
Thesis no: MECS-2014-06

Software defect prediction using machine
learning on test and source code metrics

Mattias Liljeson Alexander Mohlin

Faculty of Computing
Blekinge Institute of Technology
SE–371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial
fulfilment of the requirements for the degree of Master of Science in Engineering: Game and Software
Engineering and Master of Science in Engineering: Computer Security. The thesis is equivalent to
20 weeks of full-time studies.

Contact Information:
Author(s):
Mattias Liljeson Alexander Mohlin
E-mail:
mdli09@student.bth.se, almo09@student.bth.se

External advisor:
Johan Piculell
Ericsson AB

University advisor:
Michael Unterkalmsteiner
Department of Software Engineering

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Context. Software testing is the process of finding faults in software while
executing it. The results of the testing are used to find and correct faults.
Software defect prediction estimates where faults are likely to occur in
source code. The results from the defect prediction can be used to opti-
mize testing and ultimately improve software quality. Machine learning,
that concerns computer programs learning from data, is used to build pre-
diction models which then can be used to classify data.
Objectives. In this study we, in collaboration with Ericsson, investigated
whether software metrics from source code files combined with metrics
from their respective tests predicts faults with better prediction perfor-
mance compared to using only metrics from the source code files.
Methods. A literature review was conducted to identify inputs for an ex-
periment. The experiment was applied on one repository from Ericsson to
identify the best performing set of metrics.
Results. The prediction performance results of three metric sets are pre-
sented and compared with each other. Wilcoxon’s signed rank tests are
performed on four different performance measures for each metric set and
each machine learning algorithm to demonstrate significant differences of
the results.
Conclusions. We conclude that metrics from tests can be used to predict
faults. However, the combination of source code metrics and test metrics
do not outperform using only source code metrics. Moreover, we conclude
that models built with metrics from the test metric set with minimal infor-
mation of the source code can in fact predict faults in the source code.

Keywords: Software defect prediction, Software testing, Machine learn-
ing

i

Acknowledgements

We would like to thank our university supervisor, Michael Unterkalmsteiner, for great
guidance regarding the conduction of a degree project and scientific methods. We
would also like to him for giving feedback on the project and the thesis during its
development. We would like to thank our industry supervisors Johan Piculell and
Joachim Nilsson for continuous feedback during the experiment implementation, the
metric collection process and the results analysis. Lastly, we would like to thank Jonas
Zetterquist and Ericsson for making this degree project and ultimately the thesis pos-
sible by allowing us to work closely with the software development teams and giving
us access to Ericsson’s source code repositories.

ii

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and limitations . 2
1.3 Research questions . 3
1.4 Thesis outline . 4

2 Background and related work 5
2.1 ML . 5
2.2 Software metrics . 7

2.2.1 Static code metrics . 7
2.2.2 Dependency metrics . 8
2.2.3 Process metrics . 9
2.2.4 Test metrics . 9
2.2.5 Combinations of metrics . 10
2.2.6 Feature selection . 10

3 Method 12
3.1 Literature review . 12

3.1.1 Study selection . 13
3.1.2 Study quality assessment . 13
3.1.3 Synthesis of extracted data 14
3.1.4 Threats to validity . 14
3.1.5 Answers to research questions 1 – 3 14

3.2 Experiment . 15
3.2.1 Threats to validity . 16
3.2.2 Experiment outline . 17

4 Experiment implementation 19
4.1 Data collection . 19

4.1.1 Identify faulty files . 20
4.1.2 Collection of process metrics 20
4.1.3 Collection of static code metrics 21

iii

4.1.4 Collection of test and dependency metrics 21
4.2 Metric sets . 21
4.3 Model building . 23

4.3.1 ML algorithms . 23
4.3.2 Feature selection . 24
4.3.3 Model evaluation . 24

5 Results 27
5.1 Accuracy . 28
5.2 Precision . 30
5.3 Recall . 31
5.4 F-measure . 32
5.5 Comparison to other studies . 33
5.6 Feature selection results . 34

6 Analysis and discussion 40
6.1 Metric sets results . 40
6.2 ML algorithm results . 41
6.3 Comparison to other studies . 41
6.4 Hypothesis testing results . 41
6.5 Answers to research questions 2 and 3 42
6.6 Answers to research questions 4 and 5 42
6.7 What the results means to Ericsson 43
6.8 Lessons learned . 44

7 Conclusion and Future Work 46
7.1 Conclusion . 46
7.2 Future work . 47

References 50

iv

Chapter 1
Introduction

In collaboration with Ericsson, we have investigated whether Software Defect Predic-
tion (SDP) using test and source code metrics can identify hot-spots, i.e. files in the
source code where defects often occurs. Ericsson has provided realistic industry-grade
data which made our research and development possible and the results applicable to
Ericsson. A discussion of the background follows as well as the formulation of the
problem statement.

1.1 Motivation
The Ericsson M-commerce division maintains a platform for mobile commerce, writ-
ten in the object-oriented programming language Java. Due to the domain, money
transfers, the requirements for creating qualitative and secure products are highly im-
portant. Since the number of defects in products can be an indicator of software quality,
Ericsson M-commerce have strict requirements regarding defects in their products.

Before a product can be shipped, it needs to be very well tested. The problem,
however, is that it is not feasible to test every path in a program. As an example,
Myers et al. [33, p. 10] constructed a toy program with 11 decision points and 15
branches. To perform exhaustive path testing on that simple program, it would require
tests for 1014 paths. The number of paths in a realistic program render complete testing
impractical due to the exponential growth of paths. Test management at Ericsson is
therefore interested in how they can focus their testing on parts that are likely to be
defective.They have problems identifying the source code files that are likely to fail
during testing, though. If the testers were provided with information about files which
might fail, the testing process could be focused on those files.

The lack of knowledge on what to focus the testing on can also lead to faults slip-
ping through to later stages of the development which raises the cost associated with
fixing them [4, 50]. Duka and Hribar note that the cost of rework due to faults can be
lowered by 30-50% by finding faults earlier [16].

This area of study is important because of the cost saving potential it poses to
Ericsson. If fault prone files are detected and testing is focused on the set of fault prone
files, the testers can save time by not focusing the testing effort on files that are unlikely
to contain faults and instead use that time to thoroughly test the fault prone files. By

1

Chapter 1. Introduction 2

identifying files likely to fail and focusing unit testing improvements to these areas,
the testing process can be made more effective. The external quality1 of the product is
also raised when defects are found and corrected before the product is shipped.

An implementation of a tool that provides testers with information on which files
that are more likely to fail can lead to some negative effects as well. Developers and
testers may rely too much on the tool and actual faulty files that are not caught by the
tool are not considered. This false sense of security can lead to faults slipping to later
stages of the development and, as described before, introduce additional cost when
correcting these faults.

Several studies that investigate defect prone modules in the source code have been
conducted, even within the domain of telecommunication [1, 2, 25, 54]. This master
thesis differs in its approach, compared to previous studies. The novel approach we
propose is to use metrics from test(s), that are testing the source code file, in a combined
metric set. To the authors’ knowledge, this approach have not been previously studied.

1.2 Scope and limitations
This master thesis concerns the investigation and development of a tool for predicting
faulty files which includes the following:

• A tool for extracting metrics from a Source Code Management system (SCM)

• A preprocessing tool for structuring the metrics into a desired format.

• An analysis, together with explanations, of produced results.

• A conclusion of why the results came out as they did.

The thesis do not, however, include;

• The development of a tool for data analysis, as this is done with the existing
Weka environment [56].

• The measurement and evaluation of the prediction performance of the tool in a
production environment.

• The production of a front-end tool for graphical representation of the results.

• The observation of the effect the tool has on real users, e.g. whether the tool
leads to a sense of false security by its user, or, on the contrary, to mistrust in the
tool.

1The term “Quality” is used in the sense defined by McConnell [29, p. 463]

Chapter 1. Introduction 3

1.3 Research questions
Following is the list of research questions this master thesis attempts to answer.

RQ1 - What Machine Learning algorithms have been used for SDP?

Identifying which Machine Learning (ML) algorithms that have been used in previous
studies of SDP is highly important for this master thesis to make sure that it contributes
to the research community. [The purpose of this master thesis is to investigate if the
prediction performance of metric sets are increased if test metrics are included in the
set. By using algorithms used in other studies, [the effects of incorporating test metrics
can be directly studied]. The prediction performance of the produced tool can also be
made state of the art as lessons from other studies regarding prediction performance
can be incorporated.

RQ2 - What types of metrics have been used in prior SDP studies?

It is of major importance to recognize what kind of source code metrics that previously
have been studied. This makes sure that the results of the study can be compared to
those of other studies, and in turn making sure that the thesis contributes to the research
community.

RQ3 - Are there any existing test metrics or test metric suites?

The answer of this question determines if there are any test metrics available which
can be incorporated into the tool, or if all test based metrics need to be created for
this master thesis. By using existing metrics, the results of the study can be compared
to those of other studies and the contribution of this master thesis to the scientific
community is thus strengthened.

RQ4 - Which ML algorithm(s) provide the best SDP performance?

As this master thesis investigates a novel metric family, test and source code metrics
combined, there are no prior studies identifying suitable algorithms. The answer to this
question will therefore contribute to the research area.

RQ5 - To what extent do test metrics impact the performance of SDP?

The novelty proposed by this master thesis is to use test metrics together with source
code metrics. Therefore it is of importance to demonstrate to which extent the test
metrics really contribute to the SDP performance.

Chapter 1. Introduction 4

1.4 Thesis outline
This master thesis is structured as follows. Chapter 1 introduces the thesis and its moti-
vation. Chapter 2 discusses the thesis background, related work and how our work fit in
and contributes to the computer science community. Chapter 3 discusses the scientific
methods chosen for this master thesis. Chapter 4 discusses the experiment implemen-
tation, our approach and development methods. Chapter 5 presents the results while
Chapter 6 discusses the results and answers the stated research questions. Chapter 7
chapter summarizes the thesis, presents conclusions and the final analysis as well as
future work.

Chapter 2
Background and related work

Almost all computer software contain flaws that were introduced during code construc-
tion. Over time, some of these defects are discovered, e.g. by quality assurance testing.
The later in the development process the defects are discovered and corrected, the more
cost is associated with fixing them [4, 50]. It is therefore of major importance to find
the flaws as early as possible.

One way of finding flaws or defects is to perform testing. Myers et al. defines
software testing as “the process of executing a program with the intent of finding er-
rors” [33]. Testing is done at many levels including unit testing, function testing,
system testing, regression testing and integration testing. The first level of testing is
the unit test level, where the functionality of a specified section of code is tested. As
stated earlier, it is important to find the defects as early as possible to reduce costs. By
focusing unit tests on the parts that are most fault prone, defects can be found earlier,
and thereby reducing costs.

The process of predicting parts that are fault prone in software is called SDP. The
idea behind SDP is to use measurements extracted from e.g. the source code and the
development process, among others, to find out if these measurements can provide
information about defects. Studies have shown that testing related activities consume
between 50% to 80% of the total development time [12]. As this is a substantial part of
the development process, it is important to focus the testing on the parts where defects
are likely to occur due to its cost saving potential. SDP has been studied since the
1970’s where simple equations, with measurements from source code as variables, was
used as prediction techniques [17]. Since then, the focus for prediction techniques has
shifted towards statistical analysis, expert estimations and ML [8]. Of these techniques,
ML has proven to be the most successful approach [8, 22].

2.1 ML
ML is a branch of artificial intelligence concerning computer programs learning from
data. ML aims at imitating the human learning process with computers, and is basi-
cally about observing a phenomenon and generalizing from the observations [24]. ML
can be broadly divided into two categories: supervised and unsupervised learning. Su-
pervised learning concerns learning from examples with known outcome for each of

5

Chapter 2. Background and related work 6

the training samples [56, p. 40], while unsupervised learning tries to learn from data
without known outcome. Supervised learning is sometimes called classification, as it
classifies instances into two or more classes. It is classification that this master thesis
focuses on since information about which files that have already been found faulty,
exists in a Trouble Report (TR) database.

There has been a large variety of ML algorithms (also known as classifiers) for
supervised learning from a variety of algorithm families presented in previous SDP
studies. These families includes decision trees, classification rules, neural networks
and probabilistic classifiers.

Catal et al. [9] concluded that Naïve Bayes, a probabilistic classifier, performs well
on small 1 data sets. Naïve Bayes assumes that the attributes are independent from each
other. This is rarely the case, but by using feature selection in SDP this assumption does
not affect the results [53]. Feature selection is described in section 2.2.6

Numerous studies [26, 31, 32, 46, 58] have been using J48, which is a Java im-
plementation of the C4.5 decision tree algoritm [43]. These studies shows that the
algorithm does not produce any significantly better or worse results compared to other
algorithms in the studies, except in [58] where J48 performs among the best algorithms,
according to accuracy, precision, recall and f-measure, on publicly available data sets.
Arisholm et al. [1] claims that the C4.5 algorithm performs “very well overall”, and
suggests that more complex algorithms are not required.

Random Forest, which classifies by constructing a randomized decision tree in each
iteration of a bagging (bootstrap aggregating) algorithm [56, p. 356], has proven to give
high accuracy when working with large2 data sets [9]. Bagging is an ensemble learning
algorithm that uses other classifiers to construct decision models [5]. Random Forest
can be seen as a special case of bagging, that uses only decision trees to build prediction
models [26].

Several studies have tested the ability of neural networks for discriminating be-
tween faulty and nonfaulty modules in source code [1, 27, 58]. The results from these
studies have shown that neural networks perform comparable to other prediction tech-
niques. Menzies et al. [31], however, proposed using neural networks for future work,
as they thought neural networks were too slow to include in their study.

Another previously used method is JRip, an implementation of RIPPER which is a
classification rule learner [3, 48]. Classification rule learners greatest advantage is that
they are, in comparison, easier for humans to interpret than corresponding decision
trees.

Menzies et al. [31] maked use of OneR, a classification rule algorithm, to test
thresholds of single attributes. They conclude that OneR is outperformed by the J48
decision tree most of the times. Shafi et al. [48] used, in addition to OneR, another clas-
sification rule algorithm called ZeroR and was outperformed by OneR. ZeroR predicts
the value of the majority class [56, p. 459]. Arisholm et al. has in two different stud-

1In their case around 20 000 lines of code [9]
2In their case up to 460 000 lines of code [9]

Chapter 2. Background and related work 7

ies [1, 2] used the meta-learners Decorate and AdaBoost, together with J48 decision
tree. They claim that Decorate outperforms AdaBoost on small data sets and performs
comparably well on large data sets. They do not however disclose their definition of
“small” and “large” data sets.

2.2 Software metrics
Software metrics can be described as a quantitative measurement that assigns numbers
or symbols to attributes of the measured entity [18]. An attribute is a feature or property
of an entity, e.g. length, age and cost. An entity can be the source code of an application
or a software development process activity. There are several different families of
software metrics. Those that are discussed in this master thesis are presented below.

2.2.1 Static code metrics
Static code metrics are metrics that can be directly extracted from the source code,
such as Lines of code (LOC) and cyclomatic complexity.

Source Lines Of Code (SLOC) are a family of metrics centred around the count of
lines in source files. The SLOC family contains, among others: Physical LOC (SLOC-
P), the total line count, Blank LOC (BLOC), empty lines, Comment LOC (CLOC), lines
with comments, Logical LOC (SLOC-L) and lines with executing statements [41].

The Cyclomatic Complexity Number (CCN), also known as McCabe metric, is a
measure of the complexity of a module’s decision structure, introduced by Thomas
McCabe [28]. CCN is equal to the number of linearly independent paths and is cal-
culated as follows: starting from zero, the CCN is incremented by one whenever the
control flow of a method splits, i.e. when if, for, while, case, catch, &&, || or ?
is encountered in the source code.

Other static code metrics include compiler instruction counts and data declaration
counts.

Object-oriented metrics

A subcategory of static code metrics are object-oriented metrics, since they are also
metrics derived from the source code itself. The Chidamber-Kemerer (CK) Object-
Oriented (OO) Metric Suite [10] used in this master thesis consists of eight different
metrics: six from the original CK metric set and two additional metrics, which follows
below.

Weighted Methods per Class (WMC) counts the number of methods in a class.

Depth of Inheritance Tree (DIT) counts length of the maximum path from class to
root class.

Chapter 2. Background and related work 8

Number of Children (NOC) counts the number of subclasses for one class.

Coupling Between Objects (CBO) counts the number of other classes to which the
class is coupled, i.e. the usage of methods declared in other classes.

Response For Class (RFC) is the number of methods in the class, added to the num-
ber of remote methods called by methods of the class.

Lack of Cohesion in Methods (LCOM) counts the number of methods in a class that
does not share usage of some member variables.

The additional OO metrics that are used in the thesis are:

Afferent couplings (Ca) counts how many other classes that use the class (cf. CBO).

Number of Public Methods (NPM) counts how many methods in the class that is
declared as "public".

Menzies et al. [31] used static code metrics such as SLOC and CCN for defect
prediction. They observed that the prediction performance was not affected by the
choice of static code metrics. What does matter is how the chosen metrics are used.
Therefore, the choice of learning algorithm is more important than the metrics used for
learning. They measure performance with Probability of Detection (PD) and Proba-
bility of False alarms (PF). Using Naïve Bayes with feature selection, they gained a
PD of 71% while keeping the PF at 25%. Zhang et al. [59] commented on them using
PD/PF performance measures and proposed the use of prediction and recall instead.

Zhang [58] investigated if there exist a relationship between LOC and defects on
publicly available datasets. He argued that LOC, together with ordinary classification
techniques (ML algorithms), could be a useful indicator of software quality and that the
results are interesting since LOC is one of the simplest and cheapest software metric
to collect.

Nagappan et al. [37] concludes that McCabe’s CCN can be used together with
other complexity metrics for defect prediction. They note, however, that no single set
of metrics is applicable for all of their projects.

2.2.2 Dependency metrics
The division of the workload of different components3 may be decided in the design
phase of software development. This division of tasks can impact the quality of the
software. Dependency mapping between source code files could therefore be a possible
predictor of fault prone components. Schröter et al. [47] proposed a novel approach to
detect fault prone source files and packages. They simply collected, for each source
code file or package, the import statements and compared these imports to failures in

3Defined in IEEE Standard Glossary [23]

Chapter 2. Background and related work 9

components. In this master thesis we denote this procedure of collecting imports as
dependency mapping.

Schröter et al. [47] concluded that the sets of components used in another compo-
nent, determines the likelihood of defects. They speculate that this is due to that some
“domains are harder to get right than others”. Their results point out that collecting
imports on package level yields a better prediction performance than on file level. Still
the results on file level perform better than random guesses.

2.2.3 Process metrics
Process metrics are metrics that are based on historic changes on source code over time.
These metrics can be extracted from the SCM and include, for example, the number of
additions and deletions from the the code, the number of distinct committers and the
number of modified lines.

Moser et al. [32] compared the efficiency of using change (process) metrics to
static code metrics for defect prediction. Their conclusion was that process data con-
tains more discriminatory information about defect distribution than the source code
itself, i.e source code metrics. Their explanation to this is that source code metrics
are concerned with the human understanding of the code, e.g. many lines of code or
complexity are not necessarily good indicators of software defects.

Nagappan et al. [34] used metrics concerning code churn, a measure of changes in
source code over a specified period of time. They conclude that the use of relative code
churn metrics predict the defect per source file better than other metrics and that code
churn can be used to discriminate between faulty and nonfaulty files.

Ostrand et al. [42] used some process metrics explaining if a file was new and if it
was changed or not. The authors used these metrics in conjunction with other metrics
families and found that 20% of the files, identified by the prediction model as most
fault prone, contained on average 83% of the faults.

2.2.4 Test metrics
Test code metrics can be made up of the same set of metrics that has been previously
described, but for the source code of the tests. In addition to this, Nagappan [36]
introduced a test metric suite called Software Testing and Reliability Early Warning
metric suite (STREW) for finding software defects. STREW is constituted by nine
metrics, in three different families:

Test quantification metrics

SM1 Number of assertions4in test
Source LOC

SM2 Number of test cases
Source LOC

Chapter 2. Background and related work 10

SM3 Number of assertions in test
Number of test cases

SM4 Test LOC / Source LOC
Number of test cases / Number of source classes

Complexity and OO metrics

SM5 ∑Cyclomatic complexity in test
∑Cyclomatic complexity of source

SM6 ∑CBO of test
∑CBO of source

SM7 ∑DIT of test
∑DIT of source

SM8 ∑WMC of test
∑WMC of source

Size adjustment metric

SM9 Source LOC
Minimum source LOC

Nagappan et al. conclude that STREW provides an estimate of the software’s quality in
an early stage of the development as well as identifying fault prone modules [35]. Fur-
ther studies conducted by Nagappan et al. [39] indicates that STREW for Java (STREW-
J) metric suite can effectively predict software quality.

2.2.5 Combinations of metrics
Previous studies [6, 32], have combined metrics from several metric families in an
attempt to achieve better prediction performance.

Caglayan et al. [6] constructed three different sets of metrics. The first set was
static code metrics and the second was repository metrics. The third was the two first
two combined. The results from this study showed that while they did not got better
prediction accuracy, they did get a decrease in the false positive rate when using the
combined set.

Moser et al. [32] constructed a static code set, a process metric set and a combined
static and process set. They concluded that the combined set performed equally well
as the process set, indicating that it is not worth collecting static code metrics.

2.2.6 Feature selection
Feature (or attribute) selection, is a method for handling large metric sets, to identify
which metrics contribute to the SDP performance. By using feature selection, redun-
dant, and hence non-independent, attributes are removed from the data set [56, p. 93].

4Assertions are code that is used during development that allows a program to check itself during
runtime [29, p. 189]

Chapter 2. Background and related work 11

There are two approaches to feature selection: wrappers and filters. Wrappers use
the ML algorithm itself to select attributes to evaluate the usefulness of different fea-
tures. Filters use heuristics based on the characteristics of the data to evaluate the
features [20]. The positive effects of using filters over wrappers is that they oper-
ate faster [21], and are hence more appropriate for the selection in large feature sets.
Another positive effect of using filters is that they can be used together with any ML al-
gorithm. However, in most cases they require the classification problem to be discrete,
whereas wrappers can be put into use with any classification problem. As wrappers
uses the same algorithm for feature selection and classification, the feature selection
process must be done for every algorithm used for prediction.

A filter based feature selection approach called Correlation based Feature Selec-
tion (CFS), presented by Hall [20], has been used in several studies [1, 2, 9]. Unlike
other filter based feature selection algorithms that evaluate individual features, CFS
evaluates subsets of features by taking both the merit of individual features and their
intercorrelations into account [21]. The merit of a feature subset is calculated using
Pearson’s correlation, by dividing how predictive a feature group is with the redun-
dancy between the features in the subset. If a feature is highly correlated with one
or more of the other features in the feature set, that feature will not be considered to
be included in the reduced feature set. Hall claims that the algorithm is simple, fast
to execute and, albeit a filter algorithm, can be extended to support continuous class
problems [21].

Shivaji et al. [49] proposes a feature selection technique for predicting bugs in
source code. They show that a small part of the whole feature set led to better classifi-
cation results than if using the whole set. After the feature selection process, they gain
a prediction accuracy of up to 96% on a publicly available dataset. They do however,
train the classifier on the feature selected set, which can imply that the model is over-
fitted. Smialowski et al. [51], states that special consideration is required when using
supervised feature selection. They state that one has to make sure that the data used to
test a prediction model is not used in the feature selection process. If all data is used
for feature selection, the predictive performance of the prediction model will be over-
estimated. Arisholm et al. [1, 2] have a negative effect in prediction performance when
using the reduced data set from feature selection, which can imply that the prediction
model in [49] is overfitted.

Chapter 3
Method

As this master thesis covers a new family of metrics in SDP, namely test metrics,
having a broad set of algorithms from multiple categories were deemed important as
the prediction performance of test metrics was unknown. To be able to compare the
results to state of the art research and to gain fair results for the test metrics compared
to the source code only metrics, a broad set of metrics of metrics which have performed
well in prior studies where therefore deemed necessary. With this in mind, a literature
review was conducted to gain further knowledge of these areas. The results from the
literature review was then used in an experiment. The relationship between these two
methods is visualized in Fig. 3.1. This figure also shows how the answers to research
questions regarding the literature review acted as input to the experiment.

Literature Review Experiment

RQ 4

RQ 5

RQ 1

RQ 2

RQ 3

Input

Input

Figure 3.1: The relation between methods and research questions

This chapter is divided into two separate parts to mirror the way this master thesis
project was conducted. The first part describes the traditional literature review, which
was done to gain the required background about software defect prediction, ML, source
code metrics and test metrics. The second part documents the experiment that tested the
hypothesis: “Source code metrics together with test metrics provide better prediction
performance than SDP using only source code metrics”.

3.1 Literature review
To answer the research questions 1 – 3, a literature review was conducted. This was
done to ensure a thorough understanding of the area of software defect prediction,
i.e. which ML algorithms and which set of metrics that have previously been studied.
Another reason for doing a literature review was to determine whether the gap in the

12

Chapter 3. Method 13

research, that was identified during the planning stage, really exists. This analysis also
provided insight into the state of the art research of the area, where the knowledge of
domain experts’ contributed to the reliability of this master thesis.

3.1.1 Study selection
The material for the literature analysis was collected using a bibliographic search en-
gine that sources data from article databases, journals and conference proceedings.
A search strategy as well as a “Literature Review Protocol”‘(LRP) was developed to
distinguish, for the thesis, relevant material.

In the domain of software defect prediction, several systematic literature reviews
have been conducted. The method used in this master thesis was to examine the articles
mentioned from five “Systematic Literature Reviews” (SLR) from 1999 to 2013 [17,
8, 7, 22, 44]. These articles were then examined closer in order to determine if they
matched the description outlined in the thesis LRP.

In the LRP it was stipulated that the study selection criteria is based on title and
author. For the title, only SDP articles, conference proceedings etc. with some sort of
ML were selected for further examination, excluding studies using statistical analysis
that were not in the scope of this master thesis. The author or authors of the paper
were also examined. If the author had released two or more papers in the domain, and
the paper was referenced by other papers, the paper was considered as a candidate for
further examination in the literature review.

The other domain related to this master thesis is test metrics. In order to collect
articles about test metrics, multiple search strings with multiple spelling possibilities
were created iteratively. The selection of these articles followed the approach described
above.

3.1.2 Study quality assessment
In order to assess the articles, several culling steps were conducted. Firstly, the ab-
stract of each article was closely examined. If the abstract was related to this master
thesis according to the LRP, the article was rated as approved. If not, the article was
discarded. The same procedure was repeated for the conclusion. If the articles passed
the scrutinization of both abstract and conclusion they underwent a detailed study of
the contents. The overall quality of the article was thereafter rated based on: relevance
to this master thesis, the type of publication and presented prediction performance.

The average score of the allotted rates was then calculated and the articles were
categorized into one out of four categories based on an averaged score. During the
score calculation phase, important passages in the articles were highlighted and tagged
to point out why the passage was important.

Chapter 3. Method 14

3.1.3 Synthesis of extracted data
In order to be able to synthesize the work, a collaboration tool was used. The tool
attach a note section to each article which was used to note a summary of the article,
what rating the article got and why it was important for this master thesis. The tool
also has the possibility to tag articles, to highlight sections of text and place comments
where needed. Based on the averaged score in the study quality assessment phase, the
article was categorized. The tags attached to the articles was used to point out where in
the master thesis the article should be mentioned. The comments and highlights were
used as a basis for the discussions in the thesis.

3.1.4 Threats to validity
The threats to validity in the literature review are mainly concerned with the selection
of studies. The selected studies can have both publication biases and agenda driven
bias. To mitigate the threat of the articles being publication biased, articles from several
SLR’s were chosen. Additionally, several different search strings for finding articles
concerning the other topic was created iteratively as outlined by Zhang et al. [57]. By
conducting the literature review in this way, chances are better that more aspects of the
field of study are covered. The threat of agenda driven bias, i.e. that the authors of an
article only produces text that suites their purposes, is also mitigated by following the
before mentioned procedure.

Another identified threat is that only studies with positive results are published. It
could happen that studies with similar settings with negative results have been per-
formed, but their findings might not get published, or, if published, might not get no-
ticed by the research community This threat is difficult to mitigate, but efforts included
using many SLR’s to broaden the article selection and by using a LRP to minimize the
impact of biased mindsets.

3.1.5 Answers to research questions 1 – 3
The results from the literature review was mainly used as input to the ML algorithm
selection and metric family selection.

RQ1 - What ML algorithms have been used for SDP?

The main ML algorithms used in prior studies are Bagging, Boosting, Decorate, C4.5,
Naive Bayes, Neural networks, Random Forest and RIPPER. These were chosen to be
used in the experiment as they have been used in multiple prior studies, are of different
categories and have shown results indicating that they can be used successfully in SDP.
ZeroR and OneR were selected to be used as baseline to test other algorithms’ predic-
tion performance. These algorithms are discussed in Section 2.1. The implementations
of these algorithms used in the experiment are presented in Section 4.3.1.

Chapter 3. Method 15

RQ2 - What types of metrics have been used in prior SDP studies?

The main metric families used in prior studies are static code metrics, process metrics,
dependency metrics, complexity metrics and object-oriented metrics. These families
were selected to be used in the experiment as they have been used in multiple prior
studies and have shown results indicating that they can be used successfully in SDP.
Object oriented metrics were especially selected as the analysis was done on a object
oriented language and as the STREW-J metrics set depended on the CK metric set. The
metric families are discussed in Section 2.2.

RQ3 - Are there any existing test metrics or test metric suites?

There have been articles published regarding metrics for unit tests and test in general.
These articles are a series of articles written by Nachiappan Nagappan on a set of
metrics called STREW. Applied to Java, these metrics are called STREW-J. These are
also discussed in Section 2.2.4. These were included in the experiment.

3.2 Experiment
To test the hypothesis “Source code metrics together with test metrics provide better
prediction performance than SDP using only source code metrics”, a factorial experi-
ment (using feature selection) was conducted. The two factors in the experiment were
the ML algorithms and the metric sets.

Factor 1
Factor 2

Source code met-
rics

Test metrics Source code and
test metrics

ML algorithm 1 T_S1 T_U1 T_C1
ML algorithm 2 T_S2 T_U2 T_C2
.
ML algorithm n T_Sn T_Un T_Cn

Table 3.1: Visualization of the experiment design. T denotes “Treatment”.

The metric sets comprise metrics from static code analysis, change/process analysis
and test metrics among others. These are explained in Section 2.2, while all included
metrics families are listed in Section 4.1. The different metric sets are defined as fol-
lows. The Source code metric set (Srcs) contains only metrics related to the source
code itself and their files. The Test source code metric set (Tsts) contains metrics re-
lated to the test source code, the respective files and metrics only available to tests,
e.g. STREW-J metrics. The Combined metric set (Cmbs) is the combination of both of
these sets, i.e. the union of them, Cmbs = Srcs ∪ Tsts. These three sets only contain
source code metrics from source files that have tests testing them as the datasets would

Chapter 3. Method 16

otherwise differ. Comparisons between the data sets and their results would not be
possible if the data sets would differ.

When constructing the Cmbs and Tsts sets, there is a possibility of contamination
of the data. The risk is that if a source file has been reported as faulty, i.e. a TR has been
issued, a unit test to test the defected file has been created. Thereby, the mere presence
of an unit test can be a clue that a source file is faulty. This problem was mitigated by
dividing the collected data set into two separate parts based on a pivot point, a point in
time (see Fig. 3.2). Only data older than the pivot point and TRs newer than the pivot
point were considered. By doing the separation in this way, the unit tests created to
test a faulty file was not considered in the prediction, and only unit tests created before
a fault had been reported was included in the metric set.

Time

Commits

Trouble reports

Pivot point

Figure 3.2: Separation of TRs and metric extraction

The prediction model process and evaluation was done three times with a different
set of metrics for each of the n ML algorithms, for a total of n× 3 treatments. In the
first iteration, only source code metrics were used. In the second iteration, only test
metrics were used and in the third iteration, both source code metrics and test metrics
were used. The results from these treatments were then compared to test the hypothesis
and to answer research questions RQ4 and RQ5.

3.2.1 Threats to validity
The threats to the validity are mainly the reproducibility and generalizability of the
experiment since the source data is confidential and only comes from one repository
of one product. This is not only a negative aspect as the data is from a real industry
product and not a "toy" project. The results should therefore be applicable to similar
projects with similar settings. To mitigate the problem with the lack of reproducibility
and generalizability of the experiment, relevant information about the product is dis-
closed. The same experiment can therefore be conducted on similar projects and the
results can be compared.

Chapter 3. Method 17

3.2.2 Experiment outline
The experiment design consisted of several independent variables and a single depen-
dent variable. The independent variables were the ML algorithms and the metrics,
identified in the literature review. The treatments were the combinations of these. The
dependent variable was the occurrence of corrections to the file. The experiment, its
variables, objects and hypotheses are further described below.

Dependent variable

The dependent variable was the occurrence of corrections to a tested file due to TRs.
The source code file was asserted as faulty if there had been a correction in that partic-
ular file. If no correction had been done to a specific file, it was considered as fault free
and hence not faulty. This approach will however result in that a file that has had a fault
in its lifetime, is always considered as faulty. The mitigation to this was to introduce
a time window and a point in time, a pivot point. The file was only considered faulty
if the TR was newer than the pivot point. Metrics from the file were extracted from
before the time of the pivot point. Furthermore, only files changed in the specified time
window were used.

Independent variables

The independent variables were the different ML algorithms: AdaBoost (Boosting),
Bagging, Decorate, J48 (C4.5), JRip, Multilayer Perceptron1, Naïve Bayes, OneRule,
Random Forest and ZeroR. In addition to the ML algorithms, the different metric sets,
Srcs, Tsts and Cmbs, were also independent variables.

Treatments

One treatment was the combination of the levels of the two independent variables.
In this case the metric set and the ML algorithm. Each treatment in the experiment,
in Table 3.1 denoted as "T", produces a separate result. In total, we considered 30
treatments in the experiment.

Objects

The objects in the experiment was the files that the metrics was extracted from. From
the model built by the treatments, a file was classified as either faulty or not faulty.

Hypothesis

The hypothesis tested in this experiment was: “Source code metrics together with test
metrics provide better prediction performance than SDP using only source code met-

1A neural network implementation

Chapter 3. Method 18

rics”. The corresponding null hypothesis used in the experiment is stated as: “Source
code metrics together with test metrics provide equal prediction performance as SDP
using only source code metrics”.

Chapter 4
Experiment implementation

As described in the method section, an experiment was performed to test the discrimi-
natory power of different metric sets with different ML algorithms. In order to collect
these metrics, a tool for scraping them, together with a tool for building and evaluating
the prediction models was developed. This chapter describes these tools.

Before collecting metrics and faults, a repository on which to conduct the exper-
iment must be selected. The main factors when selecting a repository for this exper-
iment was the size in terms of number of files and test coverage1. Larger size was
preferred over smaller in order to make the results more accurate and generalizable.
The repository had to have a high test coverage since the central theme in the hypoth-
esis was the inclusion of test metrics. Choosing a repository with high test coverage
assures that many files are tested and hence minimizes test bias. The selected reposi-
tory had about 200 KLOC spread over about 2000 files and a test coverage of around
70%.

4.1 Data collection
To be able to collect file level metrics from the SCM Git2, several Groovy3 scripts were
developed. These tools were then included in a Gradle4 script as tasks, that allows the
scripts to be run sequentially in an automatic manner. The data collection process is
outlined in Fig. 4.1. When possible, external tools used in other studies were used when
extracting metrics as that would give fair results and make the results comparable to
other studies. Where there where no tools available or where the available tools were
not applicable due to technical restraints, the metric extraction tools were developed
for the experiment.

1The source code’s degree of testing by tests
2http://git-scm.com/
3http://groovy.codehaus.org/
4http://www.gradle.org/

19

http://git-scm.com/
http://groovy.codehaus.org/
http://www.gradle.org/

Chapter 4. Experiment implementation 20

commit 6d25679

commit 733818d

commit a22c3e1

Metrics

Commit
Extractor

UCC ckjm Dependency
Extract

Static
Extract

G
IT

Figure 4.1: Visualization of the extraction process

4.1.1 Identify faulty files
In order to train a learner, the source code files need to be classified as either defective
or non-defective. For this analysis, all commits to the SCM were investigated. If a TR
identification number is included in the commit, it is an indication that a fault has been
corrected and hence, the file that is affected by the commit has been corrected. That
file is thereafter classified as defective, while files that are not affected by any TRs are
classified as non-defective.

4.1.2 Collection of process metrics
The extraction of different process metrics starts with the analysis of all commits to
the repository. Each commit contains information about the files that are affected by
that particular commit. Process metrics are generally easy to extract from the SCM,
as the SCM contains information about which developer changed what file, when the
file was changed and how it was changed during a specified amount of time. This
specified amount of time could be the time between two commits that affected the
file. The metrics that were extracted from this information included authors and line
changes, e.g. added/inserted lines and lines that have been deleted. The author metrics
are generated by extracting all authors from a given repository. Each author is added
as a separate metric to all files with the value of 0. Each file is then analyzed and
the metrics corresponding to the authors that have contributed to a file are set to 1.
The line change metrics, additions, deletions and churn, are calculated by collecting
all commits related to the given file. Information regarding each line change metric
are then extracted from the commits. Statistical measures are then extracted from the
gathered information for each line change metric. These measures are minimum value,
maximum value, mean, median, standard deviation and sum. These are then added to
each file as metrics. A complete listing of extracted metrics is found in Table 4.1 under
the header “Process” and “Author”.

Chapter 4. Experiment implementation 21

4.1.3 Collection of static code metrics
There are several tools freely available for collecting static code metrics, but they each
has a rather limited field of application. Therefore, in order to collect several static
code metrics, several different tools have been used. To collect LOC and other related
metrics, Unified Code Count (UCC)5 was used. UCC collect metrics such as SLOC-P,
BLOC, CLOC and SLOC-L along with compiler instruction counts and data declara-
tion counts. UCC and its features are documented by Nguyen et al. in [41]. The CCN
was extracted using a tool that was developed for this master thesis project.

The CK OO metric suite was calculated using an existing tool called ckjm6 [52].
The metrics that are calculated by ckjm constitutes of eight different metrics, six from
the original CK metric set and two additional metrics, which are listed in section 2.2.1.

4.1.4 Collection of test and dependency metrics
The dependency metrics discussed in Section 2.2.2 were collected through a depen-
dency mapping script created for this master thesis.

In this script, all files are opened and all import statements gathered. These im-
port statements are then analyzed to see whether the imported files are a part of the
repository. If that is the case, they are tested to find out whether they are test related or
source code dependencies. Each file in the repository is then scanned to see whether
they include a certain dependency. If they do, the dependency is added as a metric with
a value of 1. If they do not, the dependency is added as a metric with a value of 0. I.e.
each file that has been imported by another file is added as a metric to the file importing
it. All of the dependency metrics were collected for both source code and test source
code. In the case of this study with a repository of 200K source LOC, the amount of
dependency metrics was around 20 000, in other words the number of unique import
statements.

The eight first metrics from STREW-J listed in subsection 2.2.4 were applied to
the Tsts and Cmbs only as these are test specific metrics. They were collected by syn-
thesizing results from the existing metrics from which they are created. The collection
and synthesis of the other test related metrics are elobarated in Section 4.2.

4.2 Metric sets
The extraction of metrics described above results in a single file containing all ex-
tracted metrics per file. Another script is then responsible for the creation of three
distinct metric sets, Srcs, Tsts and Cmbs, as described in Section 3.2. This script is
also responsible for calculating the test specific metrics described earlier. All informa-

5http://sunset.usc.edu/research/CODECOUNT/
6http://www.spinellis.gr/sw/ckjm/

http://sunset.usc.edu/research/CODECOUNT/
http://www.spinellis.gr/sw/ckjm/

Chapter 4. Experiment implementation 22

Author Process Dependencies ckjm (OO) Static code Analysis Universal Code Counter (UCC) STREW-J

Author 1 Additions (add) External dep 1 CA BLOC BLOC SM1
Author ... Deletions (del) External dep ... CBO BLOC-LOC ratio Compiler directives SM2
Author n Commit date External dep n DIT CCN Data declarations SM3

Codechurn (add-del) LCOM CCN-LOC ratio Embedded comments SM4
Internal dep 1 NOC CLOC Executable statements SM5

For each of the above: Internal dep ... NPM CLOC-BLOC ratio SLOC-L SM6
Min Internal dep n RFC CLOC-LOC ratio SLOC-P SM7
Mean WMC LOC LOC SM8
Median Test dep 1 Nr of asserts CLOC
Max Test dep ... Nr of class defintions
Standard deviation Test dep n Nr of interface definitions
Sum Nr of test definitions

Table 4.1: A listing of all the metrics used to build the metric sets

tion needed for calculating these metrics is available in the produced metric file. This
process is visualized in Fig. 4.2.

Metrics

Mapper

Src

Test
Src

Test

Test

Test
Src

Test Test

Test
Src

Test

Combiner
Src

Test
Src

Test
Src

Test

S
rc
s

Src
Src
Src

T
st
s

C
m
bs

Test

Test

Test

Test

Test
Src

Test

SrcTest

SrcTest
SrcTest
SrcTest

Figure 4.2: Visualization of the mapping and combining process

The mapping between test source code and source code described in Section 3.2
is done at this stage. This is done by analyzing the dependency metrics of each file to
map test source code files to source code files. Source code files with no corresponding
test source files are culled so that all three metric sets contain the same files. This is
done so that results from the different sets can be compared as they consist of the same
files, albeit with different metrics. The mapping is then used when synthesizing test
metrics. All metrics for the mapped tests are gathered per source file and statistical
measures are then calculated from the gathered test file metrics. These measures are:
minimum value, maximum value, mean, median, standard deviation and sum. These
measures are then added as metrics to the Cmbs and Tsts. For the Cmbs, the metrics
from the source file are also added. The last step is calculating STREW-J for the Cmbs
and Tsts. The dependent metrics from which STREW-J are calculated are fetched and
the calculated STREW-J metrics are added to the sets. As the study only concerns
the identification of faulty source code files, data of faulty test source code files are
removed from the sets. A listing of all the metrics used to build the metric sets is
presented in Table 4.1.

Chapter 4. Experiment implementation 23

4.3 Model building
To build the prediction models, file level data from one big repository consisting of
200 000 LOC Java source code were used. There exist a large number of smaller
repositories that could have been included in this master thesis project. However, it
has been suggested that, because of that different processes largely depends on the
operating environment, generalizing results between systems and environments might
not be viable [2, 38].

4.3.1 ML algorithms
As the experiment was conducted to test the discriminatory power of different metric
sets, the ML algorithms included were used with their standard settings in the WEKA
environment [56]. The algorithms used to build the prediction models in this master
thesis are listed in below:

Naïve Bayes - a simple probabilistic classifier.

J48 - an implementation of the C4.5 decision tree algorithm.

Decorate J48 - Decorate is a meta-learner that builds a diverse ensemble of classifiers
using other learning algorithms [30]. In this case, J48 is used.

Random Forest - that classifies by constructing a randomized decision tree in each
iteration of a bagging (bootstrap aggregating) algorithm [56, p. 356].

OneR - an implementation of 1-rule (1R), which is a simple classification rule algo-
rithm.

JRip - an implementation of RIPPER, a classification rule generating algorithm that
optimizes the rule set. [11].

ZeroR - is a very simple method for generating rules. It simply predicts on the major-
ity class of the test data [56, p. 459].

Multilayer perceptron - a neural network that learns trough backpropagation to set
the appropriate weights of the connections [56, p. 235].

AdaBoost - AdaBoost is a meta-learner that, in theory, combines tweaked "weak"
learners into a single "strong" learner. In this case, Wekas’ standard setting De-
cisionStump, is used.

Bagging - Bagging is also, like Decorate, an ensemble learning algorithm. In this
case, Wekas’ standard setting REPTree, is used.

Chapter 4. Experiment implementation 24

4.3.2 Feature selection
The computational complexity of some of the previously mentioned ML algorithms
makes the model building infeasible to use if all of the features in the dataset is used.
As an example, Menzies et al. [31] ruled out neural networks as "they can be very
slow". Therefore, to be able to compare all of the ML algorithms, as the datasets used
in this master thesis project rise up to approximately 20 000 different metrics, feature
selection is used to reduce the dataset before building models. As a wrapper uses the
ML algorithm itself when creating the subset, a new feature selected subset would
have to be created for each classifier. Some of the ML algorithms chosen would also
have to be removed, e.g Multilayer Perceptron, as their execution time would make
them inappropriate for a production setting. This problem became apparent during the
development of the experiment. When choosing a feature selection approach, filtering
was therefore chosen. The tool for feature selection in this master thesis uses CFS,
presented by Hall [20]. As the search method for finding the metric subset to evaluate
with CFS, best first search was chosen. This choice was made because of the claim in
[20] that it gave slightly better results over other search methods for CFS. The feature
selection process was done on the training set in all of the runs of the evaluation process
described in Section 4.3.3.

4.3.3 Model evaluation
To evaluate the prediction models produced, 10 times 10-fold cross validation was
performed. By using 10-fold cross validation, the dataset is separated into 10 somewhat
equally large parts. Nine parts out of 10 are used as training data and the feature
selection process while the 10th part is used for testing exclusively. This process is
repeated 10 times so that every instances of the data set is used as testing set one time.

In order to guarantee that the distribution of the samples into training and test set
was representative of the distribution of the whole set, stratification was also used in the
evaluation process. Stratification means that each fold in the cross validation process
gets approximately the same amount of faulty files. If this is not done, a classifier
within a fold can perhaps be built with no faulty files occurrences, and therefore skew
the result of the whole 10-fold cross validation prediction.

Cross validation can be used in cases where the amount of data is limited, but there
are other advantages compared to other evaluation methods, e.g. the holdout method.
When using the holdout method, one part of the data set is used for training and the
other for testing, typically two thirds for training and the remaining third for test-
ing. This could mean that the samples in the training data is not representative for the
whole data set. One way of mitigating this bias is to use cross validation where all the
instances have been used exactly one time for testing. Witten et al. [56, p.153] states
that a single 10-fold cross validation might not produce a reliable error estimate. They
state that the standard way of overcoming this problem is to repeat the 10-fold cross
validation 10 times and average the results. This means that, instead of conducting 10

Chapter 4. Experiment implementation 25

folds, a total of 100 folds is generated and the error estimate is therefore more reliable.
When using feature selection, it is important to remember to take this into account

when performing cross validation. For the prediction not to be skewed, each fold of the
cross validation must include a feature selection step, in order to keep test data from
being present in the training data and hence in the feature selection process. As the
feature selection is conducted in every fold of the 10 times 10-fold cross validation,
the process is done 100 times. As both the feature selection process and the learning
process are computationally intensive, the whole evaluation process consumes a lot of
time. In the case of this study, the complete process took about 4 days to complete a
data set with about 20000 features and 1000 instances using a mid-range 2013 laptop
with 8GB RAM and a 1.8Ghz Intel i5 processor.

All results from every fold and every round are recorded in a result file for fur-
ther analysis. Hall et al. [22] describes in their systematic literature review different
appropriate performance measures. The result file produced by the evaluation process
therefore contains these measures, i.e. average precision, average recall and average
f-measure. In addition to these performance measures, the average accuracy, the per-
centage of the correctly classified instances, of the prediction model is also included.

Precision measures the proportion of the identified files, classified as faulty, that ac-
tually are faulty. This is a measure of how good the prediction models are at identifying
actual faulty files. Recall measures the proportion of faulty files which are correctly
identified as faulty. Recall is a measure of how many faulty files that the prediction
model is predicted to find. The calculation of accuracy (equation 4.1), precision (equa-
tion 4.2) and recall (equation 4.3) makes use of the confusion matrix (fig 4.3) and is
done by;

Accuracy =
true positives + true negatives

true positives+ true negatives + false positives + false negatives
(4.1)

Precision =
true positives

false positives+ true positives
(4.2)

Recall =
true positives

false negatives+ true positives
(4.3)

F-measure (equation 4.4) is a measure that combines both recall and precision and
is calculated as

F−measure = 2∗ precision∗ recall
precision+ recall

(4.4)

By collecting these performance measurements, future predictions on unseen files
can be estimated. The whole model building and evaluation process is further described
in the pseudo code in Fig. 4.4.

Chapter 4. Experiment implementation 26

Predicted

Actual
Positive Negative

Positive

Negative

True Positive
(TP)

False Positive
(FP)

True Negative
(TN)

False Negative
(FN)

Figure 4.3: Confusion matrix

classifierType = {

Naive bayes,

Random Forest,

J48,

...

}

10.times {

randomize instance order

prepare stratified 10-fold cross validation

fold.each{

get training set

get testing set

create feature selection set from training set

record selected features

classifierType.each{

build classifier

test classifier against testing set

record results

}

}

}

Figure 4.4: Pseudo code describing the building and evaluation of the models

For each of the performance measurements, a matched pair Wilcoxon’s signed rank
test was conducted. This was done to demonstrate difference between the ML algo-
rithms and the metric sets for each of the performance measurements. As the under-
lying data can not be guaranteed to meet the parametric assumptions required by a
t-test, i.e. it is not guaranteed to be normally distributed, Wilcoxon signed-rank test
was used [24]. Wilcoxon’s signed rank test has been recommended for studies com-
paring different algorithms [15]. Due to the large amount of tests being performed,
the significance level, α is set to 0.001 This is in line with other studies in the area as
well [1, 2].

If there is a statistical significant difference between one algorithm compared to
another one, using the same metric set, the "better" one wins. The algorithm that
has the most wins for each metric set is considered the best algorithm for that metric
set. When the best learning algorithm for each metric set has been determined, the
performance of the different metric sets can be assessed.

Chapter 5
Results

This section reports the results from the experiment described in Chapter 3. Runtime
performance-wise the collection and preprocessing of the metrics were rather quick.
It took about 2 hours and about 8 hours respectively. The model building and evalua-
tion however took about 4 days using a mid-range 2013 laptop with 8GB RAM and a
1.8Ghz Intel i5 processor.

The prediction performance is presented with the four different measures described
in Section 4.3.3. First, the accuracy of the different prediction models on different
feature selected metric sets is presented and evaluated. Thereafter, the results of f-
measure, precision and recall is presented in respective order. This is done to de-
termine the best performing ML algorithm to be used for determining the prediction
performance of the different metric sets, that is presented after the ML algorithm eval-
uations. Tables and graphs of the performance of prediction models are presented and
form the basis of the discussions in the subsections. In the tables and figures, the sets
are abbreviated as “src”, “tst” and “cmb” which corresponds to the Srcs, Tsts and
Cmbs respectively. The original full set of metrics for all source files (abbreviated as
“srcRaw”) is also included in the graphs which hints of the repository’s prediction
performance when using ordinary metrics. As the underlying dataset differs from the
others, i.e. it is based on a full set of files and not only those that are tested (described
in Section 3.2), the results of that set can not be directly compared to the other results.
It is included in the graphs as a visual cue of the repository’s performance. These sets
are explained in detail in Section 3.2.

The tables presented, Tables 5.6 to 5.9, present the outcome from Wilcoxon’s
signed rank tests [55]. Each combination of ML algorithm and metric set is tested
against all other combinations resulting in 900 Wilcoxon’s signed rank tests. SrcRaw
is not included in these tables as srcRaw uses a different dataset and can not be com-
pared to the other metric sets in this manner. A green cell indicates that the test reveals
that the combination of ML algorithm and metric set perform significantly better than
the combination tested against. A red cell indicates that the combination performs sig-
nificantly worse while a white cell indicates a draw. In addition to the coloured cells,
the mean value of the performance measurement studied is presented on each row. The
best ML algorithm for each of the metric sets is thus the one with the most green cells
in the table. The most predictive metric set is likewise the one with the most green

27

Chapter 5. Results 28

cells in the same table. Total scores for each of the subsets are summarized in the
small subtable to the right of the main subtable in each table.

The graphs presented in the sections below, Figs. 5.1 to 5.4, gives visual indication
of how the different metric sets perform together with the different ML algorithms.
The graphs are box-and-whisker diagrams where the band in the box shows the me-
dian, the top and bottom of the box shows third and first quartiles, the whiskers shows
minimum and maximum values and circles denote outliers. The box height shows the
interquartile range. The results are grouped together with the other results using the
same algorithm on the X axis. The keys on the X axis labels the different groups with
the algorithm used in that group. The Y axis shows the prediction performance in the
given measure in form of percentage (

Summaries with the best performing algorithms are also presented in Tables 5.1
to 5.4. Their mean values and standard deviations are also shown for each prediction
performance measure. With this table, the performance of the best performing ML
algorithms can quickly be concluded.

A comparison to other studies is also included in Section 5.5 where results from
other studies in the domain are compared to those of this study.

Lastly, in Figs. 5.5 to 5.7, the results of the feature selection process along with the
families of the selected features are presented, as these are the features of which the
models are built on.

5.1 Accuracy
Accuracy is, as described in Section 4.3.3, the percentage of the correctly classified
instances. Figure 5.1 shows the accuracy of the 10 different ML algorithms for the three
different metric sets defined in 3.2, i.e Srcs, Tsts and Cmbs. The last ML algorithm in
Fig. 5.1, ZeroR, is the baseline to test the accuracy of the other algorithms against as
described in Section 4.3.1. ZeroR only predicts according to the majority class, on all
instances. It reaches just short of 70% accuracy, which suggests that there are about
30% faulty files in the set. This is not at all surprising as the stratification process
aims for an evenly distributed dataset. All of the other ML algorithms reach a higher
accuracy on all of the provided metric sets. Most of the results are evenly distributed
with a few exceptions which indicate that the median is a good indicator of the accuracy
performance. There are a few outliers, especially for the Tsts, which indicates a wider
spread in the results for that metric set.

Table 5.6 shows which of the ML algorithms that outperform each other for the
different metric sets, in terms of accuracy as well as the mean accuracy (described in
percentage) of the modeling techniques for the different metric sets. In Table 5.6, one
can see that the models typically predict, except for ZeroR, 76% to 82% correct. The
best ML algorithm for the different metric sets, based on accuracy, is determined by
performing a Wilcoxon’s signed rank test as described in Section 4.3.3. As well as
which ML algorithm that performs the best, the metric set that yields the best accuracy

Chapter 5. Results 29

0%

20%

40%

60%

80%

100%

AdaBoost

Bagging

Decorate

J48
JRIP

MLPerceptron

NaiveBayes

OneRule

Random
Forest

ZeroR

cmb src srcRaw tst

Figure 5.1: Accuracy for all metric sets and algorithms used in the experiment

can also be seen in the table 5.6.
For the accuracy, Random Forest with the Srcs wins and Random Forest with Cmbs

come second with one more tie. There is no statistical significant difference between
Random Forest for Srcs and Random Forest Cmbs. Overall, the Tsts performs quite
badly compared to both the Srcs and Cmbs metric sets. It is not however Random
Forest that perform best for the Tsts but Bagging which also performs quite well for
the other sets as well. In summary, the Srcs generally scores better than both the Tsts
and the Cmbs sets. When comparing the best performing algorithms for each set,
shown in Table 5.1, the difference is minimal.

Cmbs Srcs Tsts

Algorithm Random Forest Random Forest Bagging

Mean accuracy 81.7% 81.8% 78.9%

Std. dev. (σ) 3.5% 3.8% 3.7%

Table 5.1: The best algorithms per set rated by accuracy

Chapter 5. Results 30

0%

20%

40%

60%

80%

100%

AdaBoost

Bagging

Decorate

J48
JRIP

MLPerceptron

NaiveBayes

OneRule

Random
Forest

ZeroR

cmb src srcRaw tst

Figure 5.2: Precision for all metric sets and algorithms used in the experiment

5.2 Precision
Another performance evaluation measure, as described in Section 4.3.3 is precision.
Precision is the measure of how well the prediction model classifies faulty files that
actually are faulty. A table containing the mean values of the ML algorithms over
the different metric sets together with a figure of how the algorithms perform against
each other for different metric sets in terms of precision, are presented in Table 5.7
and Fig. 5.2. In Fig. 5.2 ZeroR stays at 0% precision as it predict all instances as
not faulty and hence does not find any faulty files. As in accuracy, the Srcs performs
best generally with the Cmbs coming in second and the Tsts last. For two algorithms,
Bagging and JRip, the Tsts is the best performing metric set. The results are for the
most part not skewed but the spread however is quite large spanning from around 40%
to 90% and 50% to 100% in some cases. This can also be seen in Table 5.2 where the
standard deviation is high for all of the three best performing algorithms.

Table 5.7 shows the individual scores for the combination of metric sets and ML al-
gorithms. In the case of precision, Bagging performs best in the Cmbs and the Tsts. In
the Srcs, both Multilayer Perceptron and NaiveBayes scores better, however. Bagging
together with the Tsts outperforms the other algorithms for the Tsts by margin, though.
In summary, the Srcs scores significantly better than both the Tsts and the Cmbs in
general. When looking at Table 5.2 the difference between the best performing algo-
rithms for the different sets is not that big, though. Surprisingly, the best algorithm for
Tsts performs better than the best algorithm for Cmbs.

Chapter 5. Results 31

Cmbs Srcs Tsts

Algorithm Bagging Multilayer Perceptron Bagging

Mean precision 73.1% 74.7% 74.1%

Std. dev. (σ) 8.5% 9.4% 10.1%

Table 5.2: The best algorithms per set rated by precision

5.3 Recall

0%

20%

40%

60%

80%

100%

AdaBoost

Bagging

Decorate

J48
JRIP

MLPerceptron

NaiveBayes

OneRule

Random
Forest

ZeroR

cmb src srcRaw tst

Figure 5.3: Recall for all metric sets and algorithms used in the experiment

A third performance evaluation measure, as described in Section 4.3.3 is recall.
Recall measures how many of the faulty files the prediction model finds. Of the same
reason presented in Section 5.2 ZeroR stays at 0% recall. Figure 5.3 shows the preci-
sion of the ML algorithms over the different metric sets. Table 5.8 contains the mean
values of the ML algorithms over the different metric sets together with a figure of how
the algorithms perform against each other for different metric sets in terms of recall.

In Fig. 5.3 one can clearly see that the spread is even larger than it is for the preci-
sion, over 70% for Naive Bayes using the Tsts, and that the amount of outliers is large
as well. The spread is however lower for the Cmbs in most cases when compared to
the other sets. As in the other prediction performance measures, the results are not es-
pecially skewed. One distinctive feature is that the median is generally higher or about
the same for the Cmbs when compared to the Srcs.

Chapter 5. Results 32

The high recall for the Cmbs can also be observed in Table 5.8 where the Cmbs
has a higher number of wins and lower number of loses when compared to the Srcs,
although with a small margin. In 5.3 one can see that Random Forest with the Srcs set
still has the highest recall though with 72.09% with a quite big gap to the other metric
sets.

Cmbs Srcs Tsts

Algorithm Random Forest Random Forest Random Forest

Mean recall 70.7% 72.1% 64.6%

Std. dev. (σ) 8.1% 8.5% 8.5%

Table 5.3: The best algorithms per set rated by recall

5.4 F-measure

0%

20%

40%

60%

80%

100%

AdaBoost

Bagging

Decorate

J48
JRIP

MLPerceptron

NaiveBayes

OneRule

Random
Forest

ZeroR

cmb src srcRaw tst

Figure 5.4: F-measure for all metric sets and algorithms used in the experiment

The fourth and last performance evaluation measure, as described in Section 4.3.3,
is f-measure. F-measure is a combination of both precision and recall. Of the same
reason as presented in previous sections, ZeroR stays at 0% f-measure.

Figure 5.4 shows the f-measure of the ML algorithms over the different metric sets.
Table 5.9 contains the mean values of the ML algorithms for the different metric sets

Chapter 5. Results 33

together with a figure of how the algorithms perform against each other for different
metric sets in terms of f-measure.

Figure 5.4 shows that the Cmbs and Srcs results generally have medians very close
to each other. This can also be seen in 5.9 were the Srcs and Tsts results often results
in a tie rather than a win or loss. For some algorithms, the Srcs outperform the Cmbs,
though, which can be seen in Table 5.9 where the Srcs has more wins and fewer losses
compared to the Cmbs.

Cmbs Srcs Tsts

Algorithm Random Forest Random Forest Random Forest

Mean f-measure 70.9% 71.5% 65.2%

Std. dev. (σ) 6.3% 6.3% 7.1%

Table 5.4: The best algorithms per set rated by f-measure

5.5 Comparison to other studies
To ease the comparison to other studies, the mean results for all sets and all perfor-
mance measures are compiled in Table 5.5. These values are the ones used in the
comparison in this section.

As accuracy is dependent on the balance of the underlying dataset it is hard to
compare the accuracy results of this study with others. This measure is therefore not
widely discussed in other studies but is a comprehensible measure and is therefore
presented in this study.

Hall et al. has in their systematic literature review gathered results from 208 fault
prediction studies [22]. Among those, 48 studies deal with fault prediction on the file
level. These studies are compared with precision, recall and f-measure. As this study is
conducted using the same performance measures as Hall et al. and as they summarize
many studies, the results of this study are compared to the ones compiled by Hall et al.

When the precision is compared to other studies, Srcs and Cmbs performs in gen-
eral above the median, while the Tsts performs slightly below the median. For recall,

Cmbs Srcs Tsts

Accuracy 78.9% 79.4% 75.8%

Precision 69.7% 71.4% 66.1%

Recall 60.8% 60.5% 53.0%

F-measure 64.3% 64.7% 57.8%

Table 5.5: Mean prediction performance of the metric sets

Chapter 5. Results 34

the Cmbs and Srcs performs above the median while the Tsts on the other hand per-
forms below the median. The results for the f-measure are in general slightly better
than for other studies where the Cmbs and Srcs performs well above the median and
the Tsts performs around the median.

Overall, the algorithms in our study performs around or above the average when
compared to other studies [22]. The exceptions being Naïve Bayes with a low recall
around lower quartile and Random Forest which performs as the best studies regarding
f-measure.

When comparing the study to other studies in the systematic literature review by
Hall et al. [22], the results are generally good. When comparing the results to those
of studies using combinations of metric families, only the ones including source code
text perform better.

Arisholm et al. has performed studies with a telecom company with propitiatory [1,
2]. They also investigated a Java system, used and compared different metric families,
different ML algorithms and used feature selection which makes a comparison between
the results interesting. As noted earlier, Arisholm et al. has an accuracy of over 93%
in their best case which is way above the results of this study [2]. The mean result of
this study is around 70% for the Cmbs compared to 10.4% for the best metric set for
Arisholm et al [2]. The difference is not as large for the recall where this study has an
average of 64% for recall for Cmbs compared to 62% at best for Arisholm et al. [2].

Another study using feature selection was conducted by Shivaji et al. [49] where
they studied a series of open source projects. Their results are consistently better than
the ones of this study; they have an accuracy of 91%, precision of 96%, recall of 67%
and f-measure of 79%.

5.6 Feature selection results
The feature selection process, described in Section 4.3.2, selected a subset of metrics
for the three different metric sets, Srcs, Tsts and Cmbs. The feature selection process
selected between 25 and 35 features each run. As the feature selection process was
done in each fold of the evaluation process, different subsets were picked for different
folds. The proportion of the selected metric families is shown in Figs. 5.5 to 5.7.

The feature selection process, described in Section 4.3.2, selected a subset of met-
rics for the three different metrics sets, Srcs, Tsts and Cmbs. The feature selection
process selected between 25 and 35 features each run. As the feature selection pro-
cess was done in each fold of the evaluation process, different subsets were picked for
different folds. The proportion of the selected metric families is shown in Figs. 5.5
to 5.7.

In general, the subsets created by feature selection largely consist of dependency
metrics. Author metrics was not selected at all. There are however differences regard-
ing the other metrics families among the metric sets. OO metrics are the second largest
part of the Srcs, but the smallest of the Tsts, where STREW-J took its place. The Cmbs

Chapter 5. Results 35

0%

20%

40%

60%

80%

100%

Dependency

OO Static-Code

Process

Figure 5.5: Proportion of the selected metrics for the Srcs

0%

20%

40%

60%

80%

100%

tst-Dependency

STREW
-J

tst-Static-Code

tst-Process

Static-Code

tst-OO

Figure 5.6: Proportion of the selected metrics for the Tsts

0%

20%

40%

60%

80%

100%

Dependency

tst-Dependency

Static-Code

OO Process

tst-Static-Code

tst-Process

STREW
-J

tst-OO

Figure 5.7: Proportion of the selected metrics for the Cmbs

is in general a reflection of the results of the Srcs and Tsts, were the results from the
Srcs take precedence, with the exception of dependencies from tests, which are the
second largest part.

C
hapter5.

R
esults

36
cmb src tst

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

cm
b

AdaBoost: 77.4%

Bagging: 80.8%

Decorate: 81.2%

J48: 79.0%

JRIP: 78.8%

MLPerceptron: 77.8%

NaiveBayes: 77.3%

OneRule: 75.8%

RandomForest: 81.7%

ZeroR: 67.9%

src

AdaBoost: 77.6%

Bagging: 81.0%

Decorate: 81.0%

J48: 79.4%

JRIP: 78.9%

MLPerceptron: 79.3%

NaiveBayes: 79.0%

OneRule: 76.6%

RandomForest: 81.8%

ZeroR: 67.9%

tst

AdaBoost: 74.5%

Bagging: 78.9%

Decorate: 77.4%

J48: 75.0%

JRIP: 77.1%

MLPerceptron: 73.8%

NaiveBayes: 70.8%

OneRule: 76.2%

RandomForest: 78.2%

ZeroR: 67.9%

Set Losses Wins

cmb 65 104

src 48 122

tst 144 31

Table 5.6: Table showing results from Wilcoxon’s signed rank test on accuracy for ML algorithms and metric sets

C
hapter5.

R
esults

37
cmb src tst

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

cm
b

AdaBoost: 68.1%

Bagging: 73.1%

Decorate: 72.5%

J48: 68.1%

JRIP: 68.8%

MLPerceptron: 69.8%

NaiveBayes: 68.8%

OneRule: 66.1%

RandomForest: 71.8%

ZeroR: 0.0%

src

AdaBoost: 68.5%

Bagging: 73.3%

Decorate: 72.4%

J48: 69.4%

JRIP: 71.2%

MLPerceptron: 74.7%

NaiveBayes: 74.5%

OneRule: 67.0%

RandomForest: 71.7%

ZeroR: 0.0%

tst

AdaBoost: 62.8%

Bagging: 74.1%

Decorate: 68.8%

J48: 64.9%

JRIP: 70.7%

MLPerceptron: 62.5%

NaiveBayes: 55.2%

OneRule: 69.3%

RandomForest: 66.6%

ZeroR: 0.0%

Set Losses Wins

cmb 74 81

src 42 119

tst 124 40

Table 5.7: Table showing results from Wilcoxon’s signed rank test on precision for ML algorithms and metric sets

C
hapter5.

R
esults

38
cmb src tst

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

cm
b

AdaBoost: 56.0%

Bagging: 63.9%

Decorate: 67.3%

J48: 65.9%

JRIP: 63.0%

MLPerceptron: 56.1%

NaiveBayes: 54.0%

OneRule: 50.0%

RandomForest: 70.7%

ZeroR: 0.0%

src

AdaBoost: 56.1%

Bagging: 64.6%

Decorate: 66.8%

J48: 65.4%

JRIP: 58.7%

MLPerceptron: 54.7%

NaiveBayes: 52.6%

OneRule: 53.5%

RandomForest: 72.1%

ZeroR: 0.0%

tst

AdaBoost: 52.4%

Bagging: 52.9%

Decorate: 55.7%

J48: 49.3%

JRIP: 50.2%

MLPerceptron: 51.3%

NaiveBayes: 54.0%

OneRule: 46.6%

RandomForest: 64.6%

ZeroR: 0.0%

Set Losses Wins

cmb 58 110

src 59 108

tst 134 33

Table 5.8: Table showing results from Wilcoxon’s signed rank test on recall for ML algorithms and metric sets

C
hapter5.

R
esults

39
cmb src tst

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

A
daB

oost

B
agging

D
ecorate

J48

JR
IP

M
L

Perceptron

N
aiveB

ayes

O
neR

ule

R
andom

Forest

Z
eroR

cm
b

AdaBoost: 60.9%

Bagging: 67.8%

Decorate: 69.3%

J48: 66.6%

JRIP: 65.1%

MLPerceptron: 61.5%

NaiveBayes: 60.0%

OneRule: 56.4%

RandomForest: 70.9%

ZeroR: 0.0%

src

AdaBoost: 61.1%

Bagging: 68.2%

Decorate: 69.0%

J48: 66.7%

JRIP: 63.6%

MLPerceptron: 62.4%

NaiveBayes: 61.2%

OneRule: 58.9%

RandomForest: 71.5%

ZeroR: 0.0%

tst

AdaBoost: 56.2%

Bagging: 61.2%

Decorate: 61.1%

J48: 55.3%

JRIP: 57.8%

MLPerceptron: 55.0%

NaiveBayes: 53.3%

OneRule: 55.3%

RandomForest: 65.2%

ZeroR: 0.0%

Set Losses Wins

cmb 60 111

src 56 119

tst 146 32

Table 5.9: Table showing results from Wilcoxon’s signed rank test on f-measure for ML algorithms and metric sets

Chapter 6
Analysis and discussion

When looking at all algorithms the general result is that Srcs performs best. In some
instances, e.g. for recall, Cmbs performs better. At the individual results level, when
looking at results from the metric sets and algorithms, the general result is that Random
Forest works best throughout all metric sets. However, different metric sets and algo-
rithms may work better in some circumstances. These results are discussed in more
detail in the following sections.

6.1 Metric sets results
Generally, the Srcs perform best throughout the performance measures. The only mea-
sure where Srcs is not best is in recall where Cmbs in most cases is as good as Scrs and
for a few ML algorithms a little better than Srcs. As the recall denotes how good the
metric set together with the algorithm is at capturing faulty files, the lower precision
for the Cmbs may not come as a surprise. As it is capturing more faulty files, a natural
consequence may be that it also catches more unfaulty files and therefore has a lower
precision. This is seen in the f-measure, the combination of recall and precision, where
the Cmbs and Srcs perform very close to each other as the results from the precision
and recall is cancelling each other out. When looking at the f-measure, one can see
that the Cmbs has a lower spread, though. The Tsts fares worse overall in all mea-
sures compared to Srcs and Cmbs, but not by a very large margin. In general, one may
conclude that when choosing between the Cmbs and the Srcs, the preferred prediction
performance measure must be taken into account. If recall is of high importance, the
Cmbs is the metric set of choice. If precision or accuracy is most important, the Srcs
is the metric set to choose.

The difference in prediction performance between Cmbs and Srcs could be due to
the feature selection process. Using a feature selected subset, can in some cases result
in lower prediction performance [45].

SrcRaw is the metric set that would have been used in case the tests were not in-
cluded in the experiment and is therefore included as a reference. It generally performs
worse compared to the other sets and all of the performance measures are lower than
the Srcs, Tsts and Cmbs scores. One interesting aspect of the results is that the Tsts
performs better than srcRaw. This clearly shows that models built with metrics from

40

Chapter 6. Analysis and discussion 41

the tests, that does not have any information about the source file whatsoever, still pre-
dicts better than model built with metrics from the source code itself. However, this
only holds true for tested source code file for the Tsts and all source code files for the
srcRaw set. It must also be noted that if the same underlying dataset is used, source
metrics still predicts better. This could be an indicator that tested code is easier to pre-
dict. This would explain the big difference between the Srcs and srcRaw which both
share the same metric sets but use different data sets.

6.2 ML algorithm results
The best performing algorithm overall is Random Forest which is clearly seen in the
top three algorithms tables in 5. Generally, the best performing metric set for the
algorithms is the Srcs. There are however some cases where the best set is the Tsts
for certain algorithms, e.g. Bagging and JRip in precision. One of the benefits of JRip
is the ease of which rules can be extracted and interpreted from a model built with it.
The JRip result is therefore especially interesting for Ericsson, as they are interested in
models that they can understand and interpret easily.

The Tsts set does not have as clear results as the other metric sets. Bagging comes
up as one of the best algorithms for the Tsts multiple times but has especially bad recall.
In turn, the precision is high, however. This is also true for the Multilayer Perceptron
algorithm for the Srcs for which recall is low and precision is high. In the end Random
Forest is still the winner which the f-measure shows for both of Srsc and Tsts.

6.3 Comparison to other studies
The comparison in Section 5.5 showed that the results of this study are comparable to
those of other studies. It also showed that the Tsts set is comparable with slightly lower
results when compared to other studies. When looking at feature selection studies it
is hard to position this study as results differ largely between them. This study does
however perform well when compared to Arisholm et al. which also uses a proprietary
dataset. Arisholm et al. e.g. had a highly unbalanced data set with only 0.5-2% faulty
files indicating a balance of 98%-2% which could explain their low results in other
measures than accuracy [2, 22].

6.4 Hypothesis testing results
To test the null hypothesis “Source code metrics together with test metrics provide
equal prediction performance as SDP using only source code metrics”, a chi-squared
(χ2) test was conducted. The wins, draws and losses for Srcs and Cmbs against each
other, for each of the performance measures, were calculated and used as input to
the χ2 test. The significance level was set to α = 0.05, indicating a 95% confidence

Chapter 6. Analysis and discussion 42

interval. For accuracy, recall and f-measure, the null hypothesis could not be rejected,
while for precision the null hypothesis could in fact be rejected, indicating that there
is in fact a difference in prediction performance. By performing a manual inspection
of the wins, draw and losses for prediction, it is clear that the Srcs outperforms Cmbs.
This means that the hypothesis “Source code metrics together with test metrics provide
better prediction performance than SDP using only source code metrics”, stated in
Section 3.2.2, does not hold.

6.5 Answers to research questions 2 and 3
The research questions associated with the literature study were answered in the method
chapter, Section 3.1.5, and they are therefore not discussed further in this section. The
two last questions, however, were answered through the experiment and are discussed
below.

RQ2 - Which ML algorithm(s) provide the best SDP performance?

As seen in the discussion above, Random Forest generally gives the best predictive
performance for all the metric sets, with a few exceptions. Notably precision for all
metric sets, and accuracy for Bagging in conjunction with the Tsts. As there is no
overall winner, one has to choose a combination of metric set and algorithm that suit
the needs. In general, one may conclude that Random Forest is suitable in most cases.

6.6 Answers to research questions 4 and 5
The research questions associated with the literature study were answered in the method
chapter, Section 3.1.5, and they are therefore not discussed further in this section. The
two last questions, however, were answered through the experiment and are discussed
below.

RQ4 – Which ML algorithm(s) provide the best SDP performance?

As seen in the discussion above, Random Forest generally gives the best predictive
performance for all the metric sets, with a few exceptions. Notably precision for all
metric sets, and accuracy for Bagging in conjunction with the Tsts. As there is no
overall winner, one has to choose a combination of metric set and algorithm that suit
the needs. In general, one may conclude that Random Forest is suitable in most cases.

RQ5 – To what extent do test metrics impact the performance of SDP?

For most algorithms, recall is as high, or slightly higher for the Cmbs when compared
to the Srcs metric set. Regarding the other performance measures, the Cmbs achieve

Chapter 6. Analysis and discussion 43

slightly worse results compared to the Srcs. This results in an f-measure with a compa-
rable median value for the Cmbs when compared to the Srcs, but with a lower variance.
One could therefore expect results closer to median value for future predictions. When
looking only at Tsts, the performance is generally worse than for the other sets, with a
few exceptions. In conclusion, test metrics does not affect the SDP performance much
but can give results closer to the estimated results due to its lower variance.

6.7 What the results means to Ericsson
From Ericsson’s perspective, the result of JRip in combination with Cmbs shows the
most promising results as, in addition to fault predictions, rules can be extracted which
can be used throughout the software development process.

The results produced by the tool developed through the experiment implementation
can be used in a numerous ways. First off, early estimation of what files that are
more fault prone can be predicted with good prediction performance. As described
in Chapter 1, finding faults in late stages of the development, or even in the released
product is expensive. The results can therefore be used to find faults before they are
reported through a TR by doing a code review on files predicted as faulty. If a fault is
discovered through code review of files predicted as faulty, the cost of correcting the
faults is reduced. Furthermore, the time used to debug a fault reported through a TR to
a certain file is eliminated if a fault is discovered through code inspection.

When using a rule based learner, the results from the tool can be used in refactor-
ing1. The inspected file’s metrics can be analyzed against the rules to see why the file
is predicted as faulty. This information can then be used to refactor the file, e.g. split
the file into smaller, cohesive units if the rule states that files with high complexity and
lack of cohesion are predicted as faulty.

Rules regarding dependencies can also be used in the refactoring process. If a rule
states that a dependency causes files to be faulty, this might indicate that the depen-
dency’s external interface needs refactoring. Another consideration may be to refactor
files using a dependency and remove the dependency where possible. This would limit
the number of files using the dependency and its external interface.

The testing might also be improved as the testing effort can focus on files which
have been predicted as faulty. Extracted rules predicting on dependencies may also
be used where tests of files using the dependency, even if not predicted faulty, can be
improved.

Another avenue is software development process improvements. Changes in e.g.
team size or configuration management2 can be evaluated in an early stage by analyz-
ing changes in the predicted amount of faulty files. Again, analyzing changes in the

1“A change made to the internal structure of the software to make it easier to understand and cheaper
to modify without changing its oberservable behavior” [19, p. 53]

2“The practice of identifying project artifacts and handling changes systematically so that a s system
can maintain its integrity over time” [29, p. 664]

Chapter 6. Analysis and discussion 44

resulting rules when using a rule based learner might also give hints of how changes
in the development process affect the source code and its tests. The tool is not limited
to predicting faults but can also be used to predict on any metric. The characteris-
tics of files with high complexity may, for example, be further examined when using
complexity as the dependent variable instead of fault history.

The results of the defect prediction might also be used to prioritize tests and decide
which tests to run when all tests can not be run due to execution time constraints. In
this case, the tests to the files predicted as faulty, can be prioritized so that they are
run. Resulting rules containing dependencies from rule based learners may also be
used. Tests of files having dependencies that often causes other files to fail, can be
prioritized even if that file is not predicted as faulty.

When using a classifier where metrics from a built model can be extracted, integrity
issues can emerge. Author metrics may be extracted and e.g. used for ill-intentioned
purposes. If the model is publicized, dependency metrics may be used to gain informa-
tion about the repository’s structure. Due to this, the tool supports turning off certain
metric families.

When applying the tool in a production setting the model does not have to be re-
built 100 times (10 folds, 10 times) as in the case of this study. The 4 days stated in
Chapter 5 is therefore not a measure of the performance of such a tool in a production
environment, rather 1 hour as only a single model needs to be built. Furthermore, a too,
such as this only has to be rerun to rebuild the model after a substantial change in the
codebase, e.g. once every release. The runtime of the tool is therefore not a problem
in a production setting.

6.8 Lessons learned
The memory model first used in the experiment implementation was memory consum-
ing. The usage of hash maps to record metrics, albeit both simple and flexible, turned
out to use 10 times more memory than necessary. They were however simplifying
implementation to a large extent as metrics could be easily be added during runtime.
Metrics could therefore be created on the fly based on the repository data. This fea-
ture was used extensively with the dependency and author metrics. The memory usage
became a problem when the dependency and author metrics were used on repositories
larger than 20 000 LOC though where the number of metrics were for some reposito-
ries as large as 7 000. In these cases, the memory consumption exceeded 8GB which
was the amount of installed RAM of the computers used for the experiment. This was
due to the number of dependency and author metrics being based on the amount of
authors and dependencies within the repository.

The hash maps were replaced with a backend using SoA3 hosting several frontends
implementing Java’s Map interface. The transition from a hash map based memory lay-

3Structure of Arrays. see [13, p.4-21]

Chapter 6. Analysis and discussion 45

out to a SoA one was therefore smooth as the Java HashMap could simply be swapped
to our own implementation. The lesson one may draw from this is that the memory
layout is of importance when using metrics generated per repository as it can grow
large quite fast and being able to accommodate for this is important.

The first time results were produced by the experiment, they were extremely good,
with an accuracy, precision and recall of above 95% for several ML algorithms and the
Cmbs. This result were not in line with other studies and the experiment design were
therefore reviewed to make sure that the results were fair. This result turned out to be
too good to be true since the feature selection was conducted in a way that made the
feature selection process using information from the test set when reducing features.
This skewed the results. This problem have been present in former studies using feature
selection [45, 51]. This problem was mitigated by performing feature selection on the
training set only as proposed by Smialowski et al. [51].

After discussing the problem with an engineer it was revealed that some developers
constructs tests after a TR has been reported to stop similar faults in the future. The
mere presence of a test could therefore imply that the file has had faults in the past.
This problem was mitigated by applying a pivot point as described in Section 3.2. The
lesson learned by this is to be critical towards the experiment design if results are not in
line with state of the art research. There may also be processes among the developers
which are not official policy that may bias the results. It is therefore of importance to
talk to developers and engineers so that the results of the experiment are not affected
by processes such as the one mentioned above.

Chapter 7
Conclusion and Future Work

7.1 Conclusion
The goal of the thesis was to investigate whether a test, coupled to a source code
file, contained enough information to enhance the SDP performance if metrics from
both the source file and test file are combined. To investigate this a literature review
followed by an experiment was conducted. The literature review helped us identify of
what kind of metrics and ML algorithms to use in the experiment, while the experiment
ultimately helped us test the hypotheses.

The results of this study show that the use of Cmbs instead of Srcs does not provide
better prediction performance. In fact, in the case of precision, Srcs performs signifi-
cantly better compared to Cmbs. However, the Cmbs produces less fluctuating results
in most cases, indicating that the mean value of the evaluated prediction models are
closer to the real result, i.e. the prediction on unseen files, when using the Cmbs. This
is visualized in the box-whisker plots in Chapter 5, where the Cmbs boxes (indicating
50% of the results) are smaller in most cases, than the corresponding boxes for the
Srcs.

In general, the results of our study are comparable, and in some cases better, com-
pared to other similar SDP studies.

For Ericsson, this means that faults can be predicted on the file level with good
prediction performance. Perhaps the most promising result is that of the combination
of Cmbs and JRip, which makes the prediction model easy to interpret. Rules extracted
from the model can then e.g. be used for identification of areas in need of refactoring.
Conclusions drawn from these rules can also be used for e.g. process improvements.

If all of the source code files were used in the metric extraction, as they would have
been if test metrics was not included in the prediction, the Srcs models would perform
considerably worse. This is obvious when looking at the srcRaw dataset in the figures
in Chapter 5. This shows that files with tested code, in this repository, are more likely
to be predicted correctly.

One of the most interesting results is the fact that the Tsts predicts so well having
minimal information about the source code file. This clearly demonstrates that test and
source code are tightly linked which was one of the main reasons that we thought that
combining test and source code metrics was a viable approach.

46

Chapter 7. Conclusion and Future Work 47

One must however remark that the results of this study come from a single repos-
itory and they can therefore not be claimed to be true for all source code. One can
however argue that they likely are true for similar repositories.

7.2 Future work
As this master thesis is about determining the performance of the metric sets, only
the default settings in the Weka environment were evaluated. As a future work, it
would be interesting to investigate how the prediction performance of different ML
algorithms could shift the results if the settings were tweaked. Hall et al. concluded
that studies with good prediction performance often have optimized their ML algorithm
settings [22]. It would be especially interesting to tweak the meta-learners used in
this master thesis, i.e. AdaBoost, Bagging and Decorate, and use different modeling
techniques together with them as they are dependent on other ML algorithms to make
predictions.

Fault Slip Through (FST), introduced by Damm et al. [14], is a measure of the costs
associated with not finding faults in the right testing phase. FST is about “to find the
right faults in the right phase” [16] of the development process. This is interesting
because not all faults can be or, perhaps should not be found with unit tests, but rather
with e.g. integration testing, function tests or system tests. FST could be integrated
into the prediction models, where only the faults in files that could have been found
with unit tests, i.e. errors in the source code, are the files that are considered as faulty.
It would also be interesting to investigate how a FST measure, telling the model when it
is most cost-effective to find the fault, could affect the predictions. There are however
obstacles regarding the integration of FST. For example, it has to be determined in a
structured way, exactly in which phase each fault should have been found which can
prove to be a difficult task as the bug reporting process has to be expanded. The tester
or developer filing the bug report also has to guess where the bug should have been
detected which also introduces the human factor.

One way of continuing the work of this master thesis is to include additional tests
other than unit test, e.g. system tests and functional tests. The concept of FST could
then also be utilized even further.

The term Change Bursts, described by Nagappan et al. [40] as code modules that
are frequently altered. By detecting these modules, they gained a precision and recall
of 91% and 92%, respectively. Integration of this metric can therefore be recommended
as an addition to this master thesis. By using change bursts metric, the predictive power
of the models in this study could possibly be improved.

The results from this study could be validated by repeating the study for more
repositories from several other departments, conducting the same experiment on them
and then comparing the results to those of this study. By doing this, the results pre-
sented in this master thesis can be compared to results from repositories in related
domains. The results from this comparison can then be used to state whether the re-

Chapter 7. Conclusion and Future Work 48

sults from this study holds true for other repositories and thereby also if the results hold
true in general.

Another way to build on this work would be to conduct a case study to observe
the impact that the tool suite has in real settings in production. The real cost saving
potential that the suite can pose to Ericsson could then be evaluated. The impact and
cost savings of this tool could e.g. be measured with FST.

The tool suite could also benefit from being tested against metrics from publicly
available data corpus, such as the Eclipse and NASA datasets. This would possibly
be the only fair way to evaluate the prediction performance of the tool against other
studies results since the results are highly dependent on the underlying data, and that it
is a delicate problem to generalize between two different projects.

List of abbreviations

BLOC Blank LOC
CA Afferent couplings
CBO Coupling Between Objects
CCN Cyclomatic Complexity Number
CFS Correlation based Feature Selection
CK Chidamber-Kemerer
CLOC Comment LOC
Cmbs Combined metric set
DIT Depth of Inheterence Tree
FST Fault Slip Through
LCOM Lack of Cohesion in Methods
LOC Lines Of Code
LRP Literature Review Protocol
ML Machine Learning
NOC Number Of Children
NPM Number of Public Methods
OO Object-Oriented
PD Probability of Detection
PF Probability of False alarms
RFC Response For Class
SCM Source Code Management system
SDP Software Defect Prediction
SLOC Source LOC
SLOC-L Logical SLOC
SLOC-P Physical SLOC
SLR Systematic Literature Review
STREW Software Testing and Reliability Early Warning
STREW-J STREW for Java
Srcs Source code metric set
TR Trouble Report
Tsts Test source code metric set
UCC Unified Code Count
WMC Weighted Methods per Class
srcRaw The original full set of metrics for all source files

49

References

[1] Erik Arisholm, Lionel C. Briand, and Magnus Fuglerud. Data Mining Techniques
for Building Fault-proneness Models in Telecom Java Software. In The 18th IEEE
International Symposium on Software Reliability (ISSRE ’07), pages 215–224.
IEEE, November 2007.

[2] Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software, 83(1):2–17, January 2010.

[3] S Bibi, G Tsoumakas, I Stamelos, and I. Vlahvas. Software Defect Prediction
Using Regression via Classification. In IEEE International Conference on Com-
puter Systems and Applications, 2006., pages 330–336. IEEE, 2006.

[4] Barry W. Boehm. Software Engineering Economics. Prentice Hall; 1 edition,
1981.

[5] Leo Breiman. Bagging predictors. Machine learning, 140:123–140, 1996.

[6] Bora Caglayan, Ayse Bener, and Stefan Koch. Merits of using repository met-
rics in defect prediction for open source projects. In 2009 ICSE Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Develop-
ment, pages 31–36. IEEE, May 2009.

[7] Cagatay Catal. Software fault prediction: A literature review and current trends.
Expert Systems with Applications, 38(4):4626–4636, April 2011.

[8] Cagatay Catal and Banu Diri. A systematic review of software fault prediction
studies. Expert Systems with Applications, 36(4):7346–7354, May 2009.

[9] Cagatay Catal and Banu Diri. Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem. Informa-
tion Sciences, 179(8):1040–1058, March 2009.

[10] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

[11] William W. Cohen. Fast Effective Rule Induction. In In Proceedings of the
Twelfth International Conference on Machine Learning, pages 115—-123, 1995.

50

References 51

[12] James S. Collofello and Scott N. Woodfield. Evaluating the effectiveness of
reliability-assurance techniques. Journal of Systems and Software, 9(3):191–195,
March 1989.

[13] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. Technical Report March, 2014.

[14] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-through—a con-
cept for measuring the efficiency of the test process. Software Process: Improve-
ment and Practice, 11(1):47–59, January 2006.

[15] Janez Dem\v{s}ar. Statistical Comparisons of Classifiers over Multiple Data
Sets. Journal ofMachine Learning Research, 7(12/1/2006):1–30, 2006.

[16] Denis Duka and Lovre Hribar. Fault Slip Through Measurement in Software
Development Process. In ELMAR, 2010 PROCEEDINGS, number September,
pages 177—-182. IEEE, 2010.

[17] N.E. Fenton and Martin Neil. A critique of software defect prediction models.
IEEE Transactions on Software Engineering, 25(5):675–689, 1999.

[18] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous
and Practical Approach. January 1998.

[19] Martin Fowler. Refactoring: improving the design of existing code. July 1999.

[20] Mark A. Hall. Correlation-based feature selection for machine learning. PhD
thesis, The University of Waikato, New Zeeland, 1999.

[21] Mark A. Hall. Correlation-based Feature Selection for Discrete and Numeric
Class Machine Learning. 2000.

[22] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A
Systematic Literature Review on Fault Prediction Performance in Software Engi-
neering. IEEE Transactions on Software Engineering, 38(6):1276–1304, Novem-
ber 2012.

[23] IEEE Computer Society. IEEE Standard Glossary of Software Engineering Ter-
minology. IEEE Std 610.12-1990, 121990(Dec):1–84, 1990.

[24] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Clas-
sification Perspective. Cambridge University Press, New York, New York, USA,
2011.

[25] TM Khoshgoftaar, X Yuan, and EB Allen. Uncertain classification of fault-prone
software modules. Empirical Software Engineering, pages 297–318, 2002.

References 52

[26] Yan Ma, L Guo, and B Cukic. A statistical framework for the prediction of fault-
proneness. Advances in machine learning application . . . , pages 1–26, 2006.

[27] A Mahaweerawat. Fault prediction in object-oriented software using neural net-
work techniques. Advanced Virtual and . . . , 49(5):483–492, December 2004.

[28] Thomas J Mccabe. A Complexity Measure. (4):308–320, 1976.

[29] Steve McConnell. Code Complete: A Practical Handbook of Software Construc-
tion, Second Edition. Microsoft Press, 2004.

[30] Prem Melville and Raymond J. Mooney. Creating diversity in ensembles using
artificial data. Information Fusion, 6(1):99–111, March 2005.

[31] Tim Menzies, Jeremy Greenwald, and Art Frank. Data Mining Static Code At-
tributes to Learn Defect Predictors. IEEE Transactions on Software Engineering,
33(1):2–13, January 2007.

[32] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 13th international conference on Software engineering - ICSE
’08, page 181, New York, New York, USA, 2008. ACM Press.

[33] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.
Wiley, 2011.

[34] N. Nagappan and T. Ball. Use of relative code churn measures to predict sys-
tem defect density. In Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005., pages 284–292. IEEe, 2005.

[35] Nachiappan Nagappan. Using In-Process Testing Metrics to Estimate Software
Reliability: A Feasibility Study. . . . Software Reliability . . . , pages 1–3, 2004.

[36] Nachiappan Nagappan. A Software Testing and Reliability Early Warning (Strew)
Metric Suite. PhD thesis, North Carolina State University, 2005.

[37] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceeding of the 28th international conference
on Software engineering - ICSE ’06, page 452, New York, New York, USA, 2006.
ACM Press.

[38] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason Osborne. Early
estimation of software quality using in-process testing metrics. In Proceedings of
the third workshop on Software quality - 3-WoSQ, page 1, New York, New York,
USA, 2005. ACM Press.

References 53

[39] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason Osborne. Us-
ing In-Process Testing Metrics to Estimate Post-Release Field Quality. In The
18th IEEE International Symposium on Software Reliability (ISSRE ’07), pages
209–214. IEEE, November 2007.

[40] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and
Brendan Murphy. Change Bursts as Defect Predictors. In 2010 IEEE 21st Inter-
national Symposium on Software Reliability Engineering, pages 309–318. IEEE,
November 2010.

[41] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC
Counting Standard. Technical report, 2007.

[42] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Where the bugs are.
ACM SIGSOFT Software Engineering Notes, 29(4):86, July 2004.

[43] J. Ross Quinlan. C4.5: Programs for Machine Learning. 1993.

[44] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Soft-
ware fault prediction metrics: A systematic literature review. Information and
Software Technology, 55(8):1397–1418, August 2013.

[45] Juha Reunanen. A Pitfall in Determining the Optimal Feature Subset Size. In Pro-
ceedings of the 4th International Workshop on Pattern Recognition in Information
Systems, pages 176–185. SciTePress - Science and and Technology Publications,
2004.

[46] J. Riquelme, J. C., Ruiz, R., Rodrıguez, D., Moreno. Finding defective mod-
ules from highly unbalanced datasets. Actas de los Talleres de las Jornadas de
Ingeniería del Software y Bases de Datos, 2(1):67–74, 2008.

[47] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting compo-
nent failures at design time. In Proceedings of the 2006 ACM/IEEE international
symposium on International symposium on empirical software engineering - IS-
ESE ’06, page 18, New York, New York, USA, 2006. ACM Press.

[48] Sana Shafi, Syed Muhammad Hassan, Afsah Arshaq, Malik Jahan Khan, and
Shafay Shamail. Software quality prediction techniques: A comparative analysis.
In 2008 4th International Conference on Emerging Technologies, pages 242–246.
IEEE, October 2008.

[49] Shivkumar Shivaji, E. James Whitehead Jr., Ram Akella, and Sunghun Kim. Re-
ducing Features to Improve Bug Prediction. In 2009 IEEE/ACM International
Conference on Automated Software Engineering, number Section II, pages 600–
604. IEEE, November 2009.

References 54

[50] Forrest Shull, Vic Basili, Barry Boehm, A.W. Brown, Patricia Costa, Mikael
Lindvall, Dan Port, Ioana Rus, Roseanne Tesoriero, and Marvin Zelkowitz. What
we have learned about fighting defects. In Proceedings Eighth IEEE Symposium
on Software Metrics, pages 249–258. IEEE Comput. Soc, 2002.

[51] Pawel Smialowski, Dmitrij Frishman, and Stefan Kramer. Pitfalls of super-
vised feature selection. Bioinformatics (Oxford, England), 26(3):440–3, February
2010.

[52] D. Spinellis. Tool Writing: A Forgotten Art? IEEE Software, 22(4):9–11, July
2005.

[53] Burak Turhan and Ayse Bener. Analysis of Naive Bayes’ assumptions on software
fault data: An empirical study. Data & Knowledge Engineering, 68(2):278–290,
February 2009.

[54] Burak Turhan, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. On the rela-
tive value of cross-company and within-company data for defect prediction. Em-
pirical Software Engineering, 14(5):540–578, January 2009.

[55] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-
letin, 1(6):80, December 1945.

[56] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann, 2011.

[57] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant studies
in software engineering. Information and Software Technology, 53(6):625–637,
June 2011.

[58] Hongyu Zhang. An investigation of the relationships between lines of code and
defects. In 2009 IEEE International Conference on Software Maintenance, pages
274–283. IEEE, September 2009.

[59] Hongyu Zhang and Xiuzhen Zhang. Comments on "Data Mining Static Code
Attributes to Learn Defect Predictors". IEEE Transactions on Software Engi-
neering, 33(9):635–637, September 2007.

	Abstract
	Introduction
	Motivation
	Scope and limitations
	Research questions
	Thesis outline

	Background and related work
	ML
	Software metrics
	Static code metrics
	Dependency metrics
	Process metrics
	Test metrics
	Combinations of metrics
	Feature selection

	Method
	Literature review
	Study selection
	Study quality assessment
	Synthesis of extracted data
	Threats to validity
	Answers to research questions 1 – 3

	Experiment
	Threats to validity
	Experiment outline

	Experiment implementation
	Data collection
	Identify faulty files
	Collection of process metrics
	Collection of static code metrics
	Collection of test and dependency metrics

	Metric sets
	Model building
	ML algorithms
	Feature selection
	Model evaluation

	Results
	Accuracy
	Precision
	Recall
	F-measure
	Comparison to other studies
	Feature selection results

	Analysis and discussion
	Metric sets results
	ML algorithm results
	Comparison to other studies
	Hypothesis testing results
	Answers to research questions 2 and 3
	Answers to research questions 4 and 5
	What the results means to Ericsson
	Lessons learned

	Conclusion and Future Work
	Conclusion
	Future work

	References
	mattiasalexander.pdf
	Abstract
	Introduction
	Motivation
	Scope and limitations
	Research questions
	Thesis outline

	Background and related work
	ML
	Software metrics
	Static code metrics
	Dependency metrics
	Process metrics
	Test metrics
	Combinations of metrics
	Feature selection

	Method
	Literature review
	Study selection
	Study quality assessment
	Synthesis of extracted data
	Threats to validity
	Answers to research questions 1 – 3

	Experiment
	Threats to validity
	Experiment outline

	Experiment implementation
	Data collection
	Identify faulty files
	Collection of process metrics
	Collection of static code metrics
	Collection of test and dependency metrics

	Metric sets
	Model building
	ML algorithms
	Feature selection
	Model evaluation

	Results
	Accuracy
	Precision
	Recall
	F-measure
	Comparison to other studies
	Feature selection results

	Analysis and discussion
	Metric sets results
	ML algorithm results
	Comparison to other studies
	Hypothesis testing results
	Answers to research questions 2 and 3
	Answers to research questions 4 and 5
	What the results means to Ericsson
	Lessons learned

	Conclusion and Future Work
	Conclusion
	Future work

	References

