
 1

Implementation of Adaptive Filter Structures on a Fixed Point

Signal Processor for Acoustical Noise Reduction

 By
Krishna Chaitanya Chunduri(810507-P214)

Master thesis number, Chalapathi Gutti(780208-P898)

 MEE 05:33
Supervised by

Benny Sällberg

THESIS

Presented to the department of signal processing

Blekinge Institute of Technology

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

BLEKINGE INSTITUTE OF TECHNOLOGY

 2

ACKNOWLEDGEMENTS

We would like to thank our thesis advisor Benny Sällberg (phd student) for

providing us with the opportunity to work over the past six months in the Signal

Processing Laboratory, Department of Electrical Engineering. We thank him for

the guidance he has provided and the confidence he has shown in our work. We

also thank him for the spontaneous replies from him when we had queries and

providing us necessary materials when we are in need of them.

We thank Analog devices for providing an evaluation chip for the thesis.

We thank Benny Sällberg for providing the addon card, head sets, amplifiers

required for the thesis.

We would also like to thank all the members of the Signal Processing

Department for their timely help and support.

 3

Index

Chapters page no.

Abstract

1. Introduction
 1.1 Why we used fixed point processor 7
 1.2 Thesis outline…………………………………………………………... 8

2. Problem Formulation ……………………………………………………… 9

3. Fixed Point Arithmetic ……………………………………………………. 18
 3.1 Fixed point representation …………………………………………… 18
 3.2 Two’s compliment summary ………………………………………… 19
 3.3 Dynamic range and precision ……………………………………….. 20
 3.4 Conversion …………………………………………………………… 21
 3.5 Numerical operations…………………………………………… 22
 3.5.1 Scalar multiplication ……………………………………….. 22
 3.5.2 Finite impulse response filters……………………………… 23
 3.5.3 Recursive filters…………………………………………….. 24
 3.5.4 Division ……………………………………………………. 25

4. Real Time Implementation ……………………………………………… 27
 4.1 ADUC 7026 processor …………………………………………….. 27
 4.1.2 Configuration and features ……………………………… 28
 4.2 ANC implementation on a Real time processor…………………. 31
 4.2.1 System identification ………………………………………. 31
 4.2.2 Pseudo noise generator…………………………………….. 31
 4.2.3 FXLMS adaptation…………………………………………. 33
 4.2.4 Experimental details……………………………………….. 34

5. Evaluation and Results……………………………………………………. 35
 5.1 Evaluation ……………………………………………………….. 35
 5.2 Results …………………………………………………………… 37

6. Further Research ………………………………………………………….. 51

7. Summary and Conclusions…………………………………………………… 52

…………………………………
 5

 4

ABSTRACT

The problem of controlling the noise level in the environment has been the focus

of a tremendous amount of research over the years. Active Noise Cancellation

(ANC) is one such approach that has been proposed for reduction of steady state

noise. ANC refers to an electromechanical or electro acoustic technique of

canceling an acoustic disturbance to yield a quieter environment. The basic

principle of ANC is to introduce a canceling “anti-noise” signal that has the same

amplitude but the exact opposite phase, thus resulting in an attenuated residual

noise signal. Wideband ANC systems often involve adaptive filter lengths, with

hundreds of taps. Using sub band processing can considerably reduce the length of

the adaptive filter. This thesis presents Filtered-X Least Mean Squares (FXLMS)

algorithm to implement it on a fixed point digital signal processor (DSP),

ADUC7026 micro controller from Analog devices. Results show that the

implementation in fixed point matches the performance of a floating point

implementation.

 5

CHAPTER 1

INTRODUCTION

Acoustic noise have increased in magnitude due to noisy engines, heavy

machinery, pumps, high speed wind buffeting and several other noise sources.

Exposure to high sound pressure levels may damage humans from both a physical

and a psychological aspect. The problem of controlling the noise level in the

environment has been the focus of a tremendous amount of research over the

years.

The classical approach to noise cancellation is a passive acoustic approach.

Passive silencing techniques such as sound absorption and isolation are inherently

stable and effective over a broad range of frequencies provided that the thickness

of the insulator is larger than wave length of the signal to insulate. However,

passive techniques tend to be expensive, bulky and generally ineffective for

canceling noise at the lower frequencies. The performance of these systems is also

limited to a fixed structure and proves impractical in a number of situations where

space is at a premium and the added bulk can be a hinder. The shortcomings of the

passive noise reduction methods have given impetus to the research and

applications using alternate methods of controlling noise in the environment.

Various signal processing techniques have been proposed over the years for noise

reduction in the environment. The explosive growth of digital processing

algorithms and technologies has resulted in an opportunity to implement active

noise controlling techniques in real applications. Digital Signal Processors (DSP)

have shrunk tremendously in size while their processing capabilities have grown

exponentially. At the same time the power consumption of these DSPs has steadily

 6

decreased following the path laid down by Gene’s law. This has enabled the use of

DSPs in a variety of portable hearing enhancement devices such as hearing aids,

headsets, hearing protectors, etcetera.

There are two different approaches for noise reduction. The first approach is

passive noise reduction techniques. Passive techniques can be found in hearing

aids, cochlear implants etcetera and uses a microphone to record exterior sound.

The recorded sound is processed using signal processing techniques and a clean

restored signal is output through a loudspeaker to the listener. One of the

important assumptions of this technique is that the listener is acoustically isolated

from the environment. This assumption is however not valid in a large number of

situations particularly those where the ambient noise has a very large amplitude. In

such situations, the second approach of Active Noise Cancellation (ANC) is

applicable. ANC refers to an active electromechanical or electro acoustic

technique of canceling acoustic disturbance by emitting controlled sounds to yield

a quieter environment. The basic principle of ANC is to introduce a canceling

“anti-noise” signal that has the same amplitude but the exact opposite phase of the

disturbance, thus resulting in an attenuated residual noise signal. ANC has been

used in a number of applications such as hearing protectors, headsets, etcetera.

The traditional wideband ANC algorithms work best in the lower frequency bands

but when lager filter lengths are used, the algorithm may not converge desirably

fast. Further, as the ANC system is combined with other communication and

sound systems, it is necessary to have a frequency dependent noise cancellation

system to avoid adversely affecting the desired signal.

 7

1.1 Why we used fixed point processor?

This section will discuss the advantages and disadvantages of fixed point

processors when compared with floating point processors.

1) First, the integer number representation format is straightforward in that it

represents integer numbers from 0 up to the largest whole number that can be

represented with the available number of bits. What you refer to is fractional

representation commonly used in fixed point arithmetics, there you may represent

numbers between -1 and 1 with a 'binary point' assumed to lie just after the most

significant bit. The most significant bit in both cases carries the sign of the

number.

• The size of the fraction represented by the smallest bit is the precision of

the fixed point format.

• The size of the largest number that can be represented in the available word

length is the dynamic range of the fixed point format

Floating point format has the remarkable property of automatically scaling all

numbers by moving, and keeping track of, the binary point so that all numbers use

the full word length available but never overflow. Floating point numbers have

two parts: the mantissa and the exponent. The mantissa is similar to the fixed

point part of the number, and an exponent which is used to keep track of how the

binary point is shifted. Every number is scaled by the floating point hardware:

• If a number becomes too large for the available word length, the hardware

automatically scales it down, by shifting it to the right

• If a number is small, the hardware automatically scale it up, in order to use

the full available word length of the mantissa

In both cases the exponent is used to count how many times the number has been

shifted. In floating point numbers the binary point comes after the second most

significant bit in the mantissa.

 8

Secondly, coding is time consuming and difficult in fixed point processors due to

eventual scaling to prevent arithmetic over flow when compared with floating

point processors.

3) Finally, fixed point processors have a majority of market shares as opposed to

floating point processors. Mainly due to their power efficiency and price

awareness as is very important in many industrial applications. Floating point

processors have most of their applications in scientific and research purposes but

some industries use floating point applications as well.

This thesis has three major implementation parts:

1. Implementation of a fixed point and a floating point arithmetic on a

personal computer using matlab software.

2. Implementation of a fixed point arithmetic active noise canceller on a

personal computer using c programming.

3. Implementation of fixed point arithmetic active noise canceller in real time

on a digital signal processor.

The outline of the thesis is as fallows:-

Chapter two describes the actual problem and a suitable algorithm to implement it.

Chapter three summarizes fixed point arithmetic. Chapter four discusses real time

implementation on a fixed point processor. Chapter five discusses evaluation and

results and chapter six gives an introduction to further research.

 9

CHAPTER 2

PROBLEM FORMULATION

ANC traditionally involves passive methods such as enclosures, barriers and

silencers to attenuate noise. These techniques use either the concept of impedence

change or the energy loss due to sound absorbing materials. These methods are

however not effective for low frequency noise. A technique to overcome this

problem is ANC, which is sound field modification by electracoustic means. ANC

is an electro-acoustic system that cancels the primary unwanted noise by

introducing a canceling “antinoise” of equal amplitude but opposite phase, thus

resulting in an attenuated residual noise signal as shown in Figure 2.1.

Figure 2.1 Wave fields in Active Noise Control, Primary noise waveform

(upper), secondary noise waveform (middle) and residual noise waveform (lower).

Adaptive algorithms can be used in active noise control applications. It

continuously adjusts its coefficients such that an estimate of the noise is produced

and cancels the unwanted noise.

 10

Adaptive filters are normally defined for problems such as electrical noise

canceling where the filter output is an estimate of a desired signal. In control

applications, however, the adaptive filter works as a controller controlling a

dynamic system containing actuators and amplifiers etcetera. The estimate (anti-

vibrations or anti-sound) in this case can thus be seen as the output signal from a

dynamic system, i.e. a forward path. Since there is a dynamic system between the

filter output and the estimate, the selection of adaptive filter algorithms must be

made with care. A conventional adaptive algorithm such as the LMS algorithm is

likely to be unstable in this application due to the phase shift (delay) introduced by

the forward path. The well-known filtered-XLMS (FXLMS) algorithm is,

however, an adaptive filter algorithm which is suitable for active control

applications. The forward path is estimated by using system identification and

with the results of the system identification, primary channel is estimated by using

FXLMS adaptation. FXLMS algorithm is developed from the LMS algorithm,

where an estimate of the forward path is introduced in the filter coefficient

adaptation. The forward path is the dynamical system from the output of the filter

to the error. That means a forward path is introduced between the input signal and

the algorithm for the adaptation of the coefficient vector. Figure 2.2 shows an

adaptive filter with a forward path introduced.
 d(n)

x(n) y(n) e(n)

 Adaptive filter Forward path

Figure 2.2 Active noise control system with an additional forward path

FIR filter
w(n)

C(w)
Σ

 11

A digital ANC employing the FXLMS can use Finite Impulse Response (FIR)

filters in the adaptive filter and the forward path estimate. The Finite Response

Filter (FIR) output is given by the vector inner product according to

 () (). ()Ty n W n X n= (2.1)
where

 () [(), (1),..., (1)]TX n x n x n x n M= − − + (2.2)
is the input signal vector to the adaptive filter and

 0 1 1() [(), (),...... ()]T
MW n w n w n w n−= (2.3)

is the adjustable filter coefficient vector. In control applications, the estimation

error e(n) is defined as the difference between the desired signal (desired response)

d(n) and the output signal from the forward path or plant under control, according

to () () ()ce n d n y n= − (2.4)

Assuming that the forward path estimate can be expressed by an Ith order FIR

filter according to

 nc when {0,..., 1}n I∈ −

 ()ch n = (2.5)

 0 otherwise.

it follows that the estimation error e(n) can be expressed as

(2.6)

The Wiener (Minimum Mean Square Error) solution of the coefficient vector is

obtained by minimizing the quadratic function

2() [()]J n E e n= (2.7)

1 1

0 0

() () () ()
I M

i m
i m

e n d n c w n i x n i m
− −

= =

= − − − −∑ ∑

 12

and this can be carried out by using the gradient vector of the mean square error

(2.8)
By taking advantage that the desired signal d(n) is independent of the filter

coefficients, the gradient vector of the estimated error can be expressed as

1

0
()

I

i
i

c x n i
−

=

− −∑

 () ()w n e n∇ = . (2.9)
.

1

0
(1)

I

i
i

c x n i M
−

=

− − − +∑

By inserting this expression in Eq. 2.8, following relation can be obtained for the

gradient vector of the mean square error

. w(n) () 2 [() ()]f CJ n E e n X n∇ = − (2.9.1)

where ()cx n is given by

1

0
()

I

i
i

c x n i
−

=

−∑

1

0
(1)

I

i
i

c x n i
−

=

− −∑

 ()cx n = . (2.10)
 .

1

0
(1)

I

i
i

c x n i M
−

=

− − +∑

() ()() 2 [() ()]w n w nJ n E e n e n∇ = ∇

1

0
(1)

I

i
i

c x n i
−

=

− − −∑

 13

In other words, an LMS algorithm with a gradient estimate as in

(2.11)

would solve the problem of producing an estimate via a dynamic system. From

this it follows that the conventional LMS algorithm is likely to be unstable in

control applications. The conventional LMS algorithm will in some cases also find

a poor solution when it converges. This can be explained by the fact that the LMS

algorithm uses a gradient estimate x(n)e(n) which is not correct in the mean.

A compensated algorithm is obtained by filtering the reference signal to the

coefficient adjustment algorithm using a model of the forward path as illustrated in

Fig. 2.2. The algorithm obtained is the well-known filtered-x LMS algorithm

defined by Eq. 2.4:

Figure 2.3: Active control system with a controller based on the filtered-x LMS-
algorithm[5].

() () 2 () ()w n cJ n e n x n∇ = −

 14

The filter update coefficient is

(2.12)

Here
*

ic is the coefficient of an estimated FIR filter model of the forward path:

It is in practice customary to use an estimate of the impulse response for the

forward path. As a result, the reference signal * ()Cx n will be an approximation,

and differences between the estimate of the forward path and the true forward path

influence both the stability properties and the convergence rate of the FXLMS

algorithm. However, the algorithm is robust to errors in the estimate of the

forward path. The model used should introduce a time delay corresponding to the

forward path at the dominating frequencies. In the case of narrow-band reference

signals to the algorithm, e.g. sin(w0t), the algorithm will converge with phase

errors in the estimate of the forward path with up to ±90, provided that the step

length µ is sufficiently small. Furthermore, phase errors in the estimate of the

forward path smaller than ±45 will have only a minor influence on the algorithm

convergence rate.

The FXLMS algorithm relies principally on the assumption that the adaptive FIR

filter and the forward path “commute”. This is approximately true if the adaptive

filter varies in a time scale which is slow in comparison with the time constant for

the impulse response of the forward path. This expression can be written as

follows:
1 1 1 1

0 0 0 0

() () () ()
I M M I

i m m i
i m m i

c w n i x n i m w n c x n m i
− − − −

= = = =

− − − ≈ − −∑ ∑ ∑ ∑ (2.13)

where

*(1) () () ()Cw n w n x n e nµ+ = +

() (), {1, 2,..., 1}w n w n i i I≈ − ∈ − (2.14)

 15

where I is the length of the impulse response of the forward path. In practice, the

FXLMS algorithm exhibits stable behavior even when the coefficients change

within the time scale associated with the dynamic response of the forward path . In

order to ensure that the action of an LMS algorithm is stable the maximum value

for the step length µ should be given approximately by:

(2.15)

However, in the case of the FXLMS algorithm, Elliot et al[10]. have found that the

maximum step length µ not only depends on the length of the adaptive filter and

the variance of the filtered reference signal but also on the delays in the forward

path C. If the reference signal * ()Cx n is a white noise process it has thus been

found that an upper limit for the step length µ is given by

(2.16)

where δ is the overall delay in the forward path (in samples). In the case of a

non-white reference signal Elliot et al,[10] suggest that
max

1
µ

is proportional to

1.2M and not 0.5M .The probable explanation is that the covariance matrix for the

reference signal will have a poor conditioning .

This broadband ANC system utilizes two main structures. First, an adaptive

system identification framework is used to estimate the forward path as shown in

fig.2.4. The estimated forward path coefficients are stored in memory and used in

the later FXLMS adaptation for noise cancellation. That is, the algorithm requires

certain knowledge of the forward path before being able to actively cancel noise.

 Essentially, an adaptive filter W(z) is used to estimate an unknown plant C(z)

which consists of the acoustic response from the reference sensor to the error

2

2
[()]ME x n

µ <

*
m a x 2

2
[()] ()

C
E x n M

µ
δ

≈
+

 16

sensor. The objective of the adaptive filter W(z) is to minimize the residual error

signal e(n). However, the main difference from the traditional system

identification scheme is the use of an acoustic summing junction instead of the

subtraction of electrical signals.

 e(n)

 x(n)
 y(n)

Fig2.4 . Reference framework for systemidentification using an adaptive filter.

In system identification, a random white noise can be generated in the loud

speakers of the hearing defenders where the x(n) is the signal from the speakers of

the head phones and d(n) is the signal taken from the error microphone. Both x(n)

and d(n) signals are given as the inputs to the LMS algorithm. The LMS algorithm

steers filter coefficients such that the estimate of the forward path is obtained.

Hence, an estimate of the forward path is obtained, C*(z), and can be used in

FXLMS adaptation.

The introduction of the secondary path transfer function in a system using the

standard LMS algorithm leads to instability. This is because, it is impossible to

compensate for the inherent delay due to C(z) if the primary path P(z) does not

contain a delay of equal length. Also, a very large FIR filter would be required to

C(z)

W(z)

LMS

Σ
e(n)

d(n)

 17

effectively model 1/C(z). This can be solved by placing an identical filter in the

reference signal path to the weight update of the LMS equation. This is known as

the filtered-X LMS algorithm. The block diagram of an ANC system using the

FXLMS algorithm is shown in Figure 2.5

Figure 2.5 Schematic diagram of ANC system using FXLMS algorithm

 18

CHAPTER 3

FIXED POINT ARITHMETIC

3.1 Fixed Point Representation

Given that there are processors that do not support floating point numbers, how

can a fraction number 0.5 can be represented? This is where fixed point math

comes into play. As the name implies, a fixed point number places the "decimal"

point between the whole and fractional parts of a number at a fixed location,

providing f bits of fractional precision. For example, an 8.24 fixed point number

has an eight bit integer portion and twenty four bits of fractional precision. Since

the split between the whole and fractional portion is fixed, it is known exactly

what the range and precision will be.

Using a 16.16 fixed point format (which, handily enough, fits in 32-bit integer),

the high 16-bits represent the whole part, and the low 16-bits represent the

fractional portion, according to the hexadecimal number

0xWWWWFFFF

With 16-bits in the whole part, it can be represented 216 (65536) discrete values (0-

65535 unsigned or -32768 to +32767 signed). The fractional part gives us, 216

steps to represent the values from 0 to 65535/65536 or approximately 0.99999.

Our fractional resolution is 1/65536, or about 0.000015

The 16.16 fixed point value in hexa decimal format is 0x00104ACF i.e.

approximately equals the decimal value 16.29222. The high sixteen bits are

0x0010 (16 decimal) and the low 16-bits are 0x4ACF(19151), so 19151/65536.0

 19

~= 0.29222. The simple method to convert from a fixed point value of f fractional

bits is to divide by 2f so:

However, certain care must be exercised if integers are stored in 2's complement

form. The value decimal value -16.29222 corresponds to a hexa decimal value is

0xFFEFB531, notice that the fractional bits (0xB531) are not the same as for the

positive value. So, it is not possible to just mask the fractional bits directly, sign

matters.

3.2 Two Complement Summary

Fundamentally 2's complement solves the problem of representing negative

numbers in binary form. Given a 32-bit integer, how negative numbers can be

represented?

The obvious method is to incorporate a sign bit, which is precisely what floating

point numbers in IEEE-754 format do. This signed magnitude form reserves one

bit to represent positive/negative, and the rest of the bits represent the number's

magnitude. Unfortunately there are a couple problems with this.

1. The value of zero has two representations, positive (0x00000000) and

negative (0x80000000), making comparisons cumbersome. It's also

wasteful since two bit configurations represent the same value.

2. Adding a positive integer to a negative integer requires logic. For example,

-1 (0x80000001 in 32-bit sign magnitude form) summed with +1

(0x00000001 in 32-bit sign magnitude form) yields 0x8002, or -2 in 16-bit

sign-bit form..

 20

Researchers came up with a much better system for number representation called

2's complement arithmetic. In this system positive numbers are represented as

usual, how ever negative numbers are represented by their complement, plus one.

This requires taking all bits in the positive representation, reversing them, then

adding one.

So to encode the decimal value -1, its positive hexadecimal representation

0x00000001 is inverted (complemented) to 0xFFFFFFFE and added by one to

give us 0xFFFFFFFF, which may be recognized as the two-complements form of

the decimal value -1.

3.3 Dynamic Range and Precision

Different operations often require different amounts of range and precision. A

format like 16.16 is in general sufficient, but depending on the specific problem,

highly precise formats such as 2.30, or longer range formats such as 28.4 are

needed. For example, the sine function only returns values in the range -1.0 to

+1.0, so representing sine values with a 16.16 is wasteful since 15-bits of the

integer component will always be zero. Not only is that, but the difference

between sine(90*π/180) and sine(89.9*π/180) a very small number,

~.0000015230867, which our 16-bits of fractional precision cannot represent

accurately. In this particular case, 2.30 format would be more suitable.

This brings to light a serious problem with fixed point; overflow of underflow can

occur without expecting it, especially when dealing with sums-of-products or

power series. This is one of the most common sources of errors when working on

a fixed point code base.

A very common case is vector normalization, which has a sum-of-products during

the vector length calculation. Normalizing a vector consists of dividing each of the

 21

vector's elements by the length of the vector. The length of a vector v=(vx vy vz)T

is: 2 x x y y z zv v v v v v v= + + (3.1)

This is why choosing the range and precision is very important and putting in a lot

of range and overflow sanity checks is extremely important if robust software is

needed.

3.4 Conversion

A fixed point value can be derived from a floating point value by multiplying by

2^f (it means it will be raised to f and after that it will be truncated). A fixed point

value is generated from an integer value by shifting left f bits:

F = [r * 2^f] where [] corresponds to truncation

r ~= F/2^f

(3.1)

• F = fixed point value

• I = integer value

• r = floating point value

• f = number of fractional bits for F

Converting back to floating point is trivial – just perform the reverse of the float-

to-fixed conversion:

(3.2)

 22

However, converting to an integer is a bit trickier due to rounding rules and the 2's

complement encoding. In the world of floating point there are four common

methods for converting a floating point value to an integer:

1. round-towards-zero

2. round-towards-positive-infinity

3. round-towards-negative-infinity

4. round-to-nearest

3.5 Numerical Operations

Multiplication and division are most prominent in Numerical operations of fixed

point arithmatics.

3.5.1 Scalar Multiplication

Consider the scalar multiplication

α⋅= xy ,

where x is an integer value and the constant α is an arbitrary floating point value.

Depending on the constant, α , the output, y, does not necessary has to be an

integer value, but instead a floating point. This operation can be approximated in

fixed point, two cases exists:

 23

CASE I

The first case is valid for, 5.0≤α .

 16

16

2

2

−⋅=
⋅=

⋅=

zy
Axz

A α

.

CASE II

The second case is valid for, 5.0>α

 p

p

zy
Axz

A

−⋅=
⋅=

⋅=

2

2α

where p should be selected such that
p2⋅α is as close as possible to 215, although

not exceeding 215. Note that shifts other than p=8 and p=16 can be costly in terms

of number of instructions required. Hence, it is wise to optimize the

implementation such that it is possible to use either p=8 or p=16.

3.5.2 Finite Impulse Response Filters

Assume a Finite Impulse Response (FIR) filter is to be implemented according to

(3.9)

where hk are the filter coefficients and x(n) is the input signal. Directly

implementing the FIR filter is often not possible since the coefficients are likely

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

() ()∑
−

=

−⋅=
1

0

L

k
k knxhny

 24

floating point values. However, using the Case-I-reformulation under the Section

“Scalar Multiplication”, it can be derived that

() ()

() 16

1

0

16

2)(

2

−

−

=

⋅=

−⋅=

⋅=

∑
nzny

knxHnz

hH
L

k
k

kk

.

This operation is allowed if the filter coefficients are fulfilling the

requirement 5.0≤kh .

3.5.3 Recursive Filters

A recursive filter, often denoted Infinite Impulse Response (IIR), can be

implemented on fixed point, but it requires some more attention than the FIR

filters do. Example of a problem in recursive filtering is limit cycle oscillations.

There are two ways of circumventing the problems of fixed point recursive filters:

1) use high enough multiplier, 2) feed forward of the remainder. For the

discussion, consider the following first order Auto Regressive Moving Average

(ARMA) process

 (3.13)

where α and β are the process coefficients. For simplicity it can be assumed that

5.0≤α and 5.0≤β .

(3.10)

(3.11)

(3.12)

() () ()nxnyny ⋅+−⋅= βα 1

 25

CASE I

()
() () 16

16

16

2
)()1(

2
2

−⋅=

⋅+−⋅=
⋅=

⋅=

nzny
nxBnyAnz

B
A

β
α

.

CASE II

() ()
() ()
() () () 16

16

16

16

2
2

1)()1(
2

2

⋅−=

⋅=
−+⋅+−⋅=

⋅=

⋅=

−

nynznR
nzny

nRnxBnyAnz
B

A

β
α

.

Where R(n) is the remainder.

Note that for the second case, care must be taken such that the remainder does not

suffer from sign sensitivity. The second case is much more robust than the first

case, but it requires some more instructions and memory storage (the remainder).

3.5.4 Division

Division is similar to multiplication. Consider the following example. Take 2.0

and 1.0 again in 16.16 fixed point form: 0x20000 and 0x10000. If the former is

divided by the latter, the resulting value will be 2. Not 0x20000. Which is correct,

granted, but it is not in a 16.16 output form. The result is taken and shifted back by

the number of bits that are needed, needed. However, shifting after the integer

division means that a lost in precision is achieved. But...that's wrong, since

shifting after the integer divide means losing precision before the shift. In other

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

 26

words, if A=0x10000 and B=0x20000 The final result would be 0, instead of

0x8000 (0x8000 = 0.5 in 16.16 fixed point, since 0x8000/65536.0 = 0.5). But if

shift is performed integer division, it can be managed to retain our precision and

also have a properly scaled result.

But it is assumed that A and B are of the same fractional precision. Consider the

folowinng formulation of division

What this says is two fixed point numbers are taken of m and n fractional bits, and

were divided, the quotient will be a value with m-n fractional bits. With the

previous example of 16.16 divided by a 16.16, that means 0 fractional bits. If f

fractional bits are expected, the numerator must be scaled by 2^f-(m-n). Ths

means, the numerator is scaled before the division operation is done. So the final

equation looks like:

(3.24)

Order of operations matters, so actual evaluation would use the middle form,

where the numerator is fully expanded before division. The far right form is just to

show what the final result will look like.

Overflow is still a concern, so make sure that adjustment is done before the

division to avoid rounding errors. Unfortunately, for example, a 16.16 divided by a

16.16 needs to be prescaled by 2^16, it is a guaranteed overflow. Again, modern

CPUs can come to the rescue, this time by providing 64-bit / 32-bit division

operations.

(3.23)

 27

CHAPTER 4

REAL TIME IMPLEMENTATION

4.1 ADUC 7026 processor

The ADuC7026 are fully integrated, 1 MSPS, 12-bit data acquisition systems

incorporating high performance multichannel Analog to Digital Converters

(ADC), 16-bit/32-bit MCUs and Flash/EE memory on a single chip.

The ADC consists of up to 12 single-ended inputs. An additional four inputs are

available but are multiplexed with the four Digital to Analog Converter (DAC)

output pins. The four DAC outputs are only available on certain models e.g

ADuC7026. However, in many cases where the DAC is not present, this pin can

still be used as an additional ADC input, giving a maximum of 16 ADC input

channels. The ADC can operate in single-ended or differential input modes. The

ADC input voltage is 0 to VREF.

Low-drift bandgap reference, temperature sensor, and voltage comparator

complete the ADC peripheral set. The ADuC7026 also integrate four buffered

voltage output DACs on-chip. The DAC output range is programmable to one of

three voltage ranges.

The devices operate from an on-chip oscillator and a PLL generating an internal

high frequency clock of 45MHz. This clock is routed through a programmable

clock divider from which the MCU core clock operating frequency is generated.

The microcontroller core is an ARM7TDMI, 16-bit/32-bit RISC machine, which

offers up to 45 MIPS peak performance. Eight kilobytes of SRAM and 62

kilobytes of nonvolatile Flash/EE memory are provided on-chip. The ARM7TDMI

core views all memory and registers as a single linear array. On-chip factory

firmware supports in-circuit serial download via the UART or I2C serial interface

 28

ports, while no intrusive emulation is also supported via the JTAG interface. These

features are incorporated into a low-cost QuickStart™ Development System

supporting this MicroConverter® family.

The parts operate from 2.7 V to 3.6 V and are specified over an industrial

temperature range of −40°C to +125°C. When operating at 45 MHz, the power

dissipation is typically 120 mW. The ADuC7026 are available in a variety of

memory models and packages.

4.1.2 Configuration&Features:

Analog I/O

• Multichannel, 12-bit, 1 MSPS ADC Up to 16 ADC channels

• Fully differential and single-ended modes

• 0 to VREF analog input range

• 12-bit voltage output DACs Up to 4 DAC outputs available

• On-chip voltage reference

• On-chip temperature sensor (±3°C)

• Voltage comparator

¾ Microcontroller

• ARM7TDMI core, 16-bit/32-bit RISC architecture

• JTAG port supports code download and debug

¾ Clocking options

• Trimmed on-chip oscillator (±3%)

• External watch crystal

• External clock source up to 44 MHz

• 45 MHz PLL with programmable divider

 29

¾ Memory : 62 kB flash/EE memory, 8 kB SRAM

• In-circuit download, JTAG-based debug

• Software triggered in-circuit reprogram ability

¾ On-chip peripherals

• UART, 2 × I2C® and SPI® serial I/O

• Up to 40-pin GPIO port1

• 4 × general-purpose timers

• Wake-up and watchdog timers

• Power supply monitor

• Three-phase, 16-bit PWM generator1

• Programmable logic array (PLA)

• External memory interface, up to 512 kB

¾ Power

• Specified for 3 V operation

• Active mode: 11 mA @ 5 MHz; 40 mA @ 45 MHz

¾ Packages and temperature range

• From 40-lead 6 × 6 mm LFCSP to 80-pin LQFP1

• Fully specified for –40°C to +125°C operation

¾ Tools

• Low-cost QuickStart™ development system

• Full third-party support

¾ APPLICATIONS

 30

• Industrial control and automation systems

• Smart sensors, precision instrumentation

• Base station systems, optical networking.

Functional block diagram of ADUC7026 micro controller is shown in Figure 4.1.

Figure 4.1 The functional Block diagram of ADUC 7026micro controller.

 31

4.2 Real Time ANC Implementation on a Processor

As discussed in chapter 2, in the FXLMS,a system identification is first performed

where the coefficients are stored to memory and later read back when the FXLMS

structure operates and later with those results FXLMS adaptation is implemented.

4.2.1 System identification

In system identification, the transfer function between error microphone and head

phone transducer is measured. For this purpose, a pseudo noise generator program

can be used. It generates random noise and plays it. Here in this system

identification, there is no need of noise reference microphone. So, the microphone

output is fed as input to the adaptive algorithm and hence the filter coefficients

give the transfer function. A brief idea on pseudo noise generation is discussed.

4.2.2 Pseudo noise Generator

A Pseudo-random Noise (PN) sequence is a sequence of binary numbers, e.g. ±1,

which appears to be random; but are in fact deterministic. The sequence appears to

be random in the sense that the binary values and groups or runs of the same

binary value occur in the sequence in the same proportion they would if the

sequence were being generated based on a fair "coin tossing" experiment. In the

experiment, each head could result in one binary value and a tail the other value.

The PN sequence appears to have been generated from such an experiment. A

software or hardware device designed to produce a PN sequence is called a PN

generator.

 32

Example: - A PN generator is typically made of N cascaded flip-flop circuits and a

specially selected feedback arrangement as shown below.

The flip-flop circuits when used in this way are called a shift register since each

clock pulse applied to the flip-flops causes the contents of each flip-flop to be

shifted to the right. The feedback connections provide the input to the left-most

flip-flop. With N binary stages, the largest number of different patterns the shift

register can have is 2N. However, the all-binary-zero state is not allowed because it

would cause all remaining states of the shift register and its outputs to be binary

zero. The all-binary-ones state does not cause a similar problem of repeated binary

ones provided the number of flip-flops input to the module 2 adder is even. The

period of the PN sequence is therefore 2N-1, but IS-95 introduces an extra binary

zero to achieve a period of 2N, where N equals 15.

Starting with the register in state 001 as shown, the next 7 states are 100, 010, 101,

110, 111, 011, and then 001 again and the states continue to repeat. The output

taken from the right-most flip-flop is 1001011 and then repeats. With the three

stage shift register shown, the period is 23 -1 or 7.

The PN sequence in general has 2N/2 binary ones and [2N/2]-1 binary zeros. As an

example, note that the PN sequence 1001011 of period 23-1 contains 4 binary ones

and 3 binary zeros. Furthermore, the numbers of times the binary ones and zeros

repeat in groups or runs also appear in the same proportion they would if the PN

sequence were actually generated by a coin tossing experiment.

 33

The flip-flops which should be tapped-off and fed into the module 2 adder are

determined by an advanced algebra which has identified certain binary

polynomials called primitive irreducible or un-factorable polynomials. Such

polynomials are used to specify the feedback taps. For example, IS-95 specifies

the in-phase PN generator shall be built based on the characteristic polynomial

PI(x) = x15 + x13 + x9 + x8 + x7 + x5 + 1 (1) (4.2.1)

Now visualize a 15 stage shift register with the right-most stage numbered zero

and the successive stages to the left numbered 1, 2, 3 etcetera., until the left-most

stage is numbered 14. Then the exponents less than 15 in Eq. (1) tell that stages 0,

5, 7, 8, 9, and 13 should be tapped and summed in a module 2 adder. The output of

the adder is then input to the left-most stage. The shift register PN sequence

generator is illustrated in the figure 4.2.

Fugure

4.2.3 FXLMS adaptation

After the transfer function between the error microphone and the head phone

transducer is estimated and it can be used in FXLMS adaptation. In FXLMS

adaptation the noise reference microphone is used. An external low frequency

noise is played and the noise microphone and the error microphone records it.

Then the two responses are fed input to the adaptive filter such that an anti noise is

produced in head phone transducer and cancels the noise.

Figure 4.2 Shift register PN sequence generator

 34

4.2.4Experiment details

Before conducting the experiment the following details should be observed:

1) Amplitude levels should be checked before conducting the experiment real

time. If the high amplitude level is more, it may lead to the breakage of

DSP.

2) The volume of the amplifier of micro phone should not be changed while

carrying out the experiment. If the volume is changed or the gap between

the error microphone and head phone transducer is disturbed, the transfer

function varies and system identification has to be repeated.

3) The project was done on evaluated version of ADUC 7026 micro

controller. So some problems are experienced while loading the program

into the flash memory of the chip. So press reset and serial port buttons

such that the light of the reset button will be turned off. Then ¨the program

can be loaded into the flash memory. Other wise it will lead to the JITAG

failure.

4) Also, care must be exercised to not violate the sample cycle time as the

clock speed is limited for 44.1 MHz.

 35

CHAPTER 5

EVALUATION AND RESULTS
Evaluation in this project will give a clear idea on the suitable and maximum

permissible filter lengths and step lengths on matlab fixed, floating point and on a

C language. If the suitable filter lengths and step lengths are used, the better Signal

to Noise Ratio (SNR) results can be obtained.

5.1 Evaluation

The thesis is done both in simulation and real time implementation. The

simulation is done in matlab and DEV C++ and the real time implementation is

done by using KEIL code composer interface. After getting the results and

convergence of the algorithm, plots are made. These plots are compared with the

variation of filter lengths and variation of step lengths and minimum possible filter

lengths and step lengths are measured. Then it concludes the simulation part. After

simulation, this algorithm is implemented on a real time processor.

Two real time signals are needed for this simulation part.

• The transfer function between speaker to the micro phone is illustrated in

Fig 5.1.

Figure 5.1 Adaptive noise cancellation head phones

 36

• The transfer function between error microphone and head phone transducer

are computed by
()

()
()

xy

xx

P w
H w

P w
=

where the spectral power density of the output signal and the spectral power

density of the input power signal are computed. By using the Eq 5.1, transfer

function of a channel can be calculated.

0 50 100 150 200 250 300
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

no of samples

am
pl

itu
de

 o
f

th
e

si
gn

al

Figure 5.2 Measured response taken from reference microphone to error sensor

In Fig 5.3 a typical impulse response function between the head phone transducer
and the error microphone is illustrated.

5.1

 37

0 50 100 150 200 250 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

no of samples

am
pl

itu
de

 o
f

th
e

si
gn

al

5.2 Results

After getting these responses, H(w) and C(w) filters the random signal and taken

as the signals d(n) and x(n). So the input signals are ready for the adaptive

filtering. Now the signals are passed to the adaptive filtering sample by sample

and LMS algorithm is implemented to it in matlab fixed point, matlab floating

point and c fixed point.

After getting the results, the last 1000 samples are taken and Mean Square Error

(MSE) is calculated for those thousand samples and the graphs are compared in

Figure 5.4. This graph is plotted with the variation of steplength on X axis and

error mean square on Y axis in C fixed point. The different colors show the

Figure 5.3 Measured response from head phone transducer to error microphone

 38

variation of different filter lengths. From the graph it is clear that the minimum

step length can be used as 26. At steplength 26, it has minimum MSE value.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

8

Variation of step length on X axis

M
ea

n
sq

ua
re

 e
rr

or

Min filter length

Med filter length

Max filter length

Figure 5.4 Mean square error for a C fixed point implementation as a function of
various step length and different filter lengths: Minimum filter length (blue),
medium filter length (red), maximum filter length (green)

 39

The results are plotted now in matlab fixed point with the same dimensions ie.

Variation of steplength on X axis and variation of emeansquare on Y axis. The

different colours show the variation of filterlengths.

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8
x 10

8 matlab fixed point

Variation of step length

m
ea

ns
qu

ar
e

er
ro

r

Min filter length

Med filter length

Max filter length

Figure 5.5 Mean square error for a Matlab fixed point implementation as a

function of various step length and different filter lengths: Minimum filter length
(blue), medium filter length (red), maximum filter length (green)

In this graph even, the min steplength is found to be 26 and the permissible

steplengths for most cases is from 26 to 100.

From these cases, matlab fixed point. C fixed point, it can be noticed that the min

step length is same for matlab fixed point and c fixed point subjected that the same

input signal is used for both the cases.

 40

Next coming to matlab floating point, it varies a bit. Matlab floating point with the

same dimensions. ie. Variation of steplength on X axis and variation of

emeansquare on Y axis. The different colours show the variation of filterlengths.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

variation of filter lengths

m
ea

n
sq

ua
re

 e
rr

or

Matlab floating point

Min step length

Med step length
Max step length

Figure 5.6 Mean square error for a Matlab floating point implementation as a
function of various step length and different filter lengths: Minimum filter length
(blue), medium filter length (red), maximum filter length (green)

Here the min steplength is found to be 60. This variation is because, in the fixed

point it truncates the decimal point and where as in floating point it considers

them. The permissible values are from 60 to 250. The different colors represent

the different filter lengths. If the values in the MSE are noticed, it can be found

maximum values in fixed point than in floating point.

 41

Till now, the variation of steplengths and its effect on meansquare error are

discussed. Now, variation of filterlengths and its effect on mean square error will

be discussed. Now it is the turn to vary filter lengths and observe the plots for c

fixed point as shown in figure 5.7. The minimum filter length is found to be 196

and the permissible range for filter lengths is found to be 96 to 200. So at filter

length 196, it has min MSE value. As it is well known that as the filter length

increases, the MSE value should decrease. But here in this case, it increases

drastically. So those values have been truncated and zeros are kept instead. This is

happening because simultaneously, step length values are increasing.

2
(1). (0)xxp R

µ =
+

So as the filter length and steplength values increases which are inversely

proportional to each other, the resulting mean square error will increase.

(5.2)

 42

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

8

Variation of filter length

M
ea

n
sq

ua
re

 e
rr

or

Min step length

Med step length

Max step length

Figure 5.7 Mean square error for a C fixed point implementation as a function of

various filter length and different step lengths: Minimum step length (blue),
medium step length (red), maximum step length (green)

Plot for matlab fixed point is plotted with the same dimensions i.e variation of

filterlengths on x axis, emeansquare on y axis and variation of step lengths on z

axis. Here the color lines mean the variation of steplengths. The min emeansquare

value is found at 196 filterlength and max permissible range is from 96 to 208.

 43

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

8 matlab fixed point

Variation of filter lengths

em
ea

ns
qu

ar
e

Min step length

Med steplength

Max steplength

Figure 5.8 Mean square error for a Matlab fixed point implementation as a

function of various filter length and different step lengths: Minimum step length

(blue), medium step length (red), maximum step length (green)

Matlab and C language almost have the same numerical precision in fixed point.

So it will have the same values for fixed point. These curves are meant to get an

idea for which values the algorithm converges better.

In the formula

2
(1). (0)xxp R

µ =
+

µ Is steplength, P is filterlength

Rxx is autocorrelation matrix of the input signal.

(5.3)

 44

Now, it is turn to have a look for Matlab floating point. The graph is plotted with
the same dimensions as in the previous cases. Here, the MSE is less when
compared to previous cases.

10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

variation of filter lengths

m
ea

n
sq

ua
re

 e
rr

or

plot of variation of different filterlengths on Z axis,emansquare on y axis and steplengths on Xaxis

Min step length

Med. steplength
Max steplength

Figure 5.9 Mean square error for a Matlab floating point implementation as a
function of various filter length and different step lengths: Minimum step length

(blue), medium step length (red), maximum step length (green)

 45

.

The figure 5.10 is the graph plotted taking variation of filter length on x axis,

variation on steplengths on z axis and mean square error on y axis in c fixed point.

0
50

100
150

200
250

0

200

400

600

800
0

1

2

3

4

5

6

7

8

x 10
8

variation of filterlengthvariation of steplength

em
ea

ns
qu

ar
e

in
 d

b

Figure 5.10 Mean square error for a Cfixed point implementation as a function of

various filter length and different step lengths.

As the filter length increases, error mean square decreases. Hence it can be

concluded that it is beneficial to have more filter taps to have a better attenuation

of noise. But the filter length should be as small as possible to have a better

convergence. So the selection of steplength is a tradeoff between fast convergence

rate and high noise attenuation.

 46

In Fig. 5.11 the graph is plotted taking variation of filter length on x axis, variation

on steplengths on z axis and mean square error on y axis in matlab fixed point.

0

50

100

150

200

250

0

200

400

600

800
0

2

4

6

8

x 10
8

variation of filterlengthvariation of steplength

em
ea

ns
qu

ar
e

in
 d

b

Figure 5.11 Mean square error for a Matlab fixed point implementation as

a function of various filter length and different step lengths

 47

Fig 5.12 is the graph plotted taking variation of filter length on x axis, variation on

steplengths on z axis and meansquare error on y axis in matlab floating point.

0
50

100
150

200
250

300

0

50

100

150
0

0.5

1

1.5

2

x 10
8

variation of filterlengthvariation of steplengths

er
ro

rm
ea

ns
qu

ar
e

Figure 5.12 Mean square error for a Matlab floating point implementation as
a function of various filter length and different step lengths.

 48

Exponentially averaged error envelop is taken with 1 ms time constant and with

suitable min. steplength and filterlength values from the learning curves for system

identification. The exponentially averaged error envelop is presented in fig 5.13

Figure 5.13 Comparision of averaged errorenvelop of floating and fixed point in

system identification with min. filterlength of 32 taps for different
implementations: Matlab fixed point (blue), maltab floating point (red), C fixed

point (green)
From the Figure 5.13, it can be observed that

• The matlab floating and fixed points have a small variation. This is due to

the fixing of the value in fixed point.

• The c fixed point varies with the other ones. This is because of the

numerical precision and more over c has the integer number format values

that is limited between -32,768 and +32,767 where as matlab has no such

restrictions.

 49

Now By using the C(w) channel from system identification, those values are

substituted in fxlms adaptation part to get the final attenuation of noise. In fig 5.14

is the learning curve of FXLMS adaptation for c and matlab fixed and floating

points.

0 1 2 3 4 5 6 7 8

x 10
4

10

20

30

40

50

60

70

80

90

100

no. of samples

sm
oo

th
ne

dm
ea

ns
qu

ar
ee

rr
or

 in
 d

b

matlab fixed point
c fixed point
matlab floating point

Figure 5.14 Comparision of smoothned error of floating and fixed point in FXLMS

adaptation by taking min. filterlength and min. steplengthfor different

implementations: Matlab fixed point (blue), maltab floating point (red), C fixed

point (green).

The fallowing observations can be noticed from the figure 5.14

• The attenuation in the three lines differs because of the numerical precision

and limitations as discussed earlier.

• In C fixed point, we have got the attenuation of noise for 13 db attenuation

and for the rest, it is 22db attenuation.

 50

If this algorithm is implemented on a real time processor, even more less

attenuation can be recorded because the electronic component noise is added to

it,which decreases SNR ratio further more.

 51

CHAPTER 6

FURTHER RESEARCH

This thesis can be further modified by the following ways.

1) First, a full band approach is used in this report. But a sub band approach can

also be implemented. In the sub band approach, the signal is divided into subbands

by using a filter bank and each subband is processed by the adaptive filter and at

last, they are again summed up. With this solution, better MSE with even less

filter taps can be achieved. The subband approach is illustrated in fig 7.1

Fig 7.1 Schematic of a sub-band approach

In the figure 7.1, the signal d(n) is filtered into n signals with a filter bank and

each filtered signal is processed by using feedback ANC and the output of the

ANC is summed up resulting the error signal e(n) and the estimate of the out put

signal y(n).

2) Till now, our approach is only a noise cancellation approach. It means only

noise can be attenuated. It has one of the applications of the hearing protectors

and active head sets. The noise cancellation with the introduction of sound can be

used in pilot head phones. The presented implementation could be modified for

that purpose.

 52

.

CHAPTER 7

 SUMMARY AND CONCLUSIONS

This thesis is successfully implemented and better knowledge is achieved on

adaptive filtering, fixed point arithmetic’s and getting better MSE in noise

reduction. Finally almost 15 db attenuation of noise in c fixed point simulation

was achieved. The MSE may be further decreased as the electronic component

noise is added to the filtering part when it is implemented real time. Some

modifications regarding sub-band approach are finally discussed.

 53

REFERENCES

1. S M Kuo and D R Morgan, Active Noise Control Systems: algorithms and

DSP implementations, John Wiley and Sons, June 1999.

2. S M Kuo and D.R.Morgan, Active Noise Control: a tutorial review,

Proceedings of the IEEE, Volume 87, Number 6, June 1999.

3. The Filtered X LMS algorithm, an article by L.Håkansson, Blekinge

institute of Technology, Sweden.

4. Statistical Digital Signal Processing and Modeling by Manson H

Hayes,Wiley, 1996.

5. Adaptive Filter theory fourth edition by Simon Haykins, Prentice-

Hall,2001.

6. Subband feed back active noise cancellation, thesis presented by Bharath

siravara in University of Texas at Dallas.

7. Introduction to fixed point math, Article found on bookofhook.com.

8. B Widrow and S D Stearns, Adaptive Signal Processing, Prentice-Hall, Inc.

Englewood Cliffs, 1985.

9. Least Mean Squares (LMS) by Bernard Widrow and Marcian Hoff

10. Active noise control. IEEE signal processing magazine, S.J. Elliott and P.A.

Nelson, pages 12–35, October 1993.

