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Abstract:
A theoretical model for identification of acoustical non-linearity using
Burger’s equation was implemented in a MATLAB program. The program
identified both the non-linearity parameter and the distance from the signal
source. Tests were performed in order to verify the theories. Tests with a
steel bar showed no detectable non-linearity, probably due to insufficient
wave amplitude by the signal source. A crack model was made with
successful result.
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1 Notation

A Material parameter
am Coefficient
B Material parameter
b Dissipation
c0 Low amplitude signal sound speed
In,m Integral quantity
i Imaginary unit
Jn Bessel function
ksps Kilo Samples Per Second
Msps Mega Samples Per Second
m Integer
n Integer
p Pressure
p0 Equilibrium pressure
t Time
t1 Time
t2 Time
V Dimensionless velocity
V0 Dimensionless boundary velocity
v Velocity
v0 Source velocity amplitude
x Propagated distance
β Non-linear parameter
ε Non-linearity over dissipation ratio
θ Dimensionless retarded time
θ0 Integration variable
θd Integration limit
ρ Density
ρ0 Equilibrium density
σ Dimensionless propagated distance
τ Retarded time
ω Angular frequency
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2 Introduction

Great interest in non-linear acoustics has been expressed recently in the
investigation of micro-inhomogeneous media exhibiting high acoustic
non-linearity. The interest of such media is, among other things, due to
the possibility of using non-linear effects for non-destructive testing. The
conventional methods of non-destructive testing utilise the measurement
of linear acoustic parameters of the investigated media; i.e. the excitation
and the reception of the wave have the same frequencies. The influence of
cracks on the propagation and scattering of linear waves have been
discussed in many books and articles, for example [3]. Recently, non-
linear vibro-acoustic methods have been investigated in which the excited
and received frequencies are different [8,12,13]. These methods provide
new opportunities for detecting various defects in materials. The basic
concept of the proposed methods is simple: materials containing defects
have a much larger non-linear response than materials with no defects.
Metals containing very small cracks are easily detected with non-linear
analysis. The non-linear parameter for a micro-inhomogeneous material
can be 10-1000 times higher than for the same material with no defects.

The aim of this work is to investigate a method for non-linear analysis
suggested by our supervisor Claes M. Hedberg, which is described in
chapter 3. A program for identification of non-linearity, using Burgers’
equation, is made in MATLAB. Empirical testing of a non-linear material
is conducted in order to verify the theories.

There are existing methods of non-linear investigations such as those
suggested by A. Sutin [12,13]. One of these methods, using two input
frequencies, is also briefly investigated. This investigation is purely
empirical and no theoretical interpretations are made.

2.1 Non-Linear Acoustics

Sound waves are made up of density fluctuations in a medium. That
medium can be for example air, water or metal. Depending on the
medium the sound behaves differently. The most obvious difference is the
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speed of sound, which varies in a wide range for different mediums.
While sound propagates it will change. It is stronger closer to the signal
source, mostly because of geometrical spreading into a larger volume but
also because of energy loss to the medium. The sound waves are
attenuated. High frequencies are over a distance attenuated more than
lower ones. For example if you have been close to jet-aeroplane you
know that there are some high tones shrieking. When the jet is in the sky
however, you hear mostly low frequencies.

Sometimes different frequencies travel with different speed in the same
medium. This is called dispersion. Dispersion is neglected in this paper.
If waves with different amplitudes propagate with different speeds we call
the wave non-linear.

Most mediums usually have a linear elastic behaviour; i.e. the
compression of the media is proportional to the pressure. Acoustic non-
linear effects occur when the media no longer have a linear elastic
behaviour. Examples of such media are liquids containing gas bubbles,
granular, porous, and polycrystalline media.

The main reason for a media such as steel being non-linear is that it
contains cracks. Large enough wave amplitude will make the crack open
and close, i.e. change the efficient cross-section area, see Figure 2.1. This
affect the elasticity since the spring constant is proportional to the
efficient cross-section area.

a b

Figure 2.1. a) Crack opening, decreasing contact surface. b) Crack
closing, increasing contact surface.

This phenomenon will eventually change the waveform from sinusoidal
into a sawtooth profile with increasing distance from the signal source.
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This change of shape of the wave can be used to detect non-linearity.
When a perfect sawtooth shape is achieved, the wave will give rise to
shock waves. An example of a wave propagated through a non-linear
media is seen in Figure 2.2.

Figure 2.2. Input signal and propagated signal (dashed line).

In Figure 2.3 and Figure 2.4 the frequency spectra (FFT-analysis) of the
two signals are shown.

Figure 2.3. FFT-analysis input signal.

In Figure 2.4, the typical high frequency content of a wave propagated
through a non-linear media is shown.
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Figure 2.4. FFT-analysis propagated signal.

The process of shock wave formation is counteracted by dissipative
factors – viscosity and thermal conductivity – as well as propagation and
speed dispersion. These factors lead to a more sinusoidal shape of the
wave profile. Correspondingly, the spectral composition undergoes a
change: shock wave formation give rise to high frequency harmonic
generation, while dissipation results in faster damping of the wave
spectrum high-frequency components. Thus, the wave evolution is
determined by the competing factors of non-linearity, dissipation and
dispersion.
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3 Method of Non-linear analysis

The main idea is to assume that every half-period has originated from a
signal consisting of a small number of harmonic frequencies. Every half-
period is extended so that a full period is obtained. A Fourier analysis
(FFT) is performed for each of these periods. To determine the
dimensionless dissipation over non-linearity ratio and the dimensionless
distance, the Fourier-coefficients are then compared with reference
Fourier-coefficients calculated theoretically from Burgers’ equation. This
is done for several periods and an average is calculated. The reference
Fourier-coefficients is calculated using two different solutions to Burgers’
equation. These coefficients forms matrices which are used to determine
the above mentioned parameters of a measured signal.
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4 Theoretical Model

Burgers’ equation (4.1) is to be used for this investigation. The reason for
this is that Burgers’ equation can handle a media with both non-linear and
dissipative effects, however, it neglects diffraction. This version of the
equation is one-dimensional.

Burgers’ equation is often expressed non-dimensionally according to
equation 4.1. For a description of the derivation of Burgers’ equation, see
[10] p. 7-9.
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The true quantities are: v is the velocity for the measured point, v0 is the
source velocity amplitude, ω is the angular frequency, x is the propagated
distance, β is a non-linearity measure, c0 is the low amplitude signal
sound speed, τ is the retarded time, t is the time, b is a dissipation
measure, p0 is the equilibrium pressure, p is the pressure, ρ0 is the
equilibrium density and ρ is the density.

For a single harmonic continuous boundary condition, V0=sinθ, Burgers’
equation has several different solutions, which hold for different parts of
the solution domain. Four of them are investigated here, namely the
Bessel-Fubini, Fay, Mendousse and Hedberg solutions.

The Bessel-Fubini (1935) and Fay (1931) solutions are both analytical but
they apply on different distances (σ) from the signal source, Bessel-Fubini
(4.9) σ <1 and Fay (4.10) σ >3. Note that the Bessel-Fubini solution
neglects dissipation.
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Where Jn is a Bessel function.

For the derivation of (4.9) see [5] and (4.10) see [4].

There is a general solution, which in theory is valid for all distances and
non-linear over dissipation ratio, namely the Mendousse solution.
This solution (4.11) was presented in 1964. Because of poor convergence
of the Bessel function series, the solution is not stable when both ε and σ
are small, see [2].
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For the derivation of (4.11) see [9].

The Hedberg solution is an integral method and holds for all σ and
neglects dissipation. This solution is numerically equivalent to an earlier
solution by Blackstock [1].
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The integration limit θd is found by, for the first root larger than zero
solving

dd θσθπ sin+= (4.15)

For the derivation of  (4.12)-(4.15), see [6] Paper 5, p. 3-6.
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Eq. (4.11) and eq. (4.12) is used for this investigation. Eq. (4.12) is used
for ε =0 only. The reason for choosing these solutions over Bessel-Fubini
and Fay is that they apply for all σ.

4.1 Calculation of Reference Fourier-coefficients

To calculate the reference Fourier-coefficients, eq. (4.11) and (4.12) are
used in their respective region of application. The calculation of Fourier-
coefficients (1-10) with known ε and σ is done to enable the comparison
of a measured signal, and thereby determine a propagated signal’s ε and
σ. The procedure is described in chapter 4.2. Eq. (4.11) is used for all σ
and ε from 0.04 to 1. As this solution becomes unstable with small ε and
σ, eq. (4.12) is used for ε =0. The gap between ε=0 and ε =0.04 is
interpolated using cubic interpolation so that this gap is filled. Now a
complete matrix for each Fourier-coefficient with ε and σ as variables
exists.  Each coefficient is then divided with the first to obtain the non-
dimensional values of the coefficients. This will make the identification
of ε and σ easier, since the dependence of signal amplitude is now
eliminated. A plot of such a matrix is seen in Figure 4.1.

Figure 4.1. Fourier-coefficient ratio for the 3rd Fourier-coefficient, σ and
ε as variables.
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4.2 The analysis

Every half-period of the measured signal is extended so that a full period
is obtained. An FFT-analysis is performed for each of these periods. As in
the theoretical calculations, each Fourier-coefficient is divided with the
first one. These ratios are compared with their respective calculated
equivalence. A measured ratio corresponds to certain level in the
calculated σε-matrix, see Figure 4.2. This forms a curve in the σε-plane,
see Figure 4.3. Such curves are calculated for two different Fourier-
coefficient ratios. These curves will at some point cross each other, see
Figure 4.4. The crossing-point determines ε and σ. To get as accurate
result as possible, several periods of the measured signal is used and then
an average is calculated for ε and σ.

Figure 4.2. Fourier-coefficient level.
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Figure 4.3. ISO-level curve in the σε-plane.

Figure 4.4. ISO-level curves, b3/b1 and b5/b1.
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5 Application of Theoretical Model in
MATLAB

The main-program made in MATLAB contains five steps.

The first step imports a measured signal into the program and conditions
the signal. Offset etc. is compensated for. The signal is also integrated
since the measured signal property is acceleration; Burgers’ equation uses
the velocity.

The second step calculates the Nyqvist frequency, which equals half the
sampling frequency.

The third step finds the positions where the signal crosses the zero-value
by linear interpolation, see Figure 5.1. This operation is performed in
order to find the positions where the signal is to be divided, according to
theories in chapter 3.

Figure 5.1. Zero positions for measured signal.

Step four divides the signal in half periods, which are extended so that
full periods are obtained, see Figure 5.2. An FFT-analysis is performed on
each period to obtain the Fourier-coefficients.
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Figure 5.2. Half period (solid line) extended to retrieve a full period.

The last step calculates σ and ε as described in chapter 4.2.

Testing this program on theoretically calculated signals show that the
program has difficulties on determining the correct ε and σ for some
values. A test with Fourier-coefficients 1-10 is made and the 3rd and the
5th coefficients are found to give the most accurate result. However, the
program still have difficulties identifying the correct values for some ε
and σ. There are multiple reasons for this error. Firstly, the system of
equations is badly conditioned for the outer regions of the σε-matrices.
Secondly, the numerical accuracy from the FFT-analysis and the several
interpolations made in the program, could be a source of error. It is
discovered that the error is not random, i.e. a trend exists. Therefore a
correction-matrix is calculated. This matrix is obtained by identifying
signals with known ε and σ. The error from the correct values of ε and σ
is then stored in a matrix, which is used for correction of the calculated
values of ε and σ in the main program.
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6 Test phase

The measurements are performed on a steel bar and a hand made model
of a crack, see Figure 6.1. Since no rupture-testing machine is available,
the steel bar is simply bent back and forth to introduce micro-cracks. As
signal-source a shaker is used and as gauge an ICP pressure sensor and an
accelerometer. The reason for choosing a piezoelectric pressure sensor is
that they are characterised by their ability to measure extremely fast
pressure fluctuations, and can accurately sense small dynamic pressure
fluctuations.

To maximise the input amplitude it is desirable that the excited frequency
is a resonant frequency of the test object. This fact forces us to use rather
high frequencies when measuring on the steel bar, i.e. 40-50 kHz.
Pressure sensors are generally linear over a wide dynamic range, this
particular one 8.3-500 kHz, which satisfies our needs. A test on the steel
bar is also made with two input frequencies, according to [12,13]. This
test is made for empirical reasons only, i.e. to see if this method provides
a more sensitive way of crack-detection.  The investigation is limited to
graphical interpretation of an FFT-analysis of the measured signal. For
the measurements on the crack model, an accelerometer is used because
of the much lower input frequencies. To make sure the test object is non-
linear, a simple model of a crack is made, see Figure 6.1.

Solid steel Brass
membrane

Paper

Figure 6.1. Handmade test object.
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A brass membrane with paper in between and two weights build up this
device. The device will vibrate as an excitation signal is applied and
thereby change the contact surface area. This ensures us that the test
object is indeed non-linear. The reason for putting paper inside the
membrane is that we can avoid the harsh metal to metal contact and get a
smoother transfer of the wave. Note that this does not remove the non-
linear effect, it simply removes the most extreme wave amplitudes. This
simple model of a crack enables the use of much lower excitation
frequency. The required power from the signal source is obviously also
lower than for a solid material with cracks.

6.1 Test Equipment

The equipment used for this experiment is shown in table 6.1.

Table 6.1. Test Equipment

Shakers Ling Dynamic Systems, V201/3 and V406/8
ICP Pressure Sensor Piezotronics, PCB 132A31
ICP-amplifier Piezotronics, PCB 480C02
Digital Oscilloscope Hitachi, VC6025A
Digital Measuring system Hewlett Packard, 35650
Accelerometer DYNATRAN, 3220A
Steel bar 5x5x400
Crack model Brass plate and steel weight

The shaker’s frequency response is from DC to 9 kHz. It is, however,
capable of much higher frequencies (up to 50 kHz) but is no longer in its
linear range. This is, however, not considered a problem since the
linearity only concerns the amplitude, and not the wave shape.

The pressure sensor has a frequency range from 8.3 kHz to 500 kHz. This
fact limits our selection of input excitation frequency to 8.3-50 kHz for
the steel bar. The chosen excitation frequency, however, is a resonant
frequency of the test system. The oscilloscope has capabilities of a
sampling frequency up to 20 Msps. The digital output however, is limited
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to a resolution of eight bits and 1000-4000 samples, depending on the
number of active channels etc. The accelerometer has a linear response
range from 50 to 3000 Hz.

6.2 Test Procedures

6.2.1 One Input Frequency

The measurements are conducted with a shaker as signal source and an
ICP pressure sensor or an accelerometer as a gauge. The shaker is glued
to the test object and the sensor is attached at the opposite end with wax.

A sinusoidal signal is then applied to the test object by the shaker and the
propagated signal is measured with the sensor. The input frequency is
chosen to one of the systems resonant frequencies. This is done in order
to retrieve an output signal. If the input frequency is chosen differently,
the wave amplitude is hardly measurable. This is due to the low output
from the shaker at this frequency (40-50 kHz). Note that the input
frequency is the resonant frequency for the system, and not for the steel
bar alone. This is a disadvantage when trying to maximise the wave
amplitude in the non-linear media (the steel bar). The data from the
measurements are transferred from the digital oscilloscope to a PC.

6.2.2 Two Input Frequencies

When using two input frequencies, shakers are attached at both ends and
the sensor is attached to the side of the test object.

Two sinusoidal signals are then applied to the test object by the shakers
and the propagated signal is measured with the sensor. The high
frequency input signal is chosen to one of the systems resonant
frequencies. This is done in order to retrieve an output signal. If the input
frequency is chosen differently, the wave amplitude is hardly measurable.
This is due to the low output from the shaker at this frequency (40-50
kHz), which forces us to use the systems resonant frequency. Note that
the input frequency is the resonant frequency for the system, and not for
the steel bar alone. This is a disadvantage when trying to maximise the
wave amplitude in the non-linear media (steel bar).
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6.3 Test set-up

An overview of the equipment set-up is seen in Figure 6.2.

Oscilloscope

Amplifier

Shaker

Test objectPressure
sensor

Signal generator

PC

ICP-
amplifier

Figure 6.2. Test set-up overview.

The hand made crack model set-up is seen in Figure 6.3

Figure 6.3. Test set-up for crack model.
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The accelerometer is attached with wax on top of the hand made crack
model and the shaker is glued to the opposite end.
The same set-up is used for the steel bar when using one excitation
frequency.

When using Sutin’s method with two input frequencies, two shakers are
attached at opposite ends of the test object and the sensor is attached on
the side of the object, see Figure 6.4.

Figure 6.4. Test set-up. Two input frequencies.

6.4 Test results

Testing with steel bars shows no detectable quadratic non-linearity. The
reason for this is probably the limited output power from the shaker. A
more powerful piezo actuator would perhaps have been able to reveal the
non-linearity, see [13]. However, a different effect is discovered. A
quadratic non-linear effect would have shown itself as frequency
components located around the high frequency with multiples of the low
frequency, see Figure 6.5.
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Figure 6.5. FFT of theoretical signal. Two input frequencies, 3 and 45
kHz.

The measured signal shows a broad continuous frequency spectrum with
diminishing amplitudes around the high frequency, see Figure 6.6. Using
one frequency shows a similar result.

Figure 6.6. FFT-analysis for steel bar. Two input frequencies, 2 and 46
kHz. Steel bar submitted to high tension.
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Figure 6.7 shows the corresponding measurement for a steel bar that has
not been submitted to high tension. Note the lack of frequencies around
the high frequency component.

Figure 6.7. FFT-analysis for steel bar. Two input frequencies, 2 and 44
kHz. Steel bar not submitted to high tension.

Testing with the hand made crack model shows more expected results. As
can be seen in Figure 6.8, the time response shows the more saw-tooth
like shape that is characteristic for a quadratic non-linearity. The positive
peaks have moved to the right and the negative to the left, i.e. positive
amplitudes propagate faster than negative ones.
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Figure 6.8. Time response signal for hand made crack model. Excitation
frequency 540 Hz.

The frequency spectrum of the signal in Figure 6.9 also shows that higher
harmonics with multiples of the input frequency have been created.

Figure 6.9. Frequency spectrum for hand made crack model. Excitation
frequency 540 Hz.
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Analysing this wave, using the identification program, gives ε =0.4 and σ
=0.7. The real parameter values are easily determined with eq. 4.2-4.7.
This is not done in this case since the real parameters have no useful
physical meaning.
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7 Discussion

The investigated method works well for the hand made crack.
Propagating a sinusoidal wave through the “crack” clearly shows a non-
linear response. Testing with a steel bar did not turn out quite that well.
The shaker’s power output in the frequency range 40-50 kHz, used for the
steel bar, is probably too low. A more powerful piezo actuator would
probably have been able to vibrate the object to such an extent that the
micro cracks would “open and close”. A piezo actuator has been used
successfully in earlier experiments [12,13].

Despite this failure, a different phenomenon is discovered when testing
with the steel bar: The measured signal shows a broad continuous
frequency spectrum with diminishing amplitudes around the high
frequency. According to A. Sutin, in a private communication: “The
reason for this effect is not yet investigated. Other observations of this
phenomenon is made, but without theoretical interpretation. A possible
explanation is that high frequency signal simulates acoustical emission
signals. These emission signals interact with the high frequency signal
and give the modulation”. The investigation of this effect, however, is
beyond the scope of this paper.

The method investigated can be used to detect the presence of a crack or
cracks, but it cannot determine its position. This is often a high priority in
non-destructive testing. Non-linear acoustic methods can be improved for
this purpose. The simplest option is to use the standard echo ranging
principle. Radiation and reception of the pulse sinusoidal signal is
performed. However, as distinct from the standard echo ranging, the
reflected signal is received at the frequency of the second harmonic of the
radiated signal. In the case of scattering of an acoustic wave by the crack,
the amplitude of the second harmonic may well be much greater than the
level of the second harmonic generated in a homogeneous medium. It is
precisely this fact that provides reliable separation of the useful signal
against the interference background. The method presented helps to
determine the location of the crack in the case of strong linear reflections
of acoustic waves from other inhomogeneities, for example, the
boundaries of the medium. Such a method has already been applied in the
diagnostics of gas-bubbles in the sea.
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Another scheme according to which the crack position is determined by
non-linear methods is based on the modulation of a continuous signal by a
more powerful pump pulse. The central idea of the method can be
formulated as follows: a more powerful pump pulse passing through a
crack changes its opening, and as a result of its non-linearity, changes the
conditions of reflection and transmission for a continuous sounding wave.
In this case, an additional reflection from the crack can occur, and the
phase of the transmitted wave can change. Accordingly, possible patterns
of non-linear tomography can be based on the registration of reflected or
transmitted waves.

In the pattern based on the reception of a reflected wave, the radiation of
the signal and pump waves occurs on one side of the object studied.
When a pump pulse passes through a crack, the reflection factor for the
signal changes, which brings about an additional scattered field. This field
shows up only at the moment the pump pulse passes through the crack
and can be determined even against the background of a strong stationary
reverberation. The distance to the crack is determined by the time t1 of the
reflected signal’s delay relative to the time of the pump pulse radiation
and is equal to 2t1c0, where c0 is the velocity of acoustic waves in the
object in question.

A second set-up is possible: the test harmonic is radiated on one side of
the object, while radiation of the pump pulse and reception of the signal
wave are performed on the other side. Upon reception, the phase
modulation of the signal wave due to the modulation of the crack
elasticity is separated. Here the distance is also determined by the time t2
elapsed from radiation of the pump pulse to arrival of the phase-
modulated signal wave and equals 2t2c0.
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8 Conclusions

In this work a theoretical model for identification of acoustical non-
linearity using Burger's equation was implemented in a MATLAB
program. The program identified both the non-linearity parameter and the
distance from the signal source. Tests were performed in order to verify
the theories.

The investigated method worked well for the hand made crack.
Propagating a sinusoidal wave through the “crack” clearly showed a non-
linear response. Testing with a steel bar did not turn out quite that well.
The shaker’s power output in the frequency range 40-50 kHz, used for the
steel bar, was probably too low. A more powerful piezo actuator would
probably have been able to vibrate the test object to such an extent that
the micro cracks would “open and close”. A piezo actuator has
successfully been used in earlier experiments [12,13].

Despite this failure, a different phenomenon was discovered when testing
with the steel bar: The measured signal showed a broad continuous
frequency spectrum with diminishing amplitudes around the high
frequency. According to A. Sutin, in a private communication: “the
reason for this effect is not yet investigated. Other observations of this
phenomenon is made, but without theoretical interpretation. A possible
explanation is that high frequency signal simulates acoustical emission
signals. These emission signals interact with the high frequency signal
and give the modulation”. The investigation of this effect, however, is
beyond the scope of this paper.
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