
Master Thesis
Software Engineering
Thesis no: MSE-2007:08
January-2007

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Evolving test-case selection at a large scale
company

Samir Drincic, Asim Dedic

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in
partial fulfillment of the requirements for the degree of Master of Science in Software
Engineering. The thesis is equivalent to 40 weeks of full time studies.

Contact Information:
Author(s):
Samir Drincic
E-mail: samir.drincic@gmail.com
Asim Dedic
E-mail: asim.dedic@gmail.com

External advisor(s):
Kennet Henningsson
UIQ Technology AB
Address: UIQ Technology, Soft Center VII. SE – 372 25 Ronneby, Sweden
Phone: +46 457 464700

University advisor(s):
Håkan Grahn
Department of System and Software Engineering / Blekinge Institute of Technology
Phone: +46 457 385804

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Internet : www.bth.se/tek
Phone : +46 457 38 50 00
Fax : + 46 457 271 25

 ii

mailto:samir.drincic@gmail.com
mailto:samir.drincic@gmail.com

ABSTRACT

This paper presents a possible solution for selection
of test-cases that should be executed to provide good
coverage and quality at UIQ Technologies. It describes
how the company can sort and prioritize their test-cases,
so that quality is maintained while having controlled
amount of test-cases. The idea behind the proposed
method is to prioritize the test-cases and execute those
that received highest prioritization first and thereby
ensuring that all high-risk defects are found first. We
have created a model that performs those tasks and we
have also executed it on an ongoing project at UIQ
Technology to provide data for comparison with the
currently used model. We also make a comparison
proving that our proposed method is more effective then
the current method. We have emphasized adaptability
and changeability of the model so that UIQ Technology
easily can modify and adapt the model later on.

Keywords: test, regression, improvement, large scale
company

 1

CONTENTS

EVOLVING TEST-CASE SELECTION AT A LARGE SCALE COMPANYI

ABSTRACT .. 1

CONTENTS .. 2

1 INTRODUCTION .. 4
1.1 AIMS AND OBJECTIVES .. 5
1.2 RESEARCH QUESTIONS .. 5
1.3 METHODOLOGY .. 5

1.3.1 Qualitative study .. 5
1.3.2 Quantitative study .. 6

1.4 OVERVIEW ... 6

2 COMPANY INFORMATION ... 7
2.1 UIQ TECHNOLOGY ... 7
2.2 TESTING AT UIQ TECHNOLOGY ... 7

2.2.1 Abstraction level of the thesis in respect to testing .. 8
2.3 MOTIVATION .. 8
2.4 UIQ TECHNOLOGY SPECIFIC .. 8

2.4.1 Initial testing.. 8
2.4.2 FS-Trace.. 9
2.4.3 Standpoints .. 10

3 TESTING METHODS ... 11
3.1 INTRODUCTION ... 11
3.2 SELECTIVE TESTING .. 11
3.3 INITIAL SELECTIVE TESTING .. 11

3.3.1 Different methods for selective testing .. 12
3.4 REGRESSION TESTING ... 14

3.4.1 Introduction ... 14
3.4.2 Different methods for selective regression testing ... 15

3.5 SUMMARY OF TESTING METHODS... 17
3.6 TEST SELECTION METHODS CHOSEN AS A BASE FOR THE SOLUTION PROPOSAL 18
3.7 SELECTIVE METHOD FOR INITIAL TESTING .. 18
3.8 SELECTIVE METHOD FOR REGRESSION TESTING .. 19

4 CURRENT METHOD FOR TESTING AT THE COMPANY ... 21
4.1 CONCERNS WITH CURRENT METHOD .. 21
4.2 ANALYSIS OF THE CURRENT METHOD... 22

5 SOLUTION PROPOSAL ... 23
5.1 INTRODUCTION OF THE PROPOSAL ... 23
5.2 MAIN METHOD FOR SOLUTION PROPOSAL ... 23
5.3 CUSTOMIZATION... 23

5.3.1 Customization of metrics .. 24
5.3.2 Customization of regression test-selection method .. 24

6 IMPLEMENTATION OF OUR METHOD .. 26
6.1 INTRODUCTION OF THE SYSTEM ... 26
6.2 STEP BY STEP .. 26
6.3 CREATING OF BATCHES ... 26
6.4 PRIORITIZATION.. 27
6.5 TEST RESULTS WITH CURRENT METHOD AT THE COMPANY .. 28
6.6 TEST RESULTS WITH PROPOSED METHOD .. 29

 2

7 EVALUATION OF THE METHOD ... 30
7.1.1 How was it to introduce ... 30

7.2 COMPARISON OF THE METHODS ... 30
7.2.1 Comparison ... 30
7.2.2 Deviations ... 31

8 VALIDITY OF THE THESIS.. 33

9 CONCLUSION ... 34

10 FUTURE WORK ... 35

ACKNOWLEDGEMENTS .. 36

11 REFERENCES ... 37

12 APPENDIX A ... 39

 3

1 INTRODUCTION

Testers involved in testing large software systems are daily faced with the,

amongst others, problem of limited testing-time and resources. As those systems
expand in both size and complexity so do the test suites for those systems [19, 25]. The
result of those circumstances is that in certain situations some test-cases or test-items
are omitted [1] e.g. if a system is containing a lot of test-cases while having short
delivery time. There exists a lot of research in this area, but most of the methods are
concentrating on covering as much as possible of the source code [8, 21, 22,24]. This
approach does give a good overview of how much of the source code that has been
tested but is unfortunately not applicable when the systems, that are the subject of the
testing, are large.

Lately, research about function testing has been conducted and written in reports

[1, 2]. The idea of function testing is that most functionality of the software is, by the
user seen, as black-box functions [19]. Testing the behavior of those functions will
satisfy the customers according to Bezier [19]. Even though this kind of testing is
easier to conduct, the size of the test suite will sometimes get too big to cover. It is
here Baser introduce the prioritization of test-cases. A lot of work has been done in
this area as well [7, 12, 13, 17, 20, 21, 22, 24]. Main idea of this approach is to identify
high risk/priority faults and execute test-cases that reveal those, to satisfy customer
expectations on the software [1]. This approach can be used from several different
viewpoints. Meeting customer expectations is e.g. user point of view ensuring that
crucial functionalities for the user are fulfilled and product ready for release.

Another large part of software maintenance is regression testing. Regression

testing is performed on new or modified software to ensure that “the changed parts of
software behave as intended and that the unchanged parts of the software have not
been adversely affected by the modification [33]”. There are two basic approaches to
do regression testing, one being the so-called retest all approach and the other being
selective regression testing approach. The retest all approach is the safest approach to
choose but this approach will in many cases lead to exceeded resources. Looking at the
selective regression testing techniques it is quickly noted that most of the techniques
work on white-box level i.e. studying the code and comparing changes. Few of the
methods mentioned in reports require an in-depth-analysis of the source code [3, 13,
31, 32]. However after further research we managed to find work conducted by Chen,
Probert and Sims [4] where they apply prioritization on a black-box(specification
based) level to select test-cases for regression testing.

The solution proposed in this thesis is based on a selective testing approach. To

achieve selective testing the method we propose, uses prioritization of test-cases. This
proposed method was matched against UIQ Technology1 current method for testing
and was proven more efficient. Some of the evaluation points were number of test-
cases executed and also severity of failures detected by executed test-cases. It is our
opinion that the results of the method were satisfying but we feel that the method can
be improved by further work. Further information about methodology used in this
thesis can be found in sub-chapter 1.3.

1 www.uiq.com

 4

1.1 Aims and objectives

The aim of this thesis is to try and find a suitable method to help UIQ Technology

improve their testing selection process. We aim at fulfilling following objectives

• Identify different methods for decreasing amount of testing
• Find a method that is acceptable for UIQ Technology
• Customize the found method so that it can be applied to UIQ Technology data
• Virtually execute this method on well documented UIQ Technology project
• Identify strengths and weaknesses of the proposed method

1.2 Research questions

To be able to conduct thesis in a structured way following research question were
created together with Kennet Henningsson2 and Cecilia Wester3 both employees at
UIQ Technology:

1. Is there a process that could be suited to fit the company’s regression
testing?

a. What amount of test-cases that should be rerun would this process
result in compared to the amount of test-cases rerun today?

b. How will the final quality of the product be, compared to the
quality of the product as it is today?

2. Is there any way to do initial4 test-case selection so it decreases number of
test-cases run while maintaining same quality?

a. How would this work practically?
b. Is this method feasible to use for a company like UIQ

Technology?
c. What are the advantages and disadvantages of such process?

The main purpose of those questions is to keep the research on track and to

provide us with some goals to strive towards. In other words, we do not seek to answer
those questions with 100% accurate answers, but rather use them as guidelines during
our thesis research.

1.3 Methodology

This section describes the different approaches carried out while doing the thesis at

UIQ Technology. It also provides some information about why the certain
methodology is used for the study. It contains qualitative research approaches,
quantitative research approaches and a case-study that is carried out.

1.3.1 Qualitative study

To gain understanding of the area of software testing and software regression

testing a literature study is conducted. Study journals, books and peer-reviewed reports
are used to provide us with knowledge about the area. The searched topics include

2 Kennet Henningsson is currently employed at Development System Management Department at
UIQ Technology
3 Cecilia Wester is currently employed as Test Leader at UIQ Technology
4 The concept behind expression ”initial” is thoroughly explained in section 2.4.1

 5

testing in general as well as regression testing. To be sure, to detect a possible method
suiting UIQ Technology all found methods are assessed for possible validity to be the
solution.

In order to, further improve the understanding of the problem definition posed on

the thesis, interviewing of UIQ Technology employees is conducted. Two of the
company employees are selected as interview targets. The reasoning behind selecting
the two employees is their knowledge of testing process at UIQ Technology as well as
their current positions at the company. Regarding more interview targets this option
was not possible at the company at the time of thesis were in final phase of a major
release, they had no labor resources to provide to us. However, professional profiles of
the persons that were made available to us convinced us about their expertise in the
area. In order to gain knowledge of UIQ Technology testing process, tools and
different issues a case-study of company documentation and tools is conducted. In
depth, research on functional specification trace database is conducted to ensure
knowledge about company testing process, notation of test results and test
specifications. Unstructured interviews are conducted to gain knowledge about
database used for storage of test-cases and their results.

1.3.2 Quantitative study

To prove usefulness of proposed method a quantitative approach is used. An

extensive experiment is conducted using the proposed method on a UIQ Technology
ongoing project. Data about current testing method at the company is compared to data
from our proposed method so that it is measurable what the benefits and drawbacks of
the proposed method as well as the current method are.

The results gained from the quantitative study are used in a direct comparison with

current testing method at the company to provide valuable indication of the potential
of the method.

1.4 Overview

Chapter 2 of the thesis covers briefly UIQ Technology information and the issues

with the company test-process Section 3 covers common testing methods and different
aspects of testing e.g. initial and regression testing. In section 4 we present the two
methods for initial and regression testing that our final method is based on. In section 5
we analyze both the current and also our proposed method and we also present
advantages and disadvantages of both methods. Section 6 covers execution of our
proposed method on UIQ test-cases together with analysis of performance of the
method.

 6

2 COMPANY INFORMATION

In this chapter, UIQ Technology is described as well as their product. After the

company has been introduced, an overview of the company testing process is provided
together with the issues that were presented to us. We also present some UIQ
Technology specific expressions, tool and some statements about further introduction
of tools, models and preferred solutions to the issues handles on the thesis.

2.1 UIQ Technology

UIQ Technology is a software development company, which develops an open

software platform that is licensed to leading mobile phone manufacturers. The
platform is customizable so that it can fit several types of mobile phones, with very
little change in the source code. This is a great way to reduce the development time for
mobile phone software, but also the time-to-market for mentioned software. UIQ
Technology is developing their products on top of the Symbian OS. They also face
rather complicated requirements on their software since they are developing products
for mobile phones. Some of the requirements are e.g. close to 100% uptime, that most
mobile phones are supposed to have and great scalability because the developed
software needs to function on several different phone types. Since the software is
developed for handheld devices, they also face requirement of adapting the software
for limited resources e.g. limited memory and limited computing capability. This leads
to the fact that UIQ Technology needs to thoroughly test their software so that they
fulfill those requirements.

2.2 Testing at UIQ Technology

Together with Kennet Henningsson and Cecilia Wester, decision was taken to

research and try to improve UIQ Technology testing process. They both work at the
company, and they presented the problem issues during our first discussions. First, the
initial selection of test-cases that should be tested was done with very loose guidelines.
There is no structured way of selecting test-cases that should be tested which leads to
in some cases unnecessary testing. This loose way of selecting test-cases to test also
leads to the fact that less important test-cases might take testing time away from more
important test-cases. The test-leaders are responsible for determining when the testing
was finished. For this, we were told, expertise and previous knowledge by the test
leaders is used.

This is the main problem area, UIQ Technology has no definite way of telling if

the testing conducted is enough to guarantee high-enough quality, so it is their gut-
feeling and intuition that determines when to stop testing. More about this problem
and solutions we proposed can be found in sections 5 and 6. Furthermore, to overcome
this problem, they perform a basic retest-all approach. This leads to the fact that they
in the end test too much, exceeding both time and resources in some cases.

The second problem that was proposed for this thesis, to solve, was the regression

testing-phase at the company. Similar to the initial testing, the regression testing was
done without any structured approach and regression testing is seen as finished when
no more defects are found with the selected test-cases. Also selection of the test-cases

 7

that should be a subject of regression testing is once again done with loose guidelines
and UIQ Technology are looking for more structured way to select test-cases also here.

2.2.1 Abstraction level of the thesis in respect to testing

It was clearly stated during early discussion that the thesis should aim at

researching the, per definition [34], functional/acceptance testing.
Acceptance/functional tests aim at satisfying customer expectation [34] which is
something taken into consideration in the thesis while working on a solution. Other
testing e.g. unit testing is not taken into consideration in the thesis and is not used in
any kind of evaluation and/or measurement.

As we previously wrote, the aim of the thesis is at the acceptance/functional level

of testing. However, the UI test-cases are not taken into consideration. Main reason
behind this is the ongoing effort to automate the testing of the UI currently taking
place at UIQ Technology.

2.3 Motivation

The main motivation for this thesis is the UIQ Technology desire to improve their

testing process and especially the test-case selection part. As it is, later in the thesis
written, a rather large amount of test-cases is present in every project. The project that
was chosen for experimenting in this thesis can be seen as rather small with only
around 4000 test-cases but we would like to remind that this project was ongoing
while the thesis was executed. The amount of test-cases was base lined to a certain
point and will grow further as the project moves on. Combined with the fact that
multiple test runs are conducted the amount of test-cases rapidly increases as they get
further into the projects. Even though the company is undergoing process of
automation in some areas, there is an expressed need to a method that will reduce
amount of testing with maintained quality, a method that is not a full automation of
testing since the company already is working on some automation for other areas. UIQ
Technology is also constantly undergoing a procedure of improvement of the
documentation, which in turn leads to more possibilities for conducting methods that
will reduce amount of testing.

2.4 UIQ Technology specific

In this chapter, some special expressions for UIQ Technology and this thesis are

explained. It also holds explanations to what the company desires in form of methods,
tools and solutions for the above-mentioned issues. Reason for explanation is that
those objects that are special for UIQ Technology are crucial to have knowledge about
in order to fully understand the thesis.

2.4.1 Initial testing

The concept of the expression “initial testing” is very hard to understand.

Therefore, this section is dedicated to explaining the concept of the expression. This
expression is used in the thesis and needs full understanding in order to understand the
thesis.

First, what initial testing does not mean is the process of creating test-cases. The

expression be misinterpreted as the process of test-case generation that, in this case,
we are not talking about. The meaning of the expression “initial testing” in this thesis

 8

is the first testing done after development. To strengthen the meaning of “initial
testing” even more, we refer to Figure 1 below.

Figure 1: Initial testing

Product Version 1

Initial Testing

Bugg Fixes and
new functions

Regression
Testing

Product is forked (will not be
merged). The new branch is a
completly new release that will

continue to develop as
standalone product with

different functionality. New
functionality is added here.

Initial Testing

Regression
Testing

Picture 1 adds more explanation to the meaning of the expression “initial testing”.

What is happening in the diagram is that an initial version of the program is created
followed by first “initial testing”. As it is previously mentioned, it is the first testing
done after development. Beyond this point bug fixes and regression testing are tasks
that are performed. Initial testing however is used again only if, as in the picture,
software is forked and very new version is created. In the picture, it is stated that the
newly created fork is not meant to merge with the original line later on and that new
functionality is added. The meaning is that all the new functionality that is added will
trigger a new “initial testing”. Same thing would happen if the company uses parallel
development. A product A and a product B would then co-exist. At the start of both
projects initial testing is done.

In this thesis expression, “initial testing” is used to describe first testing after

development. As one part of the problem definition, the test-case handling at initial
testing is considered in this thesis. In rest of the thesis, the expression “initial testing”
will be used without explanation. The approach for the initial testing can however
without modification be used for regression testing as well as we will describe more in
detail later.

2.4.2 FS-Trace

Expression FS-Trace in this thesis refers to the functional specification trace that is

used at UIQ Technology for tracking of functions currently embedded in a certain
project. FS-Trace consists of a web-based client that communicates with a database

 9

holding all the information regarding the functions. The information that can be
viewed can be e.g. test-cases coupled to a certain function and procedures to how to
execute each one of the test-cases found in a function. The FS-Trace is, in the thesis,
used for data collecting, sorting and comparing and is therefore a very important
expression to understand. Another very important aspect of the FS-Trace is the tags
used for notation of the functions. All the functions are written in following format
FS.someGlobalFunction.functionInsideGlobalFunction.subFunction This approach to
notation is later on used for batch making. It is written more about this later on in the
thesis.

2.4.3 Standpoints

UIQ Technology has some clearly defined standpoints that this chapter describes.

Reason for bringing those up is that the reader needs to be familiar with those
standpoints to understand some of the decision taken in the thesis.

SP1. For the researched and later on proposed method there should be no tools

requirement posed on the method. UIQ Technology currently develops most of their
used tools by themselves and do not wish to incorporate any new tools into the system.
Even though this standpoint the thesis does include some basic studying of tool-based
methods, mostly for the writers own knowledge.

SP2. The researched and later on proposed method should have good potential for

later automation. As we previously wrote UIQ Technology are already working on
implementing automation so this desire was rather obvious. If the method proves
successful, it should be possible to automate it in line with some other areas at
company. To achieve high degree of automation is seen as one of the sub-goals for the
thesis.

 10

3 TESTING METHODS

This chapter describes the different testing methods that were researched while

doing the literature study planned in the methodology of the thesis. The literature study
covers both testing methods that handle the initial testing but also methods that handle
regression testing. The most interesting methods found during the literature study are
described and in the later subchapters the two methods that stood ground for the final
solution proposal are thoroughly noted down.

3.1 Introduction

Software testing is big business nowadays; there is several different ways to

approach a testing process so that it fits the testing needs of a certain company. How to
choose which method suits your company can be as hard as development of the
product itself. The basic principle of the initial testing is to verify the software against
the requirements that the customer and the developing company agreed upon [2].
There are different methods on how to perform this phase of the product life cycle.
The aim of all methods is to cut down on the number of the test-cases that is tested, but
sustaining a good-enough quality on the end product. The literature study described in
this chapter is aimed at gaining knowledge about the area at the same time as searching
for possible candidate as solution for the issues presented for the thesis.

3.2 Selective testing

Since the use of software has increased over the last decade, so has the size of the

software. This obviously leads to an increase in testing performed on the software
products. The big software products contain a lot of functions, operations and
behaviours, and all of them should be tested [19, 25]. However companies, similar to
UIQ Technology, have close to ten thousand test-cases for their products. As a result
there is no feasible way of testing all those test-cases without extensive budget and
lead time impact.

This is where selective testing enters software business. The goal of this approach

is to select test-cases that will give a good coverage of the product functionality in a
way that will guarantee a “high-enough”-quality. The selective method exists in a lot
of varieties, depending on what the company’s focus is. If the product is going to be
used in real-time environments, e.g. airplanes or hospitals, then the focus lies towards
reliability and durability. While in our case, working with UIQ Technology, the focus
is more towards the visual appearance, and functionality. How the test-cases are
selected is also very different from method to method. Some methods use discrete-
mathematics, while others use test developers judgments to select what test-cases
should be performed.

3.3 Initial selective testing

This section presents different methods that can be used during initial testing of a

product for test-case selection. The concept of initial testing, is described earlier in the
report.

 11

3.3.1 Different methods for selective testing

The goal of the literature study for this section is to find method that could be used

by UIQ Technology during their initial testing phase. The methods presented may not
always be the best suited for UIQ Technology’s current situation. Therefore the
methods presented will be mapped against the standpoints stated in section 2.4.3.

3.3.1.1 Axiom-Based test case selection strategy

This method uses a research by Frankl et al [15] that presents an approach to

testing of object-oriented programs. Frankl et al try to implement a way of testing
entire classes using data abstraction. Their idea is that the classes are the natural units
to tests, and that the testing should check if a sequence of data “puts an object of the
class under test into the correct state”. Frankl et al constructed a set of testing tools
that was named ASTOOT (A Set of Tools for Object-Oriented Testing), which
embodied the idea of classes as natural units to test. Frank et al believed that when
designing test-cases to test certain method inside a class you shifted the focus away
from data abstraction, the interaction between operations within a class.

The ASTOOT was designed only to handle algebraic specifications. The algebraic

specifications are created by modelling a specification with heterogeneous word
algebra. Example from [16] is used to make this transformation clearer. Let u1 and u2
be two terms of an Abstract Data Type (ADT). Further on, let s1 and s2 be respective
sequence of operations to the terms u1 and u2. Frankl et al [15] state that two terms are
equivalent if they can be transformed into one another using axioms as rewriting rules.
If s1 and s2 produce different objects while u1 and u2 are equivalent, and error has been
found. ASTOOT has tools that apply axioms transformation of u1 to u2. It then uses a
driver generator to automatically derive test drivers that check and execute s1 and s2
corresponding to u1 and u2. The last step is comparing the results of the execution.

Chen et al [16] found some discrepancies with the Frankl et al suggestions. The

major one was that transformations using axiom rules is uni-directional. This means
that if u2 that is derived from u1 using axiom rules is not equivalent to u1. Chen et al
also state that Frankl et al use a selection technique that is based on two case-studies
without any theoretical proof, and therefor cannot guarantee any proof of
effectiveness. In order to improve the selection of Frankl et al method they define few
rules that should be applied in order to have a sound mathematical proof of the
method. Chen et al state that u1 and u2 are equivalent only if both of them can be
rewritten on the same ground term (term without variables) and reach a unique normal
form. A term is said to be in normal form if no axioms are applicable [16]. Compared
to Frankl et al, Chen’s method is based on theoretical facts and mathematical proof,
which is stated to be more efficient in selection of tests.

The advantage of this method is its mathematical roots. It provides a strong

qualitative measurement on what should be tested with mathematical proof. But the
main advantage was also a disadvantage when the method was presented UIQ
Technology. The method was too complicated and too academic according to them.
The need of algebraic specification would cause a rewrite of their current
specifications, which is something they did not have any intentions of doing. And as
stated in 2.4.3 UIQ Technology was not interested in incorporation of any new tools.

 12

3.3.1.2 Annotated classification trees

The method presented by Yu et al is based on evolving the classification-tree

method (CTM) to support generation, selection and prioritization of test-cases. The
CTM was introduced by Grotchmann and Grimm, and has been used in many
industrial development projects. In order to describe the functionality of the method an
example from Yu et al report will be used. See Table 1 below.

Table 1: Categories and choices [17]

Category (Classifications) Associated Choices (Classes)
length of list =0, =1, >1
is element searched for yes, no
element occurs never, once, several times
sorting sorted*, all elements identical sorted

conversely*, unsorted

A simple function that counts number of occurrences of a certain element in a list

and then returns the amount is used as the function that is to be tested. Analysis of the
function should show the categories (classifications) of said function. To each of the
classifications there are Associated Choices (Classes) connected to. Test-cases are
generated by combining the different categories. But some combinations are not
feasible, e.g. if the length of the list is 1 the sorting does not apply. Yu et al state that
when number of combinations is large the job of manually identifying unfeasible
connections between categories is costly and error-prone. The next step is to specify
constraints for all the associated choices. Generating the test-cases can be conducted
with a tool that is designed for CTM specifications. Another way of generating test-
cases is by drawing the classification tree and setting some rules that should be
followed during the test-case generation.

Figure 2: Classification tree [17]

The advantages presented by Yu et al, focus on the visual aspects of the method.

They state that the graphical appearance of the method makes it easy to understand and
use. According to one of their sources inexperienced users to CTM, did not have any
problems deriving test-cases from the classification-tree, even without a tool.

 13

In order to apply test-cases selection and prioritization to the CTM, Yu et al adapt

new annotations to the nodes of the classification tree. The three annotations added are
selector expression, occurrence tag and weight tag.

Selector expression: this annotation incorporates selectiveness of what
classifications can be combines, so that unfeasible classifications are not combined to
generate malicious test-cases.

Occurrence tag: the reasoning behind this annotations is if the tester deems it
necessary that a certain test-case is to run x amount of times in the test suite. The tester
can then set the occurrence tag value.

Weight tag: the weight tag shows the priority of a certain classification, and can be
used to sort classifications based on their priority.
After presenting the added annotations, Yu et al use five steps for the test preparation
process using a tool. The tool can automatically generate legitimit test-cases due the
added annotations. It also allows the tester to prioritize the test-cases and select test-
cases to be run, both manually or by deciding the occurrence level of test-cases that
should be run.

This method would give UIQ Technology a framework for generating, selecting

and prioritizing their test suite. According to Yu et al, the framework is close to fully
automatable. But the method relies heavily on the supporting tools to be as efficient as
possible, and as we already mentioned new tools is not something that is wanted by
UIQ Technology at this time.

3.4 Regression Testing

This chapter covers the area of regression testing. A small introduction to the area

of regression testing and its basics is written in the beginning of the section. Later we
will more thoroughly describe content of selective regression testing along with few
different methods to perform this task.

3.4.1 Introduction

Regression testing is an essential activity to any software development to ensure

software quality [4]. There are studies showing that more than 50% of development
effort in software lifecycle is spent on maintenance [10]. Large parts of those 50% are
spent on testing. It is here regression testing proves to be important. By cutting down
on the amount of retesting, the time, effort and costs of software can be drastically
lowered [10]. As regression testing can repeat itself several times during the lifecycle
of a project, cutting down amount of testing in the regression phase is even more
important. This however may not be done risking the quality.

The main aim of software regression testing is to, as defined [12], establish the

confidence that software acts and performs according to the specification it is based on
[12], after modifications to the software. Regression testing is also supposed to assure
developers that modifications and additions to the code have not adversely affected
unchanged portions of the software [3]. The flow of software can be seen as found in
report by Agrawal, Horgan, Krauser and London [14]. Our opinion is that “field-use”
even can be replaced by internal company use. Nevertheless, the picture shown in
Figure 3 clearly shows when and why software regression testing is used.

 14

Figure 3: Test-flow order [14]

It is widely acknowledged that software regression testing is a highly important

activity of software maintenance [3, 4]. Furthermore, software development today
tends to be object oriented with high usage of third-party software. Here software
regression testing can, and is, used to ensure that third-party software does not cause
faults when integrated with the rest of the software [3].

There are two different ways to conduct software regression testing. One method is

the retest all approach. It does not need further explanation. Changes, modification or
additions to the software trigger a regression testing of all software. Even though this
method is highly effective, it uses, and mostly, exceeds resources and allocated time.
The alternative method to retest all approach is the selective regression testing [3].
There are several different methods that perform selective regression testing, but all
the methods aim towards same goal: “reducing amount of time and resources used to
retest modified or enriched software by selecting a subset of existing software test-
suite [3].”

3.4.2 Different methods for selective regression testing

Rothermel and Harrold [3] provide an extensive comparison and evaluation of

different software regression techniques, provided as Appendix A. The comparison
itself is based on four common categories for all methods: inclusiveness, precision,
efficiency and generality. It is important to mention that in the beginning of the report
Rothermel and Harrold [3] write that most of the methods for selective regression
testing are code based as it is now [10, 14, 25, 26, 27, 28, 29, 30], there are however
few that do their selection, based on the software specification [31, 32].

3.4.2.1 Slicing method

The first method that was researched more about was the so-called “slicing”

method. It has been given a grade of safe, but with limitations, by Rothermel and
Harrold [3]. Binkley [13] describes the method as close to 100% accurate. The basic
idea of the method is to slice the software into small entities. After that, test-cases are
executed and it is noted down what test-cases that execute certain slice(s). To illustrate
the approach of the method the simple example below is provided:

 15

Consider following pseudo code as the source code to be traversed:

Input(a,b)
If(a>b)
 Write “a is bigger”
If(a<b)
 Write “a is smaller”
Else
 Write “equal size”

Complementary to this code test-cases are made as following:

Table 2

Test-case Input Output

 a,b
T1 5,1 “a is bigger”
T2 1,5 “b is bigger”
T3 1,1 “equal size”

The “slice” for test-case T1 will look as the red-marked part of the code:

Input(a,b)
If(a>b)
 Write “a is bigger”
If(a<b)
 Write “a is smaller”
Else
 Write “equal size”

Later on, incase modifications are made all slices affected are selected for

regression testing e.g. if statement “a is bigger” would change into “a is bigger and
therefore a winner” test-case T1 would be selected for regression testing. However if
something changes outside T1 slice it will not be retested. This is the main reason that
the method receives a “safe but with limitations” grade by Rothermel and Harrold [3].
It will simply never check for possible bugs that a modification of the software might
have caused outside of the slice. However, for the thesis, even larger concern is how
those slices are made. To create those slices you are forced to traverse the source code
[13] and make the slices manually, as it is illustrated in example above. In our research
material [3, 13, 14] this is applied to small C programs consisting of, at most, few
hundred lines of code. UIQ Technology produces much larger software than that,
counted in lines of code. This method is rejected as valid approach for our thesis. It is
simply too academic and can not in any efficient way be applied to a company of UIQ
Technology magnitude. The method can however possibly be applied to unit testing
but as stated in 2.2.1 we were not supposed to cover this area of testing. It was also
agreed that future investigated methods that where based on source code would be
rejected unless they used a very abstract view of the code to select software regression
test-cases.

 16

3.4.2.2 Firewall method

The next method investigated is the so-called “firewall” technique. This method

failed to prove valid for our thesis with the statement: “Their technique determines
where to place a firewall around modified code modules” [3]. We did however not
reject it directly but researched it fully. Results showed that even if this method uses a
bit more abstract view on the software [31, 32], in form of modules, you are still
required to look at the source code to build up those modules that should be monitored.
The method is however suitable to use at integration testing level and at unit test level
[3]. The firewall method has also been implemented and measured in [35]. The work
was however, done using a tool called “Test Manager”, which is not wanted by the
definition of the thesis. The results of the report [35] also showed that e.g. database
usage of the firewall technique is a rather expensive task. The report also stated that
method inability to handle large amounts of data might be discouraging. As for
example, we refer to the prior subchapter about slicing and the example listed there.
Instead of making slices, entire code modules can be put under monitoring e.g. entire
example in 3.4.2.1 can be put in one code module. The firewall technique will detect
changes inside the firewall but will not check for errors outside the firewall. The
method was presented to UIQ Technology but the need of tool support combined with
the low abstraction of the method made it a non-valid candidate for a solution.

3.5 Summary of testing methods

As it is previously mentioned, there is a need to use a very abstract level of

selecting test cases for both initial testing as well as for regression testing. As it is
shown in next sections, in both cases (initial and regression testing) it is clear that a
possible solution to the problem is prioritization of test cases based on test
specification.

As it is previously written in this chapter, most of the, by the literature study,

covered methods had some characteristic that made them obsolete for a possible
solution. Usage of heavy algebraic formulas and tools was e.g. not wanted by UIQ
Technology. The methods using algebraic formulas are simply too complex and tool-
based solutions are not wanted at all since the company mostly uses their own
developed tools.

When it comes to regression testing the common characteristic that ruled out most

methods was the access to source-code requirement to be able to track changes. Most
methods that we wrote about and researched about require good and thorough
knowledge about the source-code. They also require, in some cases, traversing trough
the source code in order to be able to perform regression testing with the created
modules of code. This was not accepted by UIQ Technology since they, as we
previously mentioned, have very few test developers with in-depth knowledge about
the source code. It is also stated in 2.2.1 that thesis should assume a level of
functional/acceptance testing at high level of abstraction which rules out heavy usage
of source code.

The initial test-case selection and the regression test-case selection should be done

as it is described in section 3.6-3.8. Intention behind giving the proposed methods
separate section is to, in depth; explain why the methods were chosen as a base for
further research.

 17

3.6 Test selection methods chosen as a base for the
solution proposal

The following two section hold information from the literature study that has been

mentioned previously in this chapter. The two methods described in the following two
sections are written in separate chapters to highlight that those methods are the base
for the solution proposal. Both presented methods use prioritization of test-cases with
respect to the specification.

3.7 Selective method for initial testing

The method chosen for further research is based on prioritization of the test-cases,

to find the most crucial faults in a product. The idea behind selecting this method is
that it is rather simple to understand and implement. It also gives good customization
possibilities and it was also found suitable for UIQ Technology testing process in
discussions with our supervisors. The basic idea behind this method is that the test
developer looks at the system from different views: system, user and development
view. Within the views there are metrics which are weighed, See Table 3. The
weighing of the metrics together with using a scalar formula, the test-case gets a
priority.

Table 3: Metrics for evaluation. [2]

The principle of the method is that the developer decides what viewpoint he will use to
weigh the test-cases. The test-cases are then viewed from the functional perspective,
a.k.a. black-box. In the example here, the developer is viewing the test-cases from a
user’s viewpoint. That means that metrics, frequency of use, complexity of use
scenario and impact of a function are used. The metrics then have set values that can
be assigned to them, e.g. 1 – 9. The test-developer goes through the functions list and
weighs all three of the metrics according to the scale that has been set. See the Table 4
below.

 18

Table 4: Prioritizing functions [2]

Figure 5 presents the two functions that have been weighed. The column on the right
end is the priority that the function receives after the metrics have been added. The
borders are set by the test-developers before the weighing starts. For example, if the
score is between 4 and 6, the function has a medium priority.

After the prioritization has been completed the extraction of the test-cases can
commence. The method says that 100% of the high priority test-cases, 50% of the
medium and 25% of the low priority test-cases should be executed. The test-case
priorities are received from the function that is tested by them, see Table 5. As Table 5
illustrates, if a function even has more then one test-case, all the test-cases associated
with the specified function, receive the same priority.

Table 5: Test-cases inherit priority [2]

3.8 Selective method for regression testing

After conducting a rather extensive literature study choice for a method to work

with, for this thesis solution, fell on Chen, Probert and Sims work [4]. First of all their
method is a black box based software regression selection method. It is based on the
specification of the software, which is exactly what this thesis could benefit from. The
second big advantage is that the method we pick for selective regression testing is
rather similar to the method for initial test selection. This will later in the thesis be
proven an advantage.

Basic idea of their proposal is to give different metrics for all test cases in certain

software. The metrics that Chen, Probert and Sims were using for their proposal where
cost, severity probability and risk exposure. Their cost estimation was graded on a 1-5
scale where one was low cost and five was high cost. Furthermore, cost was
determined on two different factors:

• The consequence of a fault as seen by the customer, that is, losing market
share because of faults

 19

• The consequences of a fault as seen by the vendor, that is, high software
maintenance cost because of faults [4]

A table with costs for each test case looks something as the following tables from their

thesis [4] see Table 6. In Table 6, cost of one is the lowest cost and five is the highest cost.

Table 6: Cost of test-cases [4]

After the costs have been set it is time to determine severity of defects P(t). This is

done by multiplying Number of Defects N, with Average severity of Defects S (NxS).
After this is done, cost-estimates are combined with severity-estimates to build up a
new value called Risk Exposure (RE).

The result looks as Table 7:

Table 7: Final result [4]

Last step of this method would be to select test-cases for regression-testing, based

on the value RE. As you can see this is not a method that guarantees perfect regression
testing rather providing a way to regression test the most important parts of the system
first. Important parts of the system being such, that they cause a very negative impact
on the software from a certain point of view. This can also be compare with the
method for initial test-case selection. Both methods base their selection at some kind
of prioritization, risk prioritization or as in regression test-case selection case cost
prioritization (assessment). The similarity of the methods will be used to form the final
solution. This will be brought up further in the thesis.

 20

4 CURRENT METHOD FOR TESTING AT THE
COMPANY

UIQ Technology has built an interactive database for their testing process. It

contains their test-cases which are categorized according to what parts of the software
they belong too. Ideally, they all have traceability back to functional requirements that
spawned mentioned test-cases. The reason word ideally is chosen is because some of
the test-cases are designed to test non-functional requirements, and some are designed
for user scenarios, which means they cover several functional requirements, and the
database does not include that information. One thing all of the test-specifications
contain is a use description. This shows how often a user or the system is going to go
use a certain function/feature.

The “frequency of use” description is what the test-developers use when they

decide what test-cases should be run. They use four grades to determine this: always,
often, rarely and never.

When it is time to do a new test-run the developers, choose the not tested

“always”-functions, some “often”-functions, and so on. One of the problems, as we
discuss is that they do not have clear boundaries using this method. As it was found
out during the discussions with the company reference, the test-cases selected for one
test run, often are tested in the following test runs, due to their frequent usage. This
fact can lead to retesting of less important test-cases over and over again while more
important test-cases are omitted.

The test-leaders also choose test-cases that they think are important for the

integrity of the software based on their previous knowledge. This poses another threat
to quality guarantee, which we will discuss in section 4.2

4.1 Concerns with current method

As mentioned in report by Tomaszewski et al. [9], beyond a certain number of

components developers usually put remaining components in a random order. This is
not a statement that this happens at UIQ Technology, but it is assumed that it does.
Even when doing prioritization during the implementation of the method we felt these
symptoms during the last stages of the prioritization.

Another issue presented by Tomaszewski et al [9] is that the code introduced in the

later stages, e.g. modifications, is the most fault-prone code during the development.
They found in their research that 37% of the researched software was code that was
added as modification, later in development. These 37% of the code, contained 62%
faults found in the released software. Another software system that was researched had
44% of the code added as modifications, and this contained 78% of the faults found.
This shows how important regression testing is. As it is stated in the introduction the
regression testing is currently done in an unstructured way at UIQ Technology, and
this poses a quality risk for the software. The company needs a method to decide what
needs to be tested to give best coverage the product. They need to be able to decide
what test-cases that are crucial for product functionality and what test-cases that can be
omitted due to their low impact.

 21

4.2 Analysis of the current method

This section will cover an analysis of the current testing method at UIQ

Technology. It covers important aspects, for the thesis point of view, like test-case
selection and execution.

As it is mentioned the test developers use a simplistic way of determining what

test-cases should be run. There are several problems associated with UIQ Technology
method of prioritization and selection of test-cases, and this heritages from how the
test-cases are assigned their “frequency of use”-value. During the thesis it was made
clear that this value does not always represent the truth. This poses problems for the
company. Since the values are not always correct, that leads to test-cases that might
not be important being run more times than they actually should. This not only wastes
resources on testing redundant functions but can also overlook the testing of important
functions.

Tomaszewski et al [9] state that after 15% of the code has been analyzed that the

gain from using prediction model is largely increased compared to using expert
estimation. They also mention that the time a developer has spent on a project does not
raise his or hers prediction of faults. This statement shows that gut feeling does not
belong in test-case selection process.

During their research, Tomaszewski et al [9] found that two of the statistical

prediction models outperformed the estimations done by the experts. This is yet
another proof that using a prediction model would benefit UIQ Technology testing
process.

 22

5 SOLUTION PROPOSAL

This chapter describes the method writers propose as a possible solution to the

issues proposed for the thesis. After in next section writing a short introduction
information about the method, customization of the method and a step by step
approach will be written.

5.1 Introduction of the proposal

As it is written in the report, several issues need to be addressed by this thesis. In

addition, the solution for those issues has to follow some guidelines. Few of those
guidelines are level of abstraction, automation and tool support. In section 3.5-3.8,
methods for initial test-case selection as well as method for regression test-case
selection are presented and this chapter discusses further development of those
methods in order to make them acceptable as the solution for the thesis.

5.2 Main method for solution proposal

As it is written earlier in the thesis, the two methods that were found interesting for

possible solution for the thesis are rather similar in approach. Both methods use
categorization as test-case selection. This categorization can be e.g. based on
prioritization based on risks or cost assessment of the product. This method is in this
thesis picked as a possible solution to the issues UIQ Technology wants solved.
Another reason for choosing this method as a possible approach in the thesis is that
Tomaszewski et al [9] mention that a simple model is more likely to sustain stability
over several releases. This statement supports the choice of our method. It is very easy
to understand, and we feel should be easy to incorporate. Since UIQ has several
releases of their software, that means that they also will benefit from using a simple
method for their testing process.

Evolution based system faults heritage from the modified code that is added in

later stages of the system development [9]. This demands good testing coverage by the
regression method used by the developer. The method that is proposed, groups up the
functions of the system into batches5. If a new code is added or old one modified in
any way, the test-leader can see what batch the modified code belongs to and order the
testing of that said batch. The functions that are in same batch are interlaced, so the
faults that are introduced by the new/modified code are contained to the batch of said
function. This gives the test-leaders guidance on what needs to be tested to get good
coverage on the new/modified code. It was previously mentioned that similarity of the
methods for initial test-case selection and regression test-case selection are similar and
that this will be used by the thesis. The approach to this will be merging of methods to
simplify the method itself.

5.3 Customization

Having decided on the method to use, we noticed that it needed some tweaking in

order to be useful to UIQ Technology current process without too much altering.

5 Concept of batches together with creating of those will is explained in chapter 6.3

 23

5.3.1 Customization of metrics

To be able to use the method mentioned in 3.7 as a solution for the thesis some

customization was needed. First decision however was to choose point of view that
should be used for prioritization of test-cases. As it is mentioned in 2.2.1, the thesis is
supposed to operate on functional/acceptance level of testing with aim at customer
satisfaction. The decision was taken to use customer point of view for prioritization of
functions. Since no real customers could be interviewed due to time constraints on the
thesis, authors own experience was used for the prioritization. Both authors of the
thesis are active users of mobile phones leading to the conclusion that their
prioritization should be valid for the thesis.

Since user point of view has been selected for the prioritization, metrics for this

view were assessed. Case-study of UIQ Technology was conducted to determine what
metrics can be used. The aim was to at least find an approach to use the metrics stated
in the original method [2] but also reuse some of the old documentation found in the
company documentation during the case-study. Good guidance was provided on this
matter from Hirayama et al [1, 2]. It was found that UIQ Technology documentation
supports usage of metrics stated in the original method [2] see table 8.

Table 8: Metrics

Metrics Values

Complexity

1-10 functions - Low
11-30 functions - Medium

>30 functions - High

Impact
High

Medium
Low

Frequency of use

Very often
Often

Occasionally
Rarely
Never

It was also stated that metric frequency of use could be reused from the current
documentation at the company but with few modifications. Modifications included
removing the always level and instead adding the very often level as well as adding
never level to the grading. Reason for removing always level was that we could not
find one single function that was always used by a normal user so that value needed
redefinition. On the other hand, it is possible to find functions that are never used
leading to addition of a new grading, never.

5.3.2 Customization of regression test-selection method

It is mentioned in previous sections that merging of the two methods found in 3.6-
3.8 was planned in the thesis. Reasoning behind this approach is to simplify approach
of the method but also to reuse some data gained in the initial test-case selection.
During the initial test-case selection, prioritization is conducted on the functions. This
leads to the fact that most important parts of the system are already prioritized and that
this should be reused later on in the development. As it is rather extensive to prioritize
entire systems, the idea about reuse of the prioritization done during the initial testing,
was discussed.

 24

The regression test-case selection has, as we previously wrote, approximately same
issues as the initial test-case selection. UIQ Technology has no structured way to
select test-cases for regression leading to several problems. It was decided due to
factors of similar methods proposed and due to nature of the problem to reuse the
prioritization from the initial test-case selection on the regression testing. In other
words, the method that was described in section 3.8 is merged into method for initial
test-case selection so that prioritization approach from initial test-case selection is
same approach that should be used for regression test-selection thereby there is no
need to redo the prioritization. Another discovery was made after decision of merging
was taken. Due to nature of data collected during case-study, it was proposed to the
company that selection of test-cases for regression can be backtracked to the batches
made in the initial test-case selection. Tracing modified functionality to entire
functionality batches should lead to improved regression testing in terms of coverage.
Every change made to the system will trigger regression testing of an entire batch that
contained the test-case and therefore ensure none unintentional bugs were introduced
to the function. It was also concluded that UIQ Technology’s own tools could be
modified for this functionality and that this thesis would not go deeper into that
subject.

 25

6 IMPLEMENTATION OF OUR METHOD

This section covers implementation of the proposed solution. The experiment was

done in order to be able to determine the accuracy, functionality and general usability
of the proposed method. First, a short introduction of the project the experiment is
done on is presented. Thereafter a step by step description of the model is shown to
give a better overview. Other discussion topics found in the chapter are automation
possibilities, batch making and the implementation of method in terms of work
required.

6.1 Introduction of the system

In order to be able to compare the proposed method to the current method used by

UIQ Technology, we had to compare the test results extracted from the company
documentation based on both current and proposed method. The idea was that if we
looked at the company current approach to testing we would execute X amount of tests
finding Y amount of failures. While executing our own method containing
approximately same amount of tests (X) and finding, hopefully, at least same amount
of fails (Y) but with different spread. What we were hoping for is that our method
would find high risk failures at higher rate.

The system we used for comparison is an ongoing project, containing around 4000

test-cases. It is important to mention that this project was still growing as we were
examining it, so we base-lined it roughly two weeks after test-start, the test case
amount is expected to grow by a large amount. All changes to the system beyond this
time where ignored and all tests conducted on the base-lined version of the system.
Another important aspect of the system is that even if around 4000 test cases does not
sound much, most of the test cases, if not all, are run multiple times.

The first step of the method is built up of examining the system and making our

previously mentioned batches.

6.2 Step by step

This contains a short overview of the activities of the proposed method. All the

steps will be further discussed in separate chapters.

The method can be described with three basic steps:

1. Create Batches (Section 6.2)
2. Prioritization (Section 6.3)
3. Execution (Section 6.4)

6.3 Creating of batches

The concept of batches is of same importance as expressions like FS-Trace and

initial testing and therefore it needs further explaining.

Batches are groupings of functions. After data from the case-study was extracted

decision was fast taken that prioritizing all the functions separately would not be
applicable. Also because of the regression test solution, it was decided to create the so-
called batches. The notation used in the FS-Trace by UIQ Technology was of great

 26

help while making those batches. As we previously mentioned a batch tag can look
something like following:

FS.someGlobalFunction.functionInsideGlobalFunction.subFunction
The dot notation of the tags was used for creating of batches since it was in the

case-study discovered that most batches followed a standard that was applicable to our
thesis. For example, a tag of a certain function in the FS-Trace was
FS.Agenda.Viewing. This should be seen as function to view agenda entries. Agenda
is the main function and viewing is the sub function. This was just an example, most of
the batches actually had even more sub-categories. After the case-study was finished
decision was taken to create batches by following rules:

1. Start at the left side of the tag (at the “FS”)
2. Move two dots to the right (in FS.Agenda.Viewing this would mean moving

just before the word Viewing
3. Group up function by the following word after second dot

The reasoning behind this was that if batches were made like this functions were

grouped up in such a way that interlacing between them was minimal. This condition
was a prerequisite for the solution of regression testing were we needed batches where
we almost can guarantee they are not interlacing with other batches.

6.4 Prioritization

As the batches are done they should be prioritized to the previously mentioned

point of view, in this thesis user point of view. As you can read in 5.3.1 the final
prioritization value consist of three different values, complexity, impact of a function
and frequency of use, added together into one value.

First value to assign, as proposed in our method, is the complexity of the

functions. Given values of 0.0 to 1.0 all batches were traversed with a macro in
Microsoft Excel. Impact of a function value can however, be more complex to
determine. To determine impact of a function we need to actually know what all
functions do, which is not clear all the times. To overcome this problem we were used
a test mobile phone to check functions on. This mobile was a Sony Ericsson m600 and
contained UIQ software. Impact of a function prioritization is also done using numbers
from 0.0 to 1.0. Assigning of values to impact of a function was proven to be the most
time consuming process of all value assigning. We often ended up in long discussions
about how serious a failure in a certain function would be. Last value we had to set
was frequency-of-use. After some extensive discussion we decided to assign values
here using customer point-of-view. We realized that this view is what we can do with
good results since we both are mobile phone users. It is however important to say that
even though customer point of view sounds like one single view it is not. While
discussing we agreed that the customer might be everything from a teenager to a
C.E.O. of a certain major company. Their respective usage of a mobile phone will
most probably differ a lot. We decided here to put ourselves in the middle of those two
extremities. This way we would cover as much as possible of important functions in a
mobile phone for all different kinds of users.

After finished prioritization the batches can be grouped up in categories of high,

medium and low priority batches. To do this classification, all values from
prioritization are multiplied by 3 and then added together e.g. (complexity*3 +
impact*3 + frequency*3). Reason to multiplication with 3 is to get more manageable
numbers. The border values were set as following: Low priority 0 to 2,9, medium
priority 3-5,9 and high priority 6-9. This gave following grouping of batches.

 27

• High priority batches 86
• Medium priority batches 141
• Low priority batches 85

The comparison on methods described later is based on defect detected by the each

method involved. Therefore, it was needed to transform the batches into raw test-case
amount. The resulting amounts are as following:

• High priority test-cases 54,4%
• Medium priority test-cases 27,9%
• Low priority test-cases 17,7%

The numbers gained here give a good indication of how the system is prioritized. It

was intentional to prioritize many test-cases as high to be able to guarantee none
critical function would be left out of testing. Proposed method [2] writes that 100% of
high priority, 50% of medium priority and 25% of low priority test-cases should be
executed. In the case of this thesis that means executing around 3000 test-cases, or
78% of original amount It is important to remember that this is just one single
execution of testing and that the amount of not-tested test-cases will grow rapidly as
UIQ does multiple test runs during a project lifetime.

6.5 Test results with current method at the company

As we previously mentioned we need data on how UIQ current process behaved to

be able to compare it to our proposed method. We did encounter a big problem here
however. Extracting those test-cases along with all needed data was a highly time-
consuming effort. We agreed that there was no possible way to check all test-cases that
were in the system and after discussions with our supervisor Kennet Henningsson we
decided to use sampling. It was decided that we should take a certain period of time,
containing certain amount of test-cases and assume that we can mathematically
transform the results onto the rest of the system. As we will explain later this is not a
critical issue.

To extract results of the testing conducted we defined the sampling span for the

data collection. This is also the base for test-case selection, while executing the
company’s current method the only selection that was done was to pick same test-
cases that were originally picked by the company. It was decided to look at the
beginning of the testing and choose a time span for which the test-case execution
results should be executed. The amount of sampled test-cases was about 600.

Next step in the process was to investigate those 600 test-cases and determine if

they failed or passed their first execution. Reason for the choosing first execution was
that we wanted to see what happened first time ever the test-case was executed.
Choosing later execution point would probably provide us with faults that were
introduced to the system at a later point meaning the results would not reflect the first
testing done.

A rather interesting problem was encountered here, many of the test-cases where

not connected to the FS-trace at all. Those test-cases were mostly UI-Specification
ones so they were naturally not stated in the functional specification. This however did
not cause any bigger problems since we agreed that those test-cases can be seen as rest
of the test-cases in terms of comparison, only that they would require more manual
work to compare with our results. The non-coupled test-cases got removed from

 28

further investigation. Looking up all data about those 600 test-cases that made the
sampling area, data about defect spread detection was gathered. Following results
represent what spread the detected defects had in respect to the 3 different categories
we defined earlier:

• High priority failures 71,62%
• Medium priority failures 18,2%
• Low priority failures 9,5%

As we previously mentioned there is few test-cases that are not coupled to the FS-

Trace. In order to be able to provide fair comparison to the proposed method it was
determined that about 60% of the test-cases where coupled to the FS-Trace and
therefore the proposed method should execute around same amount, 400 test-cases.

6.6 Test results with proposed method

This chapter provides information about execution of the proposed method on the

company test-cases. Test-case selection was done according to the method proposal
meaning highest priority batches (containing test-cases) were picked to be executed
first. Amount of batches that should be executed was determined by as we explained in
previous section amount of executed test-cases by the company’s current method. This
means that batches containing approximately 400 test-cases were picked for
experiment.

 Nine of our batches that where prioritized as highest possible proved to not be run
at the company at all. Explanation we received was that those batches contained
functions, as calling with the phone and various other network dependent functions.
Those test-cases were never executed at UIQ but together with their customers at
customer location. The reason we missed this fact was that this was rather obvious to
the people at UIQ. However, this obstacle was overcome. Since all high-prioritized
batches will be executed at one time or another, according to proposed method, next
“in line” batches were picked for execution. The amount of high-prioritized batches
was big enough for this approach.

Total of 8 batches were selected for the execution part. Same approach was

applied here with researching the outcome of the first instance of execution for each
test-case in the selected batched. The detected defect spread was as following:

• High priority failures 100%
• Medium priority failures 0%
• Low priority failures 0%

Here it is clear that the method is performing according to the previously

mentioned goal of finding the high-risk defect first. Furthermore, it is worth to mention
that amount of total defects found was approximately the same for both current and the
proposed method.

 29

7 EVALUATION OF THE METHOD

This chapter covers the evaluation of the method that has been proposed in the

thesis. It starts with a small discussion about how the method is to introduce to the
existing data and documentation at UIQ Technology. Further, results of the methods
are compared and evaluated.

7.1.1 How was it to introduce

Introducing the method was, at least for us doing it the first time, rather extensive

work. There was a lot of data that needed to be collected, sorted and filtered before it
could be used by the method and this took quite a bit of time. We do however feel that
large parts of this work can fully, or partially, be automated for future, therefore
leading to less effort for same result. In discussions with Kennet Henningsson, we
agreed that only parts that can not be automated with ease are the impact of a function
and frequency of use values. Those values can however, be assigned by people writing
the tests. These persons will mostly have a good overview over the part of the system
they are writing test-cases for and should therefore be able to prioritize those values
with good accuracy. This part of the method can however be done in numerous ways.
To ensure quality of prioritization the company can let several different teams do the
prioritization is one example of an approach for this.

7.2 Comparison of the methods

In this section, we will compare the results we got from collecting and executing

the data from the selected project. Our intention is to give a good overview over the
gains and losses of our proposed method if it would be used by UIQ technology.

7.2.1 Comparison

As we previously wrote in the report, both methods did find about the same

number of defects in the system when executing a certain amount of test-cases. The
proposed method however, found only high-priority test-cases while current method
applied by the company had a wider spread amongst high-, medium- and low-priority
test-cases.. This “trend” will continue with our method as long as there are high
prioritized test-cases to execute due to the fact our method always executes high
prioritized test-cases first. Comparing those two methods from this point-of-view it is
clear that our proposed method has an advantage since it will find critical defects first
e.g. defects that will badly hurt the system if not removed. We do admit that even
current company method might do that, but that is based on circumstances and is not
really to be trusted at. We feel that having a guarantee to find critical errors first is
worth a lot for the company.

As testing process continues, the methods will differ after certain amount of time.

We wrote previously that out method executes 100% of high-prioritized test-cases,
50% of medium prioritized and 25% of low prioritized test-cases. This leads to the fact
that not all test-cases will be executed in one test-run. The company will still be able to
say that the system is “good enough” since test-cases that are not executed will not
cause any critical errors. To illustrate this further following diagram is drawn:

 30

Diagram 1: Execution of test-cases over time

Execution of test-cases

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

Week

Am
ou

nt
 o

f t
es

ts
 e

xe
cu

te
d

Executions current method
Executions proposed method

In this case, we assume that company executes 300 test-cases per week. As you

can see, both methods will follow the same pattern until week 8. By this point, our
method will have executed all test-cases that are necessary in order to guarantee good
coverage while the current method used by the company will continue testing. We do
also feel that another very important advantage of our method is that the company will
get a definite point in time when to stop testing. As we previously mentioned testing in
its current form is done in an unstructured way. With our method, this is not necessary
and company will at all times know when to stop testing. In addition, as we previously
mentioned the proposed method will decrease amount of executed test-cases with 22%
without sacrificing the quality.

7.2.2 Deviations

As we previously mentioned we had to make some adjustments and tradeoffs

while collecting and examining the data from the selected project.

The first adjustment of data that we described was found while making the batches

for our method. In the FS-Trace we used for collecting the data there were some
functions with a very strange tag. An entire batch that held 24 test-cases was not
usable due to notation errors. All the tags ended with a “??” thus making them either
uncompleted or simply malicious. We brought this up in a discussion with Kennet
Henningsson and we agreed that we would simply mark all batches looking like this
and remove them from further data analysis.

Next big trade-off we had to make while executing our method was the exclusion
of non FS-Trace coupled test-cases. As you have been able to read in previous chapters
we had a quite large amount of test-cases not being connected to the FS-Trace. Test-
cases that were not coupled were either UI-specification test-cases or they were not
included in the FS-Trace. After discussions with Kennet we decided to remove those

 31

cases from the thesis. The main reason for this was that when executing our own
method we will only be using FS-Trace. Therefore no test-cases based on e.g. UI-
specification will be included. To keep data in consistent state we decided to only use
FS-Trace coupled test-cases and we also agreed, together with Kennet, that values we
get can most probably be mathematically transferred to the non-coupled cases later.

The last deviation, we think should be mentioned; origins from execution of our

own proposed method. As we have described before our method selects highest
prioritized batches and executes those first. We soon however discovered that most of
the highest prioritized batches where not executed at all by UIQ. Amongst batches
there where not executed by UIQ we found batches for making a phone call or playing
a sound signal on incoming call. This was quickly taken to Kennet and we got a fairly
obvious explanation. Those methods where not executed by UIQ test-department
simply because they where executed at other location together with their customers at
the customer site. This situation did not however cause any major changes. Since we
had a large amount of batches prioritized as highest we simply moved on and picked
next batch “in line” to be tested.

 32

8 VALIDITY OF THE THESIS

We found few validity threats during this research that might have a negative effect

on this thesis. In this chapter we will describe those and also describe what we feel can
be done to overcome those threats.

During the prioritization phase we used our own experience with mobile phones to

set the priorities. This can be validity threat since we have a certain view on mobile-
phone usage. To negate personal experience the company can use broader selection of
focus group. The focus group in itself can contain testing engineers and real users to
spread out the prioritization values. Using both engineers and end-users, should
remove extreme values such as, over prioritizing a certain function. We discussed this
issue with Kennet before even conducting the prioritization and we agreed that using
focus groups or different point of views might solve this problem and provide a more
accurate prioritization.

In order to have a reasonable amount of test-cases to compare, we had to use

sampling. This is a big validity threat because; defect density can be different outside
the chosen sample. Given the time for this master thesis there was no time to do
anything else but sampling. So in order to overcome this validity threat the company
should execute the method on full test-suite. This only needs to be done once however
to ensure that the method is valid for a full test-suite.

As we wrote earlier in the report we had to remove test-cases from the experiment

due to them not being coupled to the FS-Trace. We discussed this issue with Kennet
and this action was approved. We do however feel that this is a validity threat to not
include test-cases that are e.g. in UI-Specification. To overcome this validity threat
there is a need to execute our method on all test-cases, not only those coupled to the
FS-Trace. There was also certain amount of test-cases that were badly documented.
Those test-cases were also removed from the experiment. To overcome this, the
documentation should be controlled in a better way to ensure that all test-cases are
properly documented and can be used by the method. We do realise that this might be
a lot of work for UIQ but since our proposed method is highly dependant on
traceability, they would need to improve in some areas of documentation.

Another threat to the validity of this thesis is that all this work is conducted on

only one system/project. We used this project because it was by far the best
documented project UIQ could provide to us. This project was also described, by our
company contact, as representative for how UIQ are conducting their work at the
moment. To overcome this threat the method should be executed on few other systems
with approximately the same output. UIQ is adopting a new way of documentation,
specially the FS-Trace part. This should lead to the fact that they will get more systems
later on to execute our method on and test if it is performing well independent of the
system we executed it on.

Finally we would like to write that we feel that this thesis is valid if it is seen in a

proper way. This thesis should be used as a step in the right direction by the UIQ. It
merely shows what can be done with a fairly simple approach but it does need more
research and tailoring before it can be used.

 33

9 CONCLUSION

The goal of this thesis was to find a suitable test-case selection method for UIQ.

The prerequisites of the method were that the method should be easy to incorporate
and use in an already existent development process. It was also highly sought after that
the method was close to fully automatable. The following questions were used as
guidance for finding a suitable method.

1. Is there a process that could be suited to fit UIQ’s regression testing?
a. What amount of test-cases that should be rerun would this process

result in compared to the amount of test cases rerun today?
b. How will the final quality of the product be, compared to the quality

of the product as it is today?

2. Is there any way to do initial test-case selection so it decreases number of test-
cases run while maintaining same quality?

a. How would this work practically?
b. Is this method feasible to use for a company like UIQ?
c. What are the advantages and disadvantages of such process?

Besides the questions, consultation with Kennet Henningsson was done on weekly
basis during the initial weeks, to get feedback on what is feasible to use and to
incorporate.

The results in chapter 7.2 show that even though our method only executes about

78% of the initial amount of test-cases it still manages to find same amount of defects
in the system as current testing method thus maintaining at least same quality as
current testing process. We do realize that it will not find all low prioritized defects,
which can be seen as a disadvantage, but we will find all high prioritized defects first
in the testing process. Together with Kennet we agreed that this is a fair tradeoff to do.
We do also want to mention once more, that with our proposed method UIQ will get a
way to decide when to stop testing, which is a big advantage. We feel that the
questions we asked in the beginning of this thesis were answered by our research.

Finally we would like to write that we do not feel that we have finished this

method in any way. It still need more researching and work before it is fully
applicable.

 34

10 FUTURE WORK

Future work with this thesis is needed to further improve but also prove usefulness

of the proposed method for test-case selection. Few of the propositions we have for
further work are:

1. Executing the method on an entire project in order to ensure its validity when

it is used on whole project instead sampling.
2. It would be interesting to execute the method on more than one project to

ensure that it performs in a good way unbound of the project it is applied on.
3. Researching the idea this thesis presented about regression testing and find out

if it works well the way it is proposed here.
4. Automating as much as possible of the method, so that real time and resource

usage can be measured.

 35

ACKNOWLEDGEMENTS

The authors would like to thank UIQ for providing necessary material for

conducting this master thesis. We would like to thank Karin Petermann at Human
Resources at UIQ for being initial contact with UIQ and arranging for us to conduct
this thesis and we would also like to thank our advisors Kennet Henningsson (UIQ)
and Håkan Grahn (BTH) for the help and support they provided during this thesis.

 36

11 REFERENCES

[1] M. Hirayama, T Yamamoto, J. Okayasu, O. Mizuno and T. Kikuno, A

Selective Software Testing Method Based on Priorities Assigned to Functional
Modules, IEEE, 2001, 259-267

[2] M. Hirayama, T Yamamoto, J. Okayasu, O. Mizuno and T. Kikuno,
Elimination of Crucial Faults by a New Selective Testing Method, Proc. Of
the 2002 Int. Symposium on Empirical Software Engineering, 2002, 1-9

[3] G. Rothermel and M. J. Harrold, Analyzing Regression Test Selection
Techniques, IEEE Transactions on Software Engineering, 22 (1996), 529-551

[4] Y. Chen, R.L. Probert and D. P. Sims, Specification-based Regression Test
Selection with Risk Analysis, Chillarege Press, 2003, 1-14

[5] S. Elbaum, A. G. Malishesky and G. Rothermel, Test Case Prioritization: A
Family of Empirical Studies, IEEE Transactions on Software Engineering, 28
(2002), 159-182

[6] S. Elbaum, A. G. Malishesky and G. Rothermel, Incorporating Varying Test
Costs and Fault Severities into Test Case Prioritization, IEEE, 2001, 329-338

[7] M. Hirayama, T Yamamoto, J. Okayasu, O. Mizuno and T. Kikuno,
Generating Test Items for Checking Illegal Behaviors in Software Testing,
IEEE, 2000, 235-240

[8] W.E. Wong, J.R. Horgan, S. London and A.P. Mathur, Effect of Test Set
Minimization on Fault Detection Effectiveness, Software – Practice and
Experience, John Wiley & Sons, 28 (1998), 347-369

[9] P. Tomaszewski, J. Håkansson, H.Gråhn and L. Lundberg. Statistical Models
vs. Expert Estimations for Fault Prediction in Modified Code – an Industrial
Case Study, 213-239

[10] Y-F. Chen, D. Rosenblum and K-P. Vo, TestTube: A System for Selective
Regression Testing, IEEE, 1994, 211-220

[11] J. Laski and W. Szermer, Identification of Program Modification and its
Application in Software Maintenance, IEEE, 1992, 282-290

[12] I. Granja and M. Jino, Techniques for Regression Testing: Selecting test Case
Sets Tailored to Possibly Modified Functionalities, Pontifical Catholic Uni.
Of Campinas

[13] D. Binkley, The application of program slicing to regression testing, Elsevier
Science, 1998, 583-594

[14] H. Agrawal, J.R. Horgan, E.W. Krauser and S.A. London, Incremental
Regression Testing, IEEE, 1993, 348-357

[15] R-K. Doong and P.G. Frankl, Case Studies on Testing Object Oriented
Programs, ACM, 1991, 165-177

[16] T.H. Tse, F.T. Chan, H.Y. Chen, An Axiom-Based test Case Selection
Strategy for Object-Oriented Programs, 107-114

[17] Y.T. Yu, S.P. Ng and E.Y.K Chan, Generating, Selecting and Prioritizing
Test Cases from Specification with Tool Support, Proceedings of the Thirds
Int. Conf. On Quality Software, 2003,

[18] M. Clermont and D. Parnas, Using Information about Functions in Selecting
Test Cases, ACM, 2005

[19] B. Beizer, Black-box testing: techniques for functional testing of software and
systems, John Wiley & Sons, NY, 1995

[20] K.Y Cai, Software defect and operational profile modelling, Kluwer
Academic Publishers, 1998

[21] D.M. Cohen, S.R. Dalal, J. Parelius and G.C. Patton, The combinatorial
design approach to automatic test generation, IEEE Sofwater, 26 (1996), 83-
88

 37

[22] P.D. Coward, A review of software testing, Information and Software
Technology, 30 (1988) 189-198

[23] Y.K. Malaiya, Antirandom testing: Generating the most out of black-box
testing, In Proc. 6th International Symposium on software Realibility
Engineering, 1995, 86-95

[24] I. Sommerville, Software Engineering, 4th edition, Addison-Wesley, MA,
1992

[25] S. Bates and S. Horwitch, Incremental Program Testing Using Program
Dependence Graphs, Proc. 20th ACM Symp. Principles of Programming
Langugages, 1993, 384-396

[26] P. Bendusi, A. Cimitile and U. De Carlini, Post-Maintanance Testing Based
on Patch Change Analysis, Proc. Conf. Software Maintanance, 1988, 352-
361

[27] D. Binkley, Reducing the cost of Regression Testing by Semantics Guided
Test Case Selection, Proc. Conf. Software Maintenance, 1995, 251-260

[28] K.F Fischer, A Test Case Selection Method for the Validation of Software
Maintenance Modifications, Proc. COMPSAC, 1977, 421-426

[29] K.F. Fischer, F. Raji and A. Chruscicki, A Methdodology for Retesting
Modified Software, Proc. Nat’l Telecommunication Conf., 1981, 1-6

[30] R. Gupta, M.J. Harrold and M.L. Soffa, An Approach to Regression Testing
Using Slicing, Proc. Conf. Software Maintanance, 1992, 299-308

[31] H.K.N. Leung and L.J. White, Insights into Testing and Regression testing
Global Variables, Software Maintanance, 2 (1990), 209-222

[32] H.K.N. Leung and L.J. White, A Study of Integration Testing and Software
Regression at the Integration Level, Proc. Conf. Software Maintanance, 1990,
290-300

[33] M.J. Harrold, J.A. Jones, T. Li and D. Liant, Regression Test Selection for
Java Software, Proceedings of the ACM Conf. on OO Programming, 2001

[34] R.W. Miller, C.T. Collins, Acceptance Testing, XPUniverse, Juli 2001

[35] White, L.J. Narayanswamy, V. Friedman, T. Kirschenbaum, M.

Piwowarski,P.Oha,M. Test Manager: A regression-testing tool, Dept. of
Comput. Eng. & Sci., Case Western Reserve Univ., Cleveland, OH,1993

 38

12 APPENDIX A

Summary of software regression test-case selection methods [3]

 39

	Evolving test-case selection at a large scale company
	Abstract
	Contents
	1 Introduction
	1.1 Aims and objectives
	1.2 Research questions
	1.3 Methodology
	1.3.1 Qualitative study
	1.3.2 Quantitative study

	1.4 Overview

	2 Company information
	2.1 UIQ Technology
	2.2 Testing at UIQ Technology
	2.2.1 Abstraction level of the thesis in respect to testing

	2.3 Motivation
	2.4 UIQ Technology specific
	2.4.1 Initial testing
	2.4.2 FS-Trace
	2.4.3 Standpoints

	3 Testing Methods
	3.1 Introduction
	3.2 Selective testing
	3.3 Initial selective testing
	3.3.1 Different methods for selective testing
	3.3.1.1 Axiom-Based test case selection strategy
	3.3.1.2 Annotated classification trees

	3.4 Regression Testing
	3.4.1 Introduction
	3.4.2 Different methods for selective regression testing
	3.4.2.1 Slicing method
	3.4.2.2 Firewall method

	3.5 Summary of testing methods
	3.6 Test selection methods chosen as a base for the solution proposal
	3.7 Selective method for initial testing
	3.8 Selective method for regression testing

	4 Current method for testing at the company
	4.1 Concerns with current method
	4.2 Analysis of the current method

	5 Solution Proposal
	5.1 Introduction of the proposal
	5.2 Main method for solution proposal
	5.3 Customization
	5.3.1 Customization of metrics
	5.3.2 Customization of regression test-selection method

	6 Implementation of our method
	6.1 Introduction of the system
	6.2 Step by step
	6.3 Creating of batches
	6.4 Prioritization
	6.5 Test results with current method at the company
	6.6 Test results with proposed method

	7 Evaluation of the method
	7.1.1 How was it to introduce
	7.2 Comparison of the methods
	7.2.1 Comparison
	7.2.2 Deviations

	8 Validity of the thesis
	9 Conclusion
	10 Future Work
	Acknowledgements
	11 References
	12 Appendix A

