Nytt koncept för linspridning

Gustaf Almgren
Christopher Fogelqvist
Anders Tjädermark

Institutionen för Maskinteknik
Blekinge Tekniska Högskola
Karlskrona
2000-2001
Förord

Projektet har genomförts i samarbete med Abu Garcia, Svängsta, vilka producerar multiplikatorrullar.

Vi vill tacka Abu Garcia, då främst vår handledare, CI. Thomas Holma samt personalen i experimentverkstaden som hjälpt till med prototypframtagningen.

Ett stort tack till vår handledare, Tekn. Dr Mats Walter, Prefekt vid Institutionen för Maskinteknik på Blekinge Tekniska Högskola. Vi vill också tacka, Univ. adjunkt Jan-Anders Månsson för all hjälp under konstruktionsfasen.

Karlskrona 2001-05-18

Gustaf Almgren Christopher Fogelqvist Anders Tjädermark
Summary

The degree project, New concept for spreading line, consists of further development of a baitcasting reel. The baitcasting reel that was used as a starting-point was Ambassadeur Classic 5000c, which is a former product. Abu Garcia is the company that initiated the project.

The purpose consisted of designing a baitcasting reel, which could provide free casts. At today’s baitcasting reel is the line forced to pass through the mechanism that spreads the line. This causes the line to follow the motion from the spreader-mechanism, during the cast. Because of this fact there will be a great deal of friction, which results in a shorter cast. If the spreader-mechanism would not be in contact with the fishing-line during the cast, it would provide a longer cast. It is important that the spreader-mechanism spreads the line at once when the user starts winding it up. If not, the line will create disorder on the spool, which may prevent the next cast.

Integrated Product Development created by Professor Fredy Olsson, consists of a concept, a primary and a prototype design phase and has been used through the project. Twelve different principal suggestions due to the problem were produced in the concept design phase. These suggestions were further developed and evaluated. Two suggestions were brought into the primary design phase, which resulted in one finally product solution.

There were two different solutions in the beginning of the primary design phase. One solution was based on an endless screw, which makes it possible to spread the line on the spool. Abu Garcia has investigated this matter according to the complex geometry of the endless screw. Therefore has no further development of this proposal been performed.

During the primary concept phase parts were developed, components selected and also detail constructions of new parts were performed. The finally concept were produced with facilities like I-DEAS, which is a 3D-tool.

The prototype design phase consist of manufacturing the parts and to make them fit together with the other parts and components. A test of the final product should also have been done, however a lack of time has prevented this.
Sammanfattning

Projektet, Nytt koncept för linspridning, vilket tillhandahölls av Abu Garcia, bestod i att vidareutveckla multiplikatorrullen, Ambassadeur Classic 5000c.

Med hjälp av Fredy Olssons metod för produktutveckling, har 12 stycken principförslag utarbetats. Efter viktning av förslagen mot de uppställda kriterierna för konstruktionen, beslutades att två förslag skulle föras vidare till primärkonstruktionsfasen.

I början av primärkonstruktionen gjordes bedömningen att avsluta vidareutvecklingen av det ena förslaget, på grund av evighetsskruvens komplexa geometri. Ytterligare en orsak till beslutet var att Abu själv undersökt möjligheten att låta linan spridas direkt av evighetsskruven, vilket dessvärre skett utan framgång.

Under primärkonstruktionen utvecklades de delar och detaljer som skulle bilda den slutgiltiga konstruktionen. De flesta delarna detaljkonstruerades då de inte fanns att beställa som färdiga komponenter. För att framställa de olika detaljerna har 3D-verktyget I-DEAS använts.

Prototypfasen består av tillverkning av detaljer som har konstruerats samt att beställa komponenter. Vid utprovningen säkerställs produktens funktionssätt, men tidsbrist har förhindrat utförandet av denna fas.
DEL I PRINCIPKONSTRUKTION

1. Företagspresentation ... 1
 1.1 Historisk tillbakablick ... 1
 1.2 Senare delen av 90-talet och framåt 2

2. Uppgiftsformulering ... 3

3. Produktdefinition ... 4
 3.1 Beskrivning av ingående komponenter 5

4. Produktundersökning .. 8
 4.1 Konstruktionsbakgrund .. 9
 4.2 Konkurrentanalys ... 9

5. Kriterier .. 12
 5.1 Skallkriterier (K) ... 12
 5.2 Börkriterier (Ö) ... 14
 5.3 Kriterieområden .. 15
 5.4 Kriterieviktning ... 16

6. Framtagning av produktförslag ... 18
 6.1 Principiella lösningsförslag .. 18
 6.1.1 Saxen ... 18
 6.1.2 Fällan ... 19
 6.1.3 V-spridaren ... 20
 6.1.4 Haspelspole ... 21
 6.1.5 Fjäderfällan ... 22
 6.1.6 Glidarmar ... 23
 6.1.7 Evighetsskruv med Bygel 24
 6.1.8 Evighetsskruv med Skyddshölje 25
 6.1.9 Rörlig Evighetsskruv .. 26
 6.1.10 Enkel Linspridare .. 27
 6.1.11 Öppen Linspridare .. 28
 6.1.12 Rörliga Linspridarmar 29

7. Utvärdering av produktförslag .. 30
 7.1 Primär utvärdering .. 30
 7.1.1 Kommentar till primär utvärdering 31
7.2 Mellanliggande utvärdering ... 32
 7.2.1 Kommentar till mellanliggande utvärdering 33

8. Vidareutveckling .. 35
 8.1 Saxen ... 35
 8.2 Evighetsskruv med Bygel ... 35
 8.3 Enkel Linspridare ... 36
 8.4 Rörliga Linspridarmar .. 37

9. Slutlig utvärdering samt valda produktförslag 38
 9.1 Evighetsskruv med Bygel ... 38
 9.1.1 Produktutkast ... 39
 9.2 Enkel Linspridare ... 40
 9.2.1 Produktutkast ... 41

DEL 2 PRIMÄRKONSTRUKTION

10. Produktutkast & funktionsbeskrivning ... 45
 10.1 Evighetsskruv med Bygel ... 45
 10.2 Enkel Linspridare ... 46
 10.3 Primärkonstruktion–Ett produktförslag 47

11. Enheter och ingående komponenter ... 48

12. Komponentval ... 50
 12.1 Komponentval–Standard rutin ... 50
 12.2 Komponentval–Standard special ... 53

13. Detaljkonstruktion ... 57
 13.1 Detaljkonstruktion–Bygel .. 58
 13.1.1 Lösningssökning .. 58
 13.1.2 Lösningsbedömning och lösningsutarbeitning 59
 13.1.3 Materialval ... 60
 13.2 Detaljkonstruktion–Hissknapp .. 61
 13.2.1 Lösningsutarbeitning .. 61
 13.2.2 Materialval ... 62
 13.3 Detaljkonstruktion–Fjäderbleck .. 63
 13.3.1 Lösningsutarbeitning .. 63
13.16 Detaljkonstruktion–Stopphatt ... 87
13.16.1 Lösningsbedömning och utarbetning ... 87
13.16.2 Materialval .. 88

13.17 Detaljkonstruktion–Fjäderdistans ... 89
13.17.1 Lösningsutarbetning .. 89
13.17.2 Materialval .. 89

13.18 Detaljkonstruktion–Yttergavel, höger .. 90
13.18.1 Lösningsutarbetning .. 90
13.18.2 Materialval .. 91

13.19 Detaljkonstruktion–Yttergavel, vänster .. 92
13.19.1 Lösningsutarbetning .. 92
13.19.2 Materialval .. 93

13.20 Detaljkonstruktion–Styrskena, höger ... 94
13.20.1 Lösningsutarbetning .. 94
13.20.2 Materialval .. 95

13.21 Detaljkonstruktion–Styrskena, vänster .. 96
13.21.1 Lösningsutarbetning .. 96
13.21.2 Materialval .. 97

13.22 Detaljkonstruktion–Linförare .. 98
13.22.1 Lösningsutarbetning .. 98
13.22.2 Materialval .. 99

13.23 Detaljkonstruktion–Knivbult ... 100
13.23.1 Lösningsutarbetning .. 100
13.23.2 Materialval .. 101

13.24 Detaljkonstruktion–Tråd för linförare ... 102
13.24.1 Lösningsutarbetning .. 102
13.24.2 Materialval .. 103

14. Produktsammanställning ... 104

14.1 Ingående moduler ... 105
14.1.1 Vevpaket, modul (1) ... 105
14.1.2 Kåpa, höger (2) ... 105
14.1.3 Kopplingsplatta, modul (3) .. 106
14.1.4 Stativ, modul (4) .. 107
14.1.5 Spole, modul (5) .. 108
14.1.6 Kåpa, vänster (6) ... 109
14.1.7 Bygel, modul (7) .. 109

14.2 Slutlig produkt .. 110

15. Kriterieuppfyllelse ... 111
15.1 Kriterieuppfyllelse Skallkriterier... 111
15.2 Kriterieuppfyllelse Börkriterier.. 114

16. Referenser... 116
 16.1 Litteratur.. 116
 16.2 Internet... 117
 16.3 Kontaktpersoner / Företag... 118
 16.4 Programvara... 119

BILAGA 1 RITNINGAR.. 121
DEL 1

PRINCIPIKONSTRUKTION
1. Företagspresentation

1.1 Historisk tillbakablick

1984 köpte Abu upp sin amerikanska distributör Garcia Corp, som hade gått i konkurs och bildade företaget Abu Garcia. Detta var ett taktiskt drag då Abu:s produkter såldes under namnet Garcia, i USA. Under den senare delen av 80-talet förstärkte Abu Garcia sina produktionsanläggningar. Produktutvecklingens resurser ökade i form av CAD/CAM system, vilket även det ledde till minskade ledtider. Produktionskapaciteten 1985 höjdes till följd av produktions-
förbättringarna från 600 000 till 750 000 stycken Ambassadeurrullar.

År 1993 uppgick koncernens försäljning till 558 miljoner svenska kronor, varav försäljningen av fiskerullar stod för 70 %. 1994 introducerades Abu Garcia på Stockholms Fondbörs. [3]

1.2 Senare delen av 90-talet och framåt

År 1998 lanserades Ambassadeur Mörrum, Big Game och Classic Elite. Även Cardinal 50-serien lanserades.

1999 ändrade koncernen namn till Purefishing, och i Svängsta kom företaget att heta Purefishing-Sweden-Abu Garcia. [3]

År 2000 varslade företaget ungefär 100 anställda, detta på grund av att det saknades sysselsättning för alla. Anledningen till varslen är delvis att fiskeintresset har avtagit. En annan stor anledning kan vara, att i högkonjunktur, har folk mycket att göra vilket medför att de inte har tid att fiska. De konkurrerande företagen har dock drabbats hårdare av den kollektiva nedgången inom sportfiskeindustrin.

Under år 2001 kommer en ny multiplikatorrulle att lanseras, som heter EON. Revolutionerande med den nya rullen är planetväxeln som ger förbättrade egenskaper. Rullen är tillverkad i plasten, Duralit, vilket ger en lättare fiskerulle. Multiplikatorrullen är inte tillverkad i metall men har ändå hög tålighet och är rostfri. [19]
2. Uppgiftsformulering

Figur 1. Multiplikatorrulle av typen Ambassadeur 5000c.

Vid utkast uppstår det friktion mellan fiskelinan och linspridaren (kap 3.1C). Effekten av friktionen är särskilt märkbar då linspridaren är i ena ytterläget och linan på spolen (kap 3.1D) är i det andra ytterläget. En annan friktionskomponent är den som uppstår mellan linspridarmekanismen och evighetsskruven (kap 3.1B). Eftersom spolen är kopplad till evighetsskruven hämmar detta utkastets längd.

Optimalt skulle vara att linan vid utkastning löper fritt och inte påverkas av friktionen som linspridaren i vanliga fall ger upphov till. Vid invevning måste linan spridas systematiskt på spolen för att få en jämn linfördelning.

Uppgiftsformuleringen består i att vidareutveckla linspridarmekanismen som finns på Ambassadeur Classic, så att längre kast erhålls med samma erforderliga kraft. Viktigt är att fiskerullens egenskaper inte försämras, vilket även gäller för upplindning av linan då den måste struktureras för att ge minsta möjliga friktion vid nästkommande utkast. Utrymmesmässigt får inte rullen bli påtagligt större.
3. Produktdefinition

I detta kapitel kommer multiplikatorrullen att definieras enligt PPOME, för att kartlägga dess påverkan inom områdena Produkt, Process, Omgivning, Människa och Ekonomi. [1]

Under utkastet skall linan inte påverkas av linspridaren, för att kunna minska friktionen och erhålla längre kast. Mekanismen som styr linspridningen måste vara verksam under invevning av linan, för att kunna ge en strukturering av linan på rullen.

![Diagram of processes](image_url)

Figur 2. Ingående huvudprocesser.

Kunden som tänker köpa de omkonstruerade rullen skall inte få chansen att misstro konstruktionen vid inköp. Det vill säga att den ser komplicerad ut, och av den anledningen väljer en annan fiskerulle.

Vad gäller de ekonomiska aspekterna på nykonstruktionen så bör det vara rimliga kostnader i förhållande till de förbättrade egenskaperna.

3.1 Beskrivning av ingående komponenter

I detta avsnitt kommer en multiplikatorrulles ingående komponenter att beskrivas. Främst med avseende på de komponenter och termer som vidare kommer att användas i rapporten.

![Figur 3. Helhetsbild av multiplikatorrullen.](image)

Figur 3. Helhetsbild av multiplikatorrullen.
A Gavel med frikoppling

B Evighetsskruven

Evighetsskruvens dubbelriktade gängning möjliggör linspridarmekanismens ändlösa rörelse. Till höger på evighetsskruven sitter ett kugghjul vilket drives av spolens rotation. Spolens roterande rörelse genereras av veven.
C Linspridaren och sprint

Linspridarpaketet som visas i figur 6. består av ett hölje (1), en bygel (2) som fiskelinan löper igenom och en sprint (3) vilken löper i evighetsskruven. Det finns vissa fiskerullar där linspridaren frikopplas helt. Frikoppling av linspridaren sker med hjälp av att sprinten dras ur evighetsskruven och linspridaren kan röra sig fritt.

D Spolen

Figur 7. Spolen.

Spolen har till uppgift att samla upp fiskelinan. Vid vänstra sidan av spolen sitter hakar (1) som kopplas ur vid frikoppling av spolen. De två hakarna sitter innanför de vita tapparna, och frigörs ifrån det lilla kugghjulet i gavelmekanismen (A-3).
4. Produktundersökning

Informationssökning har utförts via bibliotek, Internet och patentdatabaser. Dessvärre har granskningarna inte resulterat i någon avsevärd hjälp, för framtagning av produktförslag. [4] [15] [16] [17] [18] [26] [27]

Kontakter har även tagits med Mölnlycke, som tillverkar textilprodukter. Problemet med evighetsskruven förklarades men detta gav ingen konkret information. [23]

Möjliheten att kunna lösa problemet med endast en evighetsskruv som positionerar lina, kommer vidare att undersökas.
4.1 Konstruktionsbakgrund

Abu:s första ambassadeurrulle hade i princip samma linspridarfunktion som finns på dagens multiplikatorullar. Det vill säga en evighetsskruv som driver linspridaren.

De har under åren konstruerat rullar utan linspridarmekanism. Detta för att slippa friktionen vid utkast, men nackdelen är att lina måste spridas för hand över spolen under invevningen.

Fiskerullen Classic 5000c, som den är i dagsläget, är en mycket funktionssäker multiplikatorrulle och den är användarvänlig. Linan sprids jämt över spolen och börjar dessutom spridas direkt vid invevning. Det uppstår då aldrig några frivarv, innan linan börjar spridas.

4.2 Konkurrentanalys

Syftet med konkurrentanalysen är att studera hur konkurrenterna har löst problemet med linspridaren. Om det finns några revolutionerande konstruktioner på linspridaren, som gör att friktionen minskar vid utkast. Det är också generellt intressant, att se hur konkurrenternas multiplikatorrullar har utformats.

Daiwa är ett företag som tillverkar multiplikatorrullar, spinnrullar, fiskelina, beten och andra fisketillbehör. Företaget är representerat i Japan, Taiwan, USA, Storbritannien och många andra länder. Deras multiplikatorrullar är i stort sett lika vad gäller linspridarfunktionen. Principen är att en linspridare löper på en evighetsskruv och fördelar linan. Vid utkast löper linan från spolen genom linspridaren, som på de flesta andra multiplikatorrullar.
Daiwa har också ett antal multiplikatorrullar som har utformats utan linspridare. Tester har utförts där jämförelser gjorts på fiskerullar med eller utan linspridare. Resultatet visar tydligt att fiskerullar utan linspridare ger längre kast. [12]

Figur 8. Multiplikatorrulle tillverkad av Daiwa, utan linspridare.

Figur 9. CHROMICA 200A, Shimano.

Då Daiwa och Shimano är två av de största tillverkarna av multiplikatorrullar, har deras produkter studerats mer ingående. Generellt har både Daiwa och Shimano en väldigt tilltalande design, men de har inte utvecklat några revolutionerande lösningar på linspridarmekanismens utförande. Det finns dock rullar utan linspridare, med tillhörande fördelar och nackdelar. [12] [13]

Skulle det vara möjligt att konstruera en linspridarfunktion som är ifrånkopplad under utkast och som sprider linan direkt vid påbörjad invevning skulle detta ge stora konkurrensfördelar. Under den senare halvan av 1900-talet har inga nämnvärda framsteg gjorts inom utvecklingen av linspridaren. Finns det en alternativ lösning till utförandet som skulle kunna uppfylla önskemål, skulle detta kunna resultera i en revolutionerande produkt.
5. **Kriterier**

5.1 Skallkriterier (K)

- **Skall medföra minimalt motstånd vid utkast.**

 Vid utkastet är det primära målet att linan skall löpa ut från rullen med mindre friktion än Classic 5000c.

- **Skall sprida linan jämnt.**

 När linan skall vevas in, efter utkast, är det viktigt att linan sprids med jämn fördelning. Detta för att minska friktion och slitage på linan vid nästkommande utkast.

- **Skall klara korrosiv miljö.**

 Då multiplikatorrullen kommer att användas i saltvattenmiljö är det viktigt att material väljs med hänsyn till den rådande omgivning.

- **Linan skall spridas direkt vid invevning.**

 Det är viktigt att linan börjar sprids direkt vid invevning annars kan lintrassel uppstå.
Skall vara utrymmesmässigt likvärdig.

Produkten som skall vidareutvecklas är av typen Ambassadeur Classic. Nykonstruktionen skall inte skilja sig storleksmässigt från denna modell.

Skall inte påverka andra funktioner negativt.

Funktioner såsom slirbroms, mekanisk broms med mera får inte påverkas negativt.

Skall vara tyst.

Detta krav innebär att den nyutvecklade fiskerullen inte skall låta mer eller avge mer missljud vid användning, jämfört med Classic 5000c.

Skall vara funktionssäker.

Skall vara tillverkningsriktig.

Konstruktionen skall ej, i den mån det går, tillföra merarbete vid tillverkning och montering.

Skall vara robust.

Nykonstruktionen skall vara robust för att tåla stötar och slag.
Skall vara lätt att använda.

Rullen skall vara enkel för användaren att bruka. Det skall inte finnas onödigt komplicerade funktioner som gör rullen svåранterlig.

5.2 Börkriterier (Ö)

Bör vara estetiskt tilltalande.

Rullen bör tilltala kundens estetiska sinnen.

Bör vara ergonomiskt riktig.

Bör ej tillföra viktökning.

Bör vara billig.

Konstruktionen bör ha så få ingående komponenter som möjligt, samt att de skall vara så billiga som möjligt.

Bör vara miljövänlig.

Materialet i rullens ingående komponenter bör vara miljövänligt. Detta för att kunna bidra till ett ekologiskt hållbart samhälle.

Bör vara underhållsfri.

Rullen bör efter inköp kräva så lite underhåll som möjligt, i form av exempelvis smörjning.
5.3 Kriterieområden

För att få med kriterier gällande hela produktens livstid har kriterierna delats in i fyra perioder, alstring, framställning, brukning och eliminering. Kriterierna är även indelade enligt PPOME (Produkt, Process, Omgivning, Människa och Ekonomi). Detta för att säkerställa att kriterieuppställningen täcker all de områden som produkten kommer i kontakt med under sin livstid. [1]

<table>
<thead>
<tr>
<th>Kriterier</th>
<th>Period</th>
<th>Produkt</th>
<th>Process</th>
<th>Omgivning</th>
<th>Människa</th>
<th>Ekonomi</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vara utrymmesmässigt likvärdig</td>
<td>Alstring</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Minimalt motstånd</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Sprida linan jämt</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Linan sprids direkt vid inlevning</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Inte påverka andra funktioner negativt</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Klara korrosiv miljö</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Vara tyst</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Vara funktionssäker</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Vara tillverkningsriktig</td>
<td>Alstring</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Vara robust</td>
<td>Alstring</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Vara lätt att använda</td>
<td>Brukning</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Ej tillföra viktökning</td>
<td>Alstring</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>Ö</td>
</tr>
<tr>
<td>Estetiskt tilltalande</td>
<td>Alstring</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>Ö</td>
</tr>
</tbody>
</table>
5.4 Kriterieviktning

Önskemålen som ställts på nykonstruktionen skall viktas mot varandra, beroende på att de är olika viktiga för produktens funktion. Exempelvis om ett önskemål anses vara viktigare än ett annat, skall det erhålla en högre viktningsfaktor, k_i, som används för senare bedömnings av produktförslagen. [1]

<table>
<thead>
<tr>
<th>Tabell 2. Viktning av börkriterier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skala</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabell 1. Kriterierna i förhållande till livscykeln framtagna med PPOME -metoden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varav ergonomiskt riktig</td>
</tr>
<tr>
<td>Varav billig</td>
</tr>
<tr>
<td>Varav underhållsfri</td>
</tr>
<tr>
<td>Varav miljövänlig</td>
</tr>
</tbody>
</table>

5.4 Kriterieviktning

Önskemålen som ställts på nykonstruktionen skall viktas mot varandra, beroende på att de är olika viktiga för produktens funktion. Exempelvis om ett önskemål anses vara viktigare än ett annat, skall det erhålla en högre viktningsfaktor, k_i, som används för senare bedömnings av produktförslagen. [1]
Kriterieviktningen, enligt tabell 2, rangordnar börkriterierna i följande ordning:

1. Bör vara estetisk
2. Bör vara ergonomiskt riktigt
3. Bör vara billig
4. Bör vara miljövänlig
5. Bör vara underhållsfri
6. Bör ej tillföra viktökning
6. Framtagning av produktförslag

6.1 Principiella lösningsförslag

I detta avsnitt presenteras tolv stycken principiella produktförslag. Problematiken för konstruktion, dess funktion beskrivs samt för- och nackdelar belyses. [1]

6.1.1 Saxen

Förslaget utnyttjar den befintliga evighetsskruven på Classic 5000c. Vid frikoppling skall linspridaren centreras på evighetsskruven, samt att i detta läget skall de båda linspridarmarna fällas i sidled. Direkt vid påbörjad invevning skall linspridarmarna slås ihop som en sax och fånga in linan.

Problem, med förslaget, kan vara att få linspridaren centrerad vid frikoppling. Dessutom är det väldigt små ytor det handlar om, där en mekanism för fällning och hopfällning av linspridarmarna skall rymmas.

Fördelar är att utkastet blir helt fritt och inte hindrar linan på något sätt, samt att spridningen av linan på spolen börjar direkt vid invevning.
6.1.2 Fällan

Figur 11. Fällan.

Problem med Fällan är att många händelsemoment skall inträffa. Linspridararmarna skall frikopplas från evighetsskruven, de skall också föras ut i varsitt ändläge. Från ändläget skall de två linspridararmarna kopplas ihop, vilket skall ske direkt vid invevning. Samtidigt ska de kopplas in till evighetsskruven.

Fördelarna med förslaget är att utkastet är helt fritt och att spridningen av linan påbörjas direkt vid inmatning av linan.
6.1.3 V-spridaren

I detta förslaget skall linspridaren, vid frikoppling, centreras på den befintliga evighetsskruven. I det centrerade läget skall linspridarmekanismen vikas framåt samtidigt som linspridararmarna delar sig i en V-formation. Vid påbörjad invevning skall linspridaren omgående fällas upp och fånga in lina, varpå linspridararmarna slås ihop.

Problem med förslaget är att det är många händelser som ska inträffa, centrering, fällning, delning av linspridaren, uppfällning samt sammanslagning av linspridararmarna. Armarna kan även vara känsliga för slag då de är framfällda och V-formade.

Fördelarna är även i detta förslag att utkastet är fritt och att inmatning på spolen sker direkt vid påbörjad invevning.
6.1.4 Haspelspole

Den här varianten bygger på att spolen rör sig i stället för linspridaren. Vid frikoppling skall spolen centreras. Då inmatningen påbörjas faller linan i rätt läge genom en fast v-formad bygel. Linan sprids sedan på spolen genom spolens rörelse.

Problem med det här förslaget är att rullen blir bredare än Classic 5000c, samt att spolen skall centreras vid frikopplingen. Ett begränsat utkast kan uppstå med den v-formade fasta bygeln.

Fördelar med förslaget är att det är få händelsemoment som skall inträffa. En fast bygel används som centrerar linan och därefter sprids linan direkt på spolen genom dess egen rörelse.
6.1.5 Fjäderfällan

Förslaget grundar sig på en tvådelad linspridare. Vid frikoppling skall de båda linspridararmarna frikopplas från evighetsskruven och dras ut mot varsin sida på rullen. Rörelsen skall utföras av en fjädermekanism. Vid invevning skall de båda linspridarna omgående slås ihop och kopplas in till evighetsskruven.

Figur 14. Fjäderfällan.

Problemen med det här förslaget kan vara att få de två linspridarna att snabbt slås ihop då de dragits isär med hjälp av fjädermekanismer. Fjäderkonstruktionen kan även komma att påverka spridardelarnas rörelse, under invevning, beroende på var de befinner sig på evighetsskruven. Inkopplingen av spridararmarna till evighetsskruven skall också ske smidigt.

Fördelar med förslaget är att utkastet blir helt fritt och att spridningen av linan påbörjas direkt vid invevning av linan.
6.1.6 Glidarmar

Förslaget bygger på att linspridaren har två linspridararmar som löper i spår på gavlarna av rullen. Vid frikoppling centrerar linspridaren på evighetesskruven. Då invevningen påbörjas centrerar lina genom de v-formade linspridararmarna till mitten av linspridaren. Spridararmarna glider i spår på sidan av rullen, samtidigt som linspridaren rör sig fram och tillbaka.

Problem kan uppstå då linan skall centreras på linspridaren. Detta på grund av att det är svårt att få linan att ligga kvar i den lilla skåran på linspridaren. Funktionen med de rörliga spridararmarna kan vara svår att skapa, både vad det gäller rörelse och med avseende på utrymme. Nackdelarna är att ett helt fritt utkast blir omöjligt.
6.1.7 Evighetsskruv med Bygel

Vid frikoppling skall en bygel fällas upp, varpå den vid inlevning fälls ner och skapar tryck på linan. Detta för att linan skall styras genom evighetsskruven. Evighetsskruven sprider linan jämt över spolen.

Problemen består i att konstruera en evighetsskruv för ändamålet. Det är även ovisst vilket slitage evighetsskruven orsakar på fiskelinan.

Fördelar är att linan börjar spridas så fort bygeln skapar tryck på linan, vilken går genom evighetsskruven. Utkastet är dessutom helt fritt. Det är få händelsemoment som skall inträffa i det här förslaget.
6.1.8 Evighetsskruv med Skyddshölje

![Figur 17.Evighetsskruv med Skyddshölje.](image)

Problemen med konstruktionen är att få skyddshöljets rörelse att fungera vid frikoppling samt vid invevning. Utkastet kan även hämmas av evighetsskruvens höga placering. Konstruktion av en evighetsskruv för ändamålet kan bli problematisk samtidigt som det är ovisst vilket slitage evighetsskruven orsakar på fiskelinan.

Fördelar med förslaget är att spridning av linan sker direkt vid invevning och att det är få händelsemoment som skall ske.
6.1.9 Rörlig Evighetsskruv

Vid frikoppling skall evighetsskruven fällas ner i ett läge där den inte är i vägen för linan. Direkt vid invevning fälls skruven upp och linan trycks mot evighetsskruven på grund av dess höga position.

Problem kan vara att få evighetsskruven med dess drivning att kopplas ifrån och återigen kopplas in. Konstruktion av en evighetsskruv för ändamålet kan bli problematisk, samtidigt är det ovisst vilket slitage evighetsskruven orsakar på fiskelinan.

Fördelar är att det är få händelsemoment och få komponenter som krävs. Utkastet kommer att bli helt fritt.

Figur 18. Rörlig Evighetsskruv.
6.1.10 Enkel Linspridare

Problem med förslaget är att det kan uppstå komplikationer då slirbromsen brukas. Slitaget på linan kan då bli mycket stort, eventuellt även vid invevning av linan. Anledningen till slitaget är att det i vissa lägen uppstår kraftig linbrytningsvinkel mellan linspridaren och styrskans spår.

Fördelar med förslaget är att utkastet är helt fritt. Dessutom är det få händelsemoment som skall inträffa. Linan börjar dessutom spridas direkt vid invevning.
6.1.11 Öppen Linspridare

Fördelar är att kastet är helt fritt och att linan börjar spridas direkt vid invevning.
6.1.12 Rörliga Linspridararmar

Innan utkast fälls en bygel upp, så kastet blir fritt. Vid invevning fälls bygeln ned och tvingar linan till en skåra mellan de båda linspridararmarna. När linspridaren rör sig på evighetsskruven skjuts linspridararmarna upp i rullens hölje beroende på i vilket läge linspridaren befinner sig på evighetsskruven.

Problem med förslaget är att få linspridararmarna att röra sig inuti rullens sidokåpor.

Fördelar är att utkastet blir helt fritt och att linan sprids direkt vid invevning.
7. Utvärdering av produktförslag

7.1 Primär utvärdering

<table>
<thead>
<tr>
<th>TEKNISKA KRAV</th>
<th>GRUPPERINGSSKALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skall medföra minimalt motstånd</td>
<td>3 Upplyser särskilt kravet</td>
</tr>
<tr>
<td>Skall spridas i linjär lägre</td>
<td>2 Upplyser troligen kravet</td>
</tr>
<tr>
<td>Skall vara lätt att komma tillgängligt</td>
<td>1 Upplyser knappast kravet</td>
</tr>
<tr>
<td>Skall vara funktionsäkra</td>
<td>0 Upplyser inte kravet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lösningsbedömning</th>
<th>Saxen</th>
<th>Fällan</th>
<th>V-spridaren</th>
<th>Haspelspole</th>
<th>Fjäderfallan</th>
<th>Glidarmar</th>
<th>Evighetsskruv m. bygel</th>
<th>Evighetsskruv m. skyddshölje</th>
<th>Rörlig evighetsskruv</th>
<th>Enkel linspridare</th>
<th>Öppen linspridare</th>
<th>Röriga linspridarmar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summa</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Förs vidare</td>
<td>Ja</td>
<td>Ja</td>
<td>Nej</td>
<td>Nej</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja</td>
<td>Ja</td>
<td>Nej</td>
<td>Nej</td>
<td>Nej</td>
<td>Nej</td>
</tr>
</tbody>
</table>

Tabell 3. Primär utvärdering av principiella produktförslag.
7.1.1 Kommentar till primär utvärdering

Förlagen som gått vidare från den primära utvärderingen skall föras vidare i bedömningsarbetet och genomgå en mellanliggande utvärdering.

Enligt tabell 3, framgår vilka förslag som inte går vidare för fortsatt bedömning. Anledningen till att dessa förslag inte förts vidare motiveras nedan.

V-spridaren:
Förslaget förs inte vidare på grund av att en acceptabel funktionssäkerhet inte kommer att uppnås. Det är väldigt många moment som skall ske vid frikopplingen samt under påbörjad invevning. Att få de här momenten att utföras utan störningar kan vara mycket svårt att genomföra.

Rullen anses dessutom inte vara tillräckligt robust. Linspridarmarn är väldigt känsliga för stötar i frikopplat läge.

Fjäderfällan:
Även Fjäderfällan faller på att den inte tros vara tillräckligt funktionssäker. I förslaget skall fjädrar användas för att dela på den tvådelade linspridarmekanismen. Fjädrarna kommer förmodligen resultera i ojämn gång under invevning beroende på hur sammanpressade respektive utdragna fjädrarna är.

Glidarmar:
Anledningen till bortsållning av förslaget är bristande funktionssäkerhet. Det ses som mycket svårt att få linan att alltid centreras till spåret i mitten av linspridan. Linspridarmarna skall dessutom utformas så de kan löpa i ytterskalen av rullen. Att skapa utformningen på linspridarmarna samt att dess rörelse ska rymmas i ytterskalen anses inte vara genomförbart.
Rörlig Evighetsskruv:
Förslag Rörlig Evighetsskruv sällades bort på grund av bristande funktionssäkerhet. Processen med att flytta hela evighetsskruven med dess drivning ses som klart problematisk. Detta beroende på svårigheten att lyckas koppla in drivningen, kugghjulet, till evighetsskruven. Rörelsen kommer med all säkerhet ge upphov till slitage på kugghjul samt missljud under drift.

Haspelspole:

7.2 Mellanliggande utvärdering
Förslagen som förs vidare från den primära utvärderingen skall genomgå en mellanliggande utvärdering. Här viktas förslagen mot uppställda börkriterier.

I tabell 4. viktas börkriterierna efter samma fyrfärgiga skala som vid kriterieviktningen i kapitel 5.4. Hänsyn tas nu även till k_r-faktorn från kriterieviktningen. En summa, T, erhålls ur utvärderingstabellen. T/T_{max} visar en procentsats där förslaget med högst summa, T, erhåller värdet 1,00. I tabell 4. visas resultatet av den mellanliggande utvärderingen. [1]
Tabell 4. Viktning av börkriterier.

7.2.1 Kommentar till mellanliggande utvärdering

Från den mellanliggande utvärderingen förs fyra förslag vidare för vidareutveckling samt för en slutlig utvärdering. De fyra förslagen valdes på grund av att de anses ha högst potential för vidareutveckling och eventuellt föras vidare till primärkonstruktionen.

Enligt tabell 4. framgår vilka förslag som inte går vidare för fortsatt bedömning. Anledningen till att de här förslagen inte förs vidare motiveras nedan.
Fällan

Fällan förs inte vidare från den mellanliggande utvärderingen på grund av svårigheten att få de båda linspridardelarna direkt inkopplade vid påbörjad invevning. Försök har gjorts inom detta område tidigare. Problemet har varit att frivarv erhållits innan linspridardelarna förs ihop. [20] [21]

Evighetsskruv med Skyddshölje

Förslaget har inte förts vidare trots sin höga poäng (se tabell 4), beroende på den stora svårigheten att få ett koncept med en fungerande och bruksduglig evighetsskruv. För att konstruera en evighetsskruv för ändamålet krävs mycket experiment och utvecklingsarbete. Förslaget Evighetsskruv med Bygel förs vidare eftersom att den fick högst poäng och anses ha störst potential av de båda förslagen.

Öppen Linspridare

Förslaget ströks på grund av att det anses vara mycket svårt att få realiserat. Det är många händelser som skall inträffa samt att de ska inträffa vid rätt tidpunkt. Linspridarmekanismen blir dessutom väldigt slagkänslig och stor risk föreligger att linspridararmarna skall skadas eller böjas under brukning.
8. Vidareutveckling

De fyra förslagen som förts vidare från den mellanliggande utväderingen är Saxen, Evighetsskruv med Bygel, Enkel Linspridare och Rörliga Linspridaramar. De här förslagen har granskats ytterligare och vidareutvecklats. [1]

8.1 Saxen

Det här produktförslaget skulle kunna lösas genom att frikoppla linspridarmekanismen från evighetsskruven, samtidigt som linspridaramarna fälls ut i sidled.

8.2 Evighetsskruv med Bygel

8.3 Enkel Linspridare

8.4 Rörliga Linspridararmar

9. Slutlig utvärdering samt valda produktförslag

Efter vidareutveckling av Saxen, Evighetsskruv med Bygel, Enkel Linspridare och Rörliga Linspridarammar kommer två förslag föras vidare till primärr konstruktionen. [1]

9.1 Evighetsskruv med Bygel

Evighetsskruv med Bygel är det produktförslag som har störst potential att tillgodose kraven och önskemålen. Produktförslaget medför att antalet komponenter minskar i konstruktionen. Konstruktionen medför att utkastet kommer att bli fritt.

Det stora problemet med förslaget är att utveckla en evighetsskruv, vilken ska ha rätt geometri och möjliggöra linspridning. Detta innebär att evighetsskruven skall ha en viss diameter, gängstigning, utväxling och får inte medföra slitage på linan.
9.1.1 Produktutkast

Figur 22. Produktutkast, Evighetsskruv med Bygel.

Stycklista

1. Höger gavel
2. Spole
3. Stativ
4. Vänster gavel
5. Evighetsskruv
6. Bygel
9.2 Enkel Linspridare

Förslaget ger ett fritt utkast. Förslaget Enkel Linspridare uppfyller kraven och önskemålen mycket väl. Produktförslagets ingående komponenter är mindre komplexa jämfört med de två senast bortröstade produktförslagen.

9.2.1 Produktutkast

Stycklista
1. Höger gavel
2. Spole
3. Stativet
4. Vänster gavel
5. Linspridare
6. Evighetsskruv
7. Bygel
DEL 2

PRIMÄR-KONSTRUKTION
10. Produktutkast & funktionsbeskrivning

I den föregående utvecklingsfasen, principkonstruktionen, togs två stycken potentiella förslag vidare för primärkonstruktionsfasen. De båda förslagen bygger på olika principer och fördelarna är de samma. Däremot skiljer de båda förslagen sig avsevärt i utförande. [2]

10.1 Evighetsskruv med Bygel

Det skapade trycket som bygeln ger, kommer att tvinga fiskelinan ner i evighetsskruvens spår. Evighetsskruven drivas av veven och applicering av fiskelinan på spolen kan ske.

10.2 Enkel Linspridare

Figur 25. Enkel Linspridare.

10.3 Primärkonstruktion–Ett produktförslag

11. Enheter och ingående komponenter

I detta avsnitt skall produktförslaget Enkel Linspridare delas upp i olika konstruktionskomponenter. De olika komponenterna klassificeras, vilket resulterar i respektive påföljande behandlingstyp. [2]

Tabell 5. Fyra olika moduler med respektive komponenter, samt behandlingstyp.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Standard</th>
<th>Unik</th>
<th>Antal</th>
<th>Detalj-ritning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rutin</td>
<td>special</td>
<td>special</td>
<td>rutin</td>
</tr>
<tr>
<td>Vevpaket, modul</td>
<td></td>
<td></td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>Kåpa, höger</td>
<td></td>
<td></td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>Stopphatt, orginal</td>
<td>X</td>
<td>2</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Stopphatt</td>
<td></td>
<td></td>
<td>2031</td>
<td></td>
</tr>
<tr>
<td>Skruv, höger yttergavel</td>
<td>X</td>
<td>2</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Styrskena, höger</td>
<td></td>
<td></td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Tryckfjäder, styrskena</td>
<td>X</td>
<td>1</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Yttergavel, höger</td>
<td></td>
<td></td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Nit KN MÅSS</td>
<td>X</td>
<td>2</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Kopplingsplatta, modul</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tillhållare kpl</td>
<td>X</td>
<td>1</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Ok</td>
<td></td>
<td></td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Kopplingsarm</td>
<td>X</td>
<td>1</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Tryckbleck</td>
<td>X</td>
<td>1</td>
<td>3031</td>
<td></td>
</tr>
<tr>
<td>Stift, länkarm</td>
<td>X</td>
<td>1</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Länkarm</td>
<td>X</td>
<td>1</td>
<td>3021</td>
<td></td>
</tr>
<tr>
<td>Distansbult</td>
<td>X</td>
<td>2</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Stift, huvuddrev</td>
<td>X</td>
<td>1</td>
<td>3001</td>
<td>X</td>
</tr>
<tr>
<td>Stift, bromsgavel</td>
<td>X</td>
<td>2</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Bromsgavel</td>
<td>X</td>
<td>1</td>
<td>3011</td>
<td></td>
</tr>
<tr>
<td>Nit</td>
<td></td>
<td></td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Bromsring</td>
<td></td>
<td></td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>Stativ, modul</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positioneringsbricka</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Skruv, vridfjäder</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Vridfjäder</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Pelare, orginal</td>
<td>X</td>
<td>2</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Frikopplingspinne</td>
<td>X</td>
<td>1</td>
<td>4081</td>
<td></td>
</tr>
<tr>
<td>Dragfjäder</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Frikopplingsbleck</td>
<td>X</td>
<td>1</td>
<td>4071</td>
<td></td>
</tr>
<tr>
<td>Nit, låsbleck</td>
<td>X</td>
<td>2</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Låsbleck</td>
<td>X</td>
<td>1</td>
<td>4061</td>
<td></td>
</tr>
<tr>
<td>Fjäderpinne</td>
<td>X</td>
<td>1</td>
<td>4051</td>
<td></td>
</tr>
<tr>
<td>Innergavel, höger</td>
<td>X</td>
<td>1</td>
<td>4041</td>
<td></td>
</tr>
<tr>
<td>Innergavel, vänster</td>
<td>X</td>
<td>1</td>
<td>4031</td>
<td></td>
</tr>
<tr>
<td>Pelare</td>
<td>X</td>
<td>1</td>
<td>4021</td>
<td></td>
</tr>
<tr>
<td>Tryckfjäder</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Fjäderdistans</td>
<td>X</td>
<td>1</td>
<td>4011</td>
<td></td>
</tr>
<tr>
<td>Fotolatta</td>
<td>X</td>
<td>1</td>
<td>4001</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 6. Fyra stycken moduler med tillhörande komponenter.

12. Komponentval

12.1 Komponentval-Standard rutin

Komponenterna består av exempelvis skruvar, brickor och ”hyllösningsar”, som kommer att väljas efter önskad dimension och material. Dimensionen skall vara den mest lämpliga för ändamålet. Materialet skall vara korrosionsbeständigt, för att klara av den korrosiva miljö som är ett uppställt krav. [10] [19]

Stopphatt, original Till pelarna original krävs det två stycken stopphattar som låser ihop den högra yttergaveln med fiskerullen.
Skruv, yttergavel Skruvarna skall fästas till distansbultarna som sitter på kopplingsplattan.
Nit KN MÄSS Nitarna fogar ihop styrskenan med yttergavlarna.
Tillhållare kpl. Den skall hålla länkarmen och oket på plats, men ska också skapa ett nödvändigt tryck på komponenterna som fikopplar spolen.
Ok Komponenten lyfts av kopplingsarmen för att frikoppla spolen. Detta sker genom att drivhjulet till spolen lyfts av oket.
Kopplingsarm
Sit under tillhållare kpl, och har till uppgift att skapa en rörelse som frikopplar spolen. En annan funktion som kopplingsarmen har är att koppla in spolen.

Stift, länkarm
På länkarmen ska detta stift nitas så sammanfogning med tryckblecket möjliggörs.

Distansbult
I distansbultarna skall skruvarna fästas som sammanbinder kopplingsplattan med höger yttergavel.

Stift, huvuddrev
Stiftet sitter på kopplingsplattan och sträcker sig igenom drivhjulet som är kopplat till vevmodulen.

Stift, bromsgavel
De här stiftens uppgift är att positionera tillhållare kpl. och länkarmen.

Nit
Komponenten fungera som fästelement mellan huvuddreversstiftet och bromsgaveln.

Bromsring
Den är placerad på bromsgaveln och uppgiften är att positionera spolen.

Positioneringsbricka
Skall skapa tryck på frikopplingsblecket och är placerad på insidan av den vänstra gaveln.

Skruv, vridfjäder
Skruven används för att hålla vridfjädern i rätt position. Placeringen är även här på insidan av den vänstra innergaveln.

Vridfjäder
Har till uppgift att tillsammans med positioneringsbrickan skapa ett tryck på frikopplingsblecket, som frikopplar linspridaren. Fjädern är placerad på insidan av den vänstra gaveln.

Pelare, original
Det finns två stycken orginalpelare som löper genom hela fiskerullen, vilka även finns på Classic 5000c. Pelarnas uppgift är att hålla ihop fiskerullen.
<table>
<thead>
<tr>
<th>Komponent</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dragfjäder</td>
<td>Fjäderens uppgift är att hålla frikopplingsspinnen på plats, så det inte uppkommer någon form av glapp. Fjädern är placerad på insidan av den vänstra innergavel.</td>
</tr>
<tr>
<td>Nit, låsbleck</td>
<td>Har till uppgift att positionera låsblecket på vänster innergavel.</td>
</tr>
<tr>
<td>Fotplatta</td>
<td>Är den enhet som sammanlänkar fiskerullen med fiskespôt.</td>
</tr>
<tr>
<td>Skyddshölje</td>
<td>Detta är en komponent vars uppgift är att skydda evighetsskruven från smuts och få linspridaren att glida lätt över evighetsskruven. Även den här finns på Classic 5000c.</td>
</tr>
<tr>
<td>Evighetsskruv</td>
<td>Komponenten har som uppgift att skapa den ändlösa rörelsen. Evighetsskruven finns på Classic 5000c.</td>
</tr>
<tr>
<td>Kugghjul</td>
<td>Komponenten sitter inuti vänster yttergavel och ska driva spolen. Vilket sker via det kugghjul som sitter på evighetsskruven.</td>
</tr>
<tr>
<td>Låsring, kamaxel</td>
<td>Ringen har som uppgift att låsa fast kamaxeln. Komponenten finns placerad på utsidan av vänster innergavel och sitter i ett spår på kamaxeln. Komponent finns hos Abu Garcia och används på EON.</td>
</tr>
<tr>
<td>Stift, kugghjul</td>
<td>Sitte placerat inuti vänster yttergavel och fungerar som hållare till kugghjulet.</td>
</tr>
<tr>
<td>Skruv, pelare</td>
<td>De tre skruvarna används för att fästa två stycken original pelare och en tredje pelare i den vänstra yttergaveln.</td>
</tr>
<tr>
<td>Skruv, hisssnapp</td>
<td>Uppgiften som de två skruvarna har, är att foga samman bygeln med hisssnappen. Det är viktigt att dimensionerna väljs så att hisssnappen ger en robust och funktionssäker konstruktion.</td>
</tr>
<tr>
<td>Skruv, fjäderbleck</td>
<td>Skruven har till uppgift att positionera fjäderblecket på bygels ovansida.</td>
</tr>
</tbody>
</table>
12.2 Komponentval–Standard special

I kapitlet kommer komponenter som klassificerats som standard special att behandlas. De komponenter som tilldelats denna klassificering består av ett antal fjädrar. För att kunna bestämma vilken typ av fjäder som kommer att behövas för de olika ändamålen, krävs ett antal enklare beräkningar.

Tryckfjäder, bygel

Två fjädrar skall placeras inuti styrskenorna som sitter på yttergavlarna. Fjädrarna kommer att sitta bakom bygeln, för att skapa tryck, vilken då tvingas ner i sitt främre läge. Fjädrarna kommer att tryckas ihop manuellt då användaren drar tillbaka bygeln.

För att linan ska kunna löpa ut fritt under utkastet måste bygeln dras tillbaka 68° från sitt främre läge.
Fjädern ska kunna tryckas ihop 40.35 millimeter.

\[L_0 - L_1 = 40.35 \text{ mm} \]

Material:

Fjädern finns att beställas i två olika material:

- SS 1774-05 Pianotråd
- SS 2331-06 Rostfritt

Materialet SS 2331-06 väljs då det är rostfritt, vilket är lämpligt med tanke på omgivningen fjädern kommer befinner sig i.

Ur fjäderkatalogen #11 väljs tryckfjädern [7]:

Art. nr:5854
Data:

- $D_m = 6.3 \text{ mm}$
- $L_0 = 65 \text{ mm}$
- $C = 0.13 \text{ N/mm}$
- $D_t = 0.5 \text{ mm}$
- $L_1 = 17.4 \text{ mm}$

Den erforderliga kraften som krävs för att föra tillbaka fjädrarna.

$$ F = c \cdot \Delta l \quad (ekv. 2) \quad [8] $$

Eftersom det kommer att användas två fjädrar till bygeln blir den erforderliga kraften som krävs för att föra tillbaka fjädrarna:

$$ F = 2 \cdot c \cdot \Delta l = 2 \cdot 0.13 \cdot 40.35 = 10.5 \text{ N} $$

Tryckfjäder, stativ

Då linspridaren frikopplas kommer tryckfjädern att positionera linspridaren i det yttersta högerläget på fiskerullen, sett framifrån. Tryckfjädern är placerad inuti pelaren och begränsas av stopphatten och linspridar- armen.

Fjädrarna måste ha en arbetslängd på 30 millimeter då det är den längden som linspridaren rör sig.

L_0= obelastad längd

L_1= belastad längd

Utifrån detta kan en fjäder väljas, där $L_0 - L_1 = 30 \text{ millimeter}$. Fjäder väljs med så liten diameter, som möjligt för att få plats i pelaren som har en innerdiameter på 4.5 millimeter.
Material:

Fjäder med den här dimensionen kan fås i två olika material

SS 1774-05 Pianotråd
SS 2331-06 Rostfritt

Materialet SS 2331-06 väljs då det är rostfritt, vilket är lämpligt med tanke på miljön fjädern befinner sig i.

Ur fjäderkatalogen #11 väljs tryckfjäder [7]:
Art. nr: 5778

Data:

<table>
<thead>
<tr>
<th>D_m</th>
<th>L_0</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>41.9 mm</td>
<td>0.078 N/mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_t</th>
<th>L_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32 mm</td>
<td>9.5 mm</td>
</tr>
</tbody>
</table>

Den erforderliga kraften som krävs för att föra tillbaka fjädern:

\[F = c \cdot \Delta l \]
(ekv. 2)

\[F = 0.078 \cdot 32.4 = 2.53 \, N \]

<table>
<thead>
<tr>
<th>Benämning</th>
<th>Dimensioner D_m x L_0 x C</th>
<th>Leverantör</th>
<th>Art. Nr.</th>
<th>Ritnings Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x Tryckfjäder, bygel</td>
<td>6.3 x 65 x 0.13</td>
<td>Stockholms Fjäder AB</td>
<td>5854</td>
<td>2001, 5001</td>
</tr>
<tr>
<td>1x Tryckfjäder, stativ</td>
<td>4 x 41.9 x 0.078</td>
<td>Stockholms Fjäder AB</td>
<td>5778</td>
<td>4001</td>
</tr>
</tbody>
</table>

Tabell 7. Sammanställning av komponenter, standard special. [7]
13. Detaljkonstruktion

Många av de ingående komponenterna i Enkel Linspridare kräver modifiering och även en del nykonstruktioner i jämförelse med multiplikatorrullen Classic 5000c. För de komponenter som kräver unik behandling görs detaljkonstruktioner. Många av detaljerna i detta kapitel finns på EON och Classic 5000c, tillhörande Abu Garcia:s produktsortiment. Då sådana detaljer finns kommer de att användas som grund för detaljkonstruktionerna.

De kriterier som ställdes upp i principkonstruktionen, kap 5, gäller för samtliga detaljkonstruktioner.

Enligt Fredy Olssons metod för detaljkonstruktionen skall detaljens funktion bestämmas, kriterier skall ställas upp, löningssökning skall utföras samt att en lösningsbedömning och en lösningsutarbetning skall utföras. [2]

För att ta fram de 24 olika detaljkonstruktionerna har en modernare metod av integrerad produktutveckling används. Metoden som har tillämpats består av en funktionsbeskrivning, kriterieuppställning, lösningsutarbetning, grafisk presentation av produktförslag och materialval. Detta innebär att de modellerade detaljerna testas i 3D-miljö, för att se att de uppställda funktionskriterierna har uppfyllts. Lösningsbedömning har flyttats till ett senare kapitel, verifiering.

Detaljkonstruktionen bygel är en komplicerad detalj. Av denna andledning kommer denna detalj att konstrueras i olika utförande för att således välja den bäst lämpade. I den resterande delen av kapitlet kommer endast det slutgiltiga förslaget att presenteras. Däremot kommer processen som föranlett konstruktionens geometri att beskrivas.
13.1 Detaljkonstruktion–Bygel

Bygeln har till uppgift att positionera lina till den högra sidan av multiplikatorrullen (sett framifrån). Linan kommer alltid att passera denna position varpå den fördelas över spolen med hjälp av linspridaren.

Bygeln kommer under invevning att befinner sig i sitt nedre läge. Vid frikoppling kommer bygeln att skjutas uppåt genom inverkan av tryckfjädrar.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Bygeln skall ej ge upphov till skada på linan</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Bygeln skall rymmas inom rullens bredd</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Bygeln skall ej kollidera med övriga delar</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Bygeln skall positionera linan rätt</td>
<td>K</td>
</tr>
</tbody>
</table>

13.1.1 Lösningssökning

Bygeln måste rymmas inom bredden på multiplikatorrullen Classic 5000c. Bygelns utformning skall vara sådan att den följer krökningen på de båda yttergavlarna när bygeln förflyttas från sitt nedre läge till sin övre position, under frikopplingen. Med hjälp av bygelns rörelse skall både spolen och linspridaren frikopplas.

Ett par förslag har arbetets fram för att få bygeln att utföra de funktioner den är avsedd för.
Förslag 1

För att få linan att passera bygeln med så liten friktion som möjligt har en liten spole placerats på bygelnas högra ände. Spolen roterar runt en axel för att minska friktionen mellan linan och spolen.

![Figur 28: Bygel, förslag 1.](image1)

Förslag 2

Det här förslaget grundar sig på att få bygeln så tunn som möjligt. För att få linan att glida lätt mot bygeln, under invevning, har den nedre kanten på bygeln försetts med en radie.

![Figur 29: Bygel, förslag 2.](image2)

13.1.2 Lösningsbedömning och lösningsutarbetning

Förslag 2, valdes på grund av att det uppfyller kraven i större grad än förslag 1. Det stora problemet med förslag 1 är att bygeln bygger in för mycket mot
centrum på rullen, beroende på spolen. Det här medför att bygeln kommer att slå in den övre pelaren då frikoppling sker.

Det är även problematiskt att positionera den lilla spolen så att linan alltid passerar över denna, oberoende av hur mycket lina som finns på fiskerullens spole. Det här problemet uppstår aldrig i förslag 2, eftersom hela spåret på högersidan är belagd med samma radie som spolen har i förslag 1.

Bygeln kommer genom sin lutning att föra linan till den högra kanten, sett framifrån. Linan fixeras här i ett spår där linan alltid kommer att passera. Bygelns bredd kommer att begränsas av rullens bredd.

På var sida av bygeln, som positionerar linan, finns en arm som skall ge upphov till den korrektta rörelsen hos bygeln. De båda armarna har samma krökning som yttergavlarna på Classic 5000c, för att smidigt kunna förflyttas från bygelns nedre läge till sitt övre läge.

Bygelns båglängd bestäms av den längd som krävs för att frikoppla spolen och linspridaren. Även den sträcka bygeln måste förflyttas, för att skapa ett fritt utkast, påverkar bygelns längd.

13.1.3 Materialval

Bygeln är en av de detaljer som kräver nykonstruktion. Därför är det också lämpligt att granska olika materialförslag för tillverkning av bygeln.

- Materialförslag: Aluminium SS 4120-24
 - Plast, Ultradur PBTP K4

Aluminium väljs eftersom det är lätt att bearbeta och en hög ytfinhet kan uppnås på bygelns nedre radie. En högre hårdhet kan erhållas på radien, då aluminium används, vilket är önskvärt. Det är viktigt att det inte blir repor och hack på radien, för detta kan medföra att linan slits fortare.

- Valt material: Aluminium SS 4120-24

60
13.2 Detaljkonstruktion–Hissknapp

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Hissknappen skall förflytta bygeln</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Hissknappen skall rymmas mellan gavlarna</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Hissknappen skall kunna fästas på bygeln</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Hissknappen skall fånga upp frikopplingspinnen</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Hissknappen bör vara greppvänlig</td>
<td>Ö</td>
</tr>
</tbody>
</table>

13.2.1 Lösningsutarbeitning

13.2.2 Materialval

Hissknappen är en av de detaljer som kräver nykonstruktion. Därför kan det vara lämpligt att granska olika materialförslag för tillverkning av hissknappen.

Materialförslag: Aluminium SS 4120-24

Plast, Ultradur PBTP K4

Alternativ 2, Plast, Ultradur PBTP K4, väljs på grund av att det lämpar sig bäst för ändamålet. Båda materialtyperna lämpar sig bra vid hantering i saltvattenmiljö. En hissknapp tillverkad i plast är att rekommendera ur användarens synpunkt. Detta eftersom hissknappen blir behagligare att vara i kontakt med samt att den inte känns lika kall.

Valt material: Plast, Ultradur PBTP K4
13.3 Detaljkonstruktion-Fjäderbleck

Fjäderblecket är till för att få bygeln att stanna kvar i sitt bakre läge under utkastet. Då bygeln dras tillbaka kommer fjäderblecket att tryckas ner i ett hål på höger yttergavel, på grund av trycket från fjäderblecket. I det här läget kommer bygeln att vara låst.

Fjäderblecket skall utformas så att det kan sammanfogas med bygeln. Viktigt är också att fjäderblecket dimensioneras med god passning mot länkarmen, bygeln, styrskenan och höger yttergavel.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Fjäderblecket skall låsa bygeln i sitt bakre läge</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall vara fjädrande</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall kunna fästas till bygeln</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Skall uppvisa god passning mot omgivande komponenter</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 10. Kriterier, fjäderbleck

13.3.1 Lösningsutarbetning

Fjäderblecket är fäst med en skruv på bygelns ovensida. Den övriga delen ska gå igenom bygeln och bilda tryck på den högra yttergaveln. Då bygeln dras tillbaka kommer klacken att tryckas ner i hålet på högra yttergaveln, så bygeln stannar i detta läge.
13.3.2 Materialval

För att få den önskade funktionen på fjäderblecket, väljs ett fjäderstål. Det valda materialet är ett material som finns i andra fjädrande delar inom Abu:s sortiment och är därmed lätt tillgängligt.

Valt material: Fjäderstål SS 2331-46.
13.4 Detaljkonstruktion–Låsbleck

Låsblecket har till uppgift att hålla evighetsskruven på plats. Evighetsskruven hålls på plats, på fiskerullens vänstra sida sätt framifrån, genom geometrin på höger innergavel. Låsblecket ska placeras på vänster innergavel och hindrar att evighetsskruven rör sig i sidled.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Låsblecket skall hålla evighetsskruven på plats</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Låsblecket bör vara så lite som möjligt</td>
<td>Ö</td>
</tr>
</tbody>
</table>

Tabell 11. Kriterier, låsbleck.

13.4.1 Lösningsutarbetning

Vid framtagning av detaljkonstruktionen av låsblecket var det största problemet att få blecket att rymmas inom innergavelns utrymme. Detta på grund av att det förelåg stor risk att låsblecket skulle kollidera med övriga ingående komponenter. Innan blecket ritades var vänster innergavel färdig konstruerad. Dessutom var övriga ingående komponenter, som skulle kunna hindra placeringen av låsblecket uppritade och placerade på sina positioner. I detta läget utformades låsblecket för evighetsskruven på den yta där den ej skulle komma att kollidera med övriga komponenter.
13.4.2 Materialval

Plagierat materialval kommer att användas, beroende på att materialet till det befintliga låsblecket på Classic 5000c anses vara det mest lämpliga. Materialet lämpar sig väl för saltvattenmiljö och saknar anledning att ersättas.

Valt material: Fjäderstål SS 2331-46
13.5 Detaljkonstruktion-Tryckbleck

Tryckblecket har till uppgift att överföra den rörelse som alstras av frikopplingspinnen under frikopplingen, till att frikoppla spolen. Tryckbleckets lilla ögla sitter ihop med frikopplingspinnen. Den stora öglan på tryckblecket är ledad till länkarmen.

Då frikopplingspinnen förs tillbaka kommer tryckblecket att generera en rörelse till länkarmen, vilken i sin tur frikopplar spolen via kopplingsarmen. Vid påbörjad invevning förs blecket fram och spolen kopplas åter in. Detta för att kunna linda upp fiskelinan på spolen.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Blecket skall frikoppla spolen</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall få plats inom befintligt utrymme</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall vara förenligt med tillhörande komponenter</td>
<td>K</td>
</tr>
</tbody>
</table>

13.5.1 Lösningsutarbetning

13.5.2 Materialval

Plagierat materialval kommer att tillämpas då, tryckblecket skall sammanlänkas med länkarmen som är konstruerad i mässing.

Valt material: Mässing SS5150-04
13.6 Detaljkonstruktion–Länkarm

Länkarmens nedre hål sitter ledat runt ett stift som är nitat i bromsgaveln. I länkarmens övre hål sitter också ett stift, vars uppgift är att sammankoppla kopplingsarmen och tryckblecket med länkarmen.

Klacken som sitter på länkarmen har till uppgift att trycka ut fjäderblecket, som är fäst på bygeln. Bygeln åker då ner i sitt främre läge med hjälp av tryckfqjädrarna. Detta sker vid invevning, genom att länkarmen glider in i hålet på höger yttergavel och slår ut fjäderblecket.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall länka samman tryckblecket och kopplingsarmen</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Geometrin skall medföra att kollision med omgivande komponenter elimineras</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skall trycka ut fjäderblecket</td>
<td>K</td>
</tr>
</tbody>
</table>

13.6.1 Lösningsutarbetning

Då länkarmen konstruerades gjordes detta med utgångspunkt från den befintliga länkarmen. Därefter kompletterades modellen med klacken.

Då länkarmen och tryckblecket sattes i hopa för ett mindre test, visade det sig att länkarmen var för stor och kolliderade med tryckblecket. Det visade sig även att klacken var för hög. Detta medförde en omkonstruktion för att säkerställa den slutgiltiga geometrin.
13.6.2 Materialval

Plagierat materialval tillämpas och det ursprungliga materialet kommer att väljas, nämligen mässing.

Valt material: Mässing SS 5150-04
13.7 Detaljkonstruktion–Frikopplingspinne

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Pinnen skall frikoppla linspridaren och spolen</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Pinnen skall ha så liten diameter som möjligt</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Pinnen får inte deformeras</td>
<td>K</td>
</tr>
</tbody>
</table>

13.7.1 Lösningsutarbetning

Det måste också finnas ett litet spår på frikopplingspinnens ena sida för att kunna fästa en fjäder. Fjäderen har till uppgift att stabilisera frikopplingspinnen så att den inte ger upphov till missljud.
13.7.2 Materialval

För att välja material till frikopplingspinnen används plagierat materialval. Material kommer att väljas enligt frikopplingspinnen som finns på Abu:s nya fiskerulle, EON.

Valt material: Rostfritt stål SS 2346-02
13.8 Detaljkonstruktion–Frikopplingsbleck

Frikopplingsblecket skall genom frikopplingspinnens rörelse förflyttas och frikoppla linspridaren från evighetsskruven.
Frikopplingsblecket måste rymmas på yttersidan av vänster innergavel. Där ska den dessutom passa in i de spår som krävs för att styra bleckets rörelse. Bleckets längd begränsas av frikopplingspinnens position i sitt nedre läge, samt av vippans position, då den är vriden så att linspridaren är frikopplad.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Blecket skall rymmas på vänster innergavel</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall sammankopplas med vippan och frikopplingspinnen</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Blecket skall frikoppla linspridaren</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 15. Kriterier, frikopplingsbleck.

13.8.1 Lösningsutarbeitning

13.8.2 Materialval

Materialet till frikopplingsblecket väljs med utgångspunkt från använt material på motsvarande detalj på EON. Materialvalet är plagierat.

Valt material: Mässing SS 5150-07
13.9 Detaljkonstruktion–Kamaxel

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Kamaxelns rörelse skall frikoppla linspridaren</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall ha rätt geometri</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Skall vara förenlig med tillhörande komponenter</td>
<td>K</td>
</tr>
</tbody>
</table>

13.9.1 Lösningsutarbetning

Då det finns en kamaxel på EON, kommer denna att modifieras så en liknande kamaxel kan användas för samma ändamål, fast på den nya konstruktionen. Den modifiering som det handlar om är att ändra längden på kamaxeln.
13.9.2 Materialval

Valt material: Mässing SS 5165-04
13.10 Detaljkonstruktion—Vippa

Vippan skall vara fäst till kamaxeln och överföra rörelsen från frikopplingsblecket till kamaxeln.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall vrida kamaxeln</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall kunna sammanfogas med kamaxeln</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 17. Kriterier, vippa.

13.10.1 Lösningsutarbetning

![Figur 38. Vippa.](image)

13.10.2 Materialval

Plagierat materialval kommer att användas vid val av material till vippan. Materialet till den befintliga vippan på EON anses vara lämpligt.

Valt material: Mässing SS 5150-07
13.11 Detaljkonstruktion–Fjäderpinne

Fjäderpinnen skall positionera en dragfjäder som för tillbaka frikopplingsblecket vid påbörjad innevning. Det ända att beakta var placeringen av pinnen. För att hålla fjäderen på plats är det viktigt att positionera fjäderpinnen rätt, så fjäderen alltid är lite spänd.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall hålla fjäderen på plats</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 18. Kriterier, fjäderpinne.

13.11.1 Lösningsutarbeting

Vid konstruktion av fjäderpinnen användes som utgångspunkt den befintlig lösning på EON. Eftersom inga direkta utrymmesrestriktioner eller andra krav fanns, konstruerades pinnen i likhet med de som finns på EON.

Figur 39. Fjäderpinne.

13.11.2 Materialval

För att välja material till fjäderpinnen tillämpades plagierat materialval. Materialet valdes till samma som valts till de båda innergavlarna, för att erhålla samma materialtyp.

Valt material: Aluminium SS 4120-24
13.12 Detaljkonstruktion–Bromsgavel

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Geometrin skall passa för de nya komponenterna</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Geometrin skall passa för de gamla komponenterna</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall ha samma ytterdiameter</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Bör göras så att modifieringar kan ske utifrån befintlig komponent</td>
<td>Ö</td>
</tr>
</tbody>
</table>

13.12.1 Lösningsutarbetning

Bromsgaveln som finns tillgänglig på Classic 5000c är utgångspunkten och kommer att ligga till grund för modifieringar. Modifieringar enligt ovan uppställda krav resulterar i den nya bromsgaveln.
Figur 40. Bromsgavel.

13.12.2 Materialval

Samma material som används till den befintliga bromsgaveln, Classic 5000c, kommer att väljas. Plagierat materialval kommer därmed att användas.

Valt material: Aluminium EN AW 5754 H14
13.13 Detaljkonstruktion–Innergavel, vänster

Vänster innergavel är en av de huvudkomponenterna som ingår i stativet. Förutom att den ingår i grundstommen, utgör den också utgångspunkt för en mängd andra funktioner.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Gaveln skall ha grundgeometrin enligt Classic 5000c</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Gaveln skall styra frikopplingsblecket</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Gaveln skall ha spår för frikopplingspinnen</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Gaveln skall ha hål för kamaxeln</td>
<td>K</td>
</tr>
</tbody>
</table>

13.13.1 Lösningsutarbeitning

Vid framtagning av vänster innergavel var utgångspunkten, den befintliga gaveln på Classic 5000c. Därefter kompletterades gaveln med de detaljer som krävdes för att få alla funktioner som är knutna till gaveln, att fungera. Med utgångspunkt från grundgeometrin, kunde placering av det styrande spåret på gaveln dimensioneras. Även hålen till kamaxeln, frikopplingspinnen, statipvinnarna, fjäderpinnen och för de positionerande pinnarna till låsblecket placeras ut.
13.13.2 Materialval

Plagierat materialval kommer att användas till vänster innergavel. Samma material som används till vänster innergavel, på Classic 5000c kommer att användas för konstruktionen.

Valt material: Aluminium SS 4120-24
13.14 Detaljkonstruktion–Innergavel, höger

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Gaveln skall ha grundgeometrin enligt Classic 5000c</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Gaveln skall ha spår för frikopplingspinnen</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Gaveln skall ha hål för kamaxeln</td>
<td>K</td>
</tr>
</tbody>
</table>

13.14.1 Lösningsutarbetning

13.14.2 Materialval

Plagierat materialval kommer att användas till höger innergavel. Samma material som används på höger innergavel på Classic 5000c, kommer att användas på konstruktionen.

Valt material: Aluminium SS 4120-24
13.15 Detaljkonstruktion–Pelare

Pelaren kommer att vara försedd med ett spår, som tråden för linföraren kan löpa i.

Pelaren kommer att, på ena sidan, vara försedd med en utvändigt gänga och en invändigt gänga på den andra sidan. Detta för att kunna fixera yttergavlarna med pelaren.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skall rymma en fjäder</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skall sammanfoga yttergavlar med innergavlar</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Spår som är dimensionerat mot tråden för linföraren</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall vara utvändigt och invändigt gängad</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 22. Kriterier, pelare.

13.15.1 Lösningsutarbetning

Genom att utgå ifrån den befintliga pelaren kommer modifieringar ske så de önskade kraven uppfylls. Modifieringarna består av att höger sida på pelaren skall var ihålig och ge utrymme i längd och diameter för tryckfjäder.
Figur 43. Pelare.

13.15.2 Materialval
Materialet väljs i likhet med den befintliga pelaren på Classic 5000c. Plagierat materialval kommer därmed att användas.

Valt material: Mässing SS 5165-04
13.16 Detaljkonstruktion–Stopphatt

Stopphatten skall fixera höger ytterkåpa med bromsgaveln. Den fungerar även som en stoppfunktion för tryckfjädern, vilken är placerad inuti pelaren. Stopphatten skall ha rätt dimension för att kunna gängas invändigt och därmed skruvas utvändigt på pelaren. Stopphattens höjd begränsas av vev och slirbroms.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skall gängas på pelaren</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall vara invändigt gängad</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skall inte medföra kollision med vev</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Bör vara utformad för god åtkomlighet</td>
<td>Ö</td>
</tr>
</tbody>
</table>

Tabell 23. Kriterier, stopphatt.

13.16.1 Lösningsbedömning och utarbetning

Eftersom att pelarens geometri är känd kommer dimensioneringen att utgå ifrån detta. Då godstjocklek dimensioneras tas hänsyn till att en innergång ska appliceras. Innergången är skall vara en M6, då pelaren har en utvändig M6 gänga.
13.16.2 Materialval

Material väljs i likhet med de befintliga stopphattarna på Classic 5000c. Plagierat materialval kommer därmed att användas.

Valt material: Mässing SS 5165-04
13.17 Detaljkonstruktion–Fjäderdistans

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall placera fjädern i rätt position</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall rymmas inuti pelaren</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 24. Kriterier, fjäderdistans.

13.17.1 Lösningsutarbetning

Den här komponenten skall utformas så den passar ihop med pelaren och stopphatten.

Figur 45. Fjäderdistans.

13.17.2 Materialval

Samma material som väljs till pelaren väljs till fjäderdistansen. Plagierat materialval kommer därför att användas.

Valt material: Mässing SS 5165-04
13.18 Detaljkonstruktion–Yttergavel, höger

Höger yttergavel är ett skyddshölje för högersidan av fiskerullen och skall även tilltala användaren. Den utgör också plattformen för styrskenan som skall fästas på yttergaveln.

De begränsningar som gäller för yttergaveln är att den skall ha samma diameter som den befintliga yttergaveln på Classic 5000c. På gaveln skall det placeras hål för pelarna, styrskenan, tryckblecket och för vevpaketet.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall fungera som ytterhölje</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall utgöra grund för styrskenan</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Skall ha samma ytterdiameter</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Skall vara förenlig med övriga komponenter</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 25. Kriterier, höger yttergavel.

13.18.1 Lösningsutarbeitning

13.18.2 Materialval

Samma material som används till den befintliga yttergaveln kommer att användas. Plagierat materialval kommer därför att tillämpas.

Valt material: Aluminium SS 4120-24
13.19 Detaljkonstruktion–Yttergavel, vänster

Vänster yttergavel är ytterhöljet för vänstersidan av rullen. Den utgör också plattformen för styrskenan som skall fästas på gaveln.

De begränsningar som gäller för gaveln är att den skall ha samma diameter som den befintliga yttergaveln. På gaveln skall det placeras hål för pelarna, styrskenan och för de komponenter som skall fästas på gavelns insida.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skall fungera som ytterhölje</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall utgöra grund för styrskenan</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Skall ha samma ytterdiameter</td>
<td>K</td>
</tr>
<tr>
<td>Omg</td>
<td>Gaveln skall passa för de sammanlänkande komponenterna</td>
<td>K</td>
</tr>
</tbody>
</table>

13.19.1 Lösningsutarbetning

Då den ny gaveln endast skall fästas i tre punkter, jämfört med yttergaveln på Classic 5000c som har fyra infästningar, kommer endast tre hål göras. Utöver detta dimensionerades två stycken hål, dessa är avsedda för styrskenan som skall möjliggöra bygelns infästning.
13.19.2 Materialval

Samma material som används till de befintliga yttergavlarna kommer att användas. Plagierat materialval kommer därför att tillämpas.

Valt material: Aluminium SS 4120-24
13.20 Detaljkonstruktion–Styrskena, höger

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skenan skall vara placerad på yttergaveln</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skenan skall rymma fjäder</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 27. Kriterier, höger styrskena.

13.20.1 Lösningsutarbetning

Styrskenan dimensioneras mot yttergavelns ytterdiameter. Eftersom fjädern är rund och ska placeras inne i styrskenan görs tvärsnittet utifrån fjäderns dimensioner. För att fästa styrskenan på yttergaveln görs två klackar med hål, för att kunna nita ihop de två delarna.
13.20.2 Materialval

Plagierat materialval kommer att användas till skenan. Samma material som används till de båda yttergavlarna kommer även att väljas till styrskenan.

Valt material: Aluminium SS 4120-24
13.21 Detaljkonstruktion–Styrskena, vänster

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skenan skall kunna fästas på yttergaveln</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skenan skall rymma fjäder</td>
<td>K</td>
</tr>
</tbody>
</table>

13.21.1 Lösningsutarbetning

Styrskenan skall dimensioneras mot yttergavelns ytterdiameter. Eftersom fjäder är rund och ska placeras inne i styrskenan, gör tvärsnittet utifrån fjäderns dimensioner. För att fästa styrskenan på yttergaveln gör två klackar med hål, för att kunna nita ihop de två delarna. Ett stopp placeras i styrskenan så att båda gavlarna tar upp lika mycket kraft från fjädrarna då bygeln fälls fram.
13.21.2 Materialval.

Plagierat materialval kommer att användas till styrskenan. Samma material som används till de båda yttergavlarna kommer även att väljs till skenan.

Valt material: Aluminium SS 4120-24
13.22 Detaljkonstruktion–Linförare

Linföraren har till uppgift att hålla tråden för linförare på plats och överföra rörelsen från evighetsskruven, med hjälp av knivbulten.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Skall hålla tråden för linföraren fixerad</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall ha samma bredd som Classic 5000c</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Skall rymma knivbulten</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 29. Kriterier, linförare.

13.22.1 Lösningsutarbetning

Vid framtagning av linföraren användes den befintliga linföraren på Classic 5000c som grund. Underdelen ändrades så den fick samma funktion som linföraren på EON. Avstånd och mått anpassas utifrån de ändringar som tidigare gjorts på innergavlarna.
13.22.2 Materialval.

Plagierat materialval kommer att användas till linföraren. Samma material som används till den befintliga linföraren på Classic 5000c kommer att användas. Detta material har med framgång används under en längre period och anses därför lämpligt.

Valt material: Mässing SS 5170-04
13.23 Detaljkonstruktion–Knivbult

Knivbulten är den komponent som skall löpa i evighetsskruven och därmed driva linspridaren. Den skall vara placerad i linföraren, där den hålls på plats av kamaxeln. Då kamaxeln vrids vid frikopplingen skall knivbulten sjunka ner så långt att den inte går in i evighetsskruven.

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>Skall passa i linföraren</td>
<td>K</td>
</tr>
<tr>
<td>Proc</td>
<td>Skall kopplas ur/in i evighetsskruven</td>
<td>K</td>
</tr>
</tbody>
</table>

13.23.1 Lösningsutarbetning

13.23.2 Materialval

Materialet som använts till knivbulten på EON kommer även att användas till den nykonstruerade knivbulten. Plagierat materialval kommer därmed tillämpas.

Valt material: Höghållfast Mässing KS D 5101 (JIS H 3250)
13.24 Detaljkonstruktion–Tråd för linförare

Kriterier

<table>
<thead>
<tr>
<th>PPOME</th>
<th>Kriterier</th>
<th>K/Ö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc</td>
<td>Tråden skall fästas på linföraren</td>
<td>K</td>
</tr>
<tr>
<td>Prod</td>
<td>Tråden skall vara placerad mellan linförare och pelare</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabell 31. Kriterier, tråd för linförare.

13.24.1 Lösningsutarbetning

13.24.2 Materialval

Valt material: Rostfritt fjädertråd SS 2331-06
14. Produktsammanställning

14.1 Ingående moduler

I detta kapitel beskrivs de ingående modulerna med tillhörande detaljkonstruktioner och ingående komponenter. Till alla sammanställningsritningar finns detaljritningar, se bilaga 1.

14.1.1 Vevpaket, modul (1)

Modulen finns på Sammanställningsritning 1001, positionsnummer 1. Vevpaketet med tillhörande komponenter avsedda för slirbroms och mekanisk broms används enligt den befintliga Ambassadeur, Classic 5000c. [19]

14.1.2 Kåpa, höger (2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yttergavel, höger</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Tryckfjäder, styrskena</td>
<td>2</td>
<td>1</td>
<td>5854</td>
<td></td>
<td>Sth. Fjäderfabrik</td>
</tr>
<tr>
<td>Styrskena, höger</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Skruv, höger yttergavel</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Stopphatt</td>
<td>5</td>
<td>1</td>
<td></td>
<td>2031</td>
<td></td>
</tr>
<tr>
<td>Stopphatt, original</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Nit KN MÄSS 2x3</td>
<td>7</td>
<td>2</td>
<td>06609023</td>
<td></td>
<td>Mattssons</td>
</tr>
</tbody>
</table>

Tabell 32. Modul, höger kåpa.
14.1.3 Kopplingsplatta, modul (3)

Modulen finns på sammanställningsritningen Kopplingsplatta, modul, med ritningsnummer 3001. Tabell 33 visar de komponenter som ingår i modulen.[19]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromsring</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Nit</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Bromsgavel</td>
<td>3</td>
<td>1</td>
<td>3011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stift, bromsgavel</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Stift, huvuddrev</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Distansbult</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Länkarm</td>
<td>7</td>
<td>1</td>
<td>3021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stift, länkarm</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Tryckbleck</td>
<td>9</td>
<td>1</td>
<td>3031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopplingsarm</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Ok</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Tillhållare kpl.</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
</tbody>
</table>

Tabell 33. Modul, kopplingsplatta.
14.1.4 Stativ, modul (4)

Modulen finns på sammanställningsritningen Stativ, modul, med ritningsnummer 4001. Tabell 34 visar de komponenter som ingår i modulen. [7] [10] [19]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotplatta</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Fjäderdistans</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4011</td>
<td></td>
</tr>
<tr>
<td>Tryckfjäder</td>
<td>3</td>
<td>1</td>
<td></td>
<td>5778</td>
<td>Sth. Fjäderfabrik</td>
</tr>
<tr>
<td>Pelare</td>
<td>4</td>
<td>1</td>
<td></td>
<td>4021</td>
<td></td>
</tr>
<tr>
<td>Innergavel, vänster</td>
<td>5</td>
<td>1</td>
<td></td>
<td>4031</td>
<td></td>
</tr>
<tr>
<td>Innergavel, höger</td>
<td>6</td>
<td>1</td>
<td></td>
<td>4041</td>
<td></td>
</tr>
<tr>
<td>Fjäderpinne</td>
<td>7</td>
<td>1</td>
<td></td>
<td>4051</td>
<td></td>
</tr>
<tr>
<td>Låsbleck</td>
<td>8</td>
<td>1</td>
<td></td>
<td>4061</td>
<td></td>
</tr>
<tr>
<td>Nit, låsbleck</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Frikopplingsbleck</td>
<td>10</td>
<td>1</td>
<td></td>
<td>4071</td>
<td></td>
</tr>
<tr>
<td>Dragfjäder</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Frikopplingspinne</td>
<td>12</td>
<td>1</td>
<td></td>
<td>4081</td>
<td></td>
</tr>
<tr>
<td>Pelare, original</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Linspridare, modul</td>
<td>14</td>
<td>1</td>
<td></td>
<td>4101</td>
<td></td>
</tr>
<tr>
<td>Vridfjäder</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Skruv, vridfjäder M2x3</td>
<td>16</td>
<td>1</td>
<td>798523</td>
<td></td>
<td>Mattssons</td>
</tr>
<tr>
<td>Positioneringsbricka</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
</tbody>
</table>

Tabell 34. Modul, stativ.

Till sammanställningsritningen Stativ, modul hör även en delsammanställning över Linspridare, modul. Den här modulen finns på sammanställningsritning 4104.
Komponenter som tillhör modulen är enligt tabell 35. [19]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evighetsskruv</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Skyddshölje</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Tråd för linförare</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4111</td>
<td></td>
</tr>
<tr>
<td>Linförare</td>
<td>4</td>
<td>1</td>
<td></td>
<td>4121</td>
<td></td>
</tr>
<tr>
<td>Kamaxel</td>
<td>5</td>
<td>1</td>
<td></td>
<td>4131</td>
<td></td>
</tr>
<tr>
<td>Vippa</td>
<td>6</td>
<td>1</td>
<td></td>
<td>4141</td>
<td></td>
</tr>
<tr>
<td>Knivbult</td>
<td>7</td>
<td>1</td>
<td></td>
<td>4151</td>
<td></td>
</tr>
<tr>
<td>Låsring</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
</tbody>
</table>

Tabell 35. Modul, linspridare

14.1.5 Spole, modul (5)

Modulen finns på Sammanställningsritning 1001, positionsnummer 5. Spolen samt de komponenter som är kopplade till modulen har valts enligt de som finns på Ambassadeur Classic 5000c. Den befintliga modulen kommer därför att användas. [19]
14.1.6 Kåpa, vänster (6)

Modulen finns på sammanställningsritningen Kåpa, vänster, med ritningsnummer 5001. Tabell 36 visar de komponenter som ingår i modulen. [7] [10] [19]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Skruv, pelare</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Yttergavel, vänster</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5011</td>
<td></td>
</tr>
<tr>
<td>Tryckfjäder, styrskena</td>
<td>3</td>
<td>1</td>
<td>5854</td>
<td></td>
<td>Sth. Fjäderfabrik</td>
</tr>
<tr>
<td>Styrskena, vänster</td>
<td>4</td>
<td>1</td>
<td></td>
<td>5021</td>
<td></td>
</tr>
<tr>
<td>Stift, kugghjul</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Kugghjul</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td>Abu</td>
</tr>
<tr>
<td>Nit KN Mäss 2x3</td>
<td>7</td>
<td>2</td>
<td>06609023</td>
<td></td>
<td>Mattssons</td>
</tr>
</tbody>
</table>

Tabell 36. Modul, vänster kåpa.

14.1.7 Bygel, modul (7)

Modulen finns på sammanställningsritningen Bygel, modul, med ritningsnummer 6001. Tabell 37 visar de komponenter som ingår i modulen. [10]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hissknapp</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6011</td>
<td></td>
</tr>
<tr>
<td>Fjäderbleck</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6021</td>
<td></td>
</tr>
<tr>
<td>Skruv, fjäderbleck M2x3</td>
<td>3</td>
<td>1</td>
<td>798523</td>
<td></td>
<td>Mattssons</td>
</tr>
<tr>
<td>Bygel</td>
<td>4</td>
<td>1</td>
<td></td>
<td>6031</td>
<td></td>
</tr>
<tr>
<td>Skruv, hissknapp M2x3</td>
<td>5</td>
<td>2</td>
<td>798523</td>
<td></td>
<td>Mattssons</td>
</tr>
</tbody>
</table>

Tabell 37. Modul, bygel.

109
14.2 Slutlig produkt

![Slutlig produkt](image_url)
15. Kriterieuppfyllelse

I kapitlet kommer den slutliga produkten att utvärderas med avseende på den totala kriterieuppfyllelsen. Skallkriterierna och börkriterierna behandlas i separata kapitel där kriterierna utvärderas var och ett för sig.

15.1 Kriterieuppfyllelse Skallkriterier

Här utvärderas de huvudkriterier, skallkriterier, som ställts upp för produkten enligt kapitel 5.1.

- Skall medföra minimalt motstånd vid utkast:

 Kriteriet har i största grad uppfyllts. Konstruktionen har resulterat i att ett helt fritt utkast uppnås med multiplikatorrullen. Konstruktionen ger härmed upphov till minimalt motstånd för fiskelinan.

- Skall sprida linan jämt:

 Även det här skallkriteriet har uppfyllts till belåtenhet. Linspridaren har modifierats så det endast finns en tråd till linföraren. Men uppgiften kommer trots detta uppfyllas på grund av den övriga konstruktionens utförande.

- Skall klara korrosiv miljö:

 Alla ingående komponenter klarar korrosiv miljö. Material som använts till produkten är plast, rostfritt stål, aluminium och mässing. Material till komponenterna har valts efter de befintliga materialen i Classic 5000c.
Linan skall spridas direkt vid invevning:
Linan kommer på grund av den fjäderbelastade bygeln att spridas jämt, direkt vid påbörjad invevning. Bygeln förs fram, då användaren initierar invevning av fiskelina, vilket sker genom fjäderbleckets urkoppling.

Skall vara utrymmesmässigt likvärdig:
Konstruktionen kommer i jämförelse med Ambassadeur Classic 5000c att bygga ut något vad gäller storleken. Ytterdiametern kommer öka något på grund av de båda styrskenorna som lagts till på yttergavlarna. Bygeln rörelseförfarande och därmed styrskenornas utförande är något bör vidareutvecklas för att minska multiplikatorrullens storlek.

Skall inte påverka andra funktioner negativt:

Skall vara tyst:
Multiplikatorrullen skall enligt kriteriet vara tyst, vad gäller brukning. Eftersom utprovning av prototypen inte har kunnats genomföras är det svårt att redogöra för uppfyllelsen av det här kriteriet.
Skall vara funktionssäker:

Skall vara tillverkningsriktig.

Produkten är tillverkningsriktig i den grad att de ingående komponenterna till stor del kan användas enligt utförandet på de befintliga delarna. Konstruktionen i sin helhet är förvisso mer komplex än dagens Classic 5000c vilket försvårar tillverkningen. Men viktigt att poängtera är de fördelar multiplikatorrullen medför i jämförelse med Ambassadeur Classic 5000c, vilket väger tungt i sammanhanget.

Skall vara robust:

Kravet har i högsta grad uppfyllts. Multiplikatorrullen innefattar inga veka och ytliga komponenter. Komponenterna är väl inkapslade, vilket medför en robust konstruktion.

Skall vara lätt att använda:

Den slutliga konstruktionen har utformats till en användarvänlig multiplikatorrulle. Den kommer för användaren vara enkel att bruka då den ej har ett komplicerat användningssätt.
15.2 **Kriterieuppfyllelse Börkriterier**

Börkriterierna har inte beaktats i samma grad som skallkriterierna under konstruktionsarbetet. Syftet har däremot varit att uppfylla dessa i största möjliga utsträckning. Börkriterierna enligt kap. 5.2.

- **Bör vara estetiskt tilltalande:**
 Multiplikatorrullens estetiska utförande är till viss del enligt Classic 5000c. Två stora skillnader är tillkomsten av styrskenor och bygel. Bygelns styrande komponenter, däribland styrskenornas utförande kan komma att vidareutvecklas med tanke på det estetiska utförandet.

- **Bör vara ergonomiskt riktig:**

- **Bör ej tillföra viktökning:**
 Konstruktionen är mer komplext än Classic 5000c och innefattar fler komponenter, vilket leder till viss viktökning. För att uppfylla huvudkravet, fritt utkast, har funktioner lagts till som medför ökad komplexitet.

- **Bör vara billig:**
 Det är svårt att utvärdera kostnaderna för konstruktionen eftersom alla prototypdelarna inte är tillverkade. Däremot kan det på grund av den ökade komplexiteten konstateras att en viss kostnadsökning krävs för att framställa produkten. Givetvis beror priset på vilka kvantiteter produkten tillverkas i. Däremot tillämpar de båda produktarna, Ambassadeur Classic 5000c och
den nya konstruktionen, två vitt skilda funktionssätt. Den nya konstruktionen
har stora fördelar jämfört med Ambassadeur Classic 5000c och kan vara ett
vinnande koncept för att fånga kundens intresse.

➢ Bör vara miljövänlig:

Strävan har varit att erhålla en så miljövänlig rulle som möjligt. Eftersom
utgångspunkten har varit Ambassadeur Classic 5000c har målet med
konstruktionsarbetet varit att använda de material som tidigare använts i
Classic 5000c. Därmed skulle det krävas få ingående materialtyper. Till
några nykonstruktioner har det däremot krävts andra material, vilka Abu
använder i sina övriga produkter.

➢ Bör vara underhållsfri:

Hur underhållsfri multiplikatorrullens konstruktion kommer bli är svårt att
bedöma eftersom en fullständig prototyp inte finns och inga riktiga tester
kunnat utföras på produkten. Underhållet anses däremot vara begränsat.
Bygeln och övriga rörliga detaljer kan komma att behöva viss underhållande
smörjning. Underhållet kommer däremot inte innebära några svårigheter för
användaren då dess detaljer befinner sig i lättåtkomliga positioner.
16. Referenser

16.1 Litteratur

[9] Stece AB, ”Fjädrar från lager”, Produktkatalog
16.2 Internet

16.3 Kontaktpersoner / Företag

[19] Holma Thomas, *Handledare Abu Garcia*, tel: 0454-88065, mail: tsholma@se.purefishing.com

[20] Lundbergh Jan, *Luleå Tekniska Universitet*, tel: 0920-91748, mail: Jan.Lundberg@arb.luth.se

[22] Hultgren Kjell, *AB Ledarskruv*, tel: 08-57168510

[24] *Alfamex*, S.A., mail: alfamex@amec.es

[25] *Simet*, mail: info@simet.it

[26] Karlskrona komun, *Statsbibliotek*

[27] Blekinge Tekniska Högskola, *Höskolebibliotek*, Karlskrona
16.4 Programvara

SDRC, I-DEAS, 3D-verktyg

Microsoft, Word, Ordbehandling

Microsoft, Excell, Tabeller
BILAGA 1

RITNINGAR
Examensarbete Utvecklingsteknik
Examensarbete Utvecklingsteknik
Examensarbete Utvecklingsteknik
Examensarbete Utvecklingsteknik
Examensarbete Utvecklingsteknik

A-A

1. Aluminium SS 4120-24

<table>
<thead>
<tr>
<th>Artikelnr</th>
<th>Tjänst / Skickning, bekräftning, material, dimension e.d.</th>
<th>Artikelnr / Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.T</td>
<td>O.F.</td>
<td>2001-05-18</td>
</tr>
</tbody>
</table>

Aff的伟大

Högskolan 1

Karlakrona/Ronneby

Inst. för Maskinteknik

4651

Scale 10:1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Artikelnr</th>
<th>Artikel</th>
<th>Beschreibung, beteckning, material, dimensional etc.</th>
<th>Artikelnr</th>
<th>Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>Låsring</td>
<td>Enl. Abu</td>
<td>4151</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Knivbult</td>
<td>4141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Vippa</td>
<td>4131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Komaxel</td>
<td>4121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Linfärare</td>
<td></td>
<td>4111</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Tröd för Linfärare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Skyddshölje</td>
<td></td>
<td>Enl. Abu</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Evighetskruv</td>
<td></td>
<td>Enl. Abu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Namn</th>
<th>Artikelnr</th>
<th>Mängd</th>
<th>Enhet</th>
<th>Datum</th>
<th>Personlaga</th>
<th>Bemärkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.T</td>
<td>C.F</td>
<td>2001-05-18</td>
<td></td>
<td>1:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Källa: Högskolan I
Länspridare, modul
Förlagsnummer: 4131
Examensarbete Utvecklingsteknik

Artikelnr	Artikel	Titel / Becikning, beskrivning, material, dimension etc.	Referensnr	Tekenbeskrivning	Kopia, Vänster	Skalningnummer	Ugift	Vind
7 2	Nit KN MÄSS 2x3	Art.nr.06609023						
6 1	Kugghjul	Enl.Abu						
5 1	Stift, kugghjul	Enl.Abu						
4 1	Styrsko, vänster	5021						
3 1	Tryckfjäder, styrsko	Art.nr.5854						
2 1	Yttergavel, vänster	5011						
1 3	Skruv, pelare	Enl.Abu						

Högskolan I
Karlskrona/Ronneby
Inst. Förd Maskinteknik
5001
Examensarbete Utvecklingsteknik
Fjädermast SS 2331-48

<table>
<thead>
<tr>
<th>Antal</th>
<th>Tittel / Betitling, beteckning, material, dimensions etc.</th>
<th>Artikel nr / Karaktärer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fjäderblöcke</td>
<td>2001-05-18</td>
</tr>
</tbody>
</table>

Högskolan I
Karlstad/Ronneby
Institut för Maskinteknik

6021