

Master Thesis

Computer Science

Thesis no: MSC-2009:27

September 2009

School of Computing

Blekinge Institute of Technology

Soft Center

SE ï37225 Ronneby

Sweden

Component Reusability Analysis for

Exchanging Electronic Health Records

Jaechang Nam

Internet : www.bth.se/tek

Phone : +46 457 38 50 00

Fax : + 46 457 102 45

 1

This thesis is submitted to the Department of Interaction and System Design, School of

Engineering at Blekinge Institute of Technology in partial fulfillment of the requirements for

the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of

full time studies.

University advisor(s):

Shahid Hussain, Prof. Rune Gustavsson

School of Computing

School of Computing

Blekinge Institute of Technology

Soft Center

SE ï37225 Ronneby

Sweden

 2

ABSTRACT

As Information Communication Technologies

(ICTs) are growing, there have been ceaseless efforts to

develop a National Health Information Infrastructure

(NHII). One of the challenges in constructing a NHII is

concerned with the management of Electronic Health

Records (EHRs). In particular, exchanging EHRs is an

important factor in establishing interoperability within a

NHII, and the reusability of the functionality for

exchanging EHRs is one of major solutions to construct

an NHII. In this study, we obtain several component

models, and conduct empirical studies to validate the

component models in terms of component reusability.

Using HL7 CDA (Health Level 7 Clinical

Document Architecture) as an EHR standard, we

implemented three prototypes of the EHR Exchanger

based on JavaBeans, the exogenous connectors and the

mediator connector respectively. As shown in the

experiment results, the reuse approach using a mediator

connector leads to better component reusability in terms

of external dependency, total coupling between objects

(CBO), additional lines of codes (LOC), and

performance. Thus, we believe that the reuse approach

using a mediator connector yields many benefits in

terms of component reusability for the EHR Exchanger

implementation.

Keywords: Electronic Health Records (EHRs),

component reuse approach, software component model,

mediator connector

 3

ACKNOWLEDGEMENT S

I dedicate this thesis to the Heavenly Father and my

lovely wife. The supports from my parents and two

elder sisters are always more than enough as well. I

appreciate their help. And I couldnôt forget my friends

at RCCG in Karlskrona, particularly all choir members.

Without their encouragement and prayer, this work

would not be achieved. Finally, I thank for Dr. Gouhua

Bai, and Mr. Shahid Hussain as a thesis examiner and a

supervisor respectively. They always helped me to

finish this work with advices academically and mentally.

 4

TABLE OF CONTENTS

ABSTRACT .. 2

ACKNOWLEDGEMENT S ... 3

LIST OF ACRONYMS .. 6

INTRODUCTION .. 7

CHAPTER 1: BACKGROUN D .. 8

1.1 COMPONENT-BASED DEVELOPMENT .. 8
1.2 ELECTRONIC HEALTHCARE .. 9

1.2.1 National healthcare infrastructure ... 9
1.2.2 Electronic health records .. 10

1.3 MOTIVATION ... 10

CHAPTER 2: PROBLEM DEFINITION A ND GOALS .. 11

2.1 PROBLEM DEFINITION .. 11
2.2 GOAL AND OBJECTIVES ... 11
2.3 RESEARCH QUESTIONS .. 12
2.4 EXPECTED OUTCOMES ... 13

CHAPTER 3: METHOD ... 15

3.1 OVERVIEW ... 15
3.2 LITERATURE REVIEW ... 16

3.2.1 Standards for EHRs and implementation technologies... 16
3.2.2 Overview of software component models.. 19
3.2.3 Overview of software component evaluation methods .. 21

3.3 PROTOTYPING .. 22
3.4 EXPERIMENT .. 22

CHAPTER 4: THEORETICAL WORK .. 24

4.1 THE CHOSEN EHR STANDARD AND ITS IMPLEMENTATION TECHNOLOGIES 24
4.1.1 General framework of HL7 CDA .. 24
4.1.2 Creation of a HL7 CDA document .. 26

4.2 UNDERLYING THEORIES OF RECENTLY PROPOSED COMPONENT MODELS 28
4.2.1 Exogenous connectors .. 29
4.2.2 Mediator connector... 31
4.2.3 Active Binding Technology ... 35

CHAPTER 5: EMPIRICAL STUDY .. 39

5.1 PROTOTYPING .. 39
5.1.1 Basic framework of exchanging EHRs.. 39
5.1.2 Scenario for the prototype implementation ... 39
5.1.3 Prototype 1: Basic implementation using JavaBeans ... 40
5.1.4 Prototype 2: Implementation using exogenous connectors... 41
5.1.5 Prototype 3: Implementation using mediator connectors. .. 44

5.2 EVALUATION METHODS FOR COMPONENT AND ITS MODEL .. 46
5.3 EXPERIMENT PLAN ... 47

CHAPTER 6: RESULTS ... 49

6.1 MEASUREMENT OF EXTERNAL DEPENDENCY ... 49
6.2 MEASUREMENT OF TOTAL COUPLING .. 50
6.3 MEASUREMENT OF ADDITIONAL LINES OF CODE .. 51
6.4 PERFORMANCE MEASUREMENT .. 52
6.5 SUMMARY .. 53

CHAPTER 7: DISCUSSION ... 54

7.1 DETAIL INTERPRETATION OF RESULTS ... 54

 5

7.1.1 External dependency ... 54
7.1.2 Total coupling ... 54
7.1.3 Additional lines of code .. 55
7.1.4 Performance ... 55

7.2 ISSUES OF THE COMPONENT MODEL USING A MEDIATOR CONNECTOR 56
7.3 THREAT TO VALIDITY .. 56
7.4 FUTURE WORKS ... 57

SUMMARY ... 59

REFERENCES ... 61

 6

L IST OF ACRONYMS

ABT Active Binding Technology

ANSI American National Standards Institutes

CBD Component-Based Development

CBO Coupling Between Objects

CDA Clinical Document Architecture

CDL Component Definition Language

CEN/TC 251 European Committee for Standardization Technical Committee 251

CIML Component Interaction Markup Language

COTS Commercial Off-The-Shelf

D-MIM Domain Message Information Model

DICOM Digital Imaging and Communication in Medicine

EHR Electronic Health Record

EJB Enterprise JavaBeans

EMR Electronic Medical Record

HIS Health Information System

HL7 Health Level 7

ICTs Information Communication Technologies

ISO International Organization of Standardization

ISO/TC 215 International Organization of Standardization Technical Committee 215

LLP Lower Layer Protocol

LOC Lines of Code

LOINC Logical Observation Identifiers, Names and Codes

MF Main Frame

MLLP Minimal Lower Layer Protocol

NEMA National Electrical Manufacturers Association

NHII National Health Information Infrastructure

NHS National Health Service

OC Originality Components

PLC Product Line Engineering

QC Quality Components

R-MIM Refined Message Information Model

RC Reusable Components

RIM Reference Information Model

SCCp Self-completeness of Componentôs parameter

SCCr Self-completeness of Componentôs return value

SNOMED Systematized Nomenclature of Medicine

SNOMED CT SNOMED Clinical Terms

TDM Template Definition Model

TDS Template Data Schema

 7

INTRODUCTION

After the invention of the Internet in the 20
th
 century, Information Communication

Technologies (ICTs) have been applied to all areas from market to government. One of these

areas taking advantages from ICTs is health, and health informatics has begun to be on the

rise.

In the field of health informatics, the following topics are mainly included: health

information system, decision support systems in healthcare, electronic health records, u-

health, and international standards for health informatics. Many developed countries are

trying to build their National Health Information Infrastructures (NHII) based on these topics

[1-3]. NHII is regarded as one solution to improve health care quality, efficiency, and cost

issues [1, 3].

In this context, there have been ceaseless efforts to develop NHII. The management of

Electronic Health Records (EHRs), which are one of the core components in NHII, is the

most important subject. In fact, most research studies regarding NHII mention EHRs as an

indispensable component of NHII. EHRs include retrospective, concurrent, and prospective

information ñto support continuing, efficient and quality integrated health care [4],ò

classified, according to the International Organization for Standardization (ISO) definition,

in several types such as Electronic medical record (EMR) and Personal health record [4].

EHR-related research areas cover standards, the implementation of EHR systems, and

interoperability between all healthcare-related systems. Recent research trends in EHRs has

been focused on studies of nursing documentation and patient self-documentation,

comparison between different information from EHRs for national health record projects

around the world and the use of international terminologies for semantic interoperability [4].

Component-based development (CBD) is a leading way to build software systems in

software industry and has changed the paradigm of building software ñfrom programming

software to compositing software systems [5].ò The potential merits of CBD are reduced

development time, increased reliability of systems, and increased flexibility [5]. In this

regard, CBD is applied to the implementation of various health-related software systems as

well.

However, the advantages of using CBD with the current component models used for

software system building are not achieved because of the lack of reusability and poor

composition mechanisms [6]. To fulfill the ideals of CBD, current research in CBD is

focused on new component models and their validation.

Based on the importance of EHRs in NHII and limitations of current software

component models, our study will analyze recent problems of implementation for

exchanging EHRs with their limitations and give a promising solution for the problems

through recently proposed component technologies.

 8

CHAPTER 1: BACKGROUND

This chapter gives a general overview of the main themes in this study: Component-based

software development, National health information infrastructure (NHII) and Electronic

health records (EHRs). As a research discipline, component-based software engineering is a

starting point to understanding this study, thus we consider component-based development in

this chapter. NHII and EHRs in NHII are the application areas to apply the software

component-based approach. Relevance between the research discipline and the application

and motivation of this thesis will be presented as well.

1.1 Component-based development

 According to Heineman and Councillôs definition [5], a software component is ña software

element that conforms to a component model and can be independently deployed and

composed without modification according to a composition standard.ò Component-based

development (CBD) is the process of building software systems using those components.

The elements of construction are summarized as componentization, consume, supply, and

manage shown in Figure1.1 [5]. To build a large system, the system is divided into pieces or

subsystems which are implemented as software components (Component Development:

componentization), and the components are stored in a component repository. From this

repository, the components are supplied, consumed and managed (Component Management).

The systems are constructed based on this basis (Solution Development). This development

methodology gives advantage of software reuse and reduced time to market, increased

reliability of systems, and increased flexibility [5]. To mention todayôs component

technologies, we should think of component models which define the semantics of

components, the syntax of components, and the composition of components. There are many

component models: JavaBeans, EJB, CCM, Web services, Koala, KobrA, SOFA, Acme-like

ADLs, UML2.0, PECOS, Fractal and etc [6]. These component models are used in current

software industry and research.

Figure 1.1: Consume, supply, and manage [5]

For a long time, the concept of subroutines was broadly used in programming because

using subroutines is good to conserve memory. From this concept, programmers reused the

previous subroutines, and useful subroutines are collected in a form of libraries so that a

programmer could re-use them easily. This phenomenon caused a paradigm shift in software

development and the result of this phenomenon has directly boosted the software

engineering discipline [7]. Along the history of programming, researchers introduced

programming concepts, methodologies and paradigms based on this phenomenon: pieces of

Repository

Component

Development

Solution
Development

Component

Management

 9

programs, information hiding, interfaces, and etc. Object-oriented development was

developed from this historical background. Software engineering has accelerated research

regarding this paradigm and as a result, important concepts useful in developing software

systems such as software architecture and design patterns have been identified and have

evolved this paradigm [5]. Finally, CBD has changed the way large software systems are

built and realized ñBuy, Donôt buildò philosophy [5]. Today, the use of commercial off-the-

shelf (COTS) components has been achieved to build software.

Current research in this discipline is focused on new component models and

evaluation of software components. Lau and Wang surveyed and analyzed current

component models, and found that the ideal component models do not still exist according to

their taxonomy [6]. It means current software component models should be improved.

Several important issues are also mentioned by Lau and Wang: the component design for

easy reuse, the design of composition mechanism or theory to enable systematic composition

[6]. The issues of component evaluation have come from how appropriate components can

be selected [8]. As the software component market grows, the need to evaluate components

will also be increased because the overall quality of software systems implemented through

CBD is directly impacted by the quality of each software component.

1.2 Electronic healthcare

Information communication technologies (ICTs) are growing, and these technologies have

changed health care environments. The outcome of this change is referred as electronic

healthcare. Without a National health information infrastructure and its elements, the future

of electronic healthcare cannot be certain.

1.2.1 National healthcare infrastructure

The National Health Information Structure (NHII) provides easy access to healthcare data,

personal health histories and other clinical information. NHII has made a revolutionary

change in eHealth services by providing time saving information to healthcare staff.

The NHII has now grown roots in several EU countries, United States, Canada and

Australia. Science researchers are making efforts to improve the efficiency and quality of

healthcare services and accelerating health-related research. NHII is a ñcomprehensive

knowledge based network of interoperable systemsò which acts like a bridge between public

health and medical care [9]. The most important role of NHII is patientôs safety. A complete

medical record of a patient is available anytime that helps healthcare individuals to make fast

decisions even at remote locations. Patients can also access their medical information.

Information technology is developing rapidly in health care nowadays. Efforts are

being made to facilitate people with their medical information and treatment, but at the same

time it brings some challenges that need to be resolved in order to maintain the quality of

NHII. One of challenges to construct NHII is Electronic Health Record (EHR). The main

challenge is the lack of standards and a decentralized system that affects the efficiency and

output during interoperability. An improvement in coordination is required between regional

and national eHealth networks to maintain the quality of eHealth services [2]. According to

Tsiknakis et al., in health information infrastructure, research for software component

availability is required for new software development and the integration of existing

components to perform new tasks [10]. NHII faces inconsistent quality and security issues.

The system needs further development to avoid errors. As the new technologies are

expensive nowadays, the cost factor is also a challenge for NHII. It requires more funding in

order to meet the stringent standards.

 10

1.2.2 Electronic health records

Electronic health record (EHR) stands for: ña repository of patient data in digital form, stored

and exchanged securely, and accessible by multiple authorized usersò according to the

definition by the International Organization for Standardization (ISO) [4]. EHR has

improved the patient safety issues to a great extent. Its implementation has shortened the

distance between healthcare professionals. EHR provides accessible and relevant

information to the physicians, specialists and also to patients. This information includes

patientôs personal information, previous medical history, laboratory tests, medication,

treatment and discharge. EHR also provides long term storage capability and can be accessed

by large group of people on remote locations at the same time. Healthcare staff can easily

update information in a patientôs record that helps the physicians to make reliable and fast

decisions.

EHRs play an essential role in clinical research, health services planning and

management. Early research for digitized health services planning were focused on patient

summary and structured data but nowadays critical research is focused on areas such as

standardization, integrated EHRs, architecture of health information systems or networks,

and interoperability between existing heterogeneous health information systems have been

evolved in the aspects of EHRs [2, 11]. Particularly, exchanging EHRs is a major issue to

establish interoperability within NHII and a lot of research has already been conducted and

the research studies mentioned about components, their reusability and issues regarding

components as future works [10].

During the exchange of electronic health records, there are issues which are a

challenge to improve. Physicians are however becoming dependent on such computer

systems and this is why more standardized methods are required for the assessment of data

quality, time and cost issues. Data ñcompleteness and accuracyò is a critical challenge in

exchanging EHR. According to Muller et al. an easy adaptation to new settings that are

directly linked by component reusability were mentioned as future work [12]. Based on these

scientific evidences, the functional reusability of exchanging EHRs is required to implement

NHII due to common industry issues such as development time and cost [2]. In other words,

the application area of this study is reuse-based component development to achieve effective

and interoperable implementation of exchanging EHRs within NHII.

1.3 Motivation

Most recently developed software systems are constructed by using the component-based

approach. This means health-related software systems have also been built through current

component models. However, current component models should be improved, and building

new component models is a challenging issue as we already discussed in the previous

sections. From this fact, although much research about exchanging EHRs have been

conducted, we can easily observe that currently proposed outcomes for exchanging EHRs

cannot be beyond the limitations such as component reusability of the current component

models. In this regard, we can think that component-based development has great relevance

to the implementation of exchanging EHRs in NHII because NHII requires the reuse of the

function of exchanging EHRs which can solve the recurring problems to exchange EHRs.

Most of the EHR related software and Health Information Systems are implemented

by current software component models with lack of reusability. Moreover, current research

focusing on practical development is limited to proposing architectures of whole systems or

frameworks in a broad view [10, 11, 13, 14]. Considering these facts, we are motivated much

to close this gap.

 11

CHAPTER 2: PROBLEM DEFINITION AND GOALS

2.1 Problem Definition

The problem we define in this research is the lack of component reusability in current

component models and its blind application to exchanging EHRs. In other words, software

components relating with exchanging EHRs or EHR systems in the current research studies

are implemented by current component models with the limitation of their reusability.

However, the current research applying these models to health informatics area accepts the

component reusability without doubt [10, 13].

Electronic Health Records are a challenging area in health informatics, and current

research studies related with EHRs show prominent results regarding overall architecture of

implemented health information systems or networks, and international standards for EHRs

because EHR is a major part of NHII. When NHII based on the robust EHR systems is

constructed, it shall impact on improving quality of healthcare services and assisting health-

related research studies. In particular, NHII tries to join all health information systems

together and requires reuse of the repeating functionality such as exchanging EHRs. In this

sense, reusability of software in NHII is very important issue to be resolved.

Research focused on practical development using the specific technologies such as

Component-based Development (CBD) are quite few or limited to proposing architectures of

whole systems or frameworks in a broad view [10-12]. Component reusability is not

adequately achieved in current component models and mostly EHR-related software and

Health Information Systems are implemented by these models with lack of reusability. As

Component-based Development (CBD) provides increased reuse, less production cost and

shortens the time to the market, it is necessary to have components that can be easily reused

with "composition mechanisms that can be applied systematically [6]." However, the ideals

of software reuse without source code change in current CBD has not been achieved much

due to its constraints such as dependency between components [6, 15]. Moreover, the

deployment of new clinical information systems and e-health services become easier and

faster due to re-usable components, but it still requires more focus on how and when to

upgrade the platform itself (considering the cost factor) [11].

In summary, we investigate and validate the recently proposed component models to

enhance component reusability and apply the validated component model to exchanging

EHRs in order to resolve the issues regarding the component reusability of current

component models and its incomplete application.

2.2 Goal and Objectives

The goal of this study is to analyze component reusability of recently proposed component

models by applying these models to exchanging EHRs which require component reusability

in NHII.

Component reusability is one of the most important benefits of CBD. However,

current software component models have not achieved component reusability much [6].

From this fact, we assure that if component reusability of recently proposed component

models can be validated by this study, the known benefits of CBD such as reduced time to

 12

market and cost can be readily achieved. Analyzing component reusability will be a basis to

select proper software component models to develop various software systems which require

software reuse acutely. Particularly, exchanging EHRs is the most important function to

construct NHII [2]. When this goal is achieved properly in this study, it will accelerate the

challenges in the national scope software development such as NHII.

To fulfill this goal, we define several objectives:

· Identify recently proposed software component models excellent to component

reusability.

· Investigate a proper component evaluation method to validate component reusability.

· Evaluate recently proposed software component models by the proper component

evaluation method.

· Clarify a performance impact when applying these component models to component

development.

When these sub-goals are reached, the goal of this study will be achieved.

2.3 Research Questions

To resolve the problem explained in the previous section, we define the following research

questions based on the research goal and objectives. Our research focuses on recently

proposed component models using exogenous and mediator connectors. Lau et al. proposed

exogenous connectors which control all operational calls between components [16, 17]. The

mediator connector proposed by Sanatnama et al. controls all operation calls as a

compositional operator as well [18]. Using the JavaBeans component model as one of

current component models, we study exogenous and mediator connectors in detail in Chapter

4.

1) What is the better component model to guarantee component reusability for

exchanging electronic Health Records between JavaBeans and component models using

exogenous connectors or mediator connectors?

The first step to the research problem of this study is to identify the appropriate

component model or method to enhance component reusability. Because the most common

component models still have limitations in realizing component reusability, identifying the

appropriate software component model among recently proposed component models is the

most important starting point. So, in this part of our research, we shall study recently

proposed component models using exogenous and mediator connectors that will be used to

analyze which model guarantees component reusability well without code change.

To answer this question, we focus on prototyping based on selected component models

among recently proposed component models and its experimental validation by using

component evaluation models. The selected component models are the component model

using exogenous and mediator connectors respectively. JavaBeans component model which

is one of the most common component models, and the prototypes implemented by the

selected component models will be compared with the prototype using JavaBeans

component model. The result of this experiment will provide the better component model

guaranteeing the component reusability.

2) How can component reusability be evaluated for systems implemented by using

JavaBeans, exogenous connectors, and mediator connectors?

The importance of this question is thus; through a proper component evaluation we

can evaluate and validate the software component models in terms of reusability. Without

answering this question, it is not possible to identify a proper software component model for

 13

exchanging EHRs which requires component reuse. There are several evaluation methods for

component reusability and we need to identify the appropriate evaluation method among the

recently proposed component evaluation methods. Each method has its own evaluation

process. Through literature reviews, we investigate software component evaluation methods

and analyze their pros and cons. After that, we can identify the appropriate evaluation

method for our study.
The results of component reusability evaluation based on the survey regarding

component evaluation methods will be on both theoretical and practical basis to verify

component reusability.

3) How big is a performance impact when each component models such as JavaBeans,

exogenous connectors, and mediator connectors are adopted for constructing software

systems?

During our tests to identify the appropriate component model, there is a possibility for

a performance problem to be created even though component reusability is fulfilled.

Analyzing this problem is important because component reusability is not the only concern

while implementing the function of exchanging EHRs. Other software properties such as

performance should be considered as well during the construction of NHII. So, we will

observe a performance impact while using these reusable components. This part will be

discussed in detail based on the result of analysis for research question 1, 2.

2.4 Expected Outcomes

Meaningful research contributes to knowledge theoretically and practically. New knowledge

should change the world and make people happier. How can we contribute to knowledge

through this study?

The expected outcomes of this study are as follows:

1) We can confirm which software component model can support component

reusability very well.

This expected outcome can make software architects decide which software

component model should be used to guarantee component reusability. Depending on

the type of development projects, component reusability can be of very high priority.

The analysis of recently proposed component models will be useful knowledge to

decide the software component model to be used in a project.

2) The result of prototyping for exchanging EHRs will be a critical part of the

blueprint to construct NHII and can be used practically in NHII.

During this study, we make several prototypes to which recently proposed software

component models are applied. After validating their component reusability, we can

clarify which software component model is good for realizing component reusability,

and this result will be a robust approach to construct NHII.

3) Scientific validation and analysis results of component models will be an objective,

academic basis for software component models in terms of component reusability.

The most important question of this study is how we can scientifically prove if a

certain software component model is proper to assure component reusability. For

the scientific validation, we use an empirical study and analyze its result. These

efforts will establish scientific objectivity of this research.

 14

We demonstrate that these expected outcomes will be enough to contribute to

knowledge in software engineering and health informatics area and make this study

meaningful one.

 15

CHAPTER 3: METHOD

3.1 Overview

In this chapter, we present how to achieve the goal of our study described in the previous

chapter. Both qualitative and quantitative methods are used via following ways: literature

reviews, prototyping, and an experiment.

First, we examine current research studies carefully regarding standards for EHRs,

software component models, and component evaluation methods through literature reviews.

Several standards for EHRs such as HL7 CDA, CEN ENV 13606, openEHR, and DICOM

are investigated in this chapter and their implementation technologies are introduced as well.

To look at overview of software component models, taxonomy for software component

models is discussed before digging deep software component models in detail. Current

component models are studied briefly and the comparison of all these models is a basis to

select several models to be used in prototyping. Component evaluation methods are very

important parts to scientifically validate if the component models to be selected are valuable

for implementing highly reusable software components. Secondly, based on the literature

reviews, we choose one of standards for EHRs and select several candidate component

models for prototyping. Namely, the software component implementation for exchanging

EHRs will be progressed. Lastly, the experiment with the results of prototyping will be

designed to answer our research questions. For the experiment, we also use one of the proper

component evaluation methods and analyze the experiment result through it.

Figure 3.1: Overview of research methods

 16

3.2 Literature review

3.2.1 Standards for EHRs and implementation technologies

Health services have extensive opportunities for improvement through the use of Information

Technology applications in different areas, for example in laboratories, patientôs health

records and other clinical documentation. In earlier days when Information Technology was

growing roots in clinics and laboratories, a patientôs record and the administrative

information was kept within the organization. There was no access to the data from outside.

International standards for EHRs such as HL7 Clinical Document Architecture (CDA),

International Organization for Standardization Technical Committee 215 (ISO/TC215), and

European Committee for Standardization Technical Committee 251 (CEN/TC 251) have a

large scope and the current research based on these technologies has brought helpful and

positive results regarding overall architecture of implemented health information systems or

networks [10].

Some of the common EHR standards and their implementation technologies are

shortly discussed in this chapter.

HL7 Clinical Document Architecture (CDA)

HL7 CDA is a common XML document markup standard used between independent

healthcare-oriented computer systems to exchange all types of clinical information. Based on

XML -encoded documents, it is easy to construct formats of standard information and can

interchange format and data over the internet. CDA documents are easy to create and reused.

It includes almost all sort of multimedia information e.g. sound, text and images.

The HL7 standard was introduced at the start with the 2.x series version. HL7 version

3 is entirely different and is not compatible with version 2. It is challenging to adopt by

organizations which are using version 2 because of its complexity. The reason is that the true

concepts are limited to only few groups [19].

One of the main purposes of this standard is to enable interoperability between all

platforms. It is easily readable at all platforms or devices. The implementation of this

technology has reduced the cost factor and has also shortened the distance between

healthcare information systems [20].

Some initiatives have taken on the implementation of open source HL7 version 3 to

make it more cost effective and easy to apply. Two well known technologies which have

been used are: HL7 Java SIG API, developed by a group of Sun Microsystem, Oracle, Kaiser

and UNLV, and NCI caAdapter tool, developed by National Cancer Institute, USA [21].

Two basic functionalities of HL7 messaging and parsing are provided by the Java SIG

API. A foundation for the future is provided to HL7 version 3 implementations because of its

flexibility. Whereas ñcaAdapter is an open source tool.ò Data mapping and transformation is

supported by caAdapter from various data sources. Its architecture is based on two

components; ñthe Core Engine and the Mapping Componentò where the Core Engine

generates and parses messages utilizing HL7 Java SIG API. The Mapping Component gives

the mapping capability to HL7 version 2 to HL7 version 3 formats [21].

The standard used for transmitting HL7 messages via TCP/IP is the Lower Layer

Protocol (LLP), or known as Minimal Lower Layer Protocol (MLLP) [22]. Based on an

 17

object oriented methodology, HL7 version 3 uses the Reference Information Model (RIM) to

create messages, and CDA obtains its contents from this shared RIM and implements in

XML. It is a main principle while creating clinical documents that it is compatible with HL7

RIM and XML. Its document specification is transport independent. CDA also includes

different sorts of administrative and financial information but its major goal is to give

preference to the clinical documents carrying patient care information [20].

OpenEHR

OpenEHR provides an open and interoperable platform to health systems for the exchange of

EHRs. It is an open standard specification. OpenEHR explains the retrieval, management,

storage and the exchange of patientôs health data in EHR. The transmitted information is

readable to the computers and these health systems can further process this health

information automatically, known as ñsemantic interoperabilityò. The system can record and

maintain all clinical information including patient history, treatments, test results, imaging

and evaluations [23].

The openEHR templates are used by National Health Service (NHS) in the UK as it

provides important implementation experience, and it will be used to develop schemas for

templates and specifications, also includes addition to ñADL language supporting

specialization and templating; Template Definition Model Schema (.xsd of the TDM) and the

Template Definition Model (TDM); an object model of template definitions.ò [24]. The

assessment of a Template Definition generates an Operational Template in openEHR to

produce a ñsingle resulting Templateò that is corresponding to a single large archetype. Also

it is directly used in openEHR systems on runtime, ñbeing the precursor for data capture

forms (including using various XML formalisms such as XAML, XForms), and as the input of

Template Data Schemasò. This fact facilitates using TCP/IP as ñcommunication protocol.ò

Template Data Schema (TDS) gives an enhanced capability for integration in openEHR. A

TDS is generated for every template with a single transform. The templateôs contents are

linked as a message to the resulting schema and are appropriate for the ñcommunication and

XML data transformationò. The data source generates its contents according to the schemas

explaining the result types. The most important fact of TDS approach is that it provides

integration and guarantee to any kind of data that ñconforms TDS .xsd in the standard XML

approachò is converted to openEHR content format [24].

CEN ENV 13606

CEN ENV 13606 can be defined as ña subset of the full openEHR specification.ò It enables

the exchange of records between different health systems [23]. In the beginning there were

many challenges in implementation of the first version of 13606 because of the

interoperability and compatibility issues between different health systems. In 2002 the pre-

standard of 13606 was enhanced to ña full normative European Standardò. This research

was based on the concept of ñArchetype Methodologyò in openEHR ñtwo-level modeling

approachò. In an EHR system, CEN 13606 exchanges ñEHR Extractsò and further research

is being carried out to make these extracts useful for exchanging information between

openEHR systems.

ENV 13606 has three types of messages [23]:

· request EHCR message: it is sent to retrieve information from receiver.

· provide EHCR message: when the sender want to deliver health information to the

receiver.

· EHCR notification message: It is used to notify about the acceptance or refusal of a

request to receiver.

 18

Digital Imaging and Communication in Medicine (DICOM)

DICOM standard was created by the National Electrical Manufacturers Association (NEMA)

in 1985 to assist the distribution and viewing of medical images like MRIs, CT scans and

ultrasound. This standard is used by hospitals, clinics, imaging centers and specialists. It

allows to take faster diagnosis from anywhere in the world. DICOM is common standard for

receiving scans from the hospitals. The use of DICOM standard provides a faster and more

effective care to the patients. It is used to send their information through the healthcare

enterprise. It also covers most image formats for all the medicine.

DICOM is the specification for messaging and communication between imaging

machines. It enables users to retrieve images and related information from digital imaging

equipment in a standard format using point-to-point connection.

TCP/IP is used as ñcommunication protocolò to communicate between EHR systems

that support DICOM file format. ñDICOM formatò also ensures the image quality while

transmission of files as doctors have to make faster and crucial decisions based on these

reports. Patients also get better assistance and care from health systems using DICOM [25].

Composite objects: (Old objects inherited from NEMA)

It contains Verification, Storage Query/Retrieve Study Content Notification

Normalized objects: (New objects defined in DICOM)

It includes Patient Management, Study Management, and Results Management.

 DICOM standard is used on large scale in following medical specialties:

· Radiology

· Breast imaging

· Cardiology

· Radiotherapy

· Oncology

· Ophthalmology

· Dentistry

· Pathology

· Surgery

· Veterinary

· Neurology

· Pneumology

 A single DICOM file contains header and image data. Header stores information about the

patientôs name, the type of scan, image dimension, whereas image data contains information

in three dimensions. These files can be compressed in different formats e.g. JPEG.

DICOM Service Elements:

Using service elements, complex services are built which are called DICOM Message

Service Elements or DIMSEs. It can be categorized in Operations (such as ñstoreò) and

Notifications (such as ñevent reportò).

Advantages:

DICOM provides standard criteria of displaying images, transfer and storage of information.

It has improved the cost-effectiveness in health care during interconnectivity between

diverse medical systems.

 19

DICOM Standard is used on the following imaging modalities: Computed Radiography,

Computed Tomography, Magnetic Resonance, Nuclear Medicine, Ultrasound, and

Secondary Capture. It also develops a common framework for all the specific information

into a confirmed structure of storing data [26].

3.2.2 Overview of software component models

According to the Heineman and Councillôs definition, a component model plays a role of

defining ñspecific interaction and composition standards [5].ò Interaction with other

software components is basically accomplished by the provided and required interfaces of

components. These interfaces make dependencies between components, and the type of the

dependencies is specified by óan interaction standard [5].ô Composition standards provide a

composition rules which are required when software is constructed by composing

components, so the rules decide how components can be assembled. This definition includes

interfaces, naming, Meta data, interoperability, customization, composition evolution support,

and deployment as important elements of a component model [5]. Namely, a set of standard

of these elements constitute a component model.

Lau and Wang extended the concept of a component model defined by Heineman and

Councill [5] to the definition of the semantics / syntax / composition of components [6]. The

semantics and composition of components are directly related with interaction and

composition standards respectively. The syntax of components is represented by component

definition language (CDL) which is different from the implementation language or same as it

according to each component model [6]. It is a good try for Lau and Wang adding óthe

syntax of componentsô as the element of software component model. That is because the

syntax of components can impact on not only interoperability between components based on

different implementation languages but also component implementation processes. Lau and

Wangôs definition gives us the proper basis in understanding the existing software

component models in terms of component design, its practical implementation and use. In

this section, we look into the taxonomy proposed by Lau and Wang [6], and then investigate

major component models which are currently used much through the taxonomy.

Taxonomy

Lau and Wang propose taxonomy based on component composition in their paper [6]. This

taxonomy categorizes software component models according to composition format in stages

of a component life cycle.

Figure 3.2: An idealized component life cycle [6]

 20

From the fact that system integration in CBD takes place by component composition

in óseveral phases of the component-based system life cycleô [27], Lau and Wang indentified

an idealized component life cycle and its 3 phases, the design phase, the deployment phase,

and the run-time phase, shown as Figure 3.2 [6, 28]. According to this idealized life cycle,

components have the following characteristics for each phase [6]:

· In the design phase, components are produced by builder tools and stored in

repository.

· In the design phase, composite components can be formed as subsystems and

managed in repository.

· In the deployment phase, components should be used by assembler tools interacting

with a repository and make a whole system as a form of binary.

· In the run-time phase, components should be copied and instantiated on run-time

environment.

As shown in Figure 3.2, in the design the builder tool generates a composite component

through the composition of B and C, and then the composite component óBCô is stored in

repository. In the development phase, the composition of A, B, D, and BC for a whole

system is conducted by the assembler tool. Finally, the binary components in the deployment

phase instantiates as run-time instances. Most of current component models can be

categorized by these composition formats in design and deployment phases of the idealized

component life cycle.

 Lau and Wang categorize 13 major existing component models (JavaBeans, EJB,

COM, .NET, CCM, Web Services, Koala, KobrA, SOFA, Acme-like ADLs, UML 2.0,

PECOS, and Fractal) based on these composition styles on each phase and define 4

categories for the 13 models [6]:

· Category 1: Design without Repository

· Category 2: Design with Deposit-only Repository

· Category 3: Deployment with Repository

· Category 4: Design with Repository

Based on these categories, we will briefly study these component models with the

explanation of each category in the next section.

Software component models [6]

Category 1 (Design without Repository) [6] is that components are designed by their scratch

and then the composition of component instances is occurred in the run-time phase. There is

no flexibility in terms of composition because there is no repository so that the composition

of components depends on the design scratches. Actually, services and dependencies of

components in this category are represented in the design phase, and they are instantiated in

the run-time phase. Acme-like ADL based models such as UML 2.0, PECOS, and Fractal are

included in this category.

Category 2 (Design with Deposit-only Repository) [6] is that the components the design

phase are deposited in a repository and then instantiated in the runtime. But those

components in the repository cannot be retrieved and as a result, the composition is occurred

in the run-time phase and same as the composition in the design phase. The difference with

Category 1 is whether the repository exists or not. The component models used in COM,

EJB, .NET, CCM, Web Services belong to this category.

Category 3 (Deployment with Repository) [6] is that the components in the design phased

are stored in a repository but the retrieval of components in the repository is occurred in the

deployment phase. It means there is no composition in the design phase but in the

deployment phase. After composition in the deployment phase, the component instances are

executed in the run-time phase. JavaBeans is the only component model between 13

component models. In Java, components stands for beans, which are deposited in the

 21

ToolBox (a repository) of BDK, deployed to BeanBox (an assembler) by dragging Beans

from the ToolBox, and executed in the run-time environment.

Category 4 (Design with Repository) [6] has a distinctive property comparing with Category

2. That is the components can be retrieved in the repository. For example, in Koala, three

types of connectors for components (that is binding, glue code, and switch) are defined as

well as components and composite with the components from the repository in the design

phase. Namely, by using these connectors, composite components can be generated in the

design phase and deposited in the repository. There is no composition in the deployment

phase and component compositions are same as the compositions in the design phase. This

category includes Koala, SOFA, and KobrA.

From this taxonomy, Lau and Wang summarize 13 component models shown as Table 3.1

based on the idealized component life cycle. We can notify Category 4 mostly fulfills the

idealized component life cycle and any category except for Category 3 doesnôt fulfill

composition in the deployment phase. So, Lau and Wang insist the current component

models should be improved for achieve the idealized component life cycle and mentioned

the ideal category óDesign and Deployment with Repositoryô. In the next chapter, we will

investigate this gab via recently proposed component models.

Table 3.1: A taxonomy based on composition [6]

Category Models

Design Deploy

Deposit-

N
Retrieve Compose

Deposit-

C
Compose

Design without

Repository

Acme-like

ADLs, UML 2.0,

PECOS, Fractal

í í P í í

Design with

Deposit-only

Repository

EJB,

COM, .NET,

CCM, Web

Services

P í P í í

Deployment

with

Repository

JavaBeans P í í í P

Design with

Repository

Koala, SOFA,

Kobra
P P P P

* Deposit-N: new components can be deposited in a repository.

* Retrieve: components can be retrieved from the repository.

* Compose: composition is possible.

* Deposit-C: composite components can be deposited in the repository.

3.2.3 Overview of software component evaluation methods

Component-based development (CBD) and Commercial off-the-shelf (COTS) components

are general in current software system industries due to their benefits such as component

reuse. However, one of the challenging issues has been how to evaluate and select robust

components for their reuse and many research studies regarding component evaluation have

conducted [8, 29-32].

To resolve this issue, Ismail et al. reviewed current component evaluation approaches

and categorized them into 4 groups in terms of software reuse: Product Line Engineering

Components (PLC), Originality Components (OC), Quality Components (QC), and Reusable

Components (RC) [29]. OC and QC approaches mainly focus on componentsô quality rather

than reusability. PLC and RC approaches, however, aim at evaluation of core assets in

software product lines and component itself respectively. Although to define these groups

 22

Ismail et al. use three criteria (scope, technique, and level of validation) which are partial

members of a evaluation framework proposed by Goulão and Abreu [29, 33], comparison

result between the 4 groups based on three criteria shows PLC approach fulfills three criteria

as higher weight than other approaches [29], followed by RC approach. Of course, this

review paper mentions all approaches have a room for improvement in terms of

óindependently validatedô which is a subcategory of level of validation [29]. However, the

result of comparison between all approaches shows comparative maturity of component

evaluation approaches [29]. In particular, for our clarification regarding implementation of

exchanging EHRs as a core asset in NHII based on the view of software product lines, the

review of Ismail et al. [29] is useful to this study in terms of deciding the proper component

evaluation method even though current evaluation approaches are required to be improved.

Namely, PLC and RC approaches will be used in this study in terms of reusability of the core

asset and its software components. Detail evaluation framework setting of these approaches

for the experiment will be discussed in the chapter 5.

3.3 Prototyping

To realize high component reusability for exchanging EHRs, we will investigate

certain EHR standards, related implementation technologies, and recently proposed

component models deeply in theoretical work. After this investigation, we can identify pros

and cons for each investigation result and then decide how to conduct prototyping. Basically,

we implement 3 prototypes for exchanging EHRs. These prototypes are the combinations

between EHR standards, related implementation technologies, and three candidates of

component models. Namely, prototyping steps are as follows:

· Choose and investigate the appropriate standard for EHRs and related

implementation technologies.

· Choose and inquire into 3 candidate component models in detail.

· Prototyping

Á Design components for exchanging EHRs by using the selected EHR standard

as core asset in NHII

Á Implement components by using the selected software component models and

implementation technologies.

As we clarify, the functionality for exchanging EHRs will be prototyped as core asset

in NHII. Based on software product line, this core asset will be constructed according to core

asset development of software product line activities [34].

3.4 Experiment

Experiment is a core part of this study. That is because the goal of this study,

analyzing component reusability, can be directly achieved by this experiment with the result

of prototyping.

For the experiment, we define the selected 3 components models as independent

variables. Namely, each prototype based on one of the selected component models is an

independent variable. According to each prototype, the componentsô characteristics such as

functional commonality, non-functional commonality, variability richness, applicability, and

tailorability will be affected as dependent variables. We will use the evaluation framework

and its metrics for reusability of core assets proposed by Her et al. [32] as PLC approach.

The attributes of this metrics are same as the characteristics used as dependent variables. For

RC approach, the metrics suite for measuring reusability of software components proposed

by Washizak et al. [35] will be applied. After evaluating components by this experiment, we

 23

analyze the experiment result and can draw the conclusion regarding the highly reusable

component model and its implemented components for exchanging EHRs.

In the next chapter, the theoretical work, we will investigate the EHR standard and

implementation technologies we will use in the experiment. Underlying theories of recently

proposed component models chosen for the prototyping will be presented as well.

 24

CHAPTER 4: THEORETICAL WORK

This chapter explains underlying theories of recently proposed software component models

as well as the chosen EHR standard and implementation technologies for the experiment in

detail. Through this chapter, we can understand how these concepts can be related with

component reusability for exchanging EHRs. Theoretical bases of them yield robust results

for this study.

4.1 The chosen EHR standard and its implementation

technologies

Among EHR standards introduced in Section 3.2.1, we chose HL7 CDA for the model of our

research. CDA (Clinical Document Architecture) has been developed by HL7, which is an

international standardization organization approved by American National Standards

Institutes (ANSI), to share and exchange clinical data. CDA not only covers vocabularies

and relationships of clinical data comprehensively but also is very flexible in adding new

variables. Thus, it is widely accepted that all the contents in any clinical document can be

expressed with CDA [36].

In this section, we first explain the general framework of HL7 CDA and describe the

procedure in constructing HL7 CDA documents in detail.

4.1.1 General framework of HL7 CDA

HL7 suggests Reference Information Model (RIM) to define basic classes of medical

data and the hierarchy of them. RIM creates medical documents and messages composing

those classes and upper level domains [37]. Six main classes in RIM are as follows:

Act class: This class defines past, current, and future acts that are required or intended

for patients. For example, medical examination, operation, medical treatment, and

patient education are included in this class.

Entity class: This class contains information about persons or institutes that conduct

acts.

Participation class: This class connects entities and acts by indicating the role of an

entity in an act.

Role class: This class defines a type of role that is verified and approved for an entity

in an act. For example, the role of an anesthetist among entities who are participated in

an operation is putting a patient under anesthesia. This information is written in the

Role class of the entity.

ActRelationship class: This class represents the relationship between two consequent

acts. If a patient has an operation for cholecys-tectomy as the patientôs case has been

diagnosed as cholelithiasis, an act ódiagnosing the case as cholelithiasisô and an act

óoperating on the patient for cholecys-tectomyô are linked each other as a cause and a

result with the ActRelationship class.

RoleLink class: This class links two related roles. If an entity takes roles of óhiringô

and óallocating jobsô, and the role of óallocating jobsô is only valid for this entity when

the entity takes a role of óhiringô, this dependency between two roles are explained in

the RoleLink class.

 25

RIM defines almost 70 basic classes for HL7 messages. Domain Message Information

Model (D-MIM) is a subset of RIM. D-MIN consists of classes, attributes and relationships

which express those messages of a specific field. Furthermore, Refined Message Information

Model (R-MIM), which is instantiated from D-MIN, is used for representing particular

information of a particular message in more confined groups.

CDA R-MIM, as a subset of RIM, is developed for describing clinical information [38].

CDA R-MIN inherits all the properties of RIM. In addition, CDA R-MIN contains the class

cardinality to define necessary classes and the number of appearance of them in a CDA

document.

CDA uses 22 data types with 4 classifications, which are Abstract type, Basic type,

Generic collections, and Timing Specification. For Abstract type, CDA uses ANY type,

which is the highest level of data types and defines basic attributes that are shared for all the

data types. For Basic types, Boolean (BL), Encapsulated Data (ED), Character String (ST),

Character String with Code (SC), Postal Address (AD), Entity Name (EN), Person Name

(PN), Organization Name (ON), Concept Descriptor (CD), Coded with Equivalents (CE),

Coded Simple Value (CS), Instance Identifier (II), Telecommunication Address (TEL),

Integer Number (INT), Ratio (RTO), Physical Quantity (PQ), and Point in Time (TS) are

used. For Generic Collections, Set (SET), Interval (IVL), and Sequence (LIST) are used. For

Time Specification, General Timing Specification (GTS) is used. The overall hierarchy of

these data types is depicted in Figure 4.1. BN, BIN, ADXP, ENXP, CV, URL and QTY in

Figure 4.1 are not those data types used in CDA but intermediate concepts in the hierarchy.

Figure 4.1: Overview of Data Types in CDA [39]

Medical vocabularies used in CDA include Logical Observation Identifiers Names and

Codes (LOINC) and SNOMED Clinical Terms (SNOMED CT) as well as those are defined

by HL7.

LOINC is the set of vocabularies that cover all sorts of medical examinations,

treatments, experiments and diagnosis conducted in hospitals. Using LOINC, hospitals can

exchange and utilize medical data conveniently. LOINC 2.16 released in December 2005

contains 42,499 clinical terms. Regenstrief Institute manages these data [40]. When a HL7

CDA document is created, an appropriate LOINC code, which indicates the type of the

document, is searched considering seven LOINC fields: Component, Property, System

(Sample) Type, Type of Scale, Type of Method, Class, and Status. First, we search a text

 26

value of the required document type in the Component field. If the Status field is DEL,

exclude the record from candidates. Then, we check if the System (Sample) Type and Type

of Method are right for the searching document type. The Type of Scale is referred to check

if the document classification is appropriate. After checking the Property and Class fields,

the LOINC code fit for the purpose can be finally confirmed [39].

SNOMED CT is a standard medical terminology structure developed by College of

American Pathologists and National Health Service of UK in 1999. This is known as a

comprehensive set of clinical reference terminologies. SMOMED CT released in January

2006 covers 366,170 concepts, 993,420 descriptions and 1,460,000 relationships. A special

feature of SNOMED CT is that it allows users post-coordination, by which users can

construct various new concepts by composing more than two existing concepts. As

illustrated in Figure 4.2, the relationship type links domain and value and the combination of

them makes a new SNOMED CT code. However, the post-coordination has drawbacks that

the same concept may be expressed differently by users using different compositions and it

may confuse other users [41].

Figure 4.2: The concept of post-coordination in SNOMED CT schema [39]

Clinical documents written with LOINC and SNOMED CT help doctors and other

clinicians in sharing clinical information and in accessing to clinical knowledge database

easily.

4.1.2 Creation of a HL7 CDA document

CDA consists of two parts: header and body[39]. CDA header contains critical

information that enables sharing and managing patientsô clinical documents consistently

among hospitals and doctors. Contents in CDA header include the clinical document class,

the participants class group, and the act-relationship class group. The clinical document class

describes the information about this clinical document. Mandatory attributes of this class are

a unique document identifier (id), type of the document (code), creation time of the

document (effectiveTime), and confidentiality (confidentialityCode). The participants class

group contains information about patients (service targets) and medical personnel (service

actors). This class group includes the author class, legal authenticator class, authenticator

 27

class, custodian class, and record target class. The act-relationship class group includes the

parent document class, which indicates the previous documents, the related document class,

which shows relationships among documents, the service event class, which describes acts

recorded in the document, the documentation of class, which links the service event classes,

the order class, which contains orders, and the in fulfillment of class, which connects the

order classes.

CDA body is composed of either the non-XML body class or the structured body class.

The non-XML body class is used for referring to outside data encoded with other data format

than XML. The structured body class is used for a XML format document. This class

includes several section classes. A section class contains a unique identifier of this section

(id), type of the section (code), title, text, confidentiality, and language code. Texts of the

structured body class require the entry structure, which enables computers to interpret the

text. Contents of the text are written in codes of a standard terminology such as SNOMED

CT in the entry part. The entry structure is based on HL7 Clinical Statement model.

Kim [39] explains the detailed procedure creating a HL7 CDA document by using a

sample clinical document, which is a discharge summary note. Records of a discharge

summary note include the patientôs registration number, name, age, sex, department,

hospitalization date, discharge date, discharge disposition location, diagnosed disease,

general history and plan of treatment.

At the first step, those recorded elements are classified into header and body. The

patientôs registration number, name, age, sex, hospitalization date, discharge date, discharge

disposition location and department are categorized into header, while the diagnosed disease,

general history and plan of treatment belong to body. Besides these elements, the

confidentiality, author, and administrative institute of this document are necessary in a CDA

document. Sample mapping results of the header part of discharge summary note on the

CDA structure are displayed in Table 4.1.

Table 4.1: Sample CDA header for discharge summary note elements [39]

CDA Element Name Discharge summary note

ClinicalDocument

code Discharge summarization

note title

effectiveTime Discharge date

recordTarget

patientRole

id Registration number

Patient

name Name

administrativeGenderCode Sex

birthTime Age

encompassingEncounter

effectiveTime Hospitalization date

dischargeDispositionCode Discharge disposition

location

Location

healthCareFacility

code Department

Second, appropriate LOINC codes for each element are matched. Sample LOINC

codes for discharge summary note elements are listed in Table 4.2.

 28

Table 4.2: Sample LOINC codes for discharge summary note elements [39]

LOINC_NUM Component

34105-7 Discharge summarization note

11535-2 Hospital discharge DX

11329-0 History general

18776-5 Plan of treatment

42345-9 Discharge functional status

Third, the elements of discharge summary note are converted to a CDA document with

the XML file format. Figure 4.3 shows the body of the completed HL7 CDA document for

the sample discharge summary note. As this CDA document is written in XML language, the

body part shows the structured form. The structured body is composed of two levels. The

first level, which is enclosed with <text> and </text>, is for human to read and understand

the contents. The next level, which is placed between <entry> and </entry>, is expressed as

SNOMED CT codes that machines interpret to take an appropriate action.

Figure 4.3: Sample CDA body for discharge summary note [39]

4.2 Underlying theories of recently proposed component

models

As Lau and Wang drew in their study, current software component models have a room for

improvement in terms of composition in both design and deployment phase, and have critical

issues as well: how to design readily reusable components and how to design component

mechanism for systematic composition [6]. Without proper composition between

components, their reusability can not be achieved so that it is required these issues should be

definitely resolved. Most of current component models use indirect or direct message

passing for composition mechanism which make it difficult to reuse components because of

tight coupling between components and composite components, and do not have

composition theory [6]. Although some models such as ACME-like ADLs which have

 29

architectural units as components have a simple composition theory using ports in software

architectures for composition, they still have problems for systematic composition because

this simple theory just defines the level of ports but not the level of a component itself [6]. In

the past before Lau and Wang clarify these problems, studies such as component adaptation

and dependency injection had conducted for componentsô reuse, but there were limitations in

terms of feasibility and reusability and it was focused on other factors rather than component

reusability [15].

 In this section, we investigate three component models recently proposed by Lau and

Wang [42], Sanatnama et al. [18], and Lim et al. [15]. Particularly, we explain the core

concepts of their models which stand for óExogenous connectors [42]ô, óMediator connector

[18]ô, and óActive binding technology [15]ô respectively.

4.2.1 Exogenous connectors

As composition operators, exogenous connectors in component model proposed by Lau and

Wang [42] are a kind of coordinators to control interactions between components. In this

model, components do not call methods of other components but the methods are only

invocated by responsible exogenous connectors.

Actually, the concept of connectors is used in traditional ADLs to represent interaction

among components, and a component passes their controls to other components via

connectors. This case where connectors play the role of just a path for interacting between

components make components be tightly coupled while compositing and as a result,

components can not avoid depending on other components. On the contrary to the

connectors in traditional ADLs, exogenous connectors play the role of a controller to

actively manage the interaction between components rather than just an interaction path.

To specifically compare the connection via exogenous connectors with the connection

among components in current component models such as EJB and ADLs, we can think of

direct and indirect message passing. Figure 4.4 clearly shows two types of message passing

in order to invoke methods of components. Most of component models meet one of two

types [43]. Direct message passing shown in Figure 4.4 (a) is that components directly call

methods of other components, and component models such as EJB, COM, CCM, UML2.0

and KobrA follow this mechanism [43]. Without connectors, these models directly interact

with other components. The second type, indirect message passing, uses connectors for

interaction between components. For example, shown in Figure 4.4 (b), the component óAô

calls the method óa()ô of the component óBô via the connector óK1ô indirectly. JavaBeans and

several models using ADLs or ADL-like languages follow this indirect message passing to

invoke other componentsô methods. Regardless of the difference between two types, both

direct and indirect message passing coordinate the interaction controls to other components

through a component itself and as a result, the composition between components is adhered

tightly. This tight coupling of components hampers the easy reuse and systematic

composition of components.

Figure 4.4: Connection by message passing [43]

 30

To decrease the degree of coupling when components are composed, Lau and Wang

proposed exogenous connectors [42]. As shown in Figure 4.5 (a), the direction of method

calls is from connectors to components on the contrary to messaging passing mechanism

shown in Figure 4.4. This mechanism using exogenous connectors makes possible for

components to encapsulate their control flow. Namely, control flows in connectors are hided

shown in Figure 4.5 (b). This means computation logics of components are clearly separated

with controls so that components are decoupled with other components.

Figure 4.5: Connection by exogenous connectors [43]

Additionally, for using exogenous connectors in component models, a type hierarchy

of exogenous connectors should be considered. In this model, the whole system must be

implemented by connections of exogenous connectors themselves for complete control

structure for the system as well as connections between components and exogenous

connectors [43]. Before explain the type hierarchy, we need to glance definitions of

components in this model.

Components [43]

Lau and Wang listed two definitions of a component based on exogenous connectors [43]:

· ñDefinition 1. A software component is a software unit with the following defining

characteristics: (i) encapsulation and (ii) compositionality.ò

· ñDefinition 2. An atomic component C is a pair <i,u> where u is a computation unit,

and i is an invocation connector that invokes uôs methods. i provides an interface to

the component C.ò

Figure 4.6: Atomic and composite components [43]

 As we can see Figure 4.6, an atomic component consists of an invocation connector

and a computation unit. The invocation connector plays the role of calling methods in the

computation unit and getting its result. In particular, a composite component is completed by

several atomic components and its composition connector shown as Figure 4.6 (b).

Figure 4.7: Encapsulation and compositionality [43]

 31

 Figure 4.7 clearly shows two characteristics of óDefinition 1ô: encapsulation and

compositionality. In Figure 4.7 (a), we can see the invocation connector (IU) can call only

methods in the computation unit (U) because of encapsulation. Likewise, the composite

component shown in Figure 4.7 (b) is encapsulated with the composition connector (K) and

several atomic components (C1, C2,é, CJ). This means both an atomic component and a

composite component are independent and decoupled so that they can be readily reused and

composed.

Types of exogenous connectors [42]

Types of exogenous connectors can be distinguished by their levels where components and

connectors are connected. At the first level, an invocation connector takes a computation unit

shown as Figure 4.6 (a). As a unary operator, the invocation connector invokes methods of

the computation unit. Figure 4.6 (b) shows the composition connector (K) at the second level

which is a n-ary connector where n is J, for connecting invocation connectors. Likewise, a

whole system is composed by components and various connectors with hierarchy and Figure

4.8 shows the hierarchy of three levels, and this hierarchy can be extended further.

Figure 4.8: Hierarchy of exogenous connectors [42]

Lau et al. defined connectors by this hierarchy in terms of the number of levels [42]:

 Basic types Component, Result;

 Connector types L1 ſ Invocation ſ Component Ą Result;

 L2 ſ L1 í é í L1 Ą Result;

 L3 ſ L í é í L Ą Result

 Where L is either L1 or L2;

 é

According to this definition, we can be notified that from the second level (L2), the

connectors have variable arities. Moreover, from the third level, connectors are polymorphic

so that connector types can be shown in various formats on the contrary to that in the first

and second level connectors are connected with components and the connector L1s

respectively. To generalize this definition with an arbitrary number n of levels, Lau et al. also

defined the type hierarchy [42]:

 L1 ſ Component Ą Result

 L2 ſ L1 í é í L1 Ą Result

 For 2 < i Ò n, LὭ ḳL(ὮὭ) × ȣ × L(Ὦά) Ą Result, for some m

 where ὮὯ ɴ 1,ȣ, (Ὥ 1) for 1 Ὧ ά,

 and L(i) =

L1,Ὥ= 1
ể

Lὲ,Ὥ= ὲ.

4.2.2 Mediator connector

Sanatnama et al. proposed a component model using mediator connector as a composition

operator [18]. The idea of the mediator connector is derived from the concept of mediator

pattern for objectsô decoupling which is one of design patterns proposed by Gamma et al.

 32

[44], and the mediator connector is used for defining the relation between components [18].

However, the main difference is that the mediator pattern still causes tight coupling between

objects because the origin of an objectôs control is the object itself but not a mediator object

[18]. On the contrary to the mediator object, the mediator connector generates and manages

componentsô controls by itself and as a result, loose coupling can be achieved.

In this model using mediator connector, the relation between components can be

expressed by interactions. Sanatnama et al. defines an interaction as a set of activities in

components such as a sequence of method calls [18]. Figure 4.9 shows an interaction

diagram describing a bank system using the mediator connector. As we can see Figure 4.9,

there is no interaction between components. Instead, components interact with each other

through the mediator connector. Figure 4.10 shows an overall process to build a system

using the mediator connector. The first step in this process is designing an interaction

diagram, and then, based on this diagram, a kind of description document which is a so-

called attachment is made and used for descriptively defining component interactions

between moderator connector and components. We can be aware of potential usage scenarios

of the system from the description of interactions in the attachment, and this description

makes possible to probe the logic of an operation, function and method as well [18]. For the

next step, mediator connector interprets the attachment, and the whole or sub system is

constructed by composing all components and connections according to this attachment. In

the run-time phase, the mediator connector initiates method calls and manage their results

from components.

Figure 4.9: Interaction diagram using mediator connector [18]

Figure 4.10: The process of building up a system using attachment and mediator connector

[18]

Attachment

Mediator

Connector

Wrapper

Com

Wrapper

Com

Wrapper

Com

Wrapper

Com

 33

Implementation of mediator connector

Figure 4.11 shows the mediator connector diagram designed by Sanatnama et al. [18]. To

implement the mediator connector as a framework, Sanatnama et al. declare typical objects

for interaction descriptions which are interaction, components, messages (method calls), and

parameters (in/out) [18]. The mediator connector design of Sanatnama et al. [18] is based on

these typical objects for interaction descriptions. In the paper of Sanatnama et al., the

mediator connector is implemented in Java programming language and components are

semantically defined Java class. As we could see the interaction diagram as shown as Figure

4.9, components do not invoke other componentsô method but their methods are invoked by

the only mediator connector. For the multiple objects such as interactions, components,

method calls, and parameters, each object is implemented as a factory class as shown in

Figure 4.12. For example, if methods calls repeat many times and a related component is

instantiates repeatedly as well, the performance of the system using mediator connector will

be decreased. To avoid this problem, Sanatnama et al. used a flyweight component which

shares data with other similar components. If the mediator connector requires to instantiate a

certain component, the mediator connector requests the component to the factory. If the

factory has the flyweight component which fit to the required component, it returns the

reference of the component and the mediator connector can use the required component.

Moreover, since this model uses Java reflection, the methods of a component can be invoked

dynamically [18]. The main advantage of this model using the mediator connector is an

attachment which is used as the composition operator. This mechanism gives the easy

composition of independent components and the flexibility to compose components. This

flexibility positive effects on the component reusability as well.

Figure 4.11: Mediator connector design [18]

Component

In parameter Out parameter

Interaction

Method call

Mediator connector

1

1..*

1..*

1..*

1..*

1

1

 34

Figure 4.12: Mediator connector class diagram [18]

Components Interaction Markup Language for mediator connector [45]

In the further work of Sanatnama et al., Component Interaction Markup Language (CIML) is

proposed for an attachment which is the description document for componentsô interactions

[45]. CIML make it possible for the formal representation of interaction diagrams to map to

existing programming languages [45]. In other words, CIML should be language-

independent to define component interactions [45]. As shown in Figure 4.10, an attachment

for describing componentsô interactions is written in CIML. CIML follows the XML 1.0

specification so that CIML scripts can be available for software tools as well as software

programmer [45].

 Table4.1 shows CIML elements to define componentsô interactions. Based on these

elements, an example CIML instance document is described in Figure 4.13.

Table 4.1: CIML elements (tags) [45]

Element name Description

Ciml Indicates the start of a CIML document

Contains Declares a list of existing components

Initialize Declares a component

InitCall Declares a list of initiating method calls

Interaction Declares an interaction in the system

OperationCall Declares a method call

Inparameter In-parameters to the method

Outparameter Return value from a method call

 As we can see the document for the small bank system in Figure 4.13, CIML

represents component declaration, initialize declaration and interaction declaration. Although

CIML has a room for improvement in order to compose components in the design phase, it

improved an attachment concept proposed by Sanatnama et al. [18]. The main improvement

for the attachment is that CIML gives a generic framework defining components and their

interactions. This merit allows mediator connectors to be applied in various development

environments as a generic way defining componentsô interactions when composed.

 35

é

Figure 4.13: The part of a CIML instance document for a small bank system [45]

4.2.3 Active Binding Technology

Active Binding Technology (ABT) is a new component model proposed by Lim et al. [15].

This model tries to solve the component assembly issue, the independent component

assembly from component development [15]. If the component assembly can be possible

regardless of the component development, easy reuse of binary components will be

supported by independent component assembly. In this regard, Active Binding Technology

wraps up a component assembly method and a runtime environment as well as a new

component model.

 The main motivation of this proposed component model is that the current component

models we already have gone through in the former chapter do not support the reuse of

binary components [15]. It means changing componentsô code is needed for reuse. Namely,

the main concern of this model is focusing on how to match different interfaces between

existing business components developed by third parties [15]. The following list represents

main characteristics of ABT [15]:

· Software development process is divided into two phases: component development

and component assembly.

· ABT allows writing independent business components regardless of component

dependency between other components.

· The assembler composes business components by using glue components which

adapt mismatched component interface. (Interface Mediation) Through the

assembler, componentôs interfaces can be bound actively even the interfaces are

mismatched each other. (Active Binding)

· The method and tool of adapting interface mismatches is supported by ABT

Lim et al. also defined three tenets supporting component reuse summarized as

follows [15]:

· Tenet1: each software component should be developed as a complete independent

 36

part which can be reused in the binary form.

· Tenet2: components should include important information such as the definition of

provided and self-defined required interfaces, and their metadata. This information

is a basis for binding each component in the form of black boxes.

· Tenet3: New component models should be supported in the later commercial

component technologies.

Based in these tenets, a new component model, a component assembly method, a runtime

framework, and an automation tool were proposed as a name of Active Binding Technology.

Active Binding Component Structure and implementation

In the current component technologies based on JAVA or .NET, componentsô interactions

are implemented with tight coupling. As shown in Figure 4.14, the client component

dependents on the provided interface of server component. In this case, it is not easy to

independently reuse the client component without the server component because of its

dependency on the server component. Moreover, the client component contains the code

invocating the provided interfaces in the server component so that if the client component is

composed with the other server component which has the different name of the provided

services, the code change could not be avoidable in order to reuse the client component with

the other server component.

Figure 4.14: Physical model of component dependency [15].

To overcome this issue, Lim et al. proposed the Active Binding component structure

shown as Figure 4.15 [15]. The unique difference comparing with Figure 4.14 is that a

component has required interfaces as well as provided interfaces within the component.

These óself-definedô required interfaces within a component are used for active invocation to

the provided interfaces of other components in contrast to passively calling the provided

interfaces of the server component shown as Figure 4.14. This component structure makes a

component as a ócomplete partô [15] with no dependency on other components. In this regard,

we can say this structure fulfills the tenet 1 mentioned above.

Figure 4.15: Implementation Structure of Active Binding Component [15].

Figure 4.16 shows a component file structure using ABT in .NET. This structure also

includes a glue component identifier and required interface metadata as extended parts

of .NET component parts. This additional information of ABT is used for generating a glue

component which supports assembling active binding components with no code change. The

detail process of active binding component assembly will be described in the next part.

Server Component Client Component

 37

Figure 4.16: Component File Structure implemented in .NET [15].

Active Binding Component Assembly

The key factor of active binding component assembly is a glue component which is a

mediator coordinating interactions between components. As we already shown in Figure

4.16, the glue component is generated by manifest and type metadata of an active binding

component in the component file without any code change of each component [15]. Figure

4.17 shows how active binding components are assembled by a glue component. If the

required interfaces of an existing client component are not matched with the provided

interfaces of a existing server component, the developer can match the required interfaces to

the corresponding provided interfaces of the server component through adding adjusting

code (glue code) to the glue component. By this way, both syntactic and semantic

discrepancy between components can be overcome. Namely, the glue code resolves not only

the difference between the defined name of the required interface of the client component

and the provided interface of the server component but also the parameter of return values of

the components.

Figure 4.17: Active Binding Component Assembly Model [15].

Until now, we investigated the underlying theory basis of the recently proposed new

component model: exogenous connectors, mediator connectors, and active binding

technology. The component models proposed by Lau et al. [43] and Sanatnama et al. [18]

are that the control flow between components is originated from exogenous connectors or

mediator connectors respectively. This separated control flows of components make possible

