
Master Thesis

Software Engineering

Thesis no: 1MSE:2013-01

July 2013

School of Engineering

Blekinge Institute of Technology

SE-371 79 Karlskrona

Sweden

Lean software development measures
- A systematic mapping

Markus Feyh

 ii

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in

partial fulfillment of the requirements for the degree of Master of Science in Software

Engineering. The thesis is equivalent to 10 weeks of full time studies.

Contact Information:

Author:

Markus Feyh

E-mail: marfeyh@gmail.com

University advisor:

Dr. Kai Petersen

School of Engineering

School of Engineering

Blekinge Institute of Technology

SE-371 79 Karlskrona

Sweden

Internet : www.bth.se/com

Phone : +46 455 38 50 00

Fax : +46 455 38 50 57

mailto:marfeyh@gmail.com

ABSTRACT

Context. Process improvement using lean software development uses measures to answer

information needs. Measures are important in process improvement as they identify whether

improvements have been made or further improvements are needed.

Objectives. This study aims to identify the measures proposed in literature for lean software

development and structure them according to ISO/IEC 15939.

Methods. The research methodology consists of systematic mapping and uses thematic analysis.

Results. Lean software development literature has become more frequently published from 1996

to 2013. The most common research types were evaluation research and experience reports.

Themes were identified in measures resulting in the identification of 22 base measures,

13 derived measures and 14 indicators in total. Identified measures were then structured using

a proposed meta-model adapted from ISO/IEC 15939. Using the proposed meta-model twelve

models of measures were instantiated.

Conclusions. Gaps exist in the lean principles for deferring commitment and respecting people.

Structuring measures in models presents opportunities to identify shared dependencies

in measures. Lean software development research guidelines were defined. Further research into

the comparison of indicators, the industrial use of measures and the representation of models

of measures is needed.

Keywords: lean software development, measures,

systematic mapping, metrics, indicators, ISO/IEC 15939,

measurement information model

Lean software development measures -
a systematic mapping

Markus Feyh
School of Computing

Blekinge Institute of Technology
Karlskrona, Sweden

Email: marfeyh@gmail.com

Abstract—Background: Process improvement using lean
software development uses measures to answer information
needs. Measures are important in process improvement as they
identify whether improvements have been made or further
improvements are needed.
Objective: This study aims to identify the measures proposed
in literature for lean software development and structure them
according to ISO/IEC 15939.
Method: The research methodology consists of systematic
mapping and uses thematic analysis.
Result: Lean software development literature has become more
frequently published from 1996 to 2013. The most common
research types were evaluation research and experience reports.
Themes were identified in measures resulting in the identification
of 22 base measures, 13 derived measures and 14 indicators in
total. Identified measures were then structured using a proposed
meta-model adapted from ISO/IEC 15939. Using the proposed
meta-model twelve models of measures were instantiated.
Conclusion: Gaps exist in the lean principles for deferring
commitment and respecting people. Structuring measures in
models presents opportunities to identify shared dependencies in
measures. Lean software development research guidelines were
defined. Further research into the comparison of indicators, the
industrial use of measures and the representation of models of
measures is needed.

I. INTRODUCTION

Lean software development is based on the application of
Toyota’s product development system [1] to software devel-
opment [S1]. It is considered to be agile and focused on
creating customer value [2], yet at the same time optimizing
the end to end flow of work [3]. The field of lean software
development has only recently emerged as a software process
[S2], [S3]. Furthermore, many of the processes improvements
have resulted from using lean measures [S4], [S5]. Many of
the measures found in lean software development have been
adapted from lean manufacturing. As a result, the basis for lean
software development can be traced back through lean product
development to lean manufacturing [S2]. Lean manufacturing
contrasts with lean software development in that inventory,
work-in-progress and defects are not physically visible [S2].

In the field of lean software development Poppendieck and
Poppendieck [S6] recommend to ”measure up” by focusing
on measures that optimize the whole process instead of sub-
optimizing. This is echoed in research when the flow of work,
i.e. inventory, through the value stream has been investigated

[S7]. Given leans emphasis on the end-to-end flow, an under-
standing of what measures are actually researched, presented
or used in literature within the field is important.

There is no structured mapping of lean software develop-
ment measures. Therefore, the need for a greater understanding
of measures in lean software development literature has led
to this thesis. In order to gain insight in lean measures, a
systematic mapping that explored measures of lean software
development was conducted by the author. A systematic map-
ping structures an area of research, with the aim of discovering
research gaps. As a means for structuring measures in lean
software development, ISO/IEC 15939 [4] has been used. The
specific contributions of this thesis are:

• identification of base measures, derived measures and
indicators in lean software development (see Section V),

• modelling of the relations of measures (see Figure 5),
• analysis of publication trends over time and research

types (see Section IV),
• A meta-model that is used to classify and structure

measures is adapted from ISO/IEC 15939 (see Figure 1),
• A full meta-model of the ISO/IEC 15939 measurement

information model in Appendix A,
• models of measures are instantiated from the simplified

meta-model of measures in Figures 8, 9 and Figures 12
through 20 in Appendix D,

• mapping of measures to lean principles (see Section
VII-D),

• guidelines for lean software development research in
Section VII-F

• a template for creating models of measures (see Figure
6) and its accompanying source code in Appendix C.

The paper is organized as follows. Section II discusses
the related work. Next, Section III describes the research
methodology applied. Section IV presents the publication
results and Section V identifies as well as lists lean software
development measures. The results are then synthesized in
Section VI. Finally, the findings of the paper are analysed
in Section VII and concluded in Section VIII.

II. RELATED WORK

The term “lean” originates from manufacturing where it
was interpreted by Liker in four concepts [5]. The concepts
were: philosophy, process, partnerships and problem solving.

1

Later, fourteen principles were distilled from the four concepts
by Womack et al. [6] in the context of manufacturing. The
principles defined by Womack et al. can be grouped into four
sections which are similar to the four concepts of Liker. They
are as follows:

• Long-term philosophy: Focusing on long-term value;
• Right process will produce right results: removal of waste

and focus on value;
• Value to organization by developing people: human de-

velopment, supporting the corporate identity and working
as a team as well as with suppliers;

• Solving root problems drives organizational learning:
continuous improvement based on consensus based de-
cision making where multiple options are considered.

Both Liker [5] and Womack et al. [6] used the Japanese
company Toyota as the basis for their work. In the field of
software engineering, Middleton [S3] was one of the first
researchers to publish on the application of lean manufacturing
principles. Middleton found that resource allocation, flow and
lead time improved through the use of lean. The most well-
known interpretation of lean in software development, as
provided by Poppendieck and Poppendieck [S2], which is also
based on lean manufacturing literature. They proposed lean
as a way of shortening feedback loops in order to prevent
delays and defects. Based on their writing on lean software
development, Poppendieck and Poppendieck defined seven
principles which are specifically focused on lean software
development [S6]. These can be understood as:

• Eliminate waste: is about not building the wrong product
or the product wrong and doing work in a continuous
flow.

• Build in quality: means proofing the process for mistakes
using continuous integration and zero tolerance of de-
fects.

• Create knowledge: use of quick feedback loops and
knowledge gained from failures that increases learning
in the organization.

• Defer commitment: means making decisions that will
not commit the organization until the last responsible
moment.

• Deliver fast: uses the queuing theory to manage the
workflow, which means that speed, quality and low cost
should all improve at the same time.

• Respect people: by providing them with purpose, chal-
lenges and responsibility.

• Optimize the whole: through purposefully thinking in
sustainable ways that focuses on long term solutions and
focusing on the whole in order to avoid sub-optimization.

An approach to lean software development in practice
named Kanban was taken up by Anderson [S8]. Kanban
consists of a kanban pull system, visualization of work and
seeks to create a sustainable flow of work. The kanban pull
system represents work items as cards that are added into the
work process at an agreed capacity. This limits the work in
progress (identified as inventory in this thesis), because when

capacity is reached work must be completed before more work
can be introduced.

Lean was included in a systematic literature review of
agile development [2] as a type of agile methodology. While
similar in most principles to agile software development, lean
software development is different according to [3] because
of its focus on the principle “see the whole” and a low-
dependency software architecture. The differences of lean
are important because by focusing on the whole the sub-
optimization of local processes can be avoided.

A. ISO/IEC 15939 Measurement Information Model

Using the ISO/IEC 15939 measurement information model
is important as it has been shown that using the model can lead
to a 50% faster process for measurement program planning and
a 35% smaller measurement system [7].

This thesis uses the following definitions which come from
the ISO/IEC 15939 standard:

• A measure is the variable value which the result of the
measurement is assigned to.

• An information need is the insight needed for the man-
agement of goals, risk, problems and objectives.

• An indicator is the measure typically presented to the
user and is the result of an algorithm that combines one
or more base and/or derived measures.

• A derived measure is the result of the combination of
two or more base measures.

• A base measure is the result of quantifying a single
attribute.

• Attributes are the properties of entities.
• Entities consist of either a product, process, project or

resource.
Some additional elements of the ISO/IEC 15939 measure-

ment information model that can be found in Appendix A have
been excluded, because the literature in lean software devel-
opment does not provide enough information to satisfy all of
the elements. Consequently, only the relations of the elements
defined above are represented in the simplified meta-model
shown by the author in Figure 1. As a result, the simplified
meta-model consists of the relationships between information
needs, indicators, derived measures, base measures, attributes
and entities.

III. RESEARCH METHODOLOGY

The primary research methodology used in this thesis was
systematic mapping [8]. The sources for the systematic map-
ping were then analysed using thematic analysis [9].

A. Systematic mapping

The research methodology describes the steps taken to find
relevant literature to conduct the systematic mapping as well
as the methodology for structuring measures. A systematic
mapping is “a defined method to build a classification scheme
and structure a software engineering field of interest” [8].
In contrast to systematic reviews, systematic mapping studies
are broader in scope and structure evidence according to a

2

Fig. 1. A simplified meta-model adapted from the ISO/IEC 15939 measure-
ment information model.

classification scheme. This study aims to structure the area of
lean software development measures in order to identify gaps
and areas of future research.

Overall, the search process resulted in a total of 27 literature
sources. Table I provides an overview of the number of
literature sources identified and selected in each step.

TABLE I
STUDIES IDENTIFIED AND SELECTED

Selection step Literature selected
Identified studies from database search 472
Selection by title and abstract (database) 21
Selection after full-text reading (database) 16
Identified literature after backwards snowballing 404
Selection by title (snowballing) 73
Selection by abstract (snowballing) 17
Selection after full-text reading (snowballing) 11
Final set of literature sources 27

1) Aim and research questions: In this study, the overall
aim was to structure measures from the lean software devel-
opment literature. In order to meet this aim, the following
research questions were asked:

• RQ1: Which trends can be seen in terms of the number
of publications and publication forms over time?

• RQ1.1: How were measures evaluated in terms of re-
search types (see [10])?

• RQ2: Which measures have been described for lean
software development?

2) Search strategy: The result of conducting the search
was the identification of relevant papers. The search was
made based on a search query which was used on databases
of scientific literature. The author chose the following four
electronic databases: Scopus1, ACM Digital Library2, Else-
vier/ICM3 and SpringerLink4. After conducting the search for
primary sources, the author expanded the search in order to
include sources found through backwards snowball sampling.

1http://www.scopus.com
2http://dl.acm.org/
3http://www.sciencedirect.com
4http://link.springer.com/

Scopus

ACM Digital
Library

Elsevier/ICM

SpringerLink

Search
Query

Eliminate papers based on
Title and Abstract

Eliminate duplicate papers

Apply inclusion, exclusion
criteria

Apply full text exclusion

Fig. 2. Database search strategy

Search query: In order to identify relevant studies and
make the process replicable, details of the search strategy are
documented in Figure 2. In the beginning, relevant keywords
were identified. The keywords used were synonyms for
terms used for lean software development, measures and the
research questions. Next, a search query was built based on
the identified keywords or their various forms, e.g. plurals.
The search query was piloted5 to become more inclusive and
identify more key papers. As a result, the final search query
selected was:

TITLE-ABS-KEY((lean OR kanban) AND software AND
(process OR project OR management OR development OR
engineering) AND (measur* OR metric*))

To reduce the amount of noise (i.e. irrelevant papers), the
search query was applied only to titles and abstracts. When
duplicates were found they were removed. An overview of the
search of electronic databases can be seen in Figure 2.

Backwards snowball sampling: In a second phase of search-
ing, the author examined the references of relevant literature
by using backwards snowball sampling. When searching for
literature, Kitchenham and Charters [11] recommend using
backwards snowball sampling in order to find additional
sources not discovered using the database query. Moreover,
it can be effective to identify relevant sources with less
noise [12]. The snowball sampling process consisted of the
collection of all references from the relevant literature found
using the database search query.

Selection of literature: By screening papers it allowed for
the identification of relevant literature. The screening used
inclusion and exclusion criteria to assess the literature based on
the relevance to the posed research questions. The inclusion
and exclusion criteria were applied to each source through
examination of it in greater and greater detail.

For the relevant papers identified using the database query,
the inclusion and exclusion criteria were used to eliminate
papers based on the title and abstract followed by full-text
reading. For an overview of the process see Figure 2.

For the sources found using snowball sampling, the author
first examined the title; then the abstract or table of contents;

5Results of the piloting can be found online: www.student.bth.se/∼mafj12/
lean sd measures pilot.pdf

3

Eliminate based on abstracts

Eliminate based on titles

Apply inclusion, exclusion criteria

Apply full text exclusion

Relevant paper's references

Relevant
papers (database)

Fig. 3. Snowballing strategy

and finally the full text of the paper for relevance. An overview
of the process can be seen in Figure 3. In both selection
processes, the following inclusion and exclusion criteria were
applied:

Inclusion: The literature explicitly describes the software
development process used as being lean or Kanban. Moreover,
the literature must describe measures.

Exclusion: Literature that falls outside of the software
engineering domain. Literature that describes measures which
are only used to compare methodologies. Also, literature
that mentions lean but does not make it its focus. Finally,
literature that focuses on describing measures specifically for
lean manufacturing will also not be taken into consideration.

B. Data extraction and analysis

A common analysis technique in systematic reviews is
identified by Petersen et al. [8] as thematic analysis. Thematic
analysis [13] is a common approach to analyse qualitative
research. It focuses on identifying patterns, i.e. themes, from
the collected data that are relevant to the research question
posed. In the thesis, the research questions are focused on
measures and publication details in lean software development.

Dixon-Woods et al. [9] describes thematic analysis as
sharing commonalities with comparative analysis and narrative
studies. The author chose to specifically focus on thematic
analysis because it was important to be able to summarize the
findings based on a number of perspectives of the systematic
mapping, i.e. themes. The approach of narrative synthesis was
not chosen as it is has the liability of being dependent on
the prejudices of the researcher as identified in [14]. Also,
content analysis was not used it would have diminished the
complexity and context of the thesis echoing [14]. By limiting
the researcher’s prejudices and at the same time being able to
apply the complexity of analysis available using themes the
methodology of thematic analysis was chosen.

The methodology of thematic analysis used in the thesis
consists of six steps, these are:

1) familiarization with the data,
2) generating initial codes,
3) searching for themes,
4) reviewing themes,
5) defining and naming themes,
6) producing the report.

Familiarization with the data: In this step, the author
became familiarized with the data, which was the area of
measures and lean software development. Concretely, the
author read the ISO/IEC 15939 standard and created a meta-
model based on the measurement information model in the
standard [4]. Elements from the meta-model (see Figure 1)
were used as an initial basis for understanding the literature.

Next, the author went through the relevant literature by
identifying information relevant to measures. Identified in-
formation consisted of descriptions on the use of measures,
measures themselves and how they were used. The process
was carried out as inclusively as possible since it was used as
the basis for creating initial codes in the next step.

Generating initial codes: The author inductively generated
codes based on information which was meaningful in answer-
ing the research questions. The codes used in the analysis were
based on the structured understanding using the simplified
measurement information meta-model from Figure 1.

The resulting codes can be found in Appendix B which were
used to structure the collected data. The coding consisted of
three sections: publication details, research paper methodology
and measure details. Publication details provided information
about the (1) title, (2) author, (3) year of publication and (4)
which conference, book or journal it came from. Next, the
methodology used in the scientific papers was examined. This
consisted of whether the article was empirical and what type of
research was conducted. By separating the codes into section
it eased the collection.

The goal of codifying measures was to place the identified
measures in the context of the simplified meta-model (see
Figure 1). The coding was done using the following seven
steps.

1) Identify the name of the measure and classify it as either
a base measure, derived measure or indicator.

2) Extract a short description of the measure.
3) If possible, identify the most relevant information need

for the measure.
4) Extract the lower level measures, e.g. derived measures

and/or base measures.
5) For each base measure identify its attribute.
6) Identify the relevant entities based on the attributes from

the previous step.
7) Repeat the steps 1-6 for each measure identified in the

literature.

By codifying the measures using the previous seven steps
it allowed for the collection of data on measures.

Searching for themes: In the next step, the author looked for
repetitive codes that matched. Based on the analysis, repeating
and closely related codes were grouped together in order for
themes to be able to emerge.

Reviewing themes: Based on the previous step themes
emerged that needed to be reviewed as a result of the combi-
nation of closely related codes. As a result, relations between
the measures began emerging in the context of the meta-model
from Figure 1.

4

Defining and naming themes: Measures resulting from the
previous steps were then defined and named based on the
reviewed codes. In some cases, measures which had the same
meaning but different names were reconciled. Additionally,
other themes arose that from the coding were defined and
named.

Producing the report: In order to produce a report that
contributed to the field of lean software development, the
relation of measures and the seven principles identified by
Poppendieck and Poppendieck [S6] was identified. Moreover,
measures were mapped to the elements of the meta-model (see
Figure 1) and then synthesized as well as analysed. Themes
that arose from the coding of the literature were also included
in the report.

C. Threats to validity:

Validity threats are important to discuss in order to judge
the reliability of the results. The main threats relevant for this
study are related to the search and the researcher’s bias.

Missing studies in the search: One threat to validity is that
important literature relevant for the research questions could
have been missed. The database search was complemented by
backwards snowball sampling in order to reduce this threat.
Furthermore, the author piloted the search query in order to
be more inclusive, which reduced the threat that studies could
be missed in the search.

Researcher bias: Researcher bias is a threat during the
selection of literature and the extraction and interpretation
of results. The study selection was done by an individual
researcher, which poses a threat. By being as inclusive as
possible and not excluding any literature when in doubt at an
early stage (reading abstract and title) the threat was reduced.

Reliability of the interpretation: The reliability of the in-
terpretation is important as differences in the researcher could
lead to widely different results for measures. In order to reduce
the threat, the author used the measurement information model
from the ISO/IEC 15939 standard [4] to structure measures
using a simplified meta-model (see Figure 1). By standardizing
the interpretation, it reduced the threat and made the results
more reliable.

IV. PUBLICATIONS RESULTS

The publication results present the results for RQ1 and
RQ1.1.

A. RQ1: Publication trends and forms

To answer the first research question, the number of pub-
lications over time in different forms (journals, conferences,
books) were analysed. Figure 4 shows the number of publica-
tions for each year in three forms. Only a few scientific studies
with a focus on measures in lean software development have
been published before 2010. Only recently (2010 and onwards)
has the number of publications increased significantly. After
2006, the number of journal publications increased visibly.
This indicates an increased interest in measures related to lean
software development.

0

1

2

3

4

1996 1998 2000 2002 2004 2006 2008 2010 2012

N
u

m
b

er
 o

f
 p

u
b

li
ca

ti
o

n
s

Year of publication

Conference Journal Book

Fig. 4. Number of publications versus year of publication.

With respect to publication forms, the author found that
15 studies have been published in conferences and 7 in
journals. Furthermore, the author identified 5 books reporting
on measures in lean software development. Two conferences
attracted two papers each, namely the Digital Avionic Systems
Conference and the Lean Enterprise Software and Systems
Conference (LESS). All other journals and conferences, in
which the included studies have been published in, occurred
only once. Overall, besides the two previously mentioned
conferences, no preference for a particular conference or
journal was identified for the studied area.

B. RQ1.1: Research types

Wieringa et al. [10] distinguishes different research types,
these include:

• validation research: techniques are evaluated in lab ex-
periments,

• evaluation research: techniques are implemented and
evaluated in industry practice,

• solution proposals: a solution is proposed without evalu-
ation,

• philosophical papers: taxonomies and conceptual frame-
works,

• opinion papers: expressing personal opinion,
• experience papers: experts report on their practical expe-

rience.
Using the listed types, the author coded the primary studies

from the systematic mapping.
Table II shows the research types, number of studies, and

references to the primary studies. It is visible that the majority
originates from expert experience. Also, a large portion of
studies have been conducted using research methods in indus-
try. Only a few studies have been conducted in the laboratory,
are pure solution proposals or present opinions. With respect to
the evaluation research, it is noteworthy that a large portion of
studies – six out of nine – have been conducted in Scandinavia.
Finally, none of the studies were philosophical.

5

TABLE II
RESEARCH TYPES

Study type Num. of studies References
Validation 1 [S9]
Evaluation 9 [S3]–[S5], [S7], [S10]–[S14]
Solution 2 [S15], [S16]
Philosophical – –
Opinion 4 [S8], [S17]–[S19]
Experience 11 [S1], [S2], [S6], [S8], [S20]–[S26]

V. DESCRIBED MEASURES RESULTS

In order to answer RQ2, “Which measures have been
described for lean software development?” the measures were
structured according to the meta-model (see Figure 1). As a
result, the three types of measures (base measures, derived
measures and indicators) are presented in this section.

A. Base measures

The base measures were structured according to the entities
which they measure.

Measures related to the process and project entities
In relation to the “Process/Project” entity (see Table III)

there were 12 base measures (BM1 to BM22) identified.
Overall, it is noteworthy that the majority of studies are related
to measuring time, i.e. the general duration to complete work
(BM1), as well as the value added time (BM4) and non-value
added time (BM5). In addition, the number of work items
(BM6) is a commonly used measure in the literature. Other
attributes and their related measures, in comparison, have only
a few references.

Duration in time units (BM1) [S2], [S6]–[S8], [S10], [S13]–
[S16], [S23], [S25], [S27] is a specified period of time, e.g. an
hour, week or day. The measure of the duration of time was
identified in twelve sources. Specific applications of duration
in lean literature include measuring the working days available
[S13], the amount of time it takes to receive feedback from
integration and builds [S8] as well as the time spent editing.

Failure load (BM2): Failure load is the general term used
by Anderson [S8] to identify the number of work items that
must be processed again due to previous low quality. It was
identified in four sources. In another context, this is known
as maintenance requests, which are the number of requests
to fix something in the software product, e.g. the number of
new maintenance requests can be measured [S11]. Similarly,
trouble reports [S25] are measured and represent issues found
in the software product. Both trouble reports and maintenance
requests are grouped together since they represent requests to
fix something in the product. In a case study, failure load has
also been applied when measuring errors requiring rework [S3]
when programmers found errors in the work of analysts that
needed to be immediately fixed.

Value transition (BM3) [S7], [S11], [S25] measures the
point in time for which there is a handoff between activities.
The measure was described in three sources. It is especially
important, because many sources take the description of the

value transition measure for granted, and move on to more
complex measures such as derived measures.

Value added time (BM4) [S2], [S4], [S6], [S8], [S11], [S20],
[S25] is the amount of time spent doing activities that add
value. Measures of duration which focus on value added
activities are e.g. touch time [S8], in process time and core
process time [S20]. Value added time can be identified in seven
sources. The first two measures touch time and in process
time can be considered to be the same because they are the
amount of a work item has been assigned without becoming
blocked or stuck in a queue. Next, the core process time is
also considered to be a synonym of value added time [S20]. It
is the amount of time spent working on a value adding work
item, excluding the non-value adding activities such as set up
or gathering information [S20].

Non-value added time (BM5): Following the value added
measures, there is a greater number focused on non-value
added time measures [S2], [S4], [S6], [S20], [S25]. Non-
value added time is also presented as waste time [S2], [S6].
Additionally, these include: request age [S6], transmission
time [S20], delay time [S20], set up time [S20] and queue time
[S22]. Firstly, the age of requests [S6], which is a measure of
how old requests are at a specific point in time. Secondly,
the transmission times [S20] which relate to the transfer of
information within the information flow. Thirdly, delay time
[S20] is defined as the average duration of a single work item
in a queue. A more specific example of delay time is queue
time, which measures average duration in the backlog [S22].
Through the lean literature examined the measure appears
five times. Although there are more measures of duration
focusing on non-value added time, both kinds are important
for identifying the duration of value and waste (i.e. non-value
added time).

Number of work items (BM6) [S2], [S5]–[S8], [S13], [S24]–
[S26] is a common lean software development measure found
in nine sources and measures the amount of work items,
e.g. the amount of requirements [S5], [S7]. The work items
measured consists of units of work [S13]; ongoing discarded
and completed requirements [S7]; faults [S7]; tests [S7]; and
requests [S6]. Work items measure specific types of work
items such as in the case of [S7], where the differentiation
between ongoing, discarded and completed is made.

Anderson [S8] defines work items as a requirement, feature,
user story, use case, production defect, maintenance, refactor-
ing, bug, improvement suggestion, bug, improvement sugges-
tion or blocking issue. Work items are broad by definition and
not only limited to these examples according to Anderson.

Bounce backs (BM7) [S2] measure only the number of de-
fects which are repeated after being fixed in a non-satisfactory
way. Petersen [S11] also uses the bounce back measure by
measuring the number of attempts needed to resolve a main-
tenance request.In total, bounce backs is described twice in the
literature. Bounce back differentiates itself from failure load,
because it focuses exclusively on measuring defects which
appear again.

Financial costs (BM8) [S2], [S6], [S20] are the costs in-

6

curred. Non-recurring costs [S20] are one-time costs that must
be paid for work to be completed but are not continuous. In
contrast, recurring costs [S20] are the costs which need to
be paid each time work is completed and can be continuous.
Financial costs are described in four different sources from
the literature.

Cost of investment (BM9) can be understood as the input
value in [S7] as it represents the equipment and tools invested
in. The cost of investment is only described in [S7].

Financial revenues (BM10) [S2], [S6] are the incomes
which are used to pay costs, and can also be understood as
the amount of realized gains from an investment after costs
are paid. Interestingly, financial revenues are described in two
sources which come from the same authors.

Schedule slippage (BM11) [S13], [S26] is defined in lean
software development literature as the duration of time that
exceeds the original project plan and is described twice in the
literature.

Fault slippage (BM12) [S5] can be defined as when work
items need to be fixed later then the relevant planned testing
activity. It is described once in literature.

Measures related to the product entity
For the “Product” entity seven base measures were identi-

fied (BM13 to BM19) and shown in Table IV. Interestingly,
the most commonly used measures of the product focus on
size of the defect backlog (BM13) and the size of work items
in story points (BM14).

Number of defects in the backlog (BM13) is examined in
the context of lean software development as the size of the
defect backlog [S2], [S10], [S11], [S25]. It is described in
four sources and simply measures the total number of defects
in the backlog at a given time.

Story points (BM14) [S2], [S23], [S24], [S26] is a concept
from SCRUM [15] where the size of the work item is
measured. It is described in four sources from the literature.
An example of using story points is when estimating the size
of a work item. In [S23] only work items smaller than a certain
story point size are let into the flow . For example, if a work
item could be considered to consist of nine story points it
would need to be broken since it is too large and it would not
be allowed into the value stream.

Lines of code (BM15) [S16] counts the number of language
statements in the source code. It is a very tradition measure
which can be observed in only one source.

Cohesion and coupling (BM16) [S9], [S16] are object
oriented measures from two sources that capture the internal
code quality of the product. Coupling measures the degree
to which modules are related to each other, while cohesion
examines how strongly related the code is.

Number of passed acceptance tests (BM17) [S16] measures
the number of acceptance tests that have been executed suc-
cessfully with a passing outcome and only was identified in a
single source.

Code coverage (BM18) [S27] is the amount of language
statements in the software product that are covered by testing
and was only identified in the literature once.

Code churn (BM19) [S15] is the number of language
statements of code that have been changed, removed or added.
It has only been described once in the learn literature.

Measures related to the stakeholder entity
For the “Stakeholder” entity three base measures (BM20-

BM22) were identified, shown in Table V. Two measures are
related to satisfaction, while one focuses on the customer and
the other on the employee. Both are perceived assessments
through rating. The emotional seismograph is mentioned,
however, has not been explained in [S26]. Furthermore, the
skill level is assessed, considering both required and available
skills.

Perceived customer satisfaction (BM20) is a measure of the
level of customer satisfaction with the software product [S6]
or a feature [S5].

Employee seismograph (BM21) [S26] is not explained other
than it was used to measure and monitor the level of employee
satisfaction.

Perceived skill level (BM22) [S13] measures the amount of
skills needed or the amount of skills available.

Overall, it is clearly visible that the “Process/Project”
related measures are emphasized in the lean literature. Among
them the base measures related to time (BM1, BM4 and BM5)
and the number of work items (BM6) seem to be given a lot
of emphasis as seen by the amount of sources that describe
them.

B. Derived measures

Derived measures use functions to combine two or more
base measures [4]. In Table VI the elicited derived measures
are listed. Provided within the table are the relevant base
measures which have been identified from the literature in the
column Base measures. Base measures were identified based
on their availability in the literature. Overall, Table VI shows
13 derived measures, which used the number of work items
(BM6) and duration of time (BM1) most frequently as base
measures.

Throughput (DM1) [S6], [S8], [S10], [S14], [S25] can be
defined as the number of work items that are completed over
a given time period. A common synonym for throughput is
velocity [S5], [S23], [S26] and is primarily used in the context
of organizations which have a background in SCRUM [15].

Throughput is also used in specific contexts such as for work
items [S22], defects [S10], story points [S24] and maintenance
requests [S11]. For example, for the defect inflow and outflow
[S10] when examining the throughput of defects into and out
of phases.

Furthermore, distinctions are made in the inflow and outflow
of work items [S10], [S11]. For example, when examining the
outflow of work done in a phase that is then handed over to
the subsequent phase [S7].

Cycle time (DM2) [S1], [S2], [S6], [S13], [S18], [S20]–
[S23] can be defined as the duration of time per work item.
In the literature different kinds of work items are measured
by cycle time including features [S6] and story points [S23].
Poppendieck and Poppendieck [S6] describe cycle time as

7

TABLE III
BASE MEASURES FOR THE ”PRODUCT” AND ”PROCESS” ENTITIES

ID Measure Attribute Sources
BM1: Duration in time units Timestamps [S2], [S6]–[S8], [S10], [S13]–[S16], [S23], [S25], [S27]
BM2: Failure load Work items needing rework [S3], [S8], [S11], [S25]
BM3: Value transition Time of value transition [S7], [S11], [S25]
BM4: Value added time Time spent adding value [S2], [S4], [S6], [S8], [S11], [S20], [S25]
BM5: Non-value added time Time spent not adding value [S2], [S4], [S6], [S20], [S25]
BM6: Number of work items Work items [S2], [S5]–[S8], [S13], [S24]–[S26]
BM7: Bounce backs Reworked items needing rework [S2], [S11]
BM8: Financial costs Costs [S2], [S6], [S7], [S20]
BM9: Cost of investment Investment costs [S7]
BM10: Financial revenues Revenues [S2], [S6]
BM11: Schedule slippage Time delay in completion [S13], [S26]
BM12: Fault slippage Slip through defects [S5]

TABLE IV
BASE MEASURES FOR THE ”PRODUCT” ENTITY

ID Measure Attribute Sources
BM13: Number of defects in the backlog Defect backlog [S2], [S10], [S11], [S25]
BM14: Story points Work item size [S2], [S23], [S24], [S26]
BM15: Lines of code Language statements [S16]
BM16: Cohesion and coupling Relatedness of source code [S9], [S16]
BM17: Number of passed acceptance tests Passed acceptance tests [S16]
BM18: Code coverage Language statement test coverage [S27]
BM19: Code churn Added, removed or edited language

statements
[S15]

TABLE V
BASE MEASURES FOR ”STAKEHOLDER” ENTITY

ID Measure Attribute Sources
BM20: Perceived customer satisfaction Customer satisfaction [S5], [S6]
BM21: Employee seismograph Employee satisfaction [S26]
BM22: Perceived skill level Skill level [S13]

a versatile measure that exposes defects, complexity, hand-
offs and code churn. Poppendieck and Poppendieck further
describe it as one of the best ways to measure quality and
performance of the operation.

A measure which is similar to cycle time is the ‘com-
mon tempo time’. ‘Common tempo time’ [S13] uses the net
working days available divided by the number of work items
required. This provides an estimate of the cycle time needed in
order to accomplish the required work items given the working
days available.

Lead time (DM3) [S4], [S5], [S8], [S11], [S20]–[S23], [S25]
can be measured from the time a work item is requested until
the time it reaches the terminal value phase. It has been used
in the context of trouble reports [S25], maintenance requests
[S11] and tasks [S20]. Alternatively, it can be defined as the
time from when the request is made until active work on the
work item begins [S20].

Capacity (DM4) [S2], [S5], [S6], [S8], [S14], [S20], [S26]
is defined as the amount of work items that can be handled
in a given time period. This measure is used in the context
of the capacity of the organization [S5], [S26], release [S14]
and process [S20]. Capacity is something that is difficult
to measure, but can be estimated using historical data or
expert knowledge [S5]. It is recommended that capacity is
not exceeded [S2], [S5], [S6], [S8], in order to create slack in

the process.
Profit and loss (DM5) [S2], [S6], [S8] is a financial measure

which presents the revenues and expenses during a period of
time. Poppendieck and Poppendieck [S2], [S6] recommend
using profit and loss as a measure of product success.

Inventory (DM6) [S5], [S7], [S20] can be measured as the
number of work items in a value phase at a specific point in
time. The set of work items in a value phase can alternatively
be referred to as a queue, hence the synonyms queue size
[S22] and queue [S14].

The work items contained in the inventory vary. Exam-
ples of individual inventories include change request, faults,
requirements and test cases [S5] in addition to maintenance
requests [S11].

Time efficiency (DM7) is presented by Poppendieck and
Poppendieck [S2], [S6] as the percent of value adding time as
a percent of the total time. Alternatively, the time efficiency
can be calculated using a number of ratios, e.g. the in process
time divided by the cycle time [S20].

Value efficiency (DM8) is a measure that takes the difference
of the output and input values divided by a specified time
window [S7]. The value efficiency takes into consideration
the amount of investment needed in order to achieve value in
a limited span of time.

Net promoter score (DM9) [S6] calculates a score after

8

taking into consideration whether users are promoters, passive
or detractors in relation to their satisfaction with the product.

Initial quality (DM10) [S8] measures the amount of defect
slippage as a percent of the work-in-progress and throughput.
Similarly, failure rate [S20] is the percent of work items that
will be defective and need to be reworked.

Return on investment (DM11) [S2], [S6] is a the result of
calculating the efficiency of an investment.

Design debt (DM12) [S16] uses basic object oriented met-
rics to measure whether the design debt is high or low for
each individual module. A high design debt can indicate poor
design and a need for refactoring.

Rework rate (DM13) [S20] is the amount of work items
with defects that are outputs.

The derived measures that are most prominently found in
the literature were throughput (DM1), cycle time (DM2), lead
time (DM3), capacity (DM4) and inventory (DM6). Of note is
that the prominently identified measures share common base
measures. These prominent derived measures along with all
derived measures identified are described below.

C. Indicators

Indicators provide evaluations of specified attributes with
respect to information needs [4]. Indicators are also often
visualized graphically and used in organizational dashboards to
support decision makers. The author identified 14 indicators
in the literature, shown in Table VII. The table also shows
the potentially relevant measures that the indicator can be
applied to based on its use in literature. The studies where
specific indicators have been used are indicated in the column
Source. Additionally, descriptions of the use of the indicators
is provided in the remaining subsections text.

Cumulative flow diagram (I1) [S5], [S7], [S8], [S11], [S22],
[S24] is a stacked graph that shows the number of work items
versus the time. It consists of as many lines as there are
activities in the value stream. It is organized so the uppermost
line represents the trend of the initial activity and the lowest
line represents the trend of the terminal activity.

Regression (I2) of lead time [S8], [S11], [S22], [S25] and
cycle time [S6], [S13], [S23] shows the measures over a
specified period of time. The regression uses historical data
to show trends, e.g. whether it is increasing or decreasing.

Moreover, other kinds of regression include the linear
regression function [S7] or the R-squared values [S24] of the
lines representing the activities in the cumulative flow diagram.
For example, when using the linear regression function, if the
slope of the subsequent value phase is lower than the previous
phase than it can indicate a bottleneck. Using the R-squared
values, the activities with the lowest slope could indicate a
bottleneck.

Box-plot (I3) [S11] can be used to visualize the variability of
lead times between priorities and phases by graphing quartiles
of e.g. the lead time for different priorities.

Burndown chart (I4) [S2], [S22], [S26] shows the trend of
the amount of story points remaining versus the duration of
time.

Control chart (I5) uses statistical control to monitor whether
observed values are in line with expectations. This is for
example by using standard deviations as control limits based
on historical values. One example of using a control chart is
with weighted maintenance requests (MR) [S11]. Moreover,
it is also applied to individual inventories in [S5] to monitor
and control that the inventory does not exceed or drop below
expected values.

Utilization (I6) [S5], [S6], [S20], [S26] measures how much
of the organizations capacity is used. It is accomplished by
comparing the load (i.e. inventory) to the capacity of the
organization. Utilization can be used to assess the overall state
of a software development organization [S5] by understanding
if the organization is overloaded.

Design debt advice function (I7) [S16] combines the design
debt for all modules of the software to indicate the design debt
of the overall product, which can indicate whether corrective
action should be taken in the form of refactoring.

Variance (I8) indicates inconsistency in the flow of work
items through an activity. In [S7] it is calculated using the
estimation error from the linear regression function of the
activity trend line from the cumulative flow diagram (I1).

Due date performance (I9) [S8], [S25] is the percentage of
work items which are delivered in the time expected. In the
same way, the lead time success rate [S25] has been described
as the number of trouble reports that are answered in time in
relation to all trouble reports.

Relative comparison (I10) is the comparison of the relative
size of elements to one another. For example, the inventory
of each activity is measured by comparing the relative percent
and size of inventories in each activity [S25]. Another example
can be found in the comparison of future value stream maps
to current value stream maps [S4].

Cost of delay (I11) [S8], [S24] is the difference in the profit
and loss achieved between two different points in time.

Cost model (I12) [S7] consists of the three components
investment, work done and waste that are added together in
order to measure the resulting cost.

Overall state (I13) [S11] indicates the result of combining
the individual inventory levels which are either high or low
based on whether they are higher or lower than capacity. This
indicator takes into account two or more inventories in order to
indicate the overall state of lean software development process.

Histogram (I14) shows the distribution of the lead time [S8]
or potentially any other measure. Anderson [S8] prefers using
the histogram as an indicator for the lead time of individual
work items, because it shows the outlying measurement results
and opportunities for improvement more clearly.

VI. SYNTHESIS

A. Measures in lean software development

Indicators and derived measures are most frequently based
on the number of work items (BM6) and the duration in
time (BM1) base measures. By structuring measures using the
meta-model the dependent measures for indicators and derived
measures can be seen by modelling their relatedness. When the

9

TABLE VI
DERIVED MEASURES

ID Measure Base measures Source
DM1: Throughput Uses no. of work items (BM6) and duration in time units (BM1) [S6], [S8], [S10], [S14], [S25]
DM2: Cycle time Uses no. of work items (BM6), duration in time units (BM1), value

transition (BM3)
[S1], [S2], [S6], [S13], [S18], [S20]–[S23]

DM3: Lead time Duration in time units (BM1), value transition (BM3) [S4], [S5], [S8], [S11], [S20]–[S23], [S25]
DM4: Capacity Uses no. of work items (BM6) in time of BM4 and BM5 [S2], [S5], [S6], [S8], [S14], [S20], [S26]
DM5: Profit and loss Costs (BM9) and revenues (BM10) [S2], [S6], [S8], [S17]
DM6: Inventory Uses no. of work items (BM6), value transitions (BM3) [S5], [S7], [S11], [S14], [S20], [S22], [S25]
DM7: Time efficiency Uses value added time (BM4) and non-value added time (BM5) [S2], [S6], [S20]
DM8: Value efficiency Investment (BM9), financial revenues (BM10) and duration (BM1) [S7]
DM9: Net promoter score Uses perceived customer satisfaction (BM20) [S6]
DM10: Initial quality Uses no. of work items (BM6) and fault slippage (BM12) [S8], [S20]
DM11: Return on investment Uses costs (BM9) and revenues (BM10) [S2], [S6]
DM12: Design debt Object oriented measures such as BM16 [S16]
DM13: Rework rate Uses no. of work items (BM6) with defects [S11], [S20]

DM1

BM6 BM1

DM2

BM3

DM3DM4

BM4BM5

DM5

BM8BM10

DM6DM7 DM8

BM9

DM9

BM20

DM10

BM12

DM11 DM12

BM16

DM13

I1 I2 I3I4I5I6 I7I8 I9I10 I11I12I13 I14

Fig. 5. Model of the related measures.

TABLE VII
INDICATORS

ID Indicator Relevant measures Source
I1: Cumulative flow diagram Duration (BM1), value transition (BM3) and work items (BM6) [S5], [S7], [S8], [S11], [S22], [S24]
I2: Regression Potentially any measure (e.g. DM2 and DM3) over a duration (BM1) [S6]–[S8], [S11], [S13], [S22]–[S25]
I3: Box-plot Measures on ratio and interval scale (e.g. DM3) [S11]
I4: Burndown chart Duration of time (BM1), no. of handoffs (BM3), no. of work items (BM6),

throughput (DM1)
[S2], [S22], [S26]

I5: Control chart Measures on ratio and interval scale (e.g. DM4, DM6 and DM13) [S5], [S11]
I6: Utilization Inventory (DM6) and capacity (DM4) [S5], [S6], [S20], [S26]
I7: Design debt advice func. Design debt (DM12) [S16]
I8: Variance Duration of time (BM1), no. of handoffs (BM3), no. of work items (BM6) [S7]
I9: Due date performance Lead time (DM3), duration of time (BM1) [S8], [S25]
I10: Relative comparison Inventory (DM6) and time efficiency (DM7) [S25]
I11: Cost of delay Profit and loss (DM5) and duration of time (BM1) [S2]
I12: Cost model Inventory of investment, work done and waste (DM6) [S7]
I13: Overall state Inventory (DM6) and capacity (DM4) [S5]
I14: Histogram Potentially any measure (e.g. DM3) [S8]

relatedness of measures is visualized as a model (see Figure 5),
the dependent measures related to the indicators and derived
measures are emphasized by the frequency of associations. In
addition to BM1 and BM6, the base measures consisting of
the activity transitions (BM3), financial revenues (BM10) and
financial costs (BM8) are also frequently used.

B. Models of measures

The purpose of the ISO/IEC 15939 standard is to define,
“(...) a suitable set of measures that address specific in-
formation needs” [4]. Using the ISO/IEC 15939 standard a
simplified meta-model described in Section II-A was proposed.
The meta-model (see Figure 1) was then used to instantiate
a set of models of the measures. Each model of measures
is defined so an organization can understand what measures,

entities and attributes are needed in order to answer a specific
information need. This benefits organizations, because they are
able to reuse knowledge which has been shared in research.

In this thesis, the meta-model is used to instantiate models
of measures in Appendix D. All of the models use the same
visual ranking of elements as seen in Figure 6. The author
provided Figure 6 as an instantiation of the meta-model which
should be used as a recommendation for how to structure
models of measures. The software used to create the models
was Graphviz6, which is an open source software solution that
can structure the measures as graphs. The author has included
the source code in Appendix C that is needed to create Figure
6. The source code has been provided due to the fact that
it should be used as the basis for the future description and

6Software for structuring graphs: http://www.graphviz.org

10

Entity

Attribute

Entity

Attribute

Entity

Attribute

Entity

Attribute

Base measure Base measure Base measureBase measure

Derived measure Derived measure

Indicator

Information need

Fig. 6. Template for the model of measures.

structuring of measures.
In order to communicate the measures used in lean software

development literature, the author has created models which
are presented in Appendix D. Figure 6 presents how the
measures are laid out based on the proposed meta-model from
Figure 1. At the top of the model there is an information
need, which is associated with its subordinate indicator. The
indicator’s subordinate measures include derived measures as
well as base measures. Derived measures use base measures
and base measures are associated with attributes of entities.
Variations are possible in the model as long as it conforms to
the meta-model in Figure 1.

To answer the information need of where bottlenecks are in
the process (see Figure 7), the information need of, “where is
there a bottleneck in the process?” is presented at the top of the
model. Below it there are the measures consisting of indicators
(I), derived measures (DM) and base measures (BM). Finally,
below the base measures are their corresponding attribute
and entity. In each diagram, multiple measures are shown
if they have been identified in the literature. For example,
inventory is used only in [S14] to identify bottlenecks, but is
included in the model. As seen by using models of measures
it is possible to address information needs using a structured
approach which is based on evidence from the lean software
development literature.

Research on lean software development commonly identi-
fies bottlenecks in the process using only the regression of
the throughput [S7], [S8], [S11], [S24]. This can be seen in
Figure 7. However, the model is extended in [S14] to use the
regression of individual work item queues, i.e. the inventory.
Models of measures which occur through numerous sources
benefit by being modelled, because it makes them more usable.
As a result, the author has modelled the information needed
for bottleneck identification.

An additional example of a model of measures can be
extracted when examining the lead time performance. This
is important for organizations who are lean since they want
to deliver quickly. Also, service level agreements enforce
strict deadlines so it is important for organizations to know
how good their lead time performance is. Literature on lean
software development uses four indicators to measure the lead
time performance. These are: regression [S8], [S22]; box-plot
[S11]; histogram [S8] and due date performance [S8], [S25]

Process/Project

Timestamps Time of value transitionWork items

Duration in time units (BM1) Value transition (BM3)Number of work items (BM6)

Throughput (DM1) Inventory (DM6)

Regression (I2)

Where is there a bottleneck in the process?

Fig. 7. Model of measures for bottleneck identification.

Timestamps

Process/Project

Duration in time units (BM1) Value transition (BM3)

Lead time (DM3)

Regression (I2) Box-plot (I3) Due date performance (I9) Histogram (I14)

Lead time performance

Fig. 8. Model of measures for lead time performance.

(see Figure 8). Each indicator takes a different perspective
on lead time performance. For example, using a histogram
helps to identify outlying lead times needing improvement in
contrast to regression which focuses on the average lead time
trend over time.

Models package measures so they are useful to organiza-
tions and show possibilities for how they can be used in new
ways. For example, based on an organizations need, Figure 7
can be used to quickly understand which measures are needed
to determine where the bottlenecks are the in the process. And
different measures are simultaneously seen which show the
possibilities for fulfilling the information need. Alternatively,
if an organization is planning to improve its lead time then
Figure 8 identifies a number of indicators.

In [16] it is noted that using the measurement information
model sped up the development of measurement systems by
50% and reduced the size of the measurement systems by 35%.
As a result, by using the models of measures in Appendix D
based on the simplified ISO/IEC 15939 measurement informa-
tion model organizations can more effectively and quickly use
the appropriate measures based on their information needs.

VII. ANALYSIS

A. Increased attention on lean measures

The trend analysis has shown that the number of studies on
lean software development measures has drastically increased
in 2010 (see Section IV). Pernstål et al. [17] conducted a
systematic review on lean software development in the time
period of 1990-2010. There are eleven studies which are in
common between Pernstål et al.’s literature review and this
thesis on lean measures. In the time before and excluding
2010 this study had 11 sources focusing on measures, while

11

Pernstål et al.’s has 26 sources for the same time period from
a broader set of lean software development related literature.
Even though this thesis focuses on lean software development
measures only, a total of 27 sources were identified of which
the majority come from 2010 and onwards. This clearly
indicates that the interest in lean software engineering mea-
sures has drastically increased from 2010 onwards. The trend
identified emphasizes the practical and research relevance of
studying lean software measures.

B. Lean or Agile measures?

The mapping of a set of relevant lean software development
measures is ambitious. A contributing factor is that the field
of measure in lean has clearly been influenced by other fields.
One example of this is the burndown chart, which focuses on
time-boxed iterations. Instead of using time-boxed intervals,
lean focuses on releasing minimum marketable feature sets
and establishing a release cadence [S8].

A driving factor behind the use of burndown charts is that
many organizations combine lean with other agile practices.
This is due to the fact that the combination of lean and
agile represents a significant body of the lean literature [18].
A derived measure commonly used with burndown charts
provides further evidence of this phenomenon. In a number of
cases velocity [S23], [S26]; which is terminology commonly
used with the burndown chart. is used instead of throughput.

There are further issues that arise where the literature seems
to contradict itself. The concept of “stopping the line” [S6] is
found in lean when defects are discovered. It prevents the
build-up of inventory after a defect is found - allowing for
it to be quickly corrected in production. Poppendieck and
Poppendieck [S6] describe an example of a company, which
does not need to track defects, because they are immediately
fixed upon discovery. The author believes that the focus
on defect backlogs is therefore not in alignment with lean
principles. This can be seen in a number of cases, for example
when forecasting the amount of defects by using the defect
backlog [S10]. The author believes that lean measures of
defects should focus on preventing the build up of any sort
of inventory of defects by “stopping the line” of production
of software and preventing the rework of defects, e.g. by
measuring the failure load (BM2).

C. Need for the evaluation of measures

Only nine studies evaluated lean measures in industry
as shown in Section IV. Evaluation studies have primarily
come from Scandinavia and have focused on a small set of
companies (in particular Ericsson). Hence, the results obtained
have limitations in generalizability. Future evaluation needs to
understand why and how measures are used in practice by
examining different contexts. For instance, whether there is a
difference between large and small software companies that
use lean practices.

Furthermore, one type of measure, i.e. indicators, needs
further evaluation. This thesis has identified that they can be
applied with a wide range of underlying measures, but have

been until now only applied to a few examples (see Table
VII). Future research is needed to examine the benefits for
using specific indicators, and the reasons why. One example
of an evaluation in literature is by Anderson [S8] who writes
that histograms for lead time are preferable in situations
where individual outlier values are of interest, while regression
presents the overall lead time trend over time. Research
should provide evidence that the currently used indicators are
the most suitable and explore new applications of indicators
which could provide more relevant information based on the
foundation of this mapping.

D. Focus in relation to lean principles

Lean software development measures were mapped to the
lean principles based on the seven lean principles listed in
Section II. The mapping was conducted using the context
in which the measures were presented from the literature.
Because the principles are important for lean software devel-
opment, the mapping provides information about where there
are gaps in the principles currently. Of the seven principles,
four were well-covered while three lacked relevant measures
as presented by the literature (see Table VIII). The principles
which have been identified as gaps in the literature include
create knowledge, defer commitment and respect people. The
principle to create knowledge was supported by only one
base measure, while defer commitment had no measures.
Additionally, the principle of respect people had only two
supporting base measures. Future research needs to examine
these principles carefully as they present opportunities for the
definition of new measures given their importance to lean
software development.

The principle to create knowledge means quick feedback
loops and failures that increase learning in the organization.
The only measure for the principle was for the perceived skill
level of workers, which was used to determine the knowledge
in the organization. Although not directly related to creating
knowledge, the measure focuses on identifying knowledge in
order to understand the capacity for work. Further measures
that focus on measuring the learnings from failures and
feedback loops could help to form future research for the
principle of create knowledge.

The principle of defer commitment recommends to make
decisions that will not commit the organization until the last
possible moment. This allows for decision making to occur
based on facts as a pose to predictions earlier in the process.
Since there are no measures in the literature which the author
identified, adjoining fields of research should be examined for
insight. For example, the confidence of determining the size
and effort of requirements can be estimated using an ambiguity
estimator as in [19]. The ambiguity estimator is one example
of a measure which could be used in order to inform the need
to defer commitment.

The principle to respect people is fulfilled when people are
provided with a purpose, challenged and given responsibility.
There is only one example of a measure from the literature
that seeks to measure this principle. It is found in [S26] as

12

Timestamps

Process/Project

Work items

Duration in time units (BM1) Value transition (BM3)Number of work items (BM6)

Cycle time (DM2)Throughput (DM1) Inventory (DM6)

Fig. 9. Throughput (DM1), Cycle time (DM2) and Inventory (DM6).

an emotional seismograph which is used to understand how
satisfied employees are. However, concrete information about
the measure is not available, so it would be difficult for another
organization to apply the same measure. Further research could
look to develop measures for how much responsibility workers
are given in order to understand the principle of respect people.

Software engineering’s need to cope with the human factor
and variability in development make the principles to respect
people, create knowledge and defer commitment important.
Future research can begin by examining these three principles
which have not been more extensively covered by measures
in the literature.

E. Improved representation of shared dependent measures

When codifying measures, there emerged a pattern of mea-
sures that shared dependent measures. In some cases, measures
that rely on the same dependent measures are equivalent to
each other and can be used without additional effort.

An example of this is the relation of throughput, cycle time
or inventory as presented in [S6] which is identified as Little’s
law (see Equation 1).

Cycle time (DM2) =
Inventory (DM6)

Throughput (DM1)
(1)

From the equation it is clear that the measures are mathe-
matically related. Additionally, it can be seen from the model
of the measures (see Figure 9) that the measures rely on similar
base measures. If an organization was already measuring the
throughput and inventory, then it would be possible for them
to measure the cycle time as well without additional effort.

The measures are able to be used when calculating each
other, because of their reliance on the same base measures.
Since any two of the three measures can be used to calculate
the third mathematically, these measures each contain depen-
dencies useful for determining each other. Currently, using
visual inspection it is possible to noticeably represent this in
a model of measures such as Figure 9. This could be also
expanded to apply to the full measurement information meta-
model presented in Appendix A if more detail was available.

The benefit of making the relations of measures visible
is that it provides the means for organizations to see what
other measures are possible to use given the currently used
measures.

F. Guidelines for measures in software process improvement

Since measures provide feedback of improvement and are
therefore key to software process improvement there will

continue to be a need to use measures in research. In the
literature the author was not able to identify a consistent way
in which measures were described. Within the field of lean
software development numerous examples of how measures
have been defined exist.

Staron et al. [S12] has represented measures using the
Unified Modeling Language7-like notation which provides
richer information about the measure. An equation was also
given that clearly defined how the measure could be applied.

Staron and Meding [S14] in their pape clearly define the
measures used in a separate subsection focused on the defini-
tions of measures. They then provide an example of how the
measures can be implemented.

Petersen and Wohlin [S5] used QIP [20] and followed a
six step process which included setting quantifiable goals and
measures. The goals identified could be considered informa-
tion needs. The measures were then applied and explained
later in the paper using an example, figures, equations and
plain text. Petersen and Wohlin later defined measures math-
ematically in [S7].

Many papers such as [S15], [S25], [S26] only use measures
as a supporting argument for the conclusions of the paper. As
a result, measures are not the only focus of the paper, so it
is important that they be described succinctly and correctly
in order to allow space for the papers other contributions. As
a result, this thesis makes a contribution for future research
on lean software development measures by proposing a set of
minimal guidelines, these are:

• measures shall be well-defined by either
– a citation to a rigorous definition,
– or the definition of the measure and an explanation

of how the dependent measures are combined.
• use of the simplified meta-model of measures (see Figure

1) to represent measures (see template in Figure 6) shall
be used.

These guidelines are helpful for researchers who write
about lean software development and are focused on measures.
The guidelines are purposely minimal, because using the full
meta-model adapted from the ISO/IEC 15939 measurement
information model (see Appendix A) is too information rich.
The author is not aware of any research focused on lean
software development which uses the full ISO/IEC 15939
measurement information model. Therefore, the simplified
meta-model of measures can be used instead in order to define
measures well.

The simplified version of the full meta-model in Figure 1
still contains crucial information, i.e. well-specified informa-
tion needs, attributes, entities and all measures are a part of
the meta-model in Figure 1.

A more rigorous approach to measures will be enabled
by following the guidelines listed. The benefits will be that
measures will be more applicable to practitioners since they
will be more easily used and compared. It also will contribute

7Unified Modeling Language specification: http://www.omg.org/spec/UML/

13

TABLE VIII
MAPPING OF PRINCIPLES TO MEASURES

Principle Base measures Derived measures Indicators
Eliminate waste BM4, BM5, BM6, BM8, BM9 DM7, DM11, DM9, BM20 I5, I6, I10, I12
Build quality in BM2, BM12, BM13, BM14, BM15, BM16, BM17, BM18 DM9, DM10, DM12, DM13 I7
Create knowledge BM22 – –
Defer commitment – – –
Deliver fast BM1, BM3, BM7, BM11, BM19 DM1, DM2, DM3 I2, I3, I4, I9, I14
Respect people BM21 – –
Optimize the whole BM10, BM20 DM4, DM8 I1, I8, I11, I13

to research as the relationships and use of measures will
become more accessible to collect well-defined measures from.

VIII. CONCLUSIONS

The author carried out a systematic mapping study to
structure the field of lean software development measures by
using a classification scheme (i.e. the simplified meta-model).
The simplified meta-model (see Figure 1) was proposed by the
author as a scaled down version of the meta-model adapted
from the ISO/IEC 15939 measurement information model in
Appendix A. The proposed meta-model was then used to
codify measures (see Section V) and enables models of the
measures to be created for Figures 8, 9 and Figures 12 through
20 in Appendix D.

The identification of equivalent measures from dependent
measure is enabled by the modelling of measure’s associa-
tions, which was proposed and demonstrated in the thesis. In
addition, models of measures were instantiated for information
needs of bottleneck identification (see Figure 7) and lead time
performance (see Figure 8).

In order that future research on lean software will be
rigorous, the author proposed guidelines to define or cite
definitions of measures and instantiate models of measures
using the meta-model from Figure 1.

RQ1: Which trends can be seen in terms of the number
of publications and publication forms over time? The author
identified a significant increase in literature on lean software
measures in 2010 and onwards, indicating its relevance for
research and practice.

RQ1.1: How were measures evaluated in terms of research
types? The most frequent way of reporting lean measures
were through evaluation and experience reports. There were
only a few opinion papers, solution proposals, and validation
research papers presented. Nine studies were conducted using
evaluation in industry. However, these originated primarily
from Scandinavia focusing on only a few companies, hence
further studies in different contexts are needed.

RQ2: Which measures and indicators have been proposed?
State-of-the-art measures were distilled from the lean software
development literature. The thesis identified 22 base measures,
13 derived measures, and 14 indicators from the literature. The
measures are presented in Tables III-VII. The most frequently
described indicators from literature were the cumulative flow
diagram (I1) and regression (I2). From the derived measures
the most common measures were throughput (DM1), cycle
time (DM2), lead time (DM3), capacity (DM4) and inventory

(DM6). Finally, the base measures that were most frequently
described or used were duration in time (BM1), value added
time (BM4), non-value added time (BM5) and number of work
items (BM6).

By mapping the measures to lean principles (see Table
VIII), the author found that there were no measures related to
the principle of defer commitment and only one measure for
respect people and create knowledge each. These are important
principles for which there were only a few measures identified.
Therefore, lean software development researchers should look
to identify measures that satisfy these principles.

Future research should focus on identifying measures where
there are gaps in the lean principles. Moreover, indicators
need further comparison and analysis in order to understand
their benefits for different information needs. Finally, a sur-
vey should be conducted using the thesis as the basis for
understanding how measures are used in software development
organizations using lean.

REFERENCES

[1] J. M. Morgan and J. K. Liker, The Toyota product development system.
Productivity press New York, 2006.

[2] T. Dybå and T. Dingsøyr, “Empirical studies of agile software develop-
ment: A systematic review,” Information & Software Technology, vol. 50,
no. 9-10, pp. 833–859, 2008.

[3] K. Petersen, “Is lean agile and agile lean,” A comparison between two
software development paradigms, Modern software engineering concepts
and practices: advanced approaches, IGI Global, pp. 19–46, 2011.

[4] “IEEE standard adoption of ISO/IEC 15939:2007 systems and software
engineering measurement process,” IEEE Std 15939-2008, pp. C1–40,
2009.

[5] J. K. Liker, The Toyota Way. Esensi, 2004.
[6] J. P. Womack, D. T. Jones, and D. Roos, The machine that changed the

world: The story of lean production–Toyota’s secret weapon in the global
car wars that is now revolutionizing world industry. Simon and Schuster,
2007.

[7] M. Staron, W. Meding, G. Karlsson, and C. Nilsson, “Developing
measurement systems: an industrial case study,” Journal of Software
Maintenance, vol. 23, no. 2, pp. 89–107, 2011.

[8] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping
studies in software engineering,” in 12th International Conference on
Evaluation and Assessment in Software Engineering, vol. 17, 2008, p. 1.

[9] M. Dixon-Woods, S. Agarwal, D. Jones, B. Young, and A. Sutton,
“Synthesising qualitative and quantitative evidence: a review of possible
methods,” Journal of health services research & policy, vol. 10, no. 1,
pp. 45–53B, 2005.

[10] R. Wieringa, N. A. M. Maiden, N. R. Mead, and C. Rolland, “Require-
ments engineering paper classification and evaluation criteria: a proposal
and a discussion,” Requir. Eng., vol. 11, no. 1, pp. 102–107, 2006.

[11] B. A. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” 2007.

[12] S. Jalali and C. Wohlin, “Systematic literature studies: database searches
vs. backward snowballing,” in ESEM, 2012, pp. 29–38.

14

[13] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[14] D. Cruzes and T. Dybå, “Synthesizing evidence in software engineering
research,” in ESEM, G. Succi, M. Morisio, and N. Nagappan, Eds. ACM,
2010.

[15] L. Rising and N. S. Janoff, “The scrum software development process
for small teams,” IEEE Software, vol. 17, no. 4, pp. 26–32, 2000.

[16] M. Staron, W. Meding, and C. Nilsson, “A framework for developing
measurement systems and its industrial evaluation,” Information & Soft-
ware Technology, vol. 51, no. 4, pp. 721–737, 2009.

[17] J. Pernstal, T. Gorschek, and R. Feldt, “The lean gap: A review of
lean approaches to large-scale software systems development,” Journal
of Systems and Software, 2013.

[18] X. Wang, K. Conboy, and O. Cawley, “Leagile software development:
An experience report analysis of the application of lean approaches
in agile software development,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1287–1299, 2010. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121212000404

[19] D. C. Gause and G. M. Weinberg, Exploring requirements: quality before
design. Dorset House Pub. New York, 1989.

[20] V. R. Basili, “The experience factory and its relationship to other quality
approaches,” Advances in Computers, vol. 41, pp. 65–82, 1995.

SYSTEMATIC MAPPING REFERENCES

[S1] M. Poppendieck and M. A. Cusumano, “Lean software development:
A tutorial,” IEEE Software, vol. 29, no. 5, pp. 26–32, 2012.

[S2] M. Poppendieck, Lean software development: an agile toolkit.
Addison-Wesley Professional, 2003.

[S3] P. Middleton, “Lean software development: Two case studies,” Software
Quality Journal, vol. 9, no. 4, pp. 241–252, 2001.

[S4] S. Mujtaba, R. Feldt, and K. Petersen, “Waste and lead time reduction
in a software product customization process with value stream maps,”
in Australian Software Engineering Conference, 2010, pp. 139–148.

[S5] K. Petersen and C. Wohlin, “Software process improvement through
the lean measurement (spi-leam) method,” Journal of Systems and
Software, vol. 83, no. 7, pp. 1275–1287, 2010.

[S6] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash. Addison-Wesley Professional,
2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=1196372

[S7] K. Petersen and C. Wohlin, “Measuring the flow in lean software
development,” Softw., Pract. Exper., vol. 41, no. 9, pp. 975–996, 2011.

[S8] D. J. Anderson, Kanban. Blue Hole Press, 2010.
[S9] M. P. Ware, F. G. Wilkie, and M. Shapcott, “The application of

product measures in directing software maintenance activity,” Journal
of Software Maintenance, vol. 19, no. 2, pp. 133–154, 2007.

[S10] M. Staron, W. Meding, and B. Söderqvist, “A method for forecasting
defect backlog in large streamline software development projects and
its industrial evaluation,” Information & Software Technology, vol. 52,
no. 10, pp. 1069–1079, 2010.

[S11] K. Petersen, “A palette of lean indicators to detect waste in software
maintenance: A case study,” in XP 2012, 2012, pp. 108–122.

[S12] M. Staron, W. Meding, and M. Caiman, “Improving completeness
of measurement systems for monitoring software development work-
flows,” in Software Quality Days 2013, 2013, pp. 230–243.

[S13] P. Middleton, P. S. Taylor, A. Flaxel, and A. Cookson, “Lean principles
and techniques for improving the quality and productivity of software
development projects: a case study,” International Journal of Produc-
tivity and Quality Management, vol. 2, no. 4, pp. 387–403, 2007.

[S14] M. Staron and W. Meding, “Monitoring bottlenecks in agile and lean
software development projects - a method and its industrial use,” in
PROFES 2011, 2011, pp. 3–16.

[S15] A. Janes and G. Succi, “To pull or not to pull,” in OOPSLA Companion
2009, 2009, pp. 889–894.

[S16] J. Heidenberg and I. Porres, “Metrics functions for kanban guards,” in
ECBS 2010, 2010, pp. 306–310.

[S17] S. Raman, “Lean software development: Is it feasible?” in Digital
Avionics Systems Conference, 1998. Proceedings., 17th DASC.
The AIAA/IEEE/SAE, vol. 1, 1998, p. C131. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=741480

[S18] J. M. Sutton, “Lean software for the lean aircraft,” in Digital Avionics
Systems Conference, 1996., 15th AIAA/IEEE, 1996, p. 4954. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=559134

[S19] K. Vilkki, “When agile is not enough,” in LESS, 2010, pp. 44–47.

[S20] H. McManus, “Product development value stream mapping (PDVSM)
manual,” Lean Aerosp Initiative, 2005.

[S21] M. Taipale, “Huitale - a story of a finnish lean startup,” in LESS, 2010,
pp. 111–114.

[S22] H. Kniberg, Kanban and Scrum-making the most of both. Lulu. com,
2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1841732

[S23] R. Polk, “Agile and kanban in coordination,” in AGILE 2011, 2011,
pp. 263–268.

[S24] B. Swaminathan and K. Jain, “Implementing the lean concepts of
continuous improvement and flow on an agile software development
project: An industrial case study,” in AGILE India (AGILE INDIA),
2012. IEEE, 2012, pp. 10–19.

[S25] M. Seikola, H.-M. Loisa, and A. Jagos, “Kanban implementation in
a telecom product maintenance,” in EUROMICRO-SEAA 2011, 2011,
pp. 321–329.

[S26] J. Prochazka, M. Kokott, M. Chmelar, and J. Krchnak, “Keeping the
spin - from idea to cash in 6 weeks: Success story of agile/lean
transformation,” in ICGSE 2011, 2011, pp. 124–130.

[S27] B. Vodde, “Measuring continuous integration capability,” CrossTalk,
2008.

APPENDIX A
ISO/IEC 15939 MEASUREMENT INFORMATION MODEL

Fig. 10. ISO/IEC 15939 measurement information model

15

APPENDIX B
THEMATIC CODING

TABLE IX

Code Description
A Publication details
A1 What is the title?
A2 Who is the author(s)?
A3 What is the year of publication?
A4 Is the publication a conference, journal or book?
B Research paper methodology
B1 Is the research paper empirical?
B2 What are the research methods used?
B3 What is the type of research (see [10]) conducted?
C Measure details
C1 What is the name of the measure?
C2 What is the short description of the measure?
C3 What information need does the measure answer?
C4 What are the relevant lower level measures needed for the

measurement (i.e. derived measure and/or base measure)?
C5 What are the attributes the of the measures?
C6 What are the entities of the previously identified attributes?

APPENDIX C
SOURCE CODE FOR THE TEMPLATE FOR THE MODEL OF

MEASURES (SEE FIGURE 6)

graph {
rankdir=TD;
E -- A;
E1 -- A1;
E2 -- A2;
E3 -- A3;
BM -- A;
BM1 -- A1;
BM2 -- A2;
BM3 -- A3;
DM -- {BM BM1};
DM1 -- {BM1 BM2}
I -- {DM DM1 BM3};
I -- IN;

{rank=max
E [label="Entity"]
E1 [label="Entity"]
E2 [label="Entity"]
E3 [label="Entity"]
}
{rank=same
A [label="Attribute"]
A1 [label="Attribute"]
A2 [label="Attribute"]
A3 [label="Attribute"]
}
{rank=same
BM [label = "Base measure"];
BM1 [label = "Base measure"];
BM2 [label = "Base measure"];
BM3 [label = "Base measure"];
}
{rank=same
DM [label="Derived measure"];
DM1 [label="Derived measure"];
}
{rank=same
I [label="Indicator"];
}
{rank=min
IN [label="Information need"];
}
}

APPENDIX D
MODELS OF MEASURES

Process/Project (E1)

Timestamps (A1) Time of value transition (A3) Work items (A6)

Duration in time units (BM1) Value transition (BM3) Number of work items (BM6)

Variance (I8)

How variable is the amount of work items in progress?

Fig. 12. Model of measures for the variance of work items.

Process/Project (E1)

Timestamps (A1) Costs (A8) Revenues (A10)

Duration in time units (BM1) Financial costs (BM8) Financial revenues (BM10)

Profit and loss (DM5)

Cost of delay (I11)

What is the cost of delaying the product's release?

Fig. 13. Model of measures for estimating the cost of a delayed release.

Process/Project

Timestamps Time of value transitionWork items

Duration in time units (BM1) Value transition (BM3)Number of work items (BM6)

Throughput (DM1) Cycle time (DM2) Lead time (DM3)

Regression (I2)

How long will it take to deliver?

Fig. 14. Model of measures for delivery estimation.

Product (E2)

Relatedness of source code (A16)

Cohesion and coupling [of multiple modules] (BM16)

Design debt (DM12)

Design debt advice func. (I7)

What is the design debt of the software product?

Fig. 15. Model of measures for design debt.

16

Process/Project (E1)

Time of value transition (A3) [Waste] work items (A6) [Work done] work items (A6) [Investment] work items (A6)

Value transition (BM3) Number of [waste] work items (BM6) Number of [work done] work items (BM6) Number of [investment] work items (BM6)

Inventory (DM6)

Cost model (I12)

Where can we save cost and take work-load off the development process?

Fig. 11. Model of measures for cost savings and work off-loading.

Process/Project (E1)

Time of value transition (A3) Work items (A6)

Value transition (BM3) Number of work items (BM6)

Inventory (DM6)

Relative comparison (I10)

What is the distribution of work items and priorities?

Fig. 16. Model of measures for the distribution of work items and priorities.

Process/Project (E1)

Timestamps (A1) Time of value transition (A3) Work items (A6)

Duration in time units (BM1) Value transition (BM3) Number of work items (BM6)

Cumulative flow diagram (I1)

What is the pace of development?

Burndown chart (I4)

Fig. 17. Model of measures for estimating the pace of work.

Process/Project (E1)

[Many] work items (A6)

Number of work items (BM6)

Rework rate (DM13)

Control chart (I5)

What is the level of output for work items with defects?

Fig. 18. Model of measures for the level of defect output.

Process/Project

Time spent adding value (A4) Time spent not adding value (A5)

Value added time (BM4) Non-value added time (BM5)

Time efficiency (DM7)

Relative comparison (I10)

Is the efficiency of the value stream improved?

Fig. 19. Model of measures for the time efficiency.

Process/Project

Time of value transition (A3)Work items (A6)

Value transition (BM3)Number of work items (BM6)

Capacity (DM4) Inventory (DM6)

Utilization (I6)

Is the software development organization overloaded?

Fig. 20. Model of measures for the organizations utilization.

17

