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Abstract

Using eyes as an input modality for different control environments is a great
area of interest for enhancing the bandwidth of human machine interaction
and providing interaction functions when the use of hands is not possible.
Interface design requirements in such implementations are quite different
from conventional application areas. Both command-execution and feedback-
observation tasks may be performed by human eyes simultaneously. In order
to control the motion of a mobile robot by operator gaze interaction, gaze
contingent regions in the operator interface are used to execute robot move-
ment commands, with different screen areas controlling specific directions.
Dwell time is one of the most established techniques to perform an eye-click
analogous to a mouse click. But repeated dwell time while switching between
gaze-contingent regions and feedback-regions decreases the performance of
the application. We have developed a dynamic gaze-contingent interface in
which we merge gaze-contingent regions with feedback-regions dynamically.
This technique has two advantages: Firstly it improves the overall perfor-
mance of the system by eliminating repeated dwell time. Secondly it reduces
fatigue of the operator by providing a bigger area to fixate in. The operator
can monitor feedback with more ease while sending commands at the same
time.



Abbreviations

HCI Human Computer Interaction
EOG Electro-OculoGrahpy
POG Photo-OculoGraphy
VOG Video-OculoGraphy
MIS Minimal Invasive Surgery
COM Component Object Model
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SGCI Static Gaze Contingent Interface
DGCI Dynamic Gaze Contingent Interface
ANOVA ANalysis Of VAriance
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Chapter 1

Gaze Contingent Dynamic
Interface for Tele-operation

In this chapter we present our research article published in STeP 2010: 14th
Finish Artificial Intelligence conference, Espoo Finland 17-18 August 2010.
Formal writing of the thesis is presented from chapter 2 onwards.
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Abstract

Using eyes as an input modality for different control environments is a great area of interest for en-
hancing the bandwidth of human machine interaction and provide interaction functions when the use
of hands is not possible. Interface design requirements in such implementations are quite different
from conventional application areas. Both command-execution and feedback-observation tasks are
performed by human eyes simultaneously. In order to control the motion of a mobile robot by operator
gaze interaction, gaze contingent regions in the operator interface are used to execute robot movement
commands, with different screen areas controlling specific directions. Dwell time is one of the most
established techniques to perform an eye-click analogous to a mouse click. But repeated dwell time
while switching between gaze-contingent regions and feedback-regions decreases the performance of
the application. We have developed a dynamic gaze-contingent interface in which we merge gaze-
contingent regions with feedback-regions dynamically. This technique has two advantages: Firstly it
improves the overall performance of the system by eliminating repeated dwell time. Secondly it re-
duces fatigue of the operator by providing a bigger area to fixate in. The operator can monitor feedback
with more ease while sending commands at the same time.

1 Introduction

In Human Computer Interaction (HCI) it is critical to
study both the context of task performance and the
role of attention, including visual focus of attention.
A user’s gaze is a strong indicator of intention or
attention (Zhai, 2003). Moreover, when functioning
well, the eyes are the primary source of information
about the context and details in the environment as
a basis for action (Kumar et al., 2008). Hence using
the eyes as an input modality compared to more
conventional input modalities (key-board, mouse,
joy-stick etc.) has been an area of great interest in
the field of HCI (Levine, 1981; Bolt, 1982; Ware and
Mikaelian, 1987; Robert J.K., 1990). Factors that
give inspiration and motivation for this include (Zhai
et al., 1999):

1. In some of situations both of a user’s hands
are constantly engaged with other tasks, and disabled
users may not be able to use their limbs.
2. Eye movement is faster than the other parts of
the body. The process of acquiring and activating a
target point on an interface using a cursor involves
two steps: visually focusing the target first and then
performing the actuation of the cursor. This means
that if we can track the eye gaze successfully and use

it accurately and efficiently, no other input source
can be as fast as eye.
3. Key-board and pointing devices may be a cause
of exhaustion and potential damage. This is another
factor of concern in the field of HCI. Eye gaze as
an input modality may be a nice solution to these
problems.

As eye-tracking systems become more accessible,
there are an increasing number of demonstrations
of the use of eye-tracking to control the motion
of controllable physical agents like robots (Bolt,
1982). Eye-tracking can provide an accurate gaze
point on an object on a computer screen that the
user is looking at (e.g. Tobii T60). In robot control
systems, eye gaze direction can be used as an input
source, similar to conventional input modalities:
mouse, key-board, joy-stick etc. As such, gaze-based
interaction has been used extensively to provide
interaction capability for computer users who lack
adequate use of their hands and arms, e.g. for word
processing, writing email, and using the web (Smart-
boxAssistiveTechnology, 2010). Gaze contingent
interfaces for robots can provide further assistance
to those with disabilities, in the form of systems for
manipulation (e.g. by directing robot arms) or for
exploration (e.g. controlling the movement of mobile



robots). Eye-tracking is also being explored as a
method for enhancing human-robot communication,
e.g. to allow humanoid robots to react to human
eye movements during conversational interactions
(Atienza and Zelinsky, 2002). As an example of
gaze contingent interfaces for the disabled, (Lin
et al., 2006) describes an interface developed to
control a powered wheel-chair. This interface is
operated by human eye gaze. The interface is divided
into 9 regions. Of those 9 regions, 4 are gaze
contingent or command regions and remaining 5
regions are idle regions. Stop command is sent to the
wheel-chair when user’s gaze falls into these regions.
Gaze contingent regions in an eye gaze controlled
interfaces are those regions that are used to trigger
specific commands when the eye gaze falls within
them. In (Lin et al., 2006), screen regions are used
to initiate wheel-chair motion commands. Similar
work is presented in (Barea et al., 2002), where
electrooculography (detection of electrical impulses
from muscles that control eye gaze direction) is used
to send driving commands to a wheel-chair from
the interface. In both of these works, the operator is
sitting on the wheel-chair. No feedback is provided
to the operator through the interface, i.e. the interface
is used only for one-way communication.
An experimental eye-tracking algorithm has also
been used to control a robotic arm (Yoo et al., 2002).
For this experiment, the interface is divided into 2
regions: a command region and the feedback region.
Feedback is provided in the form of images taken
by a camera installed in the robot location. Similar
work has been presented for control of a robotic
toy (Bhuiyan et al., 2004). In this work a different
eye-tracking technique is used: in order to find out
the gaze direction, location of the eye ball in the eye
socket is tracked. In this technique the only purpose
of the interface is to present feedback to the operator.
In the more general field of robotics (i.e. beyond
concerns with human disability) most research
addresses controllable agents rather than fully au-
tonomous agents (Olsen and Goodrich, 2003). In
most cases these controllable agents are required to
be controlled from a remote location, an approach
called tele-operation (Latif et al., 2008). TeleGaze
(Latif et al., 2008) and Gaze-controlled Driving (Tall
et al., 2009) are recent projects in the area of robotics
and control systems using eye gaze contingent
interfaces for more natural human robot interaction.
In TeleGaze, the interface is divided into 9 gaze
contingent regions for different commands. These
gaze contingent regions take 1/3 second dwell time
to activate and issue the associated command to a

WIFI enabled modified wheel-chair robot. Dwell
time enables eye gaze to act as mouse click. When
the operator fixates in a gaze contingent region for
a predetermined interval of time (e.g. 1/3 sec), it
is considered as an activation similar to a mouse
click and a command is issued to the system to be
controlled.
Tele-operation is characterized by controlling some
system from a remote location (Latif et al., 2008).
It involves two separate actions: one is to monitor
the current state of the system to be controlled and
the second is to send the appropriate commands
according to the current state of the system. Moni-
toring is performed by the human eye and the hands
are responsible for command execution through
conventional input modalities like a key-board,
mouse or joy-stick. If eye gaze alone is used as an
input modality for tele-operation, it is obvious that
both monitoring and command execution must be
performed by eye gaze. The eye can fixate (i.e. focus
at a point on the screen to keep a cursor stationary
at a gaze contingent region for a certain interval
of time) (Lankford, 2000) only on one object at
a time; i.e. when the operator tries to focus on
feedback (Monitoring) she loses focus on command
execution interface, and vice versa (this applies in all
of (Lin et al., 2006), (Barea et al., 2002), (Latif et al.,
2008) and (Lankford, 2000). The resulting constant
switching between two focus areas decreases the
performance of the system considerably. The main
reason for this performance deterioration is dwell
time. Dwell time reinitializes to zero if the operator
loses focus within a gaze contingent region in the in-
terface. So switching between feedback-monitoring
and command-execution takes repeated dwell time to
send commands, resulting in performance deteriora-
tion.
An alternative design, described below, is that if
an operator fixates in a gaze sensitive region and
after the dwell time whole feedback region becomes
the command execution region as well, then the
overheads of switching between command execution
and feedback regions is eliminated. This is explained
in detail in the next section.

2 Interface Design
We seek an answer to the following research ques-
tion in this paper: How to avoid multiple dwell time
and improve performance of the overall activity of
tele-operation? In order to answer this question we
decided to analyze gaze behavior of the participants
on a similar kind of interface proposed in related
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Figure 1: Gaze behaviour of the user.

work studies (Latif et al., 2008), in tasks controlling a
wheeled mobile robot with visual feedback provided
by a real time video link from a camera mounted
on the robot platform. Gaze-directed control areas
of the screen are mapped over the user’s view of the
video transmission from the robot. The robot can be
driven in forward and backward directions, or turned
by control of its differential drive system. Figure-1
is a scatter plot of a user’s gaze fixations in different
parts of the screen while interacting with an interface
using fixed areas for dwell-activated command initi-
ation. The participant users have used all the gaze
contingent regions according to their needs. An inter-
esting observation is that participants have tended to
prefer the upper half areas of the RIGHT and LEFT
regions. These regions are represented by � and ∗
in the plot, respectively. We used this observation in
our alternative interface design and shortened these
regions by 70 pixels from below, using this region
instead for the STOP command in our alternative in-
terface (Figure-2). Gray portions in the plot represent
all those fixations when the participant focuses in the
feedback region or some other regions in the monitor
screen than gaze contingent command regions. In the
new design, the STOP region dynamically adjusts its
position in the interface. Initially it rests on top of
the BACKWARD region. If a participant fixates in
the BACKWARD region it changes its position and

sticks to the FORWARD region at the top of interface.
Whenever participant user switches between FOR-
WARD and BACKWARD command regions, STOP
region moves in between, since it is logical to stop be-
fore moving forward or backward. Our interface con-
sists of 10 gaze contingent regions in total: 2 regions
for STOP, 4 regions for FORWARD, BACKWARD,
RIGHT and LEFT. The remaining 4 are dynamically
formed by expansion of FORWARD, BACKWARD,
RIGHT and LEFT. All other regions except STOP ex-
pand over the whole feedback region after the dwell
time when fixated by the user. This provides more
ease to the participant user since it is easy to fixate
in comparatively larger regions. It also eliminates re-
peated dwell time for multiple commands. When one
task is completed, the user fixates in some other gaze
contingent region to perform a task associated to that
region. As a result, the previous gaze contingent re-
gion shrinks back to its default location and the new
region as selected by the user merges with the feed-
back region, and so on. This is a more appropriate
technique for tasks that need multiple commands (e.g.
turning to a suitable angle towards the right in multi-
ple increments of 15◦).
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3 Method

Our empirical study is based on two experiments.
Both the experiments are task-oriented. Human robot
interaction applications are very diverse. Hence,
there are no standard metrics for evaluation of newly
developed applications (Latif et al., 2008). However,
there are some common metrics in any application
domain that are most likely to be used to evaluate
the application developed in that particular domain
(TobiiTechnologiesAB, 2010). Time needed to com-
plete a task is a common measure (Tsui et al., 2009).
Experiment 1 is a rather small experiment. The task
in this experiment is to turn the robot at an angle of
90◦. The reason for this separate experiment is that
the robot we are using can turn only with a limited
angle of 15◦ per turn command. In order to get larger
turn angles, multiple turn commands are needed; e.g.
with a command turn angle of 15◦ the robot needs
6 turn commands to turn a total angle of 90◦. For-
ward and backward movements are far simpler than
turning, since forward and backward motion is con-
tinuous. That is why we decided to examine the turn-
ing motion in a separate experiment. In experiment
2, a track is designed for the robot to travel on. An
experiment participant interacts with the robot using
gaze contingent interfaces and navigates through this
track. Participants perform both of the experiments
multiple times. Data is collected by noting the task
completion time for each experiment trial.

3.1 Experiment Design

In our empirical study the independent variable is
screen adaptiveness, which has two possible values:
static and adaptive. These interface variants are used
to control the navigation of a mobile robot. In both
experiments participants complete a navigation and

movement task. The outcome/dependent measure of
the experiments is the task completion time. The up-
per half of Figure-3 shows the experiment 1 setup.
A card of gray color is placed in front of the robot.
Another card of black color is placed on the left side
of the robot at an angle of 90◦ from the gray card.
When a participant fixates in the gaze contingent re-
gion specified for LEFT, the robot starts turning to
the left. When the turning robot completes an angle
of 90◦ it comes in front of the black card. Now the
participant can see the black card in the feedback re-
gion of the interface and should use gaze in the stop
region of the interface to stop further movement. The
participant performs this activity with both static and
adaptive versions of the interfaces. In experiment 2,
participants are given a task to send commands to the
robot and monitor visual feedback, to drive the robot
around a specified track to return to the starting loca-
tion. The lower half of Figure-3 presents the layout
of the track used in experiment 2.
We observed that the majority of the participants were
not familiar with the concept and technology of eye
tracking. This was a potential validity threat and
could have effected the outcome due to varying ca-
pabilities and understanding of the participants. To
bring them at an equal level of understanding we ar-
ranged training sessions for the participants. Another
validity threat was power supplies to the logic and
actuation parts of the mobile robot. Weak batteries
may result in slow movement and delayed responses.
To avoid this threat all the batteries were replaced
with a fresh and fully charged set of batteries before
switching to the next participant. XBee c© transceivers
are used for communication between application pro-
gram and mobile robot, having a range of 120 me-
ters without obstacles. We ensured that the mobile
robot remained within this range while performing
tasks. The track is designed keeping in mind that it

BOX

BOX

BOX

BOX

Start/

Finish

Robot

Experiment 1 

Experiment 2

Figure 3: Task layout for experiment 1 and 2



should include all possible navigational moves. The
total length of the track is 19.25 meters. The start
and finish point are same. The whole track is marked
with black and gray arrows. The participant follows
black arrows to move down the track to the turning
area and gray arrows for coming back to the finish
point. 15 participants in total take part in these ex-
periments. In experiment 1, 10 trials are recorded for
each participant. This results in 15 x 10 = 150 trials
of data. Experiment 2 is a bit lengthier in terms of
time. Hence a block of 3 trials is recorded for each
participant, giving 15 x 3 = 45 trials in total.

3.2 Apparatus and Conditions

An Intel c© Core 2
TM

Extreme Q6850 @3.00GHz was
programmed using Microsoft c© Visual C++

TM
to cre-

ate the gaze-directed monitoring and control inter-
face. A Tobii c© Eye Tracker T60

TM
was used to

get participant’s gaze behaviour and this was inte-
grated with the interaction system via an API in order
to use gaze data on the monitor screen. GrabBee c©

video grabber was used to capture the video stream
from the wireless camera mounted on the head of
the mobile robot. Intel’s c© image processing library
OpenCV c© was used to grab the video stream and
then superimpose interface components on it. The
Arduino c© open-source electronics prototyping plat-
form was used to configure and map robot actuation
via different commands. XBee c© serial communi-
cation transceivers were used to communicate com-
mands between the user application software and the
mobile robot. The interfaces developed in the project
were flexible to work on any resolution but all exper-
iments were conducted with 800x600 screen resolu-
tion.

3.3 Procedure
When participants arrived they were briefed about the
experiments so that they could have an idea about
the whole activity to be performed. Participants
were seated 60-65 cm viewing distance from the eye-
tracking device as directed in the Tobii c© T60 user’s
manual. A calibration process was performed for
each participant to get accurate gaze fixation points
for each participant on eye-tracking screen. Then
eye tracking was started. Each participant was asked
whether the cursor is moving to the desired location
of the screen with her gaze fixation or not. When
the participant was satisfied with the result, the robot
camera view with the interface superimposed upon it
was presented to the participant. This concludes the

experiment setup and now the participant can fixate in
the gaze contingent regions to send commands to the
robot. Each participant was allowed 3-4 training ses-
sions to gain familiarity with the environment. Out-
comes for actual trials were then recorded according
to the pre-planned requirements.

3.4 Participants
Fifteen participants took part in this experiment. All
were from Blekinge Institute of Technology (BTH).
Out of fifteen, 10 were male and 5 female. Two fac-
ulty members also took part in this experiment. The
age range of the participants was 20-51 years. In or-
der to ensure that all the participants had the same
level of understanding they were briefed in the same
way about the experiment. They were also given a
training session before data collection was started.

4 Results
Our claim is that mean task completion time for the
dynamic interface design is less than for the static
interface design. For this claim we have following
null hypothesis (Ho) and alternate hypothesis (Ha).

Ho: Mean task completion time is same for
both dynamic and static interfaces.
Ha: The dynamic interface takes less time to com-
plete a task compared to the static interface.

In both the experiments the sample sizes are
greater than 30, which is large enough to substitute
sample variance with population variance. So we use
a z-test (α = 0.05) for statistical analysis. Table-1
and Table-2 show the results. In our results, for
experiment 1 the average task completion time
for the dynamic interface is 74.62% of the static
interface time. In this way the dynamic interface
improves the performance of the system significantly,
i.e. by 25.37% of the average static interface task
completion time. For experiment 2, the average task
completion time for the dynamic interface is 74.67%
of the static interface time, so the dynamic interface
improves the performance of the system by 25.32%
of the average static interface task completion
time. This improvement is due to the merger of the
feedback region and the gaze-contingent region in
the dynamic interface, which eleminates multiple
dwell times that occur in the static interface design.
In both experiments, z-stat is less than z-critical.
So we can say that the difference between the
populations is statistically significant. Hence the null



hypothesis can be rejected in favour of the claim that
dynamic interface takes less time to complete a task
as compared to the static interface.

Table-1: z-test results for experiment-1

Description Dynamic Static
Mean 2.966666667 3.976666667
Known Variance 0.061163 0.567707
Observations 150 150
Hypothesized Mean Difference 0
z -15.59863388
P(Z<=z) one-tail 0.000000000
z Critical one-tail 1.644853627
P(Z<=z) two-tail 0.000000000
z Critical two-tail 1.959963985

Table-2: z-test results for experiment-2

Description Dynamic Static
Mean 115.2 153.6888889
Known Variance 2810.618182 3026.491919
Observations 45 45
Hypothesized Mean Difference 0
z -3.379424033
P(Z<=z) one-tail 0.000363189
z Critical one-tail 1.644853627
P(Z<=z) two-tail 0.000726379
z Critical two-tail 1.959963985
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Figure 4: Experiment-1 results.

5 Conclusion and Discussion
In this paper we have introduced the concept of a
gaze contingent dynamic interface to control a mobile
robot. The basic purpose was to decrease the repeated
dwell time of gaze directed robot control resulting
from switching between feedback and gaze contin-
gent regions. A second purpose of the study was to
facilitate the operator in such a way that she feels
more comfortable with feedback monitoring tasks
while sending navigation commands to the robot at
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Figure 5: Experiment-2 results.

the same time. Results of our pilot study show that
the performance of our proposed dynamic interface
is significantly better than the static interface. Twelve
out of fifteen participants reported that they felt more
comfortable with using the dynamic interface. The
rest of the participants voted in favour of the static
interface. An interesting observation in this regard is
that the participants who voted in favour of the static
interface performed almost same with both interfaces
i.e. their task completion time was almost same for
both interfaces. All those participants who can drive
or play computer games completed experiment task
in less time while avoiding collisions, compared to
the rest of the participants.
In almost all trials each participant performed quite
well in every subsequent trail i.e. she took less task
completion time.
Another interesting observation can be made regard-
ing training of the participants. In initial trails we
handled each participant alone at the experiment site
and she learned from her own experience. But later
in the experiments we worked with groups of three or
four participants on the experiment site at the same
time. In this scenario when each participant was per-
forming the experiment, the remaining were watch-
ing her activities. All such participants who watched
others, performed exceptionally well on their turn
and produced less task completion times. This phe-
nomenon can be seen in graphical results of experi-
ment 2 (Figure-5). It is evident from the graph that
task completion times for the initial 12 trials are very
high and then we can see more consistent results for
rest of the trials. This later region after 12 trials is the
region where participants were present in groups.
In the current scenario each gaze contingent region



sends a single command to the robot. There is very
little variation available in different activities. For ex-
ample we can move left or right with a fixed angle or
forward or backwards with a single speed. The dy-
namic interface has a quite big area. In a future vari-
ant of the interface this area could be used to bring
variation in the degree of motion specified in com-
mands. For example, the upper half area of the LEFT
gaze contingent region can be used to turn at differ-
ent angles. or the FORWARD region could be used
to move with different speed levels. This may be ex-
plored in future work.
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Chapter 2

Introduction

In Human Computer Interaction (HCI) it is critical to study both the con-
text of task performance and the role of attention, including visual focus
of attention. A user’s gaze is a strong indicator of intention or attention
[48]. Moreover, when functioning well, the eyes are the primary source of
information about the context and details in the environment as a basis for
action [20]. Hence using the eyes as an input modality compared to more
conventional input modalities (keyboard, mouse, joy stick etc.) has been an
area of great interest in the field of HCI [25, 7, 42, 33]. Factors that give
inspiration and motivation for this include [49]:

1. In some situations both of a user’s hands are constantly engaged with
other tasks, and disabled users may not be able to use their limbs.

2. Eye movement is faster than the other parts of the body. The process
of acquiring and activating a target point on an interface using a cursor
involves two steps: visually fixating the target first and then moving
the cursor to the activation point. This means that if we can track
the eye gaze successfully and use it accurately and efficiently, no other
input source can be as fast as eye.

3. Key board and pointing devices may be a cause of exhaustion and
potential damage. This is another factor of concern in the field of HCI.
Eye gaze as an input modality may be a nice solution to these problems.
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As eye-tracking systems become more accessible, there are an increasing
number of demonstrations of the use of eye-tracking to control the motion of
controllable physical agents (robots) [7]. Eye-tracking can provide an accu-
rate gaze point on an object on a computer screen that the user is looking
at (e.g. Tobii T60 [20]). In robot control systems, eye gaze direction can be
used as an input source, similar to conventional input modalities: mouse, key
board, joy stick etc. As such, gaze-based interaction has been used exten-
sively to provide interaction capability for computer users who lack adequate
use of their hands and arms, e.g. for word processing, writing email, and
using the web [35]. Gaze contingent interfaces for robots can provide further
assistance to those with disabilities, in the form of systems for manipulation
(e.g. by directing robot arms) or for exploration (e.g. controlling the move-
ment of mobile robots). Eye-tracking is also being explored as a method for
enhancing human-robot communication, e.g. to allow humanoid robots to
react to human eye movements during conversational interactions [3].

2.1 Technical Terminologies and Definitions

In this section, basic terminologies are defined which will help the reader to
understand the forth coming discussion about the core topic.

2.1.1 Eye Tracking

Eye Tracking is to track the eye(s) movement which also refers to locating
the point where we look or fixate (i.e. focusing at a point on the screen)
[21], that is called point of gaze. It is the process by which one can locate or
measure the gaze point of the eye relative to the head [11].

Eye movement measurement methodologies can be divided into four broad
categories: Electro-OculoGrahpy (EOG), Scleral Contact Lens/Search Coil,
Photo-OculoGraphy (POG) or Video-OculoGraphy (VOG) and video-based
combined pupil and corneal reflection [11]. The basic principle of Electro-
Oculo-Graphy is dc-signal recordings of the electric potential differences of
the skin surrounding the ocular cavity. The Scleral Contact Lens/Search Coil
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method provides the most accurate eye movement measures. In this method
a mechanical or optical reference object is attached to a contact lens and
then this lens is worn by the test subject directly on the eye. POG or VOG
involve analysis of the measurement of distinguishable features of the eyes
under rotation/translation for example, the apparent shape of the pupil, the
position of the limbus (the iris/sclera boundary) and corneal reflections of
closely situated directed light source (often infra-red).

A problem with all these techniques is that they usually do not provide
the point of regard measurement i.e. what the person is looking at.

This is specialty of the video-based trackers that they use image process-
ing to calculate the point of regard in real time. It is observed in practice
that the reflection from the cornea remains roughly constant in position dur-
ing eye movement. This means that a reflection in the eye will remain in a
static position during rotational movement of the eye and changes in gaze
direction. This can be used to obtain a basic eye and head position reference.
This retinal reflection provides a simple reference point to compare with the
moving pupil. This comparison is used to calculate a gaze direction vector
of the eye. The Tobii T90 is a video-based eye tracker that we will use in
our experiments [11].

2.1.2 Eye Gaze as an Input Modality

It is known that humans look at real world things and hold their eye gaze
relatively still for a short interval of time, enough for the brain to perceive
the nature of the features and form etc. of an object. These periods when
the eyes rest upon a visual feature are referred to as fixations [33]. Fixations
can be variably defined in terms of an angle within which the gaze point
remains (e.g. 5◦) and a period for which it must remain within this angle;
a fixation point occurs when the eye remains within the specified angle for
no less than the minimum specified period. The period is typically about
200-600ms. Fixations ensure that visual features of most interest fall within
the foveal region of the retina (a high acuity field of vision). Everything out
side this field is seen indistinctly. Between these fixations, gaze jumps rapidly
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from one object to another. Such a movement is called a saccade. Saccades
typically last for 30-120ms. There are also small scale eye movements that
occur within fixations (tremor, drift, and microsaccades), but consideration
of these is beyond the scope of this thesis.

Since the foveal field of visual acuity is fairly small (about 1 mm in di-
ameter), and people need to direct their gaze vector exactly to the object of
interest to get its accurate view. Because of this fact it is possible to trace
the exact point of gaze from an eye fixation than then use it as an input
modality.

2.1.3 Interface

The best definition of the interface, which also frees the term from that
limited by the concepts of today, is that "interface" means exactly what the
word roots connote: inter (between) and face, or that stuff that goes between
the faces (i.e., senses) of the human and the machine [5].

2.1.4 Tele-operation

Most controllable agents need to be controlled from a remote location, which
is commonly known as tele-operation [24].

2.1.5 Mobile Robot

"A mobile robot is a combination of various physical (hardware) and compu-
tational (software) components. In terms of hardware components, a mobile
robot can be considered as a collection of subsystems for Locomotion: how
the robot moves through its environment; Sensing: how the robot measures
properties of itself and its environment; Reasoning: how the robot maps
these measurements into actions; and Communication: how the robot com-
municates with an outside operator [12]."
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Chapter 3

Background and Problem
Definition

As an example of gaze contingent interfaces for the disabled, [26] describes
an interface (Figure 3.1) developed to control a powered wheelchair. This
interface is operated by human eye gaze. The interface is divided into 9
regions. Of those 9 regions, 4 are gaze contingent command regions. Gaze
contingent regions in eye gaze controlled interfaces are those regions that are
used to trigger specific commands when the eye gaze falls within them. In
[26], screen regions are used to initiate wheelchair motion commands. Simi-
lar work is presented in [4], where electrooculography (detection of electrical
impulses from muscles that control eye gaze direction) is used to send driv-
ing commands to a wheelchair from the interface. In both of these works,
the operator is sitting on the wheelchair. No feedback is provided to the
operator through the interface, i.e. the interface is used only for one-way
communication.

An experimental eye-tracking algorithm has also been used to control a
robotic arm [47] (Figure 3.2). For this experiment, the interface is divided
into 2 regions: a command region and the feedback region. Feedback is
provided in the form of images taken by a camera installed in the robot
location. Similar work has been presented for control of a robotic toy [6]. In
this work a different eye-tracking technique is used: in order to find out the
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Figure 3.1: Interface design for powered wheelchair [26]

gaze direction, the location of the eye ball in the eye socket is tracked. In
this technique the only purpose of the interface is to present feedback to the
operator.

Figure 3.2: Interface to control robotic arm [47]
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In the more general field of robotics (i.e. beyond concerns with human
disability) most research addresses controllable agents rather than fully au-
tonomous agents [31]. In most cases these controllable agents are required
to be controlled from a remote location, an approach called tele-operation
[23]. TeleGaze [23] and Gaze-controlled Driving [36] are recent projects in
the area of robotics and control systems using eye gaze contingent interfaces
for more natural human robot interaction. In TeleGaze, the interface (Figure
3.3 is divided into 9 gaze contingent regions for different commands. These
gaze contingent regions take 1/3 second dwell time to activate and issue the
associated command to a WIFI enabled modified wheelchair robot. Dwell
time enables eye gaze to act as mouse click. When the operator fixates in
a gaze contingent region for a predetermined interval of time (e.g. 1/3 sec),
it is considered as an activation similar to a mouse click and a command is
issued to the system to be controlled.

Figure 3.3: Interface to control WIFI enabled powered wheelchair robot
(TeleGaze) [23]

3.1 Problem Definition

Tele-operation is characterized by controlling some system from a remote
location [23]. It involves two separate actions: one is to monitor the current
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state of the system to be controlled and the second is to send the appropri-
ate commands according to the current state of the system. Monitoring is
performed by the human eye and the hands are responsible for command ex-
ecution through conventional input modalities like a key board, mouse or joy
stick. If eye gaze alone is used as an input modality for tele-operation, it is
obvious that both monitoring and command execution must be performed by
eye gaze. The eye can fixate (i.e. focus at a point on the screen to keep a cur-
sor stationary at a gaze contingent region for a certain interval of time) [22]
only on one object at a time; i.e. when the operator tries to focus on feedback
(Monitoring) she loses focus on command execution interface, and vice versa,
if these display area are separate (this applies in all of [26], [4], [23] and [22]).
The resulting constant switching between two focus areas decreases the per-
formance of the system considerably. The main reason for this performance
deterioration is dwell time. Dwell time reinitializes to zero if the operator
loses focus within a gaze contingent region in the interface. So switching
between feedback-monitoring and command-execution takes repeated dwell
times to send commands, resulting in performance deterioration.

3.2 Challenge or Problem Focus

This thesis targets this performance problem for a gaze-directed robot con-
trol system inspired by TeleGaze [23]. We will try to investigate different
possibilities for improving the interaction performance by making and eval-
uating different arrangements of the active regions in the interface. We will
compare the results of this interface with conventional input modalities like
key-board, mouse and joy-stick. We will also try to diagnose the limits of a
TeleGaze-style system and reasons behind these limitations.

3.3 Aims and Objectives

Main goal with this project is to develop a gaze-contingent interface for
mobile robot control inspired by the TeleGaze environment by integrating
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different components of the environment: Eye Gaze Tracker, teleoperation
station and a mobile robot. Using this environment we will perform several
experimental trials in order to:

• Evaluate alternative interface designs with the goal of optimizing per-
formance compared with other modes of interaction: key-board, mouse
and joy-stick.

• Study the limits of the gaze-directed robot control and the reasons
behind the limitations.

This study, we expect, will develop our understanding of Eye Gaze Track-
ing Technologies and Human Robot Interaction.

3.4 Research Questions

Question 1: How can different components, an Eye Gaze Tracker, a Tele-
operation Station and a Mobile Robot, be integrated with each other
to work as a whole system?

Question 2: How can we improve the performance of gaze interaction by
making different arrangements of the active regions of the operator
interface?

Question 3: What are the limitations of gaze interaction, if any, and the
reasons for these limitations?

3.5 Expected Outcomes

• Description of Eye Gaze Tracking Technologies and how they work.

• Specification of experimental requirements for the Spinosaurus mobile
robot platform (see appendix A for details).
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• Specification, design and implementation of the experimental environ-
ment i.e. how different components of the environment are integrated
with each other and their working principles.

• Evaluation results of different experiments.

• Details of the limitations, if any, of gaze-directed motion control for
mobile robots and the reasons for these limitations.
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Chapter 4

Method

In this chapter, we present the research methods used to achieve the goals
of our study as described in previous chapter. The work reported in the
chapters from 5 - 7 is done within the paradigm of constructive and empirical
research. Constructive and quantitative research methods are used to conduct
the study. The outcome of the constructive research is a "construct" which
is a proposed solution and then this construct is evaluated using a prototype
against predefined criteria.

4.1 Constructive Research

The constructive research approach is intended to find the solutions for real
world problems. Constructive research happens in cycles with two phases.
One phase is construction of the system and the other the evaluation of that
system. The idea is to develop artifacts with potential practical value and
also knowledge of the actual performance and value of these artifacts [18].
"Constructive research method implies building of an artifact (practical, the-
oretical or both) that solves a domain specific problem in order to create
knowledge about how the problem can be solved (or understood, explained or
modeled) in principle. Constructive research gives results which can have
both practical and theoretical relevance" [14].
When applied to a problem, the methodology of constructive research pro-
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duces innovative constructs. These innovative constructs can be theory, al-
gorithms, models, software or frameworks. In this way constructive research
makes contributions to the theory of the discipline in which it is applied. It
is also important to note that "constructive research can also be viewed as a
form of conducting case research parallel to ethnography, grounded theory,
theory illustration, theory testing and action research"[27]. We can say that
the constructive research approach is one of the most important research
methods in computer science. A neutral and critical attitude is expected
from scientist during the overall process of development and implementation
of an innovative construct [27, 17].

In constructive research, fuzzy information is collected from different in-
formation sources such as literature reviews, processes, training materials,
working experience etc. which provides a theoretical body of knowledge.
An innovative construct, theoretical framework or solution is extracted from
the theoretical body of knowledge according to its relevance to the problem.
This new construct or solution produces new knowledge to further extend
the practical and epistemic boundaries of the knowledge. This overall idea
is depicted in the Figure 4.1 [43].
In our particular topic of HumanMachine Interaction, the artefact/innovative
constructs to be developed are gaze-contingent interfaces for mobile robot
tele-operation and the targeted knowledge is knowledge of human perfor-
mance with these interfaces. In order to get the whole system working, some
hardware and software components are also needed to integrate system com-
ponents so as to work to get the desired functionality out of the system.
Information about the usage of these components is extracted from the doc-
umentation provided with these components. The outcome of this overall
activity will be in the form of a prototype.

4.2 Quantitative Research

We use an experimental strategy of inquiry, i.e. a quantitative research
methodology for the validation of the innovative construct produced from
the previous phase. In this approach the researcher specifies a narrow hy-
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Figure 4.1: Graphical representation of Constructive Research approach
[43]

pothesis and then tests the theory. Data collected as a result of successful
experiment execution is used to support or refute the hypothesis. An experi-
mental design is used and data is collected using instruments which measure
outcomes as a result of different input factors. Information collected is then
analyzed using statistical methods and hypothesis testing. We have used a
quantitative research approach because in our study we can distinctly identify
the best predictors (factors) that can influence the outcome [9].

4.3 Application of Methods in this Thesis

In this section we explain how the selected method should address all of the
research questions described above. We discuss this question by question in
order of the research questions.
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4.3.1 Research Question-1

How can different components, an Eye Gaze Tracker, a Tele-operation Sta-
tion and a Mobile Robot, be integrated with each other to work as a whole
system?

"Only those people can lay new strong foundations who already know what
actually went wrong with the older ones" [28]
The constructive research approach provides answer to this question. The
step by step approach is [19]:

• Description of the problem and the solution. We already have dis-
cussed and defined the problem in chapter 3. Chapter 5 gives a full
description of the solution.

� New interface design is the core of the thesis. Literature review
is the only way to find out what has been done so far in some
specific area. So we have conducted an extensive literature review
to find out essential details of what has already been done in our
specific area. This gives us deep insight and knowledge about our
topic and enables us to design a new approach towards interface
design. This is discussed in length in the earlier part of chapter
5.

� There are diverse hardware and software components involved in
the development of the prototype. These are: Tobii Eye Tracker
T60, GrabBee video grabber, Intel’s image processing library OpenCV,
the Arduino open-source electronics prototyping platform for mo-
bile robot navigation and XBee serial communication transceivers.
So it is very necessary to carefully analyze and select the tools and
techniques needed to integrate these components. The later part
of the chapter 5 describes all technical details of our implemen-
tation.

• Analysis of the solution.
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• Comparison of the solution with alternate solutions.

4.3.2 Research Question-2

How can we improve the performance of gaze interaction by making different
arrangements of the active regions of the operator interface?

Empirical evaluation is a kind of research which drives its data from di-
rect observation or experiment. In our specific case we have designed two
experiments to collect evidence regarding whether our developed solution
improves the performance of the system compared to existing solutions by
other researchers in this area. Chapters 6 and 7 tell the whole story.

4.3.3 Research Question-3

What are the limitations of gaze interaction, if any, and the reasons for these
limitations?

Based on the analysis of evidence collected from empirical evaluation in re-
search question 2, we discuss limitations of gaze interaction. Details are
presented in chapter 8.

4.4 Graphical Overview of the Research Plan

Figure 4.2 presents a graphical overview of the overall research plan. Differ-
ent stages of work are marked where we get answers to our research questions.
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Chapter 5

Theoretical Work

In this chapter we present an in depth study and analysis of different aspects
of all the components to be used in the construction of our prototype. In the
beginning of the chapter we present theoretical work which provides grounds
for our new innovative dynamic interface. In the second part of the chapter
we discuss integration aspects of different hardware and software modules.
Both earlier parts of the chapter lay a foundation for software architecture
for the prototype to be developed which will be used for evaluation pur-
poses afterwards. In the last part of the chapter we present this software
architecture.

5.1 Literature Review

Literature review provides the knowledge of state-of-the-art and really helps
us to foresee and play around with alternative solutions in a well directed
manner.

5.1.1 Evolution of the Eye Tracking Systems

Eye Gaze Tracking has deep roots in history. There was a proliferation of
Eye Tracking Technologies by the end of 19th century and the beginning
of 20th century. The purpose of the early developments in this field was
to understand the nature of human eye movements. Delabarre in the late
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1800s developed an eye tracking device using an eye cup. Extended from
this eye cup was a lever to draw eye movements on a smoked drum. This
technique was highly invasive and uncomfortable. Since the eye cup was
directly attached to the eye surface. There was a hole in the middle of this
cup through which the test subject could see [41]. Dodge and Cline later in
1901 developed a more comfortable way to record eye movements by using
light reflected from the surface of the eye. They used photographic devices
that require no direct attachment to the surface of the eye. Many modern
Eye Tracking Systems are based on this principle [41].

During the last 3-4 decades, the main focus of eye tracking research has
been on assistive technologies for people with different disabilities. These
technologies provide a variable degree of assistance to the disabled according
to the nature of their disability. Among these researches [15, 13, 29] mainly
focus on eye or gaze typing and [32, 26] focus on eye gaze directed movement
of wheelchairs.

5.1.2 Contemporary Technologies

Eye movement measurement methodologies can be divided into four broad
categories: Electro-OculoGraphy (EOG), Scleral Contact Lens/Search Coil,
Photo-OculoGraphy (POG) or Video-OculoGraphy (VOG) and video-based
combined pupil and corneal reflection. The basic principle of the Electro-
Oculo-
Graphy is dc-signal recordings of the electric potential differences of the skin
surrounding the ocular cavity. The scleral Contact Lens/Search Coil method
provides the most accurate eye movement measures. In this method a me-
chanical or optical reference object is attached to a contact lens and then
this lens is worn by the test subject directly on their eye. POG or VOG
involves the measurement of distinguishable features of the eyes under rota-
tion/translation for example, the apparent shape of the pupil, the position of
the limbus (the irissclera boundary) and corneal reflections of closely situated
directed light source (often infra-red). A problem with all these techniques
is that they usually do not provide point of regard measurement. A special

27



advantage of video-based trackers is their use of image processing hardware
to calculate the point of regard in real time. The Tobii T90 is a video-based
eye tracker that we will use in our experiments [11].

5.1.3 Gaze Contingent Interfaces

As an example of gaze contingent interfaces for the disabled, [26] describes
an interface developed to control a powered wheelchair. This interface is
operated by human eye gaze. The interface is divided into 9 regions. Of
those 9 regions, 4 are gaze contingent or command regions. Gaze contingent
regions in an eye gaze controlled interface are those regions that are used
to trigger specific commands when the eye gaze falls within them. In [26],
screen regions are used to initiate wheelchair motion commands. Similar
work is presented in [4], where electrooculography (detection of electrical
impulses from muscles that control eye gaze direction) is used to send driving
commands to a wheelchair. In both of these works, the operator is sitting
on the wheelchair. No feedback is provided to the operator through the
interface, i.e. the interface is used only for one-way communication.

An experimental eye-tracking algorithm has also been used to control a
robotic arm [47]. For this experiment, the interface is divided into 2 regions:
a command region and the feedback region. Feedback is provided in the form
of images taken by a camera installed in the robot location. Similar work
has been presented for control of a robotic toy [6]. In this work a different
eye-tracking technique is used: in order to find out the gaze direction, the
location of the eye ball in the eye socket is tracked. In this technique the
only purpose of the interface is to present feedback to the operator.

Minimal Invasive Surgery (MIS) is growing in its popularity. Due to
its popularity there is a demand to improve its functionality and usability.
DaVinci (a surgical robot) is an existing robotic assisted MIS technology
(Intuitive Surgical, Sunnyvale, CA) that allows the surgeon to interact with
the operative environment remotely through a tele-operation station. In
this system the hand movements of the surgeon are replicated by specialized
instruments. In such a configuration it is not possible for the surgeon to use
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more than two tools at one time even when additional tools are available.
The surgeon needs assistance of another surgical member in this scenario
or rather he can relinquish the control of one instrument and switch to the
other. In this particular scenario David P. Noonan et al. (Imperial College
London) have presented a gaze contingent framework whereby an additional
tool can be controlled directly by the eyes of the surgeon [30].

In the more general field of robotics (i.e. beyond concerns with human
disability) most research addresses controllable agents rather than fully au-
tonomous agents [31]. In most cases these controllable agents are required to
be controlled from a remote location, an approach called tele-operation [23].
TeleGaze [23] and Gaze-controlled Driving [36] are recent projects in the area
of robotics and control systems using eye gaze contingent interfaces for more
natural human robot interaction. In TeleGaze, the interface is divided into
9 gaze contingent regions for different commands. These gaze contingent
regions take 1/3 second dwell time to activate and issue the associated com-
mand to a WIFI enabled modified wheelchair robot. Dwell time enables eye
gaze to act as mouse click. When the operator fixates in a gaze contingent
region for a predetermined interval of time (e.g. 1/3 sec), it is considered as
an activation similar to a mouse click and a command is issued to the system
to be controlled.

Tele-operation is characterized by controlling some system from a remote
location [23]. It involves two separate actions: one is to monitor the current
state of the system to be controlled and the second is to send the appro-
priate commands according to the current state of the system. Monitoring
is typically performed by the human eye and the hands are responsible for
command execution through conventional input modalities like a key board,
mouse or joy stick. If eye gaze alone is used as an input modality for tele-
operation, both monitoring and command execution must be performed by
eye gaze. The eye can fixate (i.e. focus at a point on the screen to keep a
cursor stationary at a gaze contingent region for a certain interval of time)
[22] only on one object at a time; i.e. when the operator tries to focus on
feedback (Monitoring) she loses attention on the command execution inter-
face, and vice versa (this applies in all of [26], [4], [23] and [22]. The resulting
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constant switching between two areas of attention decreases the performance
of the system considerably. The main reason for this performance deteri-
oration is dwell time. Dwell time reinitializes to zero if the operator loses
focus within a gaze contingent region in the interface. So switching between
feedback-monitoring and command-execution takes repeated dwell time to
send commands, resulting in performance deterioration.

An alternative design, described in next section, is that if an operator
fixates in a gaze sensitive region and after the dwell time, the whole feedback
region becomes the command execution region as well, then the overheads of
switching between command execution and feedback regions is eliminated.
This is explained in detail in next section.

5.2 A New Approach to Interface Design

We seek an answer to the following research question in this thesis: How to
avoid multiple unnecessary dwell times and improve performance of the over-
all activity of tele-operation in a gaze-directed interface? In order to answer
this question we decided to analyze gaze behavior of participants on a similar
kind of interface proposed in related work studies [23], in tasks controlling a
wheeled mobile robot with visual feedback provided by a real time video link
from a camera mounted on the robot platform. Gaze-directed control areas
of the screen are mapped over the user’s view of the video transmission from
the robot. The robot can be driven in forward and backward directions, or
turned by control of its differential drive system. Figure-1 is a scatter plot
of a user’s gaze fixations in different parts of the screen while interacting
with an interface using fixed areas for dwell-activated command initiation.
The participants have used all the gaze contingent regions according to their
needs. An interesting observation is that participants have tended to prefer
the upper half areas of the RIGHT and LEFT regions of the interface. These
are black and blue regions in the plot, respectively. We used this observa-
tion in our alternative interface design and shortened these regions by 70
pixels from below, using this region instead for the STOP command in our
alternative interface (Figure-2). Gray portions in the plot represent all those
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fixations when the participant focuses in the feedback region or some other
regions in the monitor screen than gaze contingent command regions. In the
new design, the STOP region dynamically adjusts its position in the inter-
face. Initially it rests on top of the BACKWARD region. If a participant
fixates in the BACKWARD region it changes its position and sticks to the
FORWARD region at the top of interface. Whenever user switches between
FORWARD and BACKWARD command regions, the STOP region moves in
between, since it is logical to stop before moving forward or backward. Our
interface consists of 10 gaze contingent regions in total: 2 regions for STOP,
4 regions for FORWARD, BACKWARD, RIGHT and LEFT. The remain-
ing 4 are dynamically formed by the expansion of the initial FORWARD,
BACKWARD, RIGHT and LEFT regions. All other regions except STOP
expand over the whole feedback region after the dwell time when fixated by
the user. This provides more ease to the user since it is easy to fixate in com-
paratively larger regions. It also eliminates repeated dwell times for multiple
commands. When one task is completed, the user fixates in some other gaze
contingent region to perform a task associated to that region. As a result,
the previous gaze contingent region shrinks back to its default location and
the new region as selected by the user merges with the feedback region, and
so on. This is a more appropriate technique for tasks that need multiple
commands of the same type (e.g. turning to a suitable angle towards the
right in multiple increments of 15◦).

5.3 Hardware Specifications

5.3.1 Tobii T60 c© Eye Tracker

The Tobii T60 is a video-based eye tracker that uses corneal reflection to cal-
culate gaze points on the eye tracker display screen. It uses infrared diodes to
generate corneal reflection patterns on the cornea of a user’s eye. Image sen-
sors collect other necessary visual information about the person along with
corneal reflection patterns. This visual information is processed using image
processing algorithms to identify relevant features, including the eyes and the
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Figure 5.1: Gaze behaviour of the user.

Figure 5.2: Four different states of the interface.

corneal reflection patterns. Based upon this information, the position of the
eye ball is calculated, and then the gaze point on the screen, that is, where
the user is looking. Technical specifications for Tobii T60 are given in Table
5.2 [37].
Accuracy: There is a difference between the Measured Gaze Direction and
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Table 5.1: Sample Gaze Behavior Data

x− coordinate y − coordinate Direction

691 150 R
676 147 R
681 149 R
126 171 L
124 174 L
349 088 F
355 090 F
537 523 B
572 522 B
192 447 A
188 470 A
... ... ...

Figure 5.3: Tobii T60 c© Eye Tracker [37]

the Actual Gaze Direction at different parts of the screen for a person po-
sitioned at the center of the eye tracking box (i.e. the spatial volume from
within which eye-tracking is effective). Drift effects and compensation errors
are not included in this measurement. Varying external conditions such as
lighting, quality of the calibrations and individual eye characteristics effect
the accuracy of the Tobii eye trackers.
Drift: Drift is a measure of change in accuracy due to the change in lighting
conditions. The specified drift value relates to complete inversion of screen
color, e.g from black to white without recalibration in between.
Freedom of Head Movement: Freedom of head movement is a measure
of the box (height x width in cm) where at least one of the eyes is within
the field of view of the eye tracker. According to Tobii documentation, the
stated value was measured at 70 cm distance from the sensor.
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Table 5.2: Tobii T60 c© Eye Tracker Technical Specifications [37]

Description Specification
Accuracy 0.5◦
Drift < 0.3◦
Freedom of head movement 44x22x30cm
Data Rate 60Hz
Binocular tracking Yes
Bright/dark pupil tracking Both - automatic optimization
TFT Display< 17" TFT, 1280x1024Pixels
Eye tracking server Embedded
User camera Built in

Data Rate: The number of sampled gaze points per second. In our par-
ticular case, the Tobii T60 data rate is 60Hz that is 60 gaze data points per
second are collected for each eye (one gaze data point after each 15ms).

5.3.1.1 Tobii Software Development Kit (SDK)

Tobii provides a Sofware Development Kit (SDK) with its eye trackers. Using
this SDK we can develop application software which to provide customized
routines to control and retrieve data from Tobii eye trackers. Due to the
diversity in applications, different applications require different levels of in-
terfacing. The Tobii SDK provides interfaces on different levels. It provides
low level interfaces for those applications which need more customization
while for applications which need less customization high level interfaces are
provided. Along with other interfaces, the SDK also provides Microsoft Win-
dows COM based interfaces. In our particular case we use COM interfaces
to get required gaze data from eye tracker [37].

5.3.2 Spinosaurus Mobile Robot

The Spinosaurus (Figure 5.4) is a small mobile robot that has been de-
veloped as a platform for research in mobile robot control and human/robot
interaction. The first version of the Spinosaurus (1.0) was completed in April
2009. This version was a pure radio controlled system, using FM analog con-
trol from a conventional hobby RC controller to steer and drive the robot.

34



A video camera mounted on the steerable turret of the robot sent an image
to a receiver that was connected to a computer equipped with a Tobii T60
eye-tracking system. This configuration was used in a simple eye-tracking
study to investigate human vision while remotely controlling the robot in
a task to search for objects in a maze, using only the view from the robot
camera as a guide.
In 2010 the Spinosaurus has been upgraded to version 2.0 that includes:

• removal of the analog FM radio control system

• addition of a bi-directional data link based upon Xbee wireless data
transceivers

• the addition of 2 x on-board Arduino boards for sensor data acquisition,
telecommunications handling and motion control

• The addition of several IR and ultrasonic distance sensors and an in-
ertial navigation system for autonomous operations (not used in this
study)

The data link can be used to control the robot from an external computer.
See appendix A for details.

Figure 5.4: Spinosaurus Mobile Robot used in experiment

5.3.3 Arduino c© Prototyping Platform

The Arduino c© Duemilanove (Diecimila) is a micro-controller board. It has 14
digital input/output pins (of which 6 can be used as PWM outputs), 6 analog
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inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP
header, and a reset button (Table 5.3). This is a programmable board that
can be programmed with the Arduino software. The Arduino open-source
environment can be used to write and upload programs to Arduino I/O
boards [1].

The Arduino program used in this project responds to the commands
received through a serial interface. It waits for the input command from
the serial port and acts according to the pre-programmed behavior for each
command. There are four servo channels connected via Arduino pins 8 to
11. The servo outputs driving the mobile robot turret servos go directly to
those servos. However, the speed control outputs go to two control channels
of a TREX speed controller (described in next section). Table 5.4 shows the
movement configuration for the motors. There is certain way to communi-
cate with the Arduino code through the serial interface. For every command
character (U/D/R/L/A/S/W/X), a second character sequence must be fol-
lowed that determines the speed/angle of the operation being requested. The
speed has a range of 0-9 where 0 stands for no change and 9 accelerates the
servo at the highest available speed. The angle has a range 0◦-360◦. In our
particular case we use a small angle of 15◦ because it is hard to control the
robot movement using larger rotations.
For example:
W9 (Accelerate with full speed).
S15 ( Turn towards the right with a set turn angle i.e. 15◦ ).

Figure 5.5: ArduinoDuemilanove: A prototyping platform [1]

Similar navigation protocol will be used for conventional input modalities
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Table 5.3: Arduino c© Specifications Summary [1]

Description Configuration
Microcontroller ATmega168
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by

boot loader
SRAM 1 KB (ATmega168) or 2 KB (ATmega328)
EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328)
Clock Speed 16 MHz

Table 5.4: Arduino c© Navigation Configuration

Function Movement Keys(Charactertosend)
Camera steer left/ Camera steer right 0◦-90◦/90◦-180◦ L/R
Camera tilt up/ Camera tilt down 0◦-90◦/90◦-180◦ U/D
Accelerate/ Decelerate 0-9 W/X
Move right/ Move left 0◦-15◦ S/A

i.e. keyboard, mouse and joystick.

5.3.3.1 Polou Trex Dual Motor Controller

Movement actuators of the mobile robot are motors having their speed and
direction controlled by voltage outputs from a "Polou TReX Dual Motor
Controller". Figure 5.6 shows a description of different components of "Polou
TReX Dual Motor Controller". The TREX controller board can receive serial
or PWM signals in 5 channels in order to drive two motors. Independent and
combined movement of the channels is possible. The Arduino micro controller
sends commands with appropriate polarity to the speed controller board and
it controls the motors using voltages set according to the commands. Varying
voltage and appropriate polarity control the speed and direction of the motors
respectively [34].
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Figure 5.6: Pololu TReX Dual Motor Controller [39]

5.3.3.2 Arduino XBee Shield

The Xbee shield allows an Arduino board to communicate wirelessly using
the Zigbee standard. It is based on the Xbee module from MaxStream. The
module can communicate up to 100 feet indoors or 300 feet outdoors without
obstacles [2].

Figure 5.7: Arduino XBee Shield Module for Wireless Communication [2]

5.3.4 XBee Serial Communication Module

Xbee serial communication module is a wireless data transceiver. In our work
we establish a bidirectional data link between a remote computer and mobile
robot using these transceivers. On the mobile robot side an Arduino micro
controller is programmed to transmit and receive data across serial interface,
while on the remote computer side this functionality is achieved using a C++
module written specially for serial communication.
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Figure 5.8: XBee c© Module for Wireless Communication [45]

5.3.4.1 XBee c© Explorer Module

This is a simple to use, USB to serial base unit for the XBee line [46]. On
the remote computer side, the explorer module is used to connect the Xbee
transceiver to the computer using a USB cable.

Figure 5.9: XBee Explorer Module for PC side Interface [46]

5.4 Software Components

5.4.1 OpenCV c©

OpenCV is an open source (see http://opensource.org) computer vision li-
brary available from http://SourceForge.net/projects/opencvlibrary. The li-
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brary is written in C and C++ and runs under Linux, Windows and Mac OS
X. There is also active development on interfaces for Python, Ruby, Matlab,
and other languages. OpenCV was designed for computational efficiency and
with a strong focus on realtime applications. OpenCV is written in optimized
C and can take advantage of multicore processors. For further automatic op-
timization on Intel architectures, Intel’s Integrated Performance Primitives
(IPP) libraries [IPP], which consist of low-level optimized routines for many
different algorithmic areas, can be used. OpenCV automatically uses the
appropriate IPP library at runtime if that library is installed [8].

5.4.2 Coding Language Selection

After detailed study of hardware and software components to be used in the
prototype we can summarize as follows:

• The Tobii Eye Tracker SDK provides ATL-COM (Active Template
Library-Component Object Model) objects to provide real time gaze
data in the form of x, y coordinates of user gaze points on the screen
at a data rate of 60Hz.

• The XBee Wireless Communication Module provides a serial link to
send the commands to the Arduino board on the Spinosaurus robot.
C++ is the most efficient language to drive the serial link from the
application system.

• OpenCV is an open source image processing tool from Intel. It is a
C++ based tool. It can be used to grab the video stream sent wirelessly
from the camera mounted on the Spinosaurus and then to augment this
stream with our new innovative interface elements.

Whole scenario suggests the use of the C++ language for prototype applica-
tion development. By using C++ we avoid the need for middle-ware which
may result in less efficient functionality due to different software layers among
diverse end points.
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5.4.3 Interface Implementation Module

After analyzing all hardware and software components to be used in the
prototype, we came to the conclusion that using C++ we can integrate all
components to get our aims and objectives more easily than the use of other
languages. We used OpenCV in our prototype for two purposes: to grab the
video stream from the camera mounted on the mobile robot, and to create a
gaze contingent interface by augmenting the robot view video stream.

5.5 Prototype Architecture

A software architecture is a structural plan which is used as a blue print
during the development process. It describes different elements of a system
that how they can be used together to fulfil the requirements of the system.
Software architecture is an abstraction that helps manage the complexity of
system development. It is not a comprehensive decomposition of the details.
Many of the details may be hidden in an abstraction of the architecture [16].

5.5.1 Conceptual View

A conceptual view is closely related to the application domain. Different
architecture elements are used in this view. Conceptual components show
different functionalities, while data exchange and coordination is shown by
connectors. Figure 5.10 shows a conceptual view of our prototype [16]. Here
the conceptual view describes:

• How the system fulfils its requirements.

• How the commercial off-the-shelf components are integrated and how
they interact with rest of the system.

• How domain-specific software and hardware is incorporated into the
system.
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Figure 5.10: Conceptual view of prototype

5.5.2 Module View

The module view describes how the conceptual view has been realized by
using specific software tools and technologies. Components and connectors
from the conceptual view are mapped to subsystems and modules. Figure
5.11 presents this mapping [16].

5.5.3 Execution View

Purpose of the execution view is flow of control. The conceptual view de-
scribes the logical flow of control while in the execution view one is interested
in the flow of control in terms of the implemented runtime platform. Figure
5.12 presents this flow of control [16].

5.6 Application source code

See Appendix B for Application source code.
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Figure 5.11: Module view of prototype

Figure 5.12: Execution view of prototype
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Chapter 6

Empirical Evaluation

In this chapter we present the empirical evaluation of the prototype and
analysis of the results. In the particular case of our thesis, the objective
of our empirical study is to determine the difference in individual perfor-
mance of different input modalities while they are applied to control mobile
robot navigation (for the Spinosaurus robot). These modalities include: key-
board, mouse, joystick, a static gaze-contingent interface[23] and a dynamic
gaze-contingent interface. Our main interest is the evaluation of our newly
developed and novel dynamic interface. We need to understand that where
it stands in relation to the other modalities.

Object of the Study: The object of the study is to evaluate the input
modalities for remotely controlling mobile robot navigation in terms of their
individual performance for completing a particular task.

Purpose: The purpose of the experiment is to evaluate the individual per-
formance of each input modality for controlling mobile robot navigation. The
outcome of the experiment outcome provides insight into how gaze-contingent
interfaces are different from conventional input modalities, and their relative
performance. It also enables us to understand some limitations of using gaze
as an input modality in comparison with conventional input methods.
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6.1 Experiment Definition and context

Our empirical study is based on two experiments. The experiments are on-
line and real time using the prototype developed in the previous phase. The
ability to generalize from this particular context is further elaborated in the
analysis phase. Both the experiments are task-oriented. Human robot inter-
action applications are very diverse. Hence, there are no standard metrics
for evaluation of newly developed applications [23]. However, there are some
common metrics in any application domain that are most likely to be used
to evaluate the application developed in that particular domain [38]. Time
needed to complete a task is a common measure [40], and this measure is
adopted here.

Experiment 1: Experiment 1 is a rather small experiment. The task in
this experiment is to turn the robot at an angle of 90◦. The reason for this
task as a separate experiment is that the robot we are using can turn only
with a fixed angle of 15◦ per turn command. In order to get larger turn an-
gles, multiple turn commands are needed; e.g. with a command turn angle
of 15◦ the robot needs 6 turn commands to turn a total angle of 90◦. For-
ward and backward movements are far simpler than turning, since forward
and backward motion is continuous. That is why we decided to examine the
turning motion in a separate experiment.
The upper half of Figure 6.1 shows the experiment 1 setup. A green coloured
card is placed in front of the robot. Another card of red color is placed on
the left side of the robot at an angle of 90◦ from the green card. When
a participant fixates in the gaze contingent region specified for LEFT, the
robot starts turning to the left. When the turning robot completes an angle
of 90◦ it comes in front of the red card. Now the participant can see the
red card in the feedback region of the interface and should gaze in the stop
region of the interface to stop further movement. The participant performs
this activity with all input modalities including static and dynamic versions
of the interfaces.
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Experiment 2: In experiment 2, a track is designed for the robot to travel
on. An experiment participant interacts with the robot using all input modal-
ities that is, both gaze-contingent interfaces (static and dynamic) and con-
ventional modalities (key-board, mouse and joystick). The experimental task
is to navigate through this track. Participants perform both of the experi-
ments multiple times. Data is collected by noting the task completion time
for each experiment trial. In experiment 2, participants are given a task to
send commands to the robot and monitor visual feedback, to drive the robot
around a specified track to return to the starting location.
The lower half of Figure 6.1 presents the layout of the track used in experi-
ment 2. Experiment 2 is designed to include all possible navigational moves.

Figure 6.1: Task layout for experiment 1 and 2

The total length of the track is 19.25 meters. The start and finish points are
same. The whole track is marked with red and blue arrows. A participant
follows the red arrows to move down the track to the turning area and the
blue arrows for coming back to the finish point.
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Table 5.4 shows navigation configuration of the arduino micro-controller.
It takes W, X, A and S characters for forward, backward, left and right nav-
igational movements respectively. For keyboard, same keys (W, X, A and S)
are mapped for the respective navigational movements. Similar protocol is
used for the joystick as well. For mouse, already developed static interface is
used for generating commands. When operator clicks in FORWARD region,
command for forward movement is generated and sent to the micro-controller
unit. Other commands (BACKWARD, LEFT, RIGHT and STOP) are gen-
erated in similar way. STOP command can be generated by writing W0 or
X0 on serial port. Digit zero with W and X means zero acceleration.
15 participants in total took part in these experiments. In experiment 1, 10
trials were recorded for each participant. This results in 15 x 10 = 150 trials
of data. Experiment 2 is a bit lengthier in terms of time. Hence a block of 3
trials is recorded for each participant, giving 15 x 3 = 45 trials in total.

6.1.1 Hypothesis Formulation

Before the design and execution of an experiment it is very important to
know and state clearly what we intend to evaluate in the experiment [44].
This leads us to the formulation of a hypothesis.
In our particular case, as we know from the problem definition presented in
previous chapters that performance of static interfaces for gaze-directed con-
trol is limited due to repeated dwell times, so our newly proposed dynamic
interface is proposed to significantly improve performance by eliminating re-
peated dwell time.
This informal statement of hypothesis can be stated more formally as follows,
including evaluation measures.

Null hypothesis, H0: There is no difference in performance (measured in
terms of task completion time) between the Static Gaze-Contingent Inter-
face (SGCI) the and Dynamic Gaze-Contingent Interface (DGCI).
H0: Performance(SGCI) = Performance(DGCI).
Alternative hypothesis, H1: Performance(SGCI) < Performance(DGCI).
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Measures needed: Performance (Task completion time).

6.1.2 Variable Selection

In our empirical study the independent variable is screen adaptiveness, which
has two possible values of static and dynamic. These interface variants are
used to control the navigation of a mobile robot. In both experiments partic-
ipants complete a navigation and movement task. The outcome/dependent
measure of the experiments is task completion time.

6.1.3 Participants/Users

Fifteen participants took part in this experiment. All were from Blekinge
Institute of Technology (BTH). Out of fifteen, 10 were male and 5 female.
Two faculty members also took part in this experiment. The age range of the
participants was 20-51 years. In order to ensure that all the participants had
the same level of understanding they were briefed in the same way about
the experiment. They were also each given a training session before data
collection started.

6.2 Experiment Design

The purpose of an experiment is to draw meaningful conclusions regarding
the problem at hand. Statistical analysis methods are applied to collected
data in order to interpret the results. To get real advantage of an experiment
it is very necessary that the experiment is carefully planned and designed.
The application of a particular statistical technique depends on the experi-
ment design chosen and the measurement scales used [44].

6.2.1 General Design Principles

General design principles of Randomization and Balancing are used in our
experiment [44].
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6.2.1.1 Randomization

Subjects or participants for experiment execution are selected randomly.
Both genders are present among the participants. Representatives of differ-
ent disciplines in the form of students and teachers of different departments
were selected.

6.2.1.2 Balancing

Balancing simplifies and strengthens the statistical analysis of data. We
use the same number of subjects or participants for every treatment in the
experiment, that is, same number of persons in each group.

6.2.2 Design Type

In our experiment we investigated the performance of navigation for con-
trolling a mobile robot using diverse input modalities. The factor involved
in our experiment is input modality, where different treatments available
are: mouse, key-board, joystick, the static gaze-contingent interface and the
dynamic gaze-contingent interface. For these kinds of experiments the ap-
propriate design type is one factor with more than two treatments, and a
suitable analysis technique is ANOVA [44].

6.2.3 Apparatus and Conditions

An Intel c© Core 2TM Extreme Q6850 @3.00GHz was programmed using Microsoft c©

Visual C++TM to create the gaze-directed monitoring and control interface.
A Tobii c© Eye Tracker T60TM was used to get participant’s gaze behaviour
and this was integrated with the interaction system via an API in order
to use gaze data on the monitor screen. A GrabBee c© video grabber was
used to capture the video stream from the wireless camera mounted on the
head of the mobile robot. Intel’s c© image processing library OpenCV c© was
used to grab the video stream and then superimpose interface components
on it. The Arduino c© open-source electronics prototyping platform was used
to configure and map robot actuation via different commands. XBee c© serial
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communication transceivers were used to communicate commands between
the user application software and the mobile robot. The interfaces developed
in the project were able to work on any resolution but all experiments were
conducted with 800x600 screen resolution.

6.2.4 Procedure/Execution

When participants arrived they were briefed about the experiments so that
they had an idea about the whole activity to be performed. Participants were
seated at a 60-65cm viewing distance from the eye-tracking device as directed
in the Tobii c© T60 user’s manual. A calibration process was performed for
each participant to get accurate gaze fixation points for each participant on
the eye-tracking screen. Then eye tracking was started. Each participant
was asked whether the cursor moved to the desired location on the screen
according to her gaze fixations or not. When the participant was satisfied
with the result, the robot camera view with the interface superimposed upon
it was presented to the participant. This concluded the experiment setup,
after which the participant could fixate in the gaze contingent regions to send
commands to the robot. Each participant was allowed 3-4 training sessions
to gain familiarity with the environment. Outcomes for actual trials were
then recorded according to the pre-planned requirements.

Outcomes for three conventional modalities i.e. keyboard, mouse and
joystick were also recorded. No training was provided for these modalities
because participants were already familiar and comfortable with these input
modalities.

While conducting experiments, input modalities were not used in a spe-
cific order. Specially in case of the Static and the Dynamic interfaces, they
were used in different order for each participant. It was done intentionally
to avoid biased results.

6.2.5 Validity Evaluation

We observed that the majority of the participants were not familiar with
the concept and technology of eye tracking. This was a potential valid-
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ity threat and could have affected the outcome due to varying capabilities
and understanding of the participants. To bring them to an equal level of
understanding we arranged training sessions for the participants. Another
validity threat was power supplies for the logic and actuation parts of the
mobile robot. Weak batteries may result in slow movement and delayed re-
sponses. To avoid this threat all the batteries were replaced with a fresh and
fully charged set of batteries before switching to the next participant. XBee
transceivers were used for communication between the application program
and the mobile robot, having a range of 120 meters without obstacles. We
ensured that the mobile robot remained within this range while performing
tasks.

6.2.6 Data Sets

Tables 6.1 and 6.2 present the data collected as a result of experiment 1
and 2 execution.
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Table 6.1: Experiment 1 Data Set
Task Completion Time in Seconds

Replicate Dynamic Static Mouse Keyboard Joystick RowTotal
1 2.9 3.5 2.46 2.51 2.47 13.84
2 2.8 5.7 2.45 2.49 2.49 15.93
3 3.2 4.4 2.49 2.49 2.49 15.07
4 3.1 3.4 2.46 2.46 2.49 13.91
5 3.1 3.8 2.49 2.49 2.49 14.37
6 3.5 3.2 2.49 2.46 2.52 14.17
7 3.0 3.6 2.49 2.49 2.49 14.07
8 2.8 3.8 2.49 2.49 2.49 14.07
9 2.8 4.5 2.49 2.49 2.49 14.77

10 2.8 4.4 2.49 2.49 2.49 14.67
11 3.1 4.3 2.49 2.49 2.49 14.87
12 2.7 4.5 2.49 2.49 2.49 14.67
13 2.6 5.3 2.49 2.49 2.49 15.37
14 2.4 4.6 2.49 2.49 2.46 14.44
15 2.5 5.3 2.49 2.49 2.51 15.29
16 3.0 4.9 2.49 2.49 2.49 15.37
17 2.4 4.1 2.46 2.49 2.49 13.94
18 3.2 4.8 2.46 2.49 2.49 15.44
19 2.9 4.9 2.46 2.46 2.5 15.22
20 2.6 3.4 2.46 2.49 2.49 13.44
21 2.7 4.1 2.49 2.49 2.49 14.27
22 3.1 2.8 2.46 2.49 2.49 13.34
23 2.7 2.7 2.49 2.45 2.49 12.83
24 3.1 4.8 2.49 2.49 2.49 15.37
25 3.2 3.6 2.49 2.49 2.49 14.27
26 3.1 2.9 2.48 2.46 2.48 13.42
27 3.2 3.0 2.49 2.49 2.49 13.67
28 3.0 3.8 2.49 2.49 2.49 14.27
29 2.7 3.0 2.49 2.49 2.49 13.17
30 2.8 5.3 2.46 2.48 2.46 15.5
31 2.8 4.1 2.49 2.49 2.49 14.37
32 2.8 4.4 2.49 2.49 2.49 14.67
33 3.0 3.8 2.47 2.49 2.49 14.25
34 2.9 3.2 2.46 2.46 2.49 13.51
35 2.9 3.9 2.49 2.49 2.49 14.27
36 3.2 3.8 2.52 2.49 2.49 14.5
37 3.6 3.8 2.49 2.49 2.49 14.87
38 2.9 3.1 2.49 2.49 2.49 13.47
39 3.1 3.7 2.51 2.51 2.47 14.29
40 3.2 4.1 2.49 2.49 2.49 14.77
41 2.7 3.1 2.49 2.47 2.46 13.22
42 3.0 5.4 2.49 2.49 2.47 15.85
43 2.8 4.2 2.49 2.51 2.49 14.49
44 3.3 4.1 2.46 2.49 2.46 14.81
45 3.2 3.8 2.49 2.49 2.49 14.47
46 3.6 5.4 2.46 2.49 2.48 16.43
47 3.2 3.9 2.49 2.47 2.49 14.55
48 3.2 5.2 2.49 2.49 2.49 15.87
49 3.1 2.9 2.49 2.49 2.47 13.45
... ... ... ... ... ... ...

145 2.6 3.4 2.49 2.46 2.49 13.44
146 2.6 3.7 2.49 2.49 2.49 13.77
147 2.9 2.9 2.49 2.45 2.51 13.25
148 2.4 3.0 2.49 2.45 2.49 12.83
149 2.8 2.8 2.52 2.45 2.47 13.04
150 2.7 3.3 2.49 2.49 2.49 13.47
Sx 445 596.5 373.03 372.52 372.79 2159.84 Grand Total
n 150 150 150 150 150
x 2.966666667 3.976666667 2.486866667 2.483466667 2.485266667

Sx2 1329.28 2456.67 927.7069 925.1786 926.5033
(Sx)2 198025 355812.25 139151.3809 138771.1504 138972.3841
Sd2 9.113333333 84.58833333 0.031027333 0.037597333 0.020739333
s2 0.061163311 0.567706935 0.000208237 0.000252331 0.00013919
s 0.247312173 0.753463294 0.014430424 0.015884933 0.011797888
sn 0.036867122 0.112319676 0.002151161 0.002367986 0.001758725
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Table 6.2: Experiment 2 Data Set
Task Completion Time in Seconds

Replicate Dynamic Static Mouse Keyboard Joystick RowTotal
1 254 214 102 102 107 779
2 196 208 93 107 106 710
3 152 193 91 107 106 649
4 311 260 95 110 109 885
5 122 253 96 106 102 679
6 150 250 95 106 99 700
7 146 183 91 105 105 630
8 91 149 95 109 105 549
9 89 142 93 109 101 534

10 261 266 99 106 106 838
11 145 211 98 104 103 661
12 137 242 94 106 103 682
13 73 83 90 104 103 453
14 81 88 95 104 100 468
15 78 88 93 103 102 464
16 124 191 93 108 110 626
17 124 199 98 105 101 627
18 126 181 97 106 105 615
19 128 182 92 108 106 616
20 79 188 91 104 106 568
21 93 155 90 106 107 551
22 71 89 98 104 102 464
23 74 83 97 107 103 464
24 79 77 97 104 102 459
25 121 153 97 106 102 579
26 81 189 99 109 107 585
27 85 183 98 107 101 574
28 83 131 91 109 104 518
29 76 137 92 106 107 518
30 151 155 97 106 103 612
31 95 142 95 104 103 539
32 124 143 91 108 108 574
33 89 149 96 109 102 545
34 74 88 98 109 102 471
35 70 80 98 109 100 457
36 72 88 93 109 106 468
37 136 184 98 104 107 629
38 130 135 97 108 109 579
39 125 142 93 102 102 564
40 83 82 98 105 102 470
41 74 81 99 108 106 468
42 89 124 94 106 106 519
43 75 89 95 108 106 473
44 82 129 98 109 102 520
45 85 137 98 109 102 531
Sx 5184 6916 4288 4790 4686 25864 Grand Total
n 45 45 45 45 45
x 115.2 153.6888889 95.28888889 106.4444444 104.1333333

Sx2 720864 1196078 408982 510070 488288
(Sx)2 26873856 47831056 18386944 22944100 21958596
Sd2 123667.2 133165.6444 383.2444444 201.1111111 319.2
s2 2810.618182 3026.491919 8.71010101 4.570707071 7.254545455
s 53.01526367 55.01356123 2.951288026 2.137921203 2.693426341
sn 7.903048894 8.200937506 0.439952043 0.318702476 0.401512293
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Chapter 7

Results and Analysis

Data was collected from the execution or operation phase of the experiment.
Conclusions are made based on this data. Interpretation of the experimental
data is needed to draw valid conclusions. Interpretation is carried out in two
steps, namely using descriptive statistics and hypothesis testing [44].
We used ANalysis of Variance (ANOVA) instead of t-tests, for analysis and
interpretation of our result data. This is because, if we have 3 treatments
to compare (A, B, C) then we would need 3 separate t-tests (comparing A
with B, A with C, and B with C). In our case we have five treatments so
we would need 15 separate t-tests. This would be time-consuming but, more
importantly, it would be inherently flawed because in each t-test we accept a
5% chance of our conclusion being wrong (when we test for p = 0.05). So, in
15 tests we would expect (by probability) that one test would give us a false
result. ANalysis Of Variance (ANOVA) overcomes this problem by enabling
us to detect significant differences between the treatments as a whole. We do
a single test to see if there are differences between the means at our chosen
probability level.
An important assumption underlies the Analysis of Variance: that all treat-
ments have similar variance. If there are strong reasons to doubt this then
the data might need to be transformed before the test can be done. In prac-
tice, there is a simple way to check for "homogeneity of variance" [10]. We
deal with this as well in our work.
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7.1 Descriptive Statistics

Tables 7.1 and 7.2 present statistics based on data collected from experi-
ment 1 and experiment 2, respectively. It is a common assumption that a
joystick is one of the most convenient input modalities for controlling mobile
robot navigation. Because of this, target of the TeleGaze system [23] was
to bring average task completion time equal to joystick time. In our results,
for experiment 1 the average task completion time for the static interface is
160% of the joystick time while for the dynamic interface it is 119% of the
joystick time. In this way the dynamic interface improves the performance
of the system significantly, i.e. by 26% of the average static interface task
completion time. For experiment 2, the average task completion time for the
static interface is 148% of the joystick time, while for the dynamic interface
it is 111% of the joystick time, so the dynamic interface improves the perfor-
mance of the system by 25% of the average static interface task completion
time. This improvement is due to the merger of the feedback region and the
gaze-contingent region in the dynamic interface, which eleminates multiple
dwell times that occur in the static interface design.

Another important observation is that in the case of both gaze-contingent
interfaces, variability of data about the mean is very high, while for all con-
ventional modalities (mouse, key-board and joystick) variability is very low.
This is very well evident from Figures 7.1 and 7.2.

Table 7.1: Statistics of Data Collected for Experiment-1

Description Dynamic Static Mouse Keyboard Joystick
Sx 445 596.5 373.03 372.52 372.79
n 150 150 150 150 150
x 2.966666667 3.976666667 2.486866667 2.483466667 2.485266667

Sx2 1329.28 2456.67 927.7069 925.1786 926.5033
(Sx)2 198025 355812.25 139151.3809 138771.1504 138972.3841
Sd2 9.113333333 84.58833333 0.031027333 0.037597333 0.020739333
s2 0.061163311 0.567706935 0.000208237 0.000252331 0.00013919
s 0.247312173 0.753463294 0.014430424 0.015884933 0.011797888
sn 0.036867122 0.112319676 0.002151161 0.002367986 0.001758725

x±sn 2.97±0.04 3.98±0.11 2.48±0.002 2.48±0.002 2.49±0.002
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Table 7.2: Statistics of Data Collected for Experiment-2

Description Dynamic Static Mouse Keyboard Joystick
Sx 5184 6916 4288 4790 4686
n 45 45 45 45 45
x 115.2 153.6888889 95.28888889 106.4444444 104.1333333

Sx2 720864 1196078 408982 510070 488288
(Sx)2 26873856 47831056 18386944 22944100 21958596
Sd2 123667.2 133165.6444 383.2444444 201.1111111 319.2
s2 2810.618182 3026.491919 8.71010101 4.570707071 7.254545455
s 53.01526367 55.01356123 2.951288026 2.137921203 2.693426341
sn 7.903048894 8.200937506 0.439952043 0.318702476 0.401512293

x±sn 115.2±7.9 153.69±8.20 95.29±0.43 106.44±0.32 104.13±0.4
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Figure 7.1: Experiment-1 results.

7.1.1 Hypothesis Testing

Tables 7.3 and 7.4 present the ANOVA statistics. For experiment 1, the cal-
culated F value is 499.7643522, which exceeds F critical value of 2.38388541
needed in order to have a significant difference between treatments. The
probability (p-value) that our calculated F value would be obtained by chance
(random error) alone is very small (3.2501E-209), so we have a highly sig-
nificant difference between treatments in our table 7.3. This holds for the
experiment 2 as well. Based on the results for experiments 1 and 2, we can
therefore reject the null hypothesis in favor of the claim that the dynamic
interface takes less time compared to the static interface.
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Figure 7.2: Experiment-2 results.

Table 7.3: Summary of ANOVA test for Experiment-1

Groups Count Sum Average V ariance
Dynamic 150 445 2.966666667 0.061163311

Static 150 596.5 3.976666667 0.567706935
Mouse 150 373.03 2.486866667 0.000208237

Keyboard 150 372.52 2.483466667 0.000252331
Joystick 150 372.79 2.485266667 0.00013919

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 251.6693352 4 62.9173338 499.7643522 3.2501E-209 2.38388541
Within Groups 93.79103067 745 0.125894001

Total 345.4603659 749

Table 7.4: Summary of ANOVA test for Experiment-2

Groups Count Sum Average V ariance
Dynamic 45 5184 115.2 2810.618182

Static 45 6916 153.6888889 3026.491919
Mouse 45 4288 95.28888889 8.71010101

Keyboard 45 4790 106.4444444 4.570707071
Joystick 45 4686 104.1333333 7.254545455

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 93450.06222 4 23362.51556 19.94189964 5.02577E-14 2.412682038
Within Groups 257736.4 220 1171.529091

Total 351186.4622 224
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Chapter 8

Conclusion and Discussion

In this thesis we have introduced the concept of using a gaze contingent dy-
namic interface to remotely control a mobile robot. Then we have compared
the performance of a dynamic interface with other input modalities for re-
mote navigation control, with a special interest in comparison with TeleGaze
[23] like static interface. The basic purpose of the dynamic interface design
is to decrease the repeated dwell time of gaze-directed robot control resulting
from switching between feedback and gaze contingent regions of the operator
interface. A second purpose of the study was to facilitate the operator in
such a way that she feels more comfortable with feedback monitoring tasks
while sending navigation commands to the robot at the same time. Results
of our pilot study show that the performance of our proposed dynamic inter-
face is significantly better than that of the static interface. We have seen an
improvement of about 25% in the performace of the dynamic interface com-
pared to that of the static interface, in relation to the mean task completion
time for control via a joystick.

Twelve out of fifteen participants reported that they felt more comfortable
with using the dynamic interface. The rest of the participants voted in favour
of the static interface. An interesting observation in this regard is that the
participants who voted in favour of the static interface performed almost
same with both interfaces i.e. their task completion time was almost same
for both interfaces. All those participants who can drive or play computer
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games completed the experiment task in less time while avoiding collisions
more, compared to the rest of the participants.

In almost all trials each participant performed better in every subsequent
trail i.e. she took less task completion time.

Another interesting observation can be made regarding training of the
participants. In initial trails we handled each participant alone at the ex-
periment site and she learned from her own experience. But later in the
experiments we worked with groups of three or four participants on the ex-
periment site at the same time. In this latter situation, when each participant
was performing the experiment, the remaining were watching her activities.
All such participants who watched others performed comparatively better on
their turn and took smaller task completion times. This phenomenon can be
seen in the graphical results for experiment 2. It is evident from the figure
7.2 that the task completion times for the initial 12 trials are very high and
then we can see more consistent results for the rest of the trials. The region
after 12 trials is the region where participants were present in groups.

Limitations of Gaze Interaction: The experiment observations shown
on figures 7.1 and 7.2 show hight variation in the mean task completion
time in the cases of both the static and the dynamic interfaces. This is
due to rapid movements of eyes away from areas of interest falling within
gaze contingent regions and consequent use of multiple dwell times. These
movements are due to movement in areas of peripheral vision and eyes being
consequently attracted towards those areas of peripheral vision. We have
observed that this distraction can be controlled by training but cannot be
eliminated completely. The effect of training is described earlier in conclusion
text.

It was also observed during the experiments that it is hard to fixate in
comparatively smaller areas. If some object is small enough that it is smaller
than the area of high-acuity vision, then it subtends an angle of less than one
degree from a normal viewing distance (as described in chapter 2). All such
objects of this smaller size are difficult to fixate in. This is why it is hard
to control standard graphical user interfaces using eye gaze as a pointing
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method. Relatively larger regions in the interface are needed.
Dwell time is a substitute technique for mouse clicks but we know that in

standard graphical user interfaces some objects need double clicks to perform
associated actions. This is another limitation of eye gaze interaction with
dwell time as a selection mechanism using it for standard graphical user
interfaces.

8.1 Answers to Research Questions

In this section we present brief answers to the research questions provided
by this thesis work

8.1.1 Research Question-1

How can different components, an Eye Gaze Tracker, a Tele-operation Sta-
tion and a Mobile Robot, be integrated with each other to work as a whole
system?

After careful study and analysis of technical documentation provided with
different software and hardware components to be integrated we concluded
the following:

• The Tobii Eye Tracker SDK provides ATL-COM (Active Template
Library-Component Object Model) objects to provide real time gaze
data in the form of x, y coordinates of user gaze points on the screen
at a data rate of 60Hz.

• The XBee Wireless Communication Module provides a serial link to
send the commands to the Arduino board on the Spinosaurus robot.
C++ is the most efficient language to drive the serial link from the
application system.

• OpenCV is an open source image processing tool from Intel. It is a
C++ based tool. It can be used to grab the video stream sent wirelessly
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from the camera mounted on the Spinosaurus and then to augment this
stream with our new innovative interface elements.

This process of technical documentation investigation identifies data struc-
tures, interfaces and choice of language required to successfully communicate
among diverse components. Based on this information software architecture
of a working prototype is presented. This is discussed in length in chapter
5.

8.1.2 Research Question-2

How can we improve the performance of gaze interaction by making different
arrangements of the active regions of the operator interface?

Based on gaze behaviour of the users presented in section 5.2 a new dynamic
interface is developed as a part of the prototype. For empirical evaluation,
in our specific case we have designed two experiments to collect evidence
regarding whether our developed solution improves the performance of the
system compared to existing solutions by other researchers in this area. Re-
sults show that this new dynamic interface performed quite well as compared
to the static interface. Chapters 6 and 7 tell the whole story.

8.1.3 Research Question-3

What are the limitations of gaze interaction, if any, and the reasons for these
limitations?

Based on the analysis of evidence collected from empirical evaluation in re-
search question 2, we discuss limitations of gaze interaction. Details are
presented in previous section of this chapter.
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8.2 Future Work

In the current scenario each gaze contingent region sends a single command
to the robot. There is very little variation available in different activities. For
example, we can move left or right with a fixed angle or forward or backwards
with a single speed. The dynamic interface has a quite big area. In a future
variant of the interface this area could be used to bring variation in the degree
of motion specified in commands. For example, the upper half area of the
LEFT gaze contingent region can be used to turn at different angles by using
different areas within the region, or different areas within the FORWARD
region could be used to move with different speeds. This may be explored
in future work. Performance issues may arise when we try to achieve this
customization in speed levels and turning angle. Actual implementation may
reveal the real results.
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Appendix A

The Spinosaurus Mobile Robot:
System Description

The Spinosaurus is a small mobile robot that has been developed as a plat-
form for research in mobile robot control and human/robot interaction. The
first version of the Spinosaurus (1.0) was completed in April 2009. This ver-
sion was a pure radio controlled system, using FM analog control from a
conventional hobby RC controller to steer and drive the robot. A video cam-
era mounted on the steerable turret of the robot sent an image to a receiver
that was connected to a computer equipped with a Tobii T60 eye-tracking
system. This configuration was used in a simple eye-tracking study to inves-
tigate human vision while remotely controlling the robot in a task to search
for objects in a maze, using only the view from the robot camera as a guide.
In 2010 the Spinosaurus has been upgraded to version 2.0 that includes:

• removal of the analog FM radio control system

• addition of a bi-directional data link based upon Xbee wireless data
transceivers

• the addition of 2 x on-board Arduino boards for sensor data acquisition,
telecommunications handling and motion control

The data link can be used to control the robot from an external computer.
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A.1 Research Topics being Investigated

Research topics being investigated using this system includes:

1. Gaze-Directed Robot Control. An eye gaze tracking system detects
the direction in which a user is looking. Gaze tracking is used for
many purposes, including studying visual attention (e.g. on web pages,
printed material, computer games) and providing hands-free control
to allow those who have limited or no use of their hands to use word
processors, email and the web. Gaze tracking can also be used to control
a system such as a mobile robot. This research involves developing
an integrated system that uses gaze data from a Tobii T60 eye gaze
tracking system to control the Spinosaurus 2.0 robot. T60 eye-tracker
has infrared diode arrays at the base of the screen and calculates the
direction of gaze of a computer user based upon the distortions of
the diode array patterns as reflected on the surface of the eye and
detected by a camera embedded in the eye-tracker screen. Images from
the video camera on the Spinosaurus robot are transmitted from the
robot to a computer, and are then displayed on the eye-tracker screen.
Robot control software on the operator computer can receive (x, y) gaze
point data from the eye-tracker in real time via an application program
interface (API) to the eye-tracker server. The control software can then
use gaze points as interaction data similar to the (x, y) data provided
by a mouse for controlling the operation of the robot.

2. Vision Processing for Autonomous Robot Control. Processing power
on board the Spinosaurus robot is very limited. However, video images
can be transmitted to an external computer and operational commands
can be transmitted from the computer back to the robot. Hence it
is possible to conduct computationally intensive vision processing for
robot control by using a more powerful external computer for vision
processing tasks. This research is currently investigating autonomous
object detection and navigation using this system configuration.
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A.2 Functional Architecture

Figure A.1: Robot Architecture Diagram

A.3 Robot Parts List

• Lynxmotion A4WD mobile robot chassis
(http://www.lynxmotion.com/Category.aspx?CategoryID=111)

• Pololu TReX DMC01 Dual Motor Controller
(http://www.pololu.com/catalog/product/777)

• Arduino Diecimila Controller Board x 2
(http://arduino.cc/en/Main/ArduinoBoardDiecimila)

• Devantech SRF08 Ultrasonic Rangefinder
(http://www.robot-electronics.co.uk/acatalog/Ultrasonic_Rangers.html)

• SIR-01 Sharp GP2D12 IR sensor x 2
(http://www.lynxmotion.com/images/data/gp2d12.pdf)
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• Radio Transceivers: XBee 2mW Module with Whipantenna
(http://www.coolcomponents.co.uk/catalog/product_info.php?cPath=25_64
&products_id=330)

• Radio Interface on Robot: xBee Shield for Arduino
(http://www.coolcomponents.co.uk/catalog/product_info.php?cPath=50
&products_id=116)

• Radio Interface on Computer: xBee Explorer USB
(http://www.coolcomponents.co.uk/catalog/product_info.php?cPath=25_64
&products_id=243)

A.4 Bibliography
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http://www.ijcas.org/admin/paper/files/7608.pdf
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http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance
_Metrics/PerMIS_2003/Proceedings/Olsen.pdf
http://www.rose-hulman.edu/b̃erry123/pub_files/AreaPaper.pdf
http://gazeinteraction.blogspot.com/2008/11/eye-movement-control-of-remote-
robot.html
http://www.irc.atr.jp/ỹone/research/pdf_folder/2008cogain.pdf
http://ieeexplore.ieee.org/ielx5/10831/34146/01626572.pdf?tp=
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Appendix B

Application source code
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Page 1 Application source code
...

float x, y, distance;
CString str;
time_t fixationTime;
long int currentTime;
currentTime = GetTickCount();

fixationTime = time(NULL);
showCursorCounter++;
gazeDataCount++;

if (gazeData->validity_lefteye == 0 && gazeData->validity_righteye == 0)
{
// Let the x, y and distance be the right and left eye average
x = (gazeData->x_gazepos_lefteye + gazeData->x_gazepos_righteye) / 2;
y = (gazeData->y_gazepos_lefteye + gazeData->y_gazepos_righteye) / 2;
distance = (gazeData->distance_lefteye + gazeData->distance_righteye) / 2;

// Set position, size and color of gaze form
int screenWidth = GetSystemMetrics(SM_CXSCREEN);
int screenHeight = GetSystemMetrics(SM_CYSCREEN);
if(showCursorCounter \% 5 == 0){
m_pTrackedWindow->SetWindowPos(HWND_TOP, (int)(x * screenWidth) - 10,
(int)(y * screenHeight) - 10, 20, 20, SWP_SHOWWINDOW);
m_pTrackedWindow->SetBackgroundColor(RGB((int)distance \% 255, 255 -
((int)distance \% 255), 50));
m_pTrackedWindow->ShowXYPosition(x, y);

// get string pointer and show text window
ptrDirection = &direction;
m_pTrackedWindow->SetWindowTextA(ptrDirection);
}

// get global (x, y) coordinates
xValue = x*screenWidth;
yValue = y*screenHeight;

// collect gaze data for use in user gaze behavior analysis
gazeDataFile.open("gazedata.txt", fstream::in | fstream::out | fstream::app);
gazeDataFile << "x=\t";
gazeDataFile << (int)(x*screenWidth);
gazeDataFile << "\t";
gazeDataFile << "y=\t";
gazeDataFile << (int)(y*screenHeight);
gazeDataFile << "\t";
gazeDataFile << "time=\t";
gazeDataFile << fixationTime;
gazeDataFile << "\t";
gazeDataFile << "milliSecs=\t";
gazeDataFile << currentTime;
gazeDataFile << "\t";
gazeDataFile << "timeDiff=\t";
gazeDataFile << currentTime - dwellTime;

if(!firstTimeFlag){
totalMillisecondsNow = totalMillisecondsNow + (currentTime - dwellTime);
}
gazeDataFile << "\t";
gazeDataFile << "mSecElapsed=\t";
gazeDataFile << totalMillisecondsNow;
gazeDataFile << "\t";
gazeDataFile << "frameCount=\t";
gazeDataFile << frameCount;
gazeDataFile << "\t";
gazeDataFile << "dwellTime=\t";
gazeDataFile << dwellTime;
gazeDataFile << "\t";
gazeDataFile << "gazeDataCount=\t";
gazeDataFile << gazeDataCount;

// identify active regions and set direction or rotation angle later to be used
// for command preparation
if((xValue >= F1x && yValue >= F1y) && (xValue <= RECT4x && yValue <= RECT4y))
{
gazeDataFile << "\tintendedDirec=\t";
mainDialog->SetDirection(’F’);
gazeDataFile << mainDialog->GetDirection();
gazeDataFile << "\n";
}
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Page 2 Application source code cont...
else if(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= B4x && yValue <= B4y)))
{
gazeDataFile << "\tintendedDirec=\t";
mainDialog->SetDirection(’B’);
gazeDataFile << mainDialog->GetDirection();
gazeDataFile << "\n";
}
else if(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= R4x && yValue <= R4y)))
{
gazeDataFile << "\tintendedDirec=\t";
mainDialog->SetDirection(’R’);
gazeDataFile << mainDialog->GetDirection();
gazeDataFile << "\n";
}
else if((xValue >= L1x && yValue >= L1y) && (xValue <= RECT4x && yValue <= RECT4y))
{
gazeDataFile << "\tintendedDirec=\t";
mainDialog->SetDirection(’L’);
gazeDataFile << mainDialog->GetDirection();
gazeDataFile << "\n";
}
else
{
gazeDataFile << "\tintendedDirec=\t";
mainDialog->SetDirection(’A’);
gazeDataFile << mainDialog->GetDirection();
gazeDataFile << "\n";
}

gazeDataFile.close();
dwellTime = currentTime;
firstTimeFlag = 0;
}
return S_OK;
}

// function for capturing video stream from mobile robot camera and then
// superimposing gaze contingent interface on that stream.
LRESULT CTetClientSink::ShowFeedBackStream()
{
CvPoint pt1, pt2,ptBack1, ptBack2, ptLeft1, ptLeft2, ptRight1, ptRight2,
forwardDynamicPoint1, forwardDynamicPoint2, ptStopForward1, ptStopForward2, ptStopBackward1,
ptStopBackward2, backwardDynamicPoint1, backwardDynamicPoint2, rightDynamicPoint1,
rightDynamicPoint2, leftDynamicPoint1, leftDynamicPoint2, forwardLinePoint1, forwardLinePoint2,
forwardLinePoint3, forwardLinePoint4, backwardLinePoint1, backwardLinePoint2, backwardLinePoint3,
backwardLinePoint4, rightLinePoint1, rightLinePoint2, rightLinePoint3, rightLinePoint4,
leftLinePoint1, leftLinePoint2, leftLinePoint3, leftLinePoint4;
CvFont font, fontSmall;
double hScale = 1.0;
double vScale = 1.0;
double hScaleSmall = 0.5;
double vScaleSmall = 0.5;
int lineWidth = 1;

// set font size and type to be displayed in interface
cvInitFont( &font, CV_FONT_HERSHEY_DUPLEX | CV_FONT_ITALIC,

hScale, vScale, 0, lineWidth );
cvInitFont( &fontSmall, CV_FONT_HERSHEY_DUPLEX | CV_FONT_ITALIC,

hScaleSmall, vScaleSmall, 0, lineWidth );

// coordinates for gaze contingent regions
pt1.x = 60;
pt1.y = 0;
pt2.x = 580;
pt2.y = 50;
ptStopForward1.x = 60;
ptStopForward1.y = 50;
ptStopForward2.x = 580;
ptStopForward2.y = 120;
ptBack1.x = 60;
ptBack1.y = 430;
ptBack2.x = 580;
ptBack2.y = 480;
ptStopBackward1.x = 60;
ptStopBackward1.y = 360;
ptStopBackward2.x = 580;
ptStopBackward2.y = 430;
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Page 3 Application source code cont...
ptLeft1.x = 0;
ptLeft1.y = 60;
ptLeft2.x = 50;
ptLeft2.y = 350; //420-70 for stop active region
ptRight1.x = 590;
ptRight1.y = 60;
ptRight2.x = 640;
ptRight2.y = 350; //420-70 for stop active region
forwardDynamicPoint1.x = 60;
forwardDynamicPoint1.y = 0;
forwardDynamicPoint2.x = 580;
forwardDynamicPoint2.y = 350; //420-70 for stop active region
forwardLinePoint1.x = 320;
forwardLinePoint1.y = 0;
forwardLinePoint2.x = 320;
forwardLinePoint2.y = 420;
forwardLinePoint3.x = 60;
forwardLinePoint3.y = 210;
forwardLinePoint4.x = 580;
forwardLinePoint4.y = 210;
backwardDynamicPoint1.x = 60;
backwardDynamicPoint1.y = 130;
backwardDynamicPoint2.x = 580;
backwardDynamicPoint2.y = 480;
backwardLinePoint1.x = 320;
backwardLinePoint1.y = 480;
backwardLinePoint2.x = 320;
backwardLinePoint2.y = 60;
backwardLinePoint3.x = 60;
backwardLinePoint3.y = 270;
backwardLinePoint4.x = 580;
backwardLinePoint4.y = 270;
rightDynamicPoint1.x = 60;
rightDynamicPoint1.y = 60;
rightDynamicPoint2.x = 640;
rightDynamicPoint2.y = 350; //420-70 for stop active region
rightLinePoint1.x = 60;
rightLinePoint1.y = 240;
rightLinePoint2.x = 640;
rightLinePoint2.y = 240;
rightLinePoint3.x = 350;
rightLinePoint3.y = 60;
rightLinePoint4.x = 350;
rightLinePoint4.y = 420;
leftDynamicPoint1.x = 0;
leftDynamicPoint1.y = 60;
leftDynamicPoint2.x = 580;
leftDynamicPoint2.y = 350; //420-70 for stop active region
leftLinePoint1.x = 0;
leftLinePoint1.y = 240;
leftLinePoint2.x = 580;
leftLinePoint2.y = 240;
leftLinePoint3.x = 290;
leftLinePoint3.y = 60;
leftLinePoint4.x = 290;
leftLinePoint4.y = 420;

// capture video stream from mobile robot camera
CvCapture* capture = cvCaptureFromCAM( CV_CAP_ANY );

if( !capture ) {
fprintf( stderr, "ERROR: capture is NULL \n" );
getchar();
return -1;

}

// Create a window in which the captured images will be presented
cvNamedWindow( "Control Interface", CV_WINDOW_AUTOSIZE );
// center of the screen 1280/4, 1024/4
cvMoveWindow("Control Interface", FrameWindowx, FrameWindowy);
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Page 4 Application source code cont...
// Show the image captured from the camera in the window and repeat

while( 1 ) {
// Get one frame
IplImage* frame = cvQueryFrame( capture );

// set direction and rotation angle flag later to be used in commands
// and check dwell time before setting the direction and rotation angle flag
if ((xValue >= F1x && yValue >= F1y) && (xValue <= F4x && yValue <= F4y))||
(((xValue >= F1x && yValue >= F1y) && (xValue <= RECT4x && yValue <= RECT4y)) &&
dwellTimeFlagForward == 1)){
direction = ’F’;
stopActiveRegionLocation = DOWN;
}
else if ((xValue >= B1x && yValue >= B1y) && (xValue <= B4x && yValue <= B4y)) ||
(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= B4x && yValue <= B4y)) &&
dwellTimeFlagBackward == 1)){
direction = ’B’;
stopActiveRegionLocation = UP;
}
else if ((xValue >= R1x && yValue >= R1y) && (xValue <= R4x && yValue <= R4y)) ||
(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= R4x && yValue <= R4y)) &&
dwellTimeFlagRight == 1)){
direction = ’R’;
stopActiveRegionLocation = DOWN;
}
else if ((xValue >= L1x && yValue >= L1y) && (xValue <= L4x && yValue <= L4y)) ||
(((xValue >= L1x && yValue >= L1y) && (xValue <= RECT4x && yValue <= RECT4y)) &&
dwellTimeFlagLeft == 1)){
direction = ’L’;
stopActiveRegionLocation = DOWN;
}
else if (((xValue >= S1Bx && yValue >= S1By) && (xValue <= S4Bx && yValue <= S4By)) &&
stopActiveRegionLocation == DOWN) ||
(((xValue >= L1x && yValue >= L1y) && (xValue <= RECT4x && yValue <= RECT4y)) &&
dwellTimeFlagLeft == 1))*/{
direction = ’S’;
stopActiveRegionLocation = UP;
}
else if(((xValue >= S1Fx && yValue >= S1Fy) && (xValue <= S4Fx && yValue <= S4Fy)) &&
stopActiveRegionLocation == UP){
direction = ’S’;
stopActiveRegionLocation = DOWN;
}

// set the dwell time
if (direction == ’F’){
if((totalMillisecondsNow \% 400) > 0 && (totalMillisecondsNow \% 400) < 20){
dwellTimeFlagForward = 1;
dwellTimeFlagBackward = 0;
dwellTimeFlagRight = 0;
dwellTimeFlagLeft = 0;
}
}
else if (direction == ’B’){
if((totalMillisecondsNow \% 400) > 0 && (totalMillisecondsNow \% 400) < 20){
dwellTimeFlagForward = 0;
dwellTimeFlagBackward = 1;
dwellTimeFlagRight = 0;
dwellTimeFlagLeft = 0;
}
}
else if (direction == ’R’){
if((totalMillisecondsNow \% 400) > 0 && (totalMillisecondsNow \% 400) < 20){
dwellTimeFlagForward = 0;
dwellTimeFlagBackward = 0;
dwellTimeFlagRight = 1;
dwellTimeFlagLeft = 0;
}
}
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Page 5 Application source code cont...
else if (direction == ’L’){
if((totalMillisecondsNow \% 400) > 0 && (totalMillisecondsNow \% 400) < 20){
dwellTimeFlagForward = 0;
dwellTimeFlagBackward = 0;
dwellTimeFlagRight = 0;
dwellTimeFlagLeft = 1;
}
}
else {
if((totalMillisecondsNow \% 400) > 0 && (totalMillisecondsNow \% 400) < 20){
dwellTimeFlagForward = 0;
dwellTimeFlagBackward = 0;
dwellTimeFlagRight = 0;
dwellTimeFlagLeft = 0;
}
}

// update interface dynamically and send command to the robot

if(((xValue >= F1x && yValue >= F1y) && (xValue <= RECT4x && yValue <= RECT4y)) &&
direction == ’F’){

cvRectangle( frame, forwardDynamicPoint1, forwardDynamicPoint2, CV_RGB(0,255,0),
rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font, cvScalar( 255, 0, 0 ) );

cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopBackward1, ptStopBackward2,
CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 410 ), &font, cvScalar( 255, 0, 0 ) );
if(forwardFlag == 0){
SendCommand(’w’, ’1’, ’0’, ’0’);
forwardFlag = 1;
backwardFlag = 0;
leftFlag = 0;
rightFlag = 0;
stopFlag = 0;
}
}
else if(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= B4x && yValue <= B4y)) &&
direction == ’B’){

cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, backwardDynamicPoint1, backwardDynamicPoint2, CV_RGB(0,255,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopForward1, ptStopForward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 90 ), &font, cvScalar( 255, 0, 0 ) );
if(backwardFlag == 0){
SendCommand(’x’, ’1’, ’0’, ’0’);
backwardFlag = 1;
forwardFlag = 0;
leftFlag = 0;
rightFlag = 0;
stopFlag = 0;
}
}
else if(((xValue >= RECT1x && yValue >= RECT1y) && (xValue <= R4x && yValue <= R4y)) &&
direction == ’R’){

cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, rightDynamicPoint1, rightDynamicPoint2,
CV_RGB(0,255,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopBackward1, ptStopBackward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 410 ), &font, cvScalar( 255, 0, 0 ) );
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Page 6 Application source code cont...
if(rightFlag == 0 && frameCount % 10 == 0){
SendCommand(’s’, ’0’, ’2’, ’0’);
rightFlag = 0;
forwardFlag = 0;
backwardFlag = 0;
leftFlag = 0;
stopFlag = 0;
}
}
else if(((xValue >= L1x && yValue >= L1y) && (xValue <= RECT4x && yValue <= RECT4y)) &&
direction == ’L’){

cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, leftDynamicPoint1, leftDynamicPoint2, CV_RGB(0,255,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopBackward1, ptStopBackward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 410 ), &font, cvScalar( 255, 0, 0 ) );

if(leftFlag == 0 && frameCount % 10 == 0){
SendCommand(’a’, ’0’, ’2’, ’0’);
leftFlag = 0;
forwardFlag = 0;
backwardFlag = 0;
rightFlag = 0;
stopFlag = 0;
gazeDataFile << "\t";
}
}
else if(((xValue >= S1Bx && yValue >= S1By) && (xValue <= S4Bx && yValue <= S4By)) &&
direction == ’S’ && stopActiveRegionLocation == UP){

cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopBackward1, ptStopBackward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 410 ), &font, cvScalar( 255, 0, 0 ) );

if(leftFlag == 0 && frameCount % 10 == 0){
SendCommand(’w’, ’0’, ’0’, ’0’);
leftFlag = 0;
forwardFlag = 0;
backwardFlag = 0;
rightFlag = 0;
stopFlag = 0;
gazeDataFile << "\t";
}
}
else if(((xValue >= S1Fx && yValue >= S1Fy) && (xValue <= S4Fx && yValue <= S4Fy)) &&
direction == ’S’ && stopActiveRegionLocation == DOWN){

cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopForward1, ptStopForward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 90 ), &font, cvScalar( 255, 0, 0 ) );

if(leftFlag == 0 && frameCount % 10 == 0){
SendCommand(’w’, ’0’, ’0’, ’0’);
leftFlag = 0;
forwardFlag = 0;
backwardFlag = 0;
rightFlag = 0;
stopFlag = 0;
}
}
else{
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Page 7 Application source code cont...
cvRectangle( frame, pt1, pt2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Forward", cvPoint( 200, 35 ), &font,

cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptBack1, ptBack2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "Move Backward", cvPoint( 200, 465 ), &font, cvScalar( 255, 0, 0 ) );
cvRectangle( frame, ptRight1, ptRight2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptLeft1, ptLeft2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvRectangle( frame, ptStopBackward1, ptStopBackward2, CV_RGB(255,0,0), rectLineWidth, 8, 0 );
cvPutText( frame, "STOP", cvPoint( 260, 410 ), &font, cvScalar( 255, 0, 0 ) );
leftFlag = 0;
forwardFlag = 0;
backwardFlag = 0;
rightFlag = 0;
stopFlag = 0;
}

// check if video frames are not available

if( !frame ) {
fprintf( stderr, "ERROR: frame is null...\n" );
getchar();
break;

}

cvShowImage( "Control Interface", frame );
// Do not release the frame!

// press Esc key to stop the application

if( (cvWaitKey(10) & 255) == 27 ){
mainDialog->SetStreamOff();
break;
}
frameCount++;
}

frameCount++;

// Release the capture device housekeeping
cvReleaseCapture( &capture );
cvDestroyWindow( "Control Interface" );
return 0;

}

// prepare and send command to the mobile robot
// serial communication module
void CTetClientSink::SendCommand(char char1, char char2, char char3, char char4)
{
// open port for I/O
HANDLE h = CreateFile(TEXT("COM3"),
GENERIC_READ|GENERIC_WRITE,
0,NULL,
OPEN_EXISTING,0,NULL);

if(h == INVALID_HANDLE_VALUE) {
PrintError("E012_Failed to open port");
} else {
// set timeouts
COMMTIMEOUTS cto = { 1, 100, 1000, 0, 0 };
DCB dcb;
if(!SetCommTimeouts(h,&cto))
PrintError("E013_SetCommTimeouts failed");

// set DCB
memset(&dcb,0,sizeof(dcb));
dcb.DCBlength = sizeof(dcb);
dcb.BaudRate = 9600;
dcb.fBinary = 1;
dcb.fDtrControl = DTR_CONTROL_ENABLE;
dcb.fRtsControl = RTS_CONTROL_ENABLE;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
dcb.ByteSize = 8;

if(!SetCommState(h,&dcb))
PrintError("E014_SetCommState failed");
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Page 8 Application source code cont...
char buf[7];
DWORD read = 0;
DWORD write=1; // Number of bytes to write to serial port
// take decision for direction and angle based on parameters
if (direction == ’F’ && stopActiveRegionLocation == DOWN){
buf[0] = char1; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char2; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
}
else if (direction == ’B’ && stopActiveRegionLocation == UP){
buf[0] = char1; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char2; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
}
else if (direction == ’S’){
buf[0] = char1; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char2; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
}
else if (direction == ’R’ || direction == ’L’){
buf[0] = char1; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char2; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char3; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
buf[0] = char4; // Character value to write to serial port
WriteFile(h, buf, write, &write, NULL); // write is updated with the number of bytes written
}
CloseHandle(h);
}
}

81



Index

autonomous agents, 29

Background and Problem Definition,
14

Balancing, 49

Conceptual View, 41
Conclusion and Discussion, 58
Constructive Research, 20
Contemporary Technologies, 27
controllable agents, 29

DaVinci, 28
Design Type, 49

Electro-OculoGrahpy (EOG), 11
Electro-OculoGraphy (EOG), 27
Empirical Evaluation, 44
Evolution of the Eye Tracking Sys-

tems, 26
Execution View, 42
Experiment Definition and context, 45
Experiment Design, 48
Eye Gaze as an Input Modality, 12
eye tracking, 11

Future Work, 62

Gaze Contingent Interfaces, 28
General Design Principles, 48

Hypothesis Formulation, 47

interface, 13
Introduction, 10

Literature Review, 26

Method, 20
Minimal Invasive Surgery (MIS), 28
Module View, 42

Participants/Users, 48
Photo-OculoGraphy (POG), 11, 27

Quantitative Research, 21

Randomization, 49
Results and Analysis, 54

Scleral Contact Lens/Search Coil, 11,
27

tele-operation, 13
TeleGaze, 29
Theoretical Work, 26
Tobii T90, 12, 28

Variable Selection, 48
Video-OculoGraphy (VOG), 11, 27

82


