

Electronic Research Archive of Blekinge Institute of Technology

http://www.bth.se/fou/

This is an author produced version of a journal paper. The paper has been peer-reviewed but

may not include the final publisher proof-corrections or journal pagination.

Citation for the published Journal paper:

Title:

Author:

Journal:

Year:

Vol.

Issue:

Pagination:

URL/DOI to the paper:

Access to the published version may require subscription.

Published with permission from:

Multimed Tools Appl
DOI 10.1007/s11042-013-1424-x

Performance of HTTP video streaming
under different network conditions

Arkadiusz Biernacki · Kurt Tutschku

© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The Internet video sharing services have been gaining importance and
increasing their share in the multimedia market. In order to compete effectively
and provide broadcast television with a comparable level of quality, the Internet
video should fulfil stringent quality of service (QoS) constraints. However, as the
Internet video is based on packet transmission, it is influenced by delays, transmission
errors, data losses and bandwidth limitations which can have a devastating influence
on the perceived quality of the multimedia content. There are many works which
describe the impact of network impairments on the Internet video. Nevertheless,
little is known about how network conditions influence the video streamed by the
currently popular services such as YouTube, where video is transmitted over reliable
TCP/HTTP protocols. Therefore using a network simulator, we conducted an exper-
imental evaluation of the HTTP based video transmission analysing how the network
impairments mentioned above influence the streamed video. The experiments were
validated against a network emulator supplied with real network traces. As a result
of this work, we can state that the buffering strategies implemented by a video player
are in many cases able to mitigate unfavourable network conditions what allow to
play the streamed video smoothly. The results may serve Internet Service Providers
so that they could tune their network characteristics in order to match the demand
from HTTP video.

Keywords Multimedia communication · Network measurements ·
Quality of service · Video streaming

A. Biernacki (B)
Institute of Computer Science, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland
e-mail: arkadiusz.biernacki@gmail.com

K. Tutschku
Telecommunications Systems, Communication and Computer Systems Research Laboratory
(CCS), Blekinge Institute of Technology (BTH), School of Computing (COM),
371 79 Karlskrona, Sweden
e-mail: kurt.tutschku@bth.se

Multimed Tools Appl

1 Introduction

During the last two decades, the video transmission have been considered as a
demanding application that would never work satisfactorily over best-effort packet
switched networks. Nevertheless, in the last few years, video-supported applications,
and especially video streaming, have become quite popular. Many providers started
publishing their content such as news, series, and movies on their dedicated Web sites
or for this purpose used dedicated sharing services such as YouTube, Hulu in the US,
Dailymotion in France, Smiley in Japan and many others. Access to the abundance
of multimedia content at any time results in a drastic shift in Internet traffic statistics,
which reports that the share of P2P traffic is declining primarily due to a rise in traffic
from Web-based portals and video sharing services [11]. According to the YouTube
Press Room, in the year 2012 the service alone had 800 million unique users each
month, who viewed over 4 billion videos each month and uploaded 72 hours of
video each minute. Thus the fulfilment of the rising demand for video traffic will
be delegated to both content providers and ISPs (Internet Service Providers) and it
is believed to be a challenging task for them.

In the above mentioned services video streaming is usually based on the HTTP
and TCP, and the video player is embedded in a web browser. TCP is currently the
most widely used transport protocol in the Internet but it is commonly considered
to be unsuitable for multimedia streaming. The main reason lies in the TCP reliability
with its retransmission mechanism which may result in undesirable transmission
delays and it may violate strict time requirements for streamed live media. In
this context, dealing with packet delay and loss, which can be a consequence of
congestion or packet corruption, demands new solutions which will be different
from the classical transmission procedures used in unreliable protocols, e.g. UDP.
The HTTP and TCP are general purpose protocols and were not specifically designed
or optimised for streaming media delivery. Because of their properties such as
congestion control mechanisms and reliability requirement, they do not necessar-
ily degrade the video streaming performance. By imposing proper sophisticated
rate-adaptation or playback buffering, a video player is often able to adapt to
the above-average throughput oscillations. Additionally, the use of the TCP, and
that of the HTTP over TCP in particular, significantly facilitates the traversal
of NATs and firewalls. Therefore the wide adoption of the TCP in the Internet
motivated us to investigate the performance of this approach when streaming a
video.

Our analysis was carried out using video streams obtained from a popular mul-
timedia service YouTube, which primarily uses HTTP for content distribution and
allows its user to watch video using a web browser. Unlike traditional VoD systems,
which offer professionally-produced video content such as movies, sport events,
news, reportages, YouTube videos can be uploaded by anyone with a broadband
network connection. Thus, the quality and popularity of this content are not so well-
controlled and predictable as in the traditional VoD systems. On the contrary, the
quality of YouTube video clips varies significantly, making network optimisations
for specific content unreasonable.

The quality of network connections depends on the number of statistically deter-
mined factors including latency, reliability and bandwidth. These traits are neither
constant nor deterministic: in reality, they can change rapidly depending on the

Multimed Tools Appl

local ISP network conditions, remote server behaviour, background traffic, as well
as network infrastructure quality. In the case of video delivered by more traditional
channels such as satellite, DVD, cable or digital TV broadcasting, data arrives at
a media player with a mostly deterministic delay rate and very limited data drops.
Consequently, the video delivered via such a medium usually requires little buffering
space on the part of a client, whereas video delivered over the Internet is a more
complex problem because there is no guarantee that the transmitted data will reach
an end user with a required rate and delay. Instead, it arrives with rate and delay
fluctuating during the video file transmission. Therefore buffering is of increasing
importance for video streams when they are transmitted over the Internet, including
Web-based streaming. Each video player usually has its own buffering and playing
strategy, e.g. the Adobe Flash Player manages buffering and playing of the received
content employing several algorithms [24].

In this article we study the efficiency of three client playback strategies. The study
seeks to answer the question how often the player buffer runs out under different
network interferences, such as packet delays, transmission errors, packet losses
and throughput limitations. As a consequence, we want to investigate how these
parameters influence the perceived quality of a video received by its end users. This
may be useful for e.g. ISPs which may have partial influence on these characteristics
and therefore may be able to tune optimally their network streamed video in order
to sustain the proper quality of video transfer for their users but also simultaneously
preserve their own network resources. For example, an ISP may decide to deny
network resources to a new high bit rate video stream if the addition of its traffic
would lead to quality degradation for the already ongoing ows of other users. Instead
of gathering information from the users’ applications and their viewing experience,
which may be difficult in practice, the ISP may obtain information about a scale of
network quality degradation by examining the above mentioned network parameters
which characterise network impairments. If the newly added stream influences these
parameters too heavily, and as a consequence, they become unacceptable for viewing
of ongoing video streams, the ISP may consider imposing some kind of restrictions
for such video stream.

To understand some of the behaviour aspects of real-time applications, we
conduct a performance study using a simulation model. The simulation approach
allows us to methodologically explore the behaviour of the examined system over
a wide range of parameter settings, which would be a challenging task when to
conduct such experiments only on a real-network. The simulation results are then
confronted with the results obtained from laboratory experiments supported by real-
world measurements.

2 Video distribution

2.1 Protocols

One of the classification methods of the media delivery systems is their division
into systems with a feedback control and systems without any feedback control
mechanism.

Multimed Tools Appl

An example of a multimedia delivery system with the feedback control is a
system using the RTSP (Real-Time Streaming Protocol). RTSP is a stateful protocol,
which means that the server keeps track of a client’s state from the first time the
client connects to the streaming server until the time it disconnects. The client
communicates its state to the server by sending commands such as play, pause or
disconnect. The server begins sending the media as a steady stream of small RTP
(Real-time Transport Protocol) packets. The data is sent at the media bitrate and the
client buffer is filled with just a few packets before playback begins. If the client or
server discover any interferences in their communications, such as increasing latency
or packet drops, they can renegotiate transmission parameters e.g. the server can
send the same video content but with a reduced encoding rate. The transmission
is usually based on unreliable transport protocols, most commonly UDP. However,
when using UDP it is often more difficult for data packets to get around firewalls and
network address translators compared to HTTP/TCP protocols. The latter protocols
usually operate on the same port which is used for web browsing; therefore, it is
accessible via network middleboxes by default [20]. Thus, sometimes HTTP/TCP is
preferred when firewalls or proxies block UDP packets, although at the expense of
potentially unnecessary reliability.

Such problems are limited when employing HTTP as a media delivery protocol
because firewalls and routers know to forward HTTP traffic. The protocol also does
not require special proxies or caches. Additionally, HTTP is a stateless protocol; thus
multimedia transmission based on it shares this feature and behaves as a system
without a feedback control. Basically, if an HTTP client requests data, the remote
server responds to this request by sending the demanded data; however, it stores
information about neither the client nor its state. Consequently, each HTTP request
is handled completely independently.

HTTP streaming may be implemented in several ways. In our work, we focus on
implementation which can be described as a progressive download. The progressive
download is nothing more than a transfer of a video file from a HTTP server to
a client where the client may begin playback of the file before the download is
complete. Contrary to the above mentioned systems with feedback control, which
rarely send more than a few seconds of video content to a client in advance, HTTP
streaming (web) servers progressively push the whole video content to a client and
usually do not take into account how much of the data has been already sent in
advance. Simultaneously, most players are capable of playing the video file while its
download is still in progress. Most web-based streaming platforms, including Vimeo,
MySpace and MSN Soapbox, are based on HTTP and do not have a feedback control.
However, some HTTP streaming services, e.g. YouTube, implement additional flow
control mechanisms at the application layer that limits the transmission rate to the
same magnitude as the video bitrate [4]. Additionally, progressive download does
not offer the flexibility and rich features of streaming. This has commenced the
development of a new generation of HTTP-based streaming applications described
as adaptive streaming over HTTP [27].

Currently, it is thought that HTTP media streaming is easier and cheaper to
deploy because web streaming can use generic HTTP solutions, and does not require
specialised servers at every network node. Also most of contemporary devices
support HTTP in some form. HTTP relatively easily traverses middleboxes, such
as firewalls and NAT devices keeping minimal state information on the server side,

Multimed Tools Appl

which makes HTTP servers potentially more scalable than conventional streaming
servers. Furthermore, a standard HTTP caching mechanism allows to move media
content to an edge of the network, closer to users.

Nonetheless, the above technology also has its shortcomings. The congestion
avoidance algorithm of TCP produces a saw-tooth shaped transmission rate. Fur-
thermore, the reliability of TCP results in variable transmission delays caused by
transmission errors or lost packets. If we denote the throughput of a TCP connection
by r then the r is limited by the maximum segment size (MSS) and the round trip
time (RTT). According to [22] and assuming that p is the probability of packet loss,
the upper bound for the TCP throughput rmax can be calculated as:

r = data per cycle
time per cycle

≤ MSS
RTT

1√
p

= rmax. (1)

As a consequence, it was commonly assumed that the video playing performance
may suffer because the multimedia streaming is to some extent loss tolerant, but it
is delay sensitive. Thus, the fluctuating transmission rate caused by packed delay
and loss must be smoothed out by receiver-side buffering. Despite these draw-
backs, currently a dominant share of multimedia traffic is being delivered using
HTTP/TCP [11].

2.2 Video buffering

Most of the HTTP players are able to concurrently play and download the same
file. In the simplest case, the player fills its internal buffer at the beginning of video
transmission and starts video playback as soon as a minimum buffer level is achieved.
While simultaneously playing and downloading the content, the amount of video
data in the buffer is variable and depends mainly on the download bandwidth, video
bitrate and video playing rate. When the download bandwidth is larger than the
video rate the buffer grows. In the opposite case, the buffer will shrink, and if the
situation lasts long enough the buffer may also run out. In such cases, the video
stalls and the player waits until the buffer will be refilled again. The buffer size has
to be large enough to increase the probability that the desired video quality can
be achieved. However, in the current practice, there does not exist any systematic
guidelines for the dimensioning of the receiver buffer and smooth play-out is usually
insured through over-provisioning.

Approaching the problem from a mathematical point of view, we can assume that
G(t) represents the number of bytes generated at an HTTP server by time t, Fig. 1.
The bytes are generated with a transmission rate limited only by the TCP throughput
r in (1). The first data is generated at time 0 and sent immediately to a client. Let
A(t) denote the number of bytes arriving at the client by time t and B(t) denote the
number of bytes played by the client by time t. Since the transmission rate is limited
by the generation rate at the server, we have A(t) ≤ G(t). Bytes arriving before their
playback time are denoted as early data. At time t, the number of the early bytes
is counted as N(t) = A(t) − B(t). A negative value of N(t) indicates that the data
arrival is delayed in relation to its playback time by −N(t) bytes. For a smooth video
playback, it is necessary that all bytes, from which a video frame is built, arrive at a

Multimed Tools Appl

Fig. 1 Player buffer
occupancy in the time function

client before the time of rendering the frame. Thus, for smooth playing, N(t) should
not only be a positive value, but it should also fulfil the requirement

N(t) ≥ M(tp), (2)

where M(tp) is the number of bytes in the player buffer needed to play the first tp

seconds of a video.
During the streaming there can be many time periods �ti for which the value of

N(�ti) − M(tp) is negative. In this work, we try to answer the question “what is the
value of

∑
i �ti/t and i, i.e. the total video stall time in a relation to video clip length

and the number of stalling events for several video files transmitted from a HTTP
server subjected to adverse network conditions?”

2.3 Video playing strategies

For our experiment we chose two applications capable of playing HTTP streamed
video: the Adobe Flash Player and a HTML5 based player. The first, henceforth
referred to as the Flash, is a proprietary browser plug-in dedicated to displaying Flash
content and playing streamed Flash video. The second, henceforth referred to as
the HTML5, supports videos that do not require any proprietary plug-ins, and run
directly within a web browser.

When streaming with the Flash, it basically behaves like a simple HTTP player
described above, i.e. it starts the video playback as soon as a minimum buffer
level is achieved. However, due to the flexibility of the Flash authoring platform,
the buffering functionality is additionally improved by the client-side ActionScript
code. This enhancement, called a dual-threshold buffering, should make the standard
buffering process more robust against bandwidth drops or other adverse network
conditions, as well as it should allow the player to exploit a sudden increase of
bandwidth. In the dual-threshold buffering, the playback of a video file starts when
the first threshold in the buffer is filled with a given amount of data. This phase is
also called initial buffering. However, the dual-threshold strategy, instead of trying
to keep the buffer full to this level, tries to fill the buffer to a second, higher level. This

Multimed Tools Appl

Fig. 2 Firefox playback
(re-)start decision algorithm

additional data may be useful later, if the network connection encounters temporary
impairments such as bandwidth drops or fluctuations. The video play-out can start
after a short pre-loading time and the excess bandwidth can be used to build a bigger
reserve of data to counteract the likelihood of future network malfunctions. The
details of the strategy are provided in [26].

In the case of HTML5 streaming, the playing strategy is implementation specific.
The W3C HTML5 specification [18, Section 4.8] states, that in the case of autoplay
“the user agent [...] will automatically begin playback of the media resource as
soon as it can do so without stopping.”. To approximate this difficult to fulfil
condition, every implementation differs. We investigated the implementation of
this specification by the Firefox because its code is an open source; therefore, the
behaviour can be studied not just by observing network traces, but also by reading
the sources.

The algorithm in the Firefox is summarised in Fig. 2 and Table 1. Rather than
using static thresholds, it facilitates moving averages to estimate the development of
the transmission rate. It does not differentiate between the initial video start-up time
and intermittent buffering events. In the case when the two-second moving average
sMA of transmission speed is higher than the two-second moving average vMA of
the video bitrate, the video will be started or resumed if the player buffer initially
contains at least 20 s of video data tp (2) or the amount of time b T spent in the non-
playing buffering state playback is at least 20 s. In the opposite case, when the moving
average of transmission speed is less or equal to the moving average of the video
bitrate, the video will be started or resumed if the player buffer initially contains at
least 30 s of video data or the amount of time spent in non-playing buffering state
playback is at least 30 s. As one can notice, such implementation may require large
playback buffers due to the chosen high video buffering amounts, but could also
result in very few stalling events.

The parameter M(tp) defined in (2) is strictly related to an application playing
strategy and can have a different value, which also can change during the time of
the video play. Depending on the application used for video streaming, e.g. Flash,
HTML5 or Silverlight, an HTTP server employs different streaming strategies that
produce traffic patterns ranging from ON-OFF cycles to bulk TCP transfer [14].

Table 1 Variables involved in
buffering decisions

Variable Explanation

sMA Moving average of the transmission speed, set to 2 s.
vMA Moving average of the video bitrate, set to 2 s.
c Condition upon which to start/resume playback.
tp Amount of video data the buffer contains (seconds).
b T Amount of time spent in non-playing buffering state.

Multimed Tools Appl

3 Previous works

Many of the earlier studies of video streaming works have assumed that the underly-
ing transport protocol is UDP (or RTP over UDP), which significantly simplified the
design, evaluation and modelling of video streaming applications e.g. [7] or [32]. A
major research area, related to this work, concerns the analysis and characterization
of streaming services in the Internet. Many works in this field started in the last two
decades of the twentieth century, and focused among others on the characterization
of videos on the Web [2], the users’ video access statistics [3], developing UDP-
based streaming protocols, and providing mechanisms for TCP-friendliness and loss
recovery e.g. [15, 25].

When we concentrate on the HTTP video, some related works aim to evaluate
the performance of video streaming systems over HTTP and TCP. Cicco et al. [12]
investigated the performance of the Akamai HD Network for Dynamic Streaming
for Flash over HTTP. Wang et al. [30] developed discrete-time Markov models to
investigate the performance of TCP for both live and stored media streaming. They
showed that TCP provided good streaming performance when the achievable TCP
throughput was about twice the media bitrate, with only a few seconds of delay
experienced on the start.

Focusing on the YouTube, several measurement studies have been reported
in literature in the last few years. These works focused on characterizing various
aspects of the YouTube videos and their usage patterns. On the one hand, we have
articles based on user traffic trace analysis including deep packet inspection e.g.
[16, 23, 24, 34]. Their authors operated on the real world measurements obtained
from e.g. ISPs’ networks and they characterized video popularity, durations, size and
playback bitrate, as well as usage pattern statistics such as day versus night patterns or
traffic volume. Additionally, in [16] the investigation of the YouTube users’ sessions
statistics was presented. In [24] the authors presented a traffic characterisation of
Netflix and YouTube, then they identified different streaming strategies also deriving
a model for the aggregate traffic generated by these services. Plissonneau et al.
in [23] described the impact of YouTube traffic on a the French regional ADSL
point of presence, revealing that the YouTube video transfers are faster and larger
than other large Web transfers. On the other hand, there are publications based
on crawling the YouTube site for an extended period of time [1, 9, 10]. These
works examined the video popularity and the users’ behaviour and found that
statistics such as length, access patterns, growth trend, and active life span were
quite different compared to traditional video streaming applications. Furthermore,
in [9] information directly available from YouTube servers was used to analyse
the characteristics of videos served by the YouTube, while [10] investigated social
networking in the YouTube videos. Also Abhari and Soraya in [1] investigated
the YouTube popularity distribution and access patterns through the analysis of a
vast amount of data collected by crawling the YouTube API. On the basis of the
observations, the authors presented essential elements of the tool for emulating a
variety of system workloads.

A global study of user experience for the YouTube videos using PlanetLab nodes
from all over the world is performed in [21]. The results from this analysis show that
on average there are about 2.5 pauses per a video file and on average 25% of the
videos with pauses have the total pause time greater than 15 s. In [6] the authors

Multimed Tools Appl

presented a characterisation of the traffic generated by YouTube and proposed a
server traffic generation model.

The closest work to our work is [8] where the authors evaluated the respon-
siveness of adaptive HTTP algorithms under variable network conditions which
included varying delays, available bandwidth, cache response times and interaction
with competing traffic. The authors claimed that the performance of the streaming
algorithm increased with the decrease of network delay. They experimented with
providing information to the client, particularly about the achievable throughput,
which balanced the noisiness of measurements and enhanced the ability of the client
to accurately estimate the throughput.

4 Experiments

In order to analyse the performance of buffering strategies of HTTP video players
and their robustness in varying network conditions, we prepared a controlled and
isolated environment for our tests, which was presented in Fig. 3. The analyses were
conducted in two steps. In the first step, we simulate the network environment
between a HTTP server and its end user. The experiments are performed in the
OMNeT++ simulator [28] supported by the INET framework [29] which imple-
ments the Internet protocol stacks, among others the TCP Reno which we use in our
experiments. We transmitted three video files through the simulation environment
and parametrised the network characteristics: delay, bit error rate, packet loss and
available throughput. The output of this step is a video transmission record which
includes the times and sizes of the downloaded video segments.

In the second step, the transmission record and the frame characteristics are used
to feed models in a media playback emulation process in order to calculate the
playback buffer fill level for every point in time during the playback. Similarly to [21],
we analyse the video file assembled from received packet payload. In this process, the
player forms frames from the received video data. Each of the formed frames has a
specified relative time at which the frame should be played in relation to the time of

Fig. 3 Simulation environment

Multimed Tools Appl

Table 2 Videos used during
the experiments

Name Kbps Resolution

High bit rate (high definition) 3,177 1920 × 1080
Medium bit rate 871 854 × 480
Low bit rate 312 400 × 226

the first frame formed from the data stream. This investigation allows us to realize
how much of the data is required to smoothly play each frame of the video without
delays or interruptions. The models are implemented as Python scripts and imitate
the behaviour of the Flash and the HTML5 video player behaviour. As an outcome,
the models generate statistics of user-perceivable artifacts such as re-buffering events
that occur during the playback. The above two steps were repeated five times for
each video, and the computation results were made average in order to minimise
measurement inaccuracies and increase the randomness of the simulation output.

For our experiment, we used a 92 s video file encoded in three different bit
rates: 3177 Kbps, 871 Kbps and 312 Kbps. In the rest of the paper, we call these
encodings respectively high, medium and low bit rate, see also Table 2. According to
the YouTube Press Room, as of the year 2012 10 % of its video are available as high
bit rate or high definition videos. We used a single video clip called “Android 3.0
Preview” downloaded from YouTube service.1 The Flash video version of the clip
was encoded using H.264/MPEG-4 Part 10 coder and delivered in the Flash Video
(FLV) file format while for the HTML5 version VP8 coder and WebM file format
were used. Both encoded versions have 25 frames per second.

For all experiments, the default values for network parameters are: 10 Mbps
upload and download bandwidth, 2 ms delay between a host and a client, no packet
loss and no error transmission. In every performed experiment, we manipulate one
single parameter from the above list while other three parameters are set to their
default values.

4.1 Quality measures

From the user’s perspective, the key performance characteristic of a network is
the quality of experience (QoE) of received multimedia content. In the context of
HTTP streaming, a reliable transport protocol such as TCP is assumed, and thus
video data will not be lost. However, there may be play-out interruptions caused by
either bandwidth fluctuations or long delays due to retransmissions after packet loss.
Furthermore, when reduced network throughput is lower than the playback rate and
the buffer will drain, the video playback will pause and wait for new video data. A
user expects that delays resulting from content buffering will be minimised and do
not occur during normal video play. Any play-out interruptions are annoying to the
end users and should be taken into account when estimating the QoE.

The QoE, based on popular methods reflecting the human perception, is a
subjective assessment of multimedia quality. A user is usually not interested in
performance metrics like packet loss probability or received throughput, but mainly
in the current quality of the received content. However, the quality assessment is

1http://www.youtube.com/watch?v=hPUGNCIozp0

http://www.youtube.com/watch?v=hPUGNCIozp0

Multimed Tools Appl

time-consuming and cannot be done in real time; therefore, we concentrate on these
parameters which we believe impact the QoE at most. We took inspiration from
objective methods of measuring the QoE proposed amongst others in [31] which for
the assessment takes into account video interruptions. Other existing approaches,
like [33], usually take into account full original video as a reference which can be very
costly. Thus, to characterise the relationship between the application QoS and user’s
QoE, for our purpose, we use two measures for HTTP videos. The first measure of
the application QoS takes into account relative total stalling time experienced by a
user and is defined as:

SR =
∑

i

�ti/T, (3)

where ti are times for which N(�ti) − M(tp) defined in (2) has negative value and
T denotes a total duration of the video file when played without interruptions. As
the above measure is the ratio of total stalling time to the the video duration, it is
desirable to minimise its value by an ISP.

The application QoS defined in (3) did not differentiate between the cases in
which a user can experience one long stalling period �tl or several shorter stalling
periods �ts where �tl = ∑

i �ts
i . Thus, in our analysis we also use a second, comple-

mentary measure which quantify the number of re-buffering events i associated with
every stalling period:

RE =
∑

i

1. (4)

In our experiment, every video playing scenario has at least one re-buffering event
which is a result of initial buffering. The initial buffering is used to accommodate
throughput variability or inter-packet jitters happening at the beginning of the video
play. Some streaming strategies may achieve more smoother streaming with larger
initial buffering; nonetheless, it increases the start-up latency of received video
content. This problem is the part of a more general topic dealing with waiting times
before service consumption and interruptions during the consumption. Although, the
subject has been studied for several decades in the domain of market research, in the
context of Internet video services it is rather recent issue [13, 19]. The re-buffering
which takes place in the middle of video playback is usually a consequence of the
congestion avoidance algorithm of TCP [5].

In our analysis, we compared the SR (3) and the RE (4) of the earlier mentioned
buffering algorithms: the Flash, HTML5 and simple buffering strategy (Simple). The
last strategy assumes that the algorithm always starts playback as soon as any data
is available in the buffer. This means that if the player is currently stalling and a
complete frame becomes available in the buffer, playback will immediately restart
and the frame will be shown, even if this means stopping the playback after that frame
again. Such player behaviour results in the lowest required buffer space. Moreover,
playing the video as soon as possible gives the fastest end. Hence the Simple strategy
gives the lowest SR and an upper limit for the number of stalls occurring. Conversely,
the best way to minimise the number of stalls is to wait for the entire file to be
downloaded. The Simple strategy is rather not employed in practice, and in our
comparison, we treat is as a kind of a benchmark for the two others strategies.

Multimed Tools Appl

5 Results

5.1 Delays

The delay experienced by video content consists of two components: delay intro-
duced by a network, which is the time it takes a data packet to travel from a sender
to a receiver; and TCP-level delay, which is a consequence of how the TCP reacts
to fluctuations in effective network throughput. The throughput fluctuations are
usually the consequence of network congestion; however, they may also occur due to
application-level flow control. As results of our experiments, we obtained statistics of
buffer occupancy as a function of time. An exemplary trace of the buffer occupancy
for one of our examined video transmission, which uses the Simple strategy, is
presented in Fig. 4. We may notice that with increasing packet delay the buffer
occupancy, measured as video playback time, is decreasing and re-buffering events
happen more often. When the packet delay is 50 ms, there is only one stalling event
at the beginning of the video transmission. However, when the delay rises to 200 ms,
watching the video is rather inconvenient due to the frequent buffer under-runs.
When re-buffering events occur, the video playing times lengthens and consequently
the total playing time also exceeds the original video length. Further experiments
concerned the statistics of buffer occupancy in the context of application QoS for
which measures were defined in (3) and (4).

As is shown in Fig. 5, packet delay has a certain influence on application QoS,
which is defined as the SR in (3). Gradually increasing packet delay from 0.04 s to
1.28 s causes a successive rise of the SR from less than 1 % to nearly 1000 % in
the case of high bit rate video. Performance of both the Flash, Fig. 5a, and HTML5,
Fig. 5b, is quite similar; however, we can notice minor differences. In the case of
Flash strategy, the increase of the SR from 0.04 s up to 0.16 s causes slow grow of
the SR for all three examined videos; still in the case of the HTML5 strategy the SR
remains constant for the low bit rate video in the above delay range. Furthermore,
the buffering strategy used in the HTML5 handles the high and medium low bit rate
video slightly better when the delay is less than 0.32 s. The medium and low bit rate
video have nearly identical performance for the Flash strategy when the packet delay
is less than 0.32 s. In the case of HTML5, the medium and low bit rate video react
similarly for the packet delay up to 0.48 s with an exception of the packet delay equal
to 0.16 s. Generally, in the all cases, the delay lower than 0.16 s results in the SR
below several percent, which can be considered as a safe value, acceptable by the end

Fig. 4 Player buffer
occupancy as a function of
time, the Simple strategy.
Simulation parameters: packet
loss = 0 %, BER = 0, network
throughput = 10 MBps

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

oc
cu

pa
nc

y
[s

]

Time [s]

Buffer occupancy in time

50 [ms]
100 [ms]
200 [ms]

Multimed Tools Appl

 1

 10

100

1000

0.04 0.08 0.16 0.32 0.64 1.28

S
ta

lli
ng

 r
at

io
 [%

]

Packet delay [s]

QoS vs. delay, Flash

High bit rate
Medium bit rate

Low bit rate

(a) Flash

 1

 10

100

1000

 0.04 0.08 0.16 0.32 0.64 1.28

S
ta

lli
ng

 r
at

io
 [%

]

Packet delay [s]

QoS vs. delay, HTML5

High bit rate
Medium bit rate

Low bit rate

(b) HTML5

Fig. 5 The influence of network delay on the stall ratio. Simulation parameters: network through-
put = 10 MBps , packet loss = 0 %, BER = 0

users. After exceeding the above mentioned delay threshold, the SR raises rapidly,
especially for the high bit rate video.

When it comes to the measuring of the RE, for all of the analysed cases there is
at least one re-buffering event, which exists at the beginning of the video play. Any
further interruption during the video play will make the video play unfavourable
for the users. According to our experiments, in order to fulfil such conditions, the
maximum delay for all video types should not exceed about 0.16 s in the case of
the Flash, Fig. 6a, and 0.24 s for HTML5, Fig. 6b. When we exclude the high bit
rate video from our comparison, the delay upper limit can increase to 0.32 s. Both
the Flash and HTML playing strategies behave more or less alike in the most cases.
The HTML5 strategy is characterized by the lower RE when the packet delay is
higher than 0.32 s with an exception of the high video bit rate for the packet delay
equal to 1.28 s.

5.2 Transmission errors

Transmission errors can be measured as bit error rate (BER) which is defined as a
ratio of the number of erroneous bits to the number of transmitted bits. The BER
quantifies the reliability of the entire radio system including the electronics, antennas
and signal path between a sender and a receiver. With a strong signal and a clear
signal path, the BER value is relatively low. Nevertheless, it becomes significant

 0

 5

10

15

20

 0.04 0.08 0.16 0.32 0.64 1.28

R
e-

bu
ffe

rin
g

ev
en

ts

Packet delay [s]

QoS vs. delay, Flash

High bit rate
Medium bit rate

Low bit rate

(a) Flash

 0

 5

10

15

20

 0.04 0.08 0.16 0.32 0.64 1.28

R
e-

bu
ffe

rin
g

ev
en

ts

Packet delay [s]

QoS vs. delay, HTML5

High bit rate
Medium bit rate

Low bit rate

(b) HTML5

Fig. 6 The influence of network delay on the re-buffering events. Simulation parameters: network
throughput = 10 MBps , packet loss = 0 %, BER = 0

Multimed Tools Appl

 0

 1

 10

100

1000

10-8 10-7 10-6

S
ta

lli
ng

 r
at

io
 [%

]

Bit error rate

QoS vs. BER, high bit rate

Flash
HTML5
Simple

(a) High bit rate

 0

 1

10

100

10-8 10-7 10-6

S
ta

lli
ng

 r
at

io
 [%

]

Bit error rate

QoS vs. BER, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

 0

 1

 10

10-8 10-7 10-6

S
ta

lli
ng

 r
at

io
 [%

]

Bit error rate

QoS vs. BER, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 7 The influence of transmission errors on the stalling ratio. Simulation parameters: network
throughput = 10 MBps, packet loss = 0 %, packet delay = 0.02 s

when we wish to keep a sufficient signal-to-noise ratio in the presence of imperfect
transmission which usually takes place when a propagation medium is a wireless link.
A high level of the BER can have a devastating effect on the network leading to
retransmission and as a consequence limiting the throughput, thus reducing QoS of
the streamed video.

In wired networks, random BER is negligible, and congestion is the main cause
of packet loss. In contrast to the fibre optical or copper wired links, wireless links
use open air for transmission. This kind of medium is subjected to a whole range
of uncontrollable quality-affecting factors including different weather conditions,
physical obstacles, multi-path interferences and the mobility of wireless devices
users. Consequently, wireless links are characterised by relatively higher BERs
compared to the wired links.

In the case of streaming HTTP video, the value of the BER should not exceed
4 × 10−8 for high bit rate video, Fig. 7a. Increasing the BER from 4 × 10−8 to 10−6

results in dramatic incrementation of the SR value, which reaches nearly 1000 in the
most extreme case. The difference in performance between the Flash and HTML5
strategies in handling the BER is nearly non-existing. Only for the BER in the range
between 8 × 10−8 and 10−7 the difference between these two strategies are clearly
visible. Both the above mentioned strategies have poorer results compared to the
Simple strategy. Furthermore, after the BER exceeds 4 × 10−8, the RE starts to rise
achieving a value of two for the BER equal to 8 × 10−8 for the Flash and HTML5
strategies, Fig. 8a. When the BER rises to 4 × 10−7, the RE for the Flash strategy
stabilises in the range between about 11 and 15. For the BER values between 10−7

 1

 10

100

1000

10-8 10-7 10-6

R
e-

bu
ffe

rin
g

ev
en

ts

Bit error rate

QoS vs. BER, high bit rate

Flash
HTML5
Simple

(a) High bit rate

 1

10

100

1000

10-8 10-7 10-6

R
e-

bu
ffe

rin
g

ev
en

ts

Bit error rate

QoS vs. BER, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

 1

 10

10-8 10-7 10-6

R
e-

bu
ffe

rin
g

ev
en

ts

Bit error rate

QoS vs. BER, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 8 The influence of transmission errors on the re-buffering events. Simulation parameters:
network throughput = 10 MBps, packet loss = 0 %, packet delay = 0.02 s

Multimed Tools Appl

and 8 × 10−7 the RE for the HTML5 is slightly lower compared to the Flash strategy;
however, with the increasing BER beyond 10−6 the Flash somewhat outperforms the
HTML strategy.

Taking into account the medium bit rate video, we observe a high increase of the
SR, Fig. 7b, and a moderate increase of the RE, Fig. 8b, when the BER is more than
4 × 10−7. For the BER value set to 8 × 10−7, the SR for the medium bit video rises
to values between about 10 % and 25 % depending on the play-out strategy. The
Flash outperforms little the HTML5 strategy when the BER is between 8 × 10−7 and
10−6. The situation is reversed when it comes to measuring the RE: HTML5 strategy
performs better in the above mentioned range. The HTML5 superiority may also be
noticed when the BER achieves 2 × 10−6. Traditionally, the Simple strategy shows
its advantage in the case of the SR behaviour; still, in the terms of the RE measure,
the Simple lags behind the Flash and HTML5 strategies.

The low bit rate video is quite resilient to transmission errors and tolerates
BER up to 10−6. Beyond this value, the SR, Fig. 7c, and the RE, Fig. 8c, start to
grow slowly. There are little differences in the SR between the Flash and HTML5
strategies for the BER higher than 10−6; nevertheless, in the case of the RE, both
strategies experience only a single re-buffering event, whereas the Simple strategy
experiences two re-buffering events.

To sum up, we can observe differences between the Flash and HTML5 strategies
for certain ranges of the BER; however, these differences tend to disappear with the
increase of the BER. The Simple strategy obtains clearly worse results compared to
the Flash and HTML5 strategies in terms of the RE. For the high and medium bit
rate video the number of re-buffering events can be 10 to 100 times higher compared
to the two other strategies. Such results show that simple playing strategies are not
sufficient to mitigate some of the network flaws and impairments. Even if for simple
strategies the SR is lower in comparison to the strategies used in professional video
players, the other QoS measure, the number of re-buffering events, indicates that
these strategies do not fulfil their role.

5.3 Packet loss

In wired networks, packet loss is caused primarily by network congestion. However,
in the case of wireless infrastructure, the responsibility usually depends on the
irrecoverable errors in data transmission manifested by high BER values, which
lead to the corrupted packets rejected in-transit. Less common causes of packet loss
are faulty networking hardware and the malfunction of network drivers or routing
procedures. When transmitting HTTP video in the event of packet loss, any segments
of data that have not been acknowledged are resented. Retransmitting missing data
naturally causes less efficient utilisation of network throughput.

In the situation when the high bit rate video is transmitted, even 0.1 % of packets
loss have a non-negligible impact on the SR for all playing strategies. As we can see in
Fig. 9a, both the Flash and HTML5 strategies perform quite alike for the whole range
of packet loss parameter with a small exception of the situation where the packet
loss is set to 0.1 %. In this situation, the Flash slightly outperforms the HTML5
strategy. Nonetheless, the HTML5 shows its superiority over the Flash strategy,
excelling in the RE measure for the whole packet loss parameter range, Fig. 10a. The
Simple strategy copes slightly better with it, compared to the two others strategies

Multimed Tools Appl

 0

 1

 10

100

1000

 0 0.2 0.4 0.6 0.8 1

S
ta

lli
ng

 r
at

io
 [%

]

Packet loss [%]

QoS vs. packet loss, high bit rate

Flash
HTML5
Simple

(a) High bit rate

0.20

0.40

0.60

0.80

1.00

1.20

1.40

 0 0.2 0.4 0.6 0.8 1

S
ta

lli
ng

 r
at

io
 [%

]

Packet loss [%]

QoS vs. packet loss, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

0.50

1.00

1.50

2.00

2.50

 0 0.2 0.4 0.6 0.8 1

S
ta

lli
ng

 r
at

io
 [%

]

Packet loss [%]

QoS vs. packet loss, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 9 The influence of packet loss on the stalling ratio. Simulation parameters: network through-
put = 10 MBps, BER = 0, packet delay = 0.02 s

when assessing the SR; nevertheless, it is also prone to packet loss. Furthermore, a
significant number of re-buffering events are experienced.

After switching the video bit rate to medium, the SR drops significantly and
remains at a very low level for all the examined packet loss scope, Fig. 9b. The
relative performance of the playing algorithms is similar to their performance
observed in the case of the high bit rate video: the Flash and HTML5 behave quite
alike. Simultaneously, the Simple strategy slightly outperform them. Considering the
number of re-buffering events, the medium bit rate video is hardly affected by the
packet loss, Fig. 10b. Only in the case of the Simple algorithm, there are two re-
buffering events, which indicate that somewhere in the middle of the streamed video
a stalling event occurred.

The quality of the low bit rate streaming is comparable with that presented for
the medium bit rate video. There are minor differences between the SR for all three
playing strategies, Fig. 9c. In terms of the RE, the behaviour of the playing strategies
is exactly the same as in the case of the medium bit rate case: the Flash and HTML5
have one re-buffering event while the Simple strategy experiences two re-buffering
events, Fig. 10c. Taking into account the robustness of the medium bit rate video
against the packet loss, such results for the low bit rate video should not be surprising.

5.4 Throughput

According to [30], TCP streaming generally provides good performance when the
available network bandwidth, and thus the achievable TCP throughput, is roughly

 1

 10

100

1000

 0 0.2 0.4 0.6 0.8 1

R
e-

bu
ffe

rin
g

ev
en

ts

Packet loss [%]

QoS vs. packet loss, high bit rate

Flash
HTML5
Simple

(a) High bit rate

0.50

1.00

1.50

2.00

2.50

 0 0.2 0.4 0.6 0.8 1

R
e-

bu
ffe

rin
g

ev
en

ts

Packet loss [%]

QoS vs. packet loss, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

1.00

2.00

 0 0.2 0.4 0.6 0.8 1

R
e-

bu
ffe

rin
g

ev
en

ts

Packet loss [%]

QoS vs. packet loss, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 10 The influence of packet loss on re-buffering events. Simulation parameters: network
throughput = 10 MBps, BER = 0, packet delay = 0.02 s

Multimed Tools Appl

 0

 1

 10

100

1000

10000

0.25 0.5 1 2 4 8

S
ta

lli
ng

 r
at

io
 [%

]

Throughput [Mbps]

QoS vs. throughput, high bit rate

Flash
HTML5
Simple

(a) High bit rate

 0

 1

10

100

1000

0.25 0.5 1 2 4 8

S
ta

lli
ng

 r
at

io
 [%

]

Throughput [Mbps]

QoS vs. throughput, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

0.10

1.00

10.00

100.00

0.25 0.5 1 2 4 8

S
ta

lli
ng

 r
at

io
 [%

]

Throughput [Mbps]

QoS vs. throughput, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 11 The influence of network throughput on the stalling ratio. Simulation parameters: packet
loss = 0 %, BER = 0, packet delay = 0.02 s

twice the video bitrate, with only a few seconds of start-up delay. However, our
study shows that the statement made in [30] is alleviated, and the throughput
requirements are reduced. The lower requirements for the network throughput are
the results of improvements in TCP, the larger video player buffers and the better
playing strategies.

Figures 11 and 12 show the dependency between the SR, RE and the throughput
ranging from 256 Kbps up to 8 Mbps. Regarding the high bit rate video, the SR is
quite high when the throughput is below 3 Mbps. Above this threshold, the SR
drops below 5 %, which we can consider as an acceptable value, Fig. 11a. All
the three strategies behave nearly identically for the whole throughput parameter
scope. Furthermore, the throughput reduction beyond 3 Mbps causes an increase of
the RE for all the buffering strategies, Fig. 12a. When the throughput is between
about 0.75 Mbps and 2 Mbps, the HTML5 behaves better compared to the Flash
strategy; however, after the throughput drops below 0.5 Mbps, the Flash strategy
dominates.

The minimum network throughput for the medium medium bit rate should be no
less than 1 Mbps. Below this threshold, the SR grows significantly for all the three
strategies. The HTML5 strategy has the best performance when taking into account
re-buffering events, Fig. 12b. The Flash playing strategy is not much worse with
only several re-buffering events more compared to the HTML5 strategy. The Simple
strategy is the least resilient to network throughput. The number of re-buffering
events is dramatically high when the network throughput drops below 1 Mbps. The

 1

 10

100

1000

10000

0.25 0.5 1 2 4 8

R
e-

bu
ffe

rin
g

ev
en

ts

Throughput [Mbps]

QoS vs. throughput, high bit rate

Flash
HTML5
Simple

(a) High bit rate

 1

10

100

1000

10000

0.25 0.5 1 2 4 8

R
e-

bu
ffe

rin
g

ev
en

ts

Throughput [Mbps]

QoS vs. throughput, medium bit rate

Flash
HTML5
Simple

(b) Medium bit rate

1.00

10.00

100.00

1000.00

0.25 0.5 1 2 4 8

R
e-

bu
ffe

rin
g

ev
en

ts

Throughput [Mbps]

QoS vs. throughput, low bit rate

Flash
HTML5
Simple

(c) Low bit rate

Fig. 12 The influence of network throughput on re-buffering events. Simulation parameters: packet
loss = 0 %, BER = 0, packet delay = 0.02 s

Multimed Tools Appl

situation looks much better when the throughput rises to 1 Mbps and above, where a
user of the Simple strategy experiences only two re-buffering events.

The experiments reveal that for the low bit rate video, the bandwidth require-
ments are much lower; therefore the link throughput above 512 Kbps should be
sufficient for smooth video playing, Fig. 11c. Increasing the throughput beyond this
value significantly improves neither the SR nor the RE, Fig. 12c.

Generally, taking into account the video encoding rates listed in Table 2, the
streaming behaviour presented in Figs. 11 and 12 is logical and justified. The network
throughput below the video encoding rate should be insufficient for smooth video
streaming. Furthermore, the theoretical thresholds mentioned above are increased
by network protocols. In all cases, the network throughput exceeding 15% of the
video encoding rate is sufficient for a smooth video play-out which shows that
the requirements regarding the network throughput presented in [30] are not as
high. Nonetheless, that all the three playing strategies cannot satisfactorily handle
even a small limitation in the network throughput and the initial buffering strategy
implemented by the Flash and HTML5 may be not sufficient in this situation.

5.5 Results validation

To validate our results, parts of the simulation environment were replaced by
laboratory equipment. Instead of sending the video files between a server and a user
over TCP protocol stack implemented in OMNeT++/INET, the transmission is done
through a network emulation node using the built-in Linux Kernel module netem
[17], Fig. 13. The module provides functionality for testing protocols by emulating
the properties of wide area networks being capable of altering the network QoS
parameters such as delay distributions or a packet loss rate. In our validation, we
focused on the scenarios with parametrised packet delay and losses. We do not take
into account BER and throughput influence because such relation will be hard to
obtain in the network emulator. For the analysis, we selected high and medium
bit rated video played by the Flash and HTML5 strategies since for these clips the

Fig. 13 Laboratory environment used to validate the simulation results

Multimed Tools Appl

 1

 10

100

1000

 0.08 0.16 0.32 0.64 1.28

S
ta

lli
ng

 r
at

io
 [%

]

Packet delay [s]

QoS vs. delay, high bit rate

Flash, sim.
HTML5, sim.

Flash, real
HTML5, real

(a) Stalling ratio

 1

10

 0.08 0.16 0.32 0.64 1.28

R
e-

bu
ffe

rin
g

ev
en

ts

Packet delay [s]

QoS vs. delay, high bit rate

Flash, sim.
HTML5, sim.

Flash, real
HTML5, real

(b) Re-buffering events

Fig. 14 Simulation validation of high bit rate video subjected to network delay. Experiment
parameters: packet loss = 0 %, BER = 0, network throughput = 10 MBps

SR and RE measures generate a large range of values. Therefore such comparison
allows us to validate our model for a broad spectrum of produced results. In order
to eliminate potential observations that are numerically distant from the rest of the
obtained data, simulated and emulated scenarios were repeated five times, and the
results generated in every repetition were finally averaged.

When streaming the high bit rate video, the match between results generated by
the simulation and these generated in the laboratory environment are moderately
decent for both examined playing strategies, Fig. 14a. Furthermore, taking into
account a relative percentage deviation, the produced outputs of the simulation
and emulation are similar for most measurement points. The simulation model
overestimates the SR for about 20 %; the lowest error is achieved for packet delay
equal to 0.24 s while the highest deviations are observed for low values of this
parameter. Similar dependency between the simulation and emulation results can
be noticed when we consider the re-buffering events: the simulation model indicates
more stalling events than the emulation, Fig. 14b. The highest difference can be
observed for packet delay equal to 0.32 s for both Flash and HTML5 strategies. With
the increasing packet delay, the gap between the simulation end emulation for the
Flash strategy diminishes whereas it is rather constant in the case of the HTML5

 1

 10

100

1000

 0.08 0.16 0.32 0.64 1.28

S
ta

lli
ng

 r
at

io
 [%

]

Packet delay [s]

QoS vs. delay, medium bit rate

Flash, sim.
HTML5, sim.

Flash, real
HTML5, real

(a) Stalling ratio

 1

 10

 0.08 0.16 0.32 0.64 1.28

R
e-

bu
ffe

rin
g

ev
en

ts

Packet delay [s]

QoS vs. delay, medium bit rate

Flash, sim.
HTML5, sim.

Flash, real
HTML5, real

(b) Re-buffering events

Fig. 15 Simulation validation of medium bit rate video subjected to network delay. Experiment
parameters: packet loss = 0 %, BER = 0, network throughput = 10 MBps

Multimed Tools Appl

 0

 1

 10

100

1000

 0 0.2 0.4 0.6 0.8 1

S
ta

lli
ng

 r
at

io
 [%

]

Packet loss [%]

QoS vs. packet loss, high bit rate

Flash, sim.
HTML5, sim.
Flash, emu.

HTML5, emu.,

(a) Stalling ratio

 1

10

 0 0.2 0.4 0.6 0.8 1

R
e-

bu
ffe

rin
g

ev
en

ts

Packet loss [%]

QoS vs. packet loss, high bit rate

Flash, sim.
HTML5, sim.
Flash, emu.

HTML5, emu.

(b) Re-buffering events

Fig. 16 Simulation validation of high bit rate video subjected to packet loss. Experiment parameters:
packet delay = 0.02 s, BER = 0, network throughput = 10 MBps

strategy. Contrary to the SR comparison study, presented in Fig. 14a, the best match
between the simulator and emulator is achieved for low values of the packet loss.

The contrast between the simulation and emulation in an estimation of the SR
for the medium bit rate video, Fig. 15a, is lower than for the high video bit rate,
Fig. 14a. The difference in the assessment is quite satisfactory for low values of
packet delay. Especially for the HTML5 strategy performance, the differences are
observable when the value of the packet delay is higher than 0.32 s. The largest
deviation between the simulation and emulation may be noticed for the packet delay
equal to 0.64 s. As for the re-buffering events, Fig. 15b, for the packet delay up
to 0.32 s, the simulation and emulation models record only a single stalling event
and, as a result, there is a perfect match between the models. Once the packet delay
exceeds the value mentioned above, the match between the results deteriorates and
the simulation records one or two additional re-buffering events in comparison to the
emulation.

Taking into account the validation of the simulation model subjected to packet
losses, the simulation of both the Flash and HTML5 strategies overestimate the
output generated by the emulator for about 10–15 % for the packet loss equal
or above 0.5 %, Fig. 16a. The worst match is observed for lower values of the
examined parameter where the difference between the simulation and emulation
results reaches dozens of percent. There is also difference of one or two re-buffering
events between the outputs of simulation and emulation, Fig. 16b. This difference is
not directly related to the packet loss values.

6 Conclusions

In the paper, we analysed how network limitations, manifested as latency, transmis-
sion errors, packet loss and bandwidth caps, impact the quality of video streamed
through HTTP and TCP. For this purpose, we conducted a simulated evaluation of
video transmissions with a different bit rate denoted as high, medium and low bit
rate videos. We examined the QoS of an end user application, which was measured
as a function of playback buffer occupancy, investigating how long and how often
the video playback is stalled due to the buffer under-runs. The end user application

Multimed Tools Appl

implemented three different buffering algorithms and playing strategies: Flash,
HTML5 and Simple. In all the examined cases, we assumed that the simulated en-
vironment is isolated and there are no other network interferences (e.g. background
traffic) except these introduced and controlled by us.

In our analysis, we found minor differences in the buffering algorithms and some
inefficiencies in each of them. The performance of both Flash and HTML5 playing
strategies is quite similar for different video bit rate. Our research confirms also that
real-time application performance over TCP may not be as unsatisfactory as it has
been commonly believed [30].

In order to provide the satisfactory level of a high quality video for the end users,
the packet delay should be lower than 0.16 s regardless of the buffering strategy.
For medium and low quality video this requirement may be loosened and the delay
should not exceed respectively around 0.36 s and 0.48 s. Reducing the packet delay
below the above thresholds results in a relatively short stalling time and no stalling
events during the play of the video except the beginning of the play.

When transmitting high quality video, the bit transmission error rate (BER)
should not exceed 4 × 10−8. High quality video is also susceptible to packet loss: even
0.1 % packet loss greatly increases relative buffering times. In the case of medium
and low quality video, the BER should remain below 10−6, and even 1 % packet loss
does not degrade the video playback.

For smooth transmission of high quality video, network connection throughput
should have the bandwidth of at least 3 Mbps. Comfortable watching of medium
quality video can be achieved for connection throughput starting from 1 Mbps, and
512 Kbps in the case of low quality video transmission. Generally, in all cases, the
network throughput should exceed the video encoding rate for about 15 % what
indicates that the throughput requirements are lower than it was previously expected.

Employing admission control mechanism, ISPs may have a partial influence on the
above characteristics and therefore may be able to tune the quality of video transfer
and influence its users’ satisfaction. For example, an ISP may decide to deny network
resources to a new high bit rate video stream if the addition of its traffic would lead
to quality degradation for the already ongoing ows of other users. For this purpose,
the ISP may monitor its network characteristics and compare it with the parameters
thresholds proposed above.

The results obtained from the simulation were validated against laboratory ex-
periments, which involved streaming and measuring transmission characteristics of
real video files from a web server to a video client. We compared the stalling ratio
and a number of re-buffering events for the simulated video transmissions and the
transmissions of videos in laboratory environment, while manipulating with packets
delay and packet loss in the network. The comparison showed that the performed
simulation decently matched the modelled system; however, the produced results by
the simulation are usually too conservative.

Acknowledgements The research was partially supported by the National Science Centre (Poland)
under grant DEC-2011/01/D/ST6/06995.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

Multimed Tools Appl

References

1. Abhari A, Soraya M (2010) Workload generation for YouTube. Multimedia Tools Appl
46(1):91–118

2. Acharya S, Smith BC (1997) Experiment to characterize videos stored on the web. In: Proceed-
ings of SPIE, vol 3310, p 166

3. Acharya S, Smith B, Parnes P (2000) Characterizing user access to videos on the world wide web.
In: PROC SPIE INT SOC OPT ENG, vol 3969, pp 130–141

4. Alcock S, Nelson R (2011) Application flow control in YouTube video streams. ACM
SIGCOMM Comput Commun Rev 41(2):24–30

5. Allman M, Paxson V, Stevens W (1999) TCP congestion control. http://www.hjp.at/doc/rfc/
rfc5681.html. Accessed 18 Jan 2013

6. Ameigeiras P, Ramos-Munoz JJ, Navarro-Ortiz J, Lopez-Soler J (2012) Analysis and mod-
elling of YouTube traffic. Trans Emerg Telecommun Technol 23(4):360–377. doi:10.1002/ett.
2546/abstract

7. Apostolopoulos JG, Tan W, Wee SJ (2002) Video streaming: concepts, algorithms, and systems.
HP Laboratories, report HPL-2002-260

8. Benno S, Esteban JO, Rimac I (2011) Adaptive streaming: the network HAS to help. Bell Labs
Tech J 16(2):101–114

9. Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In: Proceedings of the 7th
ACM SIGCOMM conference on internet measurement, pp 1–14

10. Cheng X, Dale C, Liu J (2008) Statistics and social network of youtube videos. In: 16th interna-
tional workshop on quality of service, 2008. IWQoS 2008, pp 229–238

11. {Cisco} (2011) Global mobile data traffic forecast update, 2010–2015. Cisco Visual Networking
Index. White Paper

12. De Cicco L, Mascolo S (2010) An experimental investigation of the akamai adaptive video
streaming. In: HCI in work and learning, life and leisure, pp 447–464

13. De Pessemier T, De Moor K, Joseph W, De Marez L, Martens L (2012) Quantifying the influence
of rebuffering interruptions on the user’s quality of experience during mobile video watching.
IEEE Trans Broadcast PP(99):1–5. doi:10.1109/TBC.2012.2220231

14. Finamore A, Mellia M, Munafo M, Torres R, Rao SR (2011) YouTube everywhere: impact of
device and infrastructure synergies on user experience. Tech. rep

15. Floyd S, Handley M, Padhye J, Widmer J (2000) Equation-based congestion control for unicast
applications. SIGCOMM Comput Commun Rev 30(4):43–56. doi:10.1145/347057.347397

16. Gill P, Arlitt M, Li Z, Mahanti A (2007) Youtube traffic characterization: a view from the edge.
In: Proceedings of the 7th ACM SIGCOMM conference on internet measurement, pp 15–28

17. Hemminger S (2005) Network emulation with NetEm. In: Linux conf au, pp 18–23.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf

18. Hickson I, Hyatt D (2011) HTML5: a vocabulary and associated APIs for HTML and XHTML.
W3C Working Draft edition

19. Hofeld T, Egger S, Schatz R, Fiedler M, Masuch K, Lorentzen C (2012) Initial delay vs.
interruptions: between the devil and the deep blue sea. In: 2012 fourth international work-
shop on quality of multimedia experience (QoMEX), pp 1–6. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6263849

20. Khlifi H, Gregoire JC, Phillips J (2006) VoIP and NAT/firewalls: issues, traversal techniques,
and a real-world solution. IEEE Commun Mag 44(7):93–99. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1668388

21. Krishnappa DK, Khemmarat S, Zink M (2011) Planet YouTube: global, measurement-based
performance analysis of viewer;’s experience watching user generated videos. In: 2011 IEEE
36th conference on local computer networks (LCN), pp 948–956

22. Mathis M, Semke J, Mahdavi J, Ott T (1997) The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM SIGCOMM Comput Commun Rev 27(3):67–82

23. Plissonneau L, En-Najjary T, Urvoy-Keller G (2008) Revisiting web traffic from a DSL provider
perspective: the case of YouTube. In: Proc. of the 19th ITC specialist seminar

24. Rao A, Lim Y, Barakat C, Legout A, Towsley D, Dabbous W (2011) Network characteristics of
video streaming traffic. In: CoNEXT, Tokyo, Japan

25. Rejaie R, Handley M, Estrin D (1999) Quality adaptation for congestion controlled video
playback over the internet. ACM SIGCOMM Comput Commun Rev 29:189–200

http://www.hjp.at/doc/rfc/rfc5681.html
http://www.hjp.at/doc/rfc/rfc5681.html
http://onlinelibrary.wiley.com/doi/10.1002/ett.2546/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ett.2546/abstract
http://dx.doi.org/10.1109/TBC.2012.2220231
http://doi.acm.org/10.1145/347057.347397
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6263849
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6263849
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1668388
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1668388

Multimed Tools Appl

26. Sinergia P (2006) Implementing a dual-threshold buffering strategy in flash media server.
http://www.adobe.com/devnet/adobe-media-server/articles/fms_dual_buffering.html

27. Stockhammer T (2011) Dynamic adaptive streaming over HTTP: standards and design principles.
In: Proceedings of the second annual ACM conference on multimedia systems, pp 133–144.
http://dl.acm.org/citation.cfm?id=1943552.1943572

28. Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: Proceed-
ings of the 1st international conference on simulation tools and techniques for communications,
networks and systems & workshops. Article No. 60. ICST (Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering). Accessed 18 Jan 2013

29. Varga A, Hornig R. INET. inet.omnetpp.org
30. Wang B, Kurose J, Shenoy P, Towsley D (2008) Multimedia streaming via TCP: an analytic

performance study. ACM Trans Multimedia Comput Commun Appl (TOMCCAP) 4(2):1–22
31. Watanabe K, Okamoto J, Kurita T (2007) Objective video quality assessment method for eval-

uating effects of freeze distortion in arbitrary video scenes. In: Proceedings of SPIE, vol 6494,
p 64940P

32. Wu D, Hou YT, Zhu W, Zhang YQ, Peha JM (2001) Streaming video over the internet:
approaches and directions. IEEE Trans Circuits Syst Video Technol 11(3):282–300

33. You J, Reiter U, Hannuksela M, Gabbouj M, Perkis A (2010) Perceptual-based quality assess-
ment for audio visual services: a survey. Signal Process Image Commun 25(7):482–501

34. Zink M, Suh K, Gu Y, Kurose J (2009) Characteristics of youtube network traffic at a campus
network-measurements, models, and implications. Comput Netw 53(4):501–514

Arkadiusz Biernacki received the M.Sc. and Ph.D degree in Computer Science from the Silesian
University of Technology, Poland, in 2002 and Ph.D. 2007 respectively. From 2007 he is an Assistant
Professor at the Silesian University of Technology. From 2010 he has been collaborating with
Chair of “Future Communication” (endowed by Telekom Austria) at the University of Vienna. His
research interests focus on network traffic modelling and computer system simulations.

http://www.adobe.com/devnet/adobe-media-server/articles/fms_dual_buffering.html
http://dl.acm.org/citation.cfm?id=1943552.1943572
http://www.inet.omnetpp.org

Multimed Tools Appl

Kurt Tutschku is the Professor for Telecommunications Systems at the Blekinge Institute of
Technology, Karlskrona, Sweden. Before that, he had Chair of “Future Communication” (endowed
by Telekom Austria) at the University of Vienna (until February 2013) and worked from February
2008 to July 2008 as an Expert Researcher at the NICT (National Institute for Information
and Communication Technology, Japan). Furthermore, Kurt Tutschku was from August 1999 to
December 2007 an Assistant Professor at the Department of Distributed Systems of University of
Wuerzburg where he led the department’s group on Future Network Architectures and Network
Management. Kurt Tutschku has received a doctoral degree in Computer Science from University of
Wuerzburg in 1999 and completed his habilitation at the University of Wuerzburg in 2008. His main
research interest include future generation communication networks, Quality-of-Experience, and
the modelling and performance evaluation of future network control mechanisms and P2P overlay
networks.

	Performance of HTTP Video.pdf
	Performance of HTTP video streaming under different network conditions
	Abstract
	Introduction
	Video distribution
	Protocols
	Video buffering
	Video playing strategies

	Previous works
	Experiments
	Quality measures

	Results
	Delays
	Transmission errors
	Packet loss
	Throughput
	Results validation

	Conclusions
	References

	Title: Performance of HTTP Video Streaming Under Different Network Conditions
	Author: Arkadiusz Biernacki, Kurt Tutschku
	serial_title: Multimedia Tools and Applications
	pagination: 1143-1166
	issue: 2
	volume: 72
	Year: 2014
	doi: 10.1007/s11042-013-1424-x
	publisher: Springer US

