researchers [173, 174].

We used the REST API3 provided by Gerrit to extract the code review
comments from all three OSS. To study the evolution of code review themes over
an extensive period, we extracted the code review comments between September
2011 till February 2023. We also only considered code review comments with
more than two words.

4.4.2 Natural language processing model selection
One of the natural choices for the unsupervised classification of text data is LDA
method [147]. LDA assumes that each document consists of a set of latent topics,
whereas each latent topic consists of a group of words. LDA is shown to have

2https://www.libreoffice.org/discover/libreoffice/
3https://gerrit-review.googlesource.com/Documentation/rest-api.html

https://gerrit-review.googlesource.com/Documentation/rest-api.html
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degraded performance for short text [151] due to reduced word co-occurrence
in short texts for topic extraction. Code review comments are relatively short
pieces of text [152]. Therefore, we considered topic modeling models suitable
for short text, as suggested by Qiang et al. [150].

Qiang et al. [150] compared several short-text topic modeling (STTM) meth-
ods and traditional LDA on six datasets. They found that STTM outperforms
LDA in all six cases regarding classification accuracy and purity. In particular,
Dirichlet multinomial mixture (DMM) based models outperformed global word
co-occurrence-based short-text topic models and self-aggregation-based short-
text topic models. We selected the Gibbs Sampling-based Dirichlet Multinomial
Mixture model (GSDMM) [175] from among the DMM-based models due to its
comparable classification accuracy and superior execution performance [150].

4.4.3 Data preprocessing

We replicate the pre-processing steps taken by Wen et al. [170] as depicted in
Figure 4.1. After data extraction, we removed responses from the authors of the
code commit to focusing only on code review comments from the reviewers. We
also removed all brackets and punctuation to clean the code review comments
and converted all code review comments to lowercase. We further removed URLs
and words containing numbers as they did not contribute to the classification of
themes in the code review comments. Next, we removed stop words using the
built-in preprocessing library in the Gensim natural language processing toolkit.
We also lemmatized all code review comments and removed any null strings in
the code review comments.

Table 4.1: Overview of code review comments in example systems.

OSS Name Total
code
review
com-
ments

Average
comment
length (in
words)

Stable
number
of top-
ics

Nova 102,642 28.2 24
Neutron 78,196 24.3 4
LibreOffice 28,328 26.8 11

Total 209,166 26.4 -
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4.4.4 Parameter selection
The topic modeling algorithm’s hyperparameters, such as the topic-to-document
probability (alpha), word-to-topic probability (beta), and the number of topics
(N ), impact the performance of topic classification. A larger value for N may
lead to fragmentation of topics, while a smaller value may tangle topics, thus
compromising the semantic meaning of generated topics. A lower value for
(alpha) limits the model to fewer topics per document, while higher (beta) results
in a higher number of terms per topic. Generally, lower hyperparameter values
lead to a more decisive model [181].

As suggested by Agarwal et al. [176] and used by Wen et al. [170], we use
topic stability as a measure to identify suitable values for N for each corpus in-
dependently. Topic stability, a modified measure of cross-run similarity of topics
based on Jaccard similarity [176], is the median number of word-terms occur-
rences in all considered runs for a given topic number. Extending the possible
values of N used by Wen et al. [170], we considered N=[5..55] (in steps of five)
for the number of topics to analyze topic stability and topic coherence for each
of our datasets. We trained the GSDMM models for five runs, with the selected
corpus sorted in a different order and varied choices for hyperparameters, alpha,
and beta. We used the 10 top words from five runs for the GSDMM model to
calculate topic stability for each dataset and identified the most stable number
of topics. While Wen et al. [170] only evaluated a suitable choice of N in steps
of five, we propose a two-stage approach for selecting a suitable N. As a first
step, we select the most stable choice of N in steps of five (as did Wen et al.);
we then iterate in steps of one in the neighborhood to find a more stable value
for N.

In addition to using topic stability as suggested by Wen et al. [170], we also
evaluate average coherence for all considered values of N. Using topic stability
and average coherence value to select a suitable number of topics, N, in the pre-
vious step, we generate topics from the corpus and store the topic membership
probabilities for each code review comment in the corpus. To compare the topic
stability of GSDMM with LDA, we also repeated the above process for the LDA
model.

4.4.5 Topic naming
Several methods have been utilized in the literature to assign an appropriate
name to a topic. Silva et al. [154] classified these approaches as manual, auto-
mated, and a combination of manual and automated procedures. The manual
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naming approach has been frequently used in software engineering [170, 177,
178]. To identify a topic name, two authors read the top 20 words associated
with a topic and the 20 unprocessed code review comments that have the highest
topic membership to the topic. We read the code review comments belonging
to each topic and assigned a label that captured the central theme within each
code review comment. Then we reviewed all the labels belonging to a topic
and assigned an appropriate name that captured most of the themes within the
topic.

4.4.6 Topic impact evolution

Like Wen et al. [170], we study a given topic’s evolution by plotting the topic’s
impact for each month, along with a five-degree polynomial-based regression
line. A topic’s impact is defined as the proportion of code review comments
belonging to a specific topic within a month [179]. As suggested by Wen et al.
[170], we used a low cut-off score for topic membership and included only code
review comments with a topic membership probability ≥ 0.1 when calculating
a given topic’s impact.

In addition to Wen et al. [170], we also consider top code review comments
belonging to months where the topic impact for a given topic has an interest-
ing pattern. This may provide insight into how themes change over time and
whether their sub-themes can be analyzed.

4.5 Results and analysis

After preprocessing the data as described in Section 4.4.3, we got 209,166 code
review comments from three OSS after removing approximately 84K code review
comments due to short length. Their details are depicted in Table 5.1. The
distribution of code review comments by length for the three OSS is depicted in
Figure 4.2. The evolution of the topic impact for all generated topics is provided
in the replication package4. Here we first discuss our findings regarding the
possible improvement areas. We also discuss themes for the system Neutron as
a demonstration of the modified approach.

4https://doi.org/10.5281/zenodo.7836738

https://doi.org/10.5281/zenodo.7836738
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Figure 4.2: Distribution of code review comments by length for the three exam-
ple systems

4.5.1 Improvement suggestions
Two-stage vs single-stage selection of N

As described in Section 4.4.4, we utilized a two-stage process for selecting a suit-
able N , improving the average topic stability for the considered systems. Figure
4.3 depicts the average topic stability for the most stable choice of the number of
topics for the single and two-stage topic selection. We observe that LibreOffice
shows the highest improvement when using the two-stage topic selection, with
average topic stability improving from 0.82 to 0.86.

Topic modeling method

To evaluate the variation in topic stability for the three systems for different
values of N , we plot the average topic stability for all five runs for both GSDMM
and LDA in Figure 4.4. Apart from system Neutron for N=4, GSDMM produces
substantially more stable topics when compared to LDA for the considered
systems. GSDMM, on average, produces 38% more stable topics than LDA for
system Nova. For the system Neutron, the average topic stability improvement
is 32%. LibreOffice showed a similar pattern apart from the topic stability
ratio for N=5. Based on the empirical results, short-text topic models such as
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Figure 4.3: Average topic stability for top 10 terms for two-stage (blue) and
single-stage (orange) topic selection

GSDMM may be further evaluated when studying the evolution of code review
comments.

We also observe that the most stable number of topics, N , may be less than
10, as in the case of Neutron, regardless of the topic modeling method used.
There might be systems with most stable topic beyond N=55, thus plotting
average topic stability for such systems may aid in selecting the upper and
lower bounds for N.

Topic stability and coherence

We also evaluated the average coherence of the topics for different values of N
for all five runs. The results for both LDA and GSDMM for the three exam-
ple systems are depicted in Figure 4.5. Compared to GSDMM, LDA achieves
a slightly higher average coherence for all considered systems. The average
coherence gradually increases with N for the considered systems and both al-
gorithms, except for LibreOffice, where the average coherence declines after a
peak around N=25. The highest average coherence for Neutron and Nova is
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Figure 4.4: Topic stability comparison using GSDMM and LDA for the three
example systems

0.60 and 0.63, respectively, for N=55. In comparison, the trend for average
topic stability is more varied for the increase in N. The contrasting results need
further investigation.

The average coherence for the most stable number of topics is only slightly
less than the most coherent topic for all considered systems. We preferred that
the minor decrease in average coherence is an acceptable trade-off in selecting
a suitable choice of N to study the evolution of the prevalent themes in code
review comments.

Evolution analysis: one vs multiple windows

We hypothesize that some themes observed in code review comments may be-
come obsolete with time as systems, processes, and methods to maintain the
code base evolve. In contrast, new themes may replace them as code reviewers
focus on current concerns within the submitted code. This raises the question
regarding the timeframe to select for the analysis of themes. Choosing a very
long duration may make it challenging to find relevant representative themes
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Figure 4.5: Average coherence graph using LDA and GSDMM for the three
example systems

for all months considered. Similar to the approach by Wen et al. [170], we used
a single window for the duration considered. In contrast, multiple windows ap-
proach divides the entire duration into sub-parts for a more refined analysis of
the themes in code review comments.

As an exploration of the multiple windows approach, we analyzed the theme
related to “guidelines” given its interesting evolution (see Figure 4.8). After
generating the overall theme, we analyzed the top 20 code review comments from
months when the trend changed significantly, along with code review comments
from beginning to end, to evaluate if the issues discussed in the code review
comments belonging to the topic evolved. We considered code review comments
from November 2011, February 2020, and January 2023.

In the initial months, code review comments related to the code review
process appear more frequently in the guidelines theme (e.g., “...I think this
would usually be a separate commit...”). In February 2020, the guidelines theme
focused more on code styling suggestions (e.g., “L.28-38 belongs to L.26 so it
looks better to indent these lines.”) while in the ending month, the guidelines
theme considered code review style-related suggestions to be more critical (e.g.,
“The patch is ok please remove the second line in the commit message.”). One
possible explanation for this trend is that guidelines provided by Neutron’s core
reviewers evolved with the change in contributing developer behavior.
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Considering the pace of development technologies, processes, and practices
improvements, we suggest generating topics in shorter windows, e.g., four months,
rather than the entire duration. Using a “windowed” approach may refine the
quality of themes identified as we can assess the impact of newly introduced in-
terventions, e.g., company-wide procedural changes, in code review comments.

4.5.2 Named topics
In this section, we discuss the themes identified after generating topics from the
Neutron system using the fine-tuned topic choice discussed above. The plots
for topic evolution from the other two systems are provided in the replication
package. The depicted scatter plots show the topic impact (see Section 4.4.6)
over the months considered. We also draw a polynomial-based trend line to
represent the overall evolution of the topic impact across months. For Neutron,
if all four topics were equally divided, we would expect an average topic impact
of around 0.25 for each topic. We represent this with a continuous horizontal
line at 0.25 in the generated plots.

Figure 4.6: Topic evolution for theme Inheritance in system Neutron.
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Theme 1: Inheritance

We define inheritance-related themes as code review comments that discuss how
classes inherit other classes, shared attributes and methods in multiple inher-
itance instances, and misuse of inheritance, among others. The ratio of code
review comments belonging to the inheritance-related theme or topic share [179]
is 0.33. The regression line shows that while the reviewers discussed inheritance-
related issues more frequently in the initial months, the theme evolved with a
gradual decrease in the topic impact over the duration considered. We repro-
duce an example of a code review comment discussing an inheritance-related
theme.

“Althrough it’s done everywhere is this class it’s not pythonic to use the follow-
ing (java?) pattern: class MyClass: @staticmethod def method1(): pass @stat-
icmethod def method2(): MyClass.method1() because it breaks python inheritance
principle: if a subclass SubClass of MyClass overloads method1 SubClass method2
will still use MyClass.method1 ! ...” (Italics added to improve readability)

Figure 4.7: Topic evolution for theme concurrency in system Neutron
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Theme 2: Concurrency

We define concurrency-related themes as code review comments that discuss
timing issues in a multi-threaded application, event handling, and network per-
formance management. The topic share for concurrency-related code review
comments is 0.39, making it the most prominent theme for Neutron. The evolu-
tion of this theme shows that topic impact has been steady between March 2015
till March 2020, after which it gradually declined to the levels observed before
this period. An example of a code review comment discussing a concurrency
theme is reproduced as follows.

“Not sure this is a good idea... what happens if another thread creates a new
floating IP on this router between the time that another thread called this func-
tion and we get here? ...”

Figure 4.8: Topic evolution for theme guidelines in system Neutron

Theme 3: Guidelines

We define the guidelines theme as code review comments focusing on issues re-
lated to formatting code commit messages, patch-related procedural guidelines,
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code styling suggestions, recommendations of what should be included in a com-
mit message for clarity, and explaining why it was required. We observe that
the guidelines theme undergoes a significant change during its evolution over
the months considered. While the code review comments related to the theme
remained steady between July 2013 till March 2020, there is a steady increase in
code review comments related to guidelines. It would be interesting to analyze
further the reasons for the sharp increase in the guidelines theme, which may
lead to process-level improvement in how code reviews are performed in the
Neutron community.

Figure 4.9: Topic evolution for theme component level logic in system Neutron

Theme 4: Component level logic

We define component-level logic themes as code review comments discussing
logic-related issues at the method or class level, such as conditional logic, sug-
gestions for additional logic, tips to replace loops with alternate implementation,
and recommendations for introducing alternate parameters in the implemented
method. The percentage of code review comments belonging to this theme is
only 17% making it the least discussed theme in Neutron. We observe that
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the topic impact for component-level logic theme remains steady till July 2018,
after which it gradually declines below 0.1. We reproduce the following code
review comment belonging to the theme.

“You can fold lines 130–133 into the for loop as ichain_name an ochain_name
and then remove 137 138 141 142 So pull those 8 lines and add these two after if
clause ending on line 142. ...” (Italics added to improve readability)

4.6 Discussion
We suggested three potential improvements to the approach of Wen et al. [170].
The two-stage selection of a suitable number for N improves topic stability
compared to the single-stage approach. GSDMM produces substantially more
stable topics as compared to LDA. Similarly, using average coherence in addition
to topic stability provides a comparison between the two measures. Using the
modified approach, we were able to identify several themes.

Themes similar to those we identified using our modified approach have also
been discussed in the literature. The theme component-level logic is synonymous
with Logic issues identified by Mäntyla et al. [155] and code_logic by Ochodek et
al. [153]. The theme concurrency bears similarity with Timing issues identified
in Mäntyla et al. [155]; however, we classify event handling and network-related
performance in concurrency. The guidelines theme includes code_style issues
from Ochodek et al. [153], visual representation issues [155], as well as code
review process [170]. The theme inheritance covers similar concepts as structure
[155] and code_design [153] though it takes a fine-grained view of design-related
code review comments. Intuitively, the topic share [179] for the themes can vary
across the systems studied in the previous studies.

We achieved a different number of N for topic stability using the modified
approach compared to Wen et al. [170] for Nova, possibly due to the difference
in the duration considered and the topic modeling method used. Our modified
approach produced a 60% more average topic stability than the state-of-the-art
for Nova; however, we could not compare the topic stability for other systems
considered. We also did not perform a comparison between the themes identi-
fied.

Several Dirichlet Multinomial Mixture (DMM) based topic modeling models
have been reported in the literature. GSDMM assumes only one topic for each
code review comment, which we consider a valid assumption given the short
length of code review comments, especially for in-line code review comments.
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We selected GSDMM over the generalized Pòlya urn Poisson-based Dirichlet
Multinomial Mixture model (GPU-PDMM), which had better classification ac-
curacy than GSDMM in the four out of six datasets considered [150]. However,
we selected GSDMM for its fast execution time and slightly lower classification
accuracy than GPU-PDMM. GPU-PDMM may improve topic stability and av-
erage coherence in similar studies investigating topic evolution in code review
comments. Similarly, several studies have proposed bi-directional transformer-
based (BERT) topic modeling methods [164, 165]; however, a qualitative com-
parison between the performance of BERT and STTM on code review comments
may improve the evolution analysis of code review comments.

There can be different approaches for using multiple windows to analyze the
evolution of themes in code review comments. We only demonstrated analyzing
selective months based on the trend. A sliding window approach can also be
used to analyze the evolution of themes for code review comments in a given set
of months; then, we update the window by adding newer months while removing
the oldest months. However, further research is needed to qualitatively evaluate
these approaches for the quality of the generated themes.

The identified themes and an analysis of how the themes with high topic
impact evolve can lead to crucial changes in how teams approach development
tasks, company development guidelines, and process-level improvements. As
an illustration, an analysis of the guidelines theme may provide a checklist for
developers to self-check before submitting source code. As the theme evolves,
the checklist may be updated and thus remains relevant for the contributing
developers. The updated analysis provides an initial step toward developing
data-driven dashboards for practitioners to aid in the study of important themes
which can be utilized to suggest improvement directions.

We have demonstrated that incorporating the suggestions leads to quantita-
tive improvements in topic stability. However, we have yet to evaluate if these
design suggestions lead to qualitative improvement in the quality of the themes
identified.

Wen et al. [170] demonstrated that their approach was suitable for analyz-
ing one closed-source system. Our results indicate that the updated approach
may also be well-suited for analyzing closed-source systems. The effectiveness of
the analysis of common themes and their evolution is intuitively dependent on
the quality of the code review comments. Previous studies have observed that
experienced reviewers with in-depth knowledge of the project provide context-
specific feedback that may lead to more meaningful common themes using our
approach. As a future study, we intend to use the updated approach and inter-
view code reviewers regarding the quality of the themes produced.
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4.7 Threats to validity

4.7.1 Data validity

We utilized the three open-source datasets and used random sampling from the
dataset to evaluate the quality of the individual dataset. We removed the code
review comments with an entry in “in reply to” to remove discussion replies
from developers. We used an embedding model [180] designed from posts in
StackOverflow 5, a platform to discuss software code issues, to further improve
the quality of the generated topic from short-text modeling methods. While an
embedding model designed from code review comments may improve results,
we believe our selected word embedding model captures essential information
related to software development and is a suitable option. Only one author was
involved in the data extraction and topic stability evaluation. However, we used
automated tools and scripts where possible in these stages to keep the possibil-
ity of human error to a minimum. We also did not consider removing highly
frequent words during pre-processing, which may impact the results presented.

4.7.2 Research validity

To improve the repeatability of our study, we have shared the datasets and
Python scripts online as part of our replication package. We have also described
our steps in preprocessing data, and the topic selection process. Moreover, to
reduce the chances of researcher bias, two authors were involved in assigning
names to generated topics.

4.7.3 External validity

The empirical study presented may have a few threats relating to its external
validity and limit the generalizability of the results. Since we selected only
open-source systems, the language used in the code review comments may vary
for other open-source and industrial systems. Intuitively, the language can
inherently differ from one reviewer to another; thus, the number of reviewers
involved in the review also impacts the language in code review comments.
Further studies are needed using varied datasets from both open-source and
industry to assess the generalizability of our approach.

5https://stackoverflow.com/
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4.8 Conclusions
Building on the recent study by Wen et al. [170], we performed an exploratory
study to evaluate possible design improvements in the study of the evolution
of common themes in code review comments. Among other design and anal-
ysis improvements, we observed that the short-text modeling method leads to
more stable topics than traditional topic modeling. Studying the evolution of
common themes in code review comments is a promising field, with practical
implications for research and practice that may lead to suggestions that help im-
prove the development and process-related practices. By extending their work
and proposing new approaches for topic selection and analysis of topic evolu-
tion, we highlight that the choice of modeling technique is essential as it may
lead to different results. Further studies are needed in code review comments
evolution and analysis to investigate the suggestions made. In future work, we
aim to use industrial datasets along with interviews with reviewers to investi-
gate the reasons behind the changes in the interesting themes as well as their
reflections on using the identified themes to create data-driven dashboards and
interventions at the development or process level that may aid in improving the
issues highlighted in the derived themes.
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5.1 Abstract
Context: Code reviewers provide valuable feedback during the code review.
Identifying common issues described in the reviewers’ feedback can provide in-
put for context-specific software improvement opportunities. However, the use
of reviewer feedback for this purpose is currently less explored.
Objective: Assessing if and how automation can derive themes in reviewers’
feedback and whether these themes help to identify recurring quality-related
issues in code changes.
Method: We conducted a case study using the JabRef system to distinguish
reviewers’ feedback on merged and abandoned code changes for the analysis.
We used topic modeling to identify themes in 5,560 code review comments. The
resulting themes were analyzed and named by a domain expert from JabRef.
Results: The domain expert considered the identified themes from the proposed
automation approach to represent quality-related issues. We found that differ-
ent quality issues are pointed out in code reviews for merged and abandoned
code changes.
Conclusions: The results indicate the usefulness of our proposed automation
approach in utilizing code review comments for understanding the prevalent
code quality issues that can help derive targeted and context-bound improve-
ment actions.

5.2 Introduction
In modern code review, experienced developers and architects review code changes
and give feedback as code review comments (CRCs) to improve source code
quality [149, 158, 161]. In addition to assessing the submitted code change,
the expert feedback is also cognizant of important factors such as the system
architecture [200], domain [148], technology and organizational [162], as well as
team aspects like contribution guidelines (e.g., styling, documentation, or test
coverage requirements). Such feedback is often beyond what static code analyz-
ers can provide today. Moreover, static code analyzers have been criticized for
reporting relatively high numbers of false positives [198, 199] or trivial issues.

The feedback provided in CRCs is typically only utilized once when develop-
ers implement a specific corrective action. As reviewers may point out similar
issues to the same or different developers, identifying such prevalent issues can
be helpful, e.g., to propose preventive measures and find systematic improve-
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ments [153, 210]. Such preventive measures may include more precise guidelines
for project contributors, focused training on a particular technology, or recon-
figuring the static analysis tool [168], thus helping to avoid similar issues in the
future.

It is infeasible to aggregate quality issues in individual CRCs without quali-
tatively analyzing individual comments. The large number of review comments
[162] makes their manual analysis impractical beyond research studies. Prac-
titioners, therefore, often have to rely on their subjective judgment of what
they perceive as prevalent code quality issues and, thus, what, in their opin-
ion, are the required improvements. Therefore, automated classification ap-
proaches are needed to more objectively assess prevalent code quality issues
from large code review repositories. Automated classification approaches based
on machine-learning methods have recently been shown to provide promising
results [153, 156, 170]. Iftikhar et al. [210], have improved on Wen et al. [170]’s
topic modeling approach to achieve more stable topics and a refined topic se-
lection approach.

In this study, using the approach by Iftikhar et al. [210], we investigate how
to support practitioners in identifying and profiling prevalent quality issues, as
pointed out in code review comments. To demonstrate the approach’s utility,
we explore if it helps identify code quality issues in code review comments for
merged or abandoned code changes. We expect that the feedback on abandoned
and merged code changes will be different, and our approach will reveal those
differences.

We organized the remainder of the paper as follows. We discuss related
work in Section 5.3 and the methodology is covered in Section 5.4. Section 5.5
presents our results, followed by a discussion of the results in Section 5.6 and
threats to validity in Section 5.7. Conclusions can be found in Section 5.8.

5.3 Related work
This section summarizes related work on three themes, (1) manual categoriza-
tion of CRCs, (2) automated analysis of CRCs, (3) investigations of factors that
impact the outcome of submitted code changes.

5.3.1 Manual categorization of CRCs
Among the existing studies that manually categorized issues in code reviews,
Mäntylä and Lassenius [155] manually analyzed nine industrial and 23 academic
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systems to categorize defects identified during code review discussions. They
further classified the identified defects and observed that 75% of the defects
relate to evolvability while 25% of the defects relate to functionality. Beller
et al. [159] adopted a similar approach to analyze 1400 code changes from two
open-source systems to investigate issues fixed during code review. Their re-
sults corroborated Mäntylä and Lassenius [155], where approximately 75% of
the issues fixed were related to maintainability and 20% of the issues fixed
were related to functionality. Gunawardena et al. [168] manually analyzed 417
CRCs to propose a fine-grained taxonomy of 117 defects discussed in CRCs.
They further mapped the proposed defects taxonomy to static analysis tools,
where 38% identified defects could be resolved using static analysis tools, thus
demonstrating that categorization of issues in CRCs may have implications for
practice.

While these studies demonstrate that categorizing CRCs can lead to identi-
fying quality-related issues, which can assist in software improvement tasks, the
manual approach limits their application to new datasets.

5.3.2 Automation to support CRCs analyis
Given the large code review repositories in practice, existing studies have ap-
proached automated categorizing of CRCs with different methodologies. Arafat
and Shamma [156] categorized and predicted the topics in CRCs from six closed-
source systems using supervised machine learning algorithms using a manually
labeled dataset. They achieved 63% accuracy with the Support Vector Machine
(SVM) method. Ochodek et al. [153] classified 2,672 CRCs from three open-
source systems using the Bidirectional Encoder Representation from Transform-
ers (BERT) [215] language model. They achieved an average accuracy of over
80% compared to manually classified CRCs. The studies have promising results
but require labeled datasets, thus limiting the generalizability of their approach.

To investigate how community and personal feedback trends evolve as the
community matures, Wen et al. [170] utilized Latent Dirichlet Allocation (LDA)
on CRCs from one open-source system, Nova, and one closed-sourced system.
Their results show that as reviewers accrue experience, the feedback provided
to code changes is more context-specific and technical.

Iftikhar et al. [210] extended the work of Wen et al. [170] and evaluated
several potential improvements in the design by Wen et al. [170]. Among the
proposed improvements, they found that short-text topic modeling leads to more
stable topics than traditional topic modeling. Similarly, among the alternative
methods for selecting the number of topics, their two-stage topic selection ap-
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proach slightly improved topic stability over the single-stage topic selection used
by Wen et al. [170]. However, both studies [170, 210] do not demonstrate how
to derive and profile code quality issues using common themes identified from
CRCs. In this study, we address this gap by involving a domain expert from
Jabref.

5.3.3 Investigations of factors behind abandoned and merged
code changes

Existing studies have investigated reasons for the rejection of code submissions.
Gottigundala et al. [208] reported that reasons for rejection of pull requests
include implementing unnecessary functionality, conflicting pull requests, pull
request reattempts, and inactivity. Kononenko et al. [209] reported that pull
requests that are large and do not address a single purpose are likely to be not
merged. They further observed that the experience of a pull request author
is significantly linked with the merge decision for a pull request. Papadakis
et al. [6] found that source code management issues, lack of understanding
of project functionality, and poor understanding of reviewer expectations and
project guidelines were among the reasons for the rejection of pull requests.

Wang et al. [182] identified 12 reasons for abandoned code changes. Dupli-
cate code changes, i.e., similar to other code changes and code changes with a
lack of reviewer feedback, were among the frequent reasons for abandoned code
changes. While researchers have identified several factors impacting the likeli-
hood of whether a code change will be merged or abandoned, to the best of our
knowledge, identifying the recurring quality issues in abandoned and merged
code changes through an analysis of the CRCs has not been done.

As discussed in Section 5.2, code review comments are potentially a very
relevant source of information to mine insights regarding code quality issues.
Thus, in this study, we explore if CRCs can be analyzed to identify and develop
a better profile of quality issues identified in merged or abandoned code changes.

5.4 Methodology
In this case study, we pose and answer the following research question:

RQ: How can we derive themes from CRCs to identify recurring code quality
issues?
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To answer the RQ, we used Iftikhar et al. [210]’s approach to identify themes
in code review comments automatically. These themes were analyzed and named
by a domain expert. If the named themes are indeed about quality issues, that
would provide evidence that the proposed approach can help identify prevalent
code quality issues.

Furthermore, in this study, we analyzed code review comments for both
abandoned and merged code changes to demonstrate the effectiveness of our
approach in profiling code quality issues. We expect that there are differences
in the reviewer feedback for the two classes of code changes. The named themes
identified using our approach and named by the expert will help to profile the
code quality issues the reviewers are pointing out for merged and abandoned
code changes.

5.4.1 Case project and domain expert
The case is JabRef1, an open-source, cross-platform, citations and reference
management tool developed in Java [212] to help students, academics, and re-
searchers to collect and maintain bibliographic information. It covers over 15
reference formats and supports 23 languages. At the time of the study, JabRef
version 5.12 was released. It is maintained by a core team of researchers and
students with 581 active contributors2. Two reviewers review each submitted
code change3. A proposed code change may undergo several iterations of code
review before merging till the code reviewers are satisfied with the code qual-
ity. Code changes to specific modules, e.g., JavaFX and BibTex, are reviewed
by module experts, while anyone in the core team can review the generic code
changes. The source code quality of JabRef has been extensively analyzed in
literature [117, 197].

Another reason for selecting JabRef was the availability of a long-term main-
tainer and a domain expert for assigning representative names to identified
topics. The domain expert was not part of the research team that conceived,
designed, or analyzed the results. The research team collected, analyzed, per-
formed member checking, and completed the first draft of the paper before
inviting the domain expert to be a co-author. In the writing phase, the domain
expert contributed mainly with a deeper contextual understanding of Jabref,
checking the results and reflections in the paper and thoroughly reviewing sev-
eral versions of the paper.

1https://www.jabref.org/
2https://github.com/jabref/jabref/
3https://devdocs.jabref.org/teaching.html

https://www.jabref.org/
https://devdocs.jabref.org/teaching.html


5.4 Methodology 127

5.4.2 Datasets
Table 5.1 shows an overview of the dataset. We used the REST API provided
for GitHub4 to extract CRCs and code change outcome status. Since we are
only interested in code changes that are either abandoned or merged, we did
not consider CRCs from code changes that are still open or under discussion.
We extracted CRCs from May 2014 till September 2023 as CRCs from earlier
were unavailable. We used the pull request number to relate CRCs and code
change status.

We replicated the pre-processing steps in previous studies [210]. We con-
verted all CRCs to lowercase and removed all brackets, punctuations, URLs,
and words containing numbers. We removed stop words using the standard
pre-processing library in the Gensim natural language processing toolkit5. We
further removed null strings and lemmatized all CRCs to create a document
entry for each code review comment, forming two lists of documents, one from
abandoned changes and one from merged changes.

After data extraction and pre-processing of the CRCs, we got 5,560 CRCs
from 426 code changes belonging to three major releases of JabRef. We did not
consider code changes without CRCs for the analysis. We did not consider 60
CRCs from version 2 as the release only contained CRCs from merged changes.
We also removed 124 CRCs with zero length after pre-processing. The extracted
CRCs are provided in the replication package online6.

Table 5.1: Overview of data from JabRef (PR=pull request).

PR status Total number of
PRs

Number of PRs
with CRCs

Total CRCs Average CRC
length in words

Abandoned 717 38 535 26.5
Merged 4,862 388 5,025 22.8

Total 5,579 426 5,560 23.2

5.4.3 Natural language processing model selection
Short text topic models (STTM) have been demonstrated by Qiang et al. [150]
to have superior performance than Latent Dirichlet Allocation (LDA) for short

4https://docs.github.com/en/rest/overview
5https://www.nltk.org/
6https://doi.org/10.5281/zenodo.10408930

https://docs.github.com/en/rest/overview
https://www.nltk.org/
https://doi.org/10.5281/zenodo.10408930
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texts in terms of classification accuracy and purity [175]. CRCs are short pieces
of text [152]. We selected the Gibbs Sampling-based Dirichlet Multinomial
Mixture model (GSDMM) [175] implementation by Qiang et al. [150]. GSDMM
has also improved average topic stability compared to LDA [210]. Since we are
interested in analyzing CRCs from abandoned and merged changes, we generate
separate topic models for CRCs from abandoned and merged changes.

5.4.4 Parameter selection
The performance of topic classification depends on the choice of hyperparam-
eters, topic-to-document probability (alpha), word-to-topic probability (beta),
and number of topics (N) [210]. Biggers et al. [181] suggest that lower values
for the hyperparameters lead to a more decisive model with less overlap among
generated topics.

Topic stability, an adapted measure of cross-run similarity of topics [176], is
defined as the median number of word-terms occurrences in all considered runs
for a given topic number while varying the hyperparameters alpha and beta
between 0 and 1 for each considered run. While Panichella [205] observes that
no fitness measure consistently leads to superior quality topics in their dataset,
we chose topic stability as it has been used in existing studies [170, 210].

In the first stage, we considered N=[5..55] (in steps of five) for the number
of topics to analyze topic stability. We trained five GSDMM models for each
dataset, sorted in a different order for each run, with the choice of hyperparam-
eters varied for each run. We used the 10 top words from five runs of GSDMM
models to identify the most stable choice of N in this first stage. In the second
stage, we iterate in steps of one in the neighborhood of N from the first stage
to select the most stable topic. Next, to choose the most suitable values for
hyperparameters, we also calculate the coherence for the five combinations of
alpha and beta used in the topic stability stages and select the combination that
provides the highest coherence.

5.4.5 Analysis of topic similarity
To objectively evaluate the hypothesis that the feedback in CRCs from aban-
doned and merged changes focuses on different issues and themes, we analyzed
the similarity of the generated topics using cosine similarity [204]. As input to
the comparison, we used the 20 top terms and their frequencies for each topic.
The cosine similarity value belongs to the interval [0,1]. A cosine similarity score
of 1 indicates identical documents [201].
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We also separately evaluated cosine similarity within the groups of aban-
doned and merged topics. The maximum within-groups cosine similarity was
then used as a baseline for interpreting the between-groups cosine similarity.

5.4.6 Data collection
We designed a structured questionnaire6 that was shared with the domain expert
for data interpretation tasks. The structured questionnaire consisted of the top
20 unprocessed CRCs belonging to each topic, the top 20 terms representing the
topic [170], and meta information such as the PR number, PR URL, and PR
title, among other important information that may help in assigning a suitable
theme to CRCs.

In addition to the structured questionnaire, we provided a separate docu-
ment containing the study aims, instructions for steps to be performed during
the interpretation task. We used the same document to collect the overall re-
flections regarding ease of naming themes, reflections on the naming process,
difficulties faced when interpreting topic evolution, and potential implications
of the identified themes for process improvements within in the project.

5.4.7 Topic naming
Current naming approaches can be categorized as manual, automated, and a
combination of manual and automated steps [154]. Manual topic-naming has
been used in existing studies [170, 177, 178]. We provided the domain expert
with the top 20 unprocessed CRCs belonging to each topic and the top 20
terms representing the topic [170]. We asked the domain expert to suggest a
representative name for each topic.

To triangulate the common themes interpreted by the domain expert, we
utilized the publicly available large language model, ChatGPT [216], for the
topic naming process. We prompted ChatGPT to suggest a representative name
for each topic by utilizing each topic’s top 20 CRCs. We then compared the
names assigned by ChatGPT to the names by the domain expert.

5.5 Results and analysis
In this section, we describe the characteristics of the data before presenting the
identified themes and the profiles for abandoned and merged changes.
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5.5.1 Data characteristics
The distribution of unprocessed CRC lengths from abandoned and merged
changes shows that both are predominantly short texts and follow a similar
trend (see Figure 5.1). Of the CRCs in abandoned and merged changes, 75%
are at most 28 and 29 words long, respectively, and only 5% and 3%, respec-
tively, are 80 words or longer in abandoned and merged changes. This confirms
our choice of topic model in Section 5.4.3.
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Figure 5.1: Distribution of lengths (in number of words) of CRCs for abandoned
and merged changes.

Figure 5.2 shows the number of code commits contributed by different groups
of reviewers. Approximately 71% (3,937 out of 5,560) of the CRCs are from
three reviewers who have each contributed more than 500 PRs. Eight reviewers
contributed between 100 and 500 PRs each and provided 18% (1,013 out of
5,560) of the CRCs. The remaining 33 out of 44 reviewers have only contributed
approximately 9% (523 out of 5,560) of the CRCs. The above patterns show
that reviewing is important in Jabref development, as the main contributors
also extensively review the code.

Figure 5.3 shows the distribution of the percentage of total PRs contributed
by different developers. The figure further depicts the percentage of each de-
veloper’s abandoned and merged PRs. The data showed that for only 11 out
of 630 developers, their individual PR contributions constituted 1% or more of
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Figure 5.2: Distribution of the number of PRs and percentage of CRCs by code
reviewers.

the total PRs in Jabref. Therefore, in Figure 5.3, we show the contributions of
11 developers individually and group the rest as ‘Others’. Nearly 67% (3,780
out of 5,579) of the total PRs are contributed by 11 developers. The ‘Others’ in
the figure, who individually have contributed to less than one percent of total
PRs, have collectively contributed approximately 33% (1,799 out of 5,579) of
the total PRs. The top 11 active developers, on average, had approximately 7%
PRs abandoned, while other developers, on average, had 30% PRs abandoned.

5.5.2 Manually labeled themes
As described in Section 5.4.4, we generated five themes each for the abandoned
(Ta1–Ta5) and merged (Tm1–Tm5) CRCs, respectively. Our domain expert then
named these topics as described in Section 5.4.7.

Table 5.2 summarizes the theme names assigned to the generated topics and
the corresponding topic share [179] for each theme. The topic share is the ratio
of the number of CRCs for a topic (or theme) compared to the total number of
CRCs and indicates the relative size of a theme. As can be seen from Table 5.2,
there is a larger variation in the topic share for the themes from abandoned
PRs.
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Figure 5.3: Distribution of the number of PRs by the developers who contributed
1% or more of the total PRs (Dev 1–Dev 11) and all others (Other).

As described in Section 5.4.5, we calculated between-groups and within-
groups cosine similarity. Within the groups of abandoned and merged topics, the
similarity scores range between 0.08 and 0.34. Table 5.3 summarizes the cosine
similarity scores between the topics generated for the abandoned CRCs (rows)
versus the topics generated for the merged CRCs (columns). Similarity scores
greater than 0.34 are highlighted in bold. The results show that the between-
groups similarity is mainly comparable to within-groups similarity. Only four
out of 25 between-groups topic pairs have larger similarities than the maximum
within-groups similarity.

In the following subsections, we go through the results provided by the do-
main expert.

5.5.3 Manually labeled themes for abandoned CRCs

Ta1: Java code quality

With a topic share of 0.38, Java code quality is the most prevalent theme for
CRCs of abandoned PRs. The CRCs in this theme are related to the con-
formance with common principles and patterns to foster maintainability. An
example of a CRC illustrating this theme is shown below (pull request 3418).
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Table 5.2: Manually assigned themes for the CRCs from abandoned (Ta1–Ta5)
and merged (Tm1–Tm5) PRs together with their topic share.

Topic Manually assigned theme Topic share

Ta1 Java code quality 0.38
Ta2 Preferences localization 0.15
Ta3 External resources & path handling 0.24
Ta4 Code architecture 0.10
Ta5 Code formatting 0.14

Tm1 Shorter code 0.21
Tm2 Modern test style 0.31
Tm3 Simplify control flow 0.14
Tm4 JavaFX architecture 0.18
Tm5 UX 0.17

Table 5.3: Cosine similarities between the topics of CRCs from merged changes
(Tm1–Tm5) and abandoned changes (Ta1–Ta5).

Tm1 Tm2 Tm3 Tm4 Tm5

Ta1 0.21 0.32 0.23 0.23 0.28
Ta2 0.13 0.15 0.15 0.24 0.46
Ta3 0.19 0.31 0.14 0.44 0.53
Ta4 0.09 0.33 0.12 0.64 0.24
Ta5 0.21 0.20 0.36 0.22 0.12

PR 3418: “I would propose to make this class non-static / not a singleton. You
then have a (public) constructor that accepts the current version string and a
default constructor that uses ‘java_version’. In this way, you can also easily
write a test to verify the methods in this class.” (Italics added for readability)

Ta2: Preferences localization

The CRCs in theme Preferences localization address issues related to JabRef’s
customization code, which deals with preferences related to the user interface,
language, and localizations. Such preferences and localizations also need to be
reflected in the coding style. An example of a CRC illustrating this theme is
shown below.
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PR 7181: “I wouldn’t set a maximum width for year and type columns. If users
prefer to give more space to these columns, why not? Simply setting ‘prefWidth‘
should be fine.” (Italics added for readability)

Ta3: External resources & path handling

With a topic share of 0.24, External resources& path handling is the second
largest theme for CRCs of abandoned PRs. The CRCs in this theme deal
with the adequate handling of external resources such as file paths, resources
identified by URLs, user and global directories, as well as exception handling.
An example of a CRC illustrating this theme is shown below.

PR 7728: “I don’t think this comment should be here. If you give this method a
relative path it is implementation-dependent I don’t think it is always going to
be JabRef’s home directory. I guess that in practice we should avoid giving it an
absolute path.”

Ta4: Code architecture

Code architecture is the smallest theme for CRCs of abandoned PRs (topic
share=0.1). Its CRCs deal with issues related to placing functionality in ap-
propriate classes and methods. An example of CRC illustrating this theme is
shown below.

PR 557: “When a utility method is only used once, it should not be in a utility
class. In that case, it would only be used for this call. What is more, I do not
like utility classes for domain-specific things like external file types. It is OK for
IO methods like reading from a file, interfacing with the file system or for type
conversion such as String to int.”

Ta5: Code formatting

Code formatting is another relatively small theme (topic share=0.14). The
CRCs in this theme are related to code styling, check-style issues, and setting
up the workspace. An example of a CRC illustrating this theme is shown below.

PR 7172: “Please set up checkstyle configuration according to our workspace set
up guide. Wildcard imports are not allowed.”
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5.5.4 Manually labeled themes for merged CRCs
Tm1: Shorter code

The CRCs in theme Shorter code are related to recommendations for using built-
in methods. The primary motivation for such recommendations is that shorter
code is perceived to be more maintainable. An example of CRC illustrating this
theme is shown below.

PR 6434: “One of the Date.parse method overloads accepts already Optional
as parameter so you can make your code a bit easier and remove the ifPressent
checks for Year and month...” (Italics added for readability)

Tm2: Modern test style

With a topic share of 0.31, Modern test style is the most prevalent theme for
CRCs of merged PRs. The CRCs in this theme are related to recommenda-
tions for using JUnit’s parametrized test functionality instead of duplicating
test code. The size of the theme indicates that contributing developers often
have to be asked to reuse test code. The domain expert observed that groups
of contributing developers focused on improving the project’s test code, which
may explain the increase in testing-related discussions in CRCs. Similarly, when
PRs contribute to specific modules related to the core logic and user interface,
reviewers often ask them to provide test cases to evaluate the contribution. An
example of a CRC illustrating this theme is shown below.

PR 6479: “Thanks for adding so many tests. This is really good. I would
propose to split them a bit into two categories: tests for parsing and test for
representation. The former should take a string and test against a ‘AuthorList‘.
The latter should take a ‘AuthorList‘ and test against a string...” (Italics added
for readability)

Tm3: Simplify control flow

The CRCs in this theme focus on suggestions to simplify the code flow, e.g.,
by reducing the number of code branches and lines of code in a code branch to
improve maintainability. An example of a CRC illustrating this theme is shown
below.
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PR 379: “I think it would be better to find out the exact Exception (should be
easy with the test) and then write a multi-catch block...”

Tm4: JavaFX architecture

The CRCs in this theme discuss the JavaFX7 architecture that is used in JabRef
for user interface design. An example of a CRC illustrating this theme is shown
below.

PR 4227: “This works because the dialog is very simple but goes against the
usual strategy of JavaFX / MVVM. You should add properties in the ViewModel
class... Please have a look at the other JavaFX dialogs to see how this is done...”
(Italics added for readability)

Tm5: UX

The CRCs in this theme deal with issues related to meeting the needs of the
user experience expected from intermediate users of JabRef and the behavior of
JabRef’s user interface on different operating systems. An example of a CRC
illustrating this theme is shown below.

PR 1390: “I find it counterintuitive that the same button sometimes resets only
a few bindings and sometimes all. Proposal: add a third column to the table
which contains a small reset button (only icon light gray by default dark gray on
hovering the row)...”

5.5.5 Automatically labeled themes
As mentioned in Section 5.4.7, we triangulated the manually assigned themes
by the domain expert using ChatGPT. The results from ChatGPT and the
corresponding theme name from manual labeling are provided in Table 5.4,
showing that, in our case, automatically labeled themes by LLM closely resemble
the manually generated themes. Some examples of closely resembling themes
include Java code quality and Code architecture, which the LLM identified as
Refinement & documentation for code quality and Refinement & architecture
enhancement, respectively. In contrast, themes with low resemblance include
External resources & path handling, which the LLM identified as Refinement &
precision in code development.

7https://openjfx.io/

https://openjfx.io/
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This result also opens up further opportunities for automation in our ap-
proach to identifying prevalent quality issues.

Table 5.4: Comparison of manually and automatically assigned themes for the
CRCs from abandoned (top) and merged (bottom) changes.

Manual Automatic

Java Code Quality Refinement & Documentation for Code Quality
Preferences localization User Interface Enhancement & Preference Handling
External resources & path handling Refinement & Precision in Code Development
Code architecture Refinement & Architecture Enhancement
Code formatting Code Standards Adherence and Refactoring

Shorter Code Code Optimization & Best Practices
Modern test style Test Refinement & Maintenance
Simplify control flow Refinement for Enhanced Code Quality & Readability
Javafx architecture Improving GUI Architecture & Responsiveness
UX User Experience Enhancement & Functionality Optimization

5.5.6 Understanding abandoned and merged changes
The themes presented in Section 5.5.2 are derived from the analysis of individual
CRCs. On average, abandoned code changes in JabRef have 14 CRCs per code
change, while merged code changes have 13 CRCs per code change on average.
The highest value of CRCs per code change for abandoned and merged changes
are 28 and 29, respectively. Since identified themes can belong to different
code changes, we aggregated identified themes at the code change using the
pull request number to understand better how code changes differ regarding the
themes of their related CRCs. The results are shown in Figure 5.4 for abandoned
changes, and Figure 5.5 for merged changes.

We observed nine profiles for the abandoned code changes shown in Fig-
ure 5.4. The most frequently discussed combination of themes, Java code quality
and External resources & path handling, is considered in five out of nine profiles
containing 60% (23 out of 38) code changes. While we noted in Table 5.2, 38%
CRCs relate to Java code quality, interestingly it is discussed in eight of nine
profiles, suggesting that the theme is frequently highlighted across distinct code
changes. Preference locatlization with only one percent more CRCs compared
to Code formatting is discussed in twice as many profiles as the latter, thus indi-
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cating that the topic impact of a theme and the number of profiles discussing the
theme is a non-linear and may differ for themes. In Figure 5.4, we also report
the CRCs belonging to each theme within the profile to depict the relationship
between profiles and CRCs.

We identified 23 profiles among the merged changes depicted in Figure 5.5.
The frequently discussed pair of themes, Shorter code with Modern test style
and Modern test style with Simplify control flow, is considered in eight out of 23
profiles. While we noted in Table 5.2, 31% CRCs relate to Modern test style, it
is highlighted in 70% (16 out of 23) profiles. suggesting that the theme is signif-
icantly emphasized across distinct code changes. Furthermore, Profile 1, with
the highest number of code changes, focuses on only two themes, Shorter code
and Modern test style, with 15% (57 out of 381) of the code changes belonging
to the profile. Modern test style theme is most often discussed in combination
with other themes and is discussed across 16 profiles. Incidentally, the other
four themes are highlighted across 11 out of 23 profiles each, despite varied
topic share. Figure 5.5, we further report the CRCs for each theme within the
profile to highlight the relationship between profiles and CRCs.
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5.6 Discussion

Using the approach by Iftikhar et al. [210], we identified recurring quality issues
in code changes by analyzing the CRCs. In this section, we discuss the results
of using the approach and the implications for software development practice.

5.6.1 Themes related to code quality

The common themes indicate a focus on long-term readability (such as Tm1,
Ta5), testability (for example, Tm2), and code structure (see Tm3, Tm4). The
common themes in abandoned and merged changes can be broadly categorized
as related to maintainability, e.g., by focusing on code structure and utilizing
well-tested built-in functions, which is aligned with existing taxonomies of issues
found in CRCs [155, 159]. The identified themes in abandoned changes highlight
issues related to the code architecture, formatting of code, and code quality. In
contrast, the themes in merged changes emphasize alternate suggestions that
help to improve the issues related to implementation choices related to JavaFX
architecture, testing options, and built-in functions.
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5.6.2 Quality of identified themes
When evaluating the quality of the current approach for identifying common
themes, the domain expert noted that three-fourths of the themes were easy to
provide a name. In contrast, one-fourth of the identified themes needed to be
more coherent. However, after reading CRCs from other themes, it was also
possible to name such themes. The feedback suggests that further research is
needed to design improved topic modeling approaches to study common themes
in CRCs. Recently, Udupa et al. [211] reported that the transformer-based
(BERT) [215] topic modeling method for short-text provided superior coher-
ence compared to GSDMM and may lead to better performance for common
themes analysis. Future studies can explore BERT and promising variants, e.g.,
RoBERTa [214] in this regard.

5.6.3 Automatic theme labels
The identified themes need to be assigned an appropriate name, which is cur-
rently a manual process requiring practitioners’ input, which limits the ap-
proach. An automated method that aids in naming the identified themes, e.g.,
by using large language models [216], may improve the efficiency of the topic
naming steps.

5.6.4 Implications for state-of-practice
The domain expert observed two potential areas where the proposed analysis
could improve the state of the practice for JabRef. The identified themes can
provide ideas to initiate focused discussions on specific aspects for the JabRef
discussion forums. By creating Q&As forms for each identified theme, the dis-
cussion forums can be used to acquire important feedback on identified themes,
thus improving the interactivity of the discussion forums. Additionally, JabRef
provides guidelines to help newcomers.8 The identified themes can give concrete
ideas on which content to update in the guidelines to improve their effectiveness
and address some of the challenges faced by newcomers [213].

5.6.5 Theme evolution
To analyze the evolution of common themes over time, we depicted scatter plots
to show the topic impact [179] over the months considered used by existing
8https://devdocs.jabref.org/getting-into-the-code/guidelines-for-setting-up-a-local-workspace/

https://devdocs.jabref.org/getting-into-the-code/guidelines-for-setting-up-a-local-workspace/
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studies [170, 210]. While the evolution graphs may be helpful to visualize the
overall trend for a theme, the domain expert found it challenging to explain
specific trends in the topic evolution graphs, Figure 5.6 depicts the evolution
of theme Tm3 Simplify control flow as an example. For a meaningful analysis
of the topic evolution graphs, the domain expert observed that more data is
needed, e.g., which pull requests are active in those months and who are the top
contributors for the given month. The main reason is that different contributors
with different preferences were active in different periods of the project. Due
to the relatively small dataset, we chose not to empirically evaluate the themes
version-wise as suggested previously [210], as version-wise analysis for larger
datasets may lead to interesting results

The data characteristics discussed in Section 5.5.1 indicate that there is
potential link between the number of PRs submitted by developers and the out-
come of the code review, thus indicating that there may be other non-technical
factors that impact the outcome of the code review process, which is aligned
with previous results [183, 207].

5.6.6 Potential applications for presented approach

The potential application of the presented approach includes analyzing the code
review comments in various scenarios, e.g., studying prevailing code quality is-
sues, trend analysis of code quality issues, and the impact of an intervention on
code quality. Similar to the current study’s setup, we can use the presented ap-
proach to compare the quality issues in two groups of code changes based on the
code review comments, e.g., studying quality issues from code changes that take
longer to merge compared to code changes that are merged quickly, or studying
differences in feedback given by less experienced reviewers compared to more
experienced reviewers. For practitioners and researchers, we briefly summarize
the approach we followed in this study and discuss further applications.

Step 1: Collect CRCs; if one is interested in comparing two or more groups,
split the CRCs into separate subsets. For example, in this study, we compared
prevalent quality issues in merged and abandoned code changes. Therefore, we
split the CRCs into comments made by reviewers on merged code changes and
comments on abandoned code changes.

Step 2: Using the scripts available in the replication package, pre-process
CRCs and generate topics for each dataset.

Step 3: A domain expert reads each topic’s top CRCs and top terms to
assign a suitable theme (see Section 5.4.7).
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Step 4: Using the named themes, create profiles of prevalent quality issues
for each dataset.

5.7 Threats to validity
We use the classification suggested by Runeson and Höst [202] to discuss the
validity threats.

5.7.1 Reliability
We used automated tools and scripts to reduce the possibility of human error
during data curation to a minimum. To ensure that we only used CRCs as
input from the extracted data, we removed discussion replies from developers
by removing the discussion comments where the comment’s author was the same
as the change author. We incorporated an embedding model [180] derived from
posts in StackOverflow,9 a platform to discuss software code issues, to further
improve the quality of the generated topics. Our selected word embedding model
is based on software development terminologies, which we believe is suitable.
While studies have suggested removing highly frequent words to aid in creating
distinct topics [195], this can remove important words [196]. We chose not
to remove highly frequent words and short CRCs during preprocessing, as we
consider frequent words by reviewers and short CRCs relevant to the analysis
performed in the study. To support the repeatability of the study, we have
provided a replication package containing the extracted datasets and Python
scripts used for the data extraction, preprocessing, and topic modeling.

5.7.2 Internal validity
The extracted CRC data from the GitHub platform may only partially capture
the recurring quality issues. Some quality issues may be discussed using other
modes of communication, e.g., the discussion forums, which are not reflected
using the approach used in the study. However, since open-source communities
extensively use GitHub for collaboration among contributors, we sufficiently
capture the recurring quality issues in JabRef. The structured questionnaire
shared with the domain expert was curated by the first author and reviewed
by the second author for content validity and clarity. However, the order of
the data shared with the domain expert for topic naming, e.g., the order of 20

9https://stackoverflow.com/

https://stackoverflow.com/
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CRCs and the order of the topics presented, may introduce a response bias.
Due to practical considerations, we could only involve a single practitioner from
JabRef. Involving more practitioners could further reduce potential biases while
interpreting topics.

5.7.3 Construct validity
While we have selected only topic stability [176] to select the appropriate num-
ber of topics, other fitness measures, such as coherence [206] and silhouette
coefficient [157], may lead to different topics.

Our study only considered cosine scores (see Section 5.4.5) for topic similarity
analysis. To assess whether other similarity measures might produce different
results, we considered Okapi BM25 [203], which led to similar results.

5.7.4 External validity
Since we utilized only JabRef, other systems with different developers, reviewers,
and review practices may lead to distinct results. Thus, further studies with
varied datasets are needed to establish the generalizability of the approach.

5.8 Conclusions
We performed an exploratory case study to support practitioners through au-
tomation in identifying and profiling prevalent quality issues, using common
themes in CRCs from abandoned and merged changes. We followed the ap-
proach from an existing study [210].

The common themes named by the domain expert demonstrate that the
approach can help identify recurring code quality issues in CRCs. We identified
different themes from CRCs in abandoned and merged changes. The prevalent
code quality issues broadly aim to address the maintainability-focused issues in
JabRef. Furthermore, we observed unique profiles for code quality issues in pull
requests from abandoned and merged changes. Additionally, we outlined the
steps required to apply a similar approach to other potential applications.

The results derived from the analysis of CRCs can help in improving the
guidelines for new developers. They can assist in directing focused discussions
in the developer forums, thus potentially enhancing the current practices for
JabRef. While many identified themes were easy to assign a name to, further
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research is needed to improve the quality of the common themes identified using
our approach.

In future studies, we plan to explore variants of BERT [214] and large lan-
guage models [216] to improve the topic model generated to improve the quality
of the themes. To evaluate the generalizability and effectiveness of the approach,
we also plan to use industrial datasets to improve the development guidelines
and data-driven discussion aimed at improving development practices.
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Context: Software quality has a multi-faceted description 
encompassing several quality attributes. Central to our efforts to 
enhance software quality is to improve the quality of the source 
code. Poor source code quality impacts the quality of the delivered 
product. Empirical studies have investigated how to improve source 
code quality and how to quantify the source code improvement. 
However, the reported evidence linking internal code structure 
information and quality attributes observed by users is varied and, 
at times, conflicting. Furthermore, there is a further need for research 
to improve source code quality by understanding trends in feedback 
from code review comments.

Objective: This thesis contributes towards improving source code 
quality and synthesizes metrics to measure improvement in source 
code quality. Hence, our objectives are 1) To synthesize evidence of 
links between source code metrics and external quality attributes, 
& identify source code metrics, and 2) To identify areas to improve 
source code quality by identifying recurring code quality issues using 
the analysis of code review comments.

Method: We conducted a tertiary study to achieve the first objective, 
an archival analysis and a case study to investigate the latter two 
objectives. 

Results: To quantify source code quality improvement, we reported 
a comprehensive catalog of source code metrics and a small set 
of source code metrics consistently linked with maintainability, 
reliability, and security. To improve source code quality using 
analysis of code review comments, our explored methodology 
improves the state-of-the-art with interesting results.

Conclusions: The thesis provides a promising way to analyze themes 
in code review comments. Researchers can use the source code 
metrics provided to estimate these quality attributes reliably. In 
future work, we aim to derive a software improvement checklist 
based on the analysis of trends in code review comments.
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