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Abstract

Smartphones have become crucial enablers for users to exploit online services such
as learning, leisure, communicating, and socializing. The user-perceived quality of
applications and services is an important factor to consider, in order to achieve lean
resource management, to prevent user churn and revenue depletion of service or net-
work providers. This is often studied within the scope of Quality of Experience (QoE),
which has attracted researchers both in academia and industry.

The objective of this thesis is to study the most important factors influencing QoE
on smartphones and synthesize solutions for intervention. The temporal impairments
during a real-time energy-hungry video streaming are studied. The aim is to quantify
the influence of temporal impairments on the user-perceived video QoE at the network
and application level together with energy measurements, and also to propose solutions
to reduce smartphone energy consumption without degrading the user’s QoE on the
smartphone for both user-interactive, e.g., video, and non-interactive cases.

QoE measurements on smartphones are performed throughout in-the-wild user
studies. A set of quantitative Quality of Experience (QoE) assessment tools are im-
plemented and deployed for automatic data logging at the network- and application-
level. Online momentary survey, Experience Sampling Method (ESM) software, and
Day Reconstruction Method (DRM) along weekly face-to-face user interviews are em-
ployed. The subjective QoE is obtained through qualitative feedback including Mean
Opinion Score (MOS) as well as in-situ indications of poor experiences by users. Ad-
ditionally, energy measurements on smartphones are conducted in controlled-lab envi-
ronment with the Monsoon device.

The QoE of smartphone applications and services perceived by users depends on
many factors including anomalies in the network, application, and also the energy con-
sumption. At the network-level, high packet delay variation causes long video freezes
that eventually impact negatively the end-user perceived quality. The freezes can be
quantified as large time gaps in-between the displayed pictures during a video stream
at the application-level. We show that the inter-picture time in cellular-based video
stream can be represented via two-state exponential ON/OFF models. We show mod-
els representing the non-linear relationship between the QoE and the mean inter-picture
time. It is shown that energy measurements help to reveal the temporal impairments in
video stream enabling energy consumption as a QoE indicator. Next, energy waste and
saving during temporal impairments are identified. Additionally, other video streaming
use cases, e.g., “download first and watch later”, are studied and appropriate energy-
saving download scheduling mechanisms are recommended. The possibility for de-
creasing energy consumption when the smartphone screen is OFF, while maintaining
QoE, is presented. We first show exponential models to represent user’s interaction
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with smartphone, then propose a NyxEnergySaver software, to control the cellular-
network interface in a personalized manner to save smartphone energy. According to
our findings, more than 30 % smartphone energy can be saved without impacting the
user-perceived QoE.
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Chapter 1

Introduction

“The greatest energy of movement will be obtained when synchronism is maintained
between the pump impulses and the natural oscillations of the system.” —Nikola Tesla

1.1 Preamble

The computing power grows exponentially as the number of transistors in a dense inte-
grated circuit doubles every two years [1]]. The vast majority of devices and things that
benefit from being connected will be always-connected to Internet. Internet connec-
tivity and access to Internet services have already become a fundamental need to cope
with real life challenges and to contribute to society. Both academia and industry in-
vest to expand the Internet coverage and range of services. For example, “internet.org”
project [2] aims to provide Internet access to critical and ideally to all regions in the
world. Worldwide, in 2020, 50 billions of things are expected to be connected to the
Internet, there will be five billions of mobile broadband subscriptions worldwide [3]].
Improvement of processing power on devices and the growing availability of Internet
connectivity lets high number of small size mobile ubiquitous devices available for
users to launch diverse apps including social networking, instant messaging, and video
conferencing. Given that majority of the applications are cloud-based, this gives rise to
the amount of mobile network-based services and applications, and eventually causes
an exponential growth in Internet traffic. Thus, opportunities (e.g., increased services
and applications) yield more experience, demands, and eventually increase user expec-
tations. In close future, personalized big data, driverless cars, virtual reality, and Inter-
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net of Things will generate an augmented data. In parallel, enormous amounts
of Internet data will create more and various challenges, which have to be managed to
prevent degradation of the quality perceived by the end-user. Thus, connectivity alone
is not sufficient; the delivery of network data needs to be managed as well to assure the
application performance. By 2017, it is forecasted that 85 % of the world’s population
will be covered with 3G-based (i.e., WCDMA/HSDPA) network [3]].

Smartphones are the most popular mobile devices enabling mobile Internet. Ac-
cording to Cisco Visual Networking Index (VNI) [6], globally in 2013, the number of
mobile devices have reached seven billions (with half a billion increase since 2012),
77 % of which are smartphones. Amongst the smartphones, the Android OS has the
market share of 80 % in 2014 [4]]. Average smartphone data traffic in 2013 was 529 MB
per month [5], and it is expected to grow exponentially (reaching 2 GB per month by
2018) particularly due to video streaming traffic. In addition to the connectivity, the
perceived quality of diverse interactive smartphone applications and services have be-
come critical to the user acceptance. The subscribers expect from the applications or
services to provide them the best quality at any context and time. Otherwise, the users
whose quality expectations are not fully satisfied, may give up using the applications or
switch to another network or service provider. In order to prevent the risk of customer
churn, the service/network providers need to consider the user-centric approach, and
assure the user’s expected and perceived quality.

1.2 Introduction to Quality of Experience (QoE)

We define and for mobile computing systems as follows. is defined to
understand the underlying reasons for poor application performance at the technical
level, i.e., mainly focusing on the metrics related to the layers below the transport layer
in the Internet protocol suite. has a larger scope than and it is an emerg-
ing term defined to understand and maximize (or at least maintain) the user-perceived
quality for a particular application or a service [16]. It comprises the complete end-
to-end effects, e.g., from the generation of data till the consumption of it by the user,
of the system. The state-of-the-art underlying technical network-based factors such
as delay often determines the performance of mobile applications. influencing
IQoE] can be critical to the user’s especially for highly interactive multimedia ap-
plications that necessitate very high data rates. [QoS|highly focuses on provider-centric
approach, i.e., based on data as measured at the core network or at the access base
stations to predict the quality of the network level. contributes to [QoE] but is not
sufficient to define it. Studying the end-user perceived quality from various aspects
(e.g., network, application, and energy) and on the end terminals (e.g., smartphones of

2



QoE —

Application Application

P
O
=
(O]
=
LLI

>
=
(O]
Network [«Qo0S—> Network <

Smartphone Server

Figure 1.1: from network, application, and energy perspectives are depicted.

users) in a multi-disciplinary manner is necessary. The evaluation of so far has
mainly focused on an application’s usability, which is evaluated in studies conducted
for a limited time in controlled laboratory environments, under conditions that do not
resemble users’ natural daily environments. The results of such evaluations help to dis-
cover serious and immediate usability issues, but they are unlikely to help in recovering
from issues that are relevant to real-life situations outside the laboratory (e.g., variable
network connectivity).

In this thesis, we study the[QoE|from network, application, and energy perspectives
and also present the inter-relation of the measured metrics as depicted in Figure(l. ]|
Network perspective: In this thesis, we study various definitions of delay jitter in-
cluding the one-way Packet Delay Variation and the Maximal Burst Size
size. One-way packet delay variation is the variation of end-to-end (i.e., between the
streaming server and the terminal) one-way packet delay, which utilizes the timestamps
of packets upon arrival/departure to/from the terminal/streaming server. Maximal Burst
Size (MBY)) is a metric that enables to understand the degree of clumping exhibited by
packets arriving to the terminal. In addition, we study metrics such as Server Response
Time (SRT) (as measured in the application-layer) and Round Trip Time (RTT)), which
are highly influenced by the network conditions. [SRT] is measured in this thesis as
the duration between when the HTTP request is sent from a smartphone to a weather
forecast web server (located in the US), and the HTTP response (with a simple text
data with weather information) is received back to the smartphone. RTTlis the duration
between the ECHO request and ECHO reply messages measured at the smartphone.
Application perspective: In the application-layer, there are many metrics that can be
studied including application’s state like data traffic and the events in the user inter-
face. In this thesis, we consider a set of application-layer metrics such as the duration
in-between the display of the pictures in a video stream, user’s interaction with the user
interface (e.g., touch events, user’s indication), and the running applications.
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Energy perspective: We measure the power consumption of a smartphone and its ap-
plications, e.g., the duration that an application is in a particular state and its energy
consumption for this state. Instantaneous power consumption is defined as the product
of voltage (U) and the current (/) drawn from the smartphone’s battery. In this thesis,
we consider the average power during one second.

Inter-relation between the three perspectives: The power state of a network-based
smartphone application depends on the application state which might be directly influ-
enced by the network conditions. For example, if there is not enough bandwidth, the
delivery of packets to the application gets delayed, which eventually causes interrup-
tions in displaying the content of the packets to the user due to buffer underflow. When
there are no packets to process in the buffer, the power consumption of smartphone
might drop to a lower power level, thus the energy might be wasted during that time
interval. Thus, all the three perspectives are inter-related and in this thesis we research
these inter-relations. Next we summarize the research questions in Section[I.3}

1.3 Research Questions

The research questions (RQ) that are researched within this thesis are itemized as fol-
lows.

e R.Q.1: What is the methodology to assess the user’s[QoE]on a smartphone?
e R.Q.2: What are the most influential factors for the user[QoE]on smartphones?
e R.Q.3: How can the video[QoE]on smartphones be assessed?

— R.Q.3.1: What is the method to assess video in the network-level on

smartphones?
- R.Q.3.2: What is the most indicative packet-level metric for video

- R.Q.3.3: What is the method to assess video[QoE at the application level?
- R.Q.3.4: What is the relationship between the[QoE]and the delay in-between

the displayed pictures, i.e., inter-picture time, on the smartphone screen
during network-based video streaming?

— R.Q.3.5: What is the power consumption pattern during video streaming
application, i.e., how can|QoE]|be revealed in the power level?

— R.Q.3.6: How can the power consumption metric help in developing energy-
efficient assessment tools?
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e R.Q.4: What are the advantages and disadvantages of the external hardware and
internal software energy measurement tools for smartphones?

e R.Q.5: How can the energy consumption be reduced while user is video stream-
ing on the smartphone?

- R.Q.5.1: Is there always a trade-off between the video[QoE] and the energy
consumption on the smartphone? What are the scenarios where the im-
provement in [QoE|and the decrease in energy consumption are correlated?

— R.Q.5.2: What are the tradeoffs (with respect to energy consumption and
IQoE) for real-time network-based video streaming vs. local video stream-
ing, i.e., “download-first-and-watch-later” approach?

— R.Q.5.3: How can multiple file downloads be scheduled to reduce the en-
ergy consumption on the smartphone?

e R.Q.6: How can the smartphone energy consumption be reduced in a simple-
to-deploy user-centric manner, when the user is not interacting with the smart-
phone?

R.Q.6.1: What is the mathematical model for a screen-based smartphone
interaction?

R.Q.6.2: What is the impact of bursty traffic during screen OFF?

R.Q.6.3: How much energy can be saved if smartphone connectivity is con-
trolled based on user behaviour when the screen is OFF?

— R.Q.6.4: How can we extend the OFF duration of the network data module
without degrading the user [QoE}?

1.4 Overview of the Thesis

In this section, the important contents and the flow of the thesis are given. We sum-
marize the content of each chapter in separate sub-sections, and in parallel we present
the inter-relations of chapters. Each subsection includes a figure that summarizes the
corresponding chapter’s motivation, methods, addressed research questions, and the
most important outcomes. Chapter 2 introduces the concepts related to and also
presents the technical background. We start to present our core research work in Chap-
ter 3 of this thesis.
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Figure 1.2: Chapter 3 overview: identifying the influential factors for smartphone QoE.

1.4.1 Identification of Influential Factors on Smartphone QoE

The thesis starts with the identification of the most important factors influencing the
smartphone (Figure[I.Z)). Research questions R.Q.1 and R.Q.2 are addressed. A
software measurement tool, QOE-CSS, is developed and used for collecting both objec-
tive and subjective[QoE|metrics. The objective data comprises autonomously collected
samples from the smartphone sensors and network conditions. Various research meth-
ods such as Experience Sampling Method (ESM), online survey, and Day Reconstruc-
tion Method (DRM)) are employed to collect subjective [QoE]rating data. consists
of user’s Mean Opinion Score (MOS), and data regarding user’s momentary context.
We use two different notions, [MQOS]|and User Rating (UR) throughout the thesis, where
the MOS]is used to address the overall averaged user rating, while the is sampled
more frequently and indicates the instantaneous opinion score of the user (e.g., frequent
user rating during video streaming). The concepts and the definition of the methods are
given in Chapter[2]

Amongst many, the most important influential factors for the end-user perceived
smartphone are identified. The first one is the battery life that might even pre-
vent the user from the usage of the smartphone, as the operation time is limited to the
amount of energy left on the battery. Battery lifetime is defined as the amount of du-
ration a smartphone can run on a single charge for a given usage pattern [8]. Aside
from the economical (e.g., charging mobile devices) or environmental (e.g., CO, foot-
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prints) aspects, the most important expectation for a smartphone relates to its capability
and energy to complete any task requested by its user [67]. The advancements in bat-
tery technology, which enables the applications or services on the mobile devices, stay
rather slow as compared to the recent developments in ubiquitous computing. Conse-
quently, energy consumption of applications on smartphones is a key factor determin-
ing the smartphone

The second factor influencing user’s is related to specifics of video stream-
ing, temporal impairments, e.g., video freezes (or stalling events). Their excessive
occurrence might even prevent users to watch real-time network-based video on the
smartphone. Some examples of temporal impairments are spottiness or occasional
discontinuities in the video playout, which are often caused by unstable end-to-end
network throughput. In parallel, video streaming is also known to be one of the most
energy-consuming applications on smartphones. This is due to its high resource de-
mands such as an active wireless technology interface for downloading data with a
high bitrate, high Central Processing Unit (CPU) utilization to process/decode/ren-
der/adapt high amounts of video content, and an adequately bright Liquid-Crystal Dis-
play screen for displaying the content to the user [99]. In parallel, the energy
consumption of video streaming application is highly influenced by the temporal im-
pairments. Thus, the influence of video freezes on are twofold, (i) video freezes
caused by mobile context and fluctuations of end-to-end network link quality, might
degrade immediately and (ii) video freezes may increase the energy consumption
(due to extended stream duration), thus indirectly influence the long-term on the
smartphone. In this thesis, the inter-relation between the two factors affecting the
is also researched in details.

1.4.2 Temporal Impairments in Video: Packets and Pictures

As explained in the previous section, the [QoE] of video streaming applications may be
low due to the occasional disturbances at network level that manifest themselves at the
application level as stalling events. The study of video streaming starts with the iden-
tification of the network-based influential metrics. First, as a part of the PERIMETER
measurement subsystem implementation [[11]], a user study is conducted to find out
how the delay variation and the bursty video data traffic influences the end user per-
ceived quality during the video streaming on the smartphone. Network measurements,
via objective metrics such as and are obtained from within the smartphone
kernel-level and then matched with the subjective user ratings (e.g., [UR) collected via
We represent the relationship between the[URland the[PDV]and MBS]via power-
law models. The summary of this study is given in Figure[I.3] and the details of the
study is given in Chapter[d} Research questions R.Q.3.1 and R.Q.3.2 are addressed.
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Figure 1.3: Chapter4 overview: identifying video via network-level measure-
ments.

As merely weak correlations were detected in-between the packet-level metrics and
the user perceived quality, it is followed by another user study with the focus on the
application and user interface metrics. To this end, the tool VLQOE is developed to
record and measure the delay in-between the displayed pictures (inter-picture time) on
the smartphone screen, i.e., the user interface. This made possible to obtain direct com-
parison between the user perceived quality (measured via and freezes indicated
by user) and the inter-picture time. We complement the study with additional face-to-
face user interviews and online surveys, and obtained qualitative feedback. There is a
set of outcomes of this study, and the most important one is that the inter-picture time
on the video display can be represented as a two-state ON/OFF exponential model. The
study is summarized in Figure[I.4] and the details are given in Chapter[5] The research
questions R.Q.3.3 and R.Q.3.4 are addressed.

1.4.3 Measuring Energy Consumption on Smartphones

Our research on the smartphone battery life comprises energy measurements on smart-
phones. Existing energy measurement methods are studied, and amongst many tech-
niques, the Monsoon power monitoring tool [170] is chosen and used in the further
energy studies in this thesis. The main reason for choosing the Monsoon power moni-
toring tool is shortly its capability to obtain rigorous power measurements on the smart-
phone, e.g., with 5000 power measurement samples per second. This also helped us to




Chapter 5 Legend

Temporal impairments in Motivation
video streaming Subjective data Methods
RQ.3.34 , _ "ESM(MOS)
i7" -Freeze indications
-User interview -3 >
Ul-level i -User survey Software Tool
measurements H -VLQoE
i _| Objective data A
-Inter-picture time T -
Exponential distribution in inter-picture time User response time for a long
e Via 3G video streaming enables a two state freeze is approximately

ON/OFF modeling for temporal impairments. 1.5 seconds.

Minimum perceived inter-picture

M time for a perceived freeze is
approximately 300ms.

Some users are tolerant
while some users are
impatient to impairments.

Figure 1.4: Chapter 5 overview: identifying video via the application-layer mea-
surements.

study in details (anomalies) of the power consumption for the power-hungry network-
based real-time applications such as video streaming. We have compared measure-
ments obtained via both software- and hardware-based methods. One outcome is that
software-based power measurement tools (e.g., PowerTutor) may not measure accu-
rately the power consumption of devices, they induce a significantly high power over-
head on the running mobile device and low sampling rate. The study is summarized
in Figure[I.5] and further details about the study are given in Chapter|6} The research
question R.Q.4 is addressed in Chapter[6]

1.4.4 Energy Saving Approaches in Video Streaming

We conducted and power measurements during video streaming on the smart-
phone, and eventually propose a set of energy saving approaches. Developing non-
intrusive video assessment tools, particularly to acquire packet-level measure-
ments, are often complex. In addition, continuous probing of the received and trans-
mitted packets induces extra processing overhead on the device, which highly increases
the energy consumption. Towards this aim, the software-based VLQOE tool is utilized
during the energy measurements. This helped to visualize and match the anomalies
in the power consumption (measured via hardware-based Monsoon power monitoring
tool) and the anomalies in the user interface. Anomalies in the user interface are mea-
sured both via subjective freeze indications by the users as well as the objective inter-
picture time metric. This provides smartphone [QoE] researchers to consider the power
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Figure 1.5: Chapter 6 overview: choosing the suitable tool to conduct energy measure-
ments on the smartphone.

fluctuations as an indicative metric, in the design and implementation of assess-
ment tools. If a built-in light-weight battery sensor is available on smartphones, then
the energy measurements can be integrated into the assessment framework. We
present that, specific measurement settings can reveal the anomalies at the video user
interface, e.g., freezes. Therefore, utilizing the power sensors on the smartphones and
utilizing them into energy-efficient and rather simple[QoE]assessment tools is practical.
For example, instead of continuous probing on all metrics, power data collected
by the sensors can pinpoint the anomalies in the power consumption, and only if po-
tential drop is detected, it can then start the detailed investigation process on the
network layer.

In addition, the temporal anomalies in the user interface typically manifest them-
selves as reduced power consumption due to the adaptive behavior of the system, i.e.,
releasing the radio data resources, e.g., fast dormancy, when there is no data activity,
of the real-time video streaming mechanisms such as in HTTP Live Streaming (HLS).
However, during the video streaming, the total power consumption is not reduced com-
pletely down to zero, as the LCD display is still ON and the [CPU] remains active for a
particular duration. During this time interval the energy is “wasted”, given that the user
might wait for the video to resume playing again. This behavior causes the energy con-
sumption to increase with the increased video streaming session duration. Therefore,
better management of specific metrics can lead to less interrupted video sessions,
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e.g., less stalling events. Therefore, accurate [QoS| metrics eventually yield less energy
consumption due to the reduced time to complete the requested task, e.g., shorter video
sessions. Furthermore, the amount of energy saving depends on the user behaviour,
e.g., whether the user gives up watching a video after a long freeze, or s/he keeps calm
expecting that the video starts streaming back again.

We also study the influence of the freezes on the power consumption with dif-
ferent scenarios. For instance in case of a Transport Control Protocol (TCP)-based
video stream, if the network performance is poor, there are often freezes due to re-
transmission delays. In this case, the video content is not skipped, thus there is no
picture jump. In parallel, if it is a User Datagram Protocol (UDP)-based video, then
occasional picture jumps might be experienced as there is no re-transmission mecha-
nism. Thus, in case of a temporal impairment on the video stream and assuming that
the user watches the video until the end, the video streaming duration increases if it is
[TCPlbased, but is unchanged if it is a[UDP}based video stream. This study enables to
gain insight on the energy consumption for different scenarios as well as is helping to
develop approaches on leveraging power consumption patterns for [QoE] management.

We compare the real-time mobile cellular-based video stream and the local-based
video stream from the energy consumption perspective. In the case when there are
multiple files to be pre-downloaded via the 3G wireless access network, we propose
approaches to save energy on the smartphone. We research a use case in which the
user downloads multiple large size files, e.g., multimedia podcasts to a smartphone,
when there is reliable Internet connectivity, and consumes them later, e.g. while trav-
eling on the train. We conducted a study to understand how the downloads should be
performed to save the battery. A set of controlled experiments are conducted which
comprise simultaneous (i.e., in parallel manner) and sequential (i.e., in serial manner)
file downloading consisting of various sizes (e.g., 10 KB to 20 MB). We present that
scheduling the downloads save energy on the smartphone, as compared to downloading
them individually (one by one) over a period of time. Eventually, a set of suggestions
is provided based on different volumes of data activities, and regarding how the data
activities should be scheduled. The study on power consumption measurements, and
approaches for energy saving during video streaming are summarized in Figure[I.6
The details of the study is given in Chapter[7] Research questions R.Q.3.3, R.Q.3.4,
R.Q.3.5,R.Q.3.6, and R.Q.5 are addressed in Chapter[7]

1.4.5 Energy Saving When User is Not Interactive

Video streaming is used actively by smartphone users in real time, and contributes to
high portion of energy consumption on a device. However, the energy consumption of
a smartphone is also significant when it is not being used actively, e.g. when the smart-

11




Chapter 1. Introduction

Chapter 7 . regend

e Tooi Motivation

Igmpoiai impairiments in 4 M th
video streaming MonAsoon

R.Q.SVR.Q.3.3-3.6 :

Saving energy in __ Revealing _, Application level Objective dat? n Power

video streaming anomalies . measurements -Power consumption™ measurements
Schedule file | > Subjective data
downloading -Freeze indications

"> Software Tooi
Appiication ievei -..» "VLQOE

Objective data
measurements

-Inter-picture time

>

i Objective data
‘> -File download
duration

Abnormal fluctuations in Depending on the transport
power consumption reveal protocol during video
the anomalies in QoE streaming, energy can be
wasted or saved.

For smoothing Monsoon measurement data,
1.5 s (7500 data points) is the most
suitable window size to reveal video freezes
at the user interface

Local video streaming is 750mW
less power consuming
as compared to 3G-based streaming

Scheduling multiple large file For large file downloads, serial or
downloading saves energy hybrid scheduling is suggested.
as compared to individual For small file downloads, parallel

independent downloads scheduling is suggested.
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Figure 1.7: Chapter 8 overview: Increasing the smartphone energy saving when there
is no user interaction.

phone screen is OFF. Thus, we further synthesize a set of solutions to increase energy
savings and indirectly the long-term[QoE] while maintaining the short-term[QoE] Dif-
ferently from the previous studies, it has been studied whether the user-smartphone
interaction models obtained from the user studies can help to suggest directions for
‘intervention’, i.e., QoE-based energy-efficiency on the smartphone. The first solution
comprises a software solution powered by a smartphone tool that provides context-
aware energy saving on the smartphone. One of the most power consuming compo-
nents on the smartphone is the cellular data module. The smartphones are usually
running various cloud-based applications and services that demand Internet access for
keeping synchronized with the most up-to-date information. Therefore, the data activi-
ties of smartphone applications cause the wireless access network interface, e.g. 3G, to
oscillate in-between ACTIVE and IDLE states. The cloud-based applications on smart-
phones execute the data activities independently from each other, thus the number of
asynchronous data activities increase with the number of installed/running cloud-based
applications. Applications might run advertisements (e.g., banners) or background ser-
vices to send user-specific data to other apps or websites, which in parallel highly
increases the application’s network data traffic. Involuntary data activities of a smart-
phone are also not desired by the users. One reason is that it might lead to undesired
high data rates being charged by the operator (assuming that the data plan is different
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from ‘flat rate’, i.e., billing is dependent on the data usage). In addition, there are also
some users who do not desire to be notified and interrupted by the application updates
while they do not interact with the phone [196]]. Therefore, controlling the network
data activities on a smartphone when the user is not interacting with them is necessary.
However, this needs to be done without degrading the user [QoE] perceived for the ap-
plications. We research a non-intrusive and rather simple energy-saving approach. Our
solution consists of a light-weight algorithm (i.e., a user-centric sledgehammer algo-
rithm), which controls the cellular data module (switches it ON/OFF) when the user is
not actively interacting with the smartphone. This is done by first studying the statis-
tical user model, i.e., smartphone-user screen interaction patterns (screen state changes
on the smartphone), while the smartphone is being used in daily life in the user’s natu-
ral environments. Having the user’s individual models, energy saving can be achieved
without degrading the user perceived [QoE]

Preventing the data activities by switching OFF the cellular data module and switch-
ing it ON at particular intervals might have some drawbacks. Enabling bursty data
traffic from all applications and service data traffic is beneficial from the energy sav-
ing aspect, but it might add extra latency due to interference and congestion.
We discuss this use case by considering the download time and energy measurements
obtained in Chapter[7] The measurements obtained while downloading files in paral-
lel or in sequential manner with small file sizes help to understand the consequences
(w.r.t. energy and download time perspectives) of bursty traffic caused by multiple but
small-sized (e.g., 10 KB to 500 KB) data activities. We concluded that the bursty (i.e.,
simultaneous) traffic is in fact yielding less download time and energy consumption
as compared to the scenario with asynchronous or sequential downloads. The sum-
mary of the study is given in Figure[I.7} and the details regarding the study are given
in Chapter[8] Research question R.Q.6 is addressed in Chapter[3]

1.4.6 Summary

The complete flow of the thesis is explained, and the superposition of each chapter and
study are given in Figure[I.8] There are in total nine chapters in this thesis.

1.5 Research Methods

Various research methods are used in this thesis. We first describe each of the methods
in details, and categorize them based on the corresponding sampling rate, the type of
collected data (e.g., objective or subjective) and the data collection context, i.e., in a
controlled lab, or in a user’s natural daily life setting (i.e., “in-the-wild).
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1.5.1 In-the-wild Smartphone User Studies

The preferred experimental setting of Human Computer Interaction studies is in
user’s daily life environments, i.e., “in-the-wild”, because a controlled lab setting can
not fully represent the context of the user (e.g., natural user behavior might change in
a lab [22]]), and the natural environment (e.g., mobility, location). To acquire the real
life data, a software with particular technical configurations (depending on the goal
of the study), is employed on users own smartphones for some period of time (e.g., a
week, a month, or more). The challenge is the lack of design guidelines for in-the-wild
smartphone-based user studies, as we research and present in [251]).

1.5.2 Collection of Subjective Data

Qualitative data helps much to understand the context of the collected data [178]]. In
the sequel, we explain how the subjective data is collected in this thesis.

Online Survey

An online survey enables collecting both subjective quantitative and qualitative data,
and identifying the user background and demographics. They are collected only once
prior to the start of user studies while the users are in their natural daily life settings
(e.g., at home, in the office). Various online surveys are prepared and provided to the
participants with different goals in different studies in this thesis.

User Interviews and Day Reconstruction Method (DRM))

User interview is a research technique enabling to collect qualitative data from the users
that are involved in the user study. The collected data is often collected via face-to-face
interviews in the lab. It typically helps to obtain information regarding the subject
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background, occupation, and the use of technology before the start of a new user study.
In our studies, in addition to those items, the user opinions on the smartphones and
details regarding the previous experiences with the smartphone and the [QoE]in general
are collected. In long and large-scale user studies, the user interviews can also be
conducted in a periodic manner, e.g., weekly, during the running study. This helps to
validate the collected objective and subjective data, and to confirm it with the users.

During the user interviews, we employed [111] that is a method to help
users to provide an opinion on the last 24 hours, while pinpointing the emotions (e.g.,
delightful or annoying moments) and experiences with respect to the phenomena at
each recalled activity, e.g., video streaming on YouTube, video conferencing on Skype,
walking in the street with Google Maps [75]. The reason for limiting it to 24 hours
is to minimize the memory effect [191] (e.g., serial position effect, primacy/recency
effect), or the fading effect [[192] (e.g., user might over- or under-estimate the effects
or emotions in a long-term).

Experience Sampling Method (ESM)

Traditional assessments are often performed in the form of post-view subjective
scores. In other words, for a video assessment for instance, the users are asked
to watch a particular video and then rate the overall perceived quality after the video
ends. However, for long duration videos, this kind of post-view based assessment
may not capture the instantaneous (momentary) quality changes (but rather averaged
results), which eventually does not capture critical impairments or fluctuations. In
order to capture the in-situ experiences in a more frequent manner, another method
called ESMl is used. [ESM]is a research method that is used to assess phenomena at
the time they occur, from the human perspective, in order to maximize the validity
of the data [|65] [66]. Lutille etal.in [65]] claimed that the best time to ask the user
about the preferences and/or the user needs is in the midst of the actual activity being
closely inspected. This method can be used to identify the most critical moments for
the [QoE] user experiences. This helps to identify the end-user perceived quality on spot
in ad-hoc manner, while delivering the service to the user, and to relate it to factors
influencing it. The collection of data via software-based questionnaire is performed in
user’s natural daily environment (in-the-wild) approximately no more than ten times
a day, each lasting no more than two minutes [20]. The collected data is of highly
subjective nature.
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Mean Opinion Score (MOS)

In evaluation of subjective factors, the user perceptions are represented by nu-
merical values. Table[I.T] depicts a single stimulus Absolute Category Rating (ACR)
method with five-grade Mean Opinion Score scale [30]. The user-perceived
quality is translated into numbers ranging from 1 to 5. Although some drawbacks exist
for[MOS] (e.g., smoothing/averaging out the ratings given by the individual user), it is
commonly used in subjective assessment of the user-perceived quality.

Table 1.1: ITU-T scale of media quality impairment, also referred to as User Rating

(TRYD.

Scale 5 4 3 2 1
Quality | Excellent | Good | Fair | Poor | Bad

1.5.3 Collection of Objective Data
Autonomous Logging

Various autonomous software logger tools have been developed and used to address
the research questions of this thesis. The common characteristics of the tools are
that they collect objective data from the network, application, and available sensors
on smartphones. The sampling rate is varying in-between the tools, typically in the or-
der of minutes. The developed tools are listed as QoE-CSS (Chapter 3), PERIMETER
measurement subsystem (Chapter 4), VLQoE (Chapter 5), DownloadTrainCatcher and
IOVidEoQ (Chapter 7), and NyxEnergySaver (Chapter 8). The data is collected both
in-the-wild and in the lab. The tools contributed to different studies, and they will be
described in more details in corresponding chapters. The user studies with PERIME-
TER, VLQoE, DownloadTrainCatcher, and IOVidEoQ tools are conducted on the same
unique smartphone (as some functionalities necessitate root access); and the studies
conducted with QoE-CSS and NyxEnergySaver are employed on users’ own smart-
phones.

Power Measurements

We have used Monsoon power tool [170] for all energy measurements in various stud-
ies in this thesis. The Monsoon power monitor device contains the power monitor
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hardware and the power tool software, running on Windows XP and Seven, which can
provide robust measurements on any device that uses a single Lithium (Li) battery. The
measurements are obtained and can be saved with a sampling rate of 5kHz. The tool
supplies the power to the device, thus the device battery is bypassed. The Monsoon ex-
ternal power-monitoring device is typically used for ground-truth measurements [|170].
Further comparison between an internal software tool PowerTutor and the external
Monsoon power monitoring tool are presented in Chapter[6] in order to motivate the
choice of Monsoon power monitoring tool.

In Fig.[1.9] the research methods used in this thesis are categorized with respect to
their usage for objective or subjective data collection as well as the periodicity of data
collection.
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Figure 1.9: Research methods used in this thesis

1.6 Main Contributions

There are in total eight main contributions in this thesis, and they are itemized below.
The research questions that each contribution addresses are given.

e C.1: For the first time, we thoroughly explore the area of smartphone QoE in re-
lation to the energy consumption. This contribution addresses R.Q.1 and R.Q.2,

e C.2: We present a novel methodology to assess user-perceived QoE in-the-wild
from the applications on the smartphone. This contribution addresses R.Q.1,

e C.3: For the first time, we show through qualitative research that the energy
consumption on smartphones is one of the most influential factors on QoE. This
contribution addresses R.Q.2,
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o C.4: We developed new tools, focusing on different layers of the network stack,
to assess video QoE on the smartphone in-the-wild. This contribution addresses
R.Q.3,

e C.5: We perform extensive QoE and energy measurements both on users smart-
phones in-the-wild as well as controlled measurements in the lab, and provide
empirical data. This contribution addresses all of the research questions,

e C.6: We study models of user QoE based on user interaction, and performance
of application and network. This contribution addresses R.Q.2, R.Q.3, R.Q.5,
and R.Q.6,

e C.7: In contrast to the complex technical solutions in the literature, we provide
rather simple user-centric algorithms for saving energy on smartphones. This
contribution addresses R.Q.6,

o C.8: We show that the energy saving on the smartphone is possible with rather
simple technical solutions while maintaining the user QoE via leveraging our
models. This contribution addresses R.Q.5 and R.Q.6.

1.7 Thesis Outline

This Ph.D. thesis is organized in the form of a monograph based on a set of peer-
reviewed and/or published papers since 2010. This thesis is structured as follows.
In Chapter[2] the concepts such as assessment methods, video streaming, and
existing energy consumption measurement methods are introduced. Comprehensive
technical background information is given concerning the above items. In Chapter[3] a
set of most important influential factors on[QoE]on Android OS smartphone are given
in details. In Chapterfd] the study to identify the influence of network-level metrics
such as packet delay variation on the smartphone video is presented. Another
user study on smartphone-based video with the focus on metrics captured in the
user interface is given in Chapter[5] In Chapter[6] the advantages and shortcomings of
a set of software-based and hardware-based power measurement tools for smartphones
are presented. The accurate choice of a power tool later helps to reveal the anomalies in
(e.g., video freezes and corresponding low user ratings) with the anomalies in the
power measurements. In Chapter[7] the results from the power consumption for various
video streaming scenarios are presented. Extensive experiments are conducted both
for real-time video streaming and local-based video offline streaming, i.e., “download-
and-watch-later”. The relation in-between the [QoE]and the energy consumption on the
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smartphone are discussed both from the traditional tradeoff and also from the win-win
aspects. Some approaches to save energy during video streaming, when the smartphone
is actively used by user, is proposed. In Chapter[8] we present approaches to save
energy when the smartphone is not actively used, e.g., when smartphone screen is OFF.
An easy-to-deploy and rather simple algorithm is presented enabling to save energy on
smartphone without degrading user perceived quality while the smartphone screen is
OFF. We also confirmed with the results from Chapter([7] that the scheduling small-size
application network data activities in parallel, and forcing them to be performed within
bursty traffic at a later time does not negatively impact the download duration during
the bursty intervals. In Chapter[J] the thesis is concluded by summarizing the main
contributions, and presenting the future directions.
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Chapter 2

Concepts and Technical
Background

“In theory, theory and practice are the same. In practice, they are not.”—Albert Einstein

2.1 Introduction

In this chapter, the concepts and the technical background are given related to two
core items: Quality of Experience (QoE) and energy consumption on smartphones.
We briefly discuss mobile devices and applications running on them in Section[2.2]
We present the and definitions in Section[2.3] Section[2.4] focuses on video
streaming, and the application-layer protocols, together with the influential metrics on
the video The related work on the temporal impairments in video streaming are
given in Section[2.5] The state-of-the-art on the standardization in the area is given
in Section [2.6] The existing [QoE| measurement methodologies are presented in Sec-
tion2.7] Some related work on the existing video management mechanisms are
given in Section[2.8] In Section[2.9] we explain energy consumption on smartphone,
review a set of state-of-the-art energy/performance tradeoffs, and then elaborate on the
energy consumption’s crucial role on the [QoE] In Section[2.10] we review the existing
smartphone energy measurement tools, and also present related work on energy-saving
approaches on the smartphone. In Section[2.11] we review the related work on the user
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interaction with the smartphone screen, as well as the influence of the energy consump-
tion on the user behaviour. Section[2.12] summarizes the chapter.

2.2 Mobile Devices and Applications

2.2.1 Network, Application, and Energy Perspectives

Mobile devices are different from the fixed PCs and laptops in many aspects. They have
limited screen size and the right content (minimum and most important information
rather than the full content, e.g., as a thumbnail) has to be presented to the user at
the right time without high delay [13]]. Context is defined as “any information that
can be used to characterize the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and an application,
including the user and application themselves” [14]. The mobile devices are used
in diverse contexts and locations, thus the user may be highly interrupted by external
events, and sometimes it is necessary that the content and the task at hand have to be
completed as quickly as possible before the user switches her attention or before her
context switches.

Mobile device characteristics are many, therefore including their location aware-
ness, high dependency on network connectivity, its performance, limited device ca-
pabilities such as battery, and support for a wide variety of user interfaces and plat-
forms [[19]]. There are many types of mobile devices in the market, thus the variation of
hardware components and characteristics including screen size, sensor type and reso-
lutions, user input method (e.g., non-keyboard gestures, swype, touch, or pinch), might
be a challenge for testing [13]], i.e., adapting the application to any mobile device. Thus,
the diverse characteristics of mobile devices make the mobile application testing com-
plex and difficult to perform. Additionally, the costs of the dataplan (associated with
a subscription) of smartphones can influence the user QoE, thus the data consump-
tion of devices need to be evaluated in detail. There is variable network throughput
which might highly influence the network-based application performance, e.g., real-
time video streaming apps, browsers, thus, testing efforts need to consider correspond-
ing solutions to maintain user QoE in such undesired situations. Availability of network
is another common problem as there might be locations with limited mobile connectiv-
ity, or for some reason a person may not have a cellular data plan and find her/himself
in a place without a WiFi access. Furthermore, the apps should also be tested along
with the functionality of other existing apps in a mobile device. For example, what
happens when a user is using an application, and she receives a call, or a text message?
How is the application being handled?
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Another challenge could be an operating system being open-source, thus being less
costly, or enabling access to low-level objects in the operating system. Identifying the
root causes of malfunctions and bugs in mobile apps can sometimes be very difficult,
thus considerable efforts must be put to replicate the exact scenarios that cause these
bugs. Such examples include e.g., pinpointing the precise root cause for privacy or
security violations. For example, recent studies of the Android and iPhone platforms
discovered that some apps transmit user data undesirably to third-party advertisement
servers. This behaviour has also drawbacks in terms of usage of smartphone resources
such as bandwidth and energy [17]. In [62], it is stated that it is indeed challenging to
test the correctness of a software on mobile devices. Testing all combinations of soft-
ware and hardware, which is referred to as combinatorial explosion in [|63]], is described
as impractical.

Additionally, one of the most common challenges is to represent the user’s experi-
ence in real-world as the applications are often developed in labs or offices. There is
often a lack of context-aware testing tools that handle context-aware features. There
exists also a tradeoff between the accuracy and the scalability of mobile applications.
On one hand, it is required for apps to be scalable to any incremental features that
are able to adapt to any environment, and functional premises. On the other hand, it
is hard to test the accuracy of all enhanced components of the application after each
adaptation.

2.2.2 Infrastructure Perspective

Mobile applications are being developed at various points in the whole system includ-
ing front-end devices and also on the backend servers. Thus, the infrastructure of the
system, i.e., the communication protocol between the server and the application or the
application server capacity, might also play a crucial role on the overall application
performance. A holistic approach on the development and comprehensive tests that
involve both front-end, back-end and intermediate interfaces might be necessary to be
performed before releasing network-based applications. The lack of complete mobile
application quality testing on different aspects (due to the aforementioned challenges)
results in poorly perceived application performance.

One of the acceptable and accurate ways of testing application performance is by
assessing the user experience via collecting direct feedback from the users. However,
the challenge is that the user experience is highly subjective, thus to obtain a general
IQoE] model that fits every user is difficult.

As can be seen, the mobile application quality spans over many domains. We dis-
cuss only a set of smartphone-based issues related to the network, application, and
energy in this thesis, which might be beneficial both for operators and application de-
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velopers to consider to improve perceived quality of applications and services provided
to users.

2.3 [QoS|and [QoE]| Definitions

is the ability of a network to provide an assured service level with the focus on
parameters that exist in network and application level [68]], [239]. [QoS[s main objec-
tive is to prioritize particular data packets on the network, so that each service quality
meets the expectations depending on the needs and Service Level Agreement (SLA).
The diagnosis is often performed based on network-level measurements with techni-
cal metrics such as bandwidth, packet loss, packet delay, or packet delay variation.
The ITU-T recommendation E.800 [24] defines as “the collective effect of ser-
vice performance, which determines the degree of satisfaction of a user of the service”.
This definition assumes that the user-perceived quality is increasing with the better
underlying technical performance. It is also limited with “acceptance of a service”,
which does not go beyond such as “delightfulness” or “annoyance”. For example,
probing and relying on individual technical measures, e.g., the Key Performance In-
dicators (KPI), can quantify performance degradation on the network level, however,
they do not fully describe the user-perceived quality. European Telecommunication
Standards Institute defines the challenge as “meeting customer’s quality
expectations, and providing availability and reliability, while maintaining the network
operator’s flexibility to new technology” [118]].

As seen from the network perspective, the implication and the importance of
have evolved over the years from end-to-end since alone was not powerful
enough to express the perceived quality in a communication service [[15[]. Therefore,
the user-centric [QoE] has overtaken the role of network-centric by increasing the
importance of user-perceived quality instead of technical performance of the overall
service. Mobile Network Operators (MNO)’s have already begun to conduct
studies to diagnose the potential problems in advance and to minimize the rejected
communication service products by customers in the market [68]], [241]].

In Figure[2.1] the difference between the and is sketched. depends
on many factors related to user, technical, context, as well as business and economical
perspectives, while the[QoS|only focuses on the network perspective. In the evaluation
of [QoE] technical groups focus on network and service performance based on QoS
models; business groups focus on the revenue, cost, and customer churn rate based on
economical models; and the social scientists emphasize as happiness, and relate
it to experiences [21]. These studies in different domains are highly inter-related with
each other.
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Figure 2.1: [QoE]is a function of many potential factors.

There are a set of definitions of In the DSL forum in 2006, [QoE]is defined as
“a measure of end-to-end performance at the services level from the user perspective
and an indication of how well the system meets the users needs.” [250]]. The Interna-
tional Telecommunication Union Telecommunication Standardization Sector (ITU-T)
defines with the focus on user as “The overall acceptability of an application or
service, as perceived subjectively by the end-user” [16]]. In [23], [QoE]is described as
“a measure of user performance based on objective and subjective psychological mea-
sures of using a service or product”. Most recently in the Qualinet (COST Action IC
1003) white paper [13]l, a successor [QoE] definition has been stated, “ The degree of
delight or annoyance of the user of an application or a service. It results from the ful-
fillment of his or her expectations with respect to the utility and / or enjoyment of the
application or service in the light of the user’s personality and current state”. Despite
all the aforementioned definitions of it is claimed that there is still a lack of a
solid theoretical and practical [QoE] framework [[15]].

According to Kilkki [21]], the quality ecosystem model for consists of end
users with diverse roles. The ecosystem is identified where the person is categorized as
customer, user, or a group member. A holistic framework in [28] proposes that the net-
work efficiency, user acceptance, and the technical perspectives are corners of a
triangle. Khalil eral. [25] describes the model in a communication ecosystem
that can adapt to many specific contexts and integrated cross-domains such as technical
aspects, business models, and human behaviour into one framework. The ecosystem
is defined as the systematic interaction of human, technology, and business in partic-
ular context. The definition includes all human subjective and objective quality
expectations and experiences during interaction of a person with technology and with
business entities.
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The main characteristics of is that it is subjective, user-centric, holistic, and
multi-dimensional. Therefore, it is highly susceptible to the influential factors such as
user context, location, content, together with the technical metrics. The definition
of influence factor on is stated in [15] as “any characteristic of a user, system,
service, application, or context whose actual state or setting that may have influence on
the [QoE] of the user”. It can be grouped into Human Influential Factor ([E), System[IE.
and Context[[H and they are studied in details in this thesis.

In modeling the usage of pervasive technology and the user’s Jaroucheh
etal. [103] have emphasized the importance of considering the historical and the cur-
rent user context and the flexibility of user behaviour. Similarly, according to Has-
senzahl etal. [1035], some influential factors on the user experience are stated such as
the user’s internal state, the characteristics of the designed system, the context within
which the interaction occurs, and the meaningfulness of the activity. Based on the sur-
vey results, Korhonen efal. [104] concluded that the mobile device, task at hand, and
social context are the most influential factors of a user’s Park etal. [106] indi-
cated usability and usefulness; Shin etal. [107] added enjoyment and network access
quality as the factors influencing

2.4 Video Streaming

In this section, we emphasize on the network-based video streaming application. First,
the IP packets with the media content are downloaded via the network link from the
destination. Then the downloaded packets are processed, rendered, and presented as
the video content to the user on the device display. The processes can be performed
either sequentially or in parallel based on the type of video streaming, e.g., progres-
sive downloading, download-and-watch-later, real-time streaming. During this pro-
cess, there exists signaling traffic between the source and the consumer video player in
various levels at the network stack. The video download patterns depend on, amongst
many other factors, the link type, e.g., 3rd Generation (3G) or Wireless Fidelity (WiFi),
the smartphone type, the video player, and the application-layer protocol.

2.4.1 Application-layer Protocols

Video clips on mobile terminals are often streamed via two main application layer
protocols: Real Time Streaming Protocol (RTSP) [122] or Hypertext Transfer Proto-
col (HTTP) [123]. The [RTSPlvideo streaming is mainly based on the unreliable
transport protocol. The data packets are sent from the server to the smartphone as they
are generated by the video/audio codec [124]]. The flow control is done by the
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in the application layer with periodic control messages being sent from the client to the
streaming server. is implemented for live multimedia streaming. On the other
hand, the [HTTP] video stream is based on the reliable [TCP] transport protocol and the
packets arrive at the client (e.g., the sink) in segments. The size of the segments de-
pends on the available bandwidth and vary with the window size of the packets,
which in turn influenced by [RTT] and Bandwidth Delay Product (BDP) [[125]. [HTTPI
streaming is used for multimedia streaming and it commonly works based on progres-
sive download, i.e., the video is downloaded from a webserver and temporarily stored
at the cache of end-user device and then displayed on the screen. The characteristics of
each protocol with respect to the network layer, e.g., burst size and burst duration, are
hypothesized as different, and this difference is expected to influence the application
performance, and eventually the end-user perceived [QoE]

2.4.2 Video Streaming Application Mechanism

A typical sketch that summarizes the network-based video streaming mechanism is
given in Fig.2.2] In the figure, a constant video playout buffer is assumed. There is a
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Figure 2.2: Illustration of the video playout and variables.

delay in-between when the video packets are departed from the source (video server),
and when they are received over the network on the other end (player). There is also
an extra delay between the times when the packet is arrived to the receiving end (i.e.,
video player or consumer), and the time when the packet is consumed by the video
player (i.e., rendered and displayed on the video screen). In the figure, a high jitter

27




Chapter 2. Concepts and Technical Background

is depicted, (i.e., deviation of the delay between the time when the packets are sent
from the server and received at the video player). This causes the content of the video
playback buffer to starve, and buffer to be emptied (in the case of very high delay). The
latter case causes picture freezes. There are low and high water marks that indicate the
status of the video playout buffer, which is used in adaptation of the link throughput
based on the video playout in order to prevent buffer over-/under flow in advance. For
example, when the buffer gets highly overloaded in RTSPlbased video streaming, the
video player might send back to the server a signal indicating to reduce the sending
rate of packets. This also holds for the opposite case; when the buffer content becomes
too low, it sends signal to the server to speed up sending video packets.

2.5 Temporal Impairments in Video Streaming

The video quality perceived by the end user is highly susceptible to the discontinuity
such as stalling events (or a freeze) in the video. A freeze is highly depending on
the human perception [114], and is recognized when the next picture in the video
is not displayed within the duration expected by the user. This highly depends on
metrics in the network layer including the throughput (i.e., received bits per second),
as well as on crucial factors in the application such as the video playout buffer. If the
size of the video playout buffer is too small, then it is highly probable that the buffer
will be emptied (i.e., the video packets will be consumed by the video player), which
eventually causes a freeze in the playout. Thus, large video playout buffers help to
reduce the frequency of discontinuities (provide smooth video playout), on the other
hand they are costly (in terms of space and computation) and also not applicable to real-
time streaming. This is simply because there will be extra buffer delay while presenting
the video content to the user. According to Bang etal. [129], [TCPl generally provides
good streaming performance, when the achievable [TCP| throughput is roughly twice
the media bitrate. However, it is also important to quantify a “good performance” from
the user perspective based on measurement layers of the network stack.

There are multiple performance indicators to consider while assessing the of
a particular service. The influential factors for the [QoE]of the video streaming applica-
tion in Internet are categorized in four categories: context (environment, social/cultural
background, purpose of using the service), user (expectations of user, memory and re-
cency effects, usage history), system (transmission network, devices, screens, video
buffering strategies), and content level (video codec, format, resolution, duration, con-
tent, type, motion pattern) [126]] [[128].

The frame rate, i.e., the periodicity of the displayed video pictures on the screen,
and the network bandwidth are important influential factors on the video [130]
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[131]]. Yang eral. [132] and Quan eral. [133] studied the frame rate metric, i.e., the
number of displayed pictures per second, to quantify jerkiness during video stream-
ing. The results are obtained via fixed computer-based testbed within standardized lab
environments. It is clear from the results that the increases with the frame rate.
An exponential model is suggested in-between the jerkiness of a video and the frame
rate per second. Hossfeld eral. [[115]] studied the influence of a stalling event, namely
picture freeze, on the end-user perceived [QoE] by user opinion score ratings on the five-
level [ACRIscale, yielding MOS, while considering the freeze duration and the number
of their occurrences. The authors concluded that the stalling of video stream impacts
the video experience of the user independent of the actual video characteristics [[115].
Another outcome of the same study was that based on the exponential mapping
functions to the stalling frequency and the durations, one freeze with two seconds dura-
tion within a 30 s-long video clip maps to a[MOS] value 3 in desktop settings. Despite,
further studies on smartphone settings and with longer video clips without any restric-
tions of video length need to be studied to obtain more reliable models. In addition,
the distribution of the freezes in a video is often not uniform, thus a varying number of
freezes with varying lengths would yield a much more realistic scenario. Van Kester
etal. [135] have investigated the average end-user perceived[QoE](via five-level[MOS)
on 20 seconds long video sources based on the number of freezes and concluded that
the acceptable freeze duration > 3.5) is 360 milliseconds, and they noted that
the frequency of the freezes must also be taken into consideration in [QoE] assessment.
In addition, no significant difference in the video was observed between when
the video is stopped with or without skipped frames. Zinner etal. [139] stated that
the Structural Similarity Index Model (SSIM)) can be used to quantify the influence of
packet loss on the while the Peak Signal-to-Noise Ratio (PSNR)) can not. Fur-
thermore, by using the authors also showed that a low-resolution video with
smooth playout obtain high[QoE]as compared to a high resolution video with disturbed
playout showing the very high influence of stalling events on the related to the
“Provisioning-Delivery Hysteresis” [140].

One other important influential factor on the end-user perceived video quality re-
lated to temporal impairment is the initial waiting time [201]], which is defined as the
time gap between when the request is issued and when the request is sufficiently vis-
ible to the user. In [49]], a logarithmic relationship between the [QoS| and has
been presented. The characteristics of the logarithmic function is that if the stimuli
is increased by a factor of &, then its influence on the function is additive. Thus, the
influence in the change of impairment on the [MOSlis highly depending on the current
state of the impairment. The number and the duration of delays, for web browsing and
[HTTP video streaming have been studied in [136], and the authors have presented a
logarithmic relationship between the waiting time and the[QoE} The authors stated that
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the longer the waiting time, the less satisfied the user becomes. The location of waiting
time, e.g., before/after the video has started displaying, is important as such. Hossfeld
etal. [[126] showed that initial delays before the video has started has no severe impact
on[QoE)

In this thesis, the user experiments are conducted via video streaming sessions on
the user devices. As there is no particular and ground-truth methodology to assess
real-time video[QoE]on a smartphone, we develop our own tools and methodology and
conduct comprehensive user studies.

2.6 Standardisation Groups in Video

There are also organizations such as the Video Quality Expert Group [43]
[44] that bring together the experts from industry, academia, government organiza-
tions, e.g., the International Telecommunication Union ([TU)), and Standard Develop-
ing Organizations (SDO), with the goal to advance the field of video quality of televi-
sion and multimedia applications. [VQEG]| not only performs subjective video quality
experiments, but also validates the objective video quality models and develops new
techniques. Eventually, detailed test plans for evaluating in a subjective way are
provided by this organization. [[TU]involves in itself study groups such as SG9, SG12,
and the Joint Rapporteur’s Group on Multimedia Quality Assessment
that studied the requirements and assessment methods for multimedia ser-
vices [283]. Again within the ITU, the Focus Group on IPTV studies the
relationship between and with the focus on requirements, traffic man-
agement mechanisms, application layer reliability solutions, and performance monitor-
ing for IPTV services.

2.7 YVideo QoE Assessment

This thesis focuses mainly on the video streaming application for the smartphone; thus,
we present a set of state-of-the-art objective and subject assessment methods in Sec-
tions[2.7.1] and respectively. The summary of all methods and standards used
in assessments are summarized in Table[2.I] In the table, the assessment
methods are classified based on their characteristics such as being “objective” or “sub-
jective” (as presented in the first column) as well as their stack level (as presented in the
second column). The parameters that are being studied in each class are presented in
the third column of the table. The corresponding methods and the standards are given
together with the references in the fourth column of the table. Additionally, we discuss
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the challenges in subjective scales in

Table 2.1: VIDEO QOE ASSESSMENT METHODS

Type Stack Level Parameters Methods & Standards
User brainwaves, heart rate, nerve act., 1321135/138]
eye tracking, skin conductance, camera, engagement 127,109,280
Media image quality level (MOVIE, PEVQ, MPQM, PSNR,VIF, SSIM, VSNR, VQM) 29485111147
[52153), ITU-T (P.862,J144,J. MM,J.VQHDTV), ITU-R (BST387, J.T48)
Objective Packet packet-loss, bitrate (A-PSQA, YoMo, Pytomo) [137/142143)
buffering events, init. delay ITU-T P.564, ITU-T PNAMS
Bitstream network (e.g., packet header and encoded payload), E-Model [31]
application (e.g., codec type, video format), ITU-T (P. NBAMS, G.1070)
terminal (e.g., monitor size)
Hybrid all or ination of above
Subjective User MOS, SOS (DSISM, DSCQS, SSCQE, MLDS, crowdsourcing) ITU-R BT.500,
P.910, ITU P.800 [30], [156] [57] [199], [64] [138]

2.7.1 Objective[QoE] Assessment in Video Streaming

The objective assessment of in video streaming comprises specific tools for mon-
itoring physiological signs like via brain waves [32,33]], heart rate [34], nerve activity,
eye tracking [35]], and skin conductivity [38]]. The tools are classified based on their
intrusiveness, response time, and sensitivity level. According to [27], EMG (Electron-
myogram), which measures nerve activity, is relatively more sensitive to stimuli as
compared to skin temperature; on the other hand it is known to be more intrusive to
the user. Reichl eral. evaluated in real user environments by capturing user inter-
action with the smartphone, and the user context via the help of two cameras mounted
on the user’s hat [[109]. Although this method enables capturing realistic data, it might
in parallel become highly intrusive to the user carrying the hat. Although the objec-
tive measurements might be costly from the economic perspective, due to the use of
expensive devices, they are considered to be less time-consuming as compared to the
subjective assessment methods.

There are other objective quality assessment metrics such as user engagement,
which is based on for example the viewing time or the number of views of a video
[284]]. These metrics alone can not indicate accurately as those are influenced by
many factors including the user’s mood, or the popularity of video content [279]] [280].

According to [[165]], the objective methods are categorized with the criteria such as
the targeted service, e.g., IPTV, video conferencing, web browsing; model type e.g.,
whether there is a reference signal or not; application, e.g., network planning, mon-
itoring; model input e.g., reference signal; model output, e.g., MOS; and modeling
approach, i.e., modeling human perception system or obtaining the system characteris-
tics via experiments. The categories are as follows [283]]:

1. Media-layer models: Rely on the video signal to predict They are fur-
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ther categorized into Full-Reference (FR), Reduced-Reference (RR), and No-
Reference (NR)) based on the availability of the original source to make further
comparisons between quality levels. [FRl metrics are suitable for measuring of-
fline video quality, e.g., Perceptual Evaluation of Speech Quality [29D),
and and [RR] metrics are used for in-service video prediction [41,42], e.g.,
online monitoring. Rigorous user methodology is necessary to assess the quality
in the case of [NRlmetrics, e.g., training sessions, randomizing quality levels.

Motion Based Video Integrity (MOVIE) [43] evaluates dynamic video fidelity
and integrates combination of spatial and temporal aspects of distortion assess-
ment. Moving Picture Quality Metric [47] calculates the subjective
quality metric based on the inputs, namely the original video sequence and its
distorted version. [48] is a similar measure to probe the noise level of
a compressed image based on the original image, and it is a fidelity metric to
evaluate the spatial quality of a video. It also disregards the viewing condi-
tions and the characteristics of human visual perception [40,42]. Migliorini
etal. [147] presented[QoE]results based on the experiments done with a packet-
based simulator with the focus on and channel conditions. Visual Infor-
mation Fidelity (VIE) [51]] is a measure for assessing video quality, however it
requires stochastic models for the source, distortion and the Human Visual Sys-
tem (EVS) [246]. index [52] is a method for measuring the similarity
of the image quality while taking the initial distortion-free image as reference.
However, these methods are machine-measurable metrics and it takes few sec-
onds for to compute the quality of a video. V-factor is another video
quality rating score based on the content format and processing types such as
compression type, Group of Pictures (GOP), and quantize levels.

There are more objective quality assessment methods such as VSNR and VQM
[55]], however all the above-mentioned assessment techniques are not suitable
for real-time video quality assessment in mobile platforms, as they necessitate
the original version of the videos for comparison, i.e., the original media sig-
nal. In addition to the storage constraint, it will also cause extra computation
overhead on the mobile devices, which eventually might affect the energy con-
sumption. Thus, such methods are of limited practicability in a mobile envi-
ronment. Perceived Evaluation of Video Quality [53]], a full reference
algorithm, computes[MOS]scores of the video quality for fixed and mobile video
and considers the degraded video signal output from the network. It estimates
end-user perceived quality of pre-recorded videos, i.e., with respect to the
spatial impairments. However that tool fails to deliver good estimations in case
of temporal impairments such as picture freezes [148]]. Some existing standards
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within this model category are ITU-T P.862 (for speech), ITU-R BS1387 (for
audio), ITU-T J144 (for video), ITU-T J.VQHDTV (for video), ITU-T J.MM
(for video), and ITU-R J.148 (for multimedia).

2. Parametric packet-layer models: Assessment of based on the packet-
header information, i.e., when no content or payload is taken into account, has
less computational load. It is used for assessing the impact of packet-loss, which
is a network-level metric. In [[137], a no-reference assessment measure,
A-PSQA, is proposed as a performance evaluation method, based on the anal-
ysis with respect to the packet-loss percentage. Bitrate, buffering events, and
initial delay metrics can be categorized within this group. There are a set of re-
lated works on the packet-layer models. PC-based based measurements on the
VLC player were conducted in [[141], where the video/audio buffer utilization
based on the Real-time Transport Protocol (RTP) and [UDP]streaming is studied.
The drawback of that study is that it does not consider the picture freezes and
the corresponding end-user perceived quality. YoMo [142] is a Java tool with
a Firefox plugin and it estimates the video player buffer status on application
layer. Pytomo [[143]] is a Python-based client-level tool that analyzes the play-
back performance of particular video sources on YouTube. It obtains the cache
Uniform Resource Locator and Internet Protocol (IP) addresses of the
hosting video server, ping/download/playback statistics, initial buffer, stalling
event, and buffering duration of the selected videos. Despite its great contri-
bution on the objectively measured video quality, it lacks detailed definition on
how the end-user perceived quality is assessed. The existing standards are ITU-T
P.564 (for speech) and ITU-T PNAMS (for video) that use only packet header
information to estimate audio, video and audio visual quality.

3. Parametric planning models: Imply use of the quality planning parameters for
networks, terminals, and environmental factors. Some existing standards include
ITU-T G.107 (for speech), where the E-Model is used for VoIP based services
[31], and it is defined as a “computational model for assessing the combined
effects of variations in several transmission parameters”. However, from our
experience, we know that the poor performance of a few important parameters
is enough to obtain poor [QoE} thus not necessarily the combined effect of all
parameters is necessary to predict Other standards in this group focused
on the video such as ITU-T G.1070, and in this recommendation multimedia
quality is predicted via network, e.g., packet loss pattern, application (e.g., codec
type, video format) and terminal equipment parameters, e.g., monitor size.

4. Bit stream layer models: Use the encoded payload bit stream data and packet
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header information. It estimates the characteristics of the missing data via the
bit-stream information in the preceding and the succeeding packets, thus the as-
sessment depends on the data content. ITU-T PNBAMS is a related standard
that aims to predict audio, video, and multimedia quality from the IP stream. Bit
stream layer models are more accurate, as compared to parametric layer models,
to estimate quality at the cost of computation power as they extract partially the
payload information.

5. Hybrid models: Are made of combinations of the above models.

Objective assessment can assess the quality without the existence of actual
users, thus it can be less time consuming as compared to the subjective assessment.
On the other hand, objective assessment methods are known to be complex, and if
the conditions are not representative for the user’s real context then the validity of
the results are highly impacted [155]], [156]. As the objective measurements alone
might not cover the whole dimensionality of the phenomena, subjective assessment
methods (in which the users are actually involved in the assessment) are necessary to
complement and to validate the objective measurements.

2.7.2 Subjective Assessment in Video Streaming

The subjective assessment evaluation is performed by presenting particular stimuli to
human subjects and then collecting user feedback based on the corresponding user-
perceived quality. In the video streaming, stimuli is typically either a spatial or a
temporal impairment in the video playout. This assessment needs careful planning,
and it comprises a multidisciplinary approach, including human cognitive aspects.
ITU-R BT.500 [55]] and ITU-T P.910 [[156] are recommendations that detail the test
settings, and rating scales to be used in the controlled-environment tests. The most
common way of representing the user perceptions are by numerical values. The five-
grade scale is typically used for Opinion Score (OS) ratings, i.e., for Mean Opinion
Score (MOS)). Other methods defined by ITU P.800 are double stimulus impairment
scale method (DSISM), threshold definition (TD), and pair comparison (PC). ITU-R
and ITU-T [156] are various standards with regards to viewing conditions, criteria for
selection of observers, test equipment, procedures to follow during and after the data
collection for subjective quality assessment. Next, further commonly used subjective
methods are discussed.

Double Stimulus Continuous Quality Scale is a test that involves screen-
ing of degraded and original versions of short video clips that are shown to the user
in random order. The users are asked to rate the quality of the video based on a five-
grade quality scale which is later normalized into a 1(Bad)—100(Excellent) scale. The
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difference in the assessment values are calculated, and then averaged on all subjects to
obtain the DSCQS] value. This method is used when not all samples for each quality
are available to show to the user. The participants are notified about the order of the
reference and degraded versions of video sequences. The video sequences are shown
only once to the participants.

Single Stimulus Continuous Quality Evaluation is another test recom-
mended for long duration, i.e., 20 — 30 minutes long, video sequences with processed
quality. The video clips used in this method do not need to be standard. The partici-
pants rate the user-perceived video quality continuously on an[ACRIscale. It is a single
stimulus method, where the user is asked to rate the video quality based on the pro-
cessed video sequence on a score recording device, for predefined conditions such as
the record-sampling period and the position of the slider.

More methods exist for video assessment in addition to the above suggested
ones for in-lab measurements with different trade-offs. Crowdsourcing is one ap-
proach [56] that moves the testing effort from the controlled lab environment into
Internet [57]]. The user feedback and the ratings are collected while the users experi-
ence a given task by using their own computers or mobile handheld devices that are
connected to the Internet anytime and anywhere. In return, the users earn money or
some kind of tokens by completing small tasks and providing corresponding feedback
based on their perceived Thus, it is not necessary to allocate extra time and lab
room for participants. Within this approach, reaching large number of users with vari-
ous demographics in small time is possible. Therefore, the crowd-based video quality
assessment approach is promising. However, the challenges still remain due to non-
standard test equipment, lack of controlled experiments, and reliability issues. For
example, the users might want to finish a given task as fast as possible without concen-
trating on it much in order to earn more money, which results in ‘cheating’. Although
there are methods to minimize the influence of cheating (such as additional question-
naire methods), the evaluation of crowdsourcing-based data remains as a challenge.
The diversity in crowdsourcing platforms and users are discussed in [[199], e.g., the
offered tasks, completion time of the tasks, working times of the users, and the user
profiles.

There are advantages and disadvantages for objective and subjective methods. On
one hand, more representative data (with lower cost within shorter time) can be col-
lected via the objective methods, on the other hand, it might be necessary to validate
the results with users via subjective tests as the objective methods (e.g., a very popular
video due to its content might indicate high user engagement) do not necessarily indi-
cate an acceptable video quality. Therefore, [QoE| methods that involve user interviews
and tools that can record momentarily[QoE]in daily life user environments (e.g., without
being obtrusive to the user) are more reliable in assessing[QoE] and it is recommended
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to validate objective metrics with the subjective ones.

2.7.3 Challenges with the Subjective Scales, e.g.,

Divergence in manifestation of reactions with respect to identical stimuli exists. Dis-
parity in user ratings, due to varying retrospective data, is a key challenge to consider
in studies. Thus, in a user study, to know how to assess the users’ reaction is hard,
and can depend on each individual due to the dissimilarities of reactions with respect
to identical stimuli. Some people can react violently, i.e., punishing the quality with
grade 1 on the while others might be more patient and tolerant.

The attributes and the type of assessment data to be collected should be well
defined prior to the experiments. The target variable, e.g., should hypothetically
relate to the collected influential attributes. There are challenges, while assessing the
user-perceived quality based on and the challenges with respect to the end-user
perception of the quality levels such as “OK”, “Poor”, “Fair”, and “Good” are pointed
out in [58H60]. In [61]], the authors argue that the [TUl recommended methods for
subjective quality assessment of speech and video are not appropriate for new services
and applications. is valid only for particular experiment setting and one needs
to be very careful while applying to a particular targeted service. In addition, it
might be influenced by the “forgiveness effect” [200].

As averaging user ratings might smooth out the low user ratings, the authors of [[64]],
have introduced a new term, Standard deviation of Opinion Scores (SOS)) to have a bet-
ter understanding on the fluctuations of users’ perceived quality. Furthermore, due to
the high variation in opinion scores, the subjective ratings are valuable if they pin-
point the low qualities in particular. Therefore, it is important to investigate those
worst-case scenarios, e.g., scenarios with long freezes that can be statistically de-
scribed as outliers and extreme values of the opinion score dataset. Nevertheless,
R. Schatz etal. [165] recommended Absolute Category Rating with Hidden Refer-
ence (ACR-HR) test method with five-point quality scale as the mean value and the
confidence intervals of the results from different methods do not deviate much. There
are other methods such as the Maximum Likelihood Difference Scaling ap-
proach used by Menkovski eral. [[138]], which relies on relative quality assessment that
utilizes the direct comparison mechanisms rather than rating. Relative quality assess-
ment is indeed a good method to understand the perceived quality differences.

Despite some drawbacks of scale, it has been applied to some user studies
on this thesis, as it is commonly used in the area. However, the weaknesses of
is covered by other methods such as face-to-face or online user interviews and user
surveys in this thesis. In this thesis, we focus on metrics objectively measured from the
network- and application-levels, with the energy perspective. Then, we relate them to
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IMOS|and qualitative user feedback obtained from users.

The Role of Human Perception in[QoE]

The aforementioned reviewed models are related to the biological and cognitive fac-
tors behind the Human Visual System (HVS)), and predicting the visible factors that
degrade the user perception has studied via Visible Difference Predictor (VDP) [74]).
The outcomes of studies help to understand the[HVSland help to conduct insight-
ful assessment. In [[157], a set of threshold durations have been proposed in web
browsing. It is stated that 100 ms is defined as the maximum tolerance threshold for
the user to feel that the system is reacting instantaneously. It has also been stated that
disruption less than one second is recognizable by human but the user might still feel
uninterrupted.

The human’s perception of a difference depends on the current magnitude of per-
ception, thus some changes in quality may not be perceived by human, unless they
are above some threshold. Weber-Fechner [46] introduced the formula based on “‘just-
noticeable difference” in Eq.[2.1that links the human perception to the relative change
in stimulus. dP is the differential perception and is proportional to the relative change
d—SS of a physical stimulus, S.

dP:kd—; 2.

Logarithmic relationship between the and the are revealed in the context of
web browsing [54] and file downloading [[72].

The 1QX hypothesis model [[69,71]], is used to describe as an exponential
function of single [QoS|impairment factor. IQX relates the impact of absolute stimulus
change to the current perception level. In other words, the change of caused by
a change in e.g., packet loss, depends on the actual current level of ie.,
reflecting the actual level of expectation. The resulting equation becomes as depicted
in Eq.2.2] In [69)], it is shown that[QoS| metrics such as the reordering rate (caused by
delay jitter) and packet loss are easily matched to the metrics MOS]

0Q0oE

s = ~B(ooE @2)
which has the solution,

QoE = o e 005 4y (2.3)
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Similarly in [138]], a non-linear relationship between the video bitrate and the perceived
quality by the user is stated. In this thesis, we present our[QoE|models via similar non-
linear models.

2.8 Video Management Mechanisms

Together with[QoE| monitoring, it is also necessary to manage and intervene the under-
lying technical setup or mechanism in order to improve the perceived quality during
video streaming. Mekovski etal. [149] proposed a[QoE] control framework for adap-
tive video streaming that takes into account the temporal and spatial characteristics of
the video. Similarly, Latre&Turck’s work on management in [[150] used the al-
ready existing[QoE| metrics and techniques such as traffic flow adaptation (by changing
the transport layer configuration), admission control (by admitting/blocking new con-
nections to avoid congestion), and video rate adaptation (by changing the actual video
quality level). The authors’ work focuses on the low layer design for autonomic man-
agement architecture, and emphasizes the need to design control loops at higher levels.
The presented outcomes of the studies are a result from simulators with the focus on
full-reference video quality metrics such as Also the end-to-end evaluation of
performance metrics, i.e., measurements on the end user devices is missing. The pro-
posed methods and algorithms are great contributions to obtain [QoE]insights, however
are not much applicable to real life scenarios, where end-to-end is vital.

2.9 Energy and Its Relation to

Energy is, by Oxford definition, “the strength and vitality required for sustained phys-
ical or mental activity” [76]. The energy must be sustained in a wise manner in any
activity, therefore the products and the services must ideally be energy-efficient, i.e.,
they must gain the ability to do the same task by using less energy. Amongst the
numerous benefits of energy-efficiency, some important ones that are related to this
thesis work are: (1) reducing air pollution and CO2 emissions while generating energy
(i.e., environmental); (2) reducing customers’ energy bill (i.e., cost); and (3) increasing
the service time of the electronic ad hoc or other mobile devices such as smartphones
that are running with limited battery life time (i.e., availability). The Information and
Communications Technology (ICT) comprises up to 10% of the global annual energy
consumption and about 2% of the global CO2 emissions [[10]. High energy is being
consumed, while a large amount of data is being generated, processed, and transmit-
ted over the network [7]. 60 —80% of the consumed energy in mobile networks is
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consumed by access technology.

The energy studies in this thesis are on some portion of operational activities in the
wireless technology. The infrastructure nodes of wireless technology such as the base
stations or the routers are connected to the power grid, where the operational costs are
the major problem. This motivates Telco operators to put extra efforts to save energy on
the access networks, given the rising volumes of data traffic expected for the upcoming
decade.

From the end-user point of view, the mobile ubiquitous device users benefit from
the applications and the services as long as those devices have the required energy
to fulfill the users’ requested tasks. In this context, i.e., for the devices that run on
limited battery and disconnected from the power grid, the availability of energy might
be more important then its cost. This implies that the energy consumption might be
potentially an influential factor on the perceived on the mobile devices such as
the smartphones. Application developers often neglect the power consumption of the
their applications/services as their priority is on usability. They often want to see the
applications in the market immediately [[100] to turn the investment into profit as quick
as possible. It is estimated that more than half of 200 new Apple’s iPhone applications
available daily, do not achieve a critical mass of user acceptance and are withdrawn
from the store’s offer within months from the launch. One reason for users uninstalling
a particular application from their smartphones might be their energy consumption.
Thus, energy management can play a crucial role in improving application acceptance
by users.

Energy measurements have to performed in parallel with the measurements.
Ultimate goal is to minimize energy consumption without diminishing much the

2.9.1 Existing Energy/Performance Trade-offs

Energy savings are often achieved with the cost of degradation in the performance.
Some trade-offs can be listed as follows [36L[37.,[205]].

e Deployment/Energy Efficiency Trade-off: in-between the deployment costs

such as Operating Expenditures (OpEx]), Capital Expenditures (CapEXx), and the
overall energy consumption of the network,

e Spectrum/Energy Efficiency Trade-off: in-between the throughput per band-
width unit, i.e., bandwidth utilization, and the overall energy consumption of the
network,

o Bandwidth/Energy Efficiency Trade-off: in-between the available bandwith
and the consumed energy to transmit data,
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e [QoS/Energy Efficiency Trade-off: in-between [QoS| parameters such as packet
delay, or packet loss, and the consumed energy to transmit data,

e [QoE/Energy Efficiency Trade-off: in-between the user-perceived[QoE} and the
consumed energy

Studying the trade-offs needs to be done with great care, as there might be some sce-
narios that the items at both sides of the the trade-off becomes correlated. One example

is the extra power being consumed to provide high bandwidth. On the other hand, this
might cause extra interference in the wireless transmission medium, and eventually
causes reduction in the The relation between the and energy-consumption
can be a trade-off or a win-win. In this thesis work, a set of scenarios on the smartphone
for the both cases are studied in Chapter[7}

Amongst the five listed approaches, this thesis focuses on the last one, i.e.,[QOEJEnergy

efficiency trade-off. An approach to reduce the energy consumption while not influ-
encing the user-perceived [QoE]is presented in Chapters[6] [7] and 8]

2.9.2 Impact of Network Applications on the Energy Consumption

The cloud-based applications are expected to provide service anywhere and whenever
requested by the end-user, but constrained by the remaining energy. The factors in-
fluencing the energy consumption of the smartphones are cellular module [77] [78],
the display with LCD panel and touchscreen, the graphics accelerator/driver, and the
backlight [99]. It is stated in [260] that not only the cell environment, radio channel
conditions, carrier frequencies, but also application data traffic patterns have significant
impact on the battery lifetime. The energy consumption of smartphones is proportional
to the usage of online services. Most network-based applications are interactive, and
it is stated in [[176] that the instantaneous total power consumption is doubled upon
touching the phone screen. The limitations in battery life of smartphones reduce the
service time, which degrades the[QoE] [67].

Downloading data is the most energy-consuming process in smartphones [229].
Not only during interaction with the smartphone, but even when smartphone is in pas-
sive mode, e.g., when screen is OFF, i.e., the data activities still exist. This fact is often
neglected by most of the developers. ScreenOFF smartphone data traffic contributes
up to 58.5% of the total radio energy consumption [79]. There are multiple reasons,
such as the inefficient and asynchronous information polling intervals of popular cloud
based applications, or sneaky network behavior of the available free apps with adver-
tisements.

The number of 4G subscriptions is expected to reach one billion in 2017, and ac-
cordingly the importance of battery lifetime on smartphones will grow. The smart-
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Figure 2.3: High-level illustration of wasted energy for a typical network activity on
3G cellular data module.

phone applications necessitate a robust management of data transmissions to reduce
the energy consumption caused by cellular data traffic. Additionally, research shows
that the user-satisfaction based from the battery performance for 3G-enabled smart-
phones is higher (6.7/10) than that in 4G-enabled smartphones (6.1/10) [97]. Based
on the previous work [[67], it has also been concluded that some users even avoid using
4G to save energy.

The frequent and asynchronous network activities and data flows from different
apps cause the cellular data module of a smartphone to oscillate in-between these
power consumption states. Fig.[2.3]illustrates the power consumption and the through-
put during a typical network activity via a 3G cellular. The power consumption shifts
to the active, i.e., most power-consuming, state as the throughput increases. However,
when there are no packets being transferred (e.g., after the black vertical dotted line in
Fig.[2.3), the power consumption does not immediately drop back. Managing the time-
out periods for the transitions amongst the power states, i.e., predicting the timeout
periods based on the data patterns, is an ongoing work in the mobile energy optimiza-
tion field denoted as fast-dormancy [96]. In addition to the timeout periods, there exists
also some transition delay while switching the power states. The transition delays de-
pend on many factors, e.g., the congestion in the cell, although they are reduced in Long
Term Evolution (LTE)-Advanced, as compared to [CTE and 3G [95]]. Overall, it is im-
portant to minimize the number of transitions in-between the power states, and execute
the data traffic in bursts. While the smartphone is connected via the 3G interface, the
power consumption varies based on the Radio Resource Controller (RRC) power states
such as IDLE, Paging Channel (PCH), Forward Access Channel (EACH), or Dedicated
Channel (DCH) (in the order from least to highest power consumption). As a represen-
tative example from one test run (see Fig.@, even during one[RTT] e.g., 1429 ms (due
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Figure 2.4: Example of the power consumption of different states of the cellular radio
module in Samsung Galaxy S for a single Ping execution with RTT] = 1429 ms [[196)].

to the delay when the RRC]power state promotes from IDLE state) of a 64 Bytes ICMP
packet, the duration when the radio module state is not IDLE, is roughly more than 10
seconds. A few seconds of delay is observed when the RRC power state shifts from
IDLE to[DCHIstate as expected. Observe that the solid black line is the Simple Moving
Average (SMA) [[197] with window size of 0.5 s, i.e., smoothing over 2500 power data
samples. In[SMA] all the values within a timewindow have the same weight, in contrast
with the non-linear moving average methods such as Exponentially Weighted Moving
Average (EWMA). Thereby, the energy is wasted during the remaining duration, e.g.,
IDLE-To-DCH and FACH-To-IDLE periods. In addition, not all the time spent at the
DCH state is due to the data activity, rather due to the inactivity timeout periods.

The power consumption of the cellular data technologies is different amongst them-
selves. According to Huang efal. [185], 10 MB data downloading via 3G and LTE
require roughly 30 and 1.6 times the energy of WiFi, respectively. According to [229],
being IDLE while connected to a GSM network costs 41% less energy than being
connected to the 3G Universal Mobile Telecommunication System network.
Although [UMTSInetworks are efficient in terms of large data transfers, this is not true
when there are multiple small ones scattered over a long duration. Overall, 4G [CTE
has much higher bandwidth (downlink median: 13 Mbps, uplink median: 6 Mbps) as
compared to the 3G access technologies at the cost of being 23 times less power-
efficient [185]].
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2.10 Energy Models and Measurements for Smartphone

The energy consumption measurements are investigated from the application and the
network perspectives.

2.10.1 Energy Consumption Model for Cellular Radio

The cellular radio is designed to minimize the energy consumption such that it shifts
between the most power-consuming state to a less power consuming one depending
on the network traffic. Radio Resource Controller (RRC) protocol in [UMTS] [202]
has a state machine with three states (or four based on the manufacturer and network
provider) that have different power consumptions, and these states depend on the data
rate and the uplink/downlink queue sizes [203]. The IDLE state is assumed when no
radio resource is allocated, no connection between User Equipment (UE), e.g., smart-
phone, and Radio Network Controller (RNC)) is established, and the [UElcannot transfer
any data. The DCH state is assumed when [UEHo{RNC] connection is established, and
the [UE]is allocated with the dedicated DCH transport channels for both downlink and
uplink with the highest bandwidth and power. The FACH is the state for very low data
throughput rate application requirements, and in FACH, the connection is estab-
lished but no channel is associated. The power consumption decreases in the order of
DCH, FACH, and IDLE [204].

Cellular State Demotion:

When there is data activity, if the cellular module is at state, it preserves the
state for a particular timeout period. If there is no packet received within the inactiv-
ity duration (depending on the device and network settings), User Equipment (UE)
sends a Signaling Connection Release Indication (SCRI) signal to the Radio Net-
work Controller (RNC), indicating that the currently assigned radio resources are not
needed. Then, the state demotes to IDLE or indirectly through [FACH] and
states [282]].The cellular radio module shifts from DCH to IDLE state first by shifting
into an intermediate state (FACH) depending on the tail time (can last up to 15 sec-
onds [204])), which depends on the network provider, the traffic volume, or the smart-
phone manufacturer. The amount of the web content to be polled and the connection
speed are important factors for the energy consumption during the polling periods. In
addition, there exists a delay between the state transitions, which are due to the high
number of control messages being transmitted and received between and the
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Cellular State Promotion:

The cellular module might promote a state change from IDLE to [DCH| or [FACH] e.g.,
due to an increased data rate. According to the state of the art 3G power consumption
models, it takes a few seconds for[RRC|state to switch from IDLE to a[DCH]state with
the exchange of 30 signaling messages [87].

Similar[RRC power state models exist for 4G[CTElnetworks [95]]. For instance, the
[CTEIRRC state machine consists of ACTIVE, Short Discontinuous Reception (DRX),
Long and IDLE states. The active state implies continuous reception, if there
is no data transfer, the Active state demotes to Short state. The power state
promotes back into Active if there is a data transfer before the Short timeout
expires, otherwise the state demotes to Long Similarly in Long if there is
data activity before the Long [DRX]timeout expiry, the state promotes to Active, else it
demotes to the IDLE state.

2.10.2 Smartphone Power Model for Video Streaming

The total power consumption during video streaming is a sum of involved processes
such as downloading the packets via the wireless module, decoding the received video
and audio packets, and rendering/displaying the decoded frames on the screen. The
power consumption during the processes depend on multiple factors, e.g., the power
consumption during downloading depends on the available throughput and the used
hardware of the wireless interface, the decoding power depends on the user codec type,
and the display power depends on the display size, the display type, and the hardware’s
chipset.

Downloading process

Downloading is the process when the data is being received to the smartphone. Indeed,
this might also highly susceptible to many factors including the type of the communica-
tion protocol. When the downloading is performed via a stateful transport protocol such
as the process involves both downloading (the video content payload) and uplink
(the control messages back to the remote video server such as ACK and NACK). How-
ever, the impact of small sized ACK messages on the power consumption is small, thus
this effect can be ignored. The power consumption during downloading and uploading
a file via the smartphone’s wireless interface can be represented by a linear equation
as in Eq.[2.4}2.3] respectively. aq and a, are the downlink and uplink power consump-
tion (per Mbps) parameters, while a file is being actively downloaded or uploaded (i.e.,
when throughput is not zero). b is the bias power, i.e., the power consumption when the
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corresponding network module is switched on but not active (i.e., when the throughput
is zero). In [185], the parameters to the models are provided as in Table@] for the
three wireless technologies and for downlink and uplink.

Piownlink = aq -t +b 2.4

Piownlink = au -t +b 2.5)

According to the table, the following conclusions can be made with respect to the

ay [mMW/Mbps] | aqg [mW/Mbps] | b [mW]

LTE 438.39 51.97 1288.04
3G 868.98 122.12 817.88

WiFi 283.17 137.01 132.86

Table 2.2: Power model for data transmission [[185]].

power models during the data transmission process. First of all, the uplink power
consumption per Mbps is much higher as compared to the downlink. Second, the [LTE]
power consumption is much higher than in 3G and WiFi when there is no throughput.
Third, when the downlink throughput is nonzero, the power consumption of LTE per
Mbps is less than half of the power consumption of 3G and WiFi.

Decoding process

The decoding process’s power consumption is considered to be negligibly small as
compared to the display and data transmission process [[186]. The authors in the previ-
ous research stated that with the same display content, bitrate, and frame rate, the video
decoding power consumption stays the same when the video is stretched to 1280 x 720
from 640 x 360. However, the power consumption during decoding process is highly
susceptible to the resolution of the video, i.e., high decoding power is needed to de-
code video with higher resolution. To summarize, the decoding power consumption
increases significantly with the frame rate and the resolution. No significant effect of
bitrate is observed on the decoding power.

Display process

The display power consumption contributes much to the overall smartphone power
consumption. The display module is also another factor influencing the power con-
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sumption as for example Super AMOLED Plus is more energy efficient than a Super
AMOLED [186]. Due to the characteristic of the display modules, the power con-
sumption for particular colors might be different as well. Lighter colors (e.g., white)
consume much higher power as compared to the darker ones (e.g., black).

2.10.3 Energy Consumption Metric

Energy consumption is defined by power consumption measured over the time. Energy
is calculated as the sum of the (per second) average power, P, (Watt= Joule/second)
between time ¢ (in seconds) and ¢ — 1 (in seconds), multiplied by the unit second, as
presented in Eq.[2.6] T depicts the duration of a measurement.

T

E(T)[J1= Y P[W]-1[s] (2.6)

t=1

Energy-per-bit (E}) is another metric to express the energy-efficiency of a particular
work, e.g., transmitting data over the wireless access network. It is calculated in Eq.
as the amount of energy consumed during transmitting one bit of the transferred data.
I is the number of bits transfered for which the energy E is used. Simplest example
is the comparison of the energy-efficiency in-between the General Packet Radio Ser-
vice (GPRS) and the[UMTS] The power consumption of the [UMTS]is much more than
however the transmission time of certain bytes of data is much less via[UMTS]
than transmitting the same amount of data via Therefore, the reduced trans-
mission time in eventually provides less energy consumption, in overall, than
the [GPRS] This makes [UMTS] much more energy-efficient in large data transmissions
as compared to 2G [229]]. Therefore, energy-per-bit is a highly important metric to
consider to compare the energy-efficiency of different systems.
E[J]

E}, [J/bit] = Tioit] 2.7

2.10.4 Energy Management Efforts in Information and Communi-
cations Technology (ICT)

The efforts in academia and industry to reduce energy consumption on the overall
ICT are many. Energy Aware Radio and neTworking tecHnologies (EARTH) is a
project that focused on developing energy-efficient products, components, deployment
strategies, network management strategies particularly in future [CTEl systems. Green-
Touch [[187] is another example with a similar goal; it aims to reduce the carbon foot-
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print and energy consumption of ICT devices by transforming today’s communication
and data networks. The focus of these large-scale long term projects some approaches
are mostly on the base station side, e.g., detaching the base stations (i.e., demoting to
IDLE state) while not significantly decreasing the coverage when there is low traffic.
This way, according to [[10] [[12]], up to 53 % energy savings are achieved. In this thesis,
the focus is narrowed down to energy consumption only on smartphones.

2.10.5 Energy Measurement Techniques, Methods and Tools on
Smartphones

There are various techniques to measure power consumption on smartphones [205].
Power consumption is acquired either via physical measurements or via measurement
based estimations. The first measurement technique is by probing directly the USB
wireless interface, e.g., WiFi, LTE, via an external digital meter; the second technique
is by using development boards and kits to measure only the broadband module’s power
consumption; the third technique is by intercepting the battery terminals via an external
high precision power measurement devices that measures the overall power consump-
tion of the devices, Monsoon with 5kHz sampling rate or Fluke 8845A with 50kHz
sampling rate [[190]]; and the fourth technique is via built-in sensors, e.g., fuel-gauge IC,
within the devices that enable power profiling. Fuel-gauge IC indeed seems promising
as it provides measurements such as voltage, temperature, and current every second,
and stores it into a specific memory. It can also control the charger for a more efficient
charging depending on the battery capacity.

There are software-based energy measurement tools available for smartphones with
the common aim of making the power measurements transparent to the app developers
as well as to the users, so that they can take appropriate action to minimize their smart-
phones power consumption. PowerTutor [172] is used in research, and it presents the
power consumption of all available components (e.g., CPU, network interface, display,
GPS) and the running applications to the users and the application developers. It works
accurately only on particular phones such as HTC G1/G2. PowerTutor receives the cur-
rent values from the driver and then multiplies the value by the voltage that is basically
the phone battery (typically 3.7 V or 4.5 V depending on the phone type). PowerTutor
estimates the energy consumption of applications and services based on the processing
times.

2.10.6 Smartphone Resource Profilers

Profiler is a software or a complete system that enables to get energy usage of appli-
cations, services, or hardware components on a device. EnergyBox [253] uses the
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pre-obtained models and estimates power consumption values based on the different
states of the device. However, these models are often limited to the conditions that
the physical measurements were conducted. ProfileDroid [207], characterizes behav-
iors of a set of Android apps at multiple layers such as app specification, user, OS,
and network layer; however the work does not involve the behavior investigation from
the energy perspective. Eprof [254] is another Android-based profiler that is able to
analyze the power states of applications. PowerScope [255]] is an energy profiler that
is able to identify energy leaks, and estimates the application energy consumption by
measuring the duration and frequency of states. JouleWatcher [256] is another energy
profiler that estimates the energy consumption of the whole systems as well as the in-
dividual threads. Self-tuning Power Manager [257] is a resource management
framework that collaborates apps and systems in order to use the I/O devices in an
energy-efficient manner. This is done by monitoring the intentions of apps to use the
I/0 devices. Koala [258]] predicts the energy consumption of each running software,
and allocates resources to provide the optimum energy-efficient operating condition.
Llama [259] adjusts the application to achive the energy requirements by also
considering usage behavior. PowerProf estimates the power consumption of individ-
ual hardware components, and it aims to obtain a power model. CoPoMo [260] is a
context-aware power consumption model, simulated with realistic scenarios and met-
rics. Carat [261] is a research-based free app, empowered by UC Berkeley, that aims
to provide helpful feedback to the user regarding how to save more battery based on
the smartphone usage. In order to do that, Carat collects a set of metrics from the
user phones such as the name of the running apps, the percentage of remaining bat-
tery, memory and CPU utilization, the unique device ID, the battery state, the OS ver-
sion, and the phone model. Sesame [262] is a power modeling scheme for the overall
system power. It utilizes a built-in current sensor to estimate the overall energy con-
sumption. AppScope [263] is an Android-based energy estimator system, designed as
a kernel module, which monitors the kernel level hardware usage of applications. De-
vscope [264] is an Android-based online tool that controls components according to
the built-in Battery Monitoring Unit (BMU) (i.e.. fuel-gauge IC), and derives the com-
ponent power model automatically by analyzing the changes of power state. Nokia
Energy Profiler [266] is a Symbian based tool that is able to monitor the energy con-
sumption of 2G and 3G on Nokia N95, with applications such as text messaging, data
traffic, and voice.

Profilers enable to understand energy consumption, but it is still up to the user to
act upon to obtain a good management of energy resources in her/his device. Even if
certain tools seem to do power modeling (e.g. Sesame [262]), it seems to be left to the
user in most cases.
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2.10.7 Energy Management with Energy-aware Tools in Operating
Systems

ECOSystem [252] is a Linux-based energy-centric operating system that fairly allo-
cates energy consumption to hardware components and applications, by tracking the
applications’ resource needs. Odyssey [275]] adapts the [QoS]and the energy consump-
tion based on the available energy and resources (and also by utilizing historical data),
by monitoring the availability of resources and the demands of running applications.
Cinder [274] is another OS for mobile devices that aims to allocate energy by schedul-
ing threads based on the available resources, i.e., by controlling taps and reserves.
Applications often use the available resources (e.g., sensors) independently from each
other. Context-dependent energy saving approaches such as ErdOS [218]] (an extension
to Android OS) manages the computing resources for applications based on the user’s
demands, e.g., usage patterns and context. CondOS [217] is responsible for managing
the available resources (e.g., sensors) for all running applications. Openmoko [265]
is a free mobile phone project with an open source software stack, Neo FreeRunner,
and its circuit schematics are publicly available. This enables a researcher to analyze
the energy consumption of each hardware component of the phone with the help of an
external power meter, and to identify the most power-consuming ones.

2.10.8 Commercial Battery Saving Apps

There are various energy saving apps based on manually configured user preferences,
including JuiceDefender [82], Auto3G BatterySaver [83]], EnergySaver [84], BatterySaver
[85]]. These apps do not collect data related to the user behaviour, thus are not based on
any user behavior models. BlueFi app [86] allows a communication either via voice or
text over WiFi or Bluetooth, with the limitation that the two peers will be within each
others or within the same WiFi router’s range. This can be both an energy-efficient
and economical solution for communication between two smartphones as compared to
communication over the cellular networks.

2.10.9 Network-based Energy Saving on Smartphones

Various studies were conducted to reduce energy consumption with the focus on the
network. Some important previous work so far are related to leveraging the 3rd Gen-
eration Partnership Project (3GPP) standards by proposing fast-dormancy. This is ba-
sically forcing the transitions such as DCH to IDLE or FACH to IDLE without wait-
ing for the inactivity timeout periods. Tail Optimization Protocol is proposed
by Qian et al [213] to minimize the timeout periods, i.e., inactivity times, between
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the states by invoking the fast dormancy support. On the other hand, fast dormancy
might have drawbacks. According to research performed by AT&T [204], for partic-
ular apps, reducing the tail timer by three seconds reduce the resource usage by 40 %,
but increase the number of state promotions by 31 %. TailEnder [81f] schedules the
network data transmissions (either via prefetching or delaying based on the application
type), in order to reduce the duration of the device in its high-power consuming state.
TailTheft [268]] is another scheme that utilizes the tail time (unutilized and wasted
time) of applications by scheduling a set of extra transmissions. The RadioJockey sys-
temin [87] predicts the end of communication messages of applications by analyzing
program execution traces and saves energy by invoking fast dormancy.

Other approaches are related to scheduling the network traffic. SALSA [281] is an
algorithm, using the Lyapunov optimization framework, that decides on the time of the
data transmission. AT&T used app profiler to diagnose the small data transmissions
that are scattered over a long duration, bundled the scatter-burst transmission of small
packets into a single transmission, and achieved 40% energy saving. The missing
part in the research is how the suggested solution influences the end-user perceived
Vergara etal. [230] studied a Cross-Layer Burst Buffering algorithm
that schedules the background 3G traffic of a smartphone in order to fully utilize the
network link when active and in parallel increase the IDLE duration. Junxian et al.
[79] studied the screenOFF traffic of 20 users for a period of five months, and compared
the data traffic patterns both when the screen is ON and OFF. The screenOFF data
traffic comprises of a large number of small packets, which in turn comprises 35.84%
of all captured packets from all users during the five months of study. The average
burst length during screenOFF was 1.37 seconds. The authors propose a solution based
on “fast dormancy” and “batching” of traffic of particular applications like streaming
music or Facebook. The authors show via simulations that it is possible to save up
to 60.92% of the network energy for applying these algorithms, however they do not
discuss the consumed energy during the execution of those algorithms running in the
background of a smartphone. Also the assumption is that the operator network could be
configured by a device for its fast dormancy interval; appears to be / is impractical. The
particular parameterization of the algorithm proposed by the authors would be much
more complex than presented in the simulations.

The advantage of our own research is that we do not try to build a model per appli-
cation, but per user. We leverage human factors of interaction with technology towards
building an accurate model for energy saving, for a given individual, additionally to the
fact that our modeling focuses uniquely on the user. We use the data collected exclu-
sively on a users smartphone and we do not attempt to change any network parameters,
as authors of [[79] suggest. The authors do not address the issue of how the algorithm
would perform in real life user settings, e.g., without studying the resulting user experi-
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ence. This is what distinguishes our work in Chapter 8 of this thesis from the previous
work. Other related works to optimize delay-tolerant data transfers in the operating
system include research of Balasubramanian eral. [81] on a distribution of energy
consumption of smartphones for email, news feeds, and web search and based on their
efforts to model the “long tail for this consumption, they have developed an algorithm
that either schedules applications updates on regular times (e.g., email) or pre-fetches a
multimedia content needed by a user later on. The experiments are mainly simulation-
based (with simulations parameterized with results of real lab-based measurements on
smartphones). The authors as do not address the issue of how the algorithm would
perform in real life user’s settings, as we do in this thesis.

Moreover, the RadioJockey solution by Athivarapu etal. [87] focuses mainly on
leveraging the fast dormancy state of a smartphone and invokes it based on the pre-
diction of the end of data exchange burst on a smartphone. This way, the phone saves
energy while sleeping in between the data bursts. However, the authors do not consider
the user model in their optimisation, and particularly not the screenON and screenOFF
models, as we do. Their solution and results are strictly focused on predicting the com-
munication bursts for a given application. Similarly, an optimisation for only email
application has been researched by Xu etal. [80], where the authors analyse current
email clients for Android and Windows platforms (for a smartphone) and propose its
protocol optimisation, proving via simulations that their solution may enable to cut the
energy consumption for email by half. They evaluation includes in-lab measurements
and they do not involve real users for evaluating their perception and experience, as
we do. Finally, we acknowledge that the design decisions for own work is similar to
long-standing research on batching work and slack times in resource-constrained sys-
tems [|89]], however these are purely based on the scheduling of resources and have little
to do with human factors and individual user models, as we propose.

On the other hand, for real-time applications that are not delay tolerant, approaches
such as PSM-Throttling are proposed [269]]. The PSM-Throttling adapts the streaming
rate and utilizes the available link (i.e., via bandwidth throttling) better to reduce the
transmission energy consumption. YouTube video works based on a progressive down-
load manner, and the video content is downloaded in two download phases [145]. The
first one consists of an initial burst typically lasting for 40s, and during this phase the
application uses the maximum available bandwidth. In the second phase, i.e., after 40
seconds, the application uses a throttling algorithm to reduce the download rate equal
to 1.25 times the video clip encoding rate. During the second phase the video data is
received as 64 KB data chunks. Kernel Level Shaper (KLS) is another proposed al-
gorithm to save energy by scheduling independent applications’ network traffic within
the kernel. In order to reduce the initial latencies, Gerber etal. [204] pipelined [HTTPI
requests into a single [TCP| connection rather than sequential [HTTP] requests. There
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are example applications such as Google Music that also transfer data as large bursts.
SPeeDY [231] is an application-layer protocol developed by Google in or-
der to transport web content with low latency. It is multiplexing HTTP requests in
a single [TCP| connection in order to increase the link utilization. On the other hand,
bundling the network traffic might have drawbacks. For example, Blenk et al. studied
the tradeoff; while single [TCP] flows typically do not utilize the available bandwidth
on a cellular link due to variable capacities, parallel transmissions yield an increased
average transmission duration [233|.

Choosing the low power consuming wireless interface is another alternative to
reduce energy consumption. Sharma efal. presents an energy-efficient architecture,
Cool-Tether [232] in order to utilize the available smartphones with Mobile Hotspot
(MH)’s existing Internet access. Cell2Notify [270] is a system proposed by Microsoft
Research, particularly for VoIP calls, that turns on the WiFi interface of smartphone
only when a VoIP call is received. This is done as it is claimed that the WiFi power
consumption is less and gives a better performance as compared to the cellular net-
works. Blue-Fi [271] and ZiFi [272] are systems that predict the availability of WiFi
access points based on the Bluetooth contact-patterns, ZigBee interference, or cell-
tower information. These methods reduce the energy consumption by preventing the
long IDLE periods and number of scans of WiFi interface when WiFi is not accessible.
There are other studies as such done by Rahmati efal. [273]], to reduce the energy con-
sumption of smartphone by estimating the right network interface (without switching
on the interfaces), only based on the context information and historical data.

All of the aforementioned existing tools and operating systems that aim to save
energy are summarized in Table[2.3]

2.11 Smartphone User Behavior

There are diverse smartphone user interactions. In this section, we review the related
work on the user’s charging behaviour, user’s smartphone screen interaction, and the
corresponding state of the art models. Next, we review the related work on the socio-
logical aspects such as the sociological and psychological influence of the application’s
data traffic on the users, and how the user behaviour might be influenced by the appli-
cation’s network activities. We also present a set of existing apps to control application
notifications, which are intended to reduce the influence of application’s state on user’s
state.
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Table 2.3: Existing tools and operating systems for energy management [|18]].

RESOURCE
PROFILERS

PowerTutor, PowerScope, Joule Watcher, STPM,
Koala, Llama, ProfileDroid, DevScope, BMU
Neo FreeRunner, Carrat,

Sesame, Nokia Energy Profiler, KLS, CoPoMo

ENERGY-AWARE
OPERATING SYSTEMS

EcoSystem, Odysseey, Cinder,
ErdOS, CandOS

WIRELESS INTERFACE AND
PROTOCOL OPTIMISATIONS

TailEnder, TailTheft, TOP,
KLS, SPeeDy, PSM-Throttling,
Cell2Notify, Blue-Fi, RadioJockey,
ZiFi, Context-for-wireless, SALSA, CLBB

EXTERNAL HARDWARE
POWER MONITORING TOOLS
AND SENSORS

Monsoon, Fluke 8845A,
other sensor board-based prototypes
16F684 microprocessor,
DS2782 Stand-Alone Fuel Gauge IC

BATTERY SAVING
COMMERCIAL APPS

Auto3G BatterySaver, JuiceDefender, BlueFi
EnergySaver, Comodo
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2.11.1 Smartphone Charging Patterns

Charging patterns are influenced by the availability of power to complete the user’s
tasks. The charging patterns may differ from one user to another. The authors of [208],
based on a large-scale Blackberry study, clustered users as: opportunistic chargers,
light consumers, or night-time chargers. In [209], the authors show that the charging
patterns do not depend on the amount of the energy left on the smartphone, but rather
on the opportunity, device, context, time of the day, and location. In other words, the
users tend to charge their phones even when the battery level is not very low, which may
indicate that the energy is an issue, and that the users tend to avoid low battery level on
their smartphones. The battery level of a smartphone varies almost by a factor of 2.5
between the business user interacting a lot with it, and the smartphone permanently at
IDLE state [99].

2.11.2 Smartphone Screen Interaction Patterns

According to Google Statistics, smartphones are the backbone of our daily media inter-
actions with the highest percentage, 38 %, as compared to other devices such as tablets,
and PC’s. The statistics also show that 54 % and 33 % of the total operation time of
smartphones are spent in communication and entertainment, respectively. The average
interaction time on the smartphone screen is 17 min (minutes) per day [210]. Another
research states that the most frequent users interact with the smartphone every 7 min-
utes during day time [88]]. Inevitably, the statistics are highly varying depending on
the country and the users. This makes “one-model-fits-all” almost impossible. Falaki
etal.in [276] claim that the mechanisms to improve user experience or energy con-
sumption should be done in an idiosyncratic way, i.e., per a user, which means adapting
to the individual user behaviour. They showed that number of daily user smartphone
interactions varies from 10 to 200, with daily interaction durations varying between
30 min to 500 min. Another finding of the study was that many short interactions likely
drain more energy than a few long interactions, as those interactions likely change the
state of the relevant components such as network data modules, CPU, or memory. The
variation in the interaction with the smartphone causes variation in the energy con-
sumption as well as in the data usage. In parallel, the cellular data plan with a network
operator influences the network traffic and smartphone usage patterns according to the
Ericsson Mobility Report [50].
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2.11.3 Mathematical Models for User Smartphone Interaction

Falaki et al. presents in [276] that the current and the past interaction duration (i.e.,
screen state duration) with the smartphone do not exhibit any strong correlation. De-
spite, the screenOFF times are matched to a Weibull distribution. The Complementary
Cumulative Distribution Function (CCDE) plot helps to visualize the accumulative fre-
quency of the events. The[CCDHof a Weibull distribution is given in Eq.[2.8][211]], and
if a <1, then it is assumed that the chance of a particular event to occur reduces over
time. If a >1, then it is assumed that the chance of a particular event to occur increases
over time. This means for screenOFF duration that, if a <1, the longer the screen is
OFF, the higher the probability that it will stay OFF. An exponential distribution is used
to model the time until an event occurs in continuous time stochastic processes. An ex-
ponential (memoryless) distribution is the special case of Weibull distribution when
the a is 1, and in this case the chance remains the same independent of time. Pareto
distribution, on the other hand, has rather long tail, i.e., decays slow, as compared to
Exponential distribution. This means that there is probability that very long screenOFF
durations may occur. It asymptotically approaches to the linear axes.

CCDFyeipun () = ¢~ " (2.8)
CCDFExponential(t) =e 2.9)
CCDFpyeio(t) = (a/1)? 1t > a (2.10)

2.11.4 Sociological and Psychological Aspects

Social media facilitates people to communicate, fetch information, learn, entertain,
and accomplish tasks remotely. However, technology is of advantage only when it
is used adequately. An excessive usage of smartphones might have disadvantages,
e.g., preventing face-to-face interactions and weaking the bonds between peers [90]],
perceiving others as having better lives and thus causing unhappiness [278]], reducing
user’s emphatic skills [277]], or misinterpreting others’ behaviour on social media [92].
Social networking apps have changed user behaviour, and may cause users to become
addicted to it. Davidow in [221] states that users should control the tools to accomplish
tasks, rather than letting the tools control users. The Unicef Tap Project aims to provide
clean water to kids while motivating users not to touch their smartphones. It is claimed
that 10 min without interaction with the phone provides water to a child for a day
[91]]. Overall belief is that being connected to Internet should be done while not being
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disconnected from the real world, and technology should facilitate benefits to the users.

There exist approaches to control the notifications and “disturbance” by smart-
phones. Notification Center is an app [214] that can control the application notifica-
tions based on user preferences without disturbing the user much. Android Jelly Bean
provides users to toggle the “show notifications” ON and OFF. There exist apps [215]
such as Addons Detected that identifies the apps that work with push notification ser-
vices. AwayFind [216] is another app that notifies the user when email has been re-
ceived from preferred senders. Although these solutions can prevent the users to re-
ceive undesired notifications and minimize user disturbances, they do not save radio
power as the occasional network activities from the apps are still granted.

2.12 Summary

In this chapter, the core concepts in the thesis such as[QoS] and energy consump-
tion are presented. The technical details and resource requirements of the most energy
consuming application on smartphone, i.e., video streaming, are explained. Network-
based video streaming quality highly depends on the status of the available throughput
of the active wireless access technology. Thus, technical background on the power
consumption of various states of wireless access technology is given. We also discuss
the state of the art methodologies and tools in assessing the end-user perceived quality,
i.e.,[QoE]and power consumption on smartphones. The existing internal software-based
and a hardware-based external power monitoring tools and techniques are summarized.
As this thesis bridges the gap between the [QoE]and the energy consumption on smart-
phones, and the user behaviour highly influences the energy consumption on smart-
phones, state of the art on the user behavior on the smartphones are also given. The
existing studies that focus on the influence of application behaviour on smartphones,
e.g., undisciplined and inefficient resource management of applications, on the energy
and the psychological aspects are also presented.
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Chapter 3

Factors Influencing QoE on
Smartphones

“Give me a place to stand, a lever long enough, and I will move the world.” —
Archimedes of Syracuse

3.1 Introduction

The usage of mobile applications and services in the daily life activities has been grow-
ing as they support the needs for information, communication, or leisure. More than
fifty thousand apps are released in the Apple’s App Store per month in 2014 [94]. Since
the beginning of App Store, more than 20 % of new apps do not achieve a critical mass
of user acceptance and are withdrawn from the stores’ offer. In order for the applica-
tions and services to be embraced by the users, they need to be evaluated, with respect
to their perceived experience, possible privacy violations, and the appropriateness of
the application to the user’s context and needs. Factors influencing this experience are
known to date. Hence, this chapter presents a four-week-long 29-Android-phone-user
study, which comprises a collection of both Quality of Experience and the un-
derlying network’s Quality of Service measurements through a combination of
user, application, and network data on the users’ phones. The main goal of this chapter
is to derive and improve the understanding of users’ (and factors influencing it)
for a set of widely used mobile applications in users’ natural environments and differ-
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ent daily contexts. The data acquired in this study is presented together with the follow
up discussion on the implications for mobile applications design.

There are no robust scientific methods for evaluating applications’ perceived smart-
phone[QoE]in the user’s natural environment. Instead, there are qualitative methods for
usability evaluation in the[HCIlcommunity [[T00]]; and there are quantitative methods for
the evaluation of the and performance of the underlying network infrastructures
in the networking community [[L02f]. Due to the dichotomy between these approaches,
there are no robust methodologies that combine both types of methods. The approach is
to measure and through a combination of methods with a goal of improving
the understanding of factors influencing and enabling us to derive implications
for mobile application design and management.

The most important difference between the study presented in this chapter and the
existing studies is the following. We measure users’ perceived in a minimally
obtrusive manner on users’ personal smartphones, for a set of mobile applications used
in their natural daily environments. The aim is to increase the understanding of factors
influencing smartphone We first present the methodology, and then the results
that covers the identified influential factors on the smartphone-based and the

impact of on

3.2 Methodology

The focus during this study is on already implemented and operational interactive mo-
bile applications, which are available and commonly used on a typical smartphone.
The design of the methodology is given in this section. To recall the definitions of the
methods, please see Section[I.5.2]

3.2.1 Overview

The following qualitative and quantitative methods are used in a four-week-long user
study:

e Obtaining preliminary knowledge via an online survey on the user’s background,
demographics, and cumulative experience with smartphone,

e Employing continuous, automatic, and unobtrusive context data collection on the
user’s personal smartphone with the help of logger (CSS-QoE) software,

e Gathering user feedback on the perceived via an Experience Sampling
Method (ESM)) executed multiple times per a day,
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e A weekly interview with the user along the [DRM] method.

3.2.2 Participants And Data Collection
Recruitment: Online Survey

First, an online survey is conducted and the information gathered helped to recruit ap-
propriate users for the study and get baseline background information. The information
obtained answered to the questions such as:

e How long have they been using a smartphone?

What phone type do they have?

Through which network provider are they connected?

e What are their usual usage patterns for voice and data communication?

Which applications do they use?
e What are the users’ experiences in general with their own smartphones?

Moreover, the participants’ socio-economic statuses are collected for each user. The
major criteria for the selection of 30 participants were to own an Android OS smart-
phone and to use it frequently in various conditions in daily life. Therefore, 30 users
were selected randomly from 430 potential candidates.

Automatic Continuous Measurements via CSS-QoE

The CSS-QoE application unobtrusively collects the information from users’ Android
smartphones regarding cellular network, Bluetooth connectivity, connectivity,
WiFi Received Signal Strength Indication (RSSI), sent/received data throughput (KB/s),
number of calls and Short Message Service (SMS)’s, accelerometer, screen orientation
and brightness, running applications, and user location. Most of the data is collected
only when the sensor value changes, i.e., the Android Opinion Score (OS) updates the
CSS-QoE with data. As the [QoS]indicator, the median Round Trip Time (RTT) for an
application-level control message (64 bytes) is measured. The control message is sent
every 3 minutes from the mobile device through the available wireless access network
technology to a dedicated server that is deployed at the university campus. In addition,
the Server Response Time (SRT), which is calculated as the time it takes for an [HTTP|
request to get a response (with updated weather information from a dedicated weather
application server to the Android smartphone), is monitored. As any new update is
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detected by the CSS-QoE, the updated data is immediately recorded to the smartphone
storage. This way, we minimize the memory allocation throughout the data collection
process and minimize the risk of data loss.

QoE| Ratings and Context Logs: Experience Sampling Method

The [66] is employed to gather users’ ratings. This is implemented in the
form of a short survey running on a mobile device, which is presented to the subject
after using an application. It is designed in a way that it does not influence the user
experience and behaviour. Therefore, the survey does not appear, i.e., does not pop up,
after each application usage, but rather randomly (with a maximum of 8 - 12 surveys
per day). The survey poses questions about:

e User’s rating for the application [QoE|based on the 1-to-5[MOSkcale [108],
e User’s location (home, office/school, street, other indoor, other outdoor),

e User’s social context (alone, with a person, with a group),

e User’s mobility level (sitting, standing, walking, driving, other).

While rating the same application throughout the study or even for a given day, the
users are requested to do their best to provide ratings, while keeping in mind that a
rating is a purely subjective episodic assessment provided on the basis of the
given perception of the specific episode of application use. It is aimed to capture [QoE]
for a set of widely available mobile applications for entertainment, communication, or
information purposes such as Internet-based radio, web browsing, online games, video
streaming, email, and news. In total, it takes approximately five seconds for the user
to complete each mobile survey. According to the tests confirmed by the users, the
software in general (i.e., automatic logging and [ESM) did not negatively influence the
performance of their smartphone.

Weekly Interview: Day Reconstruction Method (DRM)

The[DRMImethod [111] is employed in order to study the possible relations and causal-
ity between ratings, and the user context. The users are interviewed on a
weekly basis regarding their usage patterns and experience on the mobile applications
along with their previous 24 hour period. During the interview, users elaborated on
their responses from the In parallel, the collected data via automatic logging
and from the smartphone are visualized and compared with the data obtained
via[DRMI This method has been used for fast identification of any inconsistencies in
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between the methods, e.g., and This way, we identified the factors influ-
encing smartphone for any particular user.

3.2.3 Study Participants And Collected Data

The study was conducted for four consecutive weeks in between February to March
in 2011. 31 Android users were recruited, and in total there were three types of An-
droid smartphones (Motorola, HTC and Samsung). The users were subscribed to four
providers: 23 participants with Verizon, four participants with Sprint, three participants
with T-Mobile, and one participant with AT&T. Two participants (S1 and §27) dropped
out in the first three days of the study due to battery issues on their old smartphones.
S11 collected only one week of data and then dropped out due to an inconvenience.
Three users (52, S8, and S9) experienced data logging outages due to malfunctioning
software on their smartphone or an explicit altering of the logging. Table [3.1] presents
the study participants (from left-to-right) the participant ID; gender; profession; smart-
phone type; age range; overall [MOS] (as reported in the online survey); the with
the highest occurrence (perception as derived from the study) together with the per-
centage of its occurrence amongst all levels; number of occurrences of low (MOSE 2
or 1) separated by comma; and the total number of MOS]ratings collected by the user.
None of the participants had accessibility problems related to their smartphone use,
and none of them admitted that they were adversely affected by the Electromagnetic
Resonance (EMR) health issues in mobile phone usage. In total, 17,699 hours of data
are logged, which represent 87.8 % of the hours for the overall 28 days of study dura-
tion. The missing data was ranging between 3 hours to 378 hours for some users due
to occasional malfunctioning of the software.

3.3 Results For QoE And Context (ESM)

In this section, the results related to[QoE]ratings and the user context are given.

3.3.1 QoE Ratings

In total, 7804 [QoE] ratings are collected from all the participants with an average of
9.29 ratings per day and per participant. The high ratings (MOSI= 4 or 5) are much
more frequent than the low ones (MOS}= 1 or 2) as illustrated in Fig.[3.2] In general,
the participants find their[QoE]acceptable; they have explained that they learned how to
maximize their mobile application usage along their routine activities. The participants
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QoE- QoE- MOS= Total

S Gender Profession Phone Type Age Survey Study 21 No of Rat.
2 M Customer service ~ Samsung Captivate ~ 18-24 5 4(47%) 4,4 218
3 M 8)“::;;1;“’"‘”9 Motorola Droid 2535 2 461%) 3,0 181
4 M Driver MyTouch 4G 25-35 4 5(77%) 4,0 233
5 F  Research assistant HTC Incredible 18-24 5 4(79%) 52 227
6 F Admin. higher educ. G2 25-35 4 5(52%) 1,0 323
7 F  ICT Consultant Motorola Droid X 25-35 5 5(89%) 51 390
8 M Web developer Motorola Droid 25-35 5 4(54%) 4,0 143
9 F Medical adm. assis Motorola Droid 25-35 5 5(66%) 4,0 197
10 F Nanny HTC Incredible 25-35 5 4(60%) 4,0 543
1 F Unemployed Sam. Vib. Galaxy-S =~ 25-35 5 5(68%) 3,1 62
12 M Unemployed HTV Evo (WIMAX) ~ 36-45 4 5(78%) 3,6 620
13 M Uni. program mngt  Motorola Droid 25-35 5 4(35%) 25,3 254
14 M Contractor Motorola Droid X 25-35 4 5(63%) 8,9 369
15 M Accounts coord. Motorola Droid 25-35 4 4(84%) 4,1 196
16 F Operations analyst Motorola Droid X 25-35 5 5(57%) 7.4 327
17 M System analyst Motorola Droid 36-45 5 548%) 4,5 240
18 M ICT consultant HTC Evo (WiMAX) ~ 25-35 4 5(62%) 5,0 209
19 M Teacher Motorola Droid 25-35 4 5(68%) 4,18 317
20 F Admin. assistant HTC Evo (WiMAX) =~ 25-35 4 4(97%) 1,1 296
21 M Univ. student Motorola Droid 25-35 4 3(57%) 7.1 195
22 M Grant admin HTC Incredible 25-35 5 5(43%) 10,1 276
23 M Graduate student ~ Motorola Droid 2 25-35 2 4(83%) 1,2 137
24 M Systemsanalyst ~ HTC Evo (WiMAX)  25-35 4 5(94%) 2,0 198
25 F Univ. student Motorola Droid 2 18-24 5 4(63%) 16,10 386
26 M Senior adm assis  Motorola Droid 25-35 5 4(55%) 11,20 253
28 M Graduate student  Motorola Droid X 25-35 5 5(30%) 34,15 251
29 M Paramedic Motorola Droid 36-45 4 4(48%) 33,12 213
30 F  Housewife Motorola Droid X 36-45 5 5(83%) 3,1 341
31 M Registered Nurse ~ Samsung Captivate =~ 25-35 5 4(52%) 11 209

Figure 3.1: Participants: demographics and ratings. Participants S1 and S27
dropped out early in the study [67]]
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Figure 3.2: [QoE]ratings distribution for mobile users [67].

exhibited knowledge on circumstances that they can expect particular [QoE] depending
on the network coverage and performance.

3.3.2 Applications

Based on the collected logs, amongst the applications, there were standard An-
droid built-in applications, e.g., web or email applications, as well as a variety of spe-
cialized ones. After gathering all data from the study, the smartphone applications are
identified (via Android Market) within the following 13 categories. They are presented
in order of descending frequency of usage:

Communication: Email, GMail, GTalk, Skype;
Web: Default browser, Dolphin;

Social network applications: Cooliris, Facebook, Foursquare, Okcupid, Tum-
blr, Touiteur, Twitter;

Productivity tools: Astrid, Calendar, Callmeter, Outofmilk, Sandbox, Shuffle;
Weather apps: Weather, Weather caching provider, Weatherservice;

News: Espn, Foxnews, News, Newsfox, PenguinsMobile, PittFight, Reddit,
Sports;

Multimedia streaming: Listen, Lastfm, Pandora, YouTube;

Games: Games, Touchdown, Words, Worldwar, WoW, Poker, Zyngawords;
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Lifestyle apps: Diet, Horoscope, Spark people;

Finance: Stock;

Shopping: Coupons, Craigslist, eBay, Starbucks, Starbuckscard;

Travel: Locationlistprovider, Maps, Navigator;

Other: Other applications.

3.3.3 Context

The applications were used mostly at “home”, “office/school”, and “indoor/other”, as
depicted in Fig.[3.3] With respect to the social context, the applications were used on
average 80 percent of the time when the users were “alone”. The dominant mobility
levels for an application usage were “sitting”, “standing”, and “other” as specified by
the user precisely as “in bed”. Low [QoE]ratings occur mostly when a person is at home

or at school while being alone and sitting.

100%
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Figure 3.3: Mobile users’ locations distribution [67].

3.4 Factors Influencing QoE

In order to derive the factors influencing a user’s we have analyzed all [DRM]
answers semantically. In order to give a richness of expressions, a word cloud is created
that visualizes the word frequency in a user’s expressions as a weighted list. Font sizes
are set in relation to the frequency of the corresponding word as illustrated in Fig.[3:4]
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Figure 3.4: Expressions in user’s interviews and surveys [[67].

376 expressions from the 29 user’s weekly [DRMlinterviews, as well as the data from an
online survey with 430 entries are used. The most frequently mentioned key words are
applications, mobility, Internet, battery, performance (e.g., “slow”, “freeze”), as well as
features such as Global Positioning System ( , camera, and Flash Player. Many of
the user phrases are difficult to evaluate automatlcally. These words have been grouped
into clusters by using the affinity clustering method, which then can be labeled along
the identified factor. The coding and grouping of words into clusters were done by
two independent researchers. We calculated the amount of phrases that are clustered to
the same keyword by two reearchers, and their measure of agreement was 90 percent
of the total clustered phrases. Most disagreements were related to the interface and
application performance clusters, especially for cases where the participants were not
clear on pinpointing the main issue. Finally, the following factors influencing the user’s
[QoE have been distinguished.

3.4.1 Battery

Battery efficiency consistently influenced the experience of the smartphone users, as
it limits their smartphone usage, especially at the end of the day, when the phone was
completely discharged. S12 resolved that issue by carrying an additional battery. It can
be concluded via Fig.[3:4]that the battery is one of, if not the most important influential
factors on[QoE] based on the user interviews and the surveys.
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3.4.2 Application Interface’s Design

Application interface and the interaction were pinpointed very often; users did not like
the position and the location of the buttons on the smartphone screen. They had dif-
ficulty with resizing or webpage scrolling, they did not agree with built-in dictionary
items, and they complained about an inefficient manual input method, e.g., the “fat fin-
ger” problem, thus a more adaptable user interface is suggested. Some users preferred
interacting with a web-based interface of particular applications e.g., Facebook, than
with via the application widgets.

3.4.3 Application Performance

There were expressions used by the users while referring to low application perfor-
mance such as “freeze”, “sloppy”, “sluggish”, “speed”, “performance”, “usage of
memory”, and “sdcard”. For some mobile applications, which users previously ex-
perienced on a fixed PC (e.g., email), the expectations for performance were high. This
resulted in low For those users who had a Personal Computer as an alter-
native device (e.g., to receive/send emails), their rated [QoE['s were limited to reception
of emails on the smartphone as they used the [PQ for sending emails. The reason for
this is that typing on a real keyboard of a[PC| provides a better experience, especially
for long text. On the other hand, some users preferred a smartphone to run most of the
applications. For those users, mobile applications achieved enough usability to enable
them not to use a larger and potentially more comfortable

Two particular participants were adaptive, at the same time complaining about the
applications such as instant messaging and security apps. S4 complained about the
“stupid” autocorrect function of a messaging app, and S16 complained about a spe-
cific Virtual Private Network (VPN) application with poor usability to access corporate
email.

Some mobile users expressed their tolerance for low application performance when
they use it in mobile context. In parallel, users regularly mixed network performance
with application performance metrics; for example, while saying “Skyping service
is incredibly spotty”, the concern is actually the underlying network connectivity of
Skype service (i.e., being spotty), not the application itself.

3.4.4 Phone Features

Smartphone users noted missing features of the phone, which then hindered their expe-
rience; for example, lack of a Flash Player, personalized alarm clock, special settings
for vibrate-only mode, features for privacy, or a faulty
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3.4.5 Apps And Data Connectivity Cost

In the online survey, many of the smartphone users indicated that the cost of applica-
tions and data usage prohibits them from experiencing these applications.

3.4.6 User Routine

The routines of the users implied that different sets of applications were used in the
morning, in the evening before going to sleep, in the car, and outside the office. The
user rating is influenced by the user’s environment as well as the importance of the
mobile application to the task at hand.

3.4.7 User Lifestyle

There were highly ranked applications that support a user’s lifestyle choices, e.g.,
sports, fashion, nutrition, and leisure. They are used on a smartphone due to their
convenience of usage, e.g., in the gym for logging the burnt calories, in the cafeteria
for logging the caloric intake, or on the street while searching for a fancy restaurant.

3.5 The Role of QoS

Along the data analysis, not much evidence of the influence of on the user’s
were captured. There are low [QoE] ratings in our data, but there is no strong evidence
for a low One of the reasons for that can be, as indicated previously, the fact
that factors influencing a low user[QoE]are different than the [QoS|metrics that we have
observed (i.e., classicial metrics such as [RTT] and [SRT). Another reason for that is
the insufficient granularity of the measurements with limited permissions, e.g.,
non-rooted phones, to access network-level [QoS| metrics on user smartphones.

[QoSJis influenced by the choice of wireless access technology, that is, Wireless Lo-
cal Area Network (WLAN)), 2nd Generation (2G), BG] 4th Generation G)), and this
eventually influences However, in this study it has been observed that the perfor-
mance of the access network was not an issue, as users were often well-connected and
had a choice of access networks (as ordered by an increasing nominal capacity):
Code Division Multiple Access (CDMA), Enhanced Data GSM Environment (EDGE),
[UMTS! Evolution-Data Only (EVDO)), and High Speed Packet Access (HSPA). In ad-
dition, Worldwide Interoperability for Microwave Access was available for
selected users in selected urban locations: S12, S18, $29, and S24. Some users were
connected over[WiFi at home and at office, in order to assure better[QoS] A diversity in
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the connectivity through interfaces amongst the users is observed, ranging from
0 to 398.5 hours. In total, nine participants never used [WiFi during the study, while six
participants never turned the interface OFF. The latter allows the smartphone to con-
nect to any available [WLAN] access point when detected. The influence of the Wikl
signal strength on was also studied, however no clear trends were observed.

The overall mean of [RT T values that are collected in the study is 231 ms with a stan-
dard deviation of 73 ms. However, the values differ per[MOS]level; Fig.[3.5]|presents the
mean and the 95 % confidence intervals of [SRT and [RTT] It is observed that higher val-
ues of SRT and [RTT] correspond to lower[MQS| For both measures, the confidence in-
tervals get narrower as the [MOSlincreases. The fluctuation in these measures observed
for low ratings, especially for values 1 and 2, is related to diverse influence of
these measures on the application performance. The overlapping of the confidence in-
tervals make the comparison difficult. It is observed that the recommended mean [SRT]
for a smartphone application assuring the level of 3 is 950 ms, while the
level of drops to 2 when the mean[SRT]increases to 1050 ms. Thus, roughly one second
average [SRT] seems to be a critical point that the limits of acceptability. Similarly, the
mean [RTT of 220 ms corresponds to [MOS]level of 3, and the [MOS] value drops to 1 (a
bad user experience), when the mean increases to 263 ms. The throughput, i.e.,
bytes received per second by the smartphone, on the user smartphones is also studied.
Although we have observed that the mean throughput increases with the increase in
values, very wide confidence intervals exist. This indicates that there are many
different throughput ranges resulting in the same level.

The applications with many low ratings, were multimedia streaming applica-
tions like Listen (audio feeds application), YouTube (video streaming), and Pandora
(real-time radio streaming). Any participant in our study was using one of these appli-
cations in average 1.67 hours per day, which involved in average 50 MB of downlink
and 1.7 MB of uplink traffic per day. A total of 1.38 GB of downlink and 0.5 GB of
uplink traffic is observed in 28 days. A participant was running the “Listen” application
in average for 0.8 hour, YouTube for 0.34 hour, Pandora for 0.5 hour per day, although
most of the usage was observed within a fixed group of 10 participants with a varying
distribution of population. The applications Listen, YouTube, and Pandora involved
in average 32.7 MB, 8.15 MB, and 8.36 MB of downlink traffic per day, and 1.03 MB,
0.3MB, and 0.36 MB of uplink traffic, respectively. Some of the mobile users using
these applications rated 1 for MOS, being critical of its performance, but some other
users were tolerant, knowing that they gain possibility of accessing these applications
while being mobile, and paying a “performance price” for that. Low ratings can be
related to the fact that these applications required high network capacity or, as learned
from the participants, some application widgets were buggy and influenced the appli-
cation performance. Additionally, some participants were streaming pre-downloaded
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MPEG-2 Audio Layer III files (i.e., from local storage), while driving, riding
the bus, or walking on the street in order not to get influenced by the unstable wireless
network conditions.

The BG] (WIMAX) service was rarely used because of its unavailability, as S18
claimed: “Unfortunately, I don’t getldGlin (A). And when I'm in (B), the[dGlconnection
keeps switching ON and OFF, and the notifications are just annoying. So I keep
switched off”. Another user(S20) said: “My phone can operate on a network,
but I usually keep it set to because in my experience, the is not considerably
faster and just eats up my battery... Generally I keepGlturned OFF unless I am doing
something network intensive and I know it is available”. 1t was surprising to hear
that, because according to the results of performance measurements that are conducted
for the BG] and Q] networks, use of the Gl network results in better parameters
than Thus, it is presumed that the applications used by this particular user worked
sufficiently well on[3Gl This contradicts with our initial hypothesis that a mobile user
always wishes to have the best possible and fastest service.

Additionally, using the DRM]results, it is discovered that the users choose network
interface to connect to the Internet in order to save battery and to avoid occasional dis-
connectivities. Users who were able and willing to charge their phones often preferred
the access technologies in the order of (i.e., first choose WiFi, if that does
not exist choose 4G, if the latter two do not exist choose 3G), while this changes to[3GH
[WiEill 4Gl for the ones who charged their phones less often. A common feeling amongst
our users was that[4G] was as good as[WLAN]but drains too much battery. In addition,
coverage is a problem, so users who are subscribed to the network providers with
support are not necessarily always within the Gl coverage. This causes connectiv-
ity oscillations between [3Gland Gl putting users at risk of instant disconnections, and
also resulting in draining extra battery.

3.6 Study Limitations

The limitations of this studied are listed as follows. Firstly, the study has been con-
ducted on self-selective group of smartphone users with self-selective set of applica-
tions. One reason is that we developed the automatic logging application only for the
Android OS. The ratings of participants in this study are studied and some par-
ticipants who use many applications within a short time are identified. The maximum
number of applications that were used within the last 3 minutes of the given [QoE] rat-
ing was 19. It is observed that the applications are rated with high [MOS] values, 4 and
5, if there are more applications used within the 3 minutes time period. It is hypoth-
esized that either such a user is more advanced and uses many mobile applications,
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which he/she is satisfied with; or by using so many applications in a short time, this
user has no time to pay attention to details of his/her low experience, just grasping the
essence of the information provided by the application for the given situation at hand.
It would also be more contributive if it were possible to clearly pinpoint the type of
access network technologies, e.g., in relation to the values. In addi-
tion, the extreme conditions, i.e., very high [RTT or values, were not be able to
be caught due to lack of granularity of the selected samples for the study. Capturing
worst conditions in real-life scenarios is challenging and non-trivial, so a longer time
of study could be suggested in order to capture all scenarios a user might experience in
daily natural life. Moreover, there would have been a wider variety of measurable[QoS]
network metrics, e.g., delay jitter and packet loss if the smartphones were rooted and
privacy concerns were not important.

3.7 Summary

In this chapter, the research towards understanding a mobile users’ Quality of Expe-
rience in their natural daily environments is presented. Our approach employs
both quantitative and qualitative procedures, where the user becomes an active partici-
pant in the research. First, it requires gathering in-situ spontaneous information about
the user’s smartphone experience for a set of widely used smartphone applications; em-
ploying the Experience Sampling Method (ESM) for interaction with the user directly
after each application usage. Second, it requires a retrospective analysis of the user’s
experience and the state of factors influencing it; employing the Day Reconstruction
Method (DRM) to assist with the recollection of the past 24 hours. DRM]was support-
ive in validating the collected data through the logger application (automatic logging
and [ESM)). In this chapter, the analysis of the collected data is given by highlighting
some factors that impact the user’s

The novelty relates to the factors that influence[QoE] including application interface
design, application performance, battery efficiency, phone features, application and
connectivity cost, user routines, and user lifestyle. These factors go beyond the usual
usability, usefulness, and user value factors, as already indicated in the literature. The
role of was also studied, and it was indicated that increased Server Response
Time and Round Trip Time (RTT)) values reduce the Mean Opinion Score (MOS)
values. In general, it is observed that the users were well connected, and used their
applications mainly while in fixed indoor position and while being alone.

One of the most important findings of this study was that there were many low user
ratings that are associated with the multimedia streaming applications on the smart-
phones. One reason for this might be due to the occasional disturbances in the network
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level that manifest themselves at the user interface as stalling events (i.e. freezes). As
the metrics studied in this chapter (e.g., RTT and SRT) can not fully match with
the end-user [QoE] it is necessary to study the metrics with a more accurate measure-
ment point. In addition, video streaming on smartphone applications are highly power
consuming, in the long term influences negatively the battery lifetime. In the next chap-
ter, we study the real time video streaming on the smartphone at the packet-level, i.e.,
we study metrics such as packet delay variation and maximal burst size, towards
the goal of obtaining a better match between and [QoE]in video streaming.
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Chapter 4

Network-based Instrumentation
of Smartphone Video [(QoE

“The two most powerful warriors are patience and time.” —Leo Tolstoy

4.1 Introduction

Maximizing the delight of customers, i.e., their is the goal of all service and prod-
uct providers, in order to obtain more customers and to reduce the customer churn rate.
The customer is not likely to be interested in knowing metrics such as (ie.,
the difference between the inter-arrival time of packets), wireless signal strength, or
packet loss, but rather in the perceived quality of the service or application. Customer
feedback plays an important role in measuring the satisfaction level, and network/ser-
vice providers research a set of measures that can predict the satisfaction of their cus-
tomers without the need of direct feedback. models can satisfy this need, however,
it is often difficult to perform accurate measurements in user’s natural environments.
In this chapter, we present and analyze the model for streaming video over
the Internet through a cellular radio network. We derive a[QoE] model that maps mea-
surable metrics for this service onto the satisfaction of an individual. The mod-
els are meant to be used by decision making engines for various use cases including
network selection [243]] and application monitoring. In particular, these models are
used for the decision making engine in PERIMETER, a Specific Targeted Research
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Projects project granted by

PERIMETER’s main objective was to establish a new paradigm for user centricity
in advanced networking architectures [11]. PERIMETER aims to provide mobility that
is transparent to the user (seamless mobility) in heterogeneous networks and tackles the
problem from a user-centric perspective. Therefore seamless mobility can be controlled
by actual user needs in addition to [QoS|requirements and business considerations. We
present a measurement module that supplies the PERIMETER framework with
statistics about ongoing connections of a smartphone. With the information obtained
from all available network links, PERIMETER framework takes decisions whether to
handover to another network to maximize[QoE]and to maintain Always Best Connected
(ABQ) principle [243].

The statistics are ideally measured by low-level packet handling mechanisms
in the Opinion Score (OS). Providing accurate statistics to decision engines, e.g., for
handover, is vital, otherwise unnecessary actions may be triggered, which eventually
increase the cost of backbone processes in the Internet infrastructure and delays to-
wards the end-user [235]]. Moreover, with the aim of achieving transparently to
the end-user, the processing time of the measurements plays a large role in real-time ap-
plications. While taking measurements, the end-user preferably should not notice
any degradation in performance. Also, privacy and security during the measurements
must be maintained at all times. Thus, the preferred place to conduct network measure-
ments is inside the[OS] i.e., in-kernel [248]].

This chapter is organized as follows. We present the theoretical aspects in Sec-
tion[4.2] implementation in Section4.3] and brief explanation of the experimental testbed
in Section4.4] Then, we present real measurements via the conducted experiments to
model [PDV] and User Rating in Sectiond.5.1] the benefit of using the EWMAI
techniques on human perception statistics in Section[4.5.2] the definition of Maximal
Burst Size and observations regarding the effect of on the user perception
in Sectionfd.5.4] The chapter is summarized and concluded in Section[4.6]

4.2 Acquisition of QoS and QoE Metrics

In this chapter, the metric of interest for our [QoE] model is the We present
a analysis of the of a streaming video connection conducted in real-time.
is defined in [238]] as the difference in one-way delay between packets, while
ignoring any lost packets. Calculating the [PDV] can be done in various ways, e.g.,
as described in [245] and [244]. RFC3393 [238]], however, proposes the procedure
outlined in Algorithml[I]

Before settling for a[PDV]algorithm, we experimented and compared the accuracy
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Algorithm 1: Computing Packet Delay Variation (PDV))

Calculates the Packet Delay Variation (PDY)) of a packet stream
For each received packet

while Current time interval do
L Ts , < departure time of packet n at sender’s side

TR, < arrival time of packet n at receiver’s side
Calculate Dy, update D and N (see Eq.[.T)
PDV ¢ standard deviation of D, values collected per time interval (see Eq.[.2)

(i.e., goodness of fit) of different [PDV] algorithms. The Ring Buffer (RB) algorithm
yields the most accurate results with the fastest execution time. The[RBlis considered to
be efficient in terms of buffer allocation during run-time. Other algorithms are storing
packet parameters in a database, calculating the PDV] with respect to each of the stored
parameters at a later point in time. As a drawback the [RBI algorithm does not store
packet parameters longer than one time interval.

calculations require end-to-end measurements between the two peers (the
video streaming server and the end user device running a video stream player applica-
tion in Fig.@.1). The unsynchronized one-way-delay of one packet D,, is calculated by
the subtraction of the departure timestamp T ,, from the arrival timestamp 7 , obtained
at both ends of the communication channel. The values of these metrics are stored at
the reception of the first packets in each interval. The next packets’ timestamps are
compared with the initial stored values of the metric. Having the first packets as basis,
we overcome the time synchronization problem.

D, = TR,n_TS,n [ms] 4.1

We define the [PDV]as the standard deviation of the end-to-end delays between packets
that are measured within a given interval. The packet delays are stored for each time
interval, where each time interval is one second. The [PDVlis then given by

_ LN 2 N
PDV = N1 ;(Dn )—ND [ms] 4.2)

where D, is the one-way-delay (in milliseconds), D is the average delay (in millisec-
onds), and N is the number of packets per second. PDV is updated each time a packet
arrives. We note that the delay variation is being calculated by ignoring lost packets as
described in the definition of one-way-delay variation in [238]].
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As a result of the real-life experiments applied to individuals, the values are
directly matched when the User Rating (UR]) values are received. The user perception
of the previous network condition directly influences user’s later decisions. Instanta-
neous matching did not satisfy enough to prove that there is high correlation between
the and the UR values. The forget factor, the recency effect [247]), and sudden
change of [PDV] during voting are the possible reasons. Inclusion of the remaining ef-
fects of the previously obtained outputs into the calculation of the current output is
made possible by the approach (as computed in Eq.[4.3), i.e., via time-wise
memory-based where the recent values are more memorable [240], [236]]. When ob-
taining the [UR] the[EWMAlis used for computing the correlation of instantaneous user
perception against the metrics. Thus, by using on values, we tried
to imitate the human perception process to a certain extent [240|]. Similar approaches
such as the M-Model [236], have been used previously. The positive impact of the
[EWMAI on the quality of the matching between and the user rating will become
apparent in Sectiond.5.2] The [EWMAlis computed as follows:

PDVEWMA(i) = (1 — OC) -PDVEWMA(i — 1) + 0o PDV(Z) [ms] 4.3)

where PDVewwa (i) is the current (at i interval) exponential weighted moving average
PDVewma (i — 1) is the previous (at i — 1™ interval) exponential weighted moving
average[PDV] and PDV (i) is the current[PDV] « is typically set to 0.25 [240]], with the
motivation that users assess the quality based more on their memory as compared to
what they instantaneously perceive [236].

4.3 Implementation

A generic measurement module is used to assess the [QoS| metric and its statis-
tics). The measurement data are computed from information located in protocol head-
ers. Thus, the module can piggyback on any suitable protocol that allows for extensible
headers. For example, [[Pv6lis a candidate for our measurement module as it allows for
extensible headers by properly setting up the next header field. has similar abil-
ities to extend the header. Tunneling protocols are also targeted for our measurement
module as they easily allow methods for customizing headers, e.g., Generic Routing
Encapsulation (GRE), over [P (UDPIP), or Layer-2 Tunneling Protocol (L2TP).
In our case, we implemented the measurement assessing algorithm on top of a User
Datagram Protocol (UDP) tunnel. The measurement module needs the following two
fields to work properly: the sequence number and the time stamp. These fields are
preferably 32 bit long.
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Figure 4.1: Schematic overview of the experimental set-up [171].

It is important to send the [QoS]| metrics from the sender to the receiver’s side since
the actual computation is done at the receiver’s side. Storing a history of [QoS]|
metrics, and post computation of the data is not feasible. Upon the receipt of each
packet, we rather update the average inter-packet arrival and departure times together
with the deviation of the instantaneous values from the instantaneous means (see
and Algorithm|[T)). is calculated by deploying these updated values at the end of
each time interval [238]].

Any interested entities, usually residing in user-space, can obtain the metric
by accessing the measurement module in the kernel. Contact with the measurement
module can be established through a local socket or another [OS] specific system,
e.g., the /proc file system in LINUX.

4.4 Experimental Testbed

We have set up a testbed to obtain live and measurements. These values
allow us to define a model. In our experimental setup, as depicted in Fig.[d.T]
we streamed a video over the Internet from a server to an Android smartphone (HTC
G1). The Android phone was connected to the Internet via[BG]to the streaming server
site. The BG] connection was a regular data subscription from a popular Swedish net-
work provider. The video data is streamed from the server over the Internet to the
smartphone, which is connected to the Internet via[3Gl

We used the Darwin Streaming Server framework [[234]] on a LINUX (2.6.27)
Ubuntu 9.04 (installed on a fixed PC) for streaming media to the Internet. The streamed
video is MPEG-4 compressed with dimensions 240 x 180 pixels, has 24 kHz AAC
stereo sound, 23.97 frames per second (fps), and is streamed at a rate of 325 kbps. The
[RTSP protocol [249] is used for streaming the video from the server to the Android
phone. After the [RTSP session is initiated, the [RTSPI client periodically sends [RTSP|
requests to the server as a feedback control mechanism. A session identifier is used
to keep track of the sessions as needed, which eliminates the need for permanent [TCPl
connections.

77




Chapter 4. Network-based Instrumentation of Smartphone Video |QoE

We implemented the assessment tool for Android that consists of measure-
ment module synchronized to our video streaming application. The measurements are
recorded by our kernel module, extracted and written to a file by the streaming video
application. The files were then retrieved and analyzed with statistics software.

Using this tool, we conducted a set of experiments, where a number of individuals
rated a streamed video. While watching the video, in parallel they rated the video
by pressing one of the five buttons on the touch screen corresponding to the In
total, one hour of data was recorded from 15 adult test subjects. We conducted the
experiments in diverse environments. The test subjects were selected from various
backgrounds.

4.5 Results and Observations

4.5.1 Packet Delay Variation

In Fig.[A.7] the relation between the measured and values is de-
picted. The graphs show an excerpt of the time series obtained during our experiments.
It is a typical example that shows that a user is reluctant to give high user ratings when
the video quality improves, but immediately reacts with a poor user rating when the
quality degrades. The model that best correlates the and the is given by

Eq.f4
UR = —0.88 PDV /ms**" +6.38 (4.4)

where [PDV]is measured in milliseconds (ms). Observe that the models in this chapter
are valid for the user rating values within the (typical 1-to-5) range. When high
[PDVlvalues appear, the user would see a freezing video, i.e., the most recently received
video frame, until a new video frame is displayed. The latest frame would be played for
a shorter time than expected in order to compensate the timing for the expected frame
[237]). In case of packed loss, the lost frames will not be shown and the image will be
skipped. Various queues on the way from the streaming server to the video player cause
the Moreover, the BGl operator contributes to increases in by attempting to
compensate packet loss due to erroneous transmission by retransmissions. We also note
that TCP is adequate in recovering from lost packets, but it amplifies the while
doing so. This is one of the reasons why [TCPlbased streaming is not preferred for real
time video applications.
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(a) Measured values.

Timets)

(b) Measured values.

Figure 4.2: Experiment excerpt of the time series of measured Packet Delay Variation
(PDV)) and User Rating (UR) values. There is a clear negative correlation between
peaks in the and negative peaks in the [171].

4.5.2 Exponential Weighted Moving Average

The[URlobtained at a given time is strongly impacted by the previously measured [PDV]
values. The goodness of the fit, the R> value for the power model, is improved from
0.25 t0 0.51 when the[EWMAltechnique is applied. This is an increase of goodness-of-
fit of over 100 % as stated in Table[d.T} After EWMA]was applied, the model evolved
to Eq.[4.5] where is in milliseconds (ms). From Table[d.1} we can conclude that
with[EWMAl yields, amongst the others, the most accurate model.

UR = —9.10 PDV /ms"® +16.18 (4.5)

4.5.3 On-Off Flushing Behaviour

An oddity that we have observed during the experiments is the on-off flushing be-
haviour. Namely, the data transfer was suddenly stopped without any noticeable visual
warning signs. After a seemingly random amount of time a burst of data, that was
supposed to be sent during the outage, was delivered. One of the reasons for on-off
flushing behaviour could be that the network tries to recover from packet loss and
only releases all packets when the lost packets are recovered. After the burst of data,
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Table 4.1: Correlation between the User Rating (UR) and the Packet Delay Varia-
tion (PDV) with and without Exponentially Weighted Moving Average (EWMA) is
illustrated amongst different models.

QoE Model H Linear \ Log \ Exp \ Power
Coefficient of determination RZ R? RZ RZ
PDVIw/[EWMAI 0.31 042 | 0.40 | 0.51
[PDV] w/o [ EWMA] 0.17 0.19 | 0.22 | 0.25

the data transfer continued as before. During the off timespan, the video on the screen
stalled. As a consequence, very low [UR| values were registered.

In extreme cases no packets arrived for about up to 30 seconds. This on-off flush-
ing behaviour degraded the correlation between the [UR] and the results, drasti-
cally. Fig.[4.3]depicts two datasets, where we fit the values against the In
Fig.[d.3(a)l an excerpt of the unaltered dataset is plotted and fitted against a power func-
tion. The power model is chosen since it gives the maximum least square value, thus the
best fit amongst other models as shown in Table[d.T|and Table[d.2] The goodness-of-fit,
R2, for the whole dataset is 0.51. Collection of consecutive identical values indicates
that the remained unchanged and no packets are received during those intervals.
This is the case when data loss occurs, and we eliminate these values as follows. If
we receive the identical PDV] value from the measurement module for four consecutive
times, we remove that [PDV] value from the dataset. Thus, with the new data set, we
obtain Fig. and the new R? value is computed as 0.68. With this operation, in
a better correlation of determination (R?) value is obtained; improved from 0.51
to 0.68.

Referring to the large difference in R? values, instances of on-off flushing behaviour
can be seen as unwanted anomalies in the dataset. Another factor that could affect the
correlation in a similar way is known as the recency effect [247]; user’s perception
changes faster from good to bad than from bad to good. This is reflected in the
dataset as a skewed and in particular quicker reaction to degradation, thus de-
creasing correlation between the UR and[QoS] We haven’t yet investigated in detail the
recency effect in our dataset.
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Figure 4.3: Fitting of the against the Packet Delay Variation with the raw
data, i.e., with the on-off flushing effect, shown in is improved to when
the replicated [PDV] values (affected by on-off flushing behaviour) are filtered out. Cor-
responding model equations are denoted on the top right corner on both graphs [[171].
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Figure 4.4: Fitting of the against the Maximal Burst Size (MBS) [[171].

4.5.4 Maximal Burst Size (MBS)

In previous research, measuring the delay variation is based on the assumption that the
inter-departure time of the packets is uniform. This assumption does not tell, how-
ever, whether [QoS] degradation originates in the network or if the application layer is
responsible. Inter-departure times of packets were not observed to be uniform in our
experiments. For this reason and out of curiosity, we observed the[MBS| The number of
departed packets per millisecond is traced. We then referred to as the maximum
amount of packets received within this time interval, which can also be considered as
the clumping size. The [MBS] was plotted and fitted against the in Fig. @4} The
model that we found is given by Eq.[4.6]

UR = 59.96MBS~ %3¢ _51.71 (4.6)

where is measured in packets per interval. The is decreasing as the is
growing. The peaks in the number of transmitted packets per given time interval have
a negative impact on the UR. This is a somehow surprising effect and can be explained
by the fact that large [MBS] values indicate a flush following an off timespan. When
we look at pcap traces, we can identify peaks. We distinguish two cases; short
trails of identically-sized and very large sized packets with different content, and long
trails of differently sized large packets. Only in the second case we see a severe video
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interruption as packet transmission is stopped when the streaming application sends
feedback to the streaming server.

Our first guess is that the streaming video application, at least on Android, is con-
strained to process a certain amount of data during a given time. Larger amounts of
information, reflected in the[MBS] will result in deterioration of the video quality. Thus
the application might be the bottleneck.

Table 4.2: The correlation for the[URlin relation to the[PDVland[MBSlamongst different
models.

QoE Model H Linear \ Log \ Exp \ Power
Coefficient of determination R? R> | R? R?
PDV]w/ on-off flushing 0.31 | 042 | 040 | 0.51
[PDV]w/o on-off flushing 047 | 063 | 0.54 | 0.68
MBSl w/o on-off flushing 0.73 | 077 | 0.75 | 0.78

4.6 Summary

In this chaper, we presented the results and observations from a assessment tool
that consists of an in-kernel measurement module and an interactive video streaming
application. We conducted a set of experiments, focusing on and showed that the
system is adequate to predict [UR] values, related to the of streaming video users.
Fitting the [QoS] on metrics in a mathematical model enables a decision maker
of level for which application would need to make a decision, e.g., for vertical
handover, to perform seamless communication with the goal of maximizing

The importance of utilizing EWMAI during the analysis of data related to the hu-
man perception is presented, i.e., it emulates human memory. From the results of our
experiments, we concluded that applying [EWMAI techniques to our collected data in-
creases the goodness-of-fit of the power model by 100 %. In addition, on-off-flushing
behaviour and its effects on the correlation between the and the [UR] values are
presented.

An additional parameter, the is measured and correlated with [UR] values.
which is measured on the receiving side shows the density of the packets de-
parted from the streaming server within very short time interval. The analysis regard-
ing is under investigation. Appropriate models for these metrics are
being evaluated by statistical inference.
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Even though the experiments and observations in this chapter merely focus on 3G
network so far, the study can be complemented with and models from all
available wireless networks of a device. As a support for vertical handover mecha-
nisms, the complete information, obtained from within different tunnels which
are bound to WLAN, 3G or 4G interfaces, can be simultaneously provided to decision
maker mechanism to choose the best available network.

In this chapter, we presented that the metrics obtained from the kernel-level
such as and indicate the perceived quality. However, still these models
need to be improved, as packet level measurements do not fully tell about the user
perceived quality. Kernel level measurements are not also practical, as deployment of
kernel modules on any smartphone is a difficult task, due to the needs of root access
and specific configurations. Thus, in the next chapter, we study the video streaming this
time on an open source video player application, the VLQOE video player. We measure
and relate the user’s perceived quality of experience with respect to the measurements
obtained rather at a point in the stack closer to the user, the user interface. This way,
we are able to match how the video is actually presented to the user, and how the
user perceives the quality and rates it. We focus on the application and user interface
metrics, and study smartphone video in the next chapter.
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Chapter 5

Application-based
Instrumentation of Smartphone
Video (QoE

“The energy of the mind is the essence of life.” —Aristotle

5.1 Introduction

A traditional network-centered approach can capture the key influential factors,
such as packet loss or delay, on the end-user perceived quality. However, the recent re-
search suggests that[QoS| has to be complemented with a user-centric approach [112],
namely to satisfy end-user requirements and expectations. assessment is
preferably conducted close to the end-user, e.g., at the user interface. This way, as
compared to the network-centered approach, it is less complicated to interpret
the relationship between the impairments at the user interface and the subjectively per-
ceived [QoE]

Amongst the available services and/or applications, the most bandwidth demanding
ones are the video streaming applications [[113] as they have large size end-to-end
data delivery requirements. The end-user perceived of the video applications
is highly depending on, amongst others, the quantity and the duration of the freezes
during the video streaming sessions [115] [117]. There are existing approaches to
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improve perceived quality such as “download-and-watch-later”, e.g., YouTube, at the
cost of initial download/waiting time. However, those approaches do not suit for real-
time video streaming such as live-broadcast of a soccer match, as the user expects to
receive the video content at the same time as the content is broadcast. In order to
study on the smartphone-based real-time video applications, it is important to
consider smartphone user interface, as it is the location of the concrete evidences, e.g.,
temporal impairments, which can directly be perceived by the users. The reason for
occasional short-term or long-term temporal freezes [[119] in the video playout might
be due to the impairments at low layers in the network stack. In previous studies
[120], the network traffic is studied within the network-layer in two different states:
ON during a packet flow, i.e., burst; and OFF when there is no packet flow, i.e., zero
throughput. It is necessary to complement the network-based two-state ON/OFF model
with the user interface measurements, and then find out the distribution of the inter-
picture times Dj, i.e., the time gaps between two consecutive pictures displayed on
the smartphone screen, in the user interface, which later might help to understand the
relationship between different layers in the network stack. Yet, and to the best of
our knowledge, there is no smartphone-based [QoE] tool that can simultaneously record
potential metrics at different layers of the network stack together with the sensor
data.

In this chapter, instrumentation of the smartphone-based VLC player [121]],
VLQOoE, is introduced. Then, the studies conducted with VLQoE, which are based on
the inter-picture time, are presented in two parts. The first part of the study involves
an in-depth analysis of the inter-picture time metric, where the inter-picture times of
the video is studied with a two-state (ON/OFF) model. ON state is referred to the state
during a smooth video playout; and the OFF state is referred to the state during a video
picture freeze. The second part of the study involves the subjective study with the focus
on the inter-picture time metric quantifying a picture freeze. The influence of the inter-
picture time on the end-user perceived quality of the video, measured with five-level
scale (1-bad, 2-poor, 3-fair, 4-good, 5-excellent), is presented. The user response
time, i.e., the time it takes for user to react to a long picture freeze, is investigated
in order to understand the user tolerance levels to the inter-picture times. The user
interface also enables a user to indicate a freeze event by interacting with the freeze
button, which helps us to quantify a freeze from the picture delay perspective.

The remainder of this chapter is structured as follows. Section[5.2] presents the def-
inition of proposed metrics as well as the detailed description of the VLQOE tool. Sec-
tion[5.3] presents the details of the VLQOE tool together with its validation. Section[5.4]
describes the experiment testbed and the experiment methods of our study. Section[5.5]
presents the results of the two-state ON/OFF modeling based on the inter-picture time,
and also the results of the subjective study that identifies the relationship between the
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inter-picture time and the end-user perceived quality. The study limitations and the
summary of the chapter are given in Section[5.6]and[5.7] respectively.

5.2 Inferring the Video |QoE|on the Smartphone

This section presents the studied metrics at the user interface in our work, and explains
in details how they are related to The primary metric in this study is the inter-
picture time, Dp. Afterwards, on the basis of D), two-state modeling is employed in the
first part of our study. This is followed by a second part including a user study, where
the minimum perceived D), for each user is investigated. This section is concluded with
a study on the user response time that reflects the time it takes for the user to react to a
perceived video freeze.

5.2.1 Inter-picture Time (D,)

Video is delivered to the smartphone as a series of pictures and then displayed on the
smartphone screen. The inter-picture time D), the time gap between two consecutive
pictures displayed on the smartphone screen, are calculated as in Eq. T, (k) is the
timestamp when the k™ picture is displayed on the smartphone screen.

Dy(k) = Ty(k) — Ty(k—1) (5.1)

5.2.2 Two-state (ON/OFF) modeling

In the first part of this study, the video streaming is investigated with the assumption
that the video stream follows a two-state model, i.e., ON/OFF, throughout a video
streaming session, as shown in Fig.[5.1] The ON (time interval of a smooth playout)
and OFF (time interval of a freeze) states are defined based on the D}, metric. An expo-
nential two-state model is considered for the ON and OFF durations, as the modulating
ON/OFF process is assumed to be memoryless. In [[I57]], it is stated that 100 ms is de-
fined as the maximum tolerance threshold for the user to feel that the system is reacting
instantaneously. Thereby, 100 ms has been chosen as the state boundary between ON
and OFF.

The Maximum-Likelihood Estimation (MLE), developed by Fisher [151], is a stan-
dard approach for parameter estimation, i.e., to find the probability distribution that
makes the observed data most probable. It has optimal estimation properties such as
sufficiency, consistency, and efficiency. Thus, the MLEl of the durations spent in each
state (ON/OFF) are calculated as in Eq.[5.2H5.3] L(A) is the likelihood function for
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Figure 5.1: Tllustration of transitions between the two states [[114]].

exponential distributed samples; n is the number of samples; A is the [MLE for the rate
parameter, i.e., it is used to calculate the value that is most likely to occur. x is the mean
of the samples in exponential distribution.

L(A) =\ exp(—An %) (5.2)
A= 1 (5.3)
X

In our study, each sample x represents a duration instance of a state. Thereby, two
different sets of instances are obtained, i.e., ON and OFF.

5.2.3 Inferring based on Inter-picture Time

In a realistic setting, users often watch videos that are at least longer than a few minutes.
Thus, it is challenging to assess the instantaneous user-perceived quality at a particular
point in time.

In this study, an extended scale is used, complemented with extra user indi-
cations against the perception on the visual temporal impairments such as “freezes”.
Firstly, all the user indications with respect to the stalling events are studied together
with the user ratings on the five-level [ACR] scale. The maximum inter-picture time
values, Dy, .., amongst all D, values that lie in-between the two consecutive user in-
dications, 7; and T;_1, are studied. Thus, for each user indication there exists a unique
D, value. The display timestamp of the picture with the maximum display duration,
Dp,..» is denoted as Tp,  (see Fig.@). In addition, the time gap in-between Tp,
and the corresponding user indication, 7;, is calculated as in Eq

Pmax

A(Ti-p,p ) =T = Tpp s Tio1 < Tp,, <Ti 5.4)

First Low User Rating Time (i owRating) and a Number of Alarms: In the lit-
erature [117] [126]], it is stated that the influence of stalling event on shows
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significant differences with the video length. Therefore, a sufficiently long video is
used in this study, and the influence of stalling events is investigated, while considering
the streaming duration before the first low user rating. In the impairment definition of
five-level [ACRl scale, the ratings below 4 reflects an annoyance of the user [53]); and
MOS = 4 is the lower boundary for an acceptable voice quality [158]]. In this study,
the Low Rating is considered as the rating less than 4 (i.e., UR < 4), together with the
underlying temporal reasons. TfowRating 1S the time it takes from the start of the video
until the time of the first low user rating (UR < 4) per video session, and we study this
metric in details. The low user ratings (UR < 4) are matched to the underlying tem-
poral reasons measured objectively at the user interface. The frequency of the freezes
and the corresponding subjectively perceived quality are explored. The video pictures
with the display duration higher than 100 ms were considered as freezes. The number
of freeze instances (alarms), each with inter-picture time, Dy, higher than 100 ms, are
recorded. In parallel, the streaming duration until the first low user rating, Ti owRating»
is recorded. The analysis is performed for each user and for both streaming protocols,
and [HTTPI for the purpose of generalization of the results.

5.2.4 Minimum Perceived Inter-picture Time

Pastrana eral. [[159] stated that a single 200 ms long frame freeze was detected by
all users in a 10 seconds-long sequence with CIF resolution. The perceived video
freeze depends on the duration of the total duration of the video sequence. Staelens
etal. [[117] used short and long video sequences that comprise video freezes, which
last up to 400 ms, and the authors claim that they have obtained different results with
respect to the percentage of the detected video freezes when the subjective tests were
done with videos with different durations. Therefore, the topic is still challenging, and
it is important to understand the minimum perceived inter-picture time of the end-users
during a video stream on the smartphone, which directly relates to the freezes and
consequently to the end-user perceived [QoE} Although the human visual perception
depends on many factors including the context, time perception, memory effect [[161]],
illumination, content [[138]], we assumed that the subjects indicated the freezes as they
perceived them. The users were asked to indicate a perceived freeze by using the
“Freeze” button located on the user interface during the video playout. The detailed
procedure of the study is given in Section[5.4.2]

Finding out the exact temporal impairment, i.e., pinpointing the exact D, value for
an indicated freeze by a user, is challenging. In other words, there might be many
high (higher than the nominal 40 ms for a 25 fps video) values, which the users might
react upon. However, the user might not have reacted upon all of them for some reason.
An example scenario is illustrated in Fig. In the sketched scenario, suppose 7, (k)
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is the timestamp of the last picture that is displayed; and T, is the timestamp of the
subject’s i’th indication. The subscript “freeze” stands for the type of user indication.
It is hard to interpret the reason for the freeze indication, i.e., upon which D, values
out of {Dp(k —n—1), ..., Dp(k—1), Dp(k)} the freeze was indicated for within some
interval C;. Thereby, in order to guarantee the minimum perceived inter-picture time of
a user, the perceived user inter-picture time with the MinOfMax approach is analyzed
and explained as follows.

T.q Token-1) Tofken) To(k-2) Tolk-1)  Tok) T,
[1 1t SRR AN
: D(kn p !
4 ~y
T~ -

C;

Figure 5.2: Illustration of a scenario where it is hard to interpret what the user rates
[114].

MinOfMax: Firstly, for all freeze indications at 7;, . by a user, the maximum D,
value in-between T;

ieese AN Ti—1 (i.e., within interval C,’) is calculated as shown in
Eq.5.3

Dy,.... =max{Dp(k)}, Vk within the time interval C; (5.5)

Pmax;

Observe that 7;_; is not necessarily a freeze indication timestamp; it can be the times-
tamp of any indication amongst the six user feedback choices (one, two, three, four,
five, and freeze). It is assumed that the user perceives and indicates a new freeze after
the previous indication. This procedure is repeated for each freeze indication.

Secondly, the minimum of the maximum values received from user, S, are cal-
culated in Eq.[5.6] We call this metric as the minimum perceived inter-picture time,
Dypgmin, of user S. This way, the risk of wrong interpretation of a user’s freeze indica-
tion is reduced.

Dpgmin = min{Dp .}, Vi of subjectS (5.6)

pmaxi
Yet, the calculation of the minimum perceived inter-picture time for each user is de-
fined. To complement the user perception investigation, it is also important to study

the time it takes for a user to react to a stalling event; we name this metric the user
response time.
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5.2.5 User Response Time

The influence of the waiting times to the end-user perceived quality is studied pre-
viously [[136], however, the duration until the user perceives a freeze and reacts to
it has not been studied within the scope of This is important to know as
assessment depends on multidisciplinary parameters such as time perception and the
“inner-clock™ [163]] of the user. Musser [162] states that the human consciousness
lags 80 ms behind the actual events. Studying the time it takes for a user to react upon
a freeze event, i.e., to press the “Freeze” button, is complex and it depends on many
factors. According to Grondin’s work on time perception in [163], the actual time is
different than the subjectively perceived time. In this study, it is assumed that the users
indicate a freeze as they perceive it on spot.

The user response time is further investigated in two scenarios. The first scenario,
short, is when a user indicates a past freeze with a rather short duration during a smooth
playout. The second scenario, long, is when the user indicates a freeze while the stall
is going on.

First Scenario — Short: Let’s assume that Tp,  is the timestamp of the picture
with the longest display time amongst all D, values within the interval C; as shown in
Fig.[5.3] Assuming that the user reacted and pressed the freeze button with respect to

Tmeax, the user response time is calculated, as shown in Eq.

D,

responSeghort

S CRRTEEETEEEEEREE R PEES >
C;

1

Figure 5.3: Illustration for the calculation of Dresponse,, ., [[114].

short

Dresponsebhm = ’I}frcczc — TDPmax :TmeaX S {Tp (k) }VkWIthln Cl/ (57)

Second Scenario — Long: The freeze indications by the user for the long freezes are
studied, e.g., pauses [119]], as this metric might signify the end-user’s tolerance level
to the long-term freezes. This scenario is when the user intervenes the video stream
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by pressing the freeze indication button at 7, _, before the next picture k is displayed
at Ty(k), as shown in Fig. Dresponseong is calculated as the time gap between the
display timestamp of the frozen picture and the user’s freeze indication timestamp as

shown in Eq.5.§

Tplk-1) iee D)
: 1 1 > t
:< D > '
1 responseigng :
< D, (k) >

(Y

Figure 5.4: Illustration for the calculation of DreSponselong [114].

Dresponselong = Tifreeze - Tp(k - 1) (58)

5.3 VLQOoE Tool Description

The VLQOoE tool is implemented, as a mobile version of open-source VLC Media
Player, while adding extra functionalities for video assessment.

5.3.1 VLC Media Player

VLC is a packet-based media player [[164] developed by Video LAN, first released in
year 2000, available as open source, with GNU General Public License (GPL) and

GNU Library General Public License software licenses. Amongst other avail-
able players, VLC is available for the most variety of operating systems, and also for
Android-based terminals. According to the “sourceforge.net”, VLC has been down-
loaded more than 17 billion [[134]. VLC supports many video formats including mp4,
and streaming protocols including [HTTP] and [RTSPl

New functionalities are added to the VLC player source code in order to record
picture display timestamps, the user context data, and the perceived quality ratings
(i.e., UR) while a video is being streamed. More details on the VLQOoE tool is given in
the next section.
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Table 5.1: List of collected parameters by VLQoE.
COMPONENTS PARAMETERS

USER INTERFACE displayed video picture(frame), user controls, freeze indication,
user rating (UR), display orientation and brightness, screen touch events

APPLICATION re-buffering events

NETWORK interface type, service provider, signal strength(RSSI), packets/sec
AND PHYSICAL

OTHER GPS coordinates, battery level, unique device ID

5.3.2 VLQoE Tool

The original beta version of the smartphone-based VLC player consists of the video
pane that displays the video; a set of video control buttons such as play, pause, rewind,
and forward. We developed additional functionalities on top of VLC player and ap-
plied to different player components as detailed in Table[5.1] Additional functionalities
are grouped into User Interface, Application, Network and Physical, and Other. The
detailed description of the collected metrics is listed in the following subsections.

User Interface

We added additional buttons in the user interface in order to enable user to register in-
situ continous feedback such as opinion score or freeze indication. This is especially
important from the[ESM] perspective, and minimizes the memory effect. The snapshots
from the user interface of the player are presented in Fig.[5.5] When the user launches
the player, s/he sees a welcome message (see Fig.[5.5(a)), and s/he is required to click
the “OK” button. Afterwards, the user is asked to type in and submit information
regarding her/his mobility, location, gender, and age (see Fig.[5.5(b)).

Video Pane: During a video stream, the timestamps of the displayed pictures on
the device display (after decoding and rendering) are recorded. Then, the D, values
are calculated. The video pane is shown as a rectangular box in Fig.[5.5(c)| and it is
196 x 117 pixels with a fixed vertical display view.

User Rating Buttons (1,2,3,4,5) : For measurements, the user is instructed
to press one of the horizontally aligned five user rating (UR) buttons (based on
scale), as shown on top of Fig.[5.5(c)l whenever the user feels like rating the quality.
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Freeze

A VLQoE

This is the VLC version compiled
for Quality of Experience
measurements.

Please click the arrow on the top- |
right corner, and click Open. The
streaming will start shortly.
Thanks for participating in this
study!

mobility<sitting/standing>,
location<home/office/school/
indoor-other/outdoor-other>,
gender<M/F>,

age<e.g.,29>

Don't show this message...

| Cancel Submit |

Your Context?
1
|

(a) Welcome message (b) Context and Demographics (c) Freeze, UR, Display, and
Control

Figure 5.5: Snapshots from the VLQOE player [[114].

This helps to match the underlying application metrics to the application how-
ever it does not give information whether a possible low [QoE] is caused by a temporal
impairment. Therefore, an additional button is needed that helps the user to indicate a
freeze when required while the video is being streamed. When any of the rating buttons
is pressed by the user, the event is recorded together with the corresponding timestamp.

Freeze Button: The freeze button is located on top of the user interface (see Fig.[5.5(c))
to enable users to press whenever s/he perceives a picture freeze on the video display.
When the freeze button is pressed, the event is recorded together with the correspond-
ing timestamp, i.e., the data is labeled.

User Control Buttons: There are three buttons (play/pause, rewind, forward) at the
bottom of the video pane, as shown in Fig.[5.5(c)] We added the functionality to record
the interactions with these buttons together with the corresponding timestamp.

Screen Display: The orientation (vertical/horizontal) and the brightness level (%) of
the smartphone screen are recorded with the corresponding timestamp.
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Screen Touch Events: The users’ touch events on the display are recorded with the
corresponding timestamps, while the video is being streamed. This is especially impor-
tant to understand how the user reacts and/or interacts with smartphone upon a temporal
impairment.

Application Layer

Rebuffering Events: During the video streaming, the rebuffering of the video con-
tent might cause undesired picture freezes [136]. Thus, the rebuffering events upon
the playback buffer starvation are recorded with the corresponding timestamp.

Network and Physical Layer

Packets: The received and transmitted number of packets and bytes to/from the
smartphone are recorded every second with the corresponding timestamp.

Interface Type: The active wireless interface of the device (3G or [WiF) is recorded
once when the application is first launched.

Network Provider: The Subscriber Identity Module (SIM) card operator name is
recorded once when the application is first launched. The reason is that there is no han-
dover involved in our experiments and all of the users performed the tests on the same
smartphone with the same SIM card. In the next VLQOE version, the logging of net-
work provider can be further extended for future tests involving mobility (particularly
handover amongst operators).

Wireless Signal Strength: The signal strength that is measured at the active wireless
interface (3G or is recorded for once, when the application is first launched.
Next, the signal strength is recorded sporadically when the circumstances change, e.g.,
only when a different is triggered by the Android OS on the smartphone.

Other
Other recorded metrics belong to the following components:
GPS: Users’ coordinates are recorded when the application is launched for the

first time. The minimum time gap between the polling is set to one minute. In
addition, the minimum distance change with respect to the previous location is set to
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arbitrary 10 meters. Based on the conditions, the software records the new coordinates
with the new timestamp. The user should manually enable the [GPS]and Network (via
cell tower locations) to calculate the location on the “Settings” menu of the smartphone.
If none of these features are enabled, VLQOE pops up a notification and encourages
the user to enable it. The type of the active component (Network or [GPS) is also
recorded. This way, it is possible to get the mobility information of the user while
streaming video. Within the scope of this study, we aimed to conduct the experiments
while the users are at fixed position, thus we did not think of any particular reason for
choosing this specific setting.

Battery Level: The battery change is triggered by the Android OS of the smartphone
and is recorded on the device. The events are recorded with the corresponding times-
tamp.

Device ID: The unique device ID of the smartphone is recorded for once when the
application is launched for the first time. The names of all data files are labeled with
the device ID. This is helpful to distinguish in-between the users.

FTP Upload: In addition, a FTP Upload option is provided on the “Settings” menu
of VLQOE, so that the data files that comprise the aforementioned metrics can be up-
loaded manually by the users to the server located at Blekinge Institute of Technol-
ogy (BTH), Sweden or at some other server for research purposes. This is implemented
to support future studies to enable remotely capturing a wide variety of data from vari-
ous users at various locations on Earth.

Although, we implemented the above functionalities within the VLQoE, we do not
investigate all of the collected metrics. In this study, we studied the timestamp of the
displayed video pictures, the timestamp of the user ratings, and the timestamp of the
freeze indications by users.

5.3.3 Validation of VLQoE

The inter-picture time measured via the VLQOE tool is validated in this section. For
that, a video with 25 frames per second, with 500kbit/s bitrate is used. Thus, the nom-
inal inter-picture time is %fps =40ms. The video is streamed directly from the local
storage of the smartphone in order to discard the network influence on the streaming.
The validation is conducted on three different smartphones with different branches, i.e.,
Samsung Galaxy S, Samsung Galaxy S4, and ZTE T40.
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Figure 5.6: CCDF of inter-picture delay measured on three different smartphones for a
25 fps video clip.

The for the inter-picture time measured on three different smartphones are
given in Fig.[5.6] Three different datasets collected from three different smartphones
are presented in one plot. The calculated mean, median, confidence interval (97.5%),
and the corresponding number of samples per each dataset is depicted in Table[5.2] The
median inter-picture time are 39.93 ms, 39.58 ms, 39.85 ms for ZTE, Samsung Galaxy
S, and Samsung Galaxy S4, respectively. The measured values are very close to the
nominal 40 ms, and we conclude that the VLQOE tool can be used to accurately and
timely measure the inter-picture time.

Table 5.2: VLQoE’s inter-picture time statistics measured at three smartphones.

Phone type | Mean[ms] | Median[ms] | 97.5% CI[ms] | Number of samples
ZTE 48.77 39.93 + 3.28 362396

Samsung S 47.84 39.58 +2.98 383841

Samsung S4 47.53 39.85 +3.03 387412

5.4 Experiment Settings and Methods

In this study, the VLQOoE tool has been used primarily for performance analysis with
respect to the D, metric, while considering the user feedback. The experiments are
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Figure 5.7: Experiment testbed [[114].

conducted in two parts. The first part consists of a study without user involvement
to establish a ground truth and to understand the video streaming characteristics with
respect to the ON/OFF modeling. The second part is the user study designed to capture
the circumstances when the video has occurred, i.e., UR and freeze indications
with respect to the inter-picture time (Dp) values.

The first part of the experiments is the “ON/OFF Study” and it is introduced in
Section[5.4.T} and the second part of the experiments is the “User Study” and it is
introduced in Section[5.4.2] We used a common experiment setting in both parts, which
is detailed as follows.

Common Experiment Settings:  The VLQoE software is installed on Samsung
Galaxy S (Android 4.2.2). The video was located at a dedicated Ubuntu 11.10 stream-
ing server within the BTH university campus (City of Karlskrona, Sweden), and it was
streamed to the smartphone via[RTSP|and [HTTP|protocols. The streamed videos were
displayed on the smartphone screen with a resolution of 196 x 117 pixels. The same
video has been used in both parts; the streamed video content was a 250.44 seconds-
long water-sports theme video clip with a sequence of 6251 pictures, nominal frame
rate of 25 fps, and was encoded with a bitrate of 1000 kbit/s. The video consists of vari-
ous scenes comprising cheering fans, interviews with the sportsmen, and racing scenes
of the sailing boats.

The Scene Complexity (SC) is a metric as the average of the spatial and the tempo-
ral details of all frames of a video clip, as shown in Eq. where F (n) is the luminance
channel of the n™ video frame; the temporal complexity (77) is calculated as the root
mean square (RMS) of frame-to-frame image changes as in Eq.[5.10} and the spatial
complexity (S7) is calculated as the RMS of the Sobel filtered luminance channel of the
frames, as shown in Eq.[5.11] [166] [163], ITU-T P.910 [156] .

SC = log,(mean,[SI(n) - TI1(n)]) (5.9
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T1(n) = RMSpace[F () — F(n—1)] (5.10)

SI(n) = RMSqpace[Sobel (F (n))] (5.11)

The SC of the video clip used in this study is calculated as 7.04 with a high 77
value of 67, and SI value of 16. Based on the rough estimates of Ramos etal. [167],
a video with 77 greater than 38 could be considered as a video with high motion, but
with some exceptions. In addition, it has observed that the calculated SC value is
comparably higher than all of 25 ANSI standard test scenes [166].

5.4.1 ON/OFF Study (Part 1, no user involvement)

In the ON/OFF study, our main goal is to investigate and obtain a user model with
respect to the Dp metric. During the first part of the experiments, video streaming is
tested at different locations, including places where the video streaming quality was
poor, e.g., comprising university library, apartment basements in the Karlskrona city.
The purpose was to replicate the worst-case scenarios with distortions during a real-
time video stream. This part was conducted without the user involvement (no user-
interaction), and exactly the same video content was streamed consecutively using two
streaming protocols, e.g., and [HTTPI viaBGl A test supervisor started the video
stream and did not press any other control buttons, as this part of the experiments aims
to model D, at the user interface during network-based video playout. Two experi-
ments were performed; one for each protocol (HTTP| or RTSP); and each experiment
comprises 30 repetitions.

Based on the D, values, the durations spent at the ON and OFF states are investi-
gated. The state boundary between ON and OFF states is defined as 100 ms: the video
is considered being in the ON state when the inter-picture time is less than 100 ms;
and it is assumed in the OFF state when the inter-picture time is greater than or equal
to 100 ms. The ON and OFF durations are collected separately in two different data
sets called ON and OFF, and investigated the distribution as well as the Maximum-
Likelihood Estimation (MLE) of the durations within the states by using Matlab. No
extra artificial disturbances have been applied on the link between the streaming server
and the smartphone, but instead the data has been collected in a similar context that the
users might experience in real life.
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5.4.2 User Study (Part 2, with user involvement)

In the second part of the study, 30 subjects were met at various locations in Karlskrona,
Sweden, and the users were asked to watch the streamed video on the smartphone. A
more detailed background description on the selected subjects is presented in Table[5.3]
in Section3.3.21 Each user first watched the [RTSPtbased video and then the [HTTP:
based video. In total, 60 (30 users x 2 protocols) user experiments are conducted.

During the experiments, the ITU-T P.910 [156] recommendations for quality in
video conferencing and video-on-demand were applied as much as possible. However,
due to the inconsistency in the definition of experiment settings in different standards
documents (ITU-R BT.500, ITU-T P.910/1/2, ITU-R BT.1438), this is indeed still a
challenge [165]. One of the strengths of this study is that the subjective tests are con-
ducted in peoples’ natural daily life settings. For example, the test supervisor did not
set any restrictions such as the distance between the phone and the user. Instead, the
users were asked to hold the smartphone at a comfortable distance and take a comfort-
able position in a silence room with convenient illumination level, i.e., at a familiar
physical space in daily life. The users were asked to press the “Freeze” button anytime
to indicate an evidence of a visual freeze on the display, whenever they recognize a
freeze on the video. In addition each user was encouraged to rate the temporal quality
based on the five-level MOS scale, while pressing one of the five user rating buttons at
her/his own will during the playout.

As the focus is on the influence of temporal impairments on the users, not all[QoE]
aspects are considered in this study. For example, an additional “Freeze” button on
top of the [ACR]scale was used to collect the user reactions upon stalling events. ITU-
P.910 [156] recommends that the source signal, recording environment/system, scene
characteristics, and the spatial/temporal information of the video needs to be taken
into consideration during the configuration of the user experiments. The standard is of
high importance in analysis of content level influential factors on However, in
this study, the focus is more on the context, system, and the user level aspects and the
temporal impairments are considered on a single video source with a length of more
than four minutes in realistic smartphone settings. The traditional methods ask for user
feedback on the quality such as [ACR] after the video is completed, however our aim
in this work is to study and sample the experience on-the-fly as the video continues to
stream in real-time. The users streamed exactly the same video content and the video
is displayed on the video pane with 196 x 117 pixels resolution. The videos were
muted to let the users focus only on the visual impairments. This way, the influence of
other impairments such as the discontinuity of sound is minimized. For simplicity, the
orientation (vertical) and the brightness of the display were kept constant for all users.

Furthermore, a short baseline interview with each subject is conducted just after
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the experiments. Demographics such as age, gender, and occupation are collected. In
addition, information that addresses the following questions: (1) How often are the
users streaming video over the network on their own smartphones per day (less than
two minutes, less than five minutes, less than ten minutes, less than thirty minutes, less
than one hour, more than one hour); (2) Which network interface are they using while
streaming video or[WiFi); (3) What is the brand name and the operating system of
the users’ smartphone; (4) Via which wireless network interface are they experiencing
freezes the most, namely Often Experienced Freezes (OEF) on (3G or Wiki). After
each user watched the same video with two different streaming protocols, at the end
of the experiments, the test supervisor asked to rate the overall quality based on both
videos in the five-level MOS scale.

5.5 Results

The presentation of the results are structured in two parts. The results for the ON/OFF
study, i.e., two-state modeling of the inter-picture times (D)), are given in the Sec-
tion@ The results of the second part of the experiments, i.e., the user study, are
presented in Section[5.5.2]

5.5.1 ON/OFF Study (Part 1)

The duration of the ON and OFF states is calculated throughout 58 iterations amongst
the 60 iterations. During two iterations (RTSPl run #29 and [HTTP| run #27), the video
stopped in the very beginning due to very bad network coverage, which made the video
impossible to stream. Thus, two iterations from our dataset are excluded. The dura-
tion of ON and OFF states is studied. First, it has been assured that the distribution
of the ON and OFF state durations in all 58 runs could fit into an exponential curve
by obtaining the Coefficient of Determination (R?) values, as it can show how well our
hypotheses is correct, i.e., how well the collected data points fit an exponential curve.
Exponential modeling is chosen as it is assumed that the ON and OFF durations are
memoryless, i.e., the current state of the video streaming does not depend on its pre-
vious state. The mean R” values were calculated as 0.93 and 0.81 for OFF and ON
states, respectively. Next, the MLEk for the durations of ON and OFF states for all
58 iterations are calculated, then the mean of all MLE] values are obtained. The mean
[MLEl of OFF and ON durations is calculated as 642 ms and 9.7 s, respectively. [CCDH
plots visualize random, rare, and extremely high values. The aim here is to emphasize
on the high OFF durations that might cause low end-user perceived Thus, the
ON and OFF durations are visualized for all runs separately via plots as given
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in Fig.[5.8(a) and Fig.[5.8(b)] respectively. Slight deviations are observed in-between
the [CCDH plots, as the network conditions were not identical for all runs. However,
the R? on exponential fits of all runs for ON and OFF scenarios were above 0.8. Long

0.1} T s e e L‘ rrrrrr i |
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(a) ON state durations (ms). Linear x-axis.
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(b) OFF state durations (ms). Logarithmic x-axis.

Figure 5.8: [CCDF plots for the duration in ON and OFF states for 58 runs [114].

OFF durations followed by very short inter-picture durations are observed. This shows
that the pictures were clumped and then displayed as many back-to-back pictures to the
smartphone screen at once in very short duration. This behavior eventually manifests
itself on the user interface as fast-forward for a short period of time.
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5.5.2 User Study (Part 2)

In this subsection, the results with respect to the user study including the user demo-
graphics and background obtained via online survey, user feedback via interview, au-
tomatically captured objective data via VLQOE, the user ratings and the freeze
indications collected via the user interface of VLQoE, the minimum perceived inter
picture time, and the user response time. Before presenting the results, elaboration on
the corrupted (due to corrupted timestamps) or missing data is given.

Corrupted or Missing Data: The freeze indications by the user are necessary in or-
der to identify the minimum perceived inter-picture time. In this study, some user data
was corrupted, or did not help in identification of freezes due to the missing freeze
indications. Amongst the 14 out of 60 user experiments, the users did not press the
freeze button. We were not able to capture the corrupted/missing data during the ex-
periments, thus we could not diagnose. From the lessons learned, we suggest to check
the collected data starting from the early phases of the study, as also suggested by
Oliver [168], in future studies. This can increase both the quantity and the quality of
the collected data.

Short Interview with the Participants

In total, there were 30 participants in the user study. 28 participants were within 21-
30 years age range; S13 and $S30 were within 31-40 years age range. Five subjects
amongst all participants (52, S5, S16, S17, §22) were female. Five subjects watched
the videos at home, and 25 subjects at the university campus.

The background information regarding their experiences on their own smartphones,
particularly on video streaming, is collected via online survey. This is helpful to se-
lect subjects from different nationalities and gender. In addition, it is aimed to select
subjects that stream videos on their own smartphones in daily life in different con-
text. The background information of the subjects are presented in columns 2 — 5 in
Table[5.3] The first column is the subject ID; the second column is the nationality of
the user. The subjects were from six different nationalities. The third column shows the
users’ total daily video streaming durations via wireless network interface on their own
smartphones in daily life. 23 out of all subjects watch a video on the smartphone with a
duration of at least five minutes per day. The fourth column shows how the users watch
video on their own smartphones, e.g., streaming via only BGL via only [WiFit via only
local storage of the smartphone; or via Both[WiFilandBGl 13 subjects stream video via
only interface; five subjects stream via only six subjects stated that they use
both interfaces occasionally to stream video; four subjects use only local streaming;
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and two subjects (§13,529) never watch a video on the smartphone. Six subjects (S5,
S13, 821, 8§23, 527, §29) claimed that they never watch a network-based video on the
smartphone in daily life. Often Experienced Freezes (OEF) during video streaming is
given in column 5 of Table[5.3] and it is categorized as either BG| or WiFil In total,
17 subjects claimed that they often experienced freezes while streaming via and
only four subjects stated that they experienced freezes while streaming via[WiFil S13
and 523 state that the reason for not watching network-streamed video is due to their
previously perceived low quality of experience of the freezes via[3(J] streaming.

Results

On the sixth column of Table[5.3] the average evaluation (in five-level [ACR]scale, i.e.,
of subject on the temporal quality of the videos is presented. Five subjects rated
3-Fair, 23 subjects rated 4-Good, and one subject rated 5-Excellent for the average
temporal quality of the streams. The average [ACRlreceived from one subject, i.e., S5,
was lost. Although the subjects have experienced occasional freezes during the video
sessions and registed in-situ 1’s or 2’s, which is detailed in the next section, the overall
values were higher than 2-Poor. This might be due to the cognitive factors such
as the human memory effect [161] [149].

After studying the user-perceived quality based on the short interviews, the user
ratings (via collected during the video stream are examined in more details. In
the last column of Table[5.3] the most frequent user rating received during each stream-
ing session is presented together with its percentage of its occurrence amongst all other
ratings. For example, 4 (50%) means that the number of ratings with UR= 4 comprises
50% of all ratings, which is also the highest percentage amongst other ratings, given
by a particular subject. The values are stated for the two streaming protocols (separated
by a comma).

The maximum inter-picture time value during the period between the current and
the previous user indication (user rating or a freeze) is studied. The [CCDHplots of the
maximum inter-picture time values for the user ratings 1 — 5, and freeze indications
collected from all users are given in Fig.[5.9] The plot clearly shows that 60 % of the
Dy, values (where the y-axis is at 0.4) are less than or equal to approximately 65 ms,
80 ms, 150 ms, 500 ms, 500 ms, 700 ms for “UR 57, “UR 4”, “UR 37, “UR 2”, “UR 17,
and “Freeze”, respectively. The corresponding exponential models for all user ratings
are given in the Appendix Van Kester etal. [135] states the acceptable (UR > 3.5)
freezing time as 360 ms. According to the results of this study presented in Table[5.4]
if the acceptable boundary is considered to be UR> 2, then the mean D, should not
exceed 321 ms for an acceptable quality. The plots of “UR 1” and “UR 2” are
almost the same.
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Table 5.3: Participants demographics and statistics summary. Unavailable:

@ 9

S Nationality Net. Stream Stream OEF Interv. VLQoE UR

per day via via MOS  RTSP, HTTP
1 Pakistan 30 min Both 3G 4 4(50%), 4(46%)
2 Pakistan > 1 hour 3G 3G 4 3(32%), 4(34%)
3 Iran 5 min WiFi 3G 4 -, 4(63%)
4 Turkey < 2 min WiFi 3G 4 4(50%), 4(28%)
5 China Never Local - - 4(33%), 4(25%)
6 China > 1 hour WiFi WiFi 5 5(59%), -
7 Turkey 30 min Both 3G 4 - -
8  Sweden > 1 hour 3G - 4 5(26%), 3(34%)
9  China 5 min WiFi 3G 4 4(28%), 2(25%)
10 India 30 min WiFi - 4 4(36%), 4(33%)
11  Sweden 30 min Both 3G 4 5(62%), 4(42%)
12 Sweden 5 min WiFi 3G 3 4(33%), 5(38%)
13 Sweden Never - 3G 3 5127%), -
14 India > 1 hour Both WiFi 4 4(46%), -
15 Pakistan 30 min 3G 3G 4 -, 5(51%)
16 Sweden 5 min 3G - 4 5(80%), 5(66%)
17 Bangladesh 5 min WiFi - 4 4(33%), 3(63%)
18 Bangladesh > 1 hour 3G 3G 3 4(27%), 3(49%)
19 Pakistan 30 min WiFi 3G 4 5(45%), 4(58%)
20 Sweden 1 hour Both 3G 4 5(36%), 5(76%)
21 Pakistan Never Local - 4 2(39%), 4(35%)
22 Sweden 5 min WiFi 3G 3 -, 4(46%)
23 Pakistan Never Local 3G 4 5(53%), 5(65%)
24 Pakistan 10 min WiFi WiFi 4 2(41%), 4(47%)
25 India 10 min WiFi - 3 4(58%), 4(57%)
26  Pakistan 5 min WiFi WiFi 4 4(39%), -
27 Pakistan Never Local - 4 5(54%), 3(33%)
28 Sweden 30 min Both 3G 4 5(31%), 4(37%)
29 Sweden Never - - 4 -, 3(25%)
30 Sweden 30 min WiFi 3G 4 5(62%), 4(33%)
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Figure 5.9: Inter-picture time distribution of the corresponding user indications [|114]].

The more detailed statistics of the D, values before a user indication are given in
Table The inter-picture time values for Dy, . values were exponential distributed
with R“ values given in Table The dataset for the D), values for all user indi-
cations were fit to an exponential distribution with R? value of higher than or equal to
0.84. The mean of the maximum inter-picture time values were calculated as 152 ms,
282 ms, 321 ms, 768 ms, 831 ms, 1289 ms for “UR 57, “UR 47, “UR 3”, “UR 27, “UR
17, “Freeze”, respectively. There is a clear trend that the UR increases, i.e., user per-
ceived quality improves, as the D, . value decreases.

The time gap between the user indication, 7;, and the displayed picture with the
maximum display time, Tp,  is calculated. The statistics on the latter are given in the
last three rows of Table The mean A(T,-,meax) values were calculated as 2109 ms,
2650 ms, 3267 ms, 3808 ms, 3809 ms, and 2603 ms for “Freeze”, “UR 17, “UR 27, “UR
37, “UR 47, and “UR 57, respectively. As the mean time gap between the user’s indi-
cation and the user rating (in the order of freeze, 1, 2, 3, 4) increase, the corresponding
user rating gets higher. One reason could be the fact that users are willing to rate the
bad quality immediately, and are forgetting to rate when the quality improves. Similar
behavior has also been observed during a separate user study in Chapter[d For some
reason, the A(7;_ meax) value drops to 2603 ms for UR = 5, which is under investiga-
tion.

First Low User Rating Time (7i owRrating) and Number of Alarms:  In this part, the
pictures that are displayed for more than 100 ms duration (D}, > 100 ms) are categorized
as alarms. The number of alarms is visualised along with the corresponding low user
ratings (UR < 4) [[158]], and this is done for all user experiments in Fig.[5.10] Each
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Table 5.4: Number of data points, goodness-of-fit, mean, median, standard deviation
values are presented in rows 2-6 for Dy, . together with the corresponding A(T;—p, )
values in rows 7-9.

Pmax

| User Indication [ Freeze | UR1 [ UR2 [ UR3 | UR4 | URS |

# of Data Points 266 142 229 305 471 515
R*(Exponential) 0.96 094 | 094 | 0.84 | 090 | 0.94
Unit ms
Mean{D, _ } 1289 831 768 321 282 152
Median{D, .} 550 253 253 70 63 54
Std{D,,..} 2495 1611 | 1666 | 758 706 295
Mean{A(7;_ Dy )} 2109 | 2650 | 3267 | 3808 | 3809 | 2603
Median{A(Ti,DpmaX )} 1332 1457 | 1686 | 2387 | 2527 | 1335
Std{A(]}_meX)} 3147 | 3358 | 4220 | 4133 | 4016 | 3412

point on the plot represents the result of one video experiment session. Ti owRating fOr
each user are shown on the y-axis; and total number of alarms that are detected until
TiowRating> are shown on the x-axis. Some subjects were reluctant to rate, i.e., a low
user rating at the 25" second of a video session is received with respect to the 37
alarms recorded by the application within this interval. In contrast, some people were
rather eager to rate, i.e., seven users rated the quality with UR < 4 within the initial 30
seconds of the video, although there were no alarms with D}, > 100 ms.

Minimum Perceived Inter-picture Time

The minimum perceived and reported inter-picture time values for each subject (subject
ID at the first column) are given in Table[5.5] at the columns 2 and 5 for [HTTPI and
streaming, respectively. The total number of freeze indications (#i) by each user
are given in columns 4 and 7, respectively. The minimum perceived inter-picture time
events that were reacted by the users at least 80 ms after 7p, — were considered as
stated by [162]. There were two user experiments (S6 and S13 during RTSP stream-
ing) out of 60, in which Dresponse,,,, Were less than 80 ms. Therefore from those two
datasets, the first Dyesponsey,,, that is higher than 80 ms were selected. The calculated
perceived inter-picture times for each user are presented in Table[5.3|ranging between
40ms and 4542 ms. The distribution of the measured inter-picture time values can
be represented with an exponential function with R> = 0.82. The mean of the per-
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Figure 5.10: The user ratings (UR < 4) are visualized with respect to the correspond-
ing relative time from the start of the video, and the number of alarms raised by the
application [[114].

ceived inter-picture time based on all subjects is 328 ms. Some subjects indicated many
freezes such as S6 (with 39 freeze indications) during [RTSP]streaming, while some did
not contribute in any freeze indication such as S3. The lack or low amount of freeze
indications can be caused by many reasons, some factors are: (1) the subject forgets to
indicate a freeze, (2) the subject does not perceive the freezes, or (3) the video playout
is nominal (i.e., not much higher than the nominal 40 ms inter-picture delay).

User Response Time

The user response time is calculated for each user while considering the first and the
second scenario, separately.

First Scenario — Short: In the short scenario, the user indicates a perceived freeze
by pressing the freeze button as the video plays out. The results with respect to the user
response times for the short freezes as defined in Section[5.2.5] are given in Table[5.5]
The third and the sixth column depicts the Dresponse,,,,, Values for and [HTTPI
streaming experiments, respectively. The values are in-between 218 ms and 10596 ms
for [HTTP| streaming with 2985 ms average; and the values are in-between 102 ms and
6496 ms for [RTSPIstreaming with 1515 ms average.

Second Scenario — Long:  In the long scenario, the user indicates a freeze while the
video is being stalled. The Dresponsemg values that are obtained from each subject are
different. As the plot can conveniently reveal the very high user response time
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Table 5.5: Minimum perceived inter-picture times for each user. Unavailable:

HTTP RTSP
S ngmin Dresponseshor[ #i DpSmin Dresponseshon #i
1 49 ms 4451 ms 2 55ms 4995 ms 4
2 53 ms 7075 ms 10 67 ms 318 ms 11
4 57 ms 10596 ms 8 43 ms 313 ms 7
5 41 ms 454 ms 5 43 ms 539 ms 5
6 - - - 41 ms 705 ms 39
7 51 ms 3538 ms 12 - - -
8 41 ms 218 ms 14 86 ms 111 ms 7
9 - - - 45 ms 1862 ms 2
12 103 ms 4401 ms 6 318 ms 2548 ms 7
13 - - - 515ms 1399 ms 7
14 - - - 40 ms 385 ms 1
16 41 ms 275 ms 10 83 ms 534 ms 41
17 - - - 389 ms 6496 ms 8
18 50 ms 431 ms 4 50 ms 1124 ms 2
19 || 4542 ms 4969 ms 1 - - -
20 117 ms 4394 ms 9 45 ms 117 ms 9
21 43 ms 3367 ms 20 59 ms 666 ms 3
23 681 ms 1300 ms 3 2880 ms 2704 ms 2
24 53 ms 3959 ms 13 249 ms 1352 ms 1
27 474 ms 1493 ms 3 - - -
28 45 ms 2127 ms 4 49 ms 102 ms 15
29 || 2924 ms 319 ms 1 - - -
30 46 ms 369 ms 4 - - -

732

in the data, the plot of Dresponsejong is given in Fig.

be represented by an exponential distribution with R? of 0.98 (CCDF = exp(—0.0007 -
Dresponsehmg /ms)). The mean of the DreSPonsel(mg values is calculated as 1533 ms. Again,
based on the results plotted in Fig.[5.11] the user response times vary from user to user.

Dresponsey,,, values can
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Figure 5.11: plot of User Response Times, Desponse,,,» f0r the long freezes
[114].

5.5.3 Summary of the Results

A smartphone-based video assessment tool (VLQOE) is developed and deployed in
the user studies. VLQOE can can record the metrics that are detailed in Section[5.3.2}
The tool enables to analyze in detail all the collected parameters related to either
during or after the experiments. The user studies with VLQOoE are conducted in two
parts: the first part aims to model the inter-picture time in realistic settings during 3G
streaming; while the second part aims to find out the video via subjective study.
The most important findings of this work are stated as follows:

e ON/OFF modeling based on the inter-picture time during video streaming is
studied, and exponential models (with mean R? values 0.81 and 0.93 for ON
and OFF states, respectively) are obtained. The mean ON duration is calculated
as 9.7 s; and the mean OFF duration is calculated as 642 ms during the streaming
experiments. (Part 1, Section[5.5.1])

e The minimum perceived inter-picture time is studied. The mean of the minimum
perceived inter-picture times is calculated as 328 ms. (Part 2, Section[5.5.2))

e The mean of the highest acceptable (UR > 3) inter-picture time values is calcu-
lated as 282 ms. (Part 2, Section[5.5.2)

e The mean of Dresponse,,,, values for the HTTP- and the RSTP-based streaming
are 2985 ms and 1515 ms, respectively. (Part 2, Section[5.5.2)

e The mean of User Response Time (Dresponse,,,,) during a long freeze scenario is
calculated as 1533 ms. (Part 2, Section[5.3.2))
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e The time it takes for the subjects to give a low user rating, i.e., UR < 4, from the
start of the video is studied. It has been found that, this duration is varying for
each user. Some users are reluctant, and do not respond immediately despite the
high number of alarms (freezes) raised by the video player; while some users are
rather willing to rate low even for low number of alarms. (Part 2, Section@

5.6 Limitations

The obtained results of this chapter are valid for the particular video, for the particular
users involved in the study in particular conditions as stated. Further tests are under
investigation for a wide variety of videos and with the participation of more users. The
accuracy of the timestamping of the displayed pictures might be a few milliseconds
varying from the actual values. This depends on the clock accuracy, and drifting as well
as on the timestamping of the programming environment and operating system, and
also to the implementation related factors, e.g., particular location of the timestamping
function in the code. Moreover, the accuracy of the minimum perceived inter picture
time values were based on the number of freeze indications per user as well as other
factors related to human factors such as cognitive bias, user concentration level, etc.
The improvement of the tool with respect to this aspect is ongoing.

During the experiments, corrupted or missing data for some subjects are detected,
e.g., some users did not press the freeze button. Based on this experience, a peri-
odic check of the data during the study is recommended to detect and prevent similar
anomalies in future studies.

In the current version of VLQOE, only a subjective method with the five-level [ACRI
scale is employed as it is a commonly used one. On the other hand there are other
recommended assessment methods as such some focuses on the relative quality [138].
The task of studying other [QoE| methods on the user interface is scheduled for future
work, and [QoE]researchers are encouraged to modify the VLQOE for their target stud-
ies.

5.7 Summary

In this chapter, the extended version of the popular media player, VLC-media player
called VLQOoE is presented, and it is aimed to help researchers to conduct smartphone-
based video experiments. This is achieved by adding an extra functionality to an
open source VLC media player. VLQOE records a set of metrics from the user inter-
face, network- and physical-layer, and the available sensor metrics from the Android

111




Chapter 5. Application-based Instrumentation of Smartphone Video [QoE!

OS. The network- and physical-layer measurements enable the collection of lower
layer related metrics such as signal strength and the transmitted/received pack-
ets/bytes. The measurements at the user interface enable the collection of direct user
feedback with respect to the temporal impairments perceived by the users; and the
sensor/GPS components enable the collection of user context during video streaming.
The VLQOE tool can be used for user-centric modeling as a function of wide va-
riety of collected metrics including the smartphone battery level, player’s rebuffering
events, numbers of received and transmitted video packets, smartphone screen orienta-
tion/brightness, smartphone network interface signal strength, and the location/context
of the end-user.

In this study, VLQOE tool is used to further study the temporal impairments of
a network-based video stream. The approach is presented in two parts. In the first
part, the video streaming session is modeled in a two state ON/OFF model with the
assumption that 100 ms is the boundary inter-picture time for a video playout to be
considered either in ON (smooth playout), or in OFF (video picture freeze) state. The
duration of ON and OFF states with exponential models is presented together with
the corresponding inferential statistics. In part 2, the focus was on the centric
modeling and a user study is conducted in order to find out the boundary inter-picture
times between the ON and OFF states. To do that, the minimum perceived inter picture
times is studied, i.e., the minimum display duration of a video picture that is perceived
by a user. Next, it is concluded that this metric varies from user to user (max. 2880 ms,
min. 40 ms).

Next, the influence of the inter-picture times on the end-user perceived is
presented as measured at the user interface. Based on the results obtained from the user
study, the mean of the maximum inter picture time values were 152 ms, 282 ms, 321 ms,
768 ms, 831 ms, and 1289 ms for “UR 57, “UR 4”, “UR 3”7, “UR 27, “UR 17, “Freeze”,
respectively. There is a clear trend that the maximum inter-picture time increases as
the user rating decreases; and the highest mean of maximum inter-picture times have
matched with the “Freeze” indications, as expected. Almost similar maximum inter-
picture time distributions are observed for “UR 1” and “UR 2”. Moreover, the first
low (“UR < 4”) ratings that were received by user during the video streaming sessions
are studied. The occurrences of the high (greater than 100 ms [[157]]) inter-picture times,
i.e., alarms, are studied together with the streaming time until the reception of the
first low user rating. In parallel, the overall user response time of the subjects in two
scenarios (short/long freezes) are analyzed. The mean user response time with respect
to the short freezes are calculated as roughly 3s and 1.5 in and [RTSPHbased
streaming, respectively. The user response time with respect to the long freezes can
be represented via the exponential distribution, and the mean user response time for a
long freeze is calculated approximately 1.5s.
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The ultimate goal of video experiments is to detect degradation in the quality
of video stream, and to react in order to minimize the influence of it on the end-user per-
ceived quality. VLQOE tool has potential to provide metrics with high information gain
to the machine learning mechanisms that will benefit in terms of improvement of the
future streaming quality, e.g., adapting the player buffer size in real time. The content
presented in this chapter can be extended with more number of test subjects (e.g., via
Google Play), with long-duration studies, and could shed light on construction of new
methodologies for smartphone-based subjective studies and eventually modeling
on the smartphone.

We show that the VLQOE tool has great potential for further improvements for
mobile-based [QoE] assessments. It can further be enhanced with more variety of
assessment methods, video content, and eventually to be put in the Android application
store in order to reach a larger number of subjects. The tool can be improved by adding
the options that helps the researchers to choose the desired UR collection methodology,
e.g., % slider instead of five buttons, choose/upload new test videos (e.g., VQEG video
clips), to be used in the video experiments. The outcomes of testing different exist-
ing assessment methodologies and videos will help in standardizing smartphone-based
QoE assessment.

Assessment of [QoE] in real life user studies while being minimally obtrusive to the
user is challenging. Obtaining the user data non-obtrusively, i.e., without explicitly
asking the user to press the button, can be done by the accelerometer data of the device
during the video streaming. This might help to identify the user behavior (e.g., jiggling
the mobile device) with respect to the video freeze. Similarly, the obtained user data on
the screen touch events may potentially reflect the user perception in a less obtrusive
and more objective way. These items can be studied in future work. On the other hand,
continuous recording of accelerometer data might be resource consuming. Therefore,
one recommendation is an automatic recording of the accelerometer data once a high
inter-picture time at the user interface has been detected.

Some further future works could be applied; in fact, the study could be re-designed
in order to increase the engagement of the subjects to the study, e.g., tournament to de-
tect freezes. The VLQOE tool can be turned into a game platform where the user feed-
back with respect to the quality of the video would be collected in minimally intrusive
away. This way, the number of participants, the variety of context, and consequently
the quality of the data might be improved. The score of each user based on the game
can be presented as public and the subjects will be able to compete with each other to
detect and indicate the highest number of freezes with the cost of uploading their data
to a public database. The collected data can then be fed into machine learning
mechanisms so that the application itself will be trained and then suggest the “good-
enough” levels of the parameters for the video source, which could then be fed into the
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control loop.

We have so far studied inter-picture time with the focus on network-based video
streaming, and the collected data depends on the real-time condition (available band-
width) of the network link during the experiments. Therefore, we plan to complement
our work with controlled experiments, e.g., predefined disturbances, to have ground
truth, and stream videos that are pre-recorded from the local storage of the smartphone.

In Chapterf4] and [5] we have studied the video streaming at the network and the
application level in order to model We have addressed the temporal impairments
such as video freezes (one of the most important influential factors on smartphone-
based video as identified in Chapter[3)), throughout extensive user studies. Next,
we study another very important influential on smartphone [QoE]that is the energy con-
sumption. We study the power consumption of network-based video streaming. How-
ever, before conducting actual measurements, the choice of the power measurement
tool is crucial especially because we want to study the power anomalies to extract po-
tential energy saving approaches. In the next chapter, we study two different energy
measurement tools: a software tool that internally runs on a smartphone, and an exter-
nal hardware tool.
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Chapter 6

Choosing the Right Power
Measurement Tool

“If I had asked people what they wanted, they would have said faster horses”. —Henry
Ford.

6.1 Comparing Power Monitoring Tools

Power consumption measurements on mobile handheld devices have cons and pros
particularly with respect to intrusiveness and accuracy. For instance, a software tool can
obtain measurements without influencing the actual usage behavior of a mobile device,
however it might not obtain accurate measurements. Hardware measurement tools are
considered as ground-truth due to their high precision capabilities in measurements,
however they are poor in portability that makes them not possible to be used in user
studies, e.g., while users are using their own smartphones in daily life environments.
The software-based energy tools are necessary to reveal the anomalies in energy while
the applications are running on the smartphone to match energy consumption with
[QoS| and Therefore, it is necessary to compare these two different approaches
before choosing the right tool for measurements. This section provides the comparison
between a hardware-based and a software-based measurement tool with respect to
precision of measurements as an illustrative example. The pros and cons of each tool,
Monsoon [[170] as a hardware tool, and PowerTutor [[172]] as an internal software tool),
are compared.
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Measuring the power consumption directly on the terminal is difficult due to mea-
surements’ influence on the device power (e.g., as performing accurate power mea-
surements on a battery-constrained mobile device might yield immense usage of re-
sources), and non-trivial as some phones restrict the access to the power sensor within
the operating system kernel. Thus, developers often prefer estimation-based software
measurements (by probing the application’s process time and allocated resources on the
device) to predict the individual application’s approximate energy usage. The software
tools provide the overall picture of the power and energy consumption of the appli-
cations being running on the smartphone including the network interfaces, CPU, and
display. They do not provide ground truth measurements, but only can provide estima-
tions. The usage statistics of hardware components are gathered via procfs [152] for
detailed process information, BatteryManager [[153]] API’s or upower [[154] to obtain
battery statistics, which might be inaccurate due to the dependence on the hardware
(e.g., processor) architecture. Some drawbacks can be overcome by modifying the ker-
nel, however then it might impact the portability of the tool. In addition, it might be
highly resource-consuming as it keeps the CPU busy in order to sample current with
high precision. The estimation of energy consumption is often done by preliminarily
obtaining physical energy measurements on the device with respect to different power
states, e.g., while transmitting data via 3G interface, and then obtain energy models
basically via fitting the physically measured data.

Monsoon Power Monitoring Tool: The Monsoon power monitor device contains
the power monitor hardware and the power tool software, running on Windows XP
and Seven, which can provide robust measurements on any device that uses a single
Lithium (Li) battery. The measurements are obtained and can be saved with a sam-
pling rate of SkHz. The tool supplies the power to the device, thus the device bat-
tery is bypassed. The Monsoon external power-monitoring device is typically used for
ground-truth measurements [170].

PowerTutor: PowerTutor is a smartphone application; developed by a collaboration
of academic and industrial entities, which displays the power consumed by a set of
system components such as CPU, network interface, display, GPS, and other applica-
tions. The aim of its development was to make the power measurements transparent
to the app developers as well as to the users, so that they can take appropriate action
to minimize their smartphones’ power consumption. PowerTutor receives the current
values in mA from the driver and then multiplies the value by the voltage that is ba-
sically the smartphone battery (typically 3.7 V or 4.5V depending on the phone type).
PowerTutor estimates the energy consumption of applications and services based on
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the processing times, and is only available for specific phone types. Although these
software tools provide the overall picture of the power and energy consumption of the
applications being running on the smartphone, the interfaces, CPU, display, etc., they
do not provide ground truth measurements on all type of devices, but only can provide
estimations.

For power measurements, choosing the “right” sampling rate is necessary in a way
that the tool collects enough data for the purpose, without influencing the behavior of
the system [173]. Therefore, the power measurement process needs to minimize the
impact on the battery life during the measurement process as the energy consumption.
In order to perform further statistical tests, we modified the PowerTutor in such a way
that it writes the obtained measurements directly to the smartphone’s internal storage
with a sample rate of 1 Hz. The choice of the power measurement tool depends on the
application to be measured. The sampling rate of software measurement tools that run
on smartphones need to be kept limited in order to minimize resource usage, if they are
running on the battery-powered devices.

We conducted a set of tests to identify the differences between PowerTutor and
Monsoon. PowerTutor is installed on the HTC G1 as it is recommended particularly
for the Google phones, and in parallel, the Monsoon power-monitoring tool intercepted
the battery of the smartphone. This enables simultaneous measurements, and enables
to observe the differences between the two tools. We streamed a video (with 500 Kbit/s
bitrate) to the smartphone via 3G interface, and monitored the measurements from
two tools, simultaneously. Slight inconsistencies between the obtained measurements
through Monsoon and PowerTutor are found; PowerTutor measurement values can
drop down to zero occasionally as depicted in Fig.[6.1] ~ The instantaneous power
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Figure 6.1: Measurements obtained via Monsoon and PowerTutor during video stream-

ing [205].

consumption values (with 5 kHz sampling rate) obtained via Monsoon are within the
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Bitrate | Tool  Max. Min. Std. Mean Med. N
Kbit/s With PowerTutor
150 Monsoon 24493  1351.2 94.0 17862 17723 4425001
150 | PowerTutor 2278.0 0 517.5 2078.8 2227.0 958
300 Monsoon  2404.0 1489.9 942 17625 1745.0 4375001
300 | PowerTutor 2287.0 0 5623 2047.6 2231.0 453
500 Monsoon  2423.4  1499.1 90.8 1793.6 1776.4 4425001
500 | PowerTutor 2278.0 0 649.8 1993.8 2238.0 442
Kbit/s Without PowerTutor
150 Monsoon 2198.8 1486.2 1104 17274 1719.6 4425001
300 Monsoon  2170.1 1490.1 107.6 1739.0  1730.0 4425001
500 Monsoon 22019 1482.5 99.6 1753.1 1739.7 4425001

Table 6.1: Power measurements obtained through Monsoon and PowerTutor (mW).

robust 1600 mW—2200 mW range as shown in Fig.[6.I] Next, a video is streamed
(with three different bitrates: 150kbit/s, 300 kbit/s, and 500 kbit/s) to the device with
and without the PowerTutor. In both scenarios, the power consumption measurements
are recorded via Monsoon. It is concluded that PowerTutor consumed extra power
within the range 23 mW and 59 mW. The descriptive statistics are presented in Table[6.]
for both scenarios, i.e., with and without PowerTutor. Monsoon can provide highly
accurate power measurements; yet, these battery-interception based measurements are
highly obtrusive and can not be used in user studies. On the other hand, PowerTutor
is minimally obtrusive to the user and can provide power models based on the device
usage, but it relies on power measurements that are not as accurate as Monsoon due to
factors such as unavailability of reliable sensors, or rather low sampling rate. Hence,
the measurement tool should be carefully chosen depending on the purpose of the study
and the limits should be reported in any discussion of the results.

In Section[6.2] we demonstrate simultaneous power consumption measurements
and user indications with respect to the video quality variations during a network-based
video streaming use case on a smartphone. For measuring the power consumption, we
use PowerTutor and Monsoon power monitoring tools. We obtain the user’s freeze
indication directly from the user interface.
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6.2 Demonstrating the Stalling Events with Power Mea-
surements

Recent studies mostly focus on the averaged values of overall power consumption of
applications in order to diagnose and increase the battery performance of handheld de-
vices. Yet, there is still lack of focus on the variations in the power measurements.
In network-based applications, the communication stack consists of standardized func-
tions distributed into different protocol layers that consume energy on the communica-
tion systems. Thus, during the play-out of a video streaming application, any abnormal
interrupt on one of those layers influences the instantaneous power consumption val-
ues.

Most popular video applications work based on transmission-controlled streaming,
and a stalling event, so-called freeze, is a common impairment and it is considered as
a key influence factor in user’s perceived video quality [[169]. Probing the underlying
network-layer metrics during user studies, in order to identify the influential factors
for poor user experience, needs high-energy demanding and hard-to-deploy monitor-
ing tools. In addition, an instantaneous increase in the delay and packet loss rate does
not always cause a video streaming being interrupted, e.g., by a stalling event, due
to its dependency on the size of the jitter buffer. The freezes and the corresponding
fluctuations in the measured power values might be caused for different reasons. For
example, during video streaming on a mobile terminal, when there is a disturbance
(e.g., long duration with no throughput) in the network traffic, some [HLS] clients with
long play-out buffer are known to deactivate their network module. Derivation of ro-
bust power models that can represent the worst-case network scenarios can empower
implementation of energy efficient[QoE| measurement tools.

In this section, firstly, it is demonstrated that the power consumption metric has po-
tential to identify the misbehaviours in the communication stack during video stream-
ing that have consequences such as stalling events. The live simultaneous measure-
ments that match the energy consumption and the is visualised. This is done
while a live video is streamed and displayed on the Android smartphone. During the
video streaming, the instantaneous power consumption values are collected and visual-
ized through two different tools in parallel. The first one is a Monsoon’s ground-truth
hardware-based power-monitoring tool that can sample at a 5 kHz sampling rate called
Mobile Power Monitoring Tool (MPMT) [[170]. The second one is a modified ver-
sion of a software-based power-monitoring tool called PowerTutor with a rather low
sampling rate of 1 Hz. The MPMT] measurements are directly visualized by the Mon-
soon Software that is running on a PC with WindowsXP and connected to the
through a USB cable. The PowerTutor measurements are first transmitted over the 3G
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interface to a dedicated web server, and then the collected data is visualized via a visu-
alization tool called Software Visualisation Tool (SVT)) in another platform. This way,
the power measurements conducted at the same device with two different measurement
tools are visualised, simultaneously.

6.2.1 Methodology

The experimental setup is summarized in Fig.[6.2] There are three main components:
(i) HTC Dream G1 smartphone with Android 1.6, i.e., the device that the measure-
ments are conducted on, (ii) [SVT] for the software-based power measurements that
gather the data from a software-based measurement PowerTutor tool, (iii) Monsoon
power-monitoring tool for power measurements via external hardware. The smart-
phone streams a live video on a video player that is implemented for video [QoE] evalu-
ation. The[RTSPIprotocol is used for streaming via[3Glinterface via the Internet through
the dedicated Darwin Streaming Server (DSS) running on a MacOSX (v.10.6.8). The
video is MPEG-4 compressed, and it is displayed on a 176 x 144 pixels video pane
with a frame rate of 25 fps. Since it is more probable to experience and demonstrate
the stalling events while streaming at higher bitrates as compared to the lower ones, a
video is streamed with a bitrate rate of 481 kbit/s during the demonstration. The ap-
plications and services on the smartphone that might influence the power consumption
measurements are switched off. Together with the video player application, the mod-
ified version of the open source project PowerTutor is installed on the device. P, is
measured as the total instantaneous power consumption of the smartphone. The reason
for describing the measurement as “instantaneous” is due to the very high sampling
rate of The following testbed is designed to demonstrate the stalling event
with the live P, values.

6.2.2 Hardware Measurements

Hardware measurements are conducted and visualized through the Monsoon’s
It has its own software to visualize the measurements. The experimental setup is estab-
lished while smartphone’s battery is intercepted by It is connected to PC for
visualisation, and works with high precision [[170], i.e., it generates 5000 measurement
samples (in milliwatts) per second. The consumed power at each sample is measured
as the product of the instantaneous current and voltage.

The measurements through [MPMT] is considered as ground truth, however it has
disadvantages in terms of portability. Especially in studies, conducting non-
obtrusive experiments is vital. In addition, with this setup alone, it is a challenge to
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Figure 6.2: Experiment setting used for visualising the simultaneous power consump-
tion values via (left-hand-size) and [MPMT] (right-hand-size) during live video
streaming [[160].

synchronize the timestamps of the power consumption values, and the user be-
haviour metrics, simultaneously. Therefore, the experiments are complemented via
software-based measurements.

6.2.3 Software Measurements

Software measurements consist of two components; the modified version of the open
source project PowerTutor [[172] for measuring the power consumption, and the [SVT]
for visualisation. PowerTutor runs a background service that samples the power con-
sumption values per second and sends to a dedicated MySQL server through the Inter-
net in the form of JavaScript Object Notation objects. The visualization tool
[SVT is implemented via Javascript. It fetches the values stored in the database and
visualises it on the HyperText Markup Language (HTML) web page.

6.2.4 Demonstration

The testbed in Fig.[6.2]is used during the demo. The audience is asked to watch a two
minutes long video that is streamed via the BGlinterface of the smartphone. During the
experiments, the user is asked to press the “Stall” button when a stall is visible to the
user in the video. Similarly the user is asked to press the “No-stall” button when the
corresponding previously indicated stall ends. For the demonstration, we visualized the
power measurements via[MPMT and[SVT] together with the user’s indication of a stall
region. On the right hand side of Fig.[6.2] P, values obtained via Monsoon are presented
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in a snapshot video streaming scenario that consists of a stalling event. Stall (a freeze)
and No-stall (a smooth playout) regions are depicted with red and blue, respectively.
Increased fluctuations of P, values around a lower average is visible during a Stall
region as compared to the No-stall one. On the left hand side of Fig.[6.2] the live
measurements via PowerTutor are visualized via with the corresponding region
marked as Stall by a user. The[SVT]tool labeled the timestamps at different time scales,
thus at a first glance, the user reaction looks delayed with respect to the fluctuation
region in the power consumption.

The stalling events and their influence on the power measurements are demon-
strated through [MPMT] and Energy savings are observed during the stalling
events while streaming live video to the Android smartphone. On both measurements,
increased fluctuations on the power consumption values during a non-user-interactive
live video streaming session at its steady-state on a smartphone likely tells that ei-
ther there exists a stalling event, which was caused by the communication channel, or
due to another unexpected reason related to the application. Energy measurements are
done via built-in applications in almost all mobile devices, therefore once robust power
models for those misbehaviours are identified and deployed, the need of continuous
collection of other network indicative metrics with intrusive and hard-to-deploy
tools may diminish in the future. Then, new [QoE] research methods involving power
consumption can be suggested for[QoE|studies. By this way, those user studies on net-
work depending applications can be done in a non-obtrusive and more energy efficient
way.

6.3 Summary

Yet, the comparison between the two power measurement approaches is presented. We
observed that detecting the[QoE]anomalies is possible via the power measurements, and
the software based measurements (e.g., PowerTutor) are not as good as detecting them
as compared to the external hardware monitoring one, Monsoon. The reason is that
the software-based PowerTutor has a low power-sampling rate. In order to capture the
anomalies and then build models based on different network states, first, it is important
to rely on ground truth measurements. Thus, we chose Monsoon power-monitoring tool
and used it in further energy studies. In Chapter[7} we present extensive power mea-
surements that are conducted during video streaming (via VLQOE) on a smartphone.
We study the anomalies in the power consumption and the objectively measured metric
(e.g., inter-picture time) to identify the stalling events, and then suggest corresponding
energy saving approaches for video streaming.
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Chapter 7

Energy Saving During Video
Streaming on the Smartphone

“If I have seen a little further, it is by standing on the shoulders of Giants.” —Sir Isaac
Newton.

7.1 Introduction

Desktop computers are replaced by smartphones as they enable those applications to
be used in diverse context and environment. For example, applications such as in-
stant messaging or video streaming/communication do not necessitate much extra ac-
cessories such as keyboard or mouse, thus they do not require the user to be on the
desk while interacting with the application. In the case of video streaming, users can
stream video on smartphones in diverse context, i.e., anytime, anywhere (e.g., while
the devices are unplugged from the electrical power source), as long as the end-user’s
Quality of Experience is satisfied. Video streaming applications running on
the smartphones are a very popular form of entertainment, on the other hand they are
highly energy-consuming, and their excessive usage decreases the operation time of
the battery. Based on the findings presented in Chapter[2] the high energy consump-
tion of applications eventually reduces the time it takes for the smartphone battery to
be emptied, and this phenomenon is one of the most important influential factors in-
fluencing the user’s The video streaming applications are also highly network
bandwidth-demanding and are susceptible to degradations of the metrics in the
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end-to-end communication link. Eventually, these factors might reduce the level of the
end-user perceived quality, and in fact might cause users being discouraged using the
application. Thus, investigating the end-user perceived quality of those applications is
important and while doing that we include the consideration of energy consumption in
order to diagnose any possible energy waste in parallel.

Studying the high-level energy models of applications is a common approach to
understand the overall energy consumption of an application that influences the battery
life in the long-term. However, in case of streaming video, understanding the influence
of occasional temporal impairments (e.g., freezes) on the smartphone’s instantaneous
power consumption during a video stream, helps to relate the perceived to the
anomalies (i.e., the abnormal significant drops) of the instantaneous power consump-
tion values. Identifying this inter-relation between power consumption and the freezes
can in turn help us to find out approaches to reduce the energy consumption during
network-based video streaming. The freezes in a video stream might cause the CPU to
transit into the “IDLE” state to reduce the energy consumption. When the video pauses
or stops, the power consumption might drop as there is no data to be decoded and ren-
dered to the screen display. When there is a poor network performance, one approach
might be that the video player can change the total duration of the video stream while
delaying or skipping particular parts of a video clip while maintaining the [QoE}

In case of streaming video, the initial waiting time (timegap between when the user
registers the command to start the video, and the video starts displaying on the screen)
might reduce the and increase the energy consumption. This initial waiting time
highly depends on the end-to-end delay of the service, i.e., the delay in the initial
signaling of the [[Pl packets. Thus, the increase in the initial signaling duration might
also yield energy waste on the smartphone.

This chapter is structured as follows. We first present the energy consumption
during smartphone-based video streaming and also investigate the freezes of a video
streaming application in details in Section[7.2] In Section[7.3]and Section[7.4] we pro-
vide energy saving approaches for the case when single or multiple video streams are
performed via the first download and watch later approach from local storage. In that
case, we compare the download time and the energy consumption with respect to differ-
ent file download scheduling approaches, and we recommend energy-efficient solutions
for different file sizes. In Section[7.5] we study the relation in between the anomalies in
the power consumption and the anomalies in a metric (i.e., the inter-picture time) mea-
sured at the user interface of the smartphone during video streaming. In Section[7.6}
we study the inter-relation between the energy consumption and the [QoE| during video
streaming. In Section[7.7] we present our user study (with realistic video streaming set-
tings on a smartphone in-the-wild) that aims to find out how much energy saving can
be achieved while maintaining The limitations in studies conducted within this
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Figure 7.1: Testbed used during the study [206].

chapter are presented in Section[7.8] and the chapter summary is given in Section[7.9]

7.2 Energy Consumption During Video Streaming

We use VLQOE on the smartphone to stream video and collect application-layer mea-
surements. In parallel, we measure instantaneous power consumption via Mobile
Power Monitoring Tool (MPMT)) (also called Monsoon device). The experiments are
conducted in three different scenarios: local streaming (streaming from the local stor-
age of the smartphone), streaming via and the [HTTPI streaming via 3Gl on
the smartphone. We compare the energy consumption of all scenarios.

The display screen of smartphone is the closest point of the video streaming appli-
cation to the user, thus the user interface is the preferred location to objectively quan-
tify the freezes, and relate it to the user-perceived quality. The freezes are studied at
the user interface with the objective metric of inter-frame (or also called inter-picture)
time, Dy, as the time gap between the two consecutive displayed pictures on the smart-
phone screen. In addition, the metrics such as the initial signaling duration, Ds, on the
network-level and the inter-packet time, Dy, are studied as they might influence the
power consumption of the smartphone and the waiting time of the user.

7.2.1 Experiment Testbed and Method

The experiment testbed is designed as given in Fig.[7.1] The VLQOE tool is used in
the experiments (see [5.3|for more information about the tool). A 250 s-long video clip
(with a sailing race theme, 1000 kbit/s bitrate, 25 fps frame rate, 6251 pictures, 31.8 MB
total file size), is streamed to a Samsung Galaxy S with Android v.4.2.2. The videos
are streamed via the B0 interface of the smartphone using a well known Swedish net-
work provider, from a dedicated Ubuntu 11.10 machine located at[BTH|university. The
Ubuntu machine was running two servers: (1) a[DSS] [234] for [RTSP streaming, (2)
a VLC media player server for HTTP streaming. The experiments are repeated with
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exactly the same video via three different scenarios: via[RTSP] via[HTTP} and via the
local storage of the smartphone. The local streaming is considered to be a baseline
for the comparison with the other two network-based scenarios. The experiments are
completed with more than 10 iterations for all scenarios. During each video session,
the timestamp for each video picture is recorded (on the local storage of the smart-
phone) together with the corresponding inter-frame (or inter-picture) time. In addition,
the tcpdump tool is executed on the smartphone to record all the packets that are trans-
mitted/received from/to the device over the network. The packet-based statistics of the
video streaming traffic is studied, as it might also impact the total power consump-
tion. The time gap between the consecutively transmitted/received packets from/to the
smartphone are investigated separately for both and [HTTPlbased streaming.
The incoming and the outgoing traffic of the smartphone during the video streaming is
distinguished for the and the streaming. The incoming traffic is denoted
by ToPhone; and the outgoing traffic is denoted by FromPhone.

The brightness level is fixed to a minimum constant level in all experiments. The
timeout for the screen to shift to a sleep mode was set to a value longer than the video
duration. Any interaction with the smartphone including touching the screen during the
experiments is avoided. The VLQOE is restarted before every experiment run to flush
the application cache. It is also assured that other services and applications that might
influence the power consumption are stopped on the phone during the experiments.

7.2.2 Tools and Implementation for Metrics

There are four metrics being focused: the instantaneous power consumption, P,; the
inter-frame time, Dy,; the inter-packet time, Dpy; and the initial signaling duration, Ds.

Instantaneous Power Consumption (7,)

The Samsung Galaxy S smartphone has a standard 3.7 V Li-ion battery [[177]. The
instantaneous power consumption (P,) of the n sample is calculated in Eq. as the
product of the battery voltage, U, i.e., 3.7 V (that is set through the software),
and the instantaneous current, /,, drawn by the smartphone and measured at the nth
sample via[MPMT1

P, =U x I,[mW] (7.1)

The high sampling rate of [MPMT] is required to distinguish the anomalies (unusual
fluctuations of power consumption over time) from the normal behavior of the in-
stantaneous power consumption pattern. However, MPMT] has a sampling rate of
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5 kHz (equally spaced samples), which might be higher than required. Thus, the ac-
tual data contained high frequency noise that made it hard to process the raw data.
‘Moving average’ techniques are used commonly by technical analysts to view the
true underlying trend of erratic data [197]. We applied[SMAlto the power consumption
dataset as shown in Eq.[7.2]in order to smooth out the high frequency noise from the
actual data, and construct a separate dataset with the smoothed data. Amongst other
moving average techniques, we chose[SMA] as it is producing less processing overhead
while being as accurate as other more complicated smoothing algorithms [219]. The
window size, i.e., the number of samples under observation, should be set so that the
data is smoothed, while preserving the characteristics of the power consumption pat-
tern, e.g., without losing the abnormal fluctuations. Thus, various window sizes (W)
such as 2500 (0.5s), 5000 (1), 7500 (1.55s), 10000 (2s), and 15000 (3 s) are studied
while smoothing the actual data. The calculated is given in Eq.[7.2] and the
smoothed power consumption (P,) is considered for the later anomaly detection study.

] Put Pt 4ot Py
Py =SMA = "1 n-(W-1)
mW

Based on the P, values, two phases are defined during the video streaming session.

Phase I is defined as the first initialization region where the VLQOE initiates the
streaming just after the “Play” button is pressed by the user. This region is when the
P, value starts increasing from a lower steady state region to a higher one as shown in
Fig. After Phase 1, the P, follows a steady state region in Phase 2, and this contin-
ues until the end of the video session. However, in Phase 2, the steady state behavior
of P, might be impacted by occasional freezes during the video playout, and those re-
gions are identified as “Freeze Regions”. Fig.[7.2]illustrates the abnormal fluctuations
that are detected as “Freeze Regions” in Phase 2.

(7.2)
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Figure 7.2: Instantaneous power consumption during 3G-based video streaming [206].
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Inter-frame Time (D)

To recall from Chapter|S} the inter-frame (or inter-picture) time, Dy (k), is studied as
the time gap in-between the k<™ and the (k — 1)™ displayed picture, while ignoring the
skipped pictures (Eq.. T, (k) is the time when the k™ picture is displayed on the
phone screen.

Dy (k) = Ty (k) — T, (k — 1)[ms] (7.3)

High inter-frame time values manifest themselves as long-term freezes during the video
playout. This way, it is possible to construct a direct relationship between what the
user actually sees and actually perceives with respect to the of the application.
The abnormal peaks of the D, and the P, values are sketched in Fig. A snapshot of
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Figure 7.3: Abnormal behaviors are presented from the two datasets: smoothed instan-
taneous power consumption (top) and the inter-frame time (bottom) [206].

upwards D, peaks and their relation to the downwards P, peaks are sketched. The first
video frame is displayed on the smartphone screen approximately six seconds after the
user presses the “Play” button. Approximately at the 28" s, i.e., Tp), a high peak for Dy
and a low peak for P, are conferred.

The P, and the D, metrics are recorded on two separate platforms, thus the syn-
chronization between the recorded timestamps is cumbersome. The timestamp for
both datasets are reset with respect to the first abnormal peaks (the first local down-
wards peak in the P, metric at Phase 1, and the first local upwards peak at D) to an
initial time, Ty, as depicted in Fig. Then, a set of local maximums for D,, and a
set of local minimums for P,, are identified and matched. Next, the inter-anomaly time
for Dy, AT (picture)> and the inter-anomaly time for P, ATA (power)» are calculated. Inter-
anomaly time for inter-picture time and power consumption are the time gap between
the j™ and the (j+ 1)th abnormal peaks for D, and P, respectively.
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Inter-packet Time

The inter-packet time, Dpkt(k), is calculated as the time difference between the k™ and
the (k— 1) packets captured by the tcpdump tool during the network-based video
streaming as shown in Eq.[7.4]

Dy (K) = T (k) = Tk (k — 1) [ms] (7.4)

Dpy has been analyzed in four combinations, i.e., two protocols and two directions:
RTSP (ToPhone), RTSP (FromPhone), HTTP (ToPhone), and HTTP (FromPhone).
The initial signaling packets that are received and transmitted at the beginning of the
video stream are also investigated.

Initial Signaling Duration (D)

The initial waiting time for a video streaming application is the time gap in-between
when the user presses the “Play” button and when the first picture of the video is dis-
played on the smartphone screen. The initial waiting time might be influenced by the
high D, values at Phase 1, as we referred to as the total signaling duration, Ds. The
Dy exists both for [RTSPl and [HTTPHbased streaming. This duration is important, be-
cause if Dy gets too high, it might augment an extra energy consumption in the video
stream as the total energy consumption within Phase 1 is proportional to the duration.
In other words, a longer initial signaling period means higher energy consumption. The
signaling network traffic for the [RTSP]streaming is different than the [HTTP| streaming
traffic. In[RTSP|streaming, the signaling duration, D, is considered as the time differ-
ence between the first packet that is sent to the server and the first[RTP] packet that is
received at the smartphone. The first[RTPpacket is received at the mobile terminal just
after the RTSP/1.0 OK message being received as a reply to the PLAY message that
was previously sent to the streaming server from the smartphone. In [HTTP] stream-
ing, the signaling duration is considered as the time difference between when the first
packet sent to the server from the smartphone, and when the first Protocol Data
Unit is received at the smartphone as a reply to the GET message that was
previously sent to the streaming server. 41 iterations were executed both for
and [HTTPIstreaming to get statistically significant data. Then, the packet-based initial
signaling durations are analyzed for both protocols.

7.2.3 Results

Occasional freezes, i.e., relatively high inter-frame times, are observed during the video
playout when the video was streamed via the 3Glinterface of the smartphone. There are
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differences in the frequency and the duration of those freezes, which results in variation
in the total streaming time and displayed number of packets amongst the experiment it-
erations. The overall statistics with respect to the durations and the number of pictures
that are displayed on the smartphone screen per video streaming session are given in
Table From left to right; the mean, standard deviation, minimum, and the maxi-

Table 7.1: Overview on the duration and number of pictures.

Scenario Duration [s] Displayed Pictures

Mean | Std. | Min. | Max. | Mean | Std. | Min. | Max.
Local 250 | 0.50 | 248 | 250 | 6239 | 17 | 6192 | 6250
HTTP 253 | 1.79 | 250 | 254 | 5978 | 35 | 5907 | 6047
RTSP 250 | 0.20 | 249 | 250 | 5937 | 82 | 5830 | 6075

mum values regarding the durations and the number of displayed pictures are presented
for the three scenarios: local, [HTTP} and [RTSP| streaming. Local streaming is consid-
ered to be a baseline for the comparison with the other two network-based scenarios.
The mean of the total video stream duration, and the mean number of the displayed
pictures on the smartphone screen are the highest for[HTTPl The standard deviation of
the number of displayed pictures is the highest for the [RTSPl-based video stream, which
can provide an indication about the high deviation in the number of skipped pictures
due its underlying transport layer protocol, i.e., [UDP!

Instantaneous Power Consumption (P,)

Exactly the same number of data points (eight million) are collected for all scenar-
ios during Phase 2 of the video stream. The fluctuations of P, in the beginning, i.e.,
Phase 1, and in the end of the video streaming are not included in the data set. This
is done to mask the influence of the initial and the terminating signaling traffic. The
P, values are calculated for all three scenarios, and the plots for all the three
scenarios are given in Fig.[7.4] The median is 1000 mW in local streaming, while it is
1750 mW in case of [HTTP|and streaming.

The highest observed P, value was 2800 mW for local streaming, while the highest
values for [HTTP|and [RTSP streams were 3400 and 3550 mW, respectively. [RTSP+ and
[HTTPHbased video streaming yield higher power consumption as compared to the local
streaming scenario, which might be due to the factors such as the active state of the 3G
cellular data module because of continuous data transmission.
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Figure 7.5: CCDF of inter-frame time in three scenarios [206].

Inter-frame Time (D,)

[CCDH plots for the inter-frame time (D)) are presented in Fig.[7.3] plot enables
us to visualize the very high and rarely occurring inter-picture time instances, such as
OFF phases. Although, no freezes are expected for local streaming, still a few, short
(duration up to 700 ms) freezes are observed. The reason for the freezes might be due
to the sporadic latency in the application’s decoding process. [RTSPl and the [HTTP-
based video streaming show similar D), distributions for the range up to 2s. However
more frequent high (>3 s) inter-frame time values (i.e., longer freezes) are observed in
the [HTTPI stream as compared to the stream.
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Inter-packet Time (D)

The mean, standard deviation, minimum, and the maximum number of packets per
video streaming session are listed from left to right in Table[7.2] The number pack-
ets of the four streaming traffic scenarios are listed from top to bottom: from
smartphone, streaming from smartphone, [HTTP| streaming to smartphone, and
the streaming to smartphone. In average, there are much more packets transmit-
ted from the smartphone to the streaming server during [HTTP| streaming as compared
to the streaming as expected. The sum of the mean number of received and
transmitted packets for [HTTP| and [RTSP] streaming are 26062 and 25236, respectively.

Table 7.2: Overview on the packets-based statistics.

Scenario Packets

Mean | Std. | Min. Max.

HTTP-FromPhone | 3761 32 3713 3828

RTSP-FromPhone 126 3 122 132
HTTP-ToPhone 22301 15 | 22248 | 22309
RTSP-ToPhone 25110 | 152 | 24907 | 25267

The [CCDH plots of the inter-packet time for the four scenarios are presented in
Fig. 90% of the Dpy values of the transmitted packets, i.e., (FromPhone), are
less than or equal to 130 ms in HTTP streaming, while this value corresponds to 4 s
in RTSP streaming. This is due to the periodic transmission of ACK messages to the
streaming server, and this periodicity of the RTP Control Protocol messages
in [JDP}based RTSP streaming is much lower as compared to the TCP-based [HTTP|
streaming. Therefore, less signaling packets are involved in the transmission during
the RTSPlbased video stream as compared to the [HTTP-based one.

Initial Signaling Duration (Ds)

The statistics for the initial signaling duration, Dy, obtained through 41 successful iter-
ations, for both streaming protocols is given in Table[8.5] The standard deviation of Dj
in [HTTPI streaming is much higher as compared to [RTSP| streaming. A maximum Dy
of 19.065s is observed during the [HTTP| streaming, while Ds did not exceed 4.73 s in
streaming. The mean Dy values are 3.98 s and 4.55 s for[RTSPF and [ HTTPHbased
streaming, respectively.
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Table 7.3: Initial signaling duration statistics.
Protocol Signaling Duration [s]

Mean | Median | Std. | Min. | Ql Q3 | Max.
RTSP 3.98 4.31 0.75 | 0.73 | 3.54 | 441 | 4.73
HTTP 4.55 4.39 2.74 | 1.93 | 3.32 | 456 | 19.06

Yet, we have presented results from our measurements during real time video
streaming on the smartphone. It is also necessary to take into consideration other video
streaming scenarios such as “download first and watch later”. In this scenario, the full
video file is first downloaded from the source and stored in the device, then the user
initiates the stream of the downloaded file via the local device storage. We measure the
total energy consumption and the total duration for this scenario in the next subsection.
This in turn helps to understand the cons and pros of the two scenarios (i.e., real time
video stream and local stream) with respect to energy consumption, the total time it
takes to finish watching a video, and the experienced distortions in the video stream.

7.2.4 Video File Downloading: Energy and Download Duration

We measure the power consumption and the download duration while downloading
file via the 3G network, i.e., without a real time stream. We measured the power con-
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sumption with Monsoon power monitoring tool. The timestamps when the downloads
are initiated and when they are completed, are recorded by our download software
tool, i.e., DownloadTrainCatcher, on the local storage, i.e., sdcard, of the smartphone.
The experiments are conducted with Samsung Galaxy S smartphone via 3G SIM card
(from a popular network provider in Sweden) with 6 Mbit/s downlink peak rate. The
experiments are conducted randomly during different times of the day to improve the
representativeness (i.e., generalizability) of the download duration. In total, we have
performed 36 download iterations, and we identified one outlier (174 s). After the out-
lier is filtered out, we obtained the statistics shown in Table[7.4] In the table, the mean,
standard deviation, minimum, maximum, and the number of data points are given.
Based on our measurements, the mean download duration for a 31.8 MB video file is
83.5 seconds.

Table 7.4: File-downloading Metrics.

Metric Mean | Std. | Min. | Max. | Samples
Duration [s] 83.5 | 18.6 | 539 | 123.3 35

The power consumption during a file download consists of various Radio Resource
Controller (RRC) states based on the throughout on the 3G interface. A snapshot from
a power measurement is given in Fig.[7.7] The power measurements are conducted via
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Figure 7.7: Power consumption while downloading the video file via smartphone’s 3G.

10 iterations, and we extracted the DCH power consumption (Phase 2) values. The
power consumption during downloading the video file are given in and Table[7.5] The
median Phase 2 power consumption was measured as 1580 mW.
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Table 7.5: Power consumption while downloading the video file.

Metric Median | Std. | Min. | Max. | Samples
Power [mW] 1580 431 | 1033 | 3154 | 1670016

Now, we have the parameters from the measurements for the model, and we can
compare two scenarios: (1) Real time video streaming via the 3G network, (2) down-
loading the same video file and streaming it from local storage.

7.2.5 Comparing the 3G streaming and the Local streaming

We first show the power consumption and the download duration in two different sce-
narios. The first one is when the video is being streamed directly via 3G. We use the
measurements in the previous section (Table[7.T)), i.e., the average video streaming du-
ration during RTSP and HTTP streaming, 252 seconds. Based on the measurements,
we assume that the mean power consumption during streaming a video via the 3G is
1750 mW. For the local streaming scenario, we measure the mean power consumption
as 1000 mW (while the cellular data module being disabled) with a mean streaming
duration of 250s. In the local streaming scenario, we also add the initial downloading
phase. For simplicity, we assumed that the download duration is 84 seconds (is mea-
sured as 83.5 s in Table[7.4). We also neglect the initial signaling duration on all scenar-
ios, and assumed the mean power consumption only during the actual file-downloading
phase. We also assume that the local video stream starts immediately after the file is
downloaded to the local storage. We calculate the total energy consumption in the
two scenarios as given in Eq.[7.5] In local streaming we add the initial downloading
phase to the local streaming phase; however in the 3G streaming, there is no initial
downloading thus Tgownloading and Pyownloading aT€ ZETO.

Etotal =P, streaming * Tstreaming + P, downloading * Tdownloading (75)

In Fig[7.§] the energy consumption is illustrated with respect to the time for the two sce-
narios. The total energy consumption increases linearly with the time. In 3G streaming
scenario, the data transmission and display of the video are performed simultaneously,
thus the slope (i.e., power) of the line is steeper. In local streaming, there is the ini-
tial downloading phase with a rather less steep (i.e., due to less power consumption)
until the 84™ second, and the energy consumption increases with a lower slope while
streaming the downloaded file from the local storage. The total energy consumption
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is calculated as 441J and for 3G streaming scenario, and 383 J for the local streaming
scenario. Although there is a 58 J energy saving if the stream is downloaded and then
streamed through the local storage (which might be good for long term [QoE). How-
ever, the total duration is increased, which might influence the short term, i.e., recent,
The average streaming duration for the 3G-based streaming is 252 s, while it
takes 82 seconds longer (in total 334 s) to download and locally stream the same video
on the smartphone. In addition, additional freezes occur during 3G streaming, while
there are no freezes in the download and stream scenario. The additional freezes in
3G-based streaming is expected to increase the energy consumption and the streaming
duration. 3G-based stream is recommended if the user wants to start watching a video
immediately, i.e., without waiting for it to be downloaded, and local-based streaming
is recommended if the user prefers to save energy and also do not want to experience
any freezes during the video stream. Table[7.6] summarizes the pros and cons of the

Energy consumption (Joule)
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Figure 7.8: 3G Streaming vs 3G Downloading + Local Streaming (considering only
Phase 2).

3G-based and the local streaming.

Table 7.6: Comparing the 3G streaming and the local streaming.

Scenario || Energy | Duration | Initial delay | Occasional freeze
3G-based || Higher | Lower Lower Yes
Local Lower Higher Higher No

We have discussed the energy consumption during video streaming, and eventually
compared the energy consumption and the video streaming duration of 3G-based and
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the local-based streaming use cases. During the 3G-based real-time video streaming,
the files are downloaded and displayed simultaneously. In local-based streaming, the
file is first downloaded and then streamed. In the next section, we study the energy
consumption during file downloading, and recommend approaches to save energy es-
pecially when there are multiple files are desired to be downloaded.

7.3 Saving Energy During File Downloading

Most of the energy is consumed on a smartphone while sending and receiving data over
the network, with the clear domination of 3G data module’s power consumption [99]].
The amount of data exchanged in-between smartphones and corresponding servers, the
used access technology, as well as the timing of data transmission have a significant
impact on the overall energy consumption of the smartphone. The oscillation of RRT
states are basically caused by the asynchronous data activities of different applications
over the cellular data interface. During the state transitions, also due to the nec-
essary signaling overhead, additional transition delays are induced. These additional
delays increase the total energy consumption. In addition, during the active (DCH]) state
of the available network bandwidth is not fully utilized due to rather low volume
data traffic per application. In order to avoid the high number of oscillations amongst
the[RR states, it is important to schedule the network data activities of different appli-
cations. This is done by scheduling the network data activities such that the state
is kept IDLE for a longer period of time, but it is utilized as much as possible while it
is fully active, e.g., in state. The scheduling can be done by delaying particular
network activities, and performing/clumping them. This way, both the overall energy
consumption and data transmission duration can be reduced. Hence, it is appealing to
transmit data from multiple applications simultaneously and thus reducing the number
of state transitions. Multiple [[CPl-based data flows can be transmitted in a serialized
or in a parallel manner.

In this section, we focus on file downloading (e.g., downloading videos/documents
for later offline usage) on smartphones. We first measure the energy consumption and
the download duration when multiple files are downloaded on a smartphone via 3G
asynchronously, and then when the downloads are scheduled (e.g., either in parallel
or in serialized manner). Next, we repeat the measurements when the downloads are
performed through WiFi tethering via another smartphone. The former measurements
help to decide on the best way of download scheduling to reduce energy if the user
wants to download multiple files immediately via the available 3G. The latter mea-
surements help to identify the energy gain when the same files are downloaded via
rather low energy consuming WiFi, but with the cost of extra waiting time assuming
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that the WiFi is not available in-situ. We measure the total power consumption via
Monsoon power monitoring tool (see Chapter[@)), and the download duration via
our download tool in a realistic environment. In the measurements, we involve two
different smartphones, and focus on large-sized file-downloading from a dedicated file
server. The overall download duration and power consumption highly depend on the
Domain Name Server (DNS)) resolution time (if any), initial TCP three-way handshake
time, packet latency, and the available end-to-end network bandwidth. Thus, we break
down and study the energy consumption in three different phases.

This section is structured as follows. In Section,[7.3.1] further details regarding
the download scheduling mechanism of files are given. In Section[7.3.2] the testbed
and the data collection are discussed in details. The measurement results for different
downloading scenarios are given in Section[7.3.3]

7.3.1 Scheduling Network Traffic on Smartphones

3G [UMTSI networks are efficient for large data transfers [229]]. If there are multiple
files to be downloaded with some time-gap in-between larger than the timeout values,
oscillation might occur in-between the[RRClstates which causes high energy consump-
tion.
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Asynchronous download activities Download activities are scheduled
on a smartphone via 3G (no scheduling). in series, i.e., head-to-tail.
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Figure 7.9: The energy consumption at Phase 1 (black), Phase 2(gray), and tail
phase (white) are depicted for asynchonous downloading (a), serialized download-
ing (b), and parallel downloading (c), respectively [[181].

The sketches for different file-downloading scenarios via 3G are given in Fig.7.9a,
Fig.7.9b, and Fig. 7.9c. Fig. 7.9a depicts the scenario when file downloads are initiated
as scattered over a long duration with no scheduling (e.g., asynchronously) on a single
smartphone. We break down and study the energy consumption within three different
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phases. The area of the black rectangles represent the total energy consumption on the
smartphone during channel allocation via RRC, and establishing a connection with the
server. This is referred as Phase I. During Phase 1, the three-way handshake takes
place after the resolution (if any). If there is no traffic due to the lack of band-
width, the state keeps at Phase 1 for some duration, which is a waste of energy.
Thus, it is preferred to keep the Phase 1 duration as short as possible. Phase 2 starts
with arrival of the first [[CP| segment that contains the file content. Phase 2 energy
consumption of different files are represented with gray rectangles. The CPU utiliza-
tion and the throughput increase as compared to Phase 1, which cause the RRC to
stay at state. After the last data packet is received at the smartphone, Phase 2
waits for an extra inactivity period, then the Phase 3 (also called the tail phase) begins.
There is an extra tail duration, comprising an inactivity timer to release the resources
in-between the smartphone and the Radio Access Network (RAN])). Phase 3, depicted
with white rectangles appended to each download in Fig. 7.9a, causes inefficient usage
of resources if there are multiple scattered requests [[185]]. For all individual downloads
in a smartphone, Phase 1 (black) and the tail phase (white) exist, and thus induce high
energy consumption, which is actually energy waste. In Fig. 7.9b, the energy consump-
tion is depicted when multiple file downloads are scheduled in series. As the second
file download starts immediately after the previous one, the number of Phase 1 and
Phase 3 states reduces. Fig. 7.9c depicts the download scenario when multiple files are
downloaded in parallel. We refer to the formed energy consumption area, as a result of
multiplexing different file download activities, as the energy train. The length of the
train is the sum of all phase durations; and the height depicts the corresponding mean
power consumption of the phases.

7.3.2 Measurement Method

Energy consumption is a function of the power consumption and duration of a down-
load session. The power consumption and the duration are measured on the smartphone
during serialized and parallel downloading in two parts: (i) via 3G, (ii) via WiFi teth-
ering over another smartphone, Mobile Hotspot (MH) (see Fig. 7.9d). In the first part,
D (tethering device) is directly connected to the Internet via Telenor’s 3G (HSDPA and
HSPA+) SIM card with 6 Mbit/s downlink peak rate. In the second part, D is connected
to the Internet via the [MHlthat uses the same SIM card. [MHlis a non-rooted Samsung
Galaxy S4 with 1.9 GHz CPU running Android v.4.3 (kernel v.3.4); and D is a rooted
Samsung Galaxy S with 1 GHz CPU running Android v.4.2.2 (kernel v.3.0). In order
to automatize measurements, we developed a download tool for the smartphone to per-
form the HTTP downloads. For each file download, separate connections (e.g.,
sockets and threads) are created. We record the ground truth power measurements with
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the [170]. The tcpdump tool helps to record the data packets during file down-
loading, however running it on the smartphone induces additional overhead and in-
creases the power consumption. Thus, we have used the rcpdump tool to measure only
the average Phase 1 duration. Throughout all experiments, the download durations are
recorded directly via our download tool. During the experiments, screen brightness
is set to minimum, and all irrelevant applications and services are switched off. We
created multiple files with the identical size (with mkfile -v XM <filename>), and used
them during the experiments. The choice of the file size was arbitrary. A representa-
tive file size of a three minutes-long podcast decoded with a nominal 1000kbit/s rate is
23 MB. We chose 20 MB files, assuming a slightly lower file size (for simplicity).
There are various scenarios in download scheduling experiment, and the scenario
descriptions and the corresponding abbreviations are summarized in Table[7.7]

Table 7.7: Download scenarios and definitions.

Abbreviation ‘ Definition H Abbreviation ‘ Definition
P1 Phase 1 P2 Phase 2
tl Tail phase Tdownload Total download dur.
MH Mobile hotspot D Tethering device
1S 1 single download K Number of queued files
4x1S 4 individual single 2x1S 2 individual single
downloads downloads
2P Two parallel downloads 28 Two serial downloads
4P Four parallel downloads 4S Four serial downloads

Download Duration

The timestamps when the downloads are initiated and when they are completed are
recorded by our download tool on the local storage, i.e., sdcard, of the smartphone.
Accordingly, we calculated the total download duration for the serial and parallel sce-
narios as the difference between the last and the first timestamps. We divided the total
download duration, Tgownload, into two phases. Phase 1 is the initial connection dura-
tion, Tp1, i.e., in-between when the first SYN is sent from the smartphone and the first
[TCP| segment with the file content is being received. We recorded the relevant metrics
via the fcpdump. The duration of Phase 2 is calculated as the difference between the
total download duration measured by the download tool (Tgownload) and the Phase 1 du-
ration (7p;) measured by fcpdump. The resolution durations are neglected. The
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download durations depend on the available link capacity at the “time of the day” of
the experiment. In order to minimize this effect, we iterated each experiment for more
than 30 times in a random order. For parallel downloading, we have validated that all
downloads are performed simultaneously 98 % of the time. In serialized download-
ing, we have also validated (via 31 iterations) that the difference between the serialized
downloads is in the range 90 ms to 400 ms for 90 % of the time. However, when the file
downloads are serialized, i.e., queued, the download completion time of a file depends
on the download time of the previous files, i.e., the files in the front. Thus, we define
the overall processing time as the mean of download completion time of each serialized
file, k. The average processing time, for K files in series (i.e., in queue), Tpmcessmg is
computed as in Eq. where Tjownload 18 the total download time it takes to download
K files. We show that the average processing time is a necessary parameter to study
as it also considers the user action during the waiting time. In other words, the user
can do tasks with the downloaded files, while waiting for other file downloads to be
completed. This could guide us to approach the problem from the perspective.

_ 1 &k

Tprocessing - ? kg] (E 'Tdownload) (7.6)
If the file download is not queued, such as for parallel downloading, requests do not
have to wait, thus processing time is equal to the total download time since K = 1. We
also calculated the average per-file downloading time as the mean of download duration
of all individual files.

Power Measurements

Power measurements are conducted using the Monsoon power monitoring tool. Be-
tween each experiment, we wait until the state switches to IDLE. This way, we
reduce the possible side effects between the measurements. Firstly, the power con-
sumption of D is measured while downloading the files via the 3G. The power con-
sumption pattern is studied for the three different phases: Phase 1, Phase 2, and tail
phase. The tail phase duration is not measured, as this is highly depending on the oper-
ating system and the network configuration [282]. Thus, we assume the state-of-the-art
tail phase duration, 12 s [228].

The power measurements differ for D and while downloading via WiFi teth-
ering. For D, the power is consumed by transmitting data via the WiFi interface. Here,
we only consider Phase 2, since the other phases are very short and thus their impact
is negligible. If there is no data activity, the power consumption drops within signifi-
cantly shorter time as compared to 3G. For the the energy measurements depend
on the data sent and received via the WiFi and the 3G interface. Accordingly, all three
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phases are considered. In order to reduce the measurement error, sufficient number of
samples are collected, for each download phase, during steady state.

Energy Consumption: Downloading via 3G

On a single smartphone, the file downloads are executed for different scenarios on D
via the 3G interface: (1) one download, 1S; (2) two files being simultaneously down-
loaded, 2P; (3) two files being downloaded in a serialized manner, 2S; (4) four files
being simultaneously downloaded, 4P; (5) four files being downloaded in a serialized
manner, 4S. In serialized downloading, the download tool executes the downloading of
different files in a sequential order, and the download of a file is immediately triggered
when the download of the previous file is completed. We calculate the total energy
consumption for a multiple file-downloading scheme via 3G on a single smartphone,
D. Eioa is the total energy consumption during file downloading. “P1”, “P2”, and “tI”
are the subscripts for the power consumption of Phase 1, Phase 2, and the tail phase,
respectively (see Table[7.7).

Eotal = Pp1 - Tpy + Ppy - Tpp + Py - Ty 7.7

P, and T;; are the mean power consumption and the duration of the tail phase, respec-
tively. Pp; is the mean power consumption of the smartphone during Phase 1, and Tp; is
the mean duration of Phase 1. Tp| highly depends on the initial duration including the
state switching delay from IDLE to Pp; and Tp, are the mean power con-
sumption and the mean duration at Phase 2 during all simultaneous downloads. When
the downloads are scheduled, there is only one Phase 1, and one tail phase, as they are
clumped forming an energy train. All the parameters are measured for serialized and
parallel downloading, separately.

Energy Consumption: Downloading via WiFi-tethering

The measurements for WiFi tethering were conducted using one smartphone acting as
[MH] and one acting as D, which actually performs the downloads. [MH] uses the 3G
for Internet access, and in parallel shares its Internet access with smartphone D via
WiFi tethering. In this use case, D downloads the files from a dedicated server on the
Internet via WiFi tethering over [MH]I that has 3G. We measure the power consump-
tion and the download duration at D and as well as the power consumption on [MH]
on the same scenarios as in Section[7.3.2] i.e., serialized or parallel downloading. The
power consumption of is measured in different scenarios: when WiFi tethering is
OFF (baseline measurements); when WiFi tethering is ON with no connections; when

142



WiFi tethering is ON and D is connected; when WiFi tethering is ON and D is down-
loading a single file via[MH] 1S; when WiFi tethering is ON and D is downloading two
files in parallel via[MH] 2P; and when WiFi tether is ON and D is downloading four
files in parallel via[MH] 4P. The total energy consumption during WiFi tethering is the
sum of energy consumed at [MHland the energy consumed at the connected device, D.
The MH power consumption is expected to increase with the number of parallel down-
loads. Although the total energy consumption is expected to increase, there might be
energy saving at individual WiFi tethering smartphones, D.

7.3.3 Measurement Results

We measured the download duration and the power consumption while downloading
with respect to a set of scenarios in realistic environment. The collected steady-state
power consumption values are normally distributed (R* > 0.9). The power consump-
tion is broken down into Phase 1, Phase 2, and the tail phase. Phase 2 and Phase 1, in
3G, have the highest and the least mean power consumption, respectively.

Power Consumption During File Download

First, the power measurements when D downloads files via its individual cellular data
interface (3G) are given. Next, we discuss the power measurements during WiFi teth-
ering. The measurements are presented through Table[7.8]{7.9] as the 95 % confidence
levels are negligibly low (mean: 0.47mW) due to high number of samples (see last
columns of the tables).

Downloading via 3G: The measured power consumption values on D for different
file-downloading scenarios via the 3G interface are given in Table[7.8] In the table,
from left to right, the mean, standard deviation, minimum, maximum of the power
consumption values, and the corresponding number of samples at each scenario are
presented. The power consumption statistics at Phase 1 and at the tail phase are given at
rows 1 —2, respectively, and the corresponding mean values are lower than the mean of
Phase 2 power consumption values as presented at rows 3 — 7. Row 3 shows the power
consumption values when there is only one download (1S). In rows 4 — 5, which belong
to the serialized downloading, no significant difference in the power measurements are
observed when different numbers of files are scheduled. This is expected as there is
only one established [TCP|connection at a time during downloading. On the other hand,
when the downloads are executed in parallel, the power consumption slightly increases
with the number of simultaneous downloads as given in rows 6 — 7. In these scenarios,
the number of established connections at a time is equal to the number of simultaneous
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downloads, i.e., threads. One reason for the increase in power consumption could be
due to the increase in the CPU utilization.

Downloading via WiFi Tethering: The measured power consumption values of D
for the same scenarios, while downloading exactly the same file via WiFi tethering
over [MHFs 3G interface, are presented in Table in rows 8 — 10. D uses the WiFi
interface, and the power consumption values are reduced as compared to using the 3G
interface. When the downloads are executed in parallel, slight increase in the power
consumption values is observed. However, this gives an extra overhead to Next,
we present the power consumption values on

Table 7.8: Power Consumption (mW) on Samsung S (D).

Row Scenario Mean | Std. | Min. | Max. | Samples
1 3G, P1 1153 | 167 | 703 | 2370 | 275014
2 3G, Tail 1276 | 86 | 1063 | 2217 | 312511
3 3G, 1S, P2 1496 | 283 | 1003 | 3597 | 1300008
4 3G, 2S, P2 1508 | 298 | 1006 | 3799 | 1550004
5 3G, 45, P2 1514 | 313 | 955 | 3928 | 3500005
6 3G, 2P, P2 1662 | 354 | 931 | 3717 | 1950007
7 3G, 4P, P2 1956 | 409 | 1114 | 4077 | 3150007
8 WiFi tethering, 1S | 957 | 240 | 386 | 2950 | 1575017
9 WiFi tethering, 2P | 1266 | 333 | 547 | 3278 | 1975008
10 | WiFi tethering, 4P | 1350 | 356 | 514 | 3330 | 2175009

Impact of WiFi Tethering on[MHE The power consumption values measured at[MH]
during different WiFi tethering scenarios are given in Table[7.9] Phase 1 and the tail
phase power consumption values are given in rows 1 — 2, respectively. Rows 3 —5
present the power consumption values when the WiFi tethering on [MHI is switched
OFF, switched ON, and D is connected (without download), respectively. Rows 6 — 8
present the Phase 2 power consumption values when D is downloading a single file, two
files in parallel, and four files in parallel, respectively. There is a significant difference
in power consumption between the scenarios when the WiFi tethering is enabled or
not. However, there is no significant difference if the smartphone D is connected or not
given that D does not download data. The power consumption of slightly increases
with the number of concurrent downloads. As the focus is more on the battery lifetime
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Table 7.9: Power Consumption (mW) on Samsung S4 (MH).

Row Scenario Mean | Std. | Min. | Max. | Samples
1 3G, P1 997 | 130 | 661 | 2889 | 475005
2 3G, Tail 1354 | 120 | 1047 | 3050 | 350006
3 3G, TetherOFF 549 | 106 | 371 | 2021 | 925004
4 3G, TetherON 845 | 179 | 628 | 2715 | 1475003
5 3G, D Connected 844 | 182 | 632 | 3112 | 700001
6 3G, TetherON, 1S, P2 | 1952 | 310 | 1304 | 4137 | 615005
7 3G, TetherON, 2P, P2 | 2146 | 288 | 1411 | 4391 | 625003
8 3G, TetherON, 4P, P2 | 2179 | 336 | 1374 | 4474 | 1325004

of multiple smartphones, one out of many smartphones can sacrifice its battery lifetime
(or plug into a power grid), while multiple surrounding smartphones benefit.

Download Durations

We first cleaned the measurement data from a few outliers that were confirmed as mea-
surement errors. The cleaned Phase 1 duration dataset comprises 31 iterations. Phase 1
duration is calculated as 4.6s + 0.3 s with 95% confidence level. The duration of a

Table 7.10: Download duration (s) for multiple downloads.

Row Scenario Mean | Std. | Min. | Max. | Iterations
1 3G, 1S 76.6 | 20.1 | 48.0 | 122.7 31
2 3G, 2P 129.2 | 42.2 | 65.3 | 235.7 32
3 3G, 4P 201.7 | 43.4 | 138.6 | 320.7 34
4 3G, 2S 129.7 | 158 | 96.5 | 158.6 31
5 3G, 4S 256.5 | 42.9 | 188.5 | 3294 31
6 WiFi tethering, 1S | 69.2 | 13.9 | 45.1 | 103.8 29
7 WiFi tethering, 2P | 81.2 | 12.0 | 63.6 | 111.9 28
8 WiFi tethering, 4P | 167.2 | 16.6 | 136.6 | 216.4 30

single file download via 3G is given in the first row of Table[7.10] The mean, standard
deviation, minimum, maximum of the parallel download durations via 3G on D for two

145



Chapter 7. Energy Saving During Video Streaming on the Smartphone

parallel (2P), and four parallel (4P) are given in the second and third rows of Table[7.10}
respectively. The download duration increases with the number of concurrent down-
loads on a single smartphone. The total download duration, during both the two serial
and four serial download scenarios, are given in the fourth and fifth rows of Table
We applied one-way Anova test on the individual download durations during two and
four serial downloads as the download durations are normally distributed (R? = 0.98).
We conclude that there is no statistically significant difference in-between each file’s
download durations during serialized downloading. The total download duration for se-
rialized file-downloading via the 3G interface is less than the total download duration
for parallel downloading. For parallel downloading, this indicates that the available link
is too much utilized, with high number of connections at a time, causing packet
losses, retransmissions, and higher slow-start phases. Eventually, the link becomes the
bottleneck. TCP’s slow-start has been considered as a robust mechanism, however it
might cause unnecessary delays in transmission. Phase 2 durations are calculated as
the difference between the total download duration, Tyownioad and Phase 1 duration, 7py.
The mean Tp is assumed to be 4.6 s for all smartphones that receive the data via the
3G interface. The last three rows, 6 — 8, depict the durations of the same downloads
via WiFi tethering over[MHI In the tethering scenario, the download durations are less
as compared to the scenario while downloading via the 3G. This might be related to
the hardware enhancements in Samsung Galaxy S4, i.e., due to the fact that Samsung
Galaxy S4 allows a higher bitrate (e.g., via HSPA+) as compared to Samsung S (via
HSDPA).

Energy and Processing Time

Based on the power and download duration measurements, the calculated energy con-
sumption values are given in Fig.[7.10(a)]together with the 95 % confidence levels. The
energy consumption when two and four files are downloaded without scheduling are
depicted with 2x1S and 4x1S, respectively. Energy consumption is reduced by 15%
and 22 % when two and four files are scheduled, respectively. The sum of the energy
consumption of D and MH in the WiFi tethering is higher than in the 3G scenario,
however the energy consumption of D decreases 48 % in the WiFi tethering scenario,
as expected.

The average processing times and the download times per file, for serialized and
parallel downloading on a single smartphone, are presented in Fig.[7.10(b)| together
with the upper 95 % confidence levels. There is no queuing in parallel downloading,
but the average download time per file is higher as compared to the serial downloading.
Thus, the average processing times are also 33 % and 26 % higher, when two and four
files are scheduled, respectively.
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7.3.4 Results Summary

This section presents the energy and download duration measurements for download-
ing multiple files (20 MB each) with different scheduling on a smartphone assuming
realistic settings. Based on the measurements, when two and four files are scheduled
(either in parallel or serial), in average 15 % and 22 % energy savings are achieved,
respectively. Performing the downloads via WiFi tethering reduces the energy con-
sumption, with the cost of waiting time for an available Mobile Hotspot (MH). The
energy consumption of increases with the amount of download requests from the
connected device, however [MHI can be connected to a power source. This way, it can
provide Internet access to multiple smartphones, which are not connected to the power
source. It has been known that WiFi tethering has been a great facility from the energy
efficiency perspective, which needs to be managed and populated in a smart way. This
also enables a reduction of the number of individual cellular connections to the RANI
This way, it is possible to decrease the per-device energy consumption and in parallel
to increase the utilization of cellular data link per smartphone.

The average processing time is presented as it might influence the We pre-
sented that scheduling of two or four downloads (either via parallel or serial) consumes
less processing time, less per-file downloading time, and less energy as compared to
the scenario when the same files are downloaded individually. The average processing
time is reduced by 33 % and 26 % in serial downloading as compared to the parallel
downloading, when two and four files are scheduled, respectively. Per-file download
time does not change in serial downloading, while it increases in the parallel down-
loading scenario.

There are a set of limitations in the study so far: the results obtained are specific
to 20 MB file size, and we considered file scheduling based on only-parallel and only-
serial downloading scenarios. Thus in the next section, we perform a similar study
with various file sizes. We consider a scheduling consisting of four files, but this time
also involving the use case when four files are downloaded in a hybrid approach (i.e.,
combination of serial and parallel downloads).

7.4 Downloading Rather Small-size Files

In this section, we conduct file download experiments with smaller file sizes. We study
a use case such that we have four identical files (assuming the users download same-
size entertainment podcasts or educational material), e.g. video files, to be downloaded.
In Section[7.3] it is observed that parallel downloading of large sized files (e.g., 20 MB)
yield higher average processing time as compared to serial downloading. One rea-
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Table 7.11: Download scenarios and definitions.

Scenario [ Definition H Scenario [ Definition
4x1S 4 individual single 2p2p Two parallel downloads followed by
downloads two parallel downloads
4P Four parallel downloads 4S5 Four serial downloads

son might be due to the re-transmission, and reduced window size in TCP-based data
transfer due to high congestion and limited bandwidth. However, for small size files,
this might not be the case as the congestion window size in [TCP| data transfer may
not saturate before the end of the file download. This might cause low utilization of
the available network bandwidth, and in this case parallel downloading might yield a
higher utilization with less average processing time. Thus, in this section, we repeat
the measurements with different file sizes.

7.4.1 Measurement Method

The study consists of four downloading scenarios (individual, only-parallel, only-
serial, hybrid) with nine different file sizes (10 KB, 50 KB, 250 KB, 500 KB, 1 MB,
2MB, 5MB and 10 MB). We enhanced the file download tool with new features in-
cluding scalability for different combinations of scheduling. There are four scenarios:
four files being downloaded: (i) independently, (ii) all in parallel; iii) all in serial; and
(iv) two parallel download followed by a two parallel download. The scenarios and the
corresponding abbreviations are summarized in Table[7.T1] We used the “mkfile -v XM
<filename>" command to create the files with the identical size, where X and filename
are the desired file size in megabytes and filename. A 3G SIM card with a maximum
downlink peak rate of 6 Mbit/s is used in all experiments. The download tool recorded
the download duration of each downloaded file, basically as the difference between the
time it is requested and the time it is finished as triggered by the Download Manager
API. We used an external macro tool (that only runs on rooted devices) to run all of
the scenarios in a sequential manner. This helps to perform all types of experiment
scenarios at different times as scattered over a long duration, e.g., in a day. All the ex-
periments are conducted on a rooted Samsung Galaxy S. The automatized experiment
procedure is given in Alg.2] As previously, the timestamps are taken at the moment
the file is requested (start timestamp) and the download is completely downloaded (end
timestamp).
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Algorithm 2: Experiment procedure for measuring the download durations.

For all file sizes {10 KB, 50 KB, 250 KB, 500 KB, 1 MB, 2 MB, 5 MB, 10 MB}
For all scenarios {4S, 4P, 2P2P}
while At least 100 iterations do

Launch the download tool

Start downloading [start timestamp]

Wait until download finishes [end timestamp]
Delete the downloaded files

Close the application

Wait for a cellular module demotion to IDLE

7.4.2 Observing the Per-file Download Time

We applied the one-way Anova test on the download duration of the files. We created
two data sets. The first data set contains the download time of the files that are down-
loaded initially (e.g., file 1 in the case of 4S scenario; file 1 and file 2 in the case of
2P2P scenario). The second data set contains the download duration for the files that
are downloaded later (e.g., files 2, 3 and 4 in the case of 4S scenario; files 3 and 4 in the
case of 2P2P scenario). Our hypothesis is that the mean download durations of the two
datasets are the same. The per-file download time for the two datasets for different file
sizes are given in Fig.[7.11] We derived the statistical significance as given via the p-
values in Fig.[7.12] The p-values grow with the file size; showing that the initial delay
is becoming unimportant and being smoothed out as the actual file download increases.
However in small size downloads, the initial duration is comparably significant to the
actual file duration. Thus, to calculate the average processing time for smaller file sizes
(i.e., smaller than 20 MB), we have to consider a more general formula as the files
first in sequence have statistically significantly different download durations than the
remaining ones.

Acquisition of Average Processing Time:  The average processing time is calcu-
lated as in Eq. Thegin i Eq.and fend iN Eq. are the timestamp of the first and
the last downloads, respectively. This considers the time when some files are down-
loaded, which the user can take action on them, while in parallel waiting for other
downloads to be completed. Thus, this metric is important to consider within the [QoE]
scope. Therefore, this is calculated as the minimum of all fpegin. fpegin and fenq are
calculated for each file (assuming there are K files) for each run.
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Acquisition of Total Download Time: The total download time is between when
the user initiates the downloads and when the all file downloads are completed. This is
calculated as the difference between the maximum fe,g and minimum fpegin.

Acquisition of Energy Consumption: The energy consumption for 4P, 2P2P, and
4S scenarios are calculated as in Eq.[7.12] Eq.[7.13] and Eq.[7.14] respectively. The
total energy consumption is the sum of energy consumption of Phase 1, Phase 2, and
Phase tail. The energy consumption calculation for Phase 1 and Phase tail is straight-
forward, i.e., by multiplying the mean phase duration with the corresponding mean
power consumption. We assume the same Phase 1 and Phase tail power consumption
and duration values as in Section[7.3] The Phase 2 energy consumption is calculated
as the multiplication of Phase 2 duration and the Phase 2 power consumption. The cal-
culations are slightly different for each scenario. For four parallel download scenario
(4P), the Phase 2 duration is calculated as the subtraction of the earliest download be-
gin time (minimum #yegjn) and the Phase 1 duration (Tq) from the latest download end
timestamp (maximum Zepq). The Phase 1 duration is subtracted as the download time
measured by the tool includes the Phase 1 duration. The Phase 2 download duration
for 2P2P scenario, i.e., hybrid, is calculated as follows. Different from the previous
scenario, the files are downloaded in two parts: the first 2P (i.e., first two in parallel)
and then the next 2P (i.e., last two in parallel). As the files are downloaded in a se-
quence, the download duration of the files that are downloaded first (e.g., first 2P), the
Phase 1 download duration is subtracted from the total download duration which is the
difference between the minimum begin time and the maximum end time of the files 1
and 2. In the second part (i.e., the next 2P), there is no Phase 1 duration, thus we calcu-
late only the difference between the minimum begin time and the maximum end time
of the files 3 and 4. The Phase 2 download duration for 4S scenario is calculated as
follows. As the Phase 1 duration influences the download duration of all four files, the
Phase 1 duration, 7} is subtracted from the download duration measured by the tool,
i.e., difference between the minimum start timestamp of all files and the maximum end
timestamp of the all files.
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7.4.3 Results

Average Processing Time: The descriptive statistics (mean and 95 %confidence intervals,
CI) regarding the average processing time for all three (4P, 2P2P, 4S) scenarios for nine file
(downloded via 3G with 6 Mbit/s max. peak rate) sizes are given in Table[7.12] From left to
right, file size, average processing time, total download time, and number of iterations are given.
Fig.[7.13(a)} visualize the average processing and the total download time for all file
sizes. The average processing time increases drastically (statistically significantly larger than the
other two scenarios) with the file size when the four files are downloaded in parallel. Thus, for
large file sizes such as 10MB (or as also discussed for 20 MB in Section[7.3), downloading the
files in parallel is not suggested, but it is rather recommended to download them either in series,
485, or in 2P2P (two simultaneous downloads are followed by two simultaneous downloads)
manner. For small file sizes, e.g., 10 KB, the average processing time for serial downloading
is statistically significantly larger than the other two scenarios, thus not recommended. In fact,
when the files with small size are downloaded in a 2P2P manner, the average processing time
outperforms the other two scenarios.

Total Download Time: When the files are downloaded in series, the total download dura-
tion is statistically significantly higher as compared to the other two scenarios. Thus, if a user
prefers to download all files and complete the whole download process in the soonest manner,
then we recommend user to initiate the downloading not in serial manner, but rather in parallel
or in hybrid approach.

Table 7.12: Average processing and total downloading time for multiple file down-
loads.

Statistics File Size Average Processing Time [s] Total Download Time [s] Number of Iterations
4P 2P2P 4S 4P 2P2P 4S 4P 2P2P 4S
Mean 10KB 1435 1200 | 1554 14.58 13.53 19.52 160 160 161
CI(95%) T0KB 071 0.17 032 0.76 020 034
[ Mean T S0KB | 1294 [ 1251 | 1728 [ 1312 | 1433 [ 2193 [ 175 | 175 [ 176 |
[ Ccros% | S0kB | 044 [ 014 | 028 | 046 | 017 [ 028 | | | |
[ Mean T 250KB | 1352 [ 1371 | 1821 | 1383 | 1623 [ 2390 [ 196 | 197 [ 198 |
[ Ccrose% | 250kB | 032 [ 021 | 030 | 036 | 025 [ 032 | | | |
[ Mean T 500KB | 1752 [ 17.15 | 2125 [ 1813 | 2097 | 2810 | 184 | 184 [ 186 |
[ Ccros®%) | 500KB_ | 054 [ 061 | 033 | 054 [ 119 | 041 | | | |
[ Mean [ IMB [ 2230 [ 2005 [ 2344 | 2418 [ 2483 [ 3194 [ 111 [ 107 [ 111 |
[cros% | 1MB | 121 [ 076 | 063 | 219 | 092 [ 08 | | | |
[ Mean [ 2MB | 4128 | 3362 | 3581 | 4291 | 4384 | 5118 | 124 | 123 [ 125 |
[ cres% | 2MB | 189 [ 121 | 313 | 198 | 161 | 376 | | | |
[ Mean [ 5MB | 6865 [ 5840 | 5332 | 7193 [ 7633 [ 7994 | 145 [ 148 [ 146 |
[[cr@s% | 5™MB | 211 [ 152 | 157 | 201 | 184 [ 246 | | | |
[ Mean T 10MB [ 12561 [ 9688 | 9397 | 12895 | 12712 | 14507 | 131 [ 131 | 133 |
[ cr@s% | 1oMB | 513 [ 385 | 418 | 501 | 517 | 660 | | | |
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Figure 7.13: Average processing and total downloading time for three scenarios.

Energy Consumption: The total energy consumption for the three scenarios are given in
Fig.[7.14] For small file sizes, the total energy consumption is statistically significantly higher
in case of serial downloading as compared to the other two scenarios, i.e., parallel or hybrid,
thus serialized downloading of small-sized files is not recommended. As the file size increases,
the total energy consumption difference between the parallel and the serial scenarios decreases.
When the file size is increased to 2 MB, downloading in series becomes less energy consuming
as compared to the parallel downloading. Thus, for file sizes larger than 2 MB, we recommend
to conduct the download not in parallel manner in order to save energy.

Although the results obtained from these measurements are highly depending on the max-
imum available throughput (6 Mbit/s maximal peak rate), to date, the latter data rate is highly
representative in the wild 3G connectivity and in realistic settings.
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7.5

Energy-based Anomaly Detection

The abnormal behavior in the instantaneous power consumption values in case of the occasional
freezes are investigated particularly during the network-based video streams. Although it is
not very strong, there is a relationship in-between the duration of the freeze, i.e., Dp and the
power consumption, P,. The abnormal behavior of the video stream such as high inter-frame
time manifests itself with long freezes, and is distinguishable with P, for particular window
size (W) values. The coefficient of determination (R%) values of the exponential fits between the
Dy and the P, values are given for different W values in Table@ Based on the R? values,

the exponential relationship is the strongest both for and

[HTTPl when the actual data is

smoothed with an[SMAlwindow size (W) of 7500 (1.5 s). When W is 15000 (3 s), the detection of
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the abnormalities was not possible, as the smoothed data was departed from the original version
too much, i.e., abnormal fluctuations of P, disappeared. As the D}, and the P, datasets (W =

Table 7.13: R? values for different window size (W).

w 2500 (0.5s) | 5000(1s) | 7500 (1.5s) | 10000 (2s)
RTSP 0.0464 0.3062 0.5336 0.4709
HTTP 0.1174 0.2704 0.6016 0.3852

3000 : : ;
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Figure 7.15: Abnormal D, versus P, values are illustrated (W = 7500, i.e., 1.5 s) [206].

7500) from the RTSP and HTTP streaming are matched, an exponential relation in between the
two metrics is suggested as presented in Fig. according the Eq. R? value was calculated
as 0.60. Moreover, the statistics with respect to ATy (picture) a0d AT (power) metrics are calculated

as given in Table[7.14]

Dp/ms = 1.26- 10 -¢~0-003F/mW (7.15)

High delays in the network-level manifest themselves at the application layer as freezes in
the video display screen. Eventually, the detected anomalies in the power consumption might be
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Table 7.14: Time gap between the anomalies with W = 7500.

ATy [s]
Min Max | Mean | Median | Standard Deviation
Frame | 23.47 | 26.10 | 25.02 | 25.04 0.52
Power | 20.35 | 29.20 | 25.04 | 25.07 1.06

transformed into benefit and might be considered as an alternative approach for saving energy.
In Section[7.6] we study the freeze regions in details.

7.6 Energy and in Video Streaming: A Trade-off
or a Win-Win?

The total power consumption of the smartphone comprises the power consumption of the indi-
vidual components including [CPUl [LCD] screen, and cellular data module. It is preferred that
the energy consumption pattern of all components during the runtime of an application should
adapt to save energy depending on the changing conditions of the system. During video stream-
ing, there are mechanisms that adapt the power states of the cellular data modules based on the
variations in the network throughput. Thus, the power consumption decreases when there is
a stalling event, due to the state demotion in cellular data modules (e.g., from active to idle).
However, other components such as[CPUland the screen keep their high power-consuming states
unchanged. Therefore, during this time, i.e., during user’s waiting time for the video to continue
playing, the consumed energy increases with time. In this scenario, the total energy consumed by
the device is highly depending on the user’s decision (e.g., interrupting the play-out and giving up
watching it, or keeping patience and wait) as well as the streaming protocol. The network proto-
col’s role is also crucial when the video freezes. If the video is UDP-based, then there is a picture
jump (with-jump), and the total video session duration does not depend on the freezes, thus the
latter might be saving energy, at the cost of displaying less content. Accordingly in[UDPlbased
video streaming, energy saving might be performed with picture jumps while also maintaining
the If the video is TCP-based, then there are no picture jumps (without-jump), and the
total video session duration increases given that the user watches the video till the end. The
power consumption models for without-jump and with-jump scenarios are given in Fig.[7.16(a)]
and Fig[7.16(b)] respectively. In a without-jump scenario in Fig.[7.16(a)] the total video session
duration increases with the total freeze duration. The actual finish time of a video session is a
freeze duration more than the nominal finish time. The energy waste in a with-jump scenario is
illustrated with the red region in Fig.[7.16(a)] In a with-jump scenario in Fig.[7.16(b) the total
video session is equal to the one when there is no freeze. In addition, during the freezes there is
an energy saving proportional to the power saving and the total duration of a freeze. The energy
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Figure 7.16: Freezes are illustrated with the power consumption pattern during video
streaming in two scenarios.

saving during the freezes is illustrated with a green rectangle.
We further discuss on the scenarios related to freezes as follows.

7.6.1 Problem Formulation

Without freeze: The total energy consumption, Ey, of a video stream without any freeze
is calculated in Eq. as the product of mean power consumption Psgreaming, and the mean
total duration Tyreaming Of video streaming. In this scenario the streaming duration and the video
session duration are equal.

Eotal = Pstreaming ' Ts[reaming [WI[s] (7.16)

With freeze, without-jump: The total energy consumption, Eyo, for the scenario when
there are freezes and the video pictures are not jumped (i.e., not skipped), is calculated as in
Eq.[[.T7] Eoal is the sum of energy during video streaming and also the additional energy
consumption, Efreeze, (i-e., wasted energy) during the freeze duration. Thus, the energy waste is
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proportional to the freeze duration and the total power consumption of the freeze event.

Eotal = Pstreaming ' Tslreaming +Pfreeze ' Tfreeze [WI]ls] (7.17)
——————
wasted energy
When there is no picture jump, e.g., in a TCP-based stream, the energy waste (with respect to a
no freeze scenario) can be represented as follows. The total freeze duration, Tfeeze during video
session is formulated in Eq.[7.18] where N is the total number of freezes, and 1, is the freeze
duration of freeze n. Pyeeze in Eq.,[7.19]is the smartphone power consumption during a video

freeze (e.g., due to[RRCIFACH state or active CPU). The total energy waste is given in Eq.[7.20]
as the multiplication of power and duration during freeze.

N
Ttreeze = Twaste [S] = Z Tn [s] (7.18)

n=1

P freeze = P, waste [W] = FFACH + P cpU + PDisplay + P Other active components [W] (7.19)

Efreeze = Ewaste m = Pfreeze : Tfreeze [W1][s] (7.20)

Assuming that the freezes are of the same length, the energy waste in a without-jump scenario
can be further formulated as in Eq.[7.21]

Eyasted = Puaste - N - Tn [W][s] (7.21)

With freeze, with-jump: The total energy consumption for the scenario when there is a
freeze and the pictures are jumped for a total freeze duration, is calculated as in Eq[7.22] In this
scenario, the total video session duration is reduced by the total freeze duration. Thus, the total
energy consumption during video streaming is reduced by Tireeze (Pstreaming — Pireeze )-

Eiotal = Pslreaming . (Tslreaming - Tfreeze) + pfreeze . Tfreeze [WI[s] (7.22)

Eoral = P, streaming * Tslreaming - Tfreeze (P streaming — P freeze) [WI[s] (7.23)

energy saving

where, Pstreaming — Prreeze > 0 (7.24)

Thus, the energy saving is depending on the absolute difference between Pslreaming and Prrecge.
By looking at Eq.[7.I7] and Eq[7.23] it can be said that the less the total power consumption
during a freeze, Ppeeze, the lower the energy waste in without-jump scenario, and the higher the
energy saving in with-jump scenario. Assuming that the freezes are with the same length, the
energy saving in a with-jump scenario can be further formulated as in Eq.[7.23]

Eaying = (Pstreaming — Prrceze) "N Ty [WIls] (7.25)
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7.6.2 Discussion on the Trade-Off and Win-Win

In[UDPbased video stream, the [QoE]is influenced by the length and the number of freezes in
a video stream. However, in contrast with the [TCPlbased stream, the video duration does not
change as the stalled regions in the video content are skipped. The more pictures are skipped the
less the energy consumption (i.e., the higher the energy saving), but the less the [QoE} Thus, the
relationship between the and the energy consumption becomes a trade-off.

The energy waste is proportional to the power waste during freezes, and 3G-based streaming
is not energy efficient for a video stream with multiple freezes due to the RRC state. In
[TCPlbased video stream, considering an energy saving during a stalling event is far optimistic,
and the video indeed consumes more energy given that the video session time is extended. Con-
sequently, in TCP-based stream, the more freezes mean higher energy waste, and worse[QoE]due
to the stalling events. The decreases with the energy waste, Eyasie, Which is proportional
to the length and the number of freezes. Therefore, the best scenario with respect to QoE and
energy is that the video streaming is smooth, i.e., without any freeze. This way, both the ses-
sion time is kept minimum and indirectly the total energy consumption of the smartphone during
video streaming, which can be considered as a win-win.

Relating the Scenarios to Previous Research on [QoE| Hossfeld in [115] studied the
impact of the freezes (the stalling events) on video[QoE} The streaming scenarios involve peri-
odic freezes that are uniformly distributed and analyzed in every 30 seconds long intervals. It
was concluded that one freeze with a maximum of 3 seconds in a video clip is the upper bound-

ary that enables [QoE] at acceptable level, i.e.,[MOSE> 3. Eq[7.26]is proposed to represent MOS
with the length and frequency of the freezes, we obtained the[MOS]| values from [116]].

MOS(L\N) = 3.50- ¢~ (0-15TH019)-N | 1 50 (7.26)

We obtain the energy waste (via Eq.[7.21), the energy saving (via Eq.[7.23)), and the[MOS]values

Table 7.15: Power consumption of smartphone during local streaming

Mean [mW] | Median [mW] | Std. [mW]
1558 1543 83.52

(via Eq. for N and 7, values each ranging from 1 to 6 (based on Hossfeld etal. [116]),
and Ppreeze Values for approximately 1500 mW, and Pgreaming Values for 1750 mW (based on our
previous measurements in Section[7.2.3). Indeed, we had calculated median power consumption
during a freeze as 1543 mW in Table[7.13] but we will use 1500 mW in our further calculations
for the sake of simplicity. When the obtained MOS values and the energy values are matched, we
obtain Fig. The best fit was a power-law model with R? = 0.92. The energy waste (shown
via blue colour) is much higher in without-jump scenario as compared to the energy saving in
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the with-jump case (shown via red colour). This is expected as the power saving is assumed to

1750mW—1500mW

be one-seventh ( T750mW

) of the total streaming power consumption. In the without-

jump scenario (shown via blue colour), the energy waste decreases when the [MOS]increases in
a power-law model, which is a win-win situation. In the with-jump scenario (shown with red
colour), the energy saving increases when the [MOS]decreases in a power-law model; which is a
trade-off situation. The calculated numerical values for MOS vs. energy savings for with-jump

generated data points (Energy saving vs MOS)

generated data points (Energy waste vs MOS)
——fitted model (Energy saving vs MOS); MOS = 2.66 - Eqping !0
——fitted model (Energy waste vs MOS); MOS = 4.69 - E,qqr. 210

5 10 15 20 25 35 40 45 50 55

30
Energy (J)

Figure 7.17: MOS vs. energy saving and MOS vs. energy waste for the with-jump and
without-jump scenarios, respectively.

scenario and the MOS vs. energy waste for without-jump scenario are given in Table[7.16] where
T, is the length of a freeze and N is the number of freezes (assuming that freezes have the same
duration). When[MOS]of 3 is substituted into Eq[7.27] the maximum energy saving is achieved
as 0.96J (roughly 11J) for a 30's of video stream. In contrast, if there is no jump in the case of
freezes, the energy waste is 1.157J if MOS of 3 is substituted to Eq.[7.28] and the energy waste
increases as the further decreases. In this case, it is necessary to avoid freezes to save
energy.

—0.316
MOS =2.66-E_00! (7.27)
MOS = 4.69- E;0316 (7.28)

The model presented is based on the relation between the MOS and the freezes as presented
in previous work [[115]. As already mentioned, the model assumes that the freeze lengths are the
same; indeed in real life this is not the case. We have observed in our previous work in Section[3]
that the inter-picture time during a 3G-based real-time video stream holds a two state (ON/OFF)
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Table 7.16: Egaying and MOS for various N, T, and Paying values.

[ | | | | [ withjump [ without-jump |

[0S TN 1 | Pireese | Pswreaming | Fsaving | Ewaste
3.99 1 1 1500 1750 0.25 1.5
3.64 1 2 1500 1750 0.5 3
3.34 1 3 1500 1750 0.75 4.5
3.08 1 4 1500 1750 1 6
2.86 1 5 1500 1750 1.25 75
2.67 1 6 1500 1750 1.5 9
3.27 2 1 1500 1750 0.5 3
2.81 2 2 1500 1750 1 6
2.47 2 3 1500 1750 1.5 9
2.22 2 4 1500 1750 2 12
2.03 2 5 1500 1750 2.5 15
1.89 2 6 1500 1750 3 18
2.76 3 1 1500 1750 0.75 4.5
2.30 3 2 1500 1750 1.5 9
2.01 3 3 1500 1750 2.25 13.5
1.82 3 4 1500 1750 3 18
1.70 3 5 1500 1750 3.75 22.5
1.63 3 6 1500 1750 4.5 27
2.39 4 1 1500 1750 1 6
1.99 4 2 1500 1750 2 12
1.77 4 3 1500 1750 3 18
1.64 4 4 1500 1750 4 24
1.58 4 5 1500 1750 5 30
1.54 4 6 1500 1750 6 36
2.13 5 1 1500 1750 1.25 7.5
1.80 5 2 1500 1750 2.5 15
1.64 5 3 1500 1750 3.75 22.5
1.56 5 4 1500 1750 5 30
1.53 5 5 1500 1750 6.25 375
1.51 5 6 1500 1750 7.5 45
1.95 6 1 1500 1750 1.5 9
1.68 6 2 1500 1750 3 18
1.57 6 3 1500 1750 4.5 27
1.53 6 4 1500 1750 6 36
1.51 6 5 1500 1750 7.5 45
1.50 6 6 1500 1750 9 54

exponential distribution. Thus, in the next session, we repeat our user study with similar settings
in [T15]}, and on the smartphone. Our aim is to improve the [QoE] model to represent a more
realistic scenario, and to relate it to energy consumption.

7.7 vs. Energy Case Study on Smartphone

The above scenario assumes that the temporal impairments are uniform, however this is not real-
istic. Thus, in the next study we present temporal impairments by considering realistic temporal
impairment models of 3G (via with and without picture jump scenarios), which we obtained in
our previous research as presented in Chapter[3] We consider an exponential ON/OFF modeling
on the inter-picture times, with particular mean ON state and mean OFF state durations, and col-
lect both user perceived ie., throughout a user study, and the power measurements.
In order to fully control the experiment testbed, we stream from the smartphone’s local storage,
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i.e., sdcard, and implement the video player to mimic the exponential ON/OFF behaviour of 3G.
Eventually our goal is to obtain a relationship between the energy consumption and MOS based
on the freezes in a video stream and compare the obtained model with the model in Fig[7.17]

7.7.1 User Study Method

There are three scenarios in this experiment. Scenario 1 is a smooth video playout without any
temporal impairment, i.e., freezes. Scenario 2 and scenario 3 include freezes; where in the second
scenario the freezes occur without any picture jumps, and in the third scenario the freezes occur
with picture jumps. In scenario 2, when a freeze event occurs, the video is paused and continued
from the exact point where it has paused, thus all the video content is eventually presented to the
user. In scenario 3, upon a freeze event, the video is paused for a particular duration, the video is
skipped with exactly the OFF duration, and then is resumed from the skipped point of the video.
This causes less content to be presented to the user. Observe that the IOVidEoQ tool in these
experiments does not capture the inter-picture time but only the ON/OFF events. In other words,
during an ON event, the video stream follows a smooth playout via the local storage.

Choice of ON/OFF state parameters

We applied various ON/OFF durations on the video streams during a preliminary pilot study. We
would like the obtained [MOS] values to span over the 5-level MOS scale. The settings applied
to the users during the pilot study are: Mean ON time = 7 seconds and Mean OFF time = 3
seconds for 3 random pilot users; Mean ON time = 8 seconds and Mean OFF time = 2 seconds
for 4 random pilot users; and Mean ON time = 9 seconds and Mean OFF time = 1 second for 4
random pilot users. The reason for continuing the study with the “Mean ON = 8 seconds, Mean
OFF = 2 seconds” pair is as follows. When 30% distortion with “Mean ON time = 7 seconds
and Mean OFF time = 3 seconds” was set, the obtained MOS values did not contain any MOS
= 1 and the average MOS was 3.56. When 10% distortion was applied (with “Mean ON time =
9 seconds, and Mean OFF time = 1 second”, the obtained MOS values ranged between 2 and 5,
and the qualitative feedback received from the users indicated annoyance related with too many
interruptions. With the “Mean ON = 8§ seconds and Mean OFF = 2 seconds”, based on the four
pilot users, the received MOS values spanned all of the MOS range, i.e., 1 to 5, which helped
to obtain a representative model. Thus, we further employed 19 more random participants, and
applied the “Mean ON= 8 seconds and Mean OFF = 2 seconds” setting on them. Eventually, in
total 23 participants watched the videos with the latter setting combination.

Choice of video content

We clipped a three minutes long action scene from a popular science fiction movie from year
2014 (from Blu-ray disc). We chose a scene that includes high movement level, and rich in
temporal information in order to address a worst-case scenario for freezes. In other words, we
assumed that the higher the temporal complexity of the video, the higher the probability that the
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freezes will influence the The video is prepared with 6 Mbit/s with 25 frames per second,
and converted into MP4 multimedia format.

Experiments

‘We conducted a user study involving a user survey, face-to-face interview, and the user experi-
ments with the video streaming tool, i.e., IOVidEoQ. We recruited 38 users from four different
countries (Sweden, Switzerland, and France), and obtained survey and interview data from all
of them. We asked questions to the users regarding their daily life usage of smartphones and
also collected user background information, e.g., demographics. We collected information re-
garding the user details (age, gender, user’s own phone type) and experience on video streaming
on smartphones. We asked the user the following questions based on users’ video streaming
experience on the smartphone in daily life:

e How often do you watch a video on the smartphone per day? (> 1 hour/day, < 1 hour/day,
< 30 min/day, < 10 min/day, < 5 min/day, < 2 min/day, < 1 min/day, never)

e What percentage of your video sessions is network-based, i.e., you stream the content
over the Internet?

e While streaming over a network (if you do so), do you prefer WiFi or cellular data (e.g.,
3G/4G) while streaming over the network? Why?

e [ normally watch a video on my smartphone... (at home, at office/school, at street, at
other indoor, at other outdoor, while alone, while with a person, while with a group, while
sitting, while standing, while walking).

e What is your overall perceived video quality based in MOS scale (5-excellent, 4-good, 3-
fair, 2-poor, 1-bad) on network-based on video streaming on smartphones? Please answer
for both WiFi and 3G.

After the user answered the questions, we explained the detailed instructions regarding the next
steps in the study. Then, the user watched a video stream via our video streaming tool on two
phone types: either Samsung Galaxy S4 or Nexus 5. Both phones have exactly the same display,
i.e., Super AMOLED, 16M colors, 1080 x 1920 pixels. The complete[QoE|experiment procedure
is depicted in Fig.[7.18] During the video study with the IOVidEoQ tool, first, the test supervisor
explained the user what the subject will do. The test supervisor enters the userID, age, gender of
the user together with the mean ON and mean OFF durations for temporal impairments. Next,
one of the three randomly selected video scenarios begins to display on the smartphone screen.
After the end of the video session (i.e. three minutes), the MOS scale menu pops up, and the user
is required to give a rating on the five-level[ACRlscale (where 5 is excellent and 1 is bad). Then,
15 seconds of gray screen is presented to the user. The user is asked to watch this gray screen,
as it is recommended by ITU-T P.910 [156] standard and helps to prevent the memory effect,
i.e., to flush the memory from bias. Next, the second randomly chosen scenario starts playing.
And this loop continues until the three scenarios with the same video content (no freeze, freeze
without jump, freeze with jump) are watched and rated by the user.
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Figure 7.18: User Study Procedure

7.7.2 User Study Results

Before presenting the outcomes of the user study with respect to the data collected via our video
streaming tool, we present a set of overall statistics (based on the interview and the short survey)
on the participants’ background and context while the video applications are being streamed in
daily life. We also collect users’s opinion on the overall quality perceived on different wireless
access technologies in daily life with the corresponding reasoning.

Survey and Interview Results

The users” background is depicted in Table[7.18] The presented variables for each user are,
from-left-to-right, the subjectID, age, gender, users’ own phone type, occupation, country of
residence, average duration of video stream in daily life, the MOS based on[QoE]| on WiFi, and
the[MOS]based on cellular data, i.e., 3G or 4G. In total, there were 38 participants who attended
to the study. The age range was between 22 and 51, with an average of 29. There were 24
males and 14 females in the study. The user profile comprises various occupations including
researchers, students, administrative staff, and an antropologist. They were residents of three
different countries: Sweden, Switzerland, and France. The participants use diverse phone types
including Nexus 5 (11), Iphone 5 or 6 (10), Samsung (8), Moto-G (3), LG (2), Xperia (1), Xiomi
(1), HTC (1), and Huawei (1).

3G vs WiFi: The mean MOS for WiFi and 3G are 4.3 and 3.5, respectively, and the figure that
compares the [MOS]ratings with respect to two different wireless interfaces is given in Fig.[7.19]
Fisher’s Exact Test [[70]] can be used to understand whether the two datasets with nominal data
are statistically significantly different from each other. We applied Fisher’s Exact Test to compare
the two data sets (i.e., WiFi and cellular). We conclude that the two dataset means are statistically
significantly different than each other with p value equals to 0.0034 (95 % confidence interval).
It has concluded that WiFi is prefered more than the 3G for video streaming.
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Figure 7.19: Overall comparison of [MOS]ratings between WiFi and 3G/4G cellular.

Qualitative Feedback on Wireless Interfaces: We classified the qualitative feedback
received from the users regarding the reason behind perceiving a quality particular wireless net-
work interface as better than the other. We classified the user feedback in six categories with
corresponding keywords as in Table[7.17] The first column is the classified keyword, where the
second column contains all the corresponding matched and classified keywords within user’s
qualitative data. The number of occurrences of each keyword is calculated and given in paran-

Table 7.17: Keywords from the qualitative feedback for the choice of network interface.

[ CrassIFIED KEYWORD | MATCHING KEYWORDS ]
speed (17) faster, speed, poor, delay, interruptions, quality, bad, load faster, consistent, capacity
cost (14) costs, free, money, expensive, save, cheap
connectivity (3) always d, use in , disc C!
data plan (2) no data plan, no cellular operator, wifi default
reliability (2) more reliable, reliable indoor
usability (1) difficult to change WiFi

thesis in the first row near the reasons in Table[7.17] In overall, the main motivation for choosing
a wireless interface over another is related to the speed (for 17 users) and the cost of connectivity
(for 14 users).

Context and Location:  The users participated in the study watch videos in daily life in
various contexts and location. We observed that 76 % of the participants watch video at "home’
when alone’, and in ’sitting position’.

Smartphone-based Video Usage: The participants’ usage of smartphone-based video per
day is studied. Amongst the 38 users, 82 % of the users watch video on the smartphone for less
than half-an-hour per day.
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Table 7.18: User background and user’s experience with smartphone-based video
streaming.

SubjectID Age Gender Phone Type Occupation Residence Vid.Usage MOS [WiFi] MOS [3G]
S1 32 Male Huawei Student Sweden more than hour a day 5 3
S2 27 Male Samsung S4 Student Sweden less than hour per day 5 4
S3 31 Female iPhone5 Researcher Sweden more than hour a day 4 2
S4 36 Female iPhone5 Researcher Sweden less than 10 mins per day 4 3
S5 28 Male Nexus5 Researcher Switzerland less than 2 mins per day 4 3
S6 27 Male Nexus5 Researcher Switzerland less than 5 mins per day 4 3
S7 26 Male Nexus5 Researcher Switzerland less than 10 mins per day 4 3
S8 37 Male Samsung S4 m. Researcher France less than 5 mins per day 3 3
S9 23 Female iPhone5 Researcher France less than 30 mins per day 4 2
S10 27 Male Samsung S4 m. Researcher Sweden less than 30 mins per day 4 4
S11 31 Female Xperia Z2 ini: Sweden lless than 1 hour per day 4 3
S12 28 Female Nexus5 Student Sweden less than 5 mins per day 5 4
S13 27 Male Nexus5 Student Sweden less than 1 mins per day 4 3
S14 51 Male iPhone5 Student Sweden less than 5 mins per day 5 4
S15 33 Female Samsung S4 Student Sweden less than 5 mins per day 5 5
S16 33 Male Samsung S3 Student Sweden less than 1 min per day 4 3
S17 23 Male iPhone5s Student Sweden less than 10 mins per day 5 4
S18 22 Male iPhone5 Student Sweden less than 5 mins per day 5 4
S19 28 Female iPhone5 Student Sweden less than 10 mins per day 5 3
S20 26 Female Samsung S3 Student Sweden more than an hour per day 4 3
S21 26 Male iPhone5 Student Sweden less than 2 mins per day 5 4
S22 23 Male iPhone6 Student Sweden less than 10 mins per day 4 5
S23 23 Male Moto G Student Sweden less than 5 mins per day 5 4
S24 25 Female Nexus5 Student Sweden less than 10 mins per day 4 4
S25 33 Male Nexus5 Researcher Sweden less than 5 mins per day 5 4
S26 34 Female iPhone6 Antropologist Sweden - - -
S27 27 Male Xiomi Researcher Sweden less than 10 mins per day 3 2
S28 26 Male MotoG Researcher Sweden less than 10 mins per day 4 4
S29 27 Male MotoG Researcher Sweden less than 10 mins per day 4 3
S30 38 Male LGG3 Researcher Sweden less than 30 mins per day 4 4
S31 28 Male Nexus5 Researcher Switzerland less than 10 mins per day 4 3
S32 24 Male Nexus5 Researcher Switzerland less than 5 mins per day 4 3
S33 26 Nevermind Nexus5 Researcher Switzerland less than 2 mins per day 4 3
S34 34 Male Samsung Note Researcher Sweden less than 1 mins per day 4 4
S35 29 Female Samsung S4 m. Researcher France less than 30 mins per day 2 5
S35 29 Female Samsung S4 m. Researcher France less than 30 mins per day 2 5
S36 30 Male GalaxyS3 Student Sweden less than 2 mins per day 4 3
S37 27 Female LG G5 Researcher Sweden less than 5 mins per day 3 4
S38 38 Female HTC Researcher Sweden - - -

7.7.3 Validation of the Tool

We have selected 10 random datasets (each more than 200 data points) from user experiments
in order to confirm that the applied ON/OFF distortions during the video playout are exponen-
tially distributed. The ON and OFF durations in two datasets are fitted into exponential curves

giving both R? = 0.99, as given in Fig.[7.20(a)l{7.20(b)| Thus, we confirm that the tool applies

distributions within time durations that are exponentially distributed as expected.
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Figure 7.20: [CCDH's with respect to random test runs.

7.7.4 User’s Video Experiment Results

MOS per each scenario

We compare the values received with respect to the three scenarios: (Scenario 1) without
any freeze; (Scenario 2) freeze without picture jump, and (Scenario 3) freeze with picture jump.
The summary statistics of the ON and OFF durations that the 30 users experienced during Sce-
nario 2 and Scenario 3 are given in Table[7.19] From columns left to right, the video state (i.e.,
ON or OFF), mean duration, median duration, standard deviation of the duration, minimum du-
ration, maximum duration, and the number of samples in each dataset is given. The differences

Table 7.19: Average ON and OFF durations that the users experienced during the ex-
periments in Scenario 2 and Scenario 3.

State | Mean [s] | Median [s] | Std. [s] | Min. [s] | Max. [s] | N
ON 8.0 7.7 1.8 5.1 12.8 30
OFF 2.0 1.9 7.0 0.4 3.6 30

in between the[MOS]scores with respect to the three scenarios are given in Fig.[7.21] We applied
pair-wise Fisher’s Exact Test to the dataset with two columns (freeze with jump, freeze without
jump) in order to understand whether they are statistically significantly different. We obtained
a p value of 0.8784 (95 % confidence interval). We conclude that the two datasets are not sta-
tistically significantly different from each other. This outcome motivated us to conclude that
there is no statistically significant difference in [QoE] if the video is interrupted with or without
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skipping video content. The most important factor that influences the is the occurrence of

an interruption, i.e., a freeze.

Freee it ump B B
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Count
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Figure 7.21: Comparing the Three Scenarios from the [QoE] perspective.

Number of Interruptions

We studied the average number of interruptions per 30 seconds during the video streaming ses-
sion. The choice of 30 seconds interval is to match the previous work conducted in [[116] as

mentioned earlier in this Chapter. We matched the number of interruptions to the received [MOS]
values per session, however we have not identified any strong trend as given in Fig.[7.22(a)] The
mean number of interruptions per[MOSlis calculated and depicted in Fig.[7.22(b)|showing a more

clear trend.
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Figure 7.22: A set of metrics are given with the corresponding MOS scores.
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Average ON Duration Per Session

We studied other metrics related to the ON and OFF states during a video session. In the two
state ON/OFF exponential model, the average ON duration for each video session is matched
to the corresponding values. The relationship in between the and the average ON
duration can be represented via linear or exponential models as given in Fig.[7.23(a)] The mean
of the average ON duration is also calculated per values together with the confidence
intervals (95 %) as depicted in Fig.[723(c)] The obtained models are presented in the second
column of Table[7.20} The exponential and the linear models are given in rows 2 — 3, respectively.
Indeed, neither of the fits are strong, where the exponential and the linear fits yield R> = 0.67
and R? = 0.68, respectively.

ON Probability

Another metric that is studied on the obtained user data is the ON probability and its relation
to the [MOS]| scores. ON probability is calculated as the mean of ON duration divided by the
sum of ON and OFF duration per cycle, i.e., %. An exponential law model is suggested
with a strong correlation as given in Fig. The mean of the ON probability for each
is calculated and depicted in Fig.[723(d)] The first column of Table[7.20] presents the
logarithmic, exponential and the linear fits for the ON probability. An exponential model can
represent the relation between the ON probability and the with a good fit (RZ = 0.74),
while the logarithmic (R% = 0.66) and the linear (R? = 0.69) models are slightly weaker.

Table 7.20: ON probability and average ON duration: Models and corresponding good-
ness of fit (R?) values.

ON probability Average ON Duration [ms]
Model Equation \ R? Equation \ R?
Log. || MOS =38.18-log(Pon) +4.44 | 0.66 - -
Exp. MOS = 0.15¢3-38-Fox 0.74 MOS = 2.32¢0:00004-0N 0.67
Lin. MOS =9.84-Pon—5.33 0.69 || MOS = 0.0000130N +2.28 | 0.68

Average OFF Duration Per Session

In addition to the metrics related to the ON state of the video stream, we also study the similar
metrics for the OFF states. The average OFF duration is the mean duration of the freeze events.
The relation between the average OFF duration and the MOS is given in Fig.[7.24(a)| with R* =
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0.72 and R? = 0.68, for exponential and linear fits, respectively. The fitted equations are depicted
in the second column of Table[Z.21] for the both mathematical models.

OFF Probability

The OFF probability is calculated as the mean of OFF duration divided by the sum of ON and
OFF duration per cycle, i.e., OTV?Fi IZW. The relation between the OFF probability and the MOS
is given in Fig.[7.24(b)| with R? = 0.74 and of R? = 0.69 value for exponential and linear fits,
respectively. The corresponding fitted equations are given in the first column of Table[7.21]

Table 7.21: OFF probability and average OFF duration: Models and corresponding
goodness of fit (R?) values.

OFF probability Average OFF Duration [ms]
Model Equation R? Equation | ’?
Exp. MOS = 4.67¢ 338 Fory | (.74 MOS = 4.67¢ 0-00030FF | 72
Lin. MOS = —-9.84-Porr+4.51 | 0.69 || MOS = —0.001-OFF 4+4.51 | 0.68

Impact of ON and OFF states on the MOS

We have also studied the impact of ON and OFF state metrics on the MOS. With the given cycle
and the average ON and OFF states, the OFF duration influences much more than the
average ON state duration. We studied the relation between the three parameters, i.e., average
ON, average OFF, and the[MOS] value in Eq.[7.29] The fits with various parameters are given in
Fig. and The table that depicts the R? values with different parameters are given
in Table[7.22] When the weight of the average OFF state duration, i.e., OFF gets much higher
as compared to ON, the goodness of the fit (i.e., R> value) improves.

MOS =a-exp(b-OFF)+c-exp(d-ON)+e (7.29)

Total OFF duration and Average OFF probability

We have concluded in this section that as long as there is a video freeze during a video session
(via streaming via the local storage based on the particular settings used in this study), the user
perceived quality (quantified via MOS), is not different whether the content is skipped or not.
This indicates that energy saving during the video freeze is possible. Based on Fig.[T.24(d)} 0.2
is the maximum acceptable (MOS> 3) OFF probability in our video streaming experiments. If
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Figure 7.23: A set of metrics based on the ON state of the video streaming are given
with the corresponding MOS scores.
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Figure 7.24: A set of metrics are given with the corresponding MOS scores.

Table 7.22: Impact of ON and OFF states On the MOS

a b c d e R?
0.25 | -0.0006 | 0.75 | 7.62e-06 | 1.52 || 0.69
0.50 | -0.0006 | 0.50 | 9.02e-06 | 1.70 || 0.70
0.75 | -0.0006 | 0.25 | 1.18e-05 | 1.88 0.71
0.90 | -0.0006 | 0.10 | 1.61e-05 | 1.99 || 0.71
2.99 | -0.0005 | 1.33 | 1.57e-06 | -0.04 || 0.74

0.2 is substituted to the linear equation Eq.[7.30] (with R? = 0.95), the acceptable total freeze
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duration is calculated for a 3 minutes long video is roughly 40 seconds.

Tireeze = 208 - Popp — 1 [s] (7.30)

7.7.5 Energy Measurements

After the user [QoE] study, we conducted the energy measurements. The power consumption
during video stream is obtained via Monsoon power monitoring tool. Next, we calculated the
average energy consumption for each scenario by multiplying the mean power consumption with
the mean duration. The video duration is the time from when the video playback is started until
the time it has completed. Observe that there are no tail phases, thus there is no waste after the
video playback as the video is streamed from the local sdcard of the device. The initial phase
(time gap between when the play button is pressed and the first frame is displayed) can also
be neglected as the video starts immediately after the button is pressed. Here the goal is not
to provide generic models for energy consumption for local streaming but only to compare the
energy consumption differences amongst the three scenarios.

In Fig.[7.26] the power consumption (with respect to the time) obtained via three different
scenarios are given. The green line depicts the video session without any freeze, the red line
depicts the video session with a freeze without a content jump, and the blue line depicts the video
session with a freeze and when the content is skipped. Observe that the power consumption
is extended when there is a freeze without a jump, thus more energy consuming. The power
consumption values drop occasionally for the freeze scenarios as depicted with red and blue. We
conducted 14 video streaming runs (each involving freezes in exponential distributed manner).
We present the results from our energy measurements in three parts.

First, we visualize the smoothed power consumption values (via SMA with window size of
1500 ms) for all runs that involve occasional freezes. This helped to set the approximate thresh-
olds for the power consumption and the freeze duration to be used in prediction mechanism.
This way, we assure that the power consumption values can predict the duration of OFF events
in the video stream. We synchronized the power measurements collected via the Monsoon power
monitoring tool and the ON and OFF events captured by our video streaming tool. This is done
by considering the first highest peak of power consumption value in the energy data, and the
timestamp when the video is started as recorded by our video streaming tool. A snapshot of
power consumption and the detected OFF events (together with the freeze durations) are given
in Fig.[7.27] Based on the figure that visualizes the power consumption measurements and the
duration of the OFF events, we set thresholds in order to find out the accuracy of prediction.

The threshold for the OFF duration is as 1500 ms, as 1500 ms the window size that is being
used as an input to the window size of the[SMAl In other words, smaller thresholds might not
be visible at the smoothed data. A more detailed motivation on the choice of 1500ms is given in
Section[7.2.2] Table[7.13] Based on the 1500 ms threshold between the ON and the OFF state, we
intuitively selected 800 mW as the threshold as the correlation would look promising in Fig.[7.27]
In other words, the red and the blue horizontal lines are the threshold for the OFF duration and
the power consumption, respectively; and the red points above the red line and the blue power
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measurement values below the blue horizontal line are likely correlated. Thus, based on the two
threshold levels, true positive (TP), false positive (FP), true negative (TN) and the false negative
(FN) values are identified, and the corresponding confusion matrix is given in Table[7.23] We
calculated the precision, recall — also called as True Positive Rate (TPR) — and False Positive

Rate (EPR) in Eq. [7.33] respectively.
TP

Precision= ———— (7.31)

TP+ FP

TP
Recall=TPR= — (7.32)

TP+FN
FP
FPR=——— 7.33

FP+TN ( )

During a video stream, TP is detected when the power consumption is less than or equal to
800mW and the OFF duration is higher than or equal to 1500 ms; FP is detected when the
power consumption is less than or equal to 800 mW, and OFF duration is less than 1500 ms; FN
is detected when the power consumption is above 800 mW and the OFF duration is higher than or
equal to 1500 ms. TN is detected when the the power consumption is above 800 mW and the OFF
duration is below 1500 ms. In the calculation of accuracy, we have only considered the instances
where OFF values are recorded by our tool, i.e., when the OFF events are triggered. The results
(i.e., the confusion matrix, the number of samples, N, and the precision, True Positive Rate
(TPR) and False Positive Rate (FPR) values for each of the 14 runs (video sessions that involve
occasional freezes) are presented in Table[7.24] The summary statistics from those runs, i.e.,
the mean, standard deviation, minimum and maximum values of precision, recall (True Positive
Rate (TPR), and False Positive Rate (FPR) are summarized in Table As the calculated
precision (average 0.89) and the recall (average 0.97) values are acceptable, we consider the 800
mW as the boundary between an ON and OFF state. In other words, we considered that the
power consumption drops below 800 mW when there is a freeze event. If there is no freeze, i.e.,
a smooth playout, the power consumption value is considered to be higher than 800 mW. We
also did not consider the values above 1000 mW as these values (also seen via the CCDF plot
in Fig.[7.28(a)) belong to the high peaks generated at the beginning and at the end of each video
session. The separated datasets for the freeze (i.e., OFF) region and the smooth playout (i.e.,

ON) region are depicted Fig.[7.28(b) and Fig.[7.28(c)} respectively.

l H Power below 800 mW [ OFF duration above 1500 ms ‘
TP v v
FP v X
TN X X
FN X v

Table 7.23: Confusion matrix: description of TP, FP, TN, and FN.
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Run I, N =19 Power below 800mW Power above 800mW Precision Recall = TPR FPR
Freeze above 1500 ms 9 0 0.82 1 0
Freeze below 1500 ms 2 8

Run2, N =18
Freeze above 1500 ms 9 2 1 0.82 0.22
Freeze below 1500 ms 0 7

Run 3, N =26
Freeze above 1500 ms 20 0 0.95 1 0
Freeze below 1500 ms 1 5

Run 4, N =23
Freeze above 1500 ms 15 0 1 1 0
Freeze below 1500 ms 0 8

Run 5, N =25
Freeze above 1500 ms 12 0 0.8 1 0
Freeze below 1500 ms 3 10

Run 6, N =20
Freeze above 1500 ms 11 0 0.85 1 0
Freeze below 1500 ms 2 7

Run 7, N =23
Freeze above 1500 ms 14 0 1 1 0
Freeze below 1500 ms 0 9

Run 8, N =16
Freeze above 1500 ms 7 1 0.78 0.88 0.091
Freeze below 1500 ms 2 10

Run 9, N =22
Freeze above 1500 ms 8 0 1 1 0
Freeze below 1500 ms 0 14

Run 10, N =18
Freeze above 1500 ms 1 0 0.85 1 0
Freeze below 1500 ms 2 5

Run 11, N =23
Freeze above 1500 ms 13 0 0.81 1 0
Freeze below 1500 ms 3 7

Run 12, N =14
Freeze above 1500 ms 6 0 0.86 1 0
Freeze below 1500 ms 1 7

Run 13, N =23
Freeze above 1500 ms 10 0 0.91 1 0
Freeze below 1500 ms 1 12

Run 14, N =20
Freeze above 1500 ms 11 0 0.92 1 0
Freeze below 1500 ms 1 8

Table 7.24: Precision, Recall (TPR)), and values for prediction of OFF events by
the power consumption are depicted for each video experiment run.

Average | Std. | Min. | Max.
Precision 0.89 0.08 | 0.78 | 1.00
Recall (TPRI) 0.97 0.06 | 0.82 | 1.00
FPR 0.02 0.06 | 0.00 | 0.22

Table 7.25: Summary of accuracy values of 14 runs.
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7.7.6 Discussion on Energy Consumption and MOS

If Eq.[7.30} Eq. and Eq.[7.35] are substituted into Eq[7.36] (from Table[7.21), then Eq.
and Eq.[7.38] are obtained for the freeze with picture jump and the freeze without the picture

Jjump sceanarios, respectively. Accordingly, we present the exponential models between the
energy saving vs. MOS (first row in Fig[7.29), and the energy waste vs. MOS (second row in
Fig[7.29), for the freeze with picture skipping and the freeze without picture skipping scenarios,
respectively.

Esaving

Threere = (7.34)

freeze Psaving

Ewac

Tfreeze = PLM (735)

waste
MOS = 4.67¢ 338 Pore (7.36)
MOS = 4.67-exp(—3.38 (((Ewaste/J/0.185) + 1) /208)) (1.37)
MOS = 4.67 -exp(—3.38 - (((Ewaste/J/0.728) + 1) /208)) (7.38)

In the case of the video streaming scenario with picture freeze and with the picture jump, we as-
sume an average power drop 185.1 mW (i.e., the power consumption is dropping from 909.9 mW
to 728.7mW) during a picture freeze. The maximum achieved energy saving is 5J which cor-
responds to a[MOS] value of 3. A further increase in the energy saving causes drop in the [MOS]
value.

In the case of the video streaming scenario with the picture freeze and without the picture
jump, we assume that the power drops to 728.7 mW. During the picture freeze, the power con-
sumption value stays at this power level, thus there is corresponding waste. This shows that a
freeze reduces the[MOS]value and in parallel increases the energy consumption. The total energy
waste is linearly increasing with the duration of the freeze, and exponentially reducing the[MOS]
value.

The models between energy and the are also non-linear as the ones presented in Sec-
tion[7.6.2] although the achieved energy values per[MOS]are slightly different. The reasons for
this are as follows. The [QoE|models obtained from our recent study is based on the smartphone
with particular experiment settings (e.g., three minutes long video with exponentially distributed
freeze durations). The models obtained in Section[7.6.2] are based on the models obtained
by the authors in [116]. Those models are obtained via video session lengths of 30s long in-
volving deterministic freeze durations and counts. The second reason is that in Section[7.6.2} we
assumed that the power consumption drops by 250 mW during a picture freeze. In our recent
measurements with local streaming, we measured the power drop as 185 mW.

The calculated energy saving is relatively very small as compared to other potential energy
savings in the communication system, e.g., at the base stations. The energy saving would scale up
to much higher values given that more and more users watch videos on smartphones everyday
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with longer durations, and the number of smartphones has already reached more than a few
billion. Thus, the total energy saving during video streaming would scale up in total to gigajoules.

Average [mW] | Std. [mW] | Median [mW] N
OFF phase 728.7 40.4 724.8 3854892
ON phase 909.9 38.3 909.2 12053435

Table 7.26: Summary statistics for power consumption at ON and OFF phases.

7.8 Limitations

The experiments are conducted via particular streaming and downloading apps, which we devel-
oped, on particular smartphones that we have in our lab. It might be necessary to study the energy
consumption on other similar network-based real-time multimedia applications, e.g., implemen-
tations via Google’s WebRTC, Skype, or audio streaming apps such as Spotify, Internet radio. In
addition, more iterations of the experiments could yield more robust results. In calculating the
energy consumption, we assumed a static power consumption for all file sizes. The results pre-
sented are specific to the experiment settings including, e.g., particular SIM card from a popular
telecom operator with 6 Mbps highest peak download rate, and particular video sequences.

The presented energy measurements are based on average power consumption values ob-
tained from many iterations on particular smartphones and phone settings. It is necessary to
state that we do not provide generic energy consumption values, but instead we compare a set of
scenarios with the same experimental setting in order to identify differences in between different
scenarios and to recommend directions for energy saving.

7.9 Summary

In this section, we have presented extensive energy measurements for video application on smart-
phone, and then addressed the relationship between the energy consumption and[QoE] We com-
pare a set of scenarios such as real time video streaming and local streaming (i.e., streaming
a pre-downloaded video through the local storage). Next, we presented that the anomalies of
smartphone power consumption can reveal anomalies ( e.g., freezes) at the user interface for a
steady-state video stream. This enables the future enhancement of tools that assess the
IQoE]in a non-intrusive and energy efficient manner. Consequently, we present outcome of fur-
ther download duration and energy measurements during file downloading, and suggest energy-
efficient download mechanisms and power models via the 3G interface of smartphone. We stated
that downloading multiple files (e.g., multimedia podcasts) independently on smartphone is not
energy efficient, and thus we recommend downloading them in a scheduled manner. However,
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the choice of scheduling must also be chosen carefully to avoid congestion or under utilization of
the available link throughput. Based on our results on a use case, if there are multiple large-size
files (e.g., 10 MB each), scheduling the downloads in parallel is not recommended as both the
average processing time and the total energy consumption are statistically significantly higher as
compared to the sequential downloading scenario. In contrast, if there are multiple rather small-
size files (e.g., 10KB each), then scheduling the downloads in serial is not recommended as both
the average processing time and the energy consumption are statistically significantly higher as
compared to the concurrent downloading scenario. Lastly, we discuss the freezes during real-
time video stream with respect to the energy and the In between the energy consumption
and the we evaluated the tradeoff (when there is a picture jump) and the win-win (when
there is no picture jump) cases. Based on the presented use case, we concluded that 5J energy
saving per a 3 minutes long video session can be achieved during real-time video streaming in a
with-jump scenario while keeping the [MOS]ratings greater than or equal to 3. Although the sav-
ing is low per a short video clip, small savings might be critical in “low battery” level context,
and minimize battery consumption during an important video stream. In addition, the saving
would scale up to gigajoules in overall as the mobile-based video streaming has exponential
growth over the years. Additionally, we showed the energy waste if the same video is streamed
via the without-jump approach, which in parallel influences negatively the [MOS] values. Thus,
during a without-jump video streaming as in TCP-based stream, the more the freezes the higher
the energy waste and the less the [MOS]level. Thus, the ultimate aim is to avoid freezes, which
can be accomplished via careful adaptation of the video resource consumption to the capabilities
of the communication systems.

Yet, we have studied the energy consumption of an interactive smartphone application, video
streaming. In the next chapter, we study the energy consumption when the smartphone is not
actively used by user, e.g., when the smartphone screen is OFF.
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Figure 7.25: Average ON and OFF states vs MOS
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Figure 7.26: Snapshot of a power consumption data for the three scenarios (W = 7500).
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Chapter 8

Energy Saving When the User is
Not Interactive

“I have no special talent. I am only passionately curious.” —Albert Einstein.

8.1 Introduction

Mobile network traffic grows exponentially, and this increases the overall energy con-
sumption including the radio access networks and the mobile terminals such as the
smartphones [[189]. In Chapter 3, the battery life of smartphones is concluded to be
one of the most influential factors on the end-user perceived quality. Radio Network
Controller (RNC) controls the network resources to efficiently manage the spectrum
and to extend battery life, in such a way that while the smartphone is connected to Inter-
net via the cellular data interface, power consumption varies depending on[RRCl power
states such as IDLE, or [95]]. However, the frequent and asyn-
chronous network activities from different apps cause 3G data module of smartphone
to oscillate in-between different power-consuming states. During the oscillations, there
is demotion latency, e.g., caused by state timers, and also promotion latency, e.g., due
to channel re-allocation. In parallel, there is excessive energy being consumed, which
is considered as wasted. Therefore, it is important to minimize the number of transi-
tions in-between power states, and to perform the data traffic in bursts whenever
applicable. One way to minimize state transitions is by prolonging RRCfs IDLE state.
Controlling[RRC power states on smartphones is not feasible as the promotions and de-
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motions depend on the application’s network characteristics, device configuration, net-
work settings, and particular operator configuration at Radio Access Network (RAN).
However, it is practical to control the state of the 3G cellular data module. When the
3G module is switched OFF for long enough and then when data module is switched
ON later point in time, network-based applications fetch the updates and present them
to the user in bursts (all at once). Therefore, the ‘cost’ of bursty traffic is the latency in
the data transmission (e.g., incoming messages and notifications), and it might eventu-
ally impact the end-user perceived quality, i.e., Thus, the produced drawback of
energy saving approaches should be evaluated throughout user studies involving real
users.

There has been numerous approaches to prevent power waste caused by the charac-
teristic of the[RRCof the 3G cellular module on terminals. A comprehensive literature
study has been presented in Chapter[2] Sections[2.10.6}2.10.9] Most of them are ei-
ther sophisticated or hard to deploy on the smartphones found in the market as they
might require special permission or specific configuration. We propose a rather sim-
ple “sledgehammer” algorithm to improve energy efficiency on smartphones when the
screen is at OFF state. The strength of our algorithm is that it is highly user-centric,
and we aim to maximize the smartphone energy saving when the screen is OFF without
degrading user perceived quality.

The contribution of this chapter can then be presented in three parts. Firstly, we
conduct three user studies with 43 users first in order to understand the user behaviour
on smartphone. This is done through the logging phase, while users are using their
own smartphones in daily life, while we log the screen events, network usage, charg-
ing attempts, as well as the running applications. We obtain and compare different
mathematical models for the duration of the smartphone’s screen states. Secondly,
we present the NyxEnergySaver tool, conduct energy measurements, and confer the
amount of energy saving when the screen is OFF (screenOFF) with different data state
durations (e.g., data module is ON or OFF). Toggling the data module might impact
the user-perceived quality of the smartphone. Thus, thirdly, we conduct further user
studies during the experimental phase (also called intervention phase), with the same
participants in the logging phase, and study the impact of NyxEnergySaver tool on the
user perceived quality.

This chapter is organized as follows. The identified metrics and the data collection
are presented in Section[8.2] The method and the results for the logging phase, are
given in Section[8.3] The details of NyxEnergySaver tool together with its validation
are described in Section[8.4] The method and the results for the experimental phase,
which users install the NyxEnergySaver on their smartphones, are given in Section[8.3]
The main contributions are summarized in Section[8.61 The discussion on the results
are presented together with a set of limitations in Section[8.7} The paper is concluded
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and future directions are outlined in Section[8.8]

8.2 Metrics and Data Collection

The measured metrics and the data collection methods employed in three user studies
are presented in this section. User consent is obtained from each volunteered user be-
fore the studies. The studies comprise automatic data logging on the user smartphones
via a logger tool and user interviews. We collected the user demographics such as user
occupation, age, gender, and the phone type. The logger tool autonomously collected
data from the user’s smartphones during daily life usage. The logger tool was kept run-
ning continuously as a background application on the user’s smartphones during the
study period. The collected metrics via the logger tool are as follows.

8.2.1 Screen State Metrics

The screen state comprises of two states, either screen is ON (screenON) or screen
is OFF (screenOFF). During the user studies, the screen state events are recorded to
guide on how to reduce energy consumption with the awareness of the user interaction
with the screen. Predicting the screenOFF duration, may help to reduce the energy
consumption without degrading the user experience.

The timestamp of 7’th screen state, s, is represented by 7;°, where s € {screenON,
screenOFF}. The screenOFF duration is calculated in Eq. as the time difference
between the timestamp of the OFF-to-ON transition, 7;°"¢"ON " and the timestamp of
the previous ON-to-OFF transition, 7;_ sereenOFF The screenON duration is calculated
in Eq.[8.2] as the time difference between the timestamp of the ON-to-OFF transition,
T;5eenOFE “and the timestamp of the previous OFF-to-ON transition, 7;_;5creenON,

ATiscreenOFF — TiscreenON ~T screenOFF [ms] 8.1)

ATiscreenON — TiscreenOFF — T screenON [ms] (8.2)

We calculated the hour of the day (HOD) of each screen-based user interaction.
The timestamp is floored to the corresponding HOD, i.e., hh:mm is recorded as hh,
where & stands for the hour, and m stands for the minute. In addition, the number of
interactions per hour (IPH) is calculated for each user as the total number of detected
screenON events divided by the logging phase duration.
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8.2.2 Network Metrics

We recorded the wireless technology, which the smartphone is connected to the Inter-
net, upon a detection of screen state change event, amongst a widespread cellular access
technologies and WiFi. This way, we collected information regarding which wireless
technology is active during the interaction. It should also be noted that, in all mea-
surements, only one network interface is active at a time. For simplicity, based on the
background knowledge, we categorized [EDGEl and [GPRSl as 2G; [UMTS] [HSPAL High
Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access
as 3G; and[CTE as 4G. In addition, we recorded the cellular data state, i.e., ON or OFF,
upon screen change during the experimental phase.

8.2.3 Other Collected Data

During the logging phase, we have also collected data regarding the charging events on
users’ smartphones. The charging events are collected when smartphone is plugged or
unplugged to/from the power source (AC or USB).

We studied the background applications(based on names and keywords) during the
logging phase of Study 2 and 3. We filtered out the dominant names, which do not iden-
tify applications such as the wireless network interface name, clock, server, Android,
and the phone brand name.

8.2.4 In-lab Energy Measurements

In order to quantify the energy saving achieved via NyxEnergySaver, we conducted
benchmark energy measurements in the lab. The Monsoon power monitoring tool
[170] is well accepted by the research community as it can provide accurate high res-
olution (5 kHz) power measurements, i.e., one power measurement (P;) sample every
200us on the smartphone. We conducted energy measurements, while the Monsoon
power monitoring device is intercepting the battery terminal of the smartphone. We
installed NyxEnergySaver with various dataON and dataOFF settings, and then con-
ducted energy measurements for each setting in order to study the energy savings pro-
vided by NyxEnergySaver. 1s/200us = 5000 samples, are averaged within every sec-
ond, and the average P values are obtained. Next, energy consumption E7, during
screenOFF duration 7, is calculated as the sum of per-second mean power values P;,
multiplied by the unit second as shown in Eq.[8.3]

P, [W]-1[s] (8.3)

gl

Er[J]=

t=1
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8.2.5 User Studies

| Phases [ Study 1 | Study2 | Study 3|
l Logging H v [ v [ v ‘
Experimental X v v
NyxEnergySaver X 1 min dataON Personalized
Configuration in every 30 min

Table 8.1: User study phases and NyxEnergySaver configuration

We performed three different user studies in order to collect information on user be-
haviour on smartphones. All three studies comprise the initial logging phase, in which
we collected data autonomously, as described in Section[8.2] on the users” smartphones
during their daily life. Study 2 and Study 3, in addition to the logging phase, consist
of an extra experimental phase, in which NyxEnergySaver is installed on users’ smart-
phones and user feedback is obtained. Table[8.1] summarizes the phases in all user
studies. The last row depicts the configuration during screenOFF in each study. There
was no experimental phase in Study 1.

First, the data obtained from three user studies is presented in this section. The
subject ID, the logging phase duration, and experimental phase duration (for Study 2
and 3) are given in columns 1 — 3 in Table[8.2] Demographics (gender, age, occupation,
phone type) of each participant in three studies are given in columns 4 — 7. In total,
there were 43 subjects (12 female, 31 males), with various occupations, at different
ages (within the range 18 —45), and using various smartphone brands. The average
logging phase durations were 27 days, 4 days, and 22 days, for Study 1, 2, and 3,
respectively. The average experimental phase durations were 2 days, 13 days, for Study
2 and 3, respectively.

8.3 Logging Phase

8.3.1 Method

The first user study (Study 1) is conducted in 2011 with the participation of 29 users
located in the US [[67]]. Study 2 is conducted in May 2013 with the participation of
5 users located in two countries such as Sweden and Turkey [[196]]. Study 3 is the
extended version of Study 2, and is conducted in Fall 2013 with the participation of 9
users, located in three countries, i.e., Canada, Sweden, and Turkey. The collected data
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consists of the screen state, network state, battery charging events, and the running ap-
plications. In addition to the autonomous logging on user smartphones, demographics
on each user is collected via online survey, and qualitative data is collected via user
interviews.

8.3.2 Overview of the Results

We first present the results regarding the screen events that were collected during the
logging phase. Then, we present and compare different mathematical models on the
user smartphone interaction. We discuss the wireless access technologies being used,
and how the usage has been influenced by the data plan. We present the used appli-
cations on the smartphone during the logging phase of Study 2 and 3. In addition, we
present the battery charging patterns of the users in Study 2 and 3.

Modeling Screen States

We first extract each user’s smartphone screen durations for screenON and screenOFF
states that were collected in the logging phase. We have identified a rather high di-
vergence in the screen-based user smartphone interactions as presented in a boxplot
in Fig.[B.I] The rectangular box is located in between the first (25%) and the third
(75 %) quartiles of the data, while the horizontal line inside the box depicts the me-
dian. The median number of interactions during night hours (i.e., 1 AM—5AM) is
less than the ones during the day. There are users with a high number of interactions
around midnight, e.g., $39. We know from the interview that this user keeps chat-
ting with friends during night hours. Fig.[8.2] depicts the number of interactions per
hour (IPH) for each user. IPH is varying from one user to another (S35 was the least
interactive with 0.4 interactions per hour, S9 was the most interactive with 7.2 interac-
tions per hour). S9 has occasional interactions during the day and also in the evening
(i.e., between hours 6 AM—12 PM). The mean screenON and screenOFF durations are
calculated for each user, as given in columns 8 —9 in Table Overall, the mean
screenON and screenOFF durations are 4 (+1.4) min and 20 (£6.9) min, respectively
(with the 95 % confidence level). The total number of screen change events (sum of
screenON and screenOFF) are given in the last column of Table[8.2]

We have spotted a few extreme values with the subjects and confirmed these values
with the users via interviews. S22 and S35 have mean screenOFF durations, 40.6 min
and 158.6 min, respectively as upper outlier users. S22 switches OFF the smartphone
during night, and this applies to all weekdays. The phone was turned ON in-between
hours 8 AM and 1 PM during the day. For S35, 4.38 % of the screenOFF data is greater
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STUDY 1

S Log. Exp. Gen- Age Occupation Phone Mean Mean #of
Phase Phase der Type screenON screenOFF Screen
(days) (days) (M/F) (minute) (minute) Events
1 32 - M 18-24 Cust. Service Samsung Captivate 4.1 11.5 3847
2 28 - M 25-35 Company Motorola Droid 2.5 11.4 5762
3 28 - M 25-35 Driver MyTouch 4G 4.1 12.6 4014
4 33 - F 18-24 Researcher HTC Incredible 0.8 17.1 4548
5 28 - F 25-35 Edu. Admin G2 1.0 8.3 8374
6 28 - F 25-35 ICT Consultant Motorola Droid X 1.8 19.1 3866
7 24 - M 25-35 Web developer Motorola Droid 7.5 12.8 3777
8 28 - F 25-35 Medical Admin Motorola Droid 1.7 23.4 2983
9 28 - F 25-35 Nanny HTC incredible 1.6 5.8 9253
10 8 - F 25-35 Unemployed Samsung G. S 3.4 14.1 1249
11 28 - M 36-45 Unemployed HTC Evo 14.2 25.8 2012
12 28 - M 25-35 Univ. Mngt. Motorola Droid 2.4 21.2 2875
13 28 - M 25-35 Contractor Motorola Droid X 23 11.2 3485
14 28 - M 25-35 Acc. Coord. Motorola Droid 1.9 18.9 3323
15 28 - F 25-35 Oper. Analyst Motorola Droid X 11.5 13.7 2970
16 23 - M 36-45 System Analyst Motorola Droid 9.5 15.7 2098
17 28 - M 25-35 ICT consultant HTC EVO 3.0 14.0 4456
18 28 - M 25-35 Teacher Motorola Droid 26.8 10.2 1962
19 29 - F 25-35 Admin assistant HTC Evo 0.6 10.1 7140
20 28 - M 25-35 Univ. student Motorola Droid 1.2 11.3 5803
21 28 - M 25-35 Grant admin HTC Incredible 32 9.4 7673
22 28 - M 25-35 Univ. student Motorola Droid 2 3.7 40.6 1683
23 28 - M 25-35 Systems analyst Htc Evo (WIMAX) 1.6 28.7 2622
24 28 - F 18-24 Univ. student Motorola Droid 2 1.0 12.6 5363
25 28 - M 25-35 Senior admin Motorola Droid 3.8 17.0 3339
26 29 - M 25-35 Univ. student Motorola Droid X 1.9 9.3 6209
27 27 - M 36-45 Paramedic Motorola Droid 11.3 13.0 2593
28 28 F 36-45 Housewife Motorola Droid X 23 22.7 3028
29 2 - M 25-35 Nurse Samsung Captivate 4.3 12.0 3661
STUDY
30 5 3 M 25-35 Researcher Samsung Note 2 2.7 22 558
31 5 3 M 25-35 Unemployed Samsung G. S3 3.0 7.7 1311
32 2 2 M 25-35 Univ. Student Sony Xperia Droid 23 10.5 468
33 5 1 M 25-35 Univ. Student Samsung G. S3 5.1 32 353
34 3 1 F 25-35 Researcher Samsung G. S3 1.5 7.9 782
STUDY 3
35 32 11 M 25-35 Researcher Sony Xperia 3.4 158.6 548
36 24 6 M 25-35 Unemployed Samsung G. S2 3.8 26.2 1691
37 36 8 M 25-35 Univ. student Samsung G. S3 3.0 37.0 3317
38 33 24 M 25-35 Engineer Samsung G. Ace 2 1.0 16.1 5386
39 14 22 M 25-35 Engineer Samsung G. S4 1.25 19.7 1925
30 27 , M Univ. student Sony Xperia 2.0 7.9 3725
41 13 6 M Engineer LG Optimus GPro3 1.9 6.9 4115
42 15 19 M Researcher Samsung G. Note 2.1 34.8 1002
43 6 F Univ. student Vivo Y19t 1.2 252 657

Table 8.2: Study 1, 2, 3: User profiles and mean screen state durations (in the logging
phase) are depicted.
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Figure 8.1: Study 1, 2, 3: Number of screenON events based on hour of the day, for all
users.

than 15 hours. From the interview, we confirm that S35 used the phone only for call-
ing related to work. This means that the smartphone screen was ON only during the
phone calls, therefore the number of interactions is limited to the incoming or outgo-
ing calls. S§7, S11, S15, S16, S18, and S27 are spotted as outlier users based on the
mean screenON durations. In S18’s screenON data, 2.30 % of the screenON durations
are greater than 7 hours. Also, this user has the highest mean screenON duration,
26.8 min. From the interview, we know that S18 is a sports trainer, and switches OFF
the smartphone during the trainings. We studied the reasons for this further; S18’s
smartphone was switched OFF during weekends. We have observed from the collected
data that the smartphone was switched ON at noon and this applies for different week-
days, too. Improper shutdowns caused the screenOFF timestamps not being recorded
by our logger tool, which reduced the granularity of the data for that particular user.
We did not identify any error in the remaining users’ data. Nevertheless, overall, we
interpret that the outliers are due to diverse user behaviour, which represents the realis-
tic environment. Thus, in our analysis, we include all the collected data throughout the
user studies.

For each user study, we study three interaction models, i.e., fit the screen durations
into Weibull, Exponential, and Pareto distributions, as previously given by Eq.[2.8}{2.10]
in Chapter[2] We calculated the corresponding parameters along with the coefficient of
determination (R?) values for each model. The models for the screenOFF durations for
the three user studies are given in Fig.[8.3(@)}8.3(c)| respectively. Similarly, the models
for the screenON durations are given in Fig.[8.3(d)}{8.3(F)] Just by looking at the CCDF
plots that are presented with the log(x) and log(y) axes, high tails are visible, which can
also be modeled with Pareto. In order to compare the overall fit amongst the models,
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Figure 8.2: Study 1, 2, 3: Number of screenON events per hour (per subject)

the corresponding R? values are given together with the parameters and number of data
points in Table[8.3] The rows 3 to 6 correspond to screenOFF modeling in Study 1,
Study 2, Study 3, and for all studies, respectively. The last four rows are the models for
the screenON duration. Amongst the three models, the best-fitted one is the Weibull
distribution with an overall R? value of 0.99 with a values less than 1. This means that
the longer the screen has stayed OFF, the more probable that it will stay OFF. The result
is similar to the ones presented in [276]. The R? values for the exponential distribution
are considerably high (minimum 0.90), but it does not represent the long screen state
durations as good as Weibull, i.e., it decays faster than Weibull. However, we consider
it suitable enough to model the screen interaction as a two-state exponential model
with mean screenON and screenOFF durations of 4 (+1.4) min and 20 (£6.9) min,
respectively.
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T State 11 Stupy ] Samples || PARETO 11 WEIBULL 11 EXPONENTIAL ||
I Il Il [« b | b ® [ » ®_]]
screenOFF Study 1 59770 0.17 0.41 0.77 0.51 0.19 0.99 0.15 0.79
screenOFF Study 2 3219 0.03 0.19 0.84 0.47 0.18 0.99 0.24 0.82
screenOFF Study 3 9702 0.02 0.17 0.84 0.44 0.18 0.99 0.25 0.78
screenOFF All Studies 72691 0.03 0.20 0.80 0.51 0.18 0.99 0.22 091
screenON Study 1 60199 0.05 0.52 0.83 0.51 1.31 0.98 1.05 0.85
screenON Study 2 1735 0.03 0.27 0.87 0.65 1.05 0.99 1.26 0.93
screenON Study 3 11176 0.02 0.28 0.86 0.67 1.7 0.99 1.92 0.94
screenON All Studies 73110 0.02 0.3 0.88 0.64 1.32 0.99 1.6 0.94

Table 8.3: Model coefficients based on screen state durations for all studies

Network Data Usage v.s. Cellular Data Plan

The study on the network data usage for each user is important in order to choose the
target users for the potential energy saving solution, NyxEnergySaver. First, the data
usage with respect to WiFi and cellular is presented in Fig.[8.4(a)] S31, $36, $39, and
540 used WiFi more than 50 % of the time. $38 never used WiFi, and he had unlimited
cellular data access. S39 stated the reason for switching to WiFi as to prevent using up
from his monthly data limit. S40 had a limited 3G data plan in the beginning of the
study, then he reported that he cancelled it as he thinks that it is “worthless”. S41 and
$42 used WiFi very seldom (less than 20 % of the time). This is due to the fact that the
cellular data is paid by the employer, and there is no restriction in the amount of data
usage. S43 did not have 3G data plan, as the user thought that it was expensive. WiFi
usage was also studied with respect to the users’ cellular data plan. CCDF plots of the
WiFi usage for limited and unlimited cellular data plans for all users in three studies are
presented in Fig.[8.4(b)] The users with limited cellular data plan had a tendency to use
WiFi access, as expected. Limited cellular data usage helps to decrease the network
traffic in 3G networks [[88]]. As WiFi is less power-consuming than any cellular data
interface, the energy consumption can also be reduced in this way [185].

In addition, for Study 2 and 3, the percentage of the data usage based on different
cellular wireless access technologies are presented in Fig.[8.4(c)] Amongst the cellular
wireless access technologies, except for S40 and S43, more than 90 % of the time all
users are connected to Internet via 3G or 4G. $39 was the only subject using 4G [LTE
(located in Canada) 94 % of the time. S40 had a 3G data plan during the logging phase,
but he claimed that he was not using it much. 5§43 only used 2G amongst the cellular
data access technologies, as this user did not have 3G or 4G data plan.

Charging Patterns

We studied the charging patterns of the users in Study 2 and Study 3. plot of
the HOD of detected charging events for each user are given in Fig.[8.3] $32 and $34
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Figure 8.5: Study 2, 3: Charging attempts based on HOD

were the users who did not charge the phone much during the day (TAM—7PM). S41
charged the phone during afternoon and evening, i.e., in between 3PM—11PM. It is
observed that the remaining 11 users charged their smartphones occasionally, and the
charging hours are spread over the whole day, i.e., 24 hours. The results of the charging
study indicates that the majority of the smartphone users in this study were accustomed
to the limitation of battery life, craving for charging opportunities during the day, and
thus they can be classified as opportunistic chargers.

Running Applications

The number of occurrences of the applications (represented by keywords) are given in
Fig.[8.6] Some mostly used popular applications were Facebook, Maps, Email, What-
sapp, Talk, Viber, Twitter, and Dropbox in a descending order. Amongst the users, only
one user, S30, occasionally used Internet radio. This app can also be used, e.g., stream-
ing audio packets, when the screen is OFF. Overall, the top three application categories,
used during interaction, were communications (Email, Whatsapp, Talk, Viber, Tencent,
Skype, Handcent), social networking (Facebook, Instagram, Twitter, Linkedin, Social-
hub, Socialbook, Smartshare), and travel (Maps, Google, location services) with 37 %,
36 %, 11 %, respectively.
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Figure 8.6: Study 2, 3: Applications used in the logging phase

8.4 NyxEnergySaver Tool

8.4.1 Tool Description

The goal of this research is to minimize the energy consumption during screenOFF
without impacting user-perceived quality. Therefore, we developed an Android OS
based smartphone tool, NyxEnergySaver, which controls the cellular data module
of the smartphone. It switches OFF the cellular data module when the smartphone
screen is switched OFF, and switches it ON when the screen is switched ON. During
screenOFF, the data module is switched ON and OFF based on the cellular data mod-
ule’s configured ON and OFF durations. This way, the data transmission to and from
smartphone is delayed during the dataOFF interval, and is performed in bursts when the
data module is ON later. If the WiFi is the active interface and Internet-reachable, the
tool does not affect the connectivity; it only affects the available 3G or 4G connectivity
if the WiFi is unavailable or disabled. The reason is the following. If a smartphone
is in the reach of a known accessible WiFi hotspot, e.g., at home, it should not switch
on cellular data module, upon screenON, as the preferred connectivity is WiFi. The
functional flow of NyxEnergySaver is given in Alg.[3]

8.4.2 Validation of NyxEnergySaver

The validation of the tool is done with three different smartphones at a stationary po-
sition during screenOFF, i.e., without user interaction. Components such as vibration
and audio are switched OFF in order to minimize the influence on the power mea-
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Algorithm 3: Functional Flow of NyxEnergySaver

Assuming that the tool is installed while screen is ON.
while SmartphonelsRunning and WiFilsDisabled. do
Listen to screen change trigger and update screenONTriggered,
Listen to 3G/4G data change trigger and update dataOFFTriggered,
if screenOF FTriggered then

screenOFF = TRUE;

Switch OFF 3G/4G data module;

if screenONTriggered then
screenOFF = FALSE;
| Switch ON 3G/4G data module;

if dataOFFTriggered then
if screenOFF then
L Schedule to switch ON 3G/4G data module after Topp minutes;

if dataONTriggered then
if screenOFF then
L Schedule to switch OFF 3G/4G data module after 7on minutes;

surements. The experiments on different smartphones are conducted consecutively,
because we used the same SIM card. The Samsung Galaxy S is rooted (1 GHz CPU
running Android v.4.2.2, kernel v.3.0) that operated in 3G, the Samsung Galaxy S4
is non-rooted (1.9 GHz CPU running Android v.4.3, kernel v.3.4) that operated on 3G
or 4G, based on the manual configuration. Another non-rooted smartphone ZTE T40
(1.2 GHz CPU running Android v.4.1.2, kernel v.3.4) is used in the experiments as the
third phone type that operated on 3G. During the experiments, 3G data was
and the 4G data was [CTEl Popular network-based applications such as Twitter, Face-
book, GMail, GTalk, and WhatsApp were installed on the smartphones with the same
user accounts in all phones. We used one smartphone at a time in each experiment. The
amount of network usage highly depends on the number of connections with other ac-
counts, e.g., number of followed accounts on Twitter, number of friends on Facebook,
and the activity level of the accounts. During the experiments, a Twitter account was
following 400 other accounts, and a Facebook account had 520 friends, which can be
considered as realistic.
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Phone Type | Mean [min] | Minimum [min] | Maximum [min] | Std. Deviation [min] | Std. Error (SE) ]
ToFF ToN ToFF ToN ToFE ToN ToFF ToN ToFF ToN
ZTE T40 (3G) 5.105 1.091 5.100 1.082 5111 1.120 0.003 0.006 0.001 0.001
Samsung S (3G) 5.098 1102 5.094 1.087 5.108 1132 0.003 0.009 0.001 0.002
Samsung S4 (3G) 5.070 1.035 5.061 1.030 5.097 1.046 0.011 0.003 0.002 0.001
Samsung 54 (4G) 5.029 1.024 5.023 1115 5.036 1.016 0.003 0.016 0.001 0.003

Table 8.4: Validation of NyxEnergySaver mean dataON and dataOFF durations for
nominal 5 min OFF, and 1 min ON. More than 30 data points (more than 3 hours) are
collected for each experiment.

Data State Durations

The delays during state transitions in-between dataON to dataOFF states, i.e., between
the [DCH] and the IDLE modes of the cellular data module, can increase the nominal
dataON and dataOFF durations. Since the transition delays might vary with the device
hardware, we validated the functional flow of NyxEnergySaver on the aforementioned
three different phone types. The results are presented in Table[8.4] For testing purposes
in the lab, we have set the nominal dataON and dataOFF durations to Tony = 1 min and
Torr = 5 min, respectively. The experiment is iterated multiple times to minimize the
error in-between the mean of the measured values and the nominal values, i.e., less
than or equal to 2.1%. The Standard Error (SE) of the sample mean is calculated as
the standard deviation of the sample data divided by the square root of the number
of the samples. With validation, we also make sure that the standard error (SE) of
the measured mean, i.e., percentage of the standard error w.r.t. to the mean, dataON
and mean dataOFF durations do not exceed 1 % as given in the last two columns of
Table[R.4

Data Traffic Patterns

We studied the data activities on the Samsung Galaxy S4 smartphone in multiple sce-
narios: (i) the received data traffic while the NyxEnergySaver is not running in multiple
time scales (1 min, 2 min, 4 min, 10 min, 15 min), and (ii) the received data traffic while
the NyxEnergySaver is running with 1 minute dataON in every 16 minutes, respec-
tively. We developed a separate smartphone logger app in order to record the amount
of received data and installed it on the Samsung Galaxy S4. We collected 2370 data
points, and studied the received data at pragmatically selected timescales, i.e., 1 min,
2 min, Smin, 10 min, and 15 min. For example, for 1 minute timescale, we calculated
the received data (Bytes) during every 1 minute time interval. As a baseline, in Fig.[8.7]
the data volumes are presented with curves, from bottom to second from top,
within 1 min, 2 min, 5 min, 10 min, and 15 min timescales. Obviously, there exists a
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Figure 8.7: Received data at different timescales (Samsung Galaxy S4)

large volume of data activities when NyxEnergySaver is not running. Within 1 min
timescale (see bottom-most curve), the mean is 1.6 KB with a relative standard error of
the mean of 13 %. For the use case when NyxEnergySaver is running, we recorded the
received data via the logger at two points in the process: one measurement immedi-
ately after the data module is switched ON, and one measurement just before the data
module is switched OFF. When NyxEnergySaver is running with 15 min dataOFF and
1 min dataON, the data volume during the 1 min dataON (see topmost curve) is given
in Fig. In this case, there exists a rather large-sized data volume, i.e., minimum
10 KB, during the 1 min dataON durations. The mean is 40.6 KB with a relative stan-
dard error of the mean 11%. We confer that the volume of data activities within one
minute time intervals is increased (such as the topmost curve) via NyxEnerySaver, by
delaying the more frequent small sized data activities (such as the bottom-most curve).
The choice of 15 min dataOFF is motivated further in Section[§8.4.2]

Preliminary Power Measurements

We investigate the energy consumption during web page download for a set of website
URL’s. The test software is instructed to send GET messages to popular website URL’s
and then downloads the contents of the websites: cnn.com (news); (ii) bbc.com (news);
(iii) slashdot.org (RSS feed); (iv) cvs.com (retail). The test software records the total
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Figure 8.8: Power consumption patterns for a set of applications in Samsung Galaxy
S. The black solid line shows the approximate trend [[196].

amount of download time and records the power consumption similar to the
ping experiments. We repeated these experiments in the lab every 45 seconds, i.e., a
time period so that the radio module is switched completely to the IDLE state, before
the next network activity starts. In total, a minimum of 35 iterations with 45 seconds
time gap were conducted and each iteration consisted of more than eight million power
data points as the power metric is recorded at a sample rate of 5 kHz. The plots
for the power consumption for the mentioned experiments are depicted in Fig.[8.8] We
classified the three energy states intuitively and showed the corresponding approximate
trend per state with a black solid line.

Baseline Energy Saving

The baseline energy saving is evaluated for two different phones: Samsung Galaxy S
and Samsung Galaxy S4.

Samsung Galaxy S: We launched a set of cloud-based applications such as Face-
book, Twitter, LinkedIn, Instagram, GMail, GTalk, Google Services, WhatsApp from
a dedicated user application account. We also launched one highly popular Swedish
news application (AftonBladet [226]) that also has polling functionality. During the
execution of the app, the NyxEnergySaver’s extra power consumption characteristics
are investigated as well. For the verification of power consumption of NyxEnergySaver,
we conducted a set of ground truth energy measurements in the lab with different sce-
narios via during the screen-OFF state: (1) Tpaaorr = 3 min; (2) Tpaworr =

202



9min; (3) Tpaworr = 14 min; (4) Tpaworr = 19 min; (5) Tpaorr = 29 min; (6) OFF,
TpataOFF = TscreenOFF, i-e., data-disabled period is equal to the screen-OFF period as
parameterized by user; (7) NoToggling, i.e., with NyxEnergySaver but without toggling
cellular data interface; (8) w/o NyxEnergySaver, i.e., without listening on sensors, with-
out writing metrics to the smartphone’s local storage, and without toggling cellular data
interface to obtain the base-line power consumption. We collected samples for the eight
different scenarios to such extent that each scenario has a Standard Error (SE) of the
mean values less than 1%. The [CCDH plots are presented together with the Standard
Errors for each scenario in Fig. In addition, we calculate the gain factors for each

T8

8 —without the tool (SE = 0.05)

(&] ---with the tool : NoToggling. (SE = 0.07) L

10,2 ___with the tool : TDataOFF = 3 minutes; TDalaON =1 minute. (SE = 0.09) % i

___with the tool : 7’Da[aoFF =9 minutes; TDalaON =1 minute. (SE = 0.08)
___with the tool : 7’DamoFF = 14 minutes; TDmaON =1 minute. (SE = 0.05)
___with the tool : TDE(aoFF =19 minutes; TD:_“EON =1 minute. (SE = 0.05)
___with the tool : TDa(aOFF =3 minutes; TDaiaON =1 minute. (SE = 0.02)
___with the tool : TDa(aOFF = TcheenoFF' (SE=0.02)

10°
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Figure 8.9: Power consumption patterns for different available cellular data durations
in screenOFF state in Samsung Galaxy S [[196].

scenario (over 10 million samples each), while taking the w/o NyxEnergySaver scenario
as base-line and is calculated in Eq. Puso NyxEnergySaver 18 the average power con-
sumption without NyxEnergySaver; and Pscenario 1S the average power consumption of
any of the eight scenarios. Therefore, the larger the gain factor, the higher the saved
energy.

Pyjo NyxEnergySaver

gainFactor = (8.4)

Pscenario
The gain factors, gainFactor, obtained through in-lab measurements for different
DataOFF durations is presented in Table[8.5] The gain factor is less than 1 for the
scenarios where the Tp,,opr duration is set to less than 29 min. One reason is that Nyx-
EnergySaver is itself consuming some amount of energy, which is likely caused by the
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Table 8.5: The gain factors for different scenarios in Samsung Galaxy S.

[ wlo NyxEnergySaver | NoToggling | 3minOFF | 9minOFF | 14minOFF | 19minOFF [ 29min OFF | Completely OFF |
1 [ 03 [ 03 | 05 | 063 | 083 [ 134 | 257 |

logging (listening and writing) process. Without the latter, the energy consumption is
expected to decrease even further. Based on the in-lab experiments, Tparaorr = 29 min
and Tpaon = 1 min combination has a gain factor of 1.34, and expected to be even
more when the energy consuming logging process is disabled. By taking the results
obtained from this part as basis, we conducted a user study to identify the influence of
the (29 min DataOFF, 1 min DataON) combination on the end-user perceived quality
during the smartphone’s screen-OFF state.

Samsung Galaxy S4:  We studied and compared the energy consumption in an
other smartphone (and indeed more representable Samsung Galaxy S4) when NyxEner-
gySaver is not running, or when it is running with pre-configured dataOFF and dataON
durations. The energy consumption of the smartphone is depicted in Fig.[8.10] when
NyxEnergySaver is not running, or when NyxEnergySaver is running with different
dataOFF durations. The curves (from top to bottom) present the energy consumption
of the smartphones when 5 min dataOFF, without NyxEnergySaver (black solid line),
10 min dataOFF, and 15 min dataOFF, respectively. The bottommost curve presents the
energy consumption when NyxEnergySaver never switches ON the data module during
screenOFF. We performed 100 min long experiments for each configuration. We col-
lected indicative energy measurements that visualize the differences in energy savings
amongst different dataOFF durations. The amount of energy saving of the NyxEner-
gySaver tool increases with the duration of the dataOFF period, as expected. On the
other hand, the particular setting in Samsung Galaxy S4 of 5 min dataOFF followed by
1 min dataON duration does not save energy (see top curve in Fig.[8.10), but in fact it
increases the energy consumption.

Based on Fig.[8.10] we observe that amongst the indicative energy saving, 15 min
dataOFF, and 1 min dataON pair has the minimum dataOFF duration amongst the oth-
ers that likely save energy as compared to the scenario without NyxEnergySaver. The
energy gain increases with the dataOFF time, but we would like to keep it at minimum
level as it might influence the of the apps.

Furthermore, we performed six iterative measurements for the two scenarios in or-
der to obtain statistically significant results. The two scenarios were (i) without running
NyxEnergySaver, (ii) with NyxEnergySaver configured to 15 min dataOFF and 1 min

204



[o2]
o
=]

T
— Without NyxEnergySaver

—Data is partially OFF (5 m OFF, 1 m ON)
---Data is partially OFF (10 m OFF, 1 m ON)
---Data is partially OFF (15 m OFF, 1 m ON)

--Data is completely OFF ’pﬂ,ﬁﬂ

[
o
o

umption (J)

EN
o
o

Cons
w
o
o

gy

n
o
o

Total Enert
o
o

(=]

0> 1000 2000 Soool'ime (5)4000 5000 6000 7000

Figure 8.10: Total energy consumption on Samsung Galaxy S4 for five scenarios

dataON on the smartphone. In total, we collected more than 38 thousand energy mea-
surement data points (throughout a 10 hours long experiment) for each scenario during
the screenOFF. We obtained the linear energy consumption models as given in Eq.[8.5]
(R? = 0.97) and Eq.[8.6] (R* = 0.92) for with and without NyxEnergySaver scenarios,
respectively. The confidence interval of the linear models were 95%. The baseline
energy gain (18 %) is calculated in Eq.[8.7] as the percentage of energy saving for sce-
narios without and with use of NyxEnergySaver.

Evitn [J1 =0.05554[J/s] - T [s] (8.5)
Ewithout [J1 =0.06747[J/s] - T [s] (8.6)

Ewith [J] - Ewithout [J]

Eoain [%] = 100 -
gain L0 Evithou ]

(8.7)

8.5 Experimental (Intervention) Phase

8.5.1 Method

In this phase, we installed the NyxEnergySaver tool on the users’ smartphones, and
kept the tool running as a background application. Thus, configuring the NyxEner-
gySaver for all users based on the hour of the day (e.g., switching OFF 3G between
1 AM—6 AM), is not feasible, as the interaction might still occur during the night (see
Fig.B.I). The configuration of NyxEnergySaver applied in Study 2 and Study 3 is
given in the last row of Table[S.T]in Section[8.2.5] In Study 2 (for subjects S30 — S34),
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Figure 8.11: Study 2, 3: WiFi Usage and Number of dataON-to-dataOFF

the tool was configured such that the data module was ON for 1 minute (7on = 1 min)
in every 30 min while the screen is OFF during Topr = 29min. In Study 3, the tool
(i.e., Ton and Topp) was personalized for each user. In other words, we maximized the
dataOFF durations during the screenOFF period as much as possible for each user. The
longer the user is not interacting with the smartphone, the longer the dataOFF duration
can be extended during screenOFF without degrading This is done by adapting
the dataOFF intervals to the screenOFF durations collected in the logging phase.

The users were provided an interface on the tool to submit their feedback and [QoE]
via five-level (from 1 bad to 5 excellent)[ACRIscale, i.e.,[MOS| whenever. However, the
users chose to provide only qualitative feedback. In addition, at the end of this phase,
we conducted user interviews and asked them two questions: (i) “Have you realized
any change in the overall performance, e.g., connectivity, received messages latency,
of your smartphone during the experimental phase?”, and (ii) “Have you perceived
improvement in battery life during the experimental phase as compared to the initial
logging phase?”.

8.5.2 Quantitative Results

As already explained, we conducted an additional experimental phase in Study 2 and
3. In Study 2, NyxEnergySaver is configured such that dataOFF and dataON duration
during screenOFF are set to Topr = 29min and Ton = 1min, respectively. In Study
3, the configuration is performed based on the user-smartphone interaction, i.e., the
screenOFF durations, during the logging phase.

In the second column of Table[8.6] the number of dataOFF events, i.e., the num-
ber of state transitions from dataON to dataOFF, during the experimental phase are
given. Configured and applied dataON and dataOFF durations on users’ smartphones
are given in the third column. The dataOFF durations are set such that the 87.5 % (i.e.,
7 out of 8) of the user’s screenOFF duration in logging phase is less than or equal to
the applied dataOFF duration. This way, there is a high probability that the user will
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S # dataON Applied Mean
to dataOFF dataON, dataOFF screenOFF
30%* 37 1 min, 29 min 22.0 min
31 13 1 min, 29 min 7.7 min
32 37 1 min , 29 min 10.5 min
33 19 1 min, 29 min 32.0 min
34%* 12 1 min, 29 min 7.9 min
35 17 1 min, 474 min 158.6 min
36 313 1 min, 84 min 26.2 min
37 69 1 min, 84 min 37.0 min
38 128 1 min, 39 min 16.1 min
39 145 1 min, 39 min 19.7 min
41 61 1 min, 39 min 6.9 min
42 65 1 min, 84 min 34.8 min

Users marked with “*’ noticed the behaviour of NyxEnergySaver.

Table 8.6: Study 2, 3: Parameters in the experimental phase

realize the change (as they switch ON the screen when data is OFF). They would also
realize that the notifications and the content were delivered late as compared to the
logging phase. Thus, the users might find this behaviour as annoying. The dataOFF
durations were set to 474 min for S35; 84 min for S36, S37, and S42; 39 min for S38,
$39, and S41. $40 and S43 did not have 3G data plans in the experimental phase, thus
no cellular data module change events were detected for those particular users.
Amongst the users, the ones with low WiFi usage (as they use more cellular data)
are expected to be influenced more by the tool. Thus, we present the WiFi usage and
the number of dataOFF events per day in Fig.[8.11] Accordingly, $30, 32, §33, and
S$34 never used WiFi, and the number of dataOFF events per day were higher than 10.

8.5.3 Qualitative User Feedback

The results presented in this section are based on the qualitative feedback on NyxEn-
ergySaver, which were obtained from the participants in Study 2 and 3 via interviews
after the experimental phase. S40 did not have data plan during the experimental phase,
so no data was received from this participant. $43 realized that the 3G data module was
switched ON when the screen was switched ON, and found this behaviour as annoy-
ing. The reason was that she did not have a 3G cellular data plan and she had to pay for
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the extra bytes used if the 3G data module was activated without permission (a phone
specific issue). She eventually quitted the study. Amongst the remaining 12 users,
only two subjects (S30 and S34, marked with “*’ in Table[8.6), noticed the behaviour
of NyxEnergySaver, i.e., that the data module was switching ON and OFF based on
the screen state. S30 used Internet radio, thus he realized that the data module was
switching OFF when the screen was OFF. He requested to keep the radio ON when
the screen is OFF. We added the additional feature particularly for this user, but we
asked the user to disable the feature when he was not using the Internet radio. S$34
perceived that the data was switching OFF when the screen was switched OFF. She did
not find this behaviour annoying. She provided additional feedback: “I do not want to
get notifications. Notifications for example for Facebook would probably stress the life
out of me and are absolutely switched off on my phone”. S35 used the phone only for
talking (did not use 3G data at all), thus no network-based applications were installed
on the device although he had limited 3G data access on the smartphone provided by
his employer. We were surprised that $32 and $33 did not realize the dataOFF events,
although their smartphone connectivity were mainly based on 3G. S38 stated: “Should
there be a performance degradation?”; this feedback indicated that the change was not
perceived by the user. Indeed, for this subject, the number of detected dataOFF events
per day was rather low; less than 10 per day.

We asked users whether they have perceived any improvement in the smartphone
battery life. The feedback from the participants is varying. S35 replied: “...the battery
life has improved a lot, the battery was dying all the time before”. We interpret the
reason for this as follows. During the logging phase, the 3G cellular interface of the
user was ON more than 90 % of the time, although he was not an active network-
based app user, some built-in apps might have caused the signaling traffic, and extra
energy consumption. In the experimental phase, this traffic has been prevented by
NyxEnergySaver when the screen was OFF, thus energy saving is achieved. $39: “I
charge a lot, probably that’s the reason I did not notice any change in the battery...
both in work and office, my phone was charging...”. Another reason for this user for
not perceiving a change in battery life could be that he used WiFi more than 50 % of the
time (i.e., when NyxEnergySaver is not used). S41 did not perceive any improvement
in the battery life. He commented: “I use my phone a lot... I do not start the day always
with 100% charge, and sometimes half full... I charge when I'm in the car, at office,
at home...”. This shows that he was an opportunistic charger. Another reason could
be due to the Weber-Fechner law [[72] that relates the human perception to the relative
change of the stimulus. In other words, the improvement in the battery life may not
be just-noticable-enough to be perceived by the user. Overall, the feedback from the
participants is encouraging.
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8.6 Contribution Summary

The main contributions presented in this chapter are summarized as follows:

Weibull and exponential screen state models: We compared Pareto, Weibull, and
Exponential distributions for the screenON and screenOFF durations. We concluded
that Weibull fits the best with R? value 0.99 with @ <1. Thus, it can be said that
the longer the smartphone screen is OFF, the higher the probability it will stay OFF.
Alternatively, an exponential distribution can also be suggested as the overall R? val-
ues are higher than 90 %, thus the screen interaction can be modeled with a two-state
ON/OFF exponential model with screenON and screenOFF durations, 4 (+1.4) min
and 20 (£6.9) min, (with the 95 % confidence level), respectively,

Sledgehammer-based energy saving is achieved without degrading user percieved
quality: At least 18 % energy saving is achieved with Samsung Galaxy S4 during
screenOFF, with 1 min dataON every 16 min, as compared to the scenario without
NyxEnergySaver (in 10 hours). The percentage of energy saving increases with the
dataOFF duration.

DataOFF durations during screenOFF are set such that in 87.5 % of the cases, the
user switches ON the screen during the cellular 3G data module is OFF. Amongst
12 users (in the experimental phase), only two users (who were connected to Internet
via 3G and never used WiFi), perceived a change in cellular data connectivity on the
smartphone. Although, the two users realized that the data module was switched OFF,
they have not reported this behaviour as annoying.

8.7 Discussion and Further Recommendations

We are aware of the following limitations in this work. The presented energy mea-
surements are highly specific to the lab settings. Modeling user interaction is a hard
task, and we need more user data, collected throughout longer studies, and for dif-
ferent smartphones. However, we obtained similar results highly support the results
obtained in related work. According to Ericsson Report [[188]], the total screen time
was measured as 37 hours per week. This corresponds to 22 % of the whole week. If
we normalize our result from a two state exponential model with 4 minutes screenOFF
time in every 24 minutes time inteval, we obtain 28 hours of mean screen ON time per
week. This corresponds to 17 % of the whole week, which are 5 % less than the results
provided by Ericsson Report.
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The session length, i.e., eventually screenON duration, depends on the application
type, e.g., maps and games might have rather high session lengths. However in this
work, we rather focus on the screenOFF state durations as NyxEnergySaver saves en-
ergy during this state. Lessons learned from the user study answers to the question:
“What can be improved in NyxEnergySaver?”. The tool is not suitable for the users
whose primary communication depends on VoIP, i.e., which requires constant connec-
tivity even if screen is OFF. Such applications are widely used in the US and Japan, but
in Europe, still the GSM-based voice calls are dominant. In our user study, although
there were a few VoIP users, e.g., Viber and Skype, they did not complain as these
applications were used mostly for texting when the screen is ON. Lastly, the tool needs
to be improved in such a way that switching to dataON state can be delayed for a few
seconds based on user preferences. The reason is that some users may use their smart-
phones as their primary clock, and switch ON the smartphone screen for this purpose
only for a few seconds. In this case, switching ON the data module is not necessary.
The charging patterns signify an opportunistic behaviour for the majority of the users,
thus this might have prevented users to perceive the energy saving of NyxEnergySaver
during the experimental phase.

We strongly recommend that the screen events need to coordinate and synchronize
with the application API’s. This way the functionality of applications are adapted to
the user context. This can be done if application developers can register screen events
to their Android applications and manage the network resource usages accordingly.
We also recommend the application developers to enable their apps notifying other
apps when the application uses network resources and in parallel listen to other apps
for similar events. This way, the synchronization of application with respect to the
network usage can be enabled towards energy saving.

8.8 Summary

In this chapter, we present a model of user interactions with the smartphone screen,
and present a potential energy saving approach NyxEnergySaver without influencing
the user experience. We state that the durations when the screen is ON and screen is
OFF can be presented with two-state exponential models with a mean screenON and
screenOFF duration of 4 (£1.4) min and 20 (4-6.9) min, respectively. The screen state
durations can also be modeled with Weibull. Different from the existing applications,
first the user model through user studies are studied and then the energy saving tool,
NyxEnergySaver is personalized based on the obtained user models.

The proposed software is highly simplistic, as one may call it a sledgehammer
implementation. The proposed software does not require any major changes in the
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network stack or in the OS, and can be easily installed to most of the Android OS
based smartphones. The strength of our approach is its simplicity. The user perceived
quality is considered with the mentioned simplistic approach, and we have obtained
encouriging qualitative feedback from the participants. The idea here is that to release
all network resources, and reduce the energy consumption to baseline (e.g., completely
disabled 3G data module). A clumping approach for only a particular application does
not help as activity of even only a single application can make the RRC state to stay at
the high power consuming state. Thus, all have to be deactivated simultaneously. The
core of our approach is to enable an energy saving without impacting the user perceived
quality. We also discuss the sociological aspects of this problem, emphasizing that the
always-connected approach is often misinterpreted. Users need to be connected when
they benefit from it (e.g., instead of continuous connectivity), and this is only possible
with context-aware smart mechanisms while also considering the big data. This would
in parallel save time and eventually energy. We strongly recommend that the screen
events need to coordinate and synchronize with the application API’s enabling the apps
to adapt to the varying device functionalities and user context.

Next, we presented the NyxEnergySaver tool that saves smartphone energy by pro-
longing the duration without any 3G-based data activity. This is done by switching
OFF the 3G data module when the screen is switched OFF. In order not to impact the
end-user perceived quality, the data module is switched ON and OFF for particular du-
rations during the screenOFF periods. In Samsung Galaxy S4, with the defined specific
settings (in ten hours), 18 % energy saving is achieved when there is 1 min dataON du-
ration every 16 min. The energy gain increases with the data OFF duration. Finally,
we present the results of the experimental “intervention” phase, i.e., NyxEnergySaver
is personalized and installed on users’ smartphones. It has been observed from the
qualitative data that the user-perceived quality has not changed. Therefore, it can be
concluded that a sledgehammer-based energy saving is possible as long as the proposed
approach is user-centric.

We plan to conduct and repeat the user study with more number of users, and extend
the dataOFF durations to increase the energy savings further while maintaining user
perceived quality. In addition, we plan to add a feature to adapt the NyxEnergySaver
configuration, in real time, in such cases when the user behaviour (data plan, network
usage, charging patterns) change, or are alerted by the user feedback.
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Chapter 9

Conclusions

“Simplicity is the ultimate form of sophistication.” —Leonardo da Vinci.

9.1 Thesis Summary

Smartphones have become portals to the outside world guiding users in diverse do-
mains including health, navigation, and communication in daily life. In parallel, smart-
phones and the applications/services running on them, can quantify the user behaviors
with the available sensors and enhanced API’s, which can help to monitor the problems
in real time and improve applications’ perceived quality by the users. The per-
ceived especially from network-based applications on smartphones is highly vital and
is critical to user acceptance. Network operators have a crucial role in enabling at least
an acceptable application performance as they are often considered as applications’ pri-
mary network interface to the Internet. Thus, a poor perceived quality by a user from
a network-based smartphone application running on a smartphone might have negative
consequences reducing the revenue of the corresponding network operator, and might
also cause users to churn to other network operators. In order for a better management
of network resources at the network operator, it is important to understand the thresh-
olds and circumstances for an application to be perceived at least within the acceptable
quality levels. Understanding the perceived quality of applications and improving it,
in addition to its benefits such as enabling lean network management (reducing costs)
in the core network by setting the quality threshold levels, would also enable new
opportunities and services/products that might eventually increase revenues of applica-
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tion/network providers.

This thesis addresses smartphone issues by first identifying them throughout
comprehensive user study, and then studying them in depth, applying qualitative and
quantitative methods. We provide suggestions on how the can be improved or at
least maintained from both network-level, application-level, and energy perspectives.
Thus, this thesis contributes to the smartphone-related in many aspects particu-
larly in applications such as video streaming with the focus on temporal impairments as
these highly influence both the and the energy consumption of smartphones. We
provide corresponding energy saving recommendations for smartphone-based video
streaming. We also study the energy consumption while there is no interaction with the
smartphone. We suggest rather simple sledgehammer solution (which can be deployed
with a minimum effort) in order to decrease the energy consumption with the focus on
3G-based network activities, while the smartphone screen is at OFF state. The novelty
of the studies is that we consider the aspects during energy saving.

9.2 Concluding Remarks

This thesis can be concluded with the following items. Each item is presented with the
corresponding contribution, i.e., C.x.

e We present a comprehensive user study to identify the most influential factors on
smartphone-based[QoE] The study methodology consists of both qualitative and
quantitative procedures. and online user survey enables us to collect
subjective qualitative data; and autonomous logging through our software on
the smartphones enable us to objectively collect quantitative device performance
data in users’ natural environments. As a result of the study, we have found
many factors influencing which go beyond the usability, usefulness, well-
being, hedonic, and other user value factors as indicated in the literature. We
have found that battery efficiency, application performance, application interface
design, phone features, application and connectivity cost, user routines, and user
lifestyle are a set of factors influencing smartphone The role of on
is also studied; and the increased and RTTl reduced the values.
We also found that the users are often well-connected and using smartphones
in a fixed position and when they are alone. We spotted the battery life as a
highly emphasized item by the users that influences the user-perceived quality.
The temporal impairments during video streaming, i.e., freezes, are identified
as very important factors on the overall perceived quality of smartphone. This
phenomenon might influence user decisions while choosing a particular network
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operator as users demand video streaming more and more. We addressed the
research questions R.Q.1 and R.Q.2.

Given that video streaming applications might highly influence the (partic-
ularly in the case of temporal impairments on smartphones) and in parallel might
be highly power consuming, we studied further the temporal impairments dur-
ing 3G-based video streaming on the smartphone. We focused on packet-level
metrics such as measured at the kernel level. We matched the objectively
collected metrics with the subjectively collected MOS values on the user inter-
face of the video player. We presented that the packet-level metrics can indicate
alow and the relation in-between the[MOS]and the can be represented
with a power-law model. The collected data is studied from the human per-
ception aspect; we found that EWMAI technique (that reveals the previous user
experiences) improves the goodness-of-fit of the data by 100 %. On-off-flushing
behaviour during the 3G-based video stream and its impact on the correlation
between the and the values are presented. We also recommended
the Maximal Burst Size metric, which reveals (in a power-law model)
the bursty traffic in 3G, in order to relate the long time intervals without any
throughput to the user-perceived quality, i.e., We addressed the research
questions R.Q.3.1 and R.Q.3.2.

In another video study, we recorded metrics such as inter-picture time ob-
jectively measured at the user interface together with the corresponding[QoE] and
presented a set of outcomes. One of the most important outcomes of the study is
that, to the best of our knowledge, we developed for the first time a cross-layer
smartphone-based video streaming tool, open-source VLQOoE, enabling to assess
video with the consideration of various aspects such as application, net-
work, user interface, and data collected from other sensors of the smartphone.
VLQOoE tool is provided as open-source (thus can be enhanced further), and also
can be used in smartphone-based video[QoE]studies with its current version. We
presented that, based on the comprehensive measurements conducted at various
locations within Karlskrona city and particular experiment settings presented in
Chapter[3] the inter-picture time of a 3G-based video stream can be represented
via two-state exponential ON/OFF model. According to our experiment settings,
we measured a mean OFF value of around 600 ms and mean ON value of around
10s. Based on the results obtained from the user study, the mean of the maxi-
mum inter picture time values were within the second order of magnitude (and
monotonically increasing) for user rating 5 to 1 (in five-level scale). The
mean value increases slightly higher to the third order of magnitude for the case
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of user freeze indications. We measured the mean minimum perceived inter-
picture time roughly around 300 ms, and the increase of this value causes the
user rating values less than 4. We have spotted tolerable and impatient users;
i.e., some users do not respond immediately despite the high number of freeze
alarms raised by the VLQOE, while some users are rather picky and give a low
user rating even when there is a low number of freezes. We addressed the re-
search questions R.Q.3.3 and R.Q.3.4.

e Battery life highly influences smartphone [QoE] thus as video streaming applica-
tions are power-hungry, we study the energy consumption during video stream-
ing. In order to accurately measure and reveal the anomalies via high precision,
we used the Monsoon power monitoring tool. We compare the tool for a set of
scenarios with a software-based measurement tool. We conclude that although
the software-based power monitoring tools are non-intrusive and can be used
in user studies to obtain high-level view on energy patterns, the collected mea-
surements might not be accurate as the hardware-based external tools. Thus, we
highly encourage researchers who are interested in collecting accurate measure-
ments and prepare demonstrators to use Monsoon-like hardware-based power
monitoring tool. We presented that the anomalies in and can be re-
vealed via the (instantaneous) power consumption as the power consumption
fluctuates (more precisely drops), when there is a video stalling quantified by
the inter-picture time measured at the user interface via the VLQoE tool. We
addressed the research questions R.Q.3.5, R.Q.3.6, and R.Q.4.

e Throughout extensive energy measurements on the smartphone, we identified
potential scenarios where energy saving might be possible and we recommended
approaches to increase energy saving while maintaining The suggested
approaches can be categorized in two parts: (i) while user is interacting with
an application, (ii) while the user is not interacting with an application. For a
user interactive scenario, we evaluate a video streaming application from both
the and the energy consumption perspectives. We present that energy can
be wasted or saved during temporal impairments, i.e., freezes, depending on the
network streaming protocol. In the case of a freeze during a video stream, if
there is a packet retransmission (e.g., initiated by [TCP), then all the video con-
tent is shown to the user. During the freeze time, the energy is kept consuming
due to a set of factors including CPU, AMOLED display, low power state of 3G
data module. Thus, the energy consumed during the stall duration is considered
as wasted. Therefore, a smoother video playout causes a lower total energy con-
sumption and a higher In contrast, in [UDP}based video stream, there is a
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freeze jump, which causes some content to be skipped (i.e., no packet retrans-
mission). Thus, the total video streaming duration is unchanged (as compared
to the original video). In that case, there is a tradeoff between the and the
energy consumption, i.e., the stalling events both decrease and the energy
consumption. Thus, we present non-linear models that relate to energy
saving and the energy waste depending on the streaming protocol. This way,
we calculate the maximum energy saving during a[UDP+based video streaming
on the smartphone while keeping the [MQS]| at an acceptable level. Similarly, we
quantify the amount of energy waste during a[TCP}based video stream, and show
that the energy waste is increasing exponentially with the decrease in We
addressed the research question R.Q.5.1.

Other video streaming scenarios on smartphone include amongst others the
download-and-watch-later approach, e.g., in the case of podcasts. Thus, we also
study different scenarios while downloading files with different sizes. This way,
we compare the scenarios such as downloading and local streaming versus the
direct network streaming. Median power consumption during local streaming
is 750mW less as compared to the 3G-based video streaming. We measured
the power consumption during only file downloading as 170 mW (median) less
than direct 3G-based streaming. In overall, we present that the total energy con-
sumption with the download-and-watch-later scenario yields less energy con-
sumption as compared to direct network-based real-time video streaming. We
conclude the reason as the video player limits the download rate based on the
bit rate of the streamed video, however in the case of only-download, the file
is being downloaded with the maximum available throughput. This reduces the
download duration and thus minimizes the active duration of the 3G cellular data
module. Another advantage is that the playout does not contain freezes as it is
pre-downloaded. On the other hand, the energy saving during the download-
and-watch-later approach comes with a tradeoff and one should sacrifice a pos-
sible degradation caused by the initial waiting time until the video starts.
Eventually, this also causes the total duration (initial download plus the playout
time) to be higher than the direct streaming duration. We show that the file size
highly influences the download duration and eventually the energy consumption.
Scheduling of downloads for multiple files save energy. Based on the size of the
files, the appropriate scheduling can be chosen. If small file sizes are being down-
loaded, then downloading them in series yields statistically significantly higher
average processing time and total download time as compared to the hybrid (i.e.,
sequence of parallel downloads) or parallel approach. Thus, sequential down-
loading is not suggested for the small size files. For large size files, sequential or

217




Chapter 9. Conclusions

hybrid downloading is recommended (as compared to the concurrent download-
ing) due to the reduced download time and the reduced energy consumption. We
addressed the research questions R.Q.5.2 and R.Q.5.3.

e We identified also the energy waste on the smartphone while a user is not inter-
acting with a smartphone, i.e., while the smartphone screen is OFF. The network-
based applications create a signaling storm during screen OFF state, thus forcing
the cellular data module to be always in an active (high power consuming) state.
In order to address this issue, we first run an extensive user study and collect
information from user smartphones on the application behaviour of users, e.g.,
how often is the smartphone screen switched ON and OFF? We found out that
the user interaction with the smartphone screen can be represented by a two
state exponential model with mean screen ON duration of 20 minutes and mean
screen OFF duration of 4 minutes. Then, based on per-user smartphone screen
state pattern, the 3G cellular data module of smartphone is toggled in between
ON and OFF states when screen is OFF by considering the following tradeoff.
If the cellular data module is kept OFF too long, it will impact the as the
user might expect to receive information and notification (e.g., email, instant
message services) within a particular screen OFF period. On the other hand, we
aim to extend the data OFF duration during screen OFF as much as possible to
increase the energy saving. We applied per-user configuration, i.e., by setting
the appropriate dataON and dataOFF intervals, based on the personal interac-
tion model with the smartphone. We measured potential energy savings with
Monsoon power monitoring tool. We have achieved 34 % power gain with a 29
minutes dataON and 1 minute dataOFF cycle while maintaining the[QoE|on user
smartphones. The novelty of the tool is it being both user-centric and also being
a so-called sledgehammer implementation that enables easy deployment on any
Android OS-based smartphone. We addressed the research question R.Q.6.

9.3 Future Work

A set of potential future directions can be drawn based on our conclusions and experi-
ences obtained with the presented thesis work. First, we strongly encourage that new
assessment methods and tools need to be developed for assessing the while the
users are using their mobile devices in the wild. Yet, we have developed assessment
methods and tools, employed them with the focus on Android operating system as it
is open-source and the availability of its extensive API’s. The next step would be to
develop similar tools for other operating systems including Windows OS and iOS. The
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concept has been increasing in popularity over the past years, due to the opera-
tors’ increasing demands to use the existing network and energy resources as efficiently
as possible. This in parallel causes operators to obtain (along with core metrics
including data rate, latency, or packet loss) reliable user feedback with respect to the
services being provided. This necessitates the infrastructure industry to use robust[QoE]
products and methods. Therefore, another future work includes assessment by in-
tegrating the “Big Data” (detailed user behaviour and interaction with the applications
on the smartphone, application specific metrics, as well as potential network KPI (Key
Performance Indicators)), obtained from the the device sensors, application reports,
as well as the network operator. In addition, the metrics can be complemented via a
easy-to-use non-obtrusive in-situ feedback assessment interface, enabling the user to
indicate the level of delight or annoyance.

Other future work includes further and energy studies by considering the
whole end-to-end system. Measurements and corresponding approaches to improve
a quality of a service or to reduce the energy consumption at particular point within
the network should consider a holistic evaluation. For example, improving the energy
efficiency on the access network (i.e., via separating the control plane from the sig-
naling plane), e.g., Radio Access Network (RAN), might on the other hand increase
the energy consumption of mobile terminal as it might necessitate two separate simul-
taneously active wireless interfaces on the smartphone. There are other approaches
regarding the migration of high power-hungry computations to the cloud. On the one
hand, moving the computing work (e.g., transcoding during video streaming) to the
cloud to minimizes the processing power on energy-constrained mobile devices. This
means that smartphone then need to download the uncompressed data from the cloud
with a rather higher data volume. Thus, this might highly increase the wireless network
based data activity on smartphone, which is highly energy consuming. Thus, extensive
trade-off analysis and measurements need to be considered for the aim of the desired
study before giving critical decisions for the design of a service or a product for mobile
devices. We, as engineers, need to evaluate the sociological and the energy aspects of
our proposed solutions. As the first item of IEEE code of ethics states [285]]: “to ac-
cept responsibility in making decisions consistent with the safety, health, and welfare
of the public, and to disclose promptly factors that might endanger the public or the
environment”.
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Appendix A

Appendix

A.1 Formulae of the Obtained Models

Table A.1: List of the obtained formulae. “GOF”: goodness-of-fit; “~” symbol: as a
function of; exp.: exponential; pow.: power.

| DESC. | CHar. | FORMULAE GOF | mopEL |
user rating ~ packet delay variation 4 UR = 4.21-exp(—0.002- PDV /ms) 0.40 exp.
user rating ~ packet delay variation 4 UR = —0.88- PDV/ms0-27 1 6.38 0.51 pow.
user rating ~ maximum burst size 4 UR = 59.96- MBS 0036 _51 7| 0.78 pow.
CCDEF of inter-picture time 5 CCDF =0.91-exp(—0.001-Dp /ms) 0.98 exp.
(for freeze indications)
CCDF of inter-picture time CCDF = 0.88-exp(—0.002- Dp /ms) 0.98 exp.
(forUR=1)
CCDF of inter-picture time 5 CCDF = 0.87-cxp(—0.002 - Dp /ms) 0.94 oxp.
(for UR = 2)
CCDF of inter-picture time 5 CCDF = 0.88-exp(—0.004 - Dp /ms) 0.84 exp.
(forUR=3
CCDF of inter-picture time 5 CCDF =2.05-exp(—0.020- Dp /ms) 0.90 exp.
(for UR = 4)
CCDF of inter-picture time 5 CCDF =4.62-exp(—0.039 - Dp /ms) 0.94 exp.
(forUR=5)
CCDF of mean OFF duration 5 CCDF = 1.08 - exp(—0.004- OF F /ms) 081 exp.
CCDF of mean ON duration 5 CCDF = 0.67 -exp(—0.00006 - ON/ms) 0.93 exp.
CCDEF of user response time (long) 5 CCDF = exp(—0.0007 - Drcsp“"sclon /ms) 0.98 exp.
inter-picture time ~ instant. power cons. 7 Dp/ms —1.26-105 -exp(—0.003 - P, /mW) 0.60 exp.
MOS ~ ON probability 7 0.74 exp.
MOS ~ OFF probability 7 S = 4.67-exp(—3.38 - POEp) 0.74 exp.
MOS ~ mean OFF duration 7 MOS = 4.67 - exp(—0.00030F F /ms) 0.72 exp.
MOS ~ mean ON and mean OFF duration 7 MOS = 0.9 -exp(—0.0006 - OFF /ms) +0.1 - exp(0.0000162 - ON /ms) + 2 0.71 exp.
MOS ~ energy waste 7 MOS = 4.67-exp(—3.38 - (((Ewaste /1/0.728) + 1)/208)) derived model exp.
MOS ~ energy saving 7 MOS = 4.67-exp(—3.38 - (((Esav. /1/0.185) +1)/208)) derived model exp.
[ CCDF of screen OFF duration [ 8 ] CCDF = exp(=0.22- screenOF F /ms) 091 [ exp ]
[ CCDF of screen ON duration 8 1 CCDF = exp(—1.6-screenON /ms) 0.94 | exp. |
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ABSTRACT

Smartphones have become crucial enablers for
users to exploit online services such as lear-
ning, leisure, communicating, and socializing. The
user-perceived quality of applications and servi-
ces is an important factor to consider, in order
to achieve lean resource management, to prevent
user churn and revenue depletion of service or
network providers. This is often studied within
the scope of Quality of Experience (QoE), which
has attracted researchers both in academia and
industry.

The objective of this thesis is to study the most
important factors influencing QoE on smartpho-
nes and synthesize solutions for intervention. The
temporal impairments during a real-time ener-
gy-hungry video streaming are studied. The aim is
to quantify the influence of temporal impairments
on the user-perceived video QoE at the network
and application level together with energy measu-
rements, and also to propose solutions to reduce
smartphone energy consumption without degra-
ding the user’s QoE on the smartphone for both
user-interactive, e.g., video, and non-interactive

cases.

QoE measurements on smartphones are per-
formed throughout in-the-wild user studies. A
set of quantitative Quality of Experience (QoE)
assessment tools are implemented and deployed
for automatic data logging at the network- and
application-level. Online momentary survey, Expe-
rience Sampling Method (ESM) software, and Day
Reconstruction Method (DRM) along weekly fa-
ce-to-face user interviews are employed.The sub-
jective QoF is obtained through qualitative feed

back including Mean Opinion Score (MOS) as well
as in-situ indications of poor experiences by users.

2015:06

Additionally, energy measurements on smartpho-
nes are conducted in controlled-lab environment
with the Monsoon device.

The QoE of smartphone applications and services
perceived by users depends on many factors in-
cluding anomalies in the network, application, and
also the energy consumption. At the network-le-
vel, high packet delay variation causes long video
freezes that eventually impact negatively the end-
user perceived quality. The freezes can be quanti-
fied as large time gaps in-between the displayed
pictures during a video stream at the applica-
tion-level. We show that the inter-picture time in
cellular-based video stream can be represented via
two-state exponential ON/OFF models.Ve show
models representing the non-linear relations-
hip between the QoE and the mean inter-pictu-
re time. It is shown that energy measurements
help to reveal the temporal impairments in video
stream enabling energy consumption as a QoE
indicator. Next, energy waste and saving during
temporal impairments are identified. Additionally,
other video streaming use cases, e.g., “download
first and watch later”, are studied and appropriate
energy-saving download scheduling mechanisms
are recommended. The possibility for decrea-
sing energy consumption when the smartphone
screen is OFF, while maintaining QoE, is revealed.
We first show exponential models to represent
user’s interaction with smartphone, then propose
a NyxEnergySaver software, to control the cellu-
lar network interface in a personalized manner
to save smartphone energy. According to our fin-
dings, more than 30 % smartphone energy can be
saved without impacting
the user-perceived QoE.
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