
Master of Science in Software Engineering
January 2024

Exploring the Dynamics of Software
Bill of Materials (SBOMs) and Security

Integration in Open Source Projects

Anvesh Ambala

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial
fulfillment of the requirements for the degree of Masters in Software Engineering The thesis is
equivalent to 20 weeks of full-time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Anvesh Ambala
E-mail: anam21@student.bth.se

University advisor:
Professor Davide Fucci
Department of Software Engineering

Faculty of Faculty Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Background.The rapid expansion of open-source software has introduced signifi-
cant security challenges, particularly concerning supply chain attacks. Software sup-
ply chain attacks, such as the NotPetya attack, have underscored the critical need
for robust security measures. Managing dependencies and protecting against such
attacks have become important, leading to the emergence of Software Bill of Mate-
rials (SBOMs) as a crucial tool. SBOMs offer a comprehensive inventory of software
components, aiding in identifying vulnerabilities and ensuring software integrity.
Objectives. Investigate the information contained within SBOMs in Python and
Go repositories on GitHub. Analyze the evolution of SBOM fields over time to under-
stand how software dependencies change. Examine the impact of the US Executive
Order of May 2021 on the quality of SBOMs across software projects. Conduct dy-
namic vulnerability scans in repositories with SBOMs, focusing on identifying types
and trends of vulnerabilities.
Methods. The study employs archival research and quasi-experimentation, lever-
aging data from GitHub repositories. This approach facilitates a comprehensive
analysis of SBOM contents, their evolution, and the impact of policy changes and
security measures on software vulnerability trends.
Results. The study reveals that SBOMs are becoming more complex as projects
grow, with Python projects generally having more components than Go projects.
Both ecosystems saw reductions in vulnerabilities in later versions. The US Execu-
tive Order of 2021 positively impacted SBOM quality, with measures like structural
elements and NTIA guidelines showing significant improvements post-intervention.
Integrating security scans with SBOMs helped identify a wide range of vulnerabil-
ities. Projects varied in critical vulnerabilities, highlighting the need for tailored
security strategies. CVSS scores and CWE IDs provided insights into vulnerability
severity and types.
Conclusions. The thesis highlights the crucial role of SBOMs in improving software
security practices in open-source projects. It shows that policy interventions like the
US Executive Order and security scans can significantly enhance SBOM quality,
leading to better vulnerability management and detection strategies. The findings
contribute to the development of robust dependency management and vulnerability
detection methodologies in open-source software projects.

Keywords: Software Security, Supply chain attacks, Software Bill of Materials(SBOM),
Open Source Projects, Vulnerability Management.

i

Acknowledgments

I extend my deepest gratitude to my supervisor, Davide Fucci, for his invaluable sup-
port throughout my thesis journey. His interactive approach and engaging discussions
have greatly enriched my learning experience. The knowledge training sessions under
his guidance were so good and played an important role in shaping my research. Da-
vide’s continuous encouragement, insightful suggestions, and constructive feedback
have always been great. I am sincerely thankful for his support in every aspect of
my work.

Last but certainly not least, I owe a heartfelt thanks to my family. To my mother,
Ambala Sulochana, and father, Ambala Krishna, for their endless love and moral
support. Their belief in me has been a constant source of strength. I also want to
express my appreciation to my brother, Ambala Abhilash, for his encouragement and
support. Thank you all for being my pillars of strength.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Aims and Objectives . 3
1.2 Research Questions . 3

2 Background 5
2.1 Supply chain attack . 5
2.2 SBOM . 5
2.3 Open-source software . 6

2.3.1 Github . 6
2.3.2 Python and Go ecosystems . 6

2.4 Vulnerability scan . 7
2.4.1 OSV scanner . 7
2.4.2 CVSS Score . 7
2.4.3 Common Weakness Enumeration (CWE) 8

2.5 US Executive Order May 12, 2021 9

3 Related Work 10

4 Method 15
4.1 Research method Selection . 15
4.2 Research Design . 16
4.3 Archival Study . 16

4.3.1 Data Collection: . 16
4.4 Quasi Experiment . 19

4.4.1 Variables and participants . 20
4.4.2 Implementation . 20

4.5 Vulnerability scanning tool selection: 22

5 Results and Analysis 27
5.1 RQ1 - What information contained in SBOMs 27
5.2 Information in vulnerability scanning result file: 29
5.3 RQ1.1 - Evolving over time . 32

5.3.1 Number of version changes over time: 32
5.3.2 Number of removed and added packages: 32

v

5.3.3 Number of License changes over time: 34
5.3.4 Number of components: . 34
5.3.5 Licenses: . 35
5.3.6 Vulnerability Trends Over Time 36

5.4 RQ2 - Impact of US Executive Order 40
5.4.1 ITS Resuts Analysis: . 41

5.5 RQ3 - CVSS scores and CWE . 42
5.5.1 Data Collection and Organization 42
5.5.2 Identification of Critical Vulnerabilities 43
5.5.3 Vulnerability Distribution Analysis 43
5.5.4 Python vs Go . 44
5.5.5 CVSS Scores . 45
5.5.6 CWE ID . 45

5.6 Information about each CWE id’s identified 47

6 Discussion 49

7 Threats to Validity 53
7.1 Internal Validity . 53
7.2 External Validity . 53
7.3 Construct Validity . 54

8 Conclusions and Future Work 55
8.1 Conclusion . 55
8.2 Future Work . 56

References 57

A Supplemental Information 61

vi

List of Figures

4.1 Research Design . 17

5.1 Version Changes over time . 32
5.2 Packages removed over SBOM versions 33
5.3 New Packages added over SBOM versions 33
5.4 Number of License changes over SBOM versions 34
5.5 Number of Licenses in Python vs GO 36
5.6 sbomnix vulnerabilities . 37
5.7 Flux vulnerabilities . 37
5.8 bom vulnerabilities . 37
5.9 cli-plugin vulnerabilities . 37
5.10 tomtom vulnerabilities . 37
5.11 cve-bin-tool vulnerabilities . 37
5.12 vulnerability-comparison-plot . 38
5.13 percentage-reduction-plot . 38
5.14 Distribution of total critical vulnerabilities across projects. 43
5.15 Vulnerability distribution across different software versions. 44
5.16 Python vs GO critical vulnerabilities 45
5.17 Python vs GO critical vulnerabilities over time 46
5.18 GO critical vulnerabilities over time 46

A.1 Snippet of SBOM file . 62
A.2 Snippet of vulnerability result file . 63
A.3 Example vulnerability scan result using OSV-scanner 63
A.4 Example quality score result using SBOMqs 64
A.5 Code used for Interrupted time series analysis 64
A.6 Result of Interrupted time series analysis 65

vii

List of Tables

5.1 Information on SBOM file(Header section) 27
5.2 Information on SBOM file(Package details) 28
5.3 Detailed Breakdown of the Vulnerability result file 31
5.4 TSA of Component Growth in Python and Go Projects 35
5.5 Comparison of Vulnerabilities across projects 37
5.6 Quality Assessment Pre-Intervention of the Order 40
5.7 Quality Assessment Post-Intervention of the Order 40
5.8 Comparison of Feature Means Before and After Improvements 40
5.9 Standard Deviation Comparison Before and After 41
5.10 Top Vulnerabilities Based on CVSS Scores 47
5.11 CWE ID Occurrences and Project Presence 47

A.1 Repository/Project and Link to the Repository 61

viii

Chapter 1

Introduction

The domain of software development has been evolving continuously driven by more
innovations and also increasing complexity of modern software systems. Open-source
software has gained more popularity in recent years which gives many advantages
including cost-effective software systems and allowing innovation. Open-source is a
good strategy to make software development better, improving how good, reliable,
and efficient software is made [1]. While the open-source approach enhances soft-
ware development by making it more collaborative and efficient, it also introduces
challenges, especially in terms of software security, specifically supply chain attacks.
The extensive reliance on OSS introduces additional risks through external depen-
dencies, necessitating comprehensive governance efforts across the entire software
supply chain. OSS is a software that is licensed under an open-source license.

Software supply chain attacks, involving the introduction of vulnerabilities or mal-
ware in third-party components, during software development, pose significant risks
when exploited by malicious actors [2]. To accelerate product development, compa-
nies often leverage open-source libraries, repositories of tools in various computer lan-
guages, such as npm 1 for node.js, Maven 2 for Java, or pypi 3 for Python. Recent in-
stances highlight attempts to compromise these repositories, providing unauthorized
access to a company’s sensitive code and computer systems. In these attacks, cyber-
criminals create deceptive packages through package managers containing harmful
code, including viruses or password stealers, and distribute them through website
hosting software tools and third-party libraries. Failure by companies to thoroughly
vet these tools can result in widespread impact, affecting millions of users [3]. For
example, the UAParser.js npm package, a widely used tool for parsing user agent
strings, was compromised in October 2021, leading to the theft of user credentials
from applications relying on the package [4] [5]. Another notable incident involves
the Log4Shell vulnerability discovered in the Log4j logging library in December 2021,
enabling malicious actors to seize control of vulnerable systems through specially
crafted log messages. These attacks underscore the risk of hackers inserting mali-
cious code into software, especially as numerous software projects heavily depend on
diverse open-source packages that may contain undisclosed vulnerabilities [6] [7].

When it comes to software engineering, managing dependencies involves making

1https://docs.npmjs.com/
2https://maven.apache.org/
3https://pypi.org/

1

https://docs.npmjs.com/
https://maven.apache.org/
https://pypi.org/

2 Chapter 1. Introduction

decisions about the parts of the software that are not developed by the company and
come from external sources. In today’s world, these dependencies can be significant,
such as complete operating systems like Docker or even entire infrastructures known
as "Infrastructure as Code" or IaC. However, this creates new challenges when it
comes to protecting against supply-chain attacks. Currently, the most prevalent ap-
proach for addressing supply-chain attacks is to create a Software Bill of Material
(SBOM) - it is like a catalog of all the parts, how they are arranged, and their char-
acteristics. We prepare it so that it can be used later to fix and maintain products
that have already been deployed. [8]. While the SBOM is crucial for identifying
and remediating vulnerabilities in software dependencies, it is essential to note that
it does not eliminate the need for the thorough evaluation of software components.
Instead, it streamlines the evaluation process by providing a structured and stan-
dardized format for sharing results. This structured format enhances collaboration,
allowing stakeholders to easily interpret and act upon evaluation findings. Prepared
with meticulous detail, an SBOM acts as a valuable tool for fixing and maintaining
products post-deployment, functioning akin to an inventory or list of ingredients that
are crucial in the software development process [9]. However, all SBOMs share the
common goal of providing a comprehensive inventory of the software components
used in a software project. This information is essential for vulnerability manage-
ment, as it enables organizations to identify and remediate vulnerabilities in their
software dependencies.

The importance of SBOMs was recently recognized by the U.S. government, which
issued Executive Order 14028 on Improving the Nation’s Cybersecurity. This order
directs federal agencies to adopt SBOMs for all software they develop or procure,
and it encourages private-sector adoption. As a result, the use of SBOMs is on the
rise, and organizations are increasingly recognizing their value in improving software
security [10].

Vulnerability management is a significant reason why SBOMs are essential. Cur-
rently, identifying if a specific software component has an issue and whether that
issue could affect other connected parts can be time-consuming and expensive. How-
ever, SBOM data simplifies the process by enabling suppliers, users, and other in-
dividuals responsible for software security to promptly and accurately evaluate the
risks posed by these vulnerable components that may be hidden in the supply chain.
It’s similar to the concept that you can’t protect something unless you know what
it is [9]. The purpose of this research is to investigate the Software Bill of Materials
(SBOMs) in the context of open-source software systems, with a specific focus on
the Python and Go ecosystems hosted on GitHub. SBOMs are essential documents
that provide information on the components and dependencies of software projects.
This research aims to gain a comprehensive understanding of SBOMs by exploring
their contents, evolution, impact of US Executive order and practical implications in
enhancing software security.

This research will address key questions such as what information is included in
SBOMs and associated vulnerability scans, how they evolve, and the significance
of integrating security scans with SBOMs. Also, understanding the impact of US

1.1. Aims and Objectives 3

Executive Order of May 2021 on the quality of SBOM.

1.1 Aims and Objectives

This thesis aims to explore and understand how Software Bill of Materials (SBOMs)
is managed and how security measures are integrated in open-source projects, partic-
ularly in the Python and Go ecosystems on GitHub. This includes investigating the
impact of policy intervention, like the US Executive Order, on SBOM quality across
software projects. The research intends to provide insights for enhancing security
practices in open-source development. The objectives of the thesis include:

• Investigate the information contained within Software Bill of Materials (SBOMs)
in Python and Go repositories on GitHub.

• Analyze the evolution of SBOM fields over time to understand how software
dependencies change.

• Analyze how the US Executive Order of May 2021 impacted the quality of
SBOMs across software projects.

• Conduct vulnerability scans in repositories with SBOMs, focusing on identify-
ing types and trends of vulnerabilities.

1.2 Research Questions

To address the objectives of this thesis work the following research questions have
been formulated:

RQ1: What information is contained in SBOMs and associated vulnera-
bility scans?

RQ1.1: How do SBOMs and associated vulnerability scans evolve?

Justification: This research question addresses the fundamental need to understand
the information contained in SBOMs and vulnerability scans, which are essential ar-
tifacts for managing software supply chain security. By examining the nature of this
information and its evolution over time, we can inform the development of effective
strategies for dependency management and vulnerability detection.

RQ2: What is the impact of the US Executive Order of May 2021 man-
date on the use of SBOMs on the improvement of quality of SBOMs across
software projects?

Justification: This question examines if the U.S. Executive Order on SBOMs im-
proves their quality in organizations. It’s key to understanding how government
actions can better software security. The findings from this study can help in making
better policies and strategies for managing software vulnerabilities, similar to how

4 Chapter 1. Introduction

RQ1 explores the content and evolution of SBOMs and vulnerability scans for effec-
tive software management.

RQ3: How does incorporating results from security scan tools as part
of SBOMs impact the identification of vulnerabilities across diverse open-
source software projects?

Justification: This research question looks at how putting security scans together with
SBOMs can help find and fix security problems in open-source software projects. By
trying out this combined approach and seeing how well it works, we can give helpful
advice to organizations that use open-source software to make their overall security
better.

Chapter 2

Background

This section contains key terminologies and concepts that are part of this research.

2.1 Supply chain attack

Supply chain attacks target less secure elements in the software supply chain to
breach an organization’s systems. These attacks can occur in any industry, from
finance to energy to government, and can target both software and hardware. Cy-
bercriminals often tamper with the manufacturing or distribution of a product by
embedding malware or hardware-based spying components [11]. The attack can then
propagate from the directly impacted firms to their suppliers and customers, high-
lighting the importance of maintaining visibility and awareness within these complex
supply chains. Supply chain attacks are becoming increasingly prevalent, posing a
significant threat to business relationships with partners and suppliers. Their unde-
tectable nature makes them difficult to detect, and just because a software product
was once validated doesn’t guarantee its continued security [12].

2.2 SBOM

Definition of SBOM: A Software Bill of Materials (SBOM) is a detailed and or-
ganized list that includes all the components, dependencies, and characteristics of a
software product. It presents a standardized and transparent view of the software’s
essential components, such as open-source elements, third-party libraries, and pro-
prietary code. This information can include the name and version of the component,
the vendor of the component, and the license under which the component is dis-
tributed [13].
Formats in SBOM: SPDX and CyclonDX and the two main open-source software
formats that are used to describe SBOM. CycloneDX was created in 2016 specifically
for SBOMs while SPDX predates it and has broader reuse in areas like open source
licenses. Both formats describe components, dependencies, vulnerabilities, licenses,
etc. in a machine-readable format. CycloneDX focuses more on dependencies while
SPDX covers a wider set of metadata. The adoption of CycloneDX and SPDX for-
mats has increased in recent years among open-source projects and companies like
Red Hat, GitHub, Intel, etc. This shows a growing recognition of the importance of
SBOMs [14].

5

6 Chapter 2. Background

The Role of SBOM in Securing the Software Supply Chain:
SBOMs can play a critical role in securing the software supply chain in a number

of ways [13].

• Identifying vulnerabilities: SBOMs can be used to identify vulnerabilities in the
software supply chain. This information can be used to prioritize remediation
efforts and to prevent vulnerabilities from being exploited.

• Tracking dependencies: SBOMs can be used to track dependencies between
software components. This information can be used to identify potential vul-
nerabilities that could be introduced by updates to dependencies.

• Improving communication: SBOMs can improve communication between de-
velopers and security teams. This information can be used to identify and
address security concerns early in the development process.

Benefits of SBOM There are a number of benefits to using SBOMs [13].

• Increased visibility: SBOMs provide increased visibility into the software sup-
ply chain. This can help to identify and address potential security risks.

• Reduced risk: SBOMs can help to reduce the risk of supply chain attacks. This
is because they provide information that can be used to identify and mitigate
vulnerabilities.

• Improved compliance: SBOMs can help to improve compliance with security
requirements. This is because they provide information that can be used to
demonstrate that software is secure.

2.3 Open-source software
It is a software that is licensed under an open-source license. The concept originated
in the 1970s, and OSS has since revolutionized software development by enabling
users to run, study, modify, and distribute the software freely [15].

2.3.1 Github

GitHub is a cloud-based platform for software development and version control, en-
abling developers to store and manage their code [16]. Its user-friendly interface
makes it accessible to individuals and teams, facilitating collaboration and version
control using Git [17].

2.3.2 Python and Go ecosystems

Both Python and Go ecosystems are widely used and vibrant in software develop-
ment. The Python ecosystem is a collection of tools, libraries, and frameworks that
are used for scientific computing. The Python ecosystem is built around the Python
programming language, which is a general-purpose language that is well-suited for

2.4. Vulnerability scan 7

scientific computing [18] The GO ecosystem is built around the Go programming
language, which is a compiled, statically typed language that is well-suited for de-
veloping microservices-based applications [19].

2.4 Vulnerability scan
Vulnerability scanning constitutes an essential component of cybersecurity, enabling
organizations to identify and remediate potential weaknesses in their systems before
attackers can exploit them. There are several tools available for scanning vulnera-
bilities, such as Synk, OSV scanner, Grype, Nikto, and NMap. Reports generated
from vulnerability scans provide a lot of valuable information that can be used to
remediate vulnerabilities. This includes the identification of vulnerabilities, guidance
on how to fix them, prioritization of the vulnerabilities based on their severity, and
compliance reporting. Regular vulnerability scanning and remediation help prevent
data breaches and maintain the security of an organization’s digital assets. These au-
tomated processes scan software for weaknesses, flaws, or vulnerabilities, proactively
addressing potential security risks [20].

2.4.1 OSV scanner

The OSV-Scanner is a vulnerability scanner written in Go that provides an offi-
cially supported frontend to the OSV database. Its purpose is to discover existing
vulnerabilities affecting a project’s dependencies. The OSV database serves as a
distributed vulnerability database for open-source ecosystems, and the OSV Scanner
links a project’s dependency list with the vulnerabilities that affect them. It utilizes
the OSV schema, which provides a human and machine-readable data format for de-
scribing vulnerabilities in a way that precisely maps to open-source package versions
or commit hashes [21].
To access the OSV website you can use the following URL: https://OSV.dev/

2.4.2 CVSS Score

The Common Vulnerability Scoring System (CVSS) is a standardized method for as-
sessing the severity of software vulnerabilities. CVSS is used by security professionals,
software vendors, and government agencies to prioritize vulnerability remediation ef-
forts. CVSS version 2 was released in 2006 and is the current version of the standard.
CVSS version 2 is a more comprehensive and flexible system than its predecessor,
CVSS version 1 [22].

CVSS Scoring Components CVSS version 2 scores vulnerabilities based on four
components:

• Base Score:The base score is a numeric value that represents the intrinsic
characteristics of a vulnerability.

• Temporal Score: The temporal score is a numeric value that represents the
current risk associated with a vulnerability.

https://OSV.dev/

8 Chapter 2. Background

• Environmental Score: The environmental score is a numeric value that rep-
resents the specific context of a vulnerability.

• Overall Score: The overall score is the sum of the base, temporal, and envi-
ronmental scores.

2.4.3 Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) is a list of software weaknesses that
can be exploited by attackers to gain unauthorized access to systems or data. CWE
is a widely used standard for identifying, classifying, and categorizing software weak-
nesses [23].
To access the CWE-ID website you can use the following URL: https://cwe.mitre.org/index.html

Purpose of CWE: CWE is a tool that can be used to identify vulnerabilities
in software systems. By using this tool, developers can prioritize their remediation
efforts more effectively. This is because CWE provides a common language for com-
municating about software weaknesses, which can help to improve communication
between developers, security professionals, and vendors. By using CWE, developers
can identify the most critical vulnerabilities and ensure that they are addressed first,
thereby reducing the risk of security breaches.

Structure of CWE: CWE is a hierarchical taxonomy of weaknesses. The top
level of the taxonomy is divided into the following categories:

• Input Validation: Weaknesses in input validation can allow attackers to inject
malicious code into systems.

• Data Handling: Weaknesses in data handling can allow attackers to access or
modify sensitive data.

• Resource Management: Weaknesses in resource management can allow attack-
ers to exhaust system resources or gain unauthorized access to systems.

• Security Features: Weaknesses in security features can allow attackers to bypass
security controls.

• Architectural Issues: Weaknesses in architectural issues can make systems more
vulnerable to attack.

Benefits of Using CWE: There are several benefits to using CWE, including:

• Standardized language: CWE provides a standardized language for communi-
cating about software weaknesses. This can help to improve communication
between developers, security professionals, and vendors.

• Improved vulnerability management: CWE can be used to improve vulnera-
bility management processes. This can help to ensure that vulnerabilities are
identified, classified, and prioritized in a consistent manner.

• Reduced risk: CWE can help to reduce the risk of software vulnerabilities being
exploited. This can help to protect organizations from cyberattacks.

https://cwe.mitre.org/index.html

2.5. US Executive Order May 12, 2021 9

2.5 US Executive Order May 12, 2021
The Executive Order on Improving the Nation’s Cybersecurity, which was issued by
President Biden on May 12, 2021, is a comprehensive framework for addressing the
cybersecurity challenges facing the United States. The order identifies four key areas
of focus [24]:

1. Improving software supply chain security: The order directs the federal
government to take steps to secure the software supply chain, including devel-
oping and adopting standards for SBOMs and requiring federal agencies to use
SBOMs when procuring software.

2. Enhancing threat intelligence sharing: The order directs the federal gov-
ernment to enhance its sharing of threat intelligence with the private sector,
and to establish a national cybersecurity risk management framework.

3. Strengthening cybersecurity research and development: The order di-
rects the federal government to invest in cybersecurity research and develop-
ment, and to promote international collaboration on cybersecurity.

4. Modernizing cybersecurity defenses: The order directs the federal gov-
ernment to modernize its cybersecurity defenses, including implementing new
technologies and tools, and improving cybersecurity training for federal em-
ployees.

The Executive Order on Improving the Nation’s Cybersecurity is a significant
step forward in the Biden administration’s efforts to protect the United States from
cyberattacks. The order’s focus on SBOMs is particularly important, as SBOMs can
provide valuable information about the software that is used in critical systems, and
can help to identify and mitigate vulnerabilities. Here are some of the specific actions
that the Executive Order directs agencies to take [24]:

• Develop and adopt standards for SBOMs: The order directs the National
Institute of Standards and Technology (NIST) to develop and adopt standards
for SBOMs. These standards will help to ensure that SBOMs are interoperable
and that they can be used to effectively identify and mitigate vulnerabilities.

• Require federal agencies to use SBOMs when procuring software:
The order directs federal agencies to require that vendors of software provide
SBOMs with their products. This will give federal agencies the information
they need to make informed decisions about the software they purchase and to
mitigate the risk of cyberattacks.

• Encourage the private sector to use SBOMs: The order encourages the
private sector to use SBOMs to improve the security of their software. The
order also directs the Department of Commerce to work with industry groups
to promote the adoption of SBOMs.

To look into the US Executive order of May 2021 you can use the following URL:
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Chapter 3

Related Work

A detailed analysis of relevant literature shows that SBOMs play a critical role in
improving software supply chain security. Xia et al. [39] em- phasize the importance
of SBOMs as a tool to increase transparency in the complex systems of software sup-
ply chain in light of the growing risk of software supply chain attacks. Their research
highlights a significant gap in knowledge among practitioners about the challenges in
adopting SBOMs. Moreover, Xia et al. [39] offer a goal model designed specifically
for practitioners, which presents a systematic roadmap for the adoption of SBOMs,
making a valuable contribution to the field.

Turning their attention to adoption patterns, Nocera et al. [25] examine the state
of SBOM utilization in open-source software projects at the moment. According to
their research, there is a slight but growing trend in the usage of SBOMs, which
suggests that developers are becoming more conscious of the value of risk reduction
and visibility in the software supply chain. Building on these discoveries, Stalnaker
et al. [26] conducted a thorough analysis of the difficulties experienced by parties in-
volved in the creation and use of SBOM. The authors acknowledge these difficulties
and add to the current discussion on strengthening software supply chain security
by outlining workable solutions and future research directions. By addressing practi-
tioner attitudes, adoption trends, and problems, these publications collectively offer
a detailed understanding of SBOMs and lay a crucial foundation for the advancement
of security practices across the software supply chain.

Bi et al., [27] and Buttner et al. [28] discuss the importance of SBOMs in strength-
ening supply chain security. Bi et al., [27] analyzed 4,786 GitHub talks from 510
projects and uncovered on important topics, problems, and solutions connected to
SBOM practices. The paper explores commonly used frameworks and methods for
creating SBOMs, including a comprehensive analysis of their benefits and limita-
tions. The findings highlight the importance of SBOMs in upholding strong software
development practices and the need for broad integration to improve supply chain se-
curity. Buttner et al. [28] highlight the useful advantages of SBOM implementation,
explaining its ability to reduce risks related to unknown software and improve under-
standing of the makeup of critical infrastructure. The SBOM enables teams working
on cybersecurity, acquisition, and system engineering to automate risk assessments,
promoting informed decision-making. The research emphasizes the critical role that
SBOMs play in supply chain security and offers useful data for further research and
development in this important area. Collectively, they promote the broad implemen-

10

11

tation and integration of SBOMs to strengthen software transparency, cybersecurity
protocols, and general software component reliability.

Chaora et al. [29] explored the integration of software with societal infrastructure and
emphasized the need for strong software supply chain security. The paper highlights
the widespread use of software in various sectors, including industrial, manufactur-
ing, and municipal technologies, that necessitates a dependable and secure software
supply chain. The authors discussed various initiatives to enhance risk manage-
ment in software supply chains, such as SBOMs. However, the paper also highlights
some challenges in SBOM distribution, including a lack of support and enthusiasm.
The paper also outlines the benefits of SBOM adoption, including the mitigation
of risks associated with unknown software and an increase in the comprehension of
critical infrastructure components. SBOMs enable teams involved in cybersecurity,
acquisition, and system engineering to automate risk assessments, thereby foster-
ing informed decision-making. The study emphasizes the critical role of SBOMs in
supply chain security and provides valuable insights for future research and develop-
ment in this domain. The authors advocate for the widespread implementation and
integration of SBOMs to strengthen cybersecurity protocols and enhance software
transparency and reliability of software components.

Caven et al. [30] and Ding et al. [8] together add to the discussion on SBOMs by
looking at a variety of topics, from legislative actions to real-world applications. The
regulatory environment in the US as described by Presidential Executive Order 14028
is the subject of Caven et al.’s [30] analysis, which highlights the necessity of both
SBOMs and an extensive cybersecurity labeling program. Despite major modifica-
tions to these programs, the authors highlight the continued importance of SBOMs
and labels, which are reinforced in the 2023 National Cybersecurity Strategy. The
study emphasizes that while SBOMs and labels can work together to improve prod-
uct security over the course of a product’s lifecycle, their effectiveness is dependent
on both application and dependability.

Ding et al. [8] researched how SBOMs are implemented in the real world using
enterprise big data. They found that system integration can speed up the SBOM
generation process by using the Engineering Bill of Materials (EBOM) for a particu-
lar product type. The researchers offer a comprehensive method for creating SBOMs
by combining order data from Enterprise Resource Planning (ERP) and actual in-
stallation data from Manufacturing Execution Systems (MES). The research shows
that this technique was able to significantly reduce the production cycle for SBOM
generation from 10 to 20 days down to just 3 to 5 hours.

Ding et al. [8] offer valuable insights into the benefits and increased productivity
that can be achieved through the integration of SBOMs into organizational opera-
tions. Meanwhile, Caven et al. [30] focused on the wider regulatory environment and
emphasized the urgent need for SBOMs. The combined effects of practical imple-
mentation and regulatory action underscore the numerous advantages of SBOMs in
enhancing transparency and cybersecurity within the supply chain.

12 Chapter 3. Related Work

Faruk et al. [2] go deeper into the nuances of software supply chain threats, building
on the fundamental insights offered by Chaora et al. [29], who highlighted the crucial
importance of SBOMs in increasing software supply chain security. While Faruk et
al. [2] particularly address the downstream hazards associated with exploiting vul-
nerabilities during software manufacturing, Chaora et al. [29] underlined the rising
integration of software into societal infrastructure and the significance of SBOMs.
In line with the main subject of protecting the software supply chain, the study by
Faruk et al. [2] adds to the story by highlighting the necessity of strong security
measures within an organization’s infrastructure and development tools.

In a comparable context, Fu et al. [3] investigate vulnerabilities in third-party pack-
age repositories further, reiterating worries about software supply chain attacks ex-
pressed by Faruk et al. [2]. Fu et al.’s study [3] focuses on the introduction of
malicious code into legitimate packages found in repositories such as NPM, PyPI,
or RubyGems, highlighting a particular way that software supply chain attacks can
appear. Collectively, these research works provide a coherent story that advances
from the fundamental significance of SBOMs and the wider consequences of software
supply chain intrusions to particular cases of vulnerability in third-party reposito-
ries. This field offers a thorough comprehension of the risks and difficulties that are
common in the ecosystem of the software supply chain.

Plate et al. [31] complement the broader discussions on software security and supply
chain flexibility presented in previous studies. Building on the foundational aspects
explored by Buttner et al. [28] regarding the adoption of an SBOM for transparency
and Faruk et al. [2] addressing software supply chain assaults, Plate et al. [31] explore
into the specific realm of open-source software (OSS) vulnerabilities. Their focus on
assessing the impact of vulnerabilities through code modifications aligns with the
overarching theme of understanding and mitigating risks within the software supply
chain. By bridging the gap between the strategic considerations of SBOM adop-
tion and the operational challenges posed by OSS vulnerabilities, this research field
provides a comprehensive exploration of diverse dimensions crucial to enhancing soft-
ware security in current development practices.

Expanding upon the examination of software supply chain obstacles, Gokkaya et
al. [32] further develop the story by focusing on the increased dangers connected to
software items being used as cyberattack vectors inside the software supply chain.
Thorough risk assessment is crucial in the face of evolving attack vectors, building
on previous discussions of SBOMs, regulatory actions, and vulnerability detection.
Going beyond the acceptance and problems of regulatory frameworks, vulnerability
mitigation measures, and software business models, Gokkaya et al.’s work adds a
critical layer of analysis by concentrating on the type and traits of software supply
chain attacks. When taken as a whole, these observations help to provide a more
comprehensive understanding of the complex field of software supply chain security,
opening the door to stronger and more reliable defenses for the software supply chain.

By presenting an automated method for vulnerability discovery using machine learn-
ing, the research by Harer et al. [33] offers a fresh viewpoint on enhancing software

13

security. This study adds to the larger conversation started by earlier research that
examined problems related to software supply chain attacks, risk assessment tech-
niques, and the use of SBOMs. While previous research has focused on the necessity
of risk mitigation strategies such as frameworks like SBOMs and increased trans-
parency in the software supply chain, Harer et al.’s study tackles the technical side of
proactively finding vulnerabilities. The integration of machine learning in vulnerabil-
ity detection aligns to enhance software security measures and provide a data-driven
approach to strengthen software system flexibility. When taken as a whole, these
studies add to a thorough grasp of the difficulties and developments in the field of
software security, highlighting a variety of aspects such as automated detection, risk
management, and transparency.

The deployment of SBOMs and their potential to improve software supply chain
security is discussed in Eggers et al.’s study [34] in the context of the nuclear indus-
try. This study reinforces previous research that highlights the importance of SBOMs
in enhancing risk management and transparency in the software supply chain. The
authors especially focused on the challenges faced by large industrial facilities, such
as nuclear power plants, in implementing SBOMs due to the industry’s conservative
nature. This finding aligns with earlier research on the slow acceptance of SBOMs
and the need for feasible implementation plans. Eggers et al. suggest a "crawl, walk,
run" approach to gradually incorporate SBOMs into current procedures, which pro-
vides organizations with a clear roadmap to follow. This study contributes to the
ongoing discussion on improving supply chain resilience and cybersecurity in the
wider context of software security by proposing ideas that could be applied across a
range of industrial sectors.

The study conducted by Zahan et al [35] explores the correlation between the number
of vulnerabilities in PyPI and npm packages and software security practices. The
study was driven by the need for more secure software, especially in the context
of the U.S. Executive Order 14028. The OpenSSF Scorecard project was used to
automatically measure the adoption of software security techniques. The study de-
veloped five supervised machine learning models, which demonstrated that vulnera-
bility counts were significantly affected by four security practices: maintenance, code
review, branch protection, and security policy. However, the models showed poor
predictability when it came to anticipating vulnerability counts, with R*2 ranging
from 9 to 12. Unexpectedly, the study found that when aggregate security ratings
increased, reported vulnerability counts also increased, indicating the presence of
other factors. The report highlights issues such as the lack of vulnerability data,
the need for better detection scripts for security practices, and the time constraints
associated with implementing security procedures. To provide more practical advice
on security procedures, the authors recommend improving vulnerability count and
security score data.

The topic of Software Bill of Materials (SBOM) is relatively new in the research
domain, and many research attempts are underway to explore this topic. The existing
body of literature on SBOM and software supply chain has provided valuable insights.
Some research gaps have been identified, and the things that will be addressed in
this thesis work are listed below:

14 Chapter 3. Related Work

• Limited understanding of SBOM evolution in GitHub Repositories: While ex-
isting studies acknowledge the significance of SBOM, there is a gap in under-
standing how SBOM evolves in projects. This will be addressed in this thesis
work by looking at how SBOM fields evolve within the projects particularly
concerning within the Python and Go ecosystems.

• Inadequate Assessment of Policy Impact on SBOM: While the importance of
such policies like US Executive Order 2021 has been noticed but what impact
did it play and how this policy has affected or increased the quality of the
SBOM file has been not done, this thesis attempts to evaluate the impact that
the order has created on quality of SBOM by comparing the quality of SBOM
files before and after the executive order.

• Limited exploration of the combined impact of SBOM and security scan: Pre-
vious studies have shown that it’s important to combine security scans with
SBOMs to identify vulnerabilities across projects. However, there’s still a gap
in understanding how this integration impacts vulnerability identification. This
study gives practical tips on integrating security scans with SBOMs. It explores
the scanning tools available in the market and provides insights into what infor-
mation from the scanning results can help identify vulnerabilities. The study
also offers suggestions on how to improve the vulnerability identification pro-
cess by integrating security scans with SBOMs.

Chapter 4

Method

4.1 Research method Selection

For this thesis work, two research methods were chosen: archival study and Quasi-
experiment. Archival study is used to answer RQ1 and RQ3, while Quasi-Experiment
is used to answer RQ2.

Archival study: Archival research is a type of research that involves searching for
and extracting information and evidence from original archives, such as manuscripts,
documents, records, objects, sound and audiovisual materials, or other materials.
Archival research is typically conducted in archives, Special Collections libraries, or
other repositories [36].

Justification: An archival study is well-suited to addressing RQ1 for several rea-
sons:

Existing Data Availability: SBOMs and associated vulnerability scans are read-
ily available from various sources, including open-source repositories, public datasets,
and organizations that utilize these tools for software supply chain security manage-
ment. This existing data allows for a comprehensive exploration of the information
contained in SBOMs and vulnerability scans.

Longitudinal Analysis: SBOMs and vulnerability scans are typically generated
over time, providing a source of data for analyzing their evolution. An archival
study enables the tracking of changes in SBOM content, vulnerability patterns, and
dependencies across different releases of software projects.

Comparative Analysis: By collecting SBOMs and vulnerability scans from di-
verse software projects and ecosystems, an archival study can facilitate a compara-
tive analysis of their information content and evolution. This comparison can reveal
differences and similarities in the way SBOMs and vulnerability scans are used and
maintained across different software development practices.

In contrast, other research methods, such as surveys, are less suitable for addressing
RQ 1. Surveys would require a significant effort to recruit and engage a large enough
sample of software developers and security professionals to provide representative in-
sights into the information content and evolution of SBOMs and vulnerability scans.

Other research methods like case studies are less suitable for answering rq3, while
case studies can give us valuable information about specific examples of integrating
security scans with SBOMs, they are not the best way to prove that this integration

15

16 Chapter 4. Method

approach works. This is because case studies are more like observing what happens
in real-world situations, rather than setting up a controlled experiment.

In the context of RQ3, a case study would involve examining a few specific soft-
ware projects that have integrated security scans with SBOMs and describing their
vulnerability identification practices. While this could provide some interesting quali-
tative data, it would not allow us to definitively say whether the integration approach
itself is the reason for any observed improvements or changes in vulnerability detec-
tion.

Quasi Experiment: A quasi-experiment is a study designed to assess the causal
impact of an intervention on a target population without employing random assign-
ment [37]. While bearing similarities to traditional experimental designs or ran-
domized controlled trials, quasi-experimental research differs by not incorporating
random assignment to treatment or control groups. In quasi-experimental designs,
researchers usually have some degree of control over treatment assignment but em-
ploy criteria other than random allocation. [38].

Justification: A quasi-experimental design is a valuable method to study the im-
pact of an intervention in situations where random assignment is not feasible. This
method is used to address RQ2, which seeks to understand the impact of the US Ex-
ecutive Order of May 2021 on the use of Software Bill of Materials (SBOMs) across
various software projects. The challenge lies in the real-world context of diverse soft-
ware projects affected by a government order, making a full experimental setup with
random assignments impractical.

4.2 Research Design
This section provides an overview of the direction employed in this thesis. The
research design is depicted in Figure 4.1

As shown in the research design figure, the repository search, SBOM collection,
and SBOM content analysis phases are part of the archival study. The remaining
phases, vulnerability scanning tool selection, vulnerability scanning, evolution anal-
ysis, vulnerability result analysis, Python vs. Go ecosystem comparison, and SBOM
analysis by criteria, are involved in the quasi-experiment.

4.3 Archival Study

4.3.1 Data Collection:

This research aims to collect SBOMs and vulnerability scan data from various open-
source software projects in the Python and Go ecosystems. The selection of repos-
itories will be based on their relevance, usage, and the availability of SBOM data.
To evaluate the quality of SBOMs pre and post the US Executive Order, data will
be collected from various projects existing both before and after the order. The

4.3. Archival Study 17

Figure 4.1: Research Design

collection methods will ensure that a comprehensive dataset is obtained for robust
analysis in subsequent phases.

Repository search: To identify repositories containing SBOM files, a Python script
was developed that utilized the GitHub API. The script first set up authentication
using a GitHub personal access token, ensuring authorized access to the API. Next, it
defined a list of SPDX/cycloneDx file extensions as search criteria. The search query
was constructed to include repositories containing files with any of the specified ex-
tensions. The script then formulated the search URL and made an API request using
the requests library. Upon receiving a successful response, it extracted the reposi-
tory’s full name from each search result and appended it to a list. If the API request
failed, the script displayed an error message. Finally, it iterated through the list of
repositories and printed each repository’s full name to the console.

The query used to search for SBOMs in SPDX and CycloneDX formats within the
Python and Go ecosystems involved searching GitHub repositories using the following
query /search/repositories?q=language:<language>&filename:spdx OR filename:scyclonedx&per-
page=100&page=<page>.

The repository search process was further enhanced by utilizing Sourcegraph, a
code intelligence platform that provides a comprehensive search capability across var-
ious programming languages. Unlike the GitHub API approach, which was limited
to searching for Python repositories with SPDX/CycloneDx extensions, Sourcegraph

18 Chapter 4. Method

enabled a broader search across all repositories, regardless of the programming lan-
guage. This enhanced search strategy significantly expanded the pool of repositories
containing SBOM files, providing a more comprehensive dataset for further analysis.

This thesis focuses on the analysis of SBOM files to assess the security posture
of software projects within the Python and Go ecosystems. These two ecosystems
were chosen due to their widespread adoption and popularity in modern software
development. Python is a general-purpose programming language known for its ease
of use and versatility, making it a popular choice for web development, data sci-
ence, and machine learning applications. Go, on the other hand, is a relatively new
programming language that has gained significant traction in recent years due to
its emphasis on performance, concurrency, and reliability, making it well-suited for
systems programming and microservices architecture.

The repository search process was further enriched by utilizing a dataset compiled
from a bachelor thesis at the university, which provided a valuable list of SBOM-
containing repositories. This external resource played a crucial role in complementing
the repositories identified through GitHub API and Sourcegraph searches, ensuring
a comprehensive dataset for analysis. Sincere gratitude is extended to the authors of
the bachelor thesis for their valuable contribution to this research. Their efforts in
compiling the dataset enabled a broader repository search, laying a solid foundation
for analyzing SBOM usage and vulnerabilities in the Python and Go ecosystems

SBOM collection: Following the repository search, the next phase involved col-
lecting the SBOM files associated with the identified repositories. For a total of 8
projects A.1 in Go and 8 projects in Python, SBOM file collection was carried out
through a manual approach. This involved:

• Repository Identification: The repository names were identified from the
comprehensive dataset compiled during the repository search phase.

• The SBOM collection process faced two challenges: managing multiple SBOM
files within repositories and gathering SBOM files across multiple releases. To
effectively address these complexities, a combined approach was employed, uti-
lizing both manual and automated strategies.

• Managing Multiple SBOM Files in Repositories: When multiple SBOM
files were found within a repository, careful attention was paid to identify and
collect the relevant files corresponding to the desired software versions. This
involved:
Version Identification: Examining file names to extract version information
and accurately associate SBOM files with specific software versions.

Manual Selection and Download: Manually selecting and downloading
the SBOM files corresponding to the desired software versions, ensuring that
only relevant files were collected for further analysis.

By employing these strategies, the collection process effectively addressed the

4.4. Quasi Experiment 19

presence of multiple SBOM files within repositories and ensured the accurate
identification of relevant files for further analysis.

• Gathering SBOM Files Across Multiple Releases

A systematic approach was needed to collect SBOM files across multiple re-
leases. To simplify the process, a Python script was created that automates
the identification and downloading of SBOM files. This script uses the requests
library to make API calls to the GitHub API. It navigates through releases ef-
ficiently, identifies relevant SBOM files, and downloads them to a specified
directory.

The script’s functionality included:

– Retrieving Release Information: Making API calls to the GitHub API to
retrieve information about releases for the specified project.

– Parsing JSON Response: Extracting relevant SBOM file URLs from the
JSON response.

– Downloading SBOM Files: Issuing API calls to download identified SBOM
files and saving them to the designated directory.

– Error Handling: Implementing error handling mechanisms to capture and
report any download failures, ensuring the integrity of the collected SBOM
files.

By leveraging the Python script, the collection of SBOM files across multi-
ple releases became more efficient and consistent, reducing manual effort and
ensuring that all relevant SBOM files were collected for further analysis.

By carefully handling both scenarios – multiple SBOM files within repositories and
SBOM files across multiple releases – the SBOM collection process successfully gath-
ered a comprehensive dataset of SBOM files. An example of how an SBOM file will
look like is shown here A.1

4.4 Quasi Experiment

In this study, the quasi-experimental research method is employed to understand the
impact of the US Executive Order of May 2021 on the quality of SBOMs. Originally,
the intention was to identify projects with SBOM files both before and after the
Executive Order for a detailed historical analysis. However, due to the unavailability
of individual projects fulfilling this condition, we decided to consider projects that
have SBOMs before and after May 2021. Quasi-experimental designs are chosen
when random assignment is impractical.

20 Chapter 4. Method

4.4.1 Variables and participants

• Independent Variable:The independent variable is the Executive Order,
which creates two natural (e.g.,non- randomly assigned) variables which is
time period categorized as "Before" the Executive Order and "After" the Ex-
ecutive Order, allowing a comparison of SBOM quality scores pre and post-
intervention.

• Dependent Variable:The dependent variable is the quality score of SBOMs,
assessed quantitatively using the SBOMQS tool.

• Participants:Software projects assessed using the SBOM Quality Scoring (SBOMQS)
tool, representing a diverse range of domains and industries.

4.4.2 Implementation

Policy Impact Assessment: This phase examines the impact of the US Executive
Order on SBOM quality among open source projects. SBOMs, both pre and post-
implementation, are collected for comparative analysis. The focus is on changes in
structure, completeness, and policy compliance, providing insights into the effect of
governmental policy on SBOM practices and software supply chain security.

To answer RQ2, four projects were chosen from before the US Executive order and
four projects from after the US Executive order. To understand the impact of the
order created, the quality of the SBOM files themselves needs to be taken into consid-
eration. The open-source SBOMqs tool provides automated quality benchmarking of
SBOM files based on a comprehensive rubric encompassing over 30 validation checks
across 10 categories of SBOM best practices.

Key quality evaluation dimensions include:

• Structural - Validity against SBOM data standards like CycloneDX and SPDX
specifications.Assesses correct schema versions, supported file formats, and syn-
tactic correctness.

• Completeness - Presence of minimum recommended SBOM data elements for
component metadata like names, versions, licenses, and dependencies. Estab-
lished by NTIA guidelines.

• Sharing Support - Inclusion of unencumbered usage rights and adherence to
formats.

• Semantic Accuracy - Congruity between the SBOM dependency graph and real-
world software optimized for tool consumption like CycloneDX XML composi-
tion. Confirms declared licenses, checksums, and relationships match reality.

SBOMqs (SBOM Quality Score) is an open-source command line tool created by
Interlynk to systematically analyze and quantify the completeness, accuracy, and the
overall quality of SBOM documents. It serves as a standardized benchmark capable
of objectively scoring SBOMs based on how well they meet best practices criteria
across several dimensions:

4.4. Quasi Experiment 21

• Structural Quality: Assesses completeness of required SBOM structural ele-
ments like component names/versions.

• NTIA Minimum Elements: Checks for mandatory SBOM data fields defined
by NTIA standards guidance.

• Semantic Quality: Measures accuracy of dependency relationships represented
in the SBOM model.

• Sharing Quality: Evaluate the presence of data to support SBOM exchange
and reuse.

The SBOM benchmark tool SBOMqs was used to evaluate the quality score of each
SBOM file. Go was installed initially using the following script:

go install github.com/interlynk-io/SBOMqs@latest

This installed SBOMqs. Each SBOM file was then scanned with SBOMqs to get
its quality score. The following script was used to generate the quality score for each
file:

SBOMqs score <SBOM-file>
An example of how the result will look like after scanning an SBOM file with

SBOMqs tool is shown here A.4

SBOM Quality Evaluation: This phase aims to evaluate the quality of the SBOM,
particularly following the Executive Order. Various criteria are employed to assess
the quality of SBOMs, such as the completeness of information, the accuracy of
vulnerability disclosures, and the conformity with industry standards. The primary
objective is to determine the effectiveness of the policy in enhancing the quality of
SBOMs. Additionally, an Interrupted time-series analysis is carried out to under-
stand the impact of the executive order.

Interrupted time series analysis

Interrupted Time Series Analysis, also referred to as quasi-experimental time se-
ries analysis, is a statistical method used to analyze the impact of an intervention by
tracking data over an extended period before and after a specific point of interven-
tion [39] [40]. The term time series denotes the continuous dataset over the observed
period, and the interruption represents the controlled external influence or set of
influences introduced during the intervention. This method involves systematically
examining data patterns before and after the intervention to gain a comprehensive
understanding of its effects. In our specific context, the intervention is the issuance
of the US Executive Order in May 2021, which mandated SBOMs. We performed
an ITS analysis on the quality ratings of eight software projects in order to assess
the effect of a significant intervention. Statistical analysis was used to evaluate the
quality scores of these projects, which are shown in Tables 5.6 and 5.7.

22 Chapter 4. Method

Justification: The Interrupted Time Series (ITS) analysis is a statistical method
that is particularly well-suited for evaluating the impact of interventions over an ex-
tended period. This technique allows us to track and analyze data trends both before
and after the implementation of the US Executive Order in May 2021. The process
involves a few steps: first, preparing the data; next, using Ordinary Least Squares
(OLS) regression for statistical modeling; then, conducting significance testing; and
finally, interpreting the results. We selected OLS regression because it fits well with
our dataset characteristics. Our analysis includes key variables like the dependent
variable (Quality Score), independent variable (Time Period - Before/After the Ex-
ecutive Order), and a binary indicator variable (Time-Period), helping us study the
periods before and after the intervention.

Hypotheses:

• Null Hypothesis (H0): Quality scores show no significant difference before and
after the Executive Order.

• Alternative Hypothesis (H1): The quality scores significantly changed after the
Executive Order.

We chose Ordinary Least Squares (OLS) regression as it is recommended for datasets
with fewer than 12 points, aligning with our eight-project dataset [41]. Appendix
A.5 shows the formula for the regression model.

4.5 Vulnerability scanning tool selection:
1. Why Vulnerability Scanning is Key: In today’s connected world, soft-
ware weaknesses called vulnerabilities are not just potential threats; they are real
and present dangers. Every piece of code, every component, and every connection
between them can have vulnerabilities that attackers can use to break into our com-
puters and steal data. If we don’t check for these vulnerabilities, the consequences
can be serious, including data breaches, financial losses, and damage to our reputa-
tion. That’s why vulnerability management is not a choice; it’s an essential part of
keeping our software safe and protecting our digital assets.

As software systems grow bigger and more complex, vulnerability scanning tools
have become essential tools in the fight against cybersecurity threats. These tools
automatically analyze SBOM data, which is a list of all the components in a soft-
ware system, and compare it to a database of known vulnerabilities. This helps us
find and fix vulnerabilities before attackers can exploit them. To effectively scan
the extensive collection of SBOM files across 16 projects (8 Python and 8 Go), a
thorough evaluation of three prominent vulnerability scanning tools was conducted:
OSV Scanner, Snyk, and Grype. Each tool was assessed based on its capabilities,
integration with SBOM formats, accuracy, and overall performance.

2. Comparing Three Leading Tools: To effectively scan the extensive collection
of SBOM files across the 16 projects (8 Python and 8 Go), three prominent vulner-
ability scanning tools were compared: OSV Scanner, Snyk, and Grype. Each tool

4.5. Vulnerability scanning tool selection: 23

was assessed based on its capabilities, integration with SBOM formats, accuracy, and
overall performance

1. OSV Scanner:

Strengths:

• Comprehensive Coverage: OSV Scanner boasts an extensive database of
known vulnerabilities, ensuring thorough analysis of the SBOM data.

• SBOM Integration: OSV Scanner seamlessly integrates with various SBOM
formats, including CycloneDX and SPDX, enabling seamless processing
of the collected SBOM files.

• Accuracy and Performance: OSV Scanner demonstrates high accuracy
in vulnerability detection and maintains efficient performance even when
handling large datasets.

Limitations:

• Primarily Focused on Containerized Applications: OSV Scanner is pri-
marily designed for containerized applications, so its functionality may be
limited for traditional software development.

• CLI-Based Interface: OSV Scanner’s CLI interface may require additional
scripting for integration into complex workflows.

2. Snyk:

Strengths:

• Extensive Support: Snyk offers extensive support for various program-
ming languages and frameworks, making it a versatile option for diverse
projects.

• User-Friendly Interface: Snyk’s web interface provides a straightforward
and intuitive experience for managing vulnerability scans and reports.

• CI/CD Integration: Snyk integrates seamlessly into CI/CD pipelines, en-
abling automated scanning and remediation processes.

Limitations:

• Premium Model: Snyk operates on a Premium model, with limited func-
tionality for free users, requiring a paid subscription for advanced features.

• SBOM Scanning Configuration: SBOM scanning with Snyk may require
additional configuration to ensure thorough coverage.

3. Grype:

Strengths:

• Lightweight and Efficient: Grype is a lightweight and efficient tool, making
it suitable for scanning large volumes of SBOM data.

24 Chapter 4. Method

• CI/CD Integration: Grype integrates easily into CI/CD pipelines, ensur-
ing automated vulnerability detection and remediation.

• Source Code and SBOM Scanning: Grype supports scanning both source
code and SBOMs, providing a comprehensive vulnerability assessment.

Limitations:

• Smaller Vulnerability Database: Grype’s vulnerability database is smaller
compared to OSV Scanner and Snyk, potentially leading to missed vul-
nerabilities.

• In-depth Configuration: For in-depth analysis, Grype may require addi-
tional configuration beyond its default settings.

3. Choosing OSV Scanner: After carefully considering the strengths and limita-
tions of each tool, OSV Scanner was ultimately selected as the preferred vulnerability
scanning tool for this project. This decision was driven by the following factors:

• Comprehensive Vulnerability Coverage: OSV Scanner’s extensive database of
known vulnerabilities ensures thorough analysis of the SBOM data for a com-
prehensive threat profile.

• Seamless SBOM Integration: OSV Scanner’s seamless integration with vari-
ous SBOM formats enables straightforward processing of the collected SBOM
files without additional data transformation. High Accuracy and Performance:
OSV Scanner demonstrates high accuracy in vulnerability detection and main-
tains efficient performance even when handling large datasets.

• Open-Source and Freely Available: OSV Scanner’s open-source nature elimi-
nates licensing costs and ensures accessibility for any project.

While Snyk and Grype offer valuable features and capabilities, OSV Scanner’s com-
prehensive vulnerability coverage, seamless SBOM integration, high accuracy, and
open-source nature made it the most suitable choice for this project’s specific re-
quirements.

Vulnerability scanning: The SBOM files collected from the archival study are
used to perform vulnerability scanning and identify potential security weaknesses
within the software ecosystem. To achieve comprehensive vulnerability detection, a
two-pronged approach is employed, utilizing both the OSV Scanner tool and the OSV
API. Here you find the GitHub URL of OSV-scanner https://github.com/google/osv-
scanner

Initial Scanning with OSV Scanner
The first step in the vulnerability scanning process involved installing the OSV

Scanner tool using the Scoop package manager. Scoop is a lightweight and user-
friendly command-line tool for managing software packages on Windows systems.
To install OSV Scanner using Scoop, the following command was executed in Win-
dows PowerShell:

https://github.com/google/osv-scanner
https://github.com/google/osv-scanner

4.5. Vulnerability scanning tool selection: 25

PowerShell
scoop install OSV-scanner
Once the installation was complete, the collected SBOM files were scanned using the
OSV Scanner tool. The command used to scan each SBOM file was:

PowerShell
OSV-scanner –SBOM <file-path>
In this command, <file-path> represents the absolute path to the SBOM file being
scanned. This command effectively scanned the SBOM file and generated a list of
identified vulnerabilities displayed to the console. However, for further analysis and
archival purposes, the following command was employed to generate a JSON file
containing the scanning results.

PowerShell
OSV-scanner –SBOM <file-path> -json > output.json
This command generated a JSON file named output.json in the current directory,
containing a structured representation of the vulnerabilities identified during the
scan. An example of how the result will look like when scanned with OSV scanner
is shown here A.3

Addressing Scanning Limitations with OSV API
While the initial scanning approach using the OSV Scanner tool yielded satisfac-

tory results, certain files remained inaccessible to the tool. To address this limitation
and ensure comprehensive vulnerability assessment, the OSV API was leveraged.
The OSV API provides a programmatic interface for accessing the OSV vulnerabil-
ity database, enabling querying vulnerability information for specific packages.

To utilize the OSV API, the SBOM file was first uploaded to Google Colabora-
tory, a cloud-based platform for interactive coding. The content of the uploaded file
was then extracted and converted into a string format. Next, the URL for the OSV
API, " https://github.com/google/OSV.dev", was defined. An empty dictionary was
initialized to store the scanning results. A regular expression pattern was defined
to extract package names from the SBOM content. Using this pattern, all package
names were extracted from the SBOM content. To achieve a comprehensive vulner-
ability assessment, an iterative process was implemented where API requests were
made for each extracted package name. For each API request, a payload contain-
ing the package name and its corresponding ecosystem was constructed. These API
requests were then sent to the defined API URL using the prepared payloads. The
JSON response from each API request was parsed and stored in the initialized results
dictionary. Additionally, all extracted package names were printed to the console for
verification.

Analysis
We have collected all the SBOM files from the archival study along with their corre-
sponding vulnerability scanning result files. Now, we need to analyze the total data
thoroughly.

26 Chapter 4. Method

This analysis will involve four distinct phases: Evolution Analysis, Vulnerabil-
ity Analysis, Comparison of Python and Go Ecosystems, and SBOM Analysis by
Criteria. The Evolution Analysis Phase will carefully review historical SBOM data
to uncover trends and patterns in how vulnerabilities are introduced and fixed. The
Vulnerability Analysis Phase will dig deeper into the nature and severity of identified
vulnerabilities, allowing for effective prioritization and the development of practical
remediation strategies. The Comparison of Python and Go Ecosystems Phase will
reveal any significant differences in vulnerability profiles between applications built
on these two programming languages.

During the SBOM Analysis by Criteria Phase, we will analyze the critical vulnerabil-
ities found in the projects. This analysis will be based on the CVSS scores and CWE
IDs. The CVSS vector will be used to evaluate the CVSS score of the vulnerabilities,
and the CVSS calculator will be available online to evaluate the quality scores. The
most common and repeated CWE IDs found in the projects will be cross-referenced
with the CWE-ID website to explore the vulnerabilities and their remediation tech-
niques. To access the CVSS calculator 3.1 you can use the following URL:
https://www.first.org/cvss/calculator/3.1

https://www.first.org/cvss/calculator/3.1

Chapter 5
Results and Analysis

This section gives an overview of the results obtained and analyses of those results
in this thesis work.

5.1 RQ1 - What information contained in SBOMs

Header
Type

Description Significance Example

Unique
SPDXID

Unique identifiers
like ’SPDXRef-
DOCUMENT’

Crucial for
tracking and
referencing
SBOMs.

SPDXRef-
DOCUMENT-001

Name Specifies the relative
path to the SBOM file
as "."

Identifies the
SBOM file loca-
tion.

./path/to/SBOM file

SPDX Ver-
sion

Lists version of SPDX
format used - "SPDX-
2.2"

Indicates the
SPDX format
version used.

SPDX-2.2

Creation Info Timestamp and cre-
ator details.

Captures when
and by whom
the SBOM was
created.

2023-12-14, John Doe

Data License License for SBOM
data distribution as
"CC0-1.0".

Specifies the
license covering
SBOM data
distribution.

CC0-1.0

Document
Namespace

A unique URI identi-
fying the SBOM doc-
ument.

Enables retrieval
and identifica-
tion of the
SBOM.

https://example.com
/SBOM

Table 5.1: Information on SBOM file(Header section)

27

28 Chapter 5. Results and Analysis

Package De-
tail

Description Significance Example

Package Iden-
tifiers

Unique IDs assigned
to each package for
tracking.

Crucial for
tracking across
SBOMs.

SPDXRef-
56da0120c8f31bb0

Package
Names

Names that provide
insights into the de-
pendency tree.

Aids in vulnera-
bility assessment
and manage-
ment.

cloud.google.com/go

Versions The exact package
version in use, when
detectable.

Allows mapping
vulnerabilities to
affected version
ranges.

v1.18.2

Licenses Data Applicable license
metadata.

Some may
state "NONE,"
highlighting
detection diffi-
culties.

MIT License

External Ref-
erences

Links to package man-
ager security data and
other sources.

Enables further
research and val-
idation of pack-
age security.

[Link to security data]

Download Lo-
cations

Direct package down-
load locations.

"NOASSERTION"
may indicate
availability un-
certainty.

[Link to download lo-
cation]

Table 5.2: Information on SBOM file(Package details)

Tables 5.1 and 5.2 provide information that should be present in an SBOM file.
Typically, an SBOM file consists of two sections - the header section and the pack-
age details section. The header section contains crucial metadata for tracking and
referencing SBOMs. It provides essential details about the SBOM itself, includ-
ing a unique identifier (SPDXID/CycloneDXID), name, version (SPDX/cycloneDX
Version), creation information (timestamp and creator), data license, and a unique
namespace for identification and retrieval. After the header section, you will find the
package details section. This section provides more information about each package
listed within the SBOM. Each package has a unique identifier and a descriptive name,
along with specific versions used (if detectable). Package identifiers are crucial for
cross-SBOM tracking, while package names help to understand the dependency trees,
making vulnerability assessment and management easier. Including version details
allows mapping vulnerabilities to affected version ranges, and license data highlights
potential challenges in detection. License data plays a crucial role in indicating

5.2. Information in vulnerability scanning result file: 29

open-source licenses or highlighting challenges in detection. External references and
download locations enable further research and validation of package security.

5.2 Information in vulnerability scanning result file:

Section Element Description Example
1 Vulnerability

Schema Version The structured
data format used
for the advisory
record.

1.6.0

ID Uniquely identi-
fies the vulnera-
bility.

GO-2022-0646

Aliases Alternate refer-
ence IDs typi-
cally from other
databases.

CVE-2020-8911

2 Publication Details
Published The date when

the vulnerability
was first publicly
disclosed.

2022-02-11T23:26:26Z

Modified Date the advi-
sory record was
last updated.

2023-06-12T18:45:41Z

nvd published at Date incorpo-
rated into NVD
government
database.

3 Descriptions
Summary Single line syn-

opsis of the flaw
identified.

Use of risky crypto-
graphic algorithm in
github.com/aws/aws-
sdk-go

Details Multi-line
analysis of im-
pact, patches,
workarounds,
references, and
credits.

30 Chapter 5. Results and Analysis

Severity > Score Standard sever-
ity rating sys-
tems.

CVSS vector -
CVSS:3.1/AV:L/AC:L
/PR:L/UI:N/S:U
/C:N/I:N/A:H

4 Package Details
Package Namespace,

name, and pack-
age manager
identifier string.

pkg:golang/github.com
/aws/aws-sdk-go

External References >
purl

Related package
URL.

pkg:golang/github.com
/aws/aws-sdk-
go@v1.42.24

5 Version Ranges Af-
fected
Imports > path File location

containing the
vulnerability.

github.com/aws/aws-
sdk-
go/service/s3/s3crypto

Imports > symbols Exposed func-
tions enabling
exploit.

NewDecryptionClient

6 References
Type Categorization

as advisory/fix
instructions.

ADVISORY

URL Link/URI to ex-
ternal reference.

[https://aws.amazon
.com/blogs/devel-
oper/ updates-
to-the-amazon-
s3-encryption-
client/?s=09](https://
aws.amazon.com/blogs
/developer/updates-
to-the-amazon-
s3-encryption-
client/?s=09)

7 Severity Details
Type Standard rating

system used
(e.g., CVSS).

CVSS

Score Actual vector or
numeric score
assigned.

CVSS v3 vector -
CVSS:3.1/AV:L/AC:L
/PR:L/UI:N/S:U/C:N
/I:N/A:H

5.2. Information in vulnerability scanning result file: 31

8 Database Specific De-
tails
cwe_ids Related Com-

mon Weakness
Enumeration
(CWE) IDs.

CWE-400

github_reviewed Boolean indicat-
ing if GitHub re-
viewed vulnera-
bility.

true

github_reviewed_at Date GitHub re-
view completed
if applicable.

2022-06-06T22:07:10Z

9 References
Type Classification as

advisory, patch,
etc.

ADVISORY

URL Link/URI for
reference.

[https://example.com
/refer-
ence](https://example
.com/reference)

10 Affected Versions
Package name and
language ecosystem
Version range tuples
with type, intro-
duced/fixed semantics

type: SEMVER, in-
troduced: 0, fixed:
1.5.13

Table 5.3: Detailed Breakdown of the Vulnerability result file

The vulnerability scanning result file, which is presented in Table 5.3, is created
by scanning for potential vulnerabilities within an SBOM file. This file provides a
detailed record that includes critical information related to vulnerabilities. It be-
gins with the identification schema version and a unique vulnerability ID and then
expands to include aliases, publication details, and modification timestamps. The
descriptions offer a concise summary and a detailed analysis of identified flaws, while
severity details provide standard rating systems and scores for prioritization. Package
details provide essential information such as namespace, name, and manager identi-
fier, which are complemented by external references. The file provides information
about affected version ranges, file locations, and important symbols for understand-
ing potential exploits. It also includes references that categorize fix instructions and
advisories, along with URLs for external resources. The severity details provide in-
sights into the type and severity scores (CVSS scores), related Common Weakness
Enumeration (CWE) IDs, GitHub review status, and completion dates. This break-
down can help companies make smarter decisions and come up with effective solutions
to improve their cybersecurity, making their entire security system stronger.

32 Chapter 5. Results and Analysis

5.3 RQ1.1 - Evolving over time

5.3.1 Number of version changes over time:

Figure 5.1: Version Changes over time

The figure 5.1 above depicts the number of version changes that occurred over
time in the SBOM file for certain projects. The results reveal that the number of
version changes increased for most projects over time. The graph provides infor-
mation about the version changes of 8 different projects from both Python and Go
ecosystems. It shows that as versions increased, the count of version changes also
increased. For instance, in the early version of the SBOMnix project, the number
of version changes was zero, while in its latest version, it increased to above 100.
Similarly, in the case of the macaroon project, there is an increase in the number of
version changes in the latest versions. While some projects like Bom and Cve bin
tool did not see any license changes in their latest versions, and the kluctl project’s
version changes were variable across its versions, but the count has increased in their
latest version. Overall, the graph communicates that the number of version changes
has been increasing over time for the projects.

5.3.2 Number of removed and added packages:

Figures 5.2 and 5.3 depict the changes in the number of removed and added packages
across different versions of the SBOM. As shown in Figure 5.2, most projects expe-
rienced a minor increase in the number of removed packages over different versions.
For instance, projects such as BOM, CLI plugin, and Kustomizer had a count of 100
removed packages across versions, such as from BOM version 0 to 3 or from CLI
plugin version 3 to 4. However, one project exhibited a significant increase in the
number of packages removed in its latest version, with a count of over 1000. This
suggests that newer versions of SBOM are more likely to remove packages than older

5.3. RQ1.1 - Evolving over time 33

versions. There are several possible reasons for this trend. One possibility is that
newer versions of SBOM are more accurate and can identify more packages that are
no longer necessary. Alternatively, newer versions of SBOM might have stricter re-
quirements, which lead to the removal of packages that do not meet those standards.
do not meet those standards. The increase in the number of removed packages may
be due to changes in the way that the SBOM is generated. For instance, if a different
tool is being used to generate the SBOM, it may remove packages more often. Addi-
tionally, in Figure 5.3, we can observe a rise in the number of newly added packages
across different versions of the SBOM. For example, the latest versions of cli plugin
and kustumzier have added more packages. Moreover, projects like SBOMnix and
Kluctl show a steady increase in the count of newly added packages over versions.
For SBOMnix, the count goes up to 700 and for Kluctl, it goes to more than 1400.

Figure 5.2: Packages removed over SBOM versions

Figure 5.3: New Packages added over SBOM versions

34 Chapter 5. Results and Analysis

5.3.3 Number of License changes over time:

The figure 5.4 below shows the number of license changes made over SBOM versions.
For projects like SBOMnix, the number of license changes has increased to more than
200 from version 2 to 4, and for Kluctl, it has increased to 247 from version 10 to 12.
Overall, the graph indicates that there has been a rising trend in the number of license
changes made to the SBOM over time. This trend could be due to various factors,
such as changes in the SBOM itself, modifications in the licensing requirements of
the components included in the SBOM, or changes in the way license changes are
tracked.

Figure 5.4: Number of License changes over SBOM versions

5.3.4 Number of components:

The Python ecosystem had SBOMs from 9 different projects, with the number of
components ranging from 7 to 81 across different versions. Overall, the Python
projects showcased a trend of increasing number of components over time, indicating
growth and evolution in codebases. Specific projects like Tomtom and SBOMnix
showed significant increases in components between some versions, such as 48 to 49
for Tomtom and 0 to 1525 for SBOMnix. Similarly, the Go ecosystem had SBOMs
from 6 different projects, with the number of components ranging from 46 to 1781
across versions. Most Go projects exhibited relatively stable numbers of components
across versions, with some gradual increases over time. Notable increases were seen
in bom (131 to 180) and kluctl (213 to 1751), indicating sizable changes.

TSA results for components:

Table 5.4 below shows the time series analysis results of component growth in Python
and Go projects

5.3. RQ1.1 - Evolving over time 35

Feature Python Go
Total projects 9 6
Versions ana-
lyzed

38 54

Minimum com-
ponents

7 46

Maximum com-
ponents

81 1781

Average compo-
nents per project

48.8 420.5

Median compo-
nents per project

48 248

Average growth
per version

2.3 23.6

Largest growth
in a version

1525 (SBOMnix 0.2.0) 1538 (kluctl
2.21.0)

Min Slope 0.15 1-0.66
Max Slope 1.93 123.63
Mean Slope 1.04 4.75

Table 5.4: TSA of Component Growth in Python and Go Projects

On average, Go projects have significantly more components (421) than Python
projects (49). Python projects tend to grow at a slower pace compared to Go with
an average of 2.3 more components per release, while Go projects show an average
increase of 24 more components per release. However, both ecosystems have seen
outlier cases where over 1,500 more components were added in a single release. The
median growth rates for both ecosystems show that Go projects have bigger codebases
and increments with an average of 248 new components per release, while Python
projects have an average of 48 new components per release. The largest single version
change for both Python (SBOMnix) and Go (kluctl) saw over 1500 new components
added, but these seem to be outliers. The significantly higher average number of
components in Go projects (421 vs 49 for Python) quantitatively demonstrates Go
systems have larger codebases. Python’s small average component growth per release
of 2.3 reflects incremental code changes over time rather than major restructuring
Go’s higher average growth of 24 more components per release indicates less stability
between versions.

5.3.5 Licenses:

Python Projects: Python projects typically have fewer licenses, with most having
0 to 7 licenses. The average number of licenses used in Python is only 3.5. This
suggests a preference for using compatible licenses. This could be because Python
has a larger ecosystem of libraries and tools, which makes it easier to find compatible
licenses.

36 Chapter 5. Results and Analysis

Figure 5.5: Number of Licenses in Python vs GO

Go Projects: Go projects consistently report a higher number of licenses, surpass-
ing 27 distinct licenses. This diversity implies a broader utilization of dependencies,
reflecting Go’s flexibility or different development practices. This could be due to the
fact that Go is a newer language with a smaller ecosystem of libraries and tools. As a
result, Go projects may be more likely to use a wider range of licenses, including pri-
vate licenses. Special Attention: Lerentis Go Project: With 45 licenses, the Lerentis
Go project stands out and illustrates the difficult issues associated with maintaining
legal compliance in technology architectures that depend on a wide range of inter-
dependencies. Overall, the analysis shows that there is a significant difference in
the number of licenses used by Python and Go projects. Python projects typically
use fewer licenses, while Go projects typically use a higher number of licenses. This
difference could be due to a number of factors, including the size and maturity of
the respective ecosystems, the licensing terms of the libraries and tools used, and the
development practices of the respective communities.

5.3.6 Vulnerability Trends Over Time

The table 5.5 displays the results of the comparison of vulnerabilities found in dif-
ferent projects. In figures 5.6 to 5.11, line graphs depicting the number of vulnera-
bilities over time for each project are presented. Bar graphs 5.12 and 5.13 illustrate
the comparison of vulnerabilities and the percentage reduction in vulnerabilities for
each project in a visual manner.

5.3. RQ1.1 - Evolving over time 37

Project Initial Vulnerabilities Latest Vulnerabilities Percentage Reduction
SBOMnix 29 0 100
Flux 55 4 90.91
bom 48 12 75
cli-plugin 37 1 97.30
Tomtom 20 20 0
cve-bin-tool 2 2 0

Table 5.5: Comparison of Vulnerabilities across projects

Figure 5.6: sbomnix vulnerabilities Figure 5.7: Flux vulnerabilities

Figure 5.8: bom vulnerabilities Figure 5.9: cli-plugin vulnerabilities

Figure 5.10: tomtom vulnerabilities Figure 5.11: cve-bin-tool vulnerabilities

38 Chapter 5. Results and Analysis

Figure 5.12: vulnerability-comparison-plot

Figure 5.13: percentage-reduction-plot

The Sbomnix project initially had the highest number of vulnerabilities at 29
(Table 5.5). However, its vulnerability trend graph (Figure 5.6) depicts a consistent
and steady decline, which corresponds to the 100% reduction in vulnerabilities re-
ported in the table 5.5‘. The graph shows that by the end of the observed period,
there were no vulnerabilities left in the project.

5.3. RQ1.1 - Evolving over time 39

Similarly, the Flux project had 55 initial vulnerabilities. Its vulnerability graph
(Figure 5.7) also shows a decreasing trend, but with some fluctuations along the way.
These fluctuations suggest that there were some challenges or setbacks in the vulner-
ability remediation process. Nevertheless, the graph supports the 90.91% reduction
in vulnerabilities reported in Table 5.5. The vulnerability trend graphs of the bom,
cjs-plugin, tomtom, and cve-bin-tool projects are presented in Figures 5.8, 5.9, 5.10,
and 5.11 respectively. The graphs for bom and cli-plugin projects show a reduction in
vulnerabilities. The bom project’s graph reflects a 75% reduction in vulnerabilities,
with an initial decline followed by a spike and ultimately a decrease to around 12
vulnerabilities. This aligns with the vulnerabilities reported in Table 5.5. The cli-
plugin project’s graph displays an irregular pattern with spikes and drops, but ends
with around 1 vulnerability, consistent with the table’s data of a 97.30% reduction
and 1 latest vulnerability. The tomtom project’s vulnerability trend graph shows a
relatively stable trend with a sudden spike towards the end, matching the table’s
data where no reduction in vulnerabilities was observed. Finally, the cve-bin-tool
project’s vulnerability graph remains constant at around 2 vulnerabilities through-
out the observed period, aligning with the table’s data of no reduction and 2 latest
vulnerabilities. The analysis indicates that numerous open-source software projects
tend to begin with a high number of vulnerabilities but improve their security over
time by addressing vulnerabilities in later versions. Therefore, many OSS projects
can significantly decrease their vulnerabilities and enhance their security over time.
This emphasizes the significance of developers maintaining and updating their soft-
ware because the latest versions are generally more secure. However, certain projects
continue to have constant vulnerabilities (such as Tomtom, which has around 20 vul-
nerabilities per release) or remain low throughout (like cve-bin-tool). Therefore,
although security often improves, the progress depends on the specific project. In
summary, the SBOM scan data analysis over time demonstrates that many open-
source projects can effectively reduce their vulnerabilities in newer versions. But
maintenance varies across projects, emphasizing the necessity for continued security
best practices when updating and securing both older and newer software releases.

40 Chapter 5. Results and Analysis

5.4 RQ2 - Impact of US Executive Order

Table 5.6 shows the quality assessment results pre-intervention of the order and table
5.7 shows the quality assessment post-intervention of the order.

Project STRUC-
TURAL

NTIA-
MINIMUM-
ELEMENTS

SEMAN-
TIC

SHARING
QUALITY

SCORE

Fossology
rest-api

10 7.1 10 2.9 6.8

Internet stan-
dards

10 7.1 3.3 4.1 6.3

Pystacks 10 5.7 6.7 4.3 6.4

Boyter 10 5.7 6.7 4.3 6.4

Table 5.6: Quality Assessment Pre-Intervention of the Order

Project STRUC-
TURAL

NTIA-
MINIMUM-
ELEMENTS

SEMAN-
TIC

SHARING
QUALITY

SCORE

cve-bin-tool 10 9.9 6.2 9.7 9.4

Lerintiz 10 9.9 6.3 7.9 8.8

bom 10 8.5 6.4 7 8.1

Kluctl 10 8.6 3.3 4.3 6.8

Table 5.7: Quality Assessment Post-Intervention of the Order

Feature Before After

Structural 10.000 10.000

NTIA Minimum Elements 6.400 9.225

Semantic Quality 6.675 5.550

Sharing Quality 3.900 7.225

Score 6.475 8.275

Table 5.8: Comparison of Feature Means Before and After Improvements

5.4. RQ2 - Impact of US Executive Order 41

Feature Std Before Std After

Structural 0.000000 0.000000

NTIA Minimum Elements 0.808290 0.780491

Semantic 2.735416 1.502221

Quality 0.673300 2.250000

Sharing Quality 0.000000 0.000000

Score 0.221736 1.117661

Table 5.9: Standard Deviation Comparison Before and After

ITS OLS Regression Results
Model Summary:

• R-squared: The model explains approximately 84.7% of the variability in qual-
ity scores.

• Adj. R-squared: The adjusted R-squared, which considers the number of pre-
dictors in the model, is 78.5%. It penalizes for adding less informative variables.

• F-statistic: The overall significance of the model is tested by the F-statistic,
which is 13.80 in this case. The associated p-value is 0.00921, indicating that
the model is statistically significant.

• Coefficients Constant (Intercept): The baseline quality score, when both Time
and Time-Period are zero, is 7.675.

• Time: For each additional unit of time, there is an average decrease of 0.480
in the quality score. The p-value associated with Time is 0.043, suggesting
statistical significance with an alpha-level of 5%.

• Time-Period: Post-intervention, the quality score increases by 3.720. The p-
value associated with the time period is 0.006, indicating statistical significance
with an alpha-level of 5%.

Appendix A.6 reports the detailed results after running Interrupted time series
analysis.

5.4.1 ITS Resuts Analysis:

The data compares the quality scores of 4 software projects SBOMs before and 4
projects SBOMs after the May 2021 US Executive Order mandate to provide SBOMs.
Several metrics were used to assess SBOM quality: structural, NTIA minimum el-
ements, semantic quality, and sharing quality. Looking at the mean quality scores,
there is an improvement in quality from before (6.475) to after (8.275) the Executive
Order. After the changes, there was a noticeable increase in both the NTIA mini-
mum elements score, from 6.400 to 9.225, and the semantic quality score, from 3.900

42 Chapter 5. Results and Analysis

to 7.225. This indicates the Executive Order is associated with improved compliance
with NTIA guidelines and improved semantic understandability of the SBOMs. The
standard deviations also declined after the Executive Order for the NTIA, semantic,
and overall scores, showing less variability and more consistency in meeting quality
benchmarks. Specifically, the standard deviation of the NTIA minimum elements
score decreased from 0.808 before the order to 0.780 after. This shows that in ad-
dition to the 44% increase in the mean score, there was less variability in coverage
of important SBOM metadata elements following the enforcement of the mandates.
Similarly, the standard deviation for the semantic quality score dropped more sub-
stantially from 2.735 before to 1.502 after. So not only did organizations improve the
representation of dependencies by an average of 85%, but the degree of variability
between SBOMs on this measure decreased notably as well under the new federal
guidelines. Finally, the overall quality score standard deviation fell from 0.222 before
to 1.118 after, along with a 28% gain in the average score. This set of metrics demon-
strates a decrease in variability as well as an improvement in quality, as evidenced by
the increased mean score and decreased variation. The model explaining about 84.7%
of the variability in SBOM quality scores, which is indicated by the high R-squared
value. Moreover, the adjusted R-squared value of 78.5% shows that the model is
solid and avoids overfitting by taking out less important variables. The F-statistic of
13.80 is significant and has a p-value of 0.00921, which gives us more confidence in
the overall statistical significance of the model. Importantly, the positive coefficient
for the time period indicates a substantial post-intervention improvement, with the
quality score increasing by 3.720 units. The findings underscore the effectiveness of
regulatory interventions in driving improvements in the transparency and security
of software components, as reflected in the quality metrics of SBOMs. In summary,
analysis of the quality scores provides evidence that the May 2021 US Executive
Order has had a positive impact on improving the quality of SBOMs produced. The
mandate to provide SBOMs has been associated with SBOMs that better comply
with expected guidelines and provide more complete, consistent and understandable
information about software components.

5.5 RQ3 - CVSS scores and CWE

5.5.1 Data Collection and Organization

For each of the selected projects, SBOM files and vulnerability results from the
OSV scanner were collected. The analysis aimed to identify critical vulnerabilities,
resulting in the creation of a comprehensive spreadsheet that included the following
key columns:

• Project Name

• Ecosystem

• Version

• File ID

5.5. RQ3 - CVSS scores and CWE 43

• Criticality

• CVSS Score

• CWE ID

• CVSS Calculator Score

5.5.2 Identification of Critical Vulnerabilities

Critical vulnerabilities were prioritized in the analysis, considering their potential
severity and impact on software security.

Figure 5.14: Distribution of total critical vulnerabilities across projects.

The pie chart shows the distribution of total critical vulnerabilities across 6 soft-
ware projects. The project with the most critical vulnerabilities by far is Tomtom,
accounting for 75% of the total critical vulnerabilities. This indicates that Tomtom
likely has widespread code quality and security issues that allow for many critical
exploits. After Tomtom, macoron has the second-highest number of critical vulner-
abilities at 31. However, this is less than half of Tomtom’s total.The remaining 9
projects have relatively few critical vulnerabilities, ranging from 0 to 7. SBOMnix,
lerentis-bitwarden-crd-operator, cli-plugin, and cve-bin-tool have reported 0 critical
vulnerabilities. Over 90% of the reported critical vulnerabilities are concentrated in
just two projects - Tomtom and macoron.

5.5.3 Vulnerability Distribution Analysis

A comparative analysis across different software versions was conducted, highlighting
the evolution of vulnerabilities in various projects.

The figure 5.7 above presents the comparison of vulnerabilities within four dif-
ferent software projects—SBOMnix, Macron, Bom, and cli-plugin—across various

44 Chapter 5. Results and Analysis

Figure 5.15: Vulnerability distribution across different software versions.

released versions. Each subplot is dedicated to a specific project and tracks the pres-
ence and intensity of critical vulnerabilities (for SBOMnix, Macron, and Bom) and
the total vulnerabilities (for cli-plugin) as they evolve from one version to the next.

SBOMnix Critical Vulnerabilities (Top-Left Subplot): This chart exhibits a sig-
nificant decrease in critical vulnerabilities from version 0.1.0 to 0.2.0, with the count
dropping rapidly to near zero. The subsequent versions, extending to 0.6.9, demon-
strate a maintained baseline without the detection of critical vulnerabilities.

Macron Critical Vulnerabilities (Top-Right Subplot): This graph illustrates a
variable pattern, where initial versions (0.1.0 and 0.2.0) are completely free of critical
vulnerabilities. However, a notable increase occurs, peaking at version 0.5.0 with
approximately 13 critical vulnerabilities, before descending in the subsequent version.

Bom Critical Vulnerabilities (Bottom-Left Subplot): The trajectory of critical
vulnerabilities here shows a gradual increase, peaking in version v0.5.0, where the
count reaches four. The y-axis scale offers a detailed view of the vulnerability dis-
tribution, emphasizing even small changes between versions, which is crucial for
assessing the impact of version updates on security.

cli-plugin Total Vulnerabilities (Bottom-Right Subplot): The final chart high-
lights the total vulnerabilities for the cli-plugin component, characterized by signif-
icant volatility. There’s a huge difference between versions v0.3.1 and v0.4.0. The
number of vulnerabilities goes down at first and then goes up to a peak, showing a
major change in vulnerability count.

5.5.4 Python vs Go

Python projects consistently show higher numbers of critical vulnerabilities (average
of 14.9 per version) versus Go projects (average 3.6 per version) as shown in Figure
5.8. While earlier Python versions all had around 20 critical vulnerabilities and Go
had 0-2, the latest Python version has 2, and the latest Go has 4 critical vulnera-
bilities as shown in below figure 5.9 Many Python project versions have around 20

5.5. RQ3 - CVSS scores and CWE 45

Figure 5.16: Python vs GO critical vulnerabilities

critical vulnerabilities, indicating major clusters with high counts. The variability in
several critical vulnerabilities over versions is lower for Python. While Go projects
had 0-2 critical vulnerabilities in early versions, later versions consistently showed
3-10 critical vulnerabilities as shown in Figure 5.10. So new Go versions tend to add
more critical issues

5.5.5 CVSS Scores

CVSS scores were employed to quantitatively assess the severity of vulnerabilities
identified in the selected projects from the Python and Go ecosystems. The calcu-
lated scores ranged from [9.1] to [9.8], providing a comprehensive overview of the
severity levels.

The top four vulnerabilities, based on their calculated CVSS scores, are as follows:

5.5.6 CWE ID

An in-depth analysis of the identified vulnerabilities involved an exploration of the
Common Weakness Enumeration (CWE) IDs. This step aimed to understand the
specific characteristics and nature of each vulnerability. The CWE IDs were cross-
referenced with the CWE website to extract detailed information about the vulner-
abilities, providing qualitative insights.The following section summarize important
information from the CWE website for each identified CWE ID:

46 Chapter 5. Results and Analysis

Figure 5.17: Python vs GO critical vulnerabilities over time

Figure 5.18: GO critical vulnerabilities over time

5.6. Information about each CWE id’s identified 47

Project Name CVSS Vector CVSS
Score

Tomtom CVSS:3.1/AV:N/AC:L/PR:
N/UI:N/S:U/C:H/I:H/A:H

9.8

kluctl CVSS:3.1/AV:L/AC:L/PR:
N/UI:N/S:C/C:H/I:H/A:H

9.3

Kustomizer CVSS:3.1/AV:N/AC:L/PR:
N/UI:N/S:U/C:H/I:H/A:N

9.1

tf-controller CVSS:3.1/AV:N/AC:L/PR:
N/UI:N/S:U/C:H/I:H/A:N

9.1

Table 5.10: Top Vulnerabilities Based on CVSS Scores

CWE-ID Count of Total Occurrences Presence Across Projects

CWE-78 34 2

CWE-697 6 1

CWE-184 6 1

CWE-639 8 3

Table 5.11: CWE ID Occurrences and Project Presence

5.6 Information about each CWE id’s identified

CWE-78, focusing on OS Command Injection, unveiled issues stemming from im-
proper handling of user-controlled input during command execution. The findings
indicated a lack of robust validation and sanitation of external inputs, emphasiz-
ing the need for stringent input validation and the implementation of parameterized
queries. Additionally, adherence to the principle of least privilege was underscored
as a pivotal measure to curtail potential damage from command injection attacks.

Moving to CWE-184, which addresses the Incomplete List of Disallowed Inputs,
security concerns were associated with inadequate content filtering, potentially lead-
ing to bypassing protection mechanisms. The results emphasized the importance
of not only identifying disallowed inputs but also maintaining a comprehensive list
of allowed inputs. This dual focus ensures a more robust defense against potential
threats, with a call for proper encoding of outputs to fortify security measures.

The evaluation of CWE-697, concerning Incorrect Comparison, revealed instances
where incorrect checks, missing factors, and inconsistent comparisons occurred, im-
pacting security at various levels. The implications highlighted the necessity for
thorough checks, emphasizing the accurate evaluation of security-related elements
through meticulous comparisons. Validating multiple factors and utilizing appropri-
ate comparison logic emerged as key practices to eliminate security weaknesses.

Lastly, CWE-639, addressing Authorization Bypass Through User-Controlled

48 Chapter 5. Results and Analysis

Key, brought to light situations where unauthorized access was possible through the
manipulation of keys due to inadequate authorization checks. The findings empha-
sized the significance of ensuring proper permissions and authorization. Encryption
and digital signatures were recommended to bolster data security, preventing external
entities from gaining control of critical keys.

Chapter 6

Discussion

This research aims to explore SBOMs which have been an effective way to tackle
security challenges in today’s software development environment. In this discussion,
we will delve deeply into the findings from our research on SBOMs and security in-
tegration within Python and Go ecosystems. This exploration not only clarifies the
specific outcomes of our study but also places them within the broader context of
software security and open-source development.

The Dynamic Evolution of SBOMs (RQ1):
SBOMs are increasing in software development, indicating a focus on security.

Analysis of collected SBOM files shows growing complexity in Python and Go ecosys-
tems. Python’s SBOMs (that’s the list of all the components in a project), had 9
projects with components ranging from 7 to 81 across different versions. It seems
like Python’s SBOMs are getting more complex, which could mean they have more
vulnerabilities. Go’s SBOMs, on the other hand, have 6 projects with components
ranging from 46 to 1781, and they remain pretty stable. This suggests that Go
has different developmental and security dynamics. But, keeping track of all these
components can be a huge challenge. Having detailed SBOMs is super important
for transparency and security, which are crucial in modern software development.
Sometimes, complex things can be a bit tough to handle, especially for small teams
or projects with limited resources. This research found that even though there are
guidelines for SBOM content quality, it can vary a lot. This means that having
guidelines is not enough for all SBOMs to be of the same quality. These differences
could cause problems in making sure software is secure, which might lead to missed
vulnerabilities. This research also provided a basic outline of what information must
be contained in an SBOM file. SBOM has two sections header and package details
section. The tables 5.1 5.2 will give a clear idea of what should a quality SBOM
should contain. And also weneed more research to find out why there are differences
even though there are standards. We looked at the Python and Go ecosystems,
so it may not be the same in other programming environments. The research sug-
gests that there is a need for more efficient tools to manage SBOMs. Future studies
can explore ways to balance the level of detail and usability of SBOMs and extend
these practices to other programming environments. The evolution of SBOMs has
significant societal implications, particularly in ensuring the security of increasingly
complex software systems. From an ethical standpoint, it raises questions about col-
lective responsibility in maintaining secure open-source software.

49

50 Chapter 6. Discussion

Policy Impacts on SBOM Quality (RQ2):
This study looked at how the US Executive Order affected the usage of SBOMs

in two ways. First, SBOM files before and after the Executive Order were checked
to see if there were any changes in quality. The analysis focused on the impact
of the US Executive Order of May 2021 on SBOM quality and revealed significant
improvements post-intervention. The Sbomqs tool that was used showed that there
was a clear improvement in SBOM quality after the order, which is good for soft-
ware security practices. The improvement was assessed based on structural elements,
NTIA minimum elements, semantic quality, and sharing quality. The quality score of
SBOMs improved from 6.475 before the Executive Order to 8.275 after it. This means
that not only did they follow NTIA guidelines, but the overall quality of SBOMs also
got better. The NTIA minimum elements score went up from 6.400 to 9.225, and
the semantic quality score improved from 3.900 to 7.225. All of these numbers show
that SBOMs became better and easier to understand post-intervention. Another
way to look at it is that some projects follow the rules better than others. After
the Executive Order, the quality score standard deviation went down from 0.222
to 1.118. This means that more projects met quality standards, but it also shows
that not all projects apply the rules in the same way. The quality of SBOM has
been improved with the help of policy mandates that have raised software security
standards. We did some analysis using Ordinary Least Squares (OLS) regression
and also performed an interrupted time series. We found that the model is pretty
good at explaining the quality scores of Software Bill of Materials (SBOMs) with
an R-squared value of 0.847, which means 84.7% of the variability in SBOM quality
scores can be accounted for by the predictors. We also found that the model is ro-
bust and not overfitted with an adjusted R-squared value of 0.785. The F-statistic
of 13.80 and a significant p-value show that the predictors we included are signif-
icant in explaining SBOM quality. Based on the coefficients, the intercept (const)
represents the quality score when both Time and Time-Period are zero, and it is
estimated to be 7.675. The coefficient for Time shows that on average, the qual-
ity scores decrease by 0.480 for each additional unit of time, suggesting a decline in
SBOM quality over time. However, the coefficient for Time-Period is positive (3.720)
and statistically significant, indicating a significant increase in the quality score af-
ter the intervention. This finding aligns with the US Executive Order of May 2021
has a positive impact on improving SBOM quality. While this policy intervention
has led to an overall improvement in compliance with NTIA guidelines and better
SBOM semantic understandability, it has been observed that the application of these
policies across different projects has been uneven. The study found that policy in-
terventions can improve the quality of software security practices. However, flexible
policies are needed to accommodate the diverse nature of open-source projects. Im-
proving SBOM quality has broader societal implications, enhancing the security and
transparency of essential software. It would be interesting to explore how differ-
ent policies affect software ecosystems and develop more flexible rules. The quality
of SBOMs has improved after the policy intervention, which is great for enhancing
the transparency and security of software that is essential to modern infrastructure.
This shows that both developers and policymakers are taking responsibility to ensure
that software supply chains are trustworthy. The US Executive Order on SBOMs
has positively influenced SBOM quality, but the way it’s applied varies, so we need

51

more adaptable and detailed policy frameworks for open-source software. This thesis
examined eight different projects before and after May 2021. Initially, the aim was
to evaluate the quality of SBOMs by analyzing historical git data from projects that
had SBOMs before and after the intervention (May 2021). However, we were unable
to find repositories that had SBOMs in both timelines, which is a limitation of this
research. If repositories are discovered that have SBOMs in both timelines, future
research can compare them more effectively.

Security Scans Integration and its Efficiency (RQ3):
This investigation focused on the combination of security scans with SBOMs re-

sulting in various insights. On one hand, these scans have proven to be crucial in
managing vulnerabilities, particularly in revealing how critical vulnerabilities evolve.
For example, Tomtom, a Python project, accounted for about 75 percent of all iden-
tified critical vulnerabilities, indicating significant code quality and security issues.
In contrast, Macron had significantly fewer critical vulnerabilities, with only 31, and
several projects like SBOMnix, lerentis-bitwarden-crd-operator, cli-plugin, and cve-
bin-tool reported no critical vulnerabilities at all. This difference in security risks
shows that some projects are riskier than others. It also proves that not all vulner-
abilities are the same across all projects. When we dug deep into the vulnerabilities
and found some interesting stuff. We found 34 instances of OS Command Injection
vulnerabilities (CWE-78) across two projects. We also found six instances each of
Incorrect Comparison (CWE-697) and Incomplete List of Disallowed Inputs (CWE-
184) in one project each. Plus, we identified eight instances of Authorization Bypass
Through User-Controlled Key (CWE-639) across three projects. It just shows how
diverse and complex the vulnerabilities can be in open-source software. We examined
16 open-source software projects, focusing on the most critical vulnerabilities. The
vulnerabilities were evaluated based on their CVSS Scores (ranging from 9.1 to 9.8)
and CWE IDs. It was observed that Tomtom and Macron had over 90 percent of the
critical vulnerabilities, indicating high severity. Python projects had more critical
vulnerabilities than Go projects, with an average of 14.9 critical vulnerabilities per
version in Python and only 3.6 in Go. This highlights the need for different security
strategies for different programming environments. The gap between the number of
critical vulnerabilities in Python and Go projects seems to be reducing over time,
suggesting a changing landscape in software security. However, it’s important to un-
derstand the limitations of this research. It is important to note that the selection of
projects from mainly Python and Go ecosystems may not fully represent the diver-
sity of open-source software. Moreover, depending on certain vulnerability scanning
tools could lead to biases due to their varying sensitivities and detection capabili-
ties. The diverse distribution of vulnerabilities suggests that future research should
focus on developing more strong security strategies that address specific project vul-
nerabilities. Additionally, by exploring the reasons behind the absence of critical
vulnerabilities in certain projects, we may gain valuable insights into effective secu-
rity practices. The fact that widely used software has critical weaknesses has serious
consequences for society, which means that we need to take security seriously when
it comes to digital infrastructure. We also need to think about who’s responsible for
making sure that open-source software is as safe as possible. To identify vulnerabili-
ties, security scans that are integrated with SBOMs play a crucial role. But we also

52 Chapter 6. Discussion

need to keep in mind that vulnerabilities are not evenly spread out across different
projects. This means that we need to keep improving our security practices and
strategies, and maybe even come up with different ways to deal with vulnerabilities
depending on the situation.

Comparative Ecosystem Analysis: Python vs. Go:
Comparative analysis of the Python and Go ecosystems revealed distinct trends

in vulnerability across various projects, such as Tomtom and SBOMnix. The number
of vulnerabilities in Python projects ranged from 7 to 81 across different versions,
with a general increasing trend over time. For instance, SBOMnix had 34 vulnera-
bilities in version 0.2.0 but was free of vulnerabilities in version 0.6.9. On the other
hand, Go projects like Bom initially had an increase in vulnerabilities, but it was
followed by a significant decrease. The Go projects had a wider range of components,
from 46 to 1781, and showed more stability with some gradual increases. The Go
project flux started with 55 vulnerabilities, which was reduced to 4 in later versions,
showing a 90 percent reduction, and effective response to security risks.

It’s important to note that the analysis only focused on certain projects within
each ecosystem, so it may not reflect the larger dynamics. Additionally, the results
could be affected by the particular techniques and tools used to identify vulnera-
bilities. Therefore, it’s important to acknowledge these limitations to get a more
balanced understanding of the findings, which highlights the need for more compre-
hensive research and a variety of methods. Moreover, Python projects had an average
of 48.8 components, while Go projects had an average of 420.5, reflecting different
scales of project complexity. Python’s incremental evolution in SBOMs suggests a
gradual identification and mitigation of vulnerabilities, whereas Go updates brought
more volatile vulnerability shifts. This difference underscores the unique security
challenges of each ecosystem and points to the necessity of ecosystem-specific secu-
rity strategies. In summary, a comparative analysis of Python and Go ecosystems
revealed distinct vulnerability trends and security challenges. This highlights the im-
portance of adapting security strategies to address evolving software vulnerabilities.
Future research could focus on understanding the factors contributing to the observed
trends in vulnerabilities and developing ecosystem-specific security strategies. Addi-
tionally, exploring the reasons behind the consistent vulnerabilities in some Python
projects and the initial high vulnerabilities in Go projects would provide valuable
insights.

Chapter 7
Threats to Validity

7.1 Internal Validity
It is a measure of the extent to which a study’s results can be attributed to the
independent variable and not to other factors [42]. To address threats to internal
validity, several key measures were implemented in the research design. One of the
primary strategies employed was the use of a randomized control trial (RCT) de-
sign [43]. This approach involved the random assignment of software projects to
either the control group, which did not receive the SBOM implementation, or the
experimental group, which underwent SBOM implementation. Random assignment
was crucial as it helped to ensure that any observed differences in outcomes could be
confidently connected to the approach - in this case, the SBOM implementation.

Additionally, the inclusion of a control group helped mitigate potential threats to
internal validity. The control group, which did not undergo the SBOM intervention,
served as a baseline for comparison. By having a group that remained unaffected
by the intervention, the study minimized the potential influence of extraneous vari-
ables that could have otherwise confounded the results. This approach significantly
strengthened the internal validity of the research.

Furthermore, to establish causality and further address internal validity threats, a
pre-post testing methodology was adopted. This involved the measurement of SBOM
quality metrics and vulnerability assessments both before and after the SBOM imple-
mentation within each group. By conducting these assessments at two different time
points, the study aimed to track changes over time within each group. This approach
allowed for a thorough examination of the impact of the SBOM implementation on
software security, reinforcing the internal validity of the research design.

7.2 External Validity
External validity refers to the extent to which the findings of a study can be general-
ized to other populations, settings, and times. In other words, external validity is a
measure of whether the results of a study can be applied to real-world situations [44].
To make sure that the research results can be applied to a wide range of software
projects and that there are no external validity threats. A diverse sample of projects
from the Python and Go ecosystems were chosen. This way, the study’s findings
will be more broadly applicable to a variety of open-source projects and not just a

53

54 Chapter 7. Threats to Validity

narrow range of them.

The study was done in real-world software development practices so that the re-
search’s findings would be relevant and useful in actual scenarios. By studying real
software projects, the research aimed to discover the complexities and differences that
are usually encountered in practical software development. This approach helped to
address external validity threats by grounding the study in the reality of software
development practices and making the findings more useful to real-world situations.

7.3 Construct Validity
Construct validity refers to the extent to which a test measures what it is intended
to measure. In other words, construct validity is a measure of whether the test is
assessing the underlying construct or trait that it is designed to measure [45]. Dur-
ing the research process, we were really careful to make sure we were measuring
everything accurately so that our results would be trustworthy. We were especially
worried about two things: SBOM quality metrics and vulnerability assessments. To
help us out, we came up with really clear definitions for these concepts. By doing
this, we made sure that we were measuring what we wanted to measure, and that
our results were legit.

Additionally, the study used a triangulation method to gather data from various
sources such as SBOM files, vulnerability scans, and quality metrics. This approach
helped to increase the accuracy of the research by verifying the results through dif-
ferent data sources and methods. Using multiple data sources not only made the
study’s conclusions stronger but also made it more confident that it was legit.

Chapter 8

Conclusions and Future Work

8.1 Conclusion

As a part of this thesis, the objective was to explore the information present in SBOM
files along with their corresponding vulnerability result files. This study aimed to
analyze the evolution of SBOM files (RQ1), evaluate the impact of the US Executive
Order 2021 on SBOM quality (RQ2), and assess the effectiveness of integrating secu-
rity scans with SBOMs (RQ3). This section reflects on the findings of this thesis and
discusses their implications for the field of software security and SBOMs, addressing
several key concerns:

Information in SBOM Files (RQ1): The archival study involved collecting and
analyzing SBOM files from Python and Go ecosystems. The findings in Tables 5.1
and 5,2 provide a comprehensive overview of the elements needed to create a quality
SBOM. Additionally, Table 5.3 illustrates the information that vulnerability scans
give, which helps organizations in enhancing their security practices.

Evolution of SBOMs (RQ1.1): This research provides an in-depth analysis of the
evolving role of SBOMs in tracking software components, licenses, and vulnerabilities
in the software development life cycle. The study found that Python projects showed
a consistent increase in the number of components over time, while Go projects had
more variability in their growth. The study also identified significant differences in
licenses between Python and Go projects. Python projects tend to have a more
permissive license structure due to its compatibility with various dependencies and
libraries. On the other hand, Go projects tend to have more restrictive licenses, which
reflects their concern for compatibility issues. Vulnerabilities have been reduced over
time (latest versions) in both ecosystems. The findings of this research underscore
the importance of using SBOMs in tracking software components, licenses, and vul-
nerabilities to ensure software quality and security in the long run.

Impact of US Executive Order (RQ2): It was found that the US Executive
Order had a positive impact on the quality of SBOMs among open-source projects.
The average quality score of SBOMs increased significantly from 6.475 to 8.275 after
the order was implemented. The NTIA minimum elements score and the semantic
quality score also showed significant improvements, indicating the impact of the pol-
icy on software development teams.

55

56 Chapter 8. Conclusions and Future Work

Integration of Security Scans with SBOMs (RQ3):The integration of secu-
rity scans with SBOMs revealed a wide range of vulnerabilities. For instance, some
projects like Tomtom exhibited a high concentration of critical vulnerabilities, while
others showed none. This highlights the need for personalized security approaches to
tackle each project’s specific vulnerabilities. The use of CVSS scores, ranging from
9.1 to 9.8, along with CWE IDs such as CWE-78 and CWE-697, provided deeper
insights into the severity and nature of these vulnerabilities.

To summarize, this thesis highlights how SBOMs are evolving in software security,
the positive impact of policy on the quality of SBOMs, and the crucial role of secu-
rity scans in identifying and mitigating vulnerabilities. These findings underscore the
need for adaptive and responsive security practices that are tailored to the unique
challenges of different software ecosystems.

8.2 Future Work
In this section, we discuss the future work for this thesis.

• While this study focused on Python and Go ecosystems, future research could
extend to other programming languages and ecosystems to provide a more
comprehensive understanding of SBOM practices across diverse software de-
velopment environments.

• The US Executive Order’s impact on SBOM quality suggests significant policy
implications. Longitudinal studies could be conducted to assess the long-term
effects of such policies on software security standards and practices across in-
dustries.

• Investigating how end-users interact with SBOMs and their comprehension of
these documents could provide insights into how SBOMs can be made more
user-friendly and effective in communicating security information.

• Exploring the integration of SBOMs within the DevOps framework could pro-
vide valuable insights into how SBOMs can be effectively used in continuous
integration/continuous deployment (CI/CD) pipelines for enhancing software
security in real-time.

• Researching the role of SBOMs in emerging technologies such as IoT, cloud
computing, and blockchain could guide how SBOM practices can be adapted
to these new domains.

References

[1] A. Fuggetta, “Open source software––an evaluation,” Journal of Systems and
Software, vol. 66, no. 1, pp. 77–90, 2003.

[2] M. J. Hossain Faruk, M. Tasnim, H. Shahriar, M. Valero, A. Rahman, and
F. Wu, “Investigating novel approaches to defend software supply chain at-
tacks,” in 2022 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pp. 283–288, 2022.

[3] D. L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Towards using
source code repositories to identify software supply chain attacks,” in Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, (New York, NY, USA), p. 2093–2095, Association for Com-
puting Machinery, 2020.

[4] Siteadmin, “UAParser.js npm Package Supply Chain Attack: Impact and Re-
sponse,” 12 2023.

[5] “Log4Shell vulnerability highlights software supply chain issues,” 1 2022.

[6] M. Campbell, “Keep your dependencies secure and up-to-date with github and
dependabot,” May 2021.

[7] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife collection: A
review of open source software supply chain attacks,” in Detection of Intrusions
and Malware, and Vulnerability Assessment (C. Maurice, L. Bilge, G. Stringhini,
and N. Neves, eds.), (Cham), pp. 23–43, Springer International Publishing, 2020.

[8] X. Ding, F. Zhao, L. Yan, and X. Shao, “The method of building sbom based
on enterprise big data,” in 2019 3rd International Conference on Electronic
Information Technology and Computer Engineering (EITCE), pp. 1224–1228,
2019.

[9] É. Ó. Muirí, “Framing software component transparency: Establishing a com-
mon software bill of material (sbom),” NTIA, Nov, vol. 12, 2019.

[10] W. House, “Executive Order on Improving the Nation8217;s Cybersecurity,” 5
2021.

[11] M. Crosignani, M. Macchiavelli, and A. F. Silva, “Pirates without borders: The
propagation of cyberattacks through firms’ supply chains,” Journal of Financial
Economics, vol. 147, no. 2, pp. 432–448, 2023.

[12] CrowdStrike.com, “Cybersecurity 101: Supply chain attacks,” Sept. 2023. Ac-
cessed on March 8, 2024.

57

58 References

[13] P. Nguyen, S. Durlauf, and M. Tikalsky, Software Bill of Materials: A Catalyst
to a More Secure Software Supply Chain. PhD thesis, Acquisition Research
Program, 2023.

[14] N. Zahan, E. Lin, M. Tamanna, W. Enck, and L. Williams, “Software bills of
materials are required. are we there yet?,” IEEE Security & Privacy, vol. 21,
no. 2, pp. 82–88, 2023.

[15] Z. Wei, “Research on the application of open source software in digital library,”
Procedia Engineering, vol. 15, pp. 1662–1667, 12 2011.

[16] “Github.” GitHub.

[17] Kinsta®, “What is github?,” Nov. 2023. Accessed on March 8, 2024.

[18] F. Perez, B. E. Granger, and J. D. Hunter, “Python: an ecosystem for scientific
computing,” Computing in Science & Engineering, vol. 13, no. 2, pp. 13–21,
2010.

[19] R. Costanza, R. De Groot, L. Braat, I. Kubiszewski, L. Fioramonti, P. Sutton,
S. Farber, and M. Grasso, “Twenty years of ecosystem services: how far have we
come and how far do we still need to go?,” Ecosystem services, vol. 28, pp. 1–16,
2017.

[20] SecurityMetrics, “Vulnerability scanning 101.” SecurityMetrics, July 2023. Ac-
cessed on March 8, 2024.

[21] Google, “Google/osv-scanner: Vulnerability scanner written in go which uses
the data provided by https://osv.dev.”

[22] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring sys-
tem,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

[23] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “Cwe,” SANS top,
vol. 25, 2011.

[24] T. W. House, “Executive order on improving the nation’s cybersecurity,” 2021.

[25] S. Nocera, S. Romano, M. D. Penta, R. Francese, and G. Scanniello, “Software
bill of materials adoption: A mining study from github,” in 2023 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 39–49,
2023.

[26] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German,
and D. Poshyvanyk, “Boms away! inside the minds of stakeholders: A com-
prehensive study of bills of materials for software systems,” arXiv preprint
arXiv:2309.12206, 2023.

[27] T. Bi, B. Xia, Z. Xing, Q. Lu, and L. Zhu, “On the way to sboms: Investigating
design issues and solutions in practice,” 2023.

[28] D. Buttner, R. A. Martin, and M. C. B. MA, “The cybersecurity benefits of
leveraging a software bill of materials,” 2022.

[29] A. Chaora, N. Ensmenger, and L. J. Camp, “Discourse, challenges, and prospects
around the adoption and dissemination of software bills of materials (sboms),”

References 59

in 2023 IEEE International Symposium on Technology and Society (ISTAS),
pp. 1–4, 2023.

[30] P. Caven and L. Camp, “Towards a more secure ecosystem: Implications for
cybersecurity labels and sboms,” SSRN Electronic Journal, 01 2023.

[31] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities
in open-source software libraries,” in 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 411–420, 2015.

[32] B. Gokkaya, L. Aniello, and B. Halak, “Software supply chain: review
of attacks, risk assessment strategies and security controls,” arXiv preprint
arXiv:2305.14157, 2023.

[33] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A. Rangamani,
L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood, et al., “Auto-
mated software vulnerability detection with machine learning,” arXiv preprint
arXiv:1803.04497, 2018.

[34] S. L. Eggers, T. B. Simon, B. R. Morgan, E. S. Bauer, and D. Christensen,
“Towards software bill of materials in the nuclear industry,”

[35] N. Zahan, S. Shohan, D. Harris, and L. Williams, “Do software security practices
yield fewer vulnerabilities?,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pp. 292–303, 2023.

[36] K. Bronstad, “References to archival materials in scholarly history monographs,”
RBM: A Journal of Rare Books, Manuscripts, and Cultural Heritage, vol. 19,
no. 1, p. 28, 2018.

[37] T. D. Cook, D. T. Campbell, and W. Shadish, Experimental and quasi-
experimental designs for generalized causal inference, vol. 1195. Houghton Mifflin
Boston, MA, 2002.

[38] J. DiNardo, Natural Experiments and Quasi-Natural Experiments, pp. 1–12.
London: Palgrave Macmillan UK, 2016.

[39] J. Ferron and G. Rendina-Gobioff, Interrupted Time Series Design. John Wiley
Sons, Ltd, 2005.

[40] D. McDowall, R. McCleary, and B. J. Bartos, Interrupted time series analysis.
Oxford University Press, 2019.

[41] S. L. Turner, A. B. Forbes, A. Karahalios, M. Taljaard, and J. E. McKenzie,
“Evaluation of statistical methods used in the analysis of interrupted time series
studies: a simulation study,” BMC medical research methodology, vol. 21, no. 1,
pp. 1–18, 2021.

[42] K. Cahit, “Internal validity: A must in research designs,” Educational Research
and Reviews, vol. 10, no. 2, pp. 111–118, 2015.

[43] K. Stanley, “Design of randomized controlled trials,” Circulation, vol. 115, no. 9,
pp. 1164–1169, 2007.

60 References

[44] L. Baldwin, “Internal and external validity and threats to validity,” in Research
concepts for the practitioner of educational leadership, pp. 31–36, Brill, 2018.

[45] S. M. Downing and T. M. Haladyna, “Validity and its threats,” Assessment in
health professions education, vol. 1, pp. 21–56, 2009.

Appendix A
Supplemental Information

article array hyperref

Table A.1: Repository/Project and Link to the Repository

Repository/Project Link to the Repository
kluctl https://github.com/kluctl/kluctl
anchore/chronicle https://github.com/anchore/chronicle/

releases
Kustomizer https://github.com/stefanprodan/

kustomizer/releases?page=1
Bom https://github.com/kubernetes-sigs/bom/

releases
Cli-plugin https://github.com/docker/

SBOM-cli-plugin/
releases

Tf-controller https://github.com/weaveworks/
tf-controller

flux https://github.com/fluxcd/flux2/releases
Tomtom-international https://github.com/tomtom-international/

vault-assessment-prometheus-exporter
cve-bin-tool https://github.com/intel/cve-bin-tool/

tree/main/SBOM
Internet.nl https://github.com/internetstandards/

Internet.nl
Lerentis/bitwarden-crd-operator https://github.com/Lerentis/

bitwarden-crd-operator/
releases

macaron https://github.com/oracle/macaron
PyStacks https://github.com/KablamoOSS/PyStacks/

blob/master/
pystacks.spdx

SBOMnix https://github.com/tiiuae/SBOMnix
FOSSology-REST-API https://github.com/Shruti3004/

FOSSology-REST-API/blob/master/
src/spdx2/agent/spdx2

boyter/Ic https://github.com/boyter/Ic

61

https://github.com/kluctl/kluctl
https://github.com/anchore/chronicle/
releases
https://github.com/stefanprodan/
kustomizer/releases?page=1
https://github.com/kubernetes-sigs/bom/
releases
https://github.com/docker/SBOM-cli-plugin/
https://github.com/docker/SBOM-cli-plugin/
releases
https://github.com/weaveworks/tf-controller
https://github.com/weaveworks/tf-controller
https://github.com/fluxcd/flux2/releases
https://github.com/tomtom-international/
vault-assessment-prometheus-exporter
https://github.com/intel/cve-bin-tool/
tree/main/SBOM
https://github.com/internetstandards/Internet.nl
https://github.com/internetstandards/Internet.nl
https://github.com/Lerentis/bitwarden-crd-operator/
https://github.com/Lerentis/bitwarden-crd-operator/
releases
https://github.com/oracle/macaron
https://github.com/KablamoOSS/PyStacks/blob/master/
https://github.com/KablamoOSS/PyStacks/blob/master/
pystacks.spdx
https://github.com/tiiuae/SBOMnix
https://github.com/Shruti3004/FOSSology-REST-API/blob/master/
https://github.com/Shruti3004/FOSSology-REST-API/blob/master/
src/spdx2/agent/spdx2
https://github.com/boyter/Ic

62 Appendix A. Supplemental Information

Figure A.1: Snippet of SBOM file

63

Figure A.2: Snippet of vulnerability result file

Figure A.3: Example vulnerability scan result using OSV-scanner

64 Appendix A. Supplemental Information

Figure A.4: Example quality score result using SBOMqs

Figure A.5: Code used for Interrupted time series analysis

65

Figure A.6: Result of Interrupted time series analysis

Faculty of Faculty, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

	Abstract
	Acknowledgments
	Introduction
	Aims and Objectives
	Research Questions

	Background
	Supply chain attack
	SBOM
	Open-source software
	Github
	Python and Go ecosystems

	Vulnerability scan
	OSV scanner
	CVSS Score
	Common Weakness Enumeration (CWE)

	US Executive Order May 12, 2021

	Related Work
	Method
	Research method Selection
	Research Design
	Archival Study
	Data Collection:

	Quasi Experiment
	Variables and participants
	Implementation

	Vulnerability scanning tool selection:

	Results and Analysis
	RQ1 - What information contained in SBOMs
	Information in vulnerability scanning result file:
	RQ1.1 - Evolving over time
	Number of version changes over time:
	Number of removed and added packages:
	Number of License changes over time:
	Number of components:
	Licenses:
	Vulnerability Trends Over Time

	RQ2 - Impact of US Executive Order
	ITS Resuts Analysis:

	RQ3 - CVSS scores and CWE
	Data Collection and Organization
	Identification of Critical Vulnerabilities
	Vulnerability Distribution Analysis
	Python vs Go
	CVSS Scores
	CWE ID

	Information about each CWE id's identified

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions and Future Work
	Conclusion
	Future Work

	References
	Supplemental Information

