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ABSTRACT 
 

The problem of controlling the noise level in the environment has been the focus 

of a tremendous amount of research over the years. Active Noise Cancellation 

(ANC) is one such approach that has been proposed for reduction of steady state 

noise. ANC refers to an electromechanical or electro acoustic technique of 

canceling an acoustic disturbance to yield a quieter environment. The basic 

principle of ANC is to introduce a canceling “anti-noise” signal that has the same 

amplitude but the exact opposite phase, thus resulting in an attenuated residual 

noise signal. Wideband ANC systems often involve adaptive filter lengths, with 

hundreds of taps. Using sub band processing can considerably reduce the length of 

the adaptive filter. This thesis presents Filtered-X Least Mean Squares (FXLMS) 

algorithm to implement it on a fixed point digital signal processor (DSP), 

ADUC7026 micro controller from Analog devices. Results show that the 

implementation in fixed point matches the performance of a floating point 

implementation. 
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CHAPTER 1 

INTRODUCTION 
 

Acoustic noise have increased in magnitude due to noisy engines, heavy 

machinery, pumps, high speed wind buffeting and several other noise sources. 

Exposure to high sound pressure levels may damage humans from both a physical 

and a psychological aspect. The problem of controlling the noise level in the 

environment has been the focus of a tremendous amount of research over the 

years. 

 

The classical approach to noise cancellation is a passive acoustic approach. 

Passive silencing techniques such as sound absorption and isolation are inherently 

stable and effective over a broad range of frequencies provided that the thickness 

of the insulator is larger than wave length of the signal to insulate. However, 

passive techniques tend to be expensive, bulky and generally ineffective for 

canceling noise at the lower frequencies. The performance of these systems is also 

limited to a fixed structure and proves impractical in a number of situations where 

space is at a premium and the added bulk can be a hinder. The shortcomings of the 

passive noise reduction methods have given impetus to the research and 

applications using alternate methods of controlling noise in the environment.  

 

Various signal processing techniques have been proposed over the years for noise 

reduction in the environment. The explosive growth of digital processing 

algorithms and technologies has resulted in an opportunity to implement active 

noise controlling techniques in real applications. Digital Signal Processors (DSP) 

have shrunk tremendously in size while their processing capabilities have grown 

exponentially. At the same time the power consumption of these DSPs has steadily 
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decreased following the path laid down by Gene’s law. This has enabled the use of 

DSPs in a variety of portable hearing enhancement devices such as hearing aids, 

headsets, hearing protectors, etcetera. 

There are two different approaches for noise reduction. The first approach is 

passive noise reduction techniques. Passive techniques can be found in hearing 

aids, cochlear implants etcetera and uses a microphone to record exterior sound. 

The recorded sound is processed using signal processing techniques and a clean 

restored signal is output through a loudspeaker to the listener. One of the 

important assumptions of this technique is that the listener is acoustically isolated 

from the environment. This assumption is however not valid in a large number of 

situations particularly those where the ambient noise has a very large amplitude. In 

such situations, the second approach of Active Noise Cancellation (ANC) is 

applicable. ANC refers to an active electromechanical or electro acoustic 

technique of canceling acoustic disturbance by emitting controlled sounds to yield 

a quieter environment. The basic principle of ANC is to introduce a canceling 

“anti-noise” signal that has the same amplitude but the exact opposite phase of the 

disturbance, thus resulting in an attenuated residual noise signal. ANC has been 

used in a number of applications such as hearing protectors, headsets, etcetera. 

 

The traditional wideband ANC algorithms work best in the lower frequency bands 

but when lager filter lengths are used, the algorithm may not converge desirably 

fast. Further, as the ANC system is combined with other communication and 

sound systems, it is necessary to have a frequency dependent noise cancellation 

system to avoid adversely affecting the desired signal.  

 

 

 

 



 7

 

1.1 Why we used fixed point processor? 

This section will discuss the advantages and disadvantages of fixed point 

processors when compared with floating point processors. 

1) First, the integer number representation format is straightforward in that it 

represents integer numbers from 0 up to the largest whole number that can be 

represented with the available number of bits. What you refer to is fractional 

representation commonly used in fixed point arithmetics, there you may represent 

numbers between -1 and 1 with a 'binary point' assumed to lie just after the most 

significant bit. The most significant bit in both cases carries the sign of the 

number. 

• The size of the fraction represented by the smallest bit is the precision of 

the fixed point format.  

• The size of the largest number that can be represented in the available word 

length is the dynamic range of the fixed point format  

Floating point format has the remarkable property of automatically scaling all 

numbers by moving, and keeping track of, the binary point so that all numbers use 

the full word length available but never overflow. Floating point numbers have 

two parts: the mantissa and the exponent. The mantissa  is similar to the fixed 

point part of the number, and an exponent which is used to keep track of how the 

binary point is shifted. Every number is scaled by the floating point hardware:  

• If a number becomes too large for the available word length, the hardware 

automatically scales it down, by shifting it to the right  

• If a number is small, the hardware automatically scale it up, in order to use 

the full available word length of the mantissa  

In both cases the exponent is used to count how many times the number has been 

shifted. In floating point numbers the binary point comes after the second most 

significant bit in the mantissa. 
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Secondly, coding is time consuming and difficult in fixed point processors due to 

eventual scaling to prevent arithmetic over flow when compared with floating 

point processors. 

3) Finally, fixed point processors have a majority of market shares as opposed to 

floating point processors. Mainly due to their power efficiency and price 

awareness as is very important in many industrial applications. Floating point 

processors have most of their applications in scientific and research purposes but 

some industries use floating point applications as well. 

This thesis has three major implementation parts: 

1. Implementation of a fixed point and a floating point arithmetic on a 

personal computer using matlab software. 

2. Implementation of a fixed point arithmetic active noise canceller on a 

personal computer using c programming. 

3. Implementation of fixed point arithmetic active noise canceller in real time 

on a digital signal processor.  

The outline of the thesis is as fallows:- 

Chapter two describes the actual problem and a suitable algorithm to implement it. 

Chapter three summarizes fixed point arithmetic. Chapter four discusses real time 

implementation on a fixed point processor. Chapter five discusses evaluation and 

results and chapter six gives an introduction to further research.  
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CHAPTER 2 

PROBLEM FORMULATION 
 

ANC traditionally involves passive methods such as enclosures, barriers and 

silencers to attenuate noise. These techniques use either the concept of impedence 

change or the energy loss due to sound absorbing materials. These methods are 

however not effective for low frequency noise. A technique to overcome this 

problem is ANC, which is sound field modification by electracoustic means. ANC 

is an electro-acoustic system that cancels the primary unwanted noise by 

introducing a canceling “antinoise” of equal amplitude but opposite phase, thus 

resulting in an attenuated residual noise signal as shown in Figure 2.1. 

 
Figure 2.1 Wave fields in Active Noise Control, Primary noise waveform 

(upper), secondary noise waveform (middle) and residual noise waveform (lower). 
 

 

Adaptive algorithms can be used in active noise control applications. It 

continuously adjusts its coefficients such that an estimate of the noise is produced 

and cancels the unwanted noise.  
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Adaptive filters are normally defined for problems such as electrical noise 

canceling where the filter output is an estimate of a desired signal. In control 

applications, however, the adaptive filter works as a controller controlling a 

dynamic system containing actuators and amplifiers etcetera. The estimate (anti-

vibrations or anti-sound) in this case can thus be seen as the output signal from a 

dynamic system, i.e. a forward path. Since there is a dynamic system between the 

filter output and the estimate, the selection of adaptive filter algorithms must be 

made with care. A conventional adaptive algorithm such as the LMS algorithm is 

likely to be unstable in this application due to the phase shift (delay) introduced by 

the forward path. The well-known filtered-XLMS (FXLMS) algorithm is, 

however, an adaptive filter algorithm which is suitable for active control 

applications.  The forward path is estimated by using system identification and 

with the results of the system identification, primary channel is estimated by using 

FXLMS adaptation. FXLMS algorithm is developed from the LMS algorithm, 

where an estimate of the forward path is introduced in the filter coefficient 

adaptation. The forward path is the dynamical system from the output of the filter 

to the error. That means a forward path is introduced between the input signal and 

the algorithm for the adaptation of the coefficient vector. Figure 2.2 shows an 

adaptive filter with a forward path introduced. 
                                                                                     d(n) 
 
 
x(n) y(n) e(n) 
 
 
                             
 
                       Adaptive filter          Forward path 

 

 
 

Figure 2.2 Active noise control system with an additional forward path 
 

FIR filter 
w(n) 

C(w) 
Σ
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A digital ANC employing the FXLMS can use Finite Impulse Response (FIR) 

filters in the adaptive filter and the forward path estimate. The Finite Response 

Filter (FIR) output is given by the vector inner product according to  

 

 ( ) ( ). ( )Ty n W n X n=                                       (2.1) 
where 

 ( ) [ ( ), ( 1),..., ( 1)]TX n x n x n x n M= − − +       (2.2) 
is the input signal vector to the adaptive filter and 
 

 0 1 1( ) [ ( ), ( ),...... ( )]T
MW n w n w n w n−=  (2.3) 

is the adjustable filter coefficient vector. In control applications, the estimation 

error e(n) is defined as the difference between the desired signal (desired response) 

d(n) and the output signal from the forward path or plant under control, according 

to                                 ( ) ( ) ( )ce n d n y n= −                      (2.4) 

Assuming that the forward path estimate can be expressed by an Ith order FIR 

filter according to 

                                      nc when {0,..., 1}n I∈ −  

      ( )ch n =   (2.5) 
 
                           0 otherwise. 

 
it follows that the estimation error e(n) can be expressed as 

 
                           

(2.6) 

 
The Wiener (Minimum Mean Square Error) solution of the coefficient vector is 

obtained by minimizing the quadratic function  

 
2( ) [ ( ) ]J n E e n=                                    (2.7) 

 

1 1

0 0

( ) ( ) ( ) ( )
I M

i m
i m

e n d n c w n i x n i m
− −

= =

= − − − −∑ ∑
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and this can be carried out by using the gradient vector of the mean square error  
 

(2.8) 
By taking advantage that the desired signal d(n) is independent of the filter 

coefficients, the gradient vector of the estimated error can be expressed as 

 

                                                       
1

0
( )

I

i
i

c x n i
−

=

− −∑  

 

 

                 ( ) ( )w n e n∇   =   . (2.9) 
. 

           
1

0
( 1)

I

i
i

c x n i M
−

=

− − − +∑  

 
 
By inserting this expression in Eq. 2.8, following relation can be obtained for the 

gradient vector of the mean square error 

 

. w(n) ( ) 2 [ ( ) ( )]f CJ n E e n X n∇ = −  (2.9.1) 
 

where ( )cx n is given by 
 

                      
1

0
( )

I

i
i

c x n i
−

=

−∑  

                       
1

0
( 1)

I

i
i

c x n i
−

=

− −∑  

                             ( )cx n   =                            . (2.10) 
                . 

                            
1

0
( 1)

I

i
i

c x n i M
−

=

− − +∑  

( ) ( )( ) 2 [ ( ) ( )]w n w nJ n E e n e n∇ = ∇

1

0
( 1)

I

i
i

c x n i
−

=

− − −∑
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In other words, an LMS algorithm with a gradient estimate as in 
 

(2.11) 

 

would solve the problem of producing an estimate via a dynamic system. From 

this it follows that the conventional LMS algorithm is likely to be unstable in 

control applications. The conventional LMS algorithm will in some cases also find 

a poor solution when it converges. This can be explained by the fact that the LMS 

algorithm uses a gradient estimate x(n)e(n) which is not correct in the mean. 

A compensated algorithm is obtained by filtering the reference signal to the 

coefficient adjustment algorithm using a model of the forward path as illustrated in 

Fig. 2.2. The algorithm obtained is the well-known filtered-x LMS algorithm 

defined by Eq. 2.4: 

 

 
 

Figure 2.3: Active control system with a controller based on the filtered-x LMS-
algorithm[5]. 

 
 
 

 
 
                                  

( ) ( ) 2 ( ) ( )w n cJ n e n x n∇ = −
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The filter update coefficient is 

(2.12) 

 

Here 
*

ic is the coefficient of an estimated FIR filter model of the forward path: 
 
It is in practice customary to use an estimate of the impulse response for the 

forward path. As a result, the reference signal * ( )Cx n  will be an approximation, 

and differences between the estimate of the forward path and the true forward path 

influence both the stability properties and the convergence rate of the FXLMS 

algorithm. However, the algorithm is robust to errors in the estimate of the 

forward path. The model used should introduce a time delay corresponding to the 

forward path at the dominating frequencies. In the case of narrow-band reference 

signals to the algorithm, e.g. sin(w0t), the algorithm will converge with phase 

errors in the estimate of the forward path with up to ±90, provided that the step 

length µ is sufficiently small. Furthermore, phase errors in the estimate of the 

forward path smaller than ±45 will have only a minor influence on the algorithm 

convergence rate. 

The FXLMS algorithm relies principally on the assumption that the adaptive FIR 

filter and the forward path “commute”. This is approximately true if the adaptive 

filter varies in a time scale which is slow in comparison with the time constant for 

the impulse response of the forward path. This expression can be written as 

follows: 
1 1 1 1

0 0 0 0

( ) ( ) ( ) ( )
I M M I

i m m i
i m m i

c w n i x n i m w n c x n m i
− − − −

= = = =

− − − ≈ − −∑ ∑ ∑ ∑  (2.13) 

 
where  

 
 

*( 1) ( ) ( ) ( )Cw n w n x n e nµ+ = +

( ) ( ), {1, 2,..., 1}w n w n i i I≈ − ∈ − (2.14)
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where I is the length of the impulse response of the forward path. In practice, the 

FXLMS algorithm exhibits stable behavior even when the coefficients change 

within the time scale associated with the dynamic response of the forward path . In 

order to ensure that the action of an LMS algorithm is stable the maximum value 

for the step length µ should be given approximately by: 

 

(2.15) 

 

However, in the case of the FXLMS algorithm, Elliot et al[10]. have found that the 

maximum step length µ not only depends on the length of the adaptive filter and 

the variance of the filtered reference signal but also on the delays in the forward 

path C. If the reference signal * ( )Cx n is a white noise process it has thus been 

found that an upper limit for the step length µ is given by 

 
(2.16) 

 
 
where δ  is the overall delay in the forward path (in samples). In the case of a 

non-white reference signal Elliot et al,[10] suggest that 
max

1
µ

is proportional to 

1.2M and not 0.5M .The probable explanation is that the covariance matrix for the 

reference signal will have a poor conditioning . 

This broadband ANC system utilizes two main structures. First, an adaptive 

system identification framework is used to estimate the forward path as shown in 

fig.2.4. The estimated forward path coefficients are stored in memory and used in 

the later FXLMS adaptation for noise cancellation. That is, the algorithm requires 

certain knowledge of the forward path before being able to actively cancel noise. 

 Essentially, an adaptive filter W(z) is used to estimate an unknown plant C(z) 

which consists of the acoustic response from the reference sensor to the error 

2

2
[ ( )]ME x n

µ <

*
m a x 2

2
[ ( ) ] ( )

C
E x n M

µ
δ

≈
+
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sensor. The objective of the adaptive filter W(z) is to minimize the residual error 

signal e(n). However, the main difference from the traditional system 

identification scheme is the use of an acoustic summing junction instead of the 

subtraction of electrical signals.  

 

                                       e(n) 

      x(n)  
 y(n) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2.4  . Reference framework for systemidentification using an adaptive filter. 
 

 
In system identification, a random white noise can be generated in the loud 

speakers of the hearing defenders where the x(n) is the signal from the speakers of 

the head phones and d(n) is the signal taken from the error  microphone. Both x(n) 

and d(n) signals are given as the inputs to the LMS algorithm. The LMS algorithm 

steers filter coefficients such that the estimate of the forward path is obtained. 

Hence, an estimate of the forward path is obtained, C*(z), and can be used in 

FXLMS adaptation. 

The introduction of the secondary path transfer function in a system using the 

standard LMS algorithm leads to instability. This is because, it is impossible to 

compensate for the inherent delay due to C(z) if the primary path P(z) does not 

contain a delay of equal length. Also, a very large FIR filter would be required to 

C(z) 

W(z)

LMS

Σ 
e(n)

d(n)
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effectively model 1/C(z). This can be solved by placing an identical filter in the 

reference signal path to the weight update of the LMS equation. This is known as 

the filtered-X LMS algorithm. The block diagram of an ANC system using the 

FXLMS algorithm is shown in Figure 2.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 2.5 Schematic diagram of ANC system using FXLMS algorithm 
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CHAPTER 3 

FIXED POINT ARITHMETIC 

 
3.1 Fixed Point Representation 

Given that there are processors that do not support floating point numbers, how 

can a fraction number 0.5 can be represented?  This is where fixed point math 

comes into play.  As the name implies, a fixed point number places the "decimal" 

point between the whole and fractional parts of a number at a fixed location, 

providing f bits of fractional precision.  For example, an 8.24 fixed point number 

has an eight bit integer portion and twenty four bits of fractional precision.  Since 

the split between the whole and fractional portion is fixed, it is known exactly 

what the range and precision will be. 

Using a 16.16 fixed point format (which, handily enough, fits in 32-bit integer), 

the high 16-bits represent the whole part, and the low 16-bits represent the 

fractional portion, according to the hexadecimal number 

0xWWWWFFFF  

With 16-bits in the whole part, it can be represented 216 (65536) discrete values (0-

65535 unsigned or -32768 to +32767 signed). The fractional part gives us, 216 

steps to represent the values from 0 to 65535/65536 or approximately 0.99999. 

Our fractional resolution is 1/65536, or about 0.000015  

The 16.16 fixed point value in hexa decimal format is 0x00104ACF i.e. 

approximately equals the decimal value 16.29222. The high sixteen bits are 

0x0010 (16 decimal) and the low 16-bits are 0x4ACF(19151), so 19151/65536.0 
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~= 0.29222. The simple method to convert from a fixed point value of f fractional 

bits is to divide by 2f so: 

 

However, certain care must be exercised if  integers are stored in 2's complement 

form. The value decimal value -16.29222 corresponds to a hexa decimal value is  

0xFFEFB531, notice that the fractional bits (0xB531) are not the same as for the 

positive value. So, it is not possible to just mask the fractional bits directly, sign 

matters. 

3.2 Two Complement Summary 

Fundamentally 2's complement solves the problem of representing negative 

numbers in binary form. Given a 32-bit integer, how negative numbers can be 

represented? 

The obvious method is to incorporate a sign bit, which is precisely what floating 

point numbers in IEEE-754 format do. This signed magnitude form reserves one 

bit to represent positive/negative, and the rest of the bits represent the number's 

magnitude. Unfortunately there are a couple problems with this.  

1. The value of zero has two representations, positive (0x00000000) and 

negative (0x80000000), making comparisons cumbersome. It's also 

wasteful since two bit configurations represent the same value.  

2. Adding a positive integer to a negative integer requires logic. For example, 

-1 (0x80000001 in 32-bit sign magnitude form) summed with +1 

(0x00000001 in 32-bit sign magnitude form) yields 0x8002, or -2 in 16-bit 

sign-bit form..  
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Researchers came up with a much better system for number representation called 

2's complement arithmetic. In this system positive numbers are represented as 

usual, how ever negative numbers are represented by their complement, plus one. 

This requires taking all bits in the positive representation, reversing them, then 

adding one. 

So to encode the decimal value -1, its positive hexadecimal representation 

0x00000001 is inverted (complemented) to 0xFFFFFFFE and added by one to 

give us 0xFFFFFFFF, which may be recognized as the two-complements form of 

the decimal value -1. 

3.3 Dynamic Range and Precision  

Different operations often require different amounts of range and precision. A 

format like 16.16 is in general sufficient, but depending on the specific problem, 

highly precise formats such as 2.30, or longer range formats such as 28.4 are 

needed. For example, the sine function only returns values in the range -1.0 to 

+1.0, so representing sine values with a 16.16 is wasteful since 15-bits of the 

integer component will always be zero. Not only is that, but the difference 

between sine(90*π/180) and sine(89.9*π/180) a very small number, 

~.0000015230867, which our 16-bits of fractional precision cannot represent 

accurately. In this particular case, 2.30 format would be more suitable. 

This brings to light a serious problem with fixed point; overflow of underflow can 

occur without expecting it, especially when dealing with sums-of-products or 

power series. This is one of the most common sources of errors when working on 

a fixed point code base.  

A very common case is vector normalization, which has a sum-of-products during 

the vector length calculation. Normalizing a vector consists of dividing each of the 
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vector's elements by the length of the vector. The length of a vector v=(vx vy vz )T 

is:                          2 x x y y z zv v v v v v v= + +                                      (3.1) 

This is why choosing the range and precision is very important and putting in a lot 

of range and overflow sanity checks is extremely important if robust software is 

needed. 

3.4 Conversion 

A fixed point value can be derived from a floating point value by multiplying by 

2^f (it means it will be raised to f and after that it will be truncated). A fixed point 

value is generated from an integer value by shifting left f bits: 

F = [r * 2^f] where [] corresponds to truncation 

r ~= F/2^f 

(3.1) 

 

• F = fixed point value  

• I = integer value  

• r = floating point value  

• f = number of fractional bits for F  

Converting back to floating point is trivial – just perform the reverse of the float-

to-fixed conversion: 

(3.2) 
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However, converting to an integer is a bit trickier due to rounding rules and the 2's 

complement encoding. In the world of floating point there are four common 

methods for converting a floating point value to an integer: 

1. round-towards-zero  

2. round-towards-positive-infinity  

3. round-towards-negative-infinity  

4. round-to-nearest  

3.5 Numerical Operations 

Multiplication and division are most prominent in Numerical operations of fixed 

point arithmatics. 

3.5.1 Scalar Multiplication 

Consider the scalar multiplication 

α⋅= xy , 

where x is an integer value and the constant α  is an arbitrary floating point value. 

Depending on the constant, α , the output, y, does not necessary has to be an 

integer value, but instead a floating point. This operation can be approximated in 

fixed point, two cases exists: 
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CASE I 

The first case is valid for, 5.0≤α . 

 

 16

16

2

2

−⋅=
⋅=

⋅=

zy
Axz

A α

. 

CASE II 

The second case is valid for, 5.0>α  

 

 

 p

p

zy
Axz

A

−⋅=
⋅=

⋅=

2

2α

  

where p should be selected such that 
p2⋅α is as close as possible to 215, although 

not exceeding 215. Note that shifts other than p=8 and p=16 can be costly in terms 

of number of instructions required. Hence, it is wise to optimize the 

implementation such that it is possible to use either p=8 or p=16. 

3.5.2 Finite Impulse Response Filters 

Assume a Finite Impulse Response (FIR) filter is to be implemented according to 

(3.9) 

 

where hk are the filter coefficients and x(n) is the input signal. Directly 

implementing the FIR filter is often not possible since the coefficients are likely 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

( ) ( )∑
−

=

−⋅=
1

0

L

k
k knxhny
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floating point values. However, using the Case-I-reformulation under the Section 

“Scalar Multiplication”, it can be derived that 

 
( ) ( )

( )  16

1

0

16

2)(

2

−

−

=

⋅=

−⋅=

⋅=

∑
nzny

knxHnz

hH
L

k
k

kk

. 

This operation is allowed if the filter coefficients are fulfilling the 

requirement 5.0≤kh . 

3.5.3 Recursive Filters 

A recursive filter, often denoted Infinite Impulse Response (IIR), can be 

implemented on fixed point, but it requires some more attention than the FIR 

filters do. Example of a problem in recursive filtering is limit cycle oscillations. 

There are two ways of circumventing the problems of fixed point recursive filters: 

1) use high enough multiplier, 2) feed forward of the remainder. For the 

discussion, consider the following first order Auto Regressive Moving Average 

(ARMA) process 

                         (3.13)     

where α and β are the process coefficients. For simplicity it can be assumed that 

5.0≤α  and 5.0≤β . 

 

 

 

(3.10) 

(3.11) 

(3.12) 

( ) ( ) ( )nxnyny ⋅+−⋅= βα 1
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CASE I 
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Where R(n) is the remainder. 

Note that for the second case, care must be taken such that the remainder does not 

suffer from sign sensitivity. The second case is much more robust than the first 

case, but it requires some more instructions and memory storage (the remainder). 

 

3.5.4 Division 

Division is similar to multiplication. Consider the following example. Take 2.0 

and 1.0 again in 16.16 fixed point form: 0x20000 and 0x10000. If the former is 

divided by the latter, the resulting value will be 2. Not 0x20000. Which is correct, 

granted, but it is not in a 16.16 output form. The result is taken and shifted back by 

the number of bits that are needed, needed. However, shifting after the integer 

division means that a lost in precision is achieved. But...that's wrong, since 

shifting after the integer divide means losing precision before the shift. In other 

(3.14)

(3.15)

(3.16)

(3.17)

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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words, if A=0x10000 and B=0x20000 The final result would be 0, instead of 

0x8000 (0x8000 = 0.5 in 16.16 fixed point, since 0x8000/65536.0 = 0.5). But if 

shift  is performed integer division, it can be managed to retain our precision and 

also have a properly scaled result. 

But it is  assumed that A and B are of the same fractional precision. Consider the 

folowinng formulation of division 

 

What this says is two fixed point numbers are taken of m and n fractional bits, and 

were divided, the quotient will be a value with m-n fractional bits. With the 

previous example of 16.16 divided by a 16.16, that means 0 fractional bits. If f 

fractional bits are expected, the numerator must be scaled by 2^f-(m-n). Ths 

means, the numerator is scaled before the division operation is done. So the final 

equation looks like: 

(3.24) 

 

Order of operations matters, so actual evaluation would use the middle form, 

where the numerator is fully expanded before division. The far right form is just to 

show what the final result will look like. 

Overflow is still a concern, so make sure that adjustment is done before the 

division to avoid rounding errors. Unfortunately, for example, a 16.16 divided by a 

16.16 needs to be prescaled by 2^16, it is a guaranteed overflow. Again, modern 

CPUs can come to the rescue, this time by providing 64-bit / 32-bit division 

operations. 

 
(3.23)
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CHAPTER 4 

REAL TIME IMPLEMENTATION 

4.1 ADUC 7026 processor  

The ADuC7026 are fully integrated, 1 MSPS, 12-bit data acquisition systems 

incorporating high performance multichannel Analog to Digital Converters 

(ADC), 16-bit/32-bit MCUs and Flash/EE memory on a single chip. 

The ADC consists of up to 12 single-ended inputs. An additional four inputs are 

available but are multiplexed with the four Digital to Analog Converter (DAC) 

output pins. The four DAC outputs are only available on certain models e.g 

ADuC7026. However, in many cases where the DAC is not present, this pin can 

still be used as an additional ADC input, giving a maximum of 16 ADC input 

channels. The ADC can operate in single-ended or differential input modes. The 

ADC input voltage is 0 to VREF. 

Low-drift bandgap reference, temperature sensor, and voltage comparator 

complete the ADC peripheral set. The ADuC7026 also integrate four buffered 

voltage output DACs on-chip. The DAC output range is programmable to one of 

three voltage ranges. 

The devices operate from an on-chip oscillator and a PLL generating an internal 

high frequency clock of 45MHz. This clock is routed through a programmable 

clock divider from which the MCU core clock operating frequency is generated. 

The microcontroller core is an ARM7TDMI, 16-bit/32-bit RISC machine, which 

offers up to 45 MIPS peak performance. Eight kilobytes of SRAM and 62 

kilobytes of nonvolatile Flash/EE memory are provided on-chip. The ARM7TDMI 

core views all memory and registers as a single linear array. On-chip factory 

firmware supports in-circuit serial download via the UART or I2C serial interface 
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ports, while no intrusive emulation is also supported via the JTAG interface. These 

features are incorporated into a low-cost QuickStart™ Development System  

supporting this MicroConverter® family. 

The parts operate from 2.7 V to 3.6 V and are specified over an industrial 

temperature range of −40°C to +125°C. When operating at 45 MHz, the power 

dissipation is typically 120 mW. The ADuC7026 are available in a variety of 

memory models and packages. 

4.1.2 Configuration&Features: 

Analog I/O 

• Multichannel, 12-bit, 1 MSPS ADC Up to 16 ADC channels 

• Fully differential and single-ended modes 

• 0 to VREF analog input range 

• 12-bit voltage output DACs Up to 4 DAC outputs available 

• On-chip voltage reference 

• On-chip temperature sensor (±3°C) 

• Voltage comparator 

¾ Microcontroller 

• ARM7TDMI core, 16-bit/32-bit RISC architecture 

• JTAG port supports code download and debug 

¾ Clocking options 

• Trimmed on-chip oscillator (±3%) 

• External watch crystal 

• External clock source up to 44 MHz 

• 45 MHz PLL with programmable divider 
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¾ Memory : 62 kB flash/EE memory, 8 kB SRAM 

• In-circuit download, JTAG-based debug 

• Software triggered in-circuit reprogram ability 

 

¾ On-chip peripherals 

• UART, 2 × I2C® and SPI® serial I/O 

• Up to 40-pin GPIO port1 

• 4 × general-purpose timers 

• Wake-up and watchdog timers 

• Power supply monitor 

• Three-phase, 16-bit PWM generator1 

• Programmable logic array (PLA) 

• External memory interface, up to 512 kB 

¾ Power 

• Specified for 3 V operation 

• Active mode: 11 mA @ 5 MHz; 40 mA @ 45 MHz 

¾ Packages and temperature range 

•    From 40-lead 6 × 6 mm LFCSP to 80-pin LQFP1 

•    Fully specified for –40°C to +125°C operation 

¾ Tools 

• Low-cost QuickStart™ development system 

• Full third-party support 

¾ APPLICATIONS 
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• Industrial control and automation systems 

• Smart sensors, precision instrumentation 

• Base station systems, optical networking. 

Functional block diagram of ADUC7026 micro controller is shown in Figure 4.1. 

 

Figure 4.1 The functional Block diagram of ADUC 7026micro controller. 
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4.2 Real Time ANC Implementation on a Processor 

 
As discussed in chapter 2, in the FXLMS,a system identification is first performed 

where the coefficients are stored to memory and later read back when the FXLMS 

structure operates and later with those results FXLMS adaptation is implemented.  

4.2.1 System identification  

In system identification, the transfer function between error microphone and head 

phone transducer is measured. For this purpose, a pseudo noise generator program 

can be used. It generates random noise and plays it. Here in this system 

identification, there is no need of noise reference microphone. So, the microphone 

output is fed as input to the adaptive algorithm and hence the filter coefficients 

give the transfer function. A brief idea on pseudo noise generation is discussed. 

4.2.2 Pseudo noise Generator 

A Pseudo-random Noise (PN) sequence is a sequence of binary numbers, e.g. ±1, 

which appears to be random; but are in fact deterministic. The sequence appears to 

be random in the sense that the binary values and groups or runs of the same 

binary value occur in the sequence in the same proportion they would if the 

sequence were being generated based on a fair "coin tossing" experiment. In the 

experiment, each head could result in one binary value and a tail the other value. 

The PN sequence appears to have been generated from such an experiment. A 

software or hardware device designed to produce a PN sequence is called a PN 

generator. 
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Example: - A PN generator is typically made of N cascaded flip-flop circuits and a 

specially selected feedback arrangement as shown below. 

 

The flip-flop circuits when used in this way are called a shift register since each 

clock pulse applied to the flip-flops causes the contents of each flip-flop to be 

shifted to the right. The feedback connections provide the input to the left-most 

flip-flop. With N binary stages, the largest number of different patterns the shift 

register can have is 2N. However, the all-binary-zero state is not allowed because it 

would cause all remaining states of the shift register and its outputs to be binary 

zero. The all-binary-ones state does not cause a similar problem of repeated binary 

ones provided the number of flip-flops input to the module 2 adder is even. The 

period of the PN sequence is therefore 2N-1, but IS-95 introduces an extra binary 

zero to achieve a period of 2N, where N equals 15.  

 

Starting with the register in state 001 as shown, the next 7 states are 100, 010, 101, 

110, 111, 011, and then 001 again and the states continue to repeat. The output 

taken from the right-most flip-flop is 1001011 and then repeats. With the three 

stage shift register shown, the period is 23 -1 or 7. 

 

The PN sequence in general has 2N/2 binary ones and [2N/2]-1 binary zeros. As an 

example, note that the PN sequence 1001011 of period 23-1 contains 4 binary ones 

and 3 binary zeros. Furthermore, the numbers of times the binary ones and zeros 

repeat in groups or runs also appear in the same proportion they would if the PN 

sequence were actually generated by a coin tossing experiment. 
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The flip-flops which should be tapped-off and fed into the module 2 adder are 

determined by an advanced algebra which has identified certain binary 

polynomials called primitive irreducible or un-factorable polynomials. Such 

polynomials are used to specify the feedback taps. For example, IS-95 specifies 

the in-phase PN generator shall be built based on the characteristic polynomial 

PI(x) = x15 + x13 + x9 + x8 + x7 + x5 + 1 (1)                   (4.2.1) 

Now visualize a 15 stage shift register with the right-most stage numbered zero 

and the successive stages to the left numbered 1, 2, 3 etcetera., until the left-most 

stage is numbered 14. Then the exponents less than 15 in Eq. (1) tell that stages 0, 

5, 7, 8, 9, and 13 should be tapped and summed in a module 2 adder. The output of 

the adder is then input to the left-most stage. The shift register PN sequence 

generator is illustrated in the figure 4.2. 
 

 

Fugure 

 

4.2.3 FXLMS adaptation 

After the transfer function between the error microphone and the head phone 

transducer is estimated and it can be used in FXLMS adaptation. In FXLMS 

adaptation the noise reference microphone is used. An external low frequency 

noise is played and the noise microphone and the error microphone records it. 

Then the two responses are fed input to the adaptive filter such that an anti noise is 

produced in head phone transducer and cancels   the noise. 

 

Figure 4.2 Shift register PN sequence generator 
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4.2.4Experiment details 

Before conducting the experiment the following details should be observed: 

1) Amplitude levels should be checked before conducting the experiment real 

time. If the high amplitude level is more, it may lead to the breakage of 

DSP. 

2) The volume of the amplifier of micro phone should not be changed while 

carrying out the experiment. If the volume is changed or the gap between 

the error microphone and head phone transducer is disturbed, the transfer 

function varies and system identification has to be repeated. 

3) The project was done on evaluated version of ADUC 7026 micro 

controller. So some problems are experienced while loading the program 

into the flash memory of the chip. So press reset and serial port buttons 

such that the light of the reset button will be turned off. Then ¨the program 

can be loaded into the flash memory. Other wise it will lead to the JITAG 

failure. 

4) Also, care must be exercised to not violate the sample cycle time as the 

clock speed is limited for 44.1 MHz. 
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CHAPTER 5 

EVALUATION AND RESULTS 
Evaluation in this project will give a clear idea on the suitable and maximum 

permissible filter lengths and step lengths  on matlab fixed, floating point and on a 

C language. If the suitable filter lengths and step lengths are used, the better Signal 

to Noise Ratio (SNR) results can be obtained. 

5.1 Evaluation 

The thesis is done both in simulation and real time implementation. The 

simulation is done in matlab and DEV C++ and the real time implementation is 

done by using KEIL code composer interface. After getting the results and 

convergence of the algorithm, plots are made. These plots are compared with the 

variation of filter lengths and variation of step lengths and minimum possible filter 

lengths and step lengths are measured. Then it concludes the simulation part. After 

simulation, this algorithm is implemented on a real time processor. 

Two real time signals are needed for this simulation part.  

 

 

 

 

 

 

 

 

 

• The transfer function between speaker to the micro phone is illustrated in 

Fig 5.1. 

Figure 5.1 Adaptive noise cancellation head phones 
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• The transfer function between error microphone and head phone transducer 

are computed by               
( )

( )
( )

xy

xx

P w
H w

P w
=  

where the spectral power density of the output signal and the spectral power 

density of the input power signal are computed. By using the Eq 5.1, transfer 

function of a channel can be calculated. 
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Figure 5.2 Measured response taken from reference  microphone to error sensor 

 
In Fig 5.3 a typical impulse response function between the head phone transducer 
and the error microphone is illustrated. 
 
 
 

5.1 
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5.2 Results 
 
After getting these responses, H(w) and C(w) filters the random signal and taken 

as the signals d(n) and x(n). So the input signals are ready for the adaptive 

filtering. Now the signals are passed to the adaptive filtering sample by sample 

and LMS algorithm is implemented to it in matlab fixed point, matlab floating 

point and c fixed point. 

After getting the results, the last 1000 samples are taken and Mean Square Error 

(MSE) is calculated for those thousand samples and the graphs are compared in 

Figure 5.4. This graph is plotted with the variation of steplength on X axis and 

error mean square on Y axis in C fixed point. The different colors show the 

Figure 5.3 Measured response from head phone transducer to error microphone 
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variation of different filter lengths. From the graph it is clear that the minimum 

step length can be used as 26. At steplength 26, it has minimum MSE value.  
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Figure 5.4 Mean square error for a C fixed point implementation as a function of 
various step length and different filter lengths: Minimum filter length (blue), 
medium filter length (red), maximum filter length (green) 
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The results are plotted now in matlab fixed point with the same dimensions ie. 

Variation of steplength on X axis and variation of emeansquare on Y axis. The 

different colours show the variation of filterlengths.  
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Figure 5.5 Mean square error for a Matlab fixed point implementation as a 

function of various step length and different filter lengths: Minimum filter length 
(blue), medium filter length (red), maximum filter length (green) 

 
In this graph even, the min steplength is found to be 26 and the permissible 

steplengths for most cases is from 26 to 100. 

From these cases, matlab fixed point. C fixed point, it can be  noticed that the min 

step length is same for matlab fixed point and c fixed point subjected that the same 

input signal is used for both the cases. 
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Next coming to matlab floating point, it varies a bit. Matlab floating point with the 

same dimensions. ie. Variation of steplength on X axis and variation of 

emeansquare on Y axis. The different colours show the variation of filterlengths. 
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Figure 5.6 Mean square error for a Matlab floating point implementation as a 
function of various step length and different filter lengths: Minimum filter length 
(blue), medium filter length (red), maximum filter length (green) 
 
 

Here the min steplength is found to be 60. This variation is because, in the fixed 

point it truncates the decimal point and where as in floating point it considers 

them. The permissible values are from 60 to 250. The different colors represent 

the different filter lengths. If the values in the MSE are noticed, it can be found 

maximum values in fixed point than in floating point. 
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Till now, the variation of steplengths and its effect on meansquare error are 

discussed. Now, variation of filterlengths and its effect on mean square error will 

be discussed. Now it is the turn to vary filter lengths and observe the plots for c 

fixed point as shown in figure 5.7. The minimum filter length is found to be 196 

and the permissible range for filter lengths is found to be 96 to 200.  So at filter 

length 196, it has min MSE value. As it is well known that as the filter length 

increases, the MSE value should decrease. But here in this case, it increases 

drastically. So those values have been truncated and zeros are kept instead. This is 

happening because simultaneously, step length values are increasing.  

2
( 1). (0)xxp R

µ =
+  

 
So as the filter length and steplength values increases which are inversely 

proportional to each other, the resulting mean square error will increase. 

 

 

(5.2) 
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Figure 5.7 Mean square error for a C fixed point implementation as a function of 

various filter length and different step lengths: Minimum step length (blue), 
medium step length (red), maximum step length (green) 

 
Plot for matlab fixed point is plotted with the same dimensions i.e variation of 

filterlengths on x axis, emeansquare on y axis and variation of step lengths on z 

axis. Here the color lines mean the variation of steplengths. The min emeansquare 

value is found at 196 filterlength and max permissible range is from 96 to 208.  
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Figure 5.8 Mean square error for a Matlab fixed point implementation as a 

function of various filter length and different step lengths: Minimum step length 

(blue), medium step length (red), maximum step length (green) 

 

Matlab and C language almost have the same numerical precision in fixed point. 

So it will have the same values for fixed point. These curves are meant to get an 

idea for which values the algorithm converges better. 

In the formula  

2
( 1). (0)xxp R

µ =
+  

µ  Is steplength, P is filterlength 

Rxx is autocorrelation matrix of the input signal. 

 
 

(5.3) 
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Now, it is turn to have a look for Matlab floating point. The graph is plotted with 
the same dimensions as in the previous cases. Here, the MSE is less when 
compared to previous cases. 
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Figure 5.9 Mean square error for a Matlab floating point implementation as a 
function of various filter length and different step lengths: Minimum step length 

(blue), medium step length (red), maximum step length (green) 
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. 

The figure 5.10 is the graph plotted taking variation of filter length on x axis, 

variation on steplengths on z axis and mean square error on y axis in c fixed point. 
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Figure 5.10 Mean square error for a Cfixed point implementation as a function of 

various filter length and different step lengths. 
 

As the filter length increases, error mean square decreases. Hence it can be 

concluded that it is beneficial to have more filter taps to have a better attenuation 

of noise. But the filter length should be as small as possible to have a better 

convergence. So the selection of steplength is a tradeoff between fast convergence 

rate and high noise attenuation.  
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In Fig. 5.11 the graph is plotted taking variation of filter length on x axis, variation 

on steplengths on z axis and mean square error on y axis in matlab fixed point. 
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Figure 5.11 Mean square error for a Matlab fixed point implementation as 

a function of various filter length and different step lengths 
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Fig 5.12 is the graph plotted taking variation of filter length on x axis, variation on 

steplengths on z axis and meansquare error on y axis in matlab floating point. 
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Figure 5.12 Mean square error for a Matlab floating point implementation as 
a function of various filter length and different step lengths. 
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Exponentially averaged error envelop is taken with 1 ms time constant and with 

suitable min. steplength and filterlength values from the learning curves for system 

identification. The exponentially averaged error envelop is presented in fig 5.13 

 

 
 
Figure 5.13 Comparision of averaged errorenvelop of floating and fixed point in 

system identification with min. filterlength of 32 taps for different 
implementations: Matlab fixed point (blue), maltab floating point (red), C fixed 

point (green) 
From the Figure 5.13, it can be observed that 

• The matlab floating and fixed points have a small variation. This is due to 

the fixing of the value in fixed point. 

• The c fixed point varies with the other ones. This is because of the 

numerical precision and more over c has the integer number format values 

that is limited between -32,768 and +32,767 where as matlab has no such 

restrictions.       
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Now By using the C(w) channel from system identification, those values are 

substituted in fxlms adaptation part to get the final attenuation of noise. In fig 5.14 

is the learning curve of FXLMS adaptation for c and matlab fixed and floating 

points. 
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Figure 5.14 Comparision of smoothned error of floating and fixed point in FXLMS 

adaptation by taking min. filterlength and min. steplengthfor different 

implementations: Matlab fixed point (blue), maltab floating point (red), C fixed 

point (green). 

 

The fallowing observations can be noticed from the figure 5.14 

• The attenuation in the three lines differs because of the numerical precision 

and limitations as discussed earlier. 

• In C fixed point, we have got the attenuation of noise for 13 db attenuation 

and for the rest, it is 22db attenuation. 
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If this algorithm is implemented on a real time processor, even more less 

attenuation can be recorded because the electronic component noise is added to 

it,which decreases SNR ratio further more. 
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CHAPTER 6 

FURTHER RESEARCH 

This thesis can be further modified by the following ways. 

1) First, a full band approach is used in this report. But a sub band approach can 

also be implemented. In the sub band approach, the signal is divided into subbands 

by using a filter bank and each subband is processed by the adaptive filter and at 

last, they are again summed up. With this solution, better MSE with even less 

filter taps can be achieved. The subband approach is illustrated in fig 7.1 

 

Fig 7.1 Schematic of a sub-band approach 
 

In the figure 7.1, the signal d(n) is filtered into n signals with a filter bank and 

each filtered signal is processed by using feedback ANC and the output of the 

ANC is summed up resulting the error signal e(n) and the estimate of  the out put 

signal y(n). 

2) Till now, our approach is only a noise cancellation approach. It means only 

noise can be attenuated. It has one of  the applications of the hearing protectors 

and active head sets. The noise cancellation with the introduction of sound can be 

used in pilot head phones. The presented implementation could be modified for 

that purpose. 
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. 

 
CHAPTER 7 

 
 SUMMARY AND CONCLUSIONS 

 

This thesis is successfully implemented and better knowledge is achieved on 

adaptive filtering, fixed point arithmetic’s and getting better MSE in noise 

reduction. Finally almost 15 db attenuation of noise in  c fixed point simulation 

was achieved. The MSE may be further decreased as the electronic component 

noise is added to the filtering part when it is implemented real time. Some 

modifications regarding sub-band approach are finally discussed. 
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