
IMA Journal of Mathematical Control and Information (2014) Page 1 of 23
doi:10.1093/imamci/dnt047

Generalized upper bounds on the minimum distance of PSK block codes

Efraim Laksman∗ and Håkan Lennerstad

School of Engineering, Blekinge Institute of Technology, Campus Gräsvik, Valhallavägen 1,
Karlskrona, Sweden

∗Corresponding author. Email: efraim.laksman@bth.se

and

Magnus Nilsson

Linnæus University, Kalmar Maritime Academy, Nygatan 18 B, Kalmar, Sweden

[Received on 2 October 2012; revised on 25 June 2013; accepted on 23 November 2013]

This paper generalizes previous optimal upper bounds on the minimum Euclidean distance for phase shift
keying (PSK) block codes, that are explicit in three parameters: alphabet size, block length and code size.
The bounds are primarily generalized from codes over symmetric PSK to codes over asymmetric PSK
and also to general alphabet size. Furthermore, block codes are optimized in the presence of other types of
noise than Gaussian, which induces also non-Euclidean distance measures. In some instances, codes over
asymmetric PSK prove to give higher Euclidean distance than any code over symmetric PSK with the
same parameters. We also provide certain classes of codes that are optimal among codes over symmetric
PSK.
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1. Introduction

Phase shift keying (PSK) is a commonly used signal constellation in data transmission and communi-
cation systems, where often Euclidean distance is the preferred distance measure. The purpose of the
present paper is to show how previously known bounds on the minimum Euclidean distance can be
generalized and improved in several ways. The bounds are dependent only on the alphabet size q, word
size n and code size |C|.

The PSK signal constellation corresponds to a rather fundamental mathematical-geometrical opti-
mization problem, in finding the minimum distance of a set of points in a universe equipped with a
specific multidimensional metric. This paper belongs to a line of research that develops the underlying
geometrical problem by extending Elias’ sphere argument in different ways. We claim that the approach
used allows a larger flexibility in how performance questions may be stated, investigated and improved,
as, for example, being useful for any distance measure—in this report we go beyond Euclidean distance
measure. A different distance measure simply gives different coefficients in the optimization. In this
paper, we present some improvements of this extension of Elias’ sphere argument alongside with the
main results, which are generalizations and improvements of upper bounds for the minimum Euclidean
distance.

Strictly, PSK means only that the signals used differ in phase, but neither in amplitude nor frequency.
If the phases used are evenly spread on the interval (−π , π ], i.e. the symbols are evenly spread on the
unit circle, we will refer to this constellation as symmetric PSK, as is common in the literature. Some
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(b)(a)

Fig. 1. Illustration of symmetric PSK and asymmetric PSK signal constellations.

research has been done on signal constellations where the symbols are unevenly spread on the unit
circle. In this paper, we consider distance uniform signal sets, i.e. signal constellations for which the set
of distances from one symbol to the others is the same for all symbols; which we refer to as asymmetric
PSK (sometimes the term ‘unbalanced’ is used). Note that the set of codes over symmetric PSK is a
subset of the set of codes over asymmetric PSK. The two signal constellations are illustrated in Fig. 1.

Elias has formed a method to find upper bounds on the minimum distance of block codes over dis-
tance uniform signal sets, where minimum distance is measured by an additive, translation-invariant
distance measure. This method has been used for several signal constellations, in particular for sym-
metric PSK, see Piret (1986). Note that for PSK, the distance of interest is often squared Euclidean
distance, since when assuming additive white Gaussian noise (AWGN), finding the codeword closest to
a signal will correspond to maximum likelihood (ML) decoding. For noise of some other distribution,
ML decoding will correspond to minimum distance decoding for some other distance measure. The
distribution of noise may be unknown, and even if it is known, the appropriate distance measure may
be impossible to find. In such cases, as an approximation of ML decoding, minimum distance decoding
may be used for some distance which does not give true ML decoding.

Elias’ method has been extended by the present authors in a series of reports (see Section 3). In the
extended results, the bounds are explicit in the parameters block length, alphabet size and code size, and
are tight in many cases, i.e. show several code classes to be optimal with respect to minimum squared
Euclidean distance.

The extension of Elias’ sphere argument for forming upper bounds on codes works when applied to
block codes over asymmetric PSK with additive and white noise; note that this noise does not need to be
Gaussian. This establishes previous results for symmetric PSK with AWGN in a far more general setting
(Theorems 4.3–4.5), as well as yields some qualitative results which are more than just generalizations
of previous results (Theorems 4.1, 4.2, Corollaries 4.1, 4.2). Secondly, a theorem which cannot be
generalized with respect to noise is generalized to the case of asymmetric PSK, while maintaining the
restriction of AWGN (Theorem 4.6).

The purpose of the paper is more theoretical than practical: to demonstrate new ways to improve
the bound. Even so there may be some future practical relevance. Improvements of minimum Euclidean
distance for PSK trellis codes by asymmetric modulation has been presented in Divsalar et al. (1987)
and Stüber & Katz (1995). For PSK block codes, it was shown in Bali & Rajan (1998) that there are
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multilevel codes with two levels for which minimum Euclidean distance can be increased by asymmetric
modulation. Bali & Rajan (1998, Example 6) shows an 8-PSK code of length 30 which is improved by
asymmetric modulation. To show that asymmetric modulation can be better than symmetric modulation
in general, not only for specific codes, two examples (Examples 5.1 and 5.2) are given of optimal block
codes over asymmetric PSK. Compared with any block code over symmetric PSK with the same block
length, code size and alphabet size, these codes have higher minimum Euclidean distance. These two
examples are only of theoretical interest, as the codes are too short for practical use. While finding
optimal codes for symmetric as well as asymmetric modulation may be beyond reach, and thus difficult
to compare, these examples indicate that asymmetric modulation should not be outright spurned.

Asymmetric modulation has also been discussed for other purposes than achieving high minimum
Euclidean distance. In Isaka et al. (2000), asymmetric modulation is used for unequal error protection
and in Zhang et al. (2009) asymmetric modulation is used for minimizing the bit error rate.

Bounds for minimum Euclidean distance of codes over asymmetric PSK, which are asymptotic in n
are described in Rajan & Viswanath (2003) and Viswanath (2004), while the present bound is explicit
in n. The assumption of Euclidean distance is motivated by the AWGN-channel assumption.

An asymptotic bound on the minimum distance of codes over asymmetric PSK (without the restric-
tion that the signal set is distance uniform) was presented in Wyner (1987).

The following improvements are presented for the bound on the minimum Euclidean distance for
PSK coding, compared with previous work (Nilsson & Lennerstad, 2000, 2005; Nilsson et al., 2008;
Laksman et al., 2009a,b, 2010):

1. Bounds are generalized to codes over more general modulation: from symmetric PSK to also
include asymmetric PSK (Theorem 4.4).

2. The bound is tightened in Theorem 4.5 by using the bound of Theorem 4.4 as an upper limit and
exploiting symmetry properties.

3. For all types of PSK considered, the bounds are generalized from squared Euclidean distance to
additive translation-invariant distance measures (Theorems 4.4 and 4.5). This provides an upper
bound on the minimum distance for codes that more efficiently exploit the statistical properties
of the noise.

4. Specific codes over asymmetric PSK are provided that have higher minimum Euclidean distance
than any comparable codes over symmetric PSK, although they are codes of very short block
lengths (Example 5.1 and Example 5.2), and of theoretical value only.

5. In the set of codes over symmetric PSK, we demonstrate for certain code classes that they are
optimal in the sense that they have highest possible minimum Euclidean distance with given
parameter values q, n and |C|, since their minimum Euclidean distance in these cases coincides
with the bound (see Examples 5.3–5.7).

This means that results 1 and 3 are generalizations of the bound in previous papers, while 2 is an
improvement of the bound. The results 4 and 5 demonstrate the relation between concrete codes and the
bound.

Elias’ sphere argument has been modified by allowing a different distance measure in the critical
sphere—a so-called inner distance measure. It has turned out that a tighter bound on the Euclidean dis-
tance measure—the outer distance measure—can be derived by optimizing the inner distance measure.
As Elias did, we regard the set of codewords in the critical sphere as rows in a matrix, and then switch
to column view. Finding extremal codeword sets then translates into finding extremal columns.
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4 of 23 E. LAKSMAN ET AL.

This paper contributes to the extension of Elias’ sphere argument with the following results:

1. If the outer distance measure is a metric, then the inner distance measure which yields the best
bound is the outer distance measure (Corollary 4.1).

2. We present simple conditions to check whether a generalized p-Gaussian induced distance mea-
sure (see Definition 2.2 and the comments following it) is a metric on a PSK signal constellation.
We get one condition for asymmetric PSK (Theorem 4.2) and an easier one for symmetric PSK
(Corollary 4.2).

3. For an extremal column x, we always have d2
E(x) � 4 (Theorem 4.6). This simple and general

condition reduces dramatically the set of candidate columns.

In Section 2, definitions and notation are fixed. In Section 3, related papers are mentioned and Elias’
sphere argument is explained, as well as the improvements made of it. In Section 4, the theoretical
results of this paper may be found. In Section 5, examples of codes over asymmetric PSK which are
better than their counterparts on symmetric PSK are presented, as well as proof that several classes of
codes are optimal among codes over symmetric PSK. Section 6 concludes the paper with conclusions
and possible continuations.

2. Definitions and notation

Some of the definitions below are more general than what is needed to obtain the results of this paper.
To give a description of Elias’ sphere argument which is as general as possible, general definitions are
necessary.

Notation 2.1 We will use X to denote an arbitrary space. To denote a finite distance uniform space
we will use U . Note also Un becomes distance uniform. We will let T denote the space of points on the
unit circle, represented by their angle. We identify an angle α with all angles α + n2π , n ∈ Z. Whenever
we speak of the sign of an angle, we consider the sign of its representative in the interval (−π , π ]. The
sign function, θ/|θ | for θ |= 0, and 0 otherwise, will be denoted by 〈θ〉. We will use Q to denote a finite
distance uniform subspace of T , and denote the q = |Q| elements of Q by their angle. We name those
symbols γ0, . . . , γq−1, and by an argument of rotation, we will assume γ0 = 0.

Definition 2.1 (Kschischang et al. (1989)) Let X be a space. A distance measure is a bivariate function
d from X × X to R such that

1. d(x, y) � 0 for all x, y ∈ X with equality if and only if x = y and

2. d(x, y) = d(y, x) for all x, y ∈ X .

A distance measure which satisfies the triangle inequality, i.e. d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X
is a metric.

The distance measure d will be said to be additive if

d(x, y) =
m∑

i=1

d(xi, yi),

for all x, y ∈ X m for all m.
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The distance measure d will be said to be translation-invariant if

d(x, y) = d(x + z, y + z),

for all x, y, z ∈ X m for all m.

Note that by saying that a distance measure is additive, one extends it from X × X to X m × X m for
all m.

Notation 2.2 For any distance measure d, we will denote d(0, x) by d(x). Also, we will refer to d(x)

as the weight of x with respect to d.

Definition 2.2 We define a family of additive and translation-invariant distance measures {dp}p>0 on
T or Q by

dp(γ ) = 2p
∣∣∣sin

(γ

2

)∣∣∣p . (2.1)

Note that using phase-modulated sine-waves for communication and performing ML decoding while
experiencing white noise X with density

fX (x) = λp

2Γ (p−1)
exp(−λp|x|p), (2.2)

for p, λ > 0, a correct way of measuring distance between symbols as well as words is by dp. The
density function (2.2) was introduced by Subbotin (1923), who suggested it to be used for modelling
measurement errors. Subbotin found this density from the two properties:

1. The probability of an error depends only on the magnitude of this error, and may be expressed
as a function fX (x) having the first derivative in general continuous.

2. The most probable value of a quantity, from which direct measures are known, must not depend
on the unit employed.

Regarding the differentiability of fX (x)—Subbotin’s derivation of fX (x) appears to rely on fX (x) being
everywhere right differentiable (or left differentiable), but not on the derivative of fX (x) being continu-
ous. The density in (2.2) is called generalized p-Gaussian density, and has been analysed further in, for
example, Pham & DeFiueiredo (1989) and Taguchi (1978).

Notation 2.3 In the special case p = 2, the noise described in (2.2) is AWGN, and d2 is commonly
known as squared Euclidean distance. We signify the importance of this distance measure by denoting
it d2

E. Note that d2
E is not a metric.

Euclidean distance,
√

d2
E, which will be denoted by dE, is a translation-invariant metric, but it is not

additive. We will use that

dE(γ ) = 2
〈γ

2

〉
sin
(γ

2

)
.

Remark that γ /2 is not well defined as it has two possible values, one positive and one negative. To get
unique division in T , we lift the angle—i.e. its representative in (−π , π ] – to R, perform the division
and bring the result back into T . For division by 2, this means that among the two possible values, we
always choose the one which maintains the sign.
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Definition 2.3 The minimum distance between points in a space X with respect to the distance mea-
sure d is denoted as dmin(X ) and defined as

dmin(X ) = min
x,y∈X ,x |= y

d(x, y).

The average distance between points in a space X with respect to the distance measure d is denoted as
daverage(X ) and defined as infinity if |X | � 1 and as

daverage(X ) = 1

|X |(|X | − 1)

∑
x,y∈X ,x |= y

d(x, y),

otherwise.

Notation 2.4 A set of consecutive integers {i, i + 1, . . . , j} will often be denoted by [i, j].

Notation 2.5 By Z+, we refer to the set of positive integers.

3. Previous results

In this paper, we work with distance uniform signal constellations.
Elias did not publish his sphere argument, but the method may be found in Berlekamp (1968,

pp. 318–321) and MacWilliams & Sloane (1977, pp. 558–564). We give an overview of Elias’ sphere
argument for forming a bound on performance for codes over distance uniform spaces together with
generalizations.

Consider the code C on the space Un, i.e. let C ⊆ Un be a code. Let d and δ be two additive and
translation-invariant distance measures, where we seek dmin(C). Let

Sδ,t(x) = {y ∈ Un|δ(x, y) � t}
be a sphere with respect to δ, with centre x and radius t. We note that since we have a distance uni-
form space and a translation-invariant distance measure, the number of words in the sphere Sδ,t(x) is
independent on x.

Now, centred at each codeword, place a sphere with respect to δ and radius t. The spheres contain
a total of |C||Sδ,t| words, but only |U |n words exist. So at least one word, w, belong to at least K =
�|C||Sδ,t||U |−n	 spheres. Call the sphere Sδ,t(w) the critical sphere. Note that the critical sphere contains
at least K codewords. Let W = C ∩ Sδ,t(w). Now, the chain of inequalities

dmin(C) � dmin(W) � daverage(W)

is trivial, so daverage(W) will work as an upper bound on dmin(C).
Since we have a distance uniform signal constellation it may as well be assumed that w = 0, as the

code can be translated without changing any distances. With the assumption w = 0, we may speak of
the weight with respect to δ of codewords in the critical sphere, rather than of their distance to w, and
this weight is at most t.

Elias defined δ to be the distance measure in which the performance of the code was measured, i.e.
δ = d, but this is not necessary. Improvements that have been made in Nilsson & Lennerstad (2000,
2005), Nilsson et al. (2008) and Laksman et al. (2009a,b, 2010) are based on that while there is one
distance measure (which we call outer distance measure) used for measuring the minimum distance of
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GENERALIZED UPPER BOUNDS ON THE MINIMUM DISTANCE OF PSK BLOCK CODES 7 of 23

the code, another distance measure (which we call inner distance measure) can be used for determining
the shape of the spheres, i.e. the one called δ. For PSK codes with AWGN, it is squared Euclidean dis-
tance which is the relevant outer distance measure. The signal constellations symmetric 2-PSK, 3-PSK
and 4-PSK are special cases, where squared Euclidean distance can be reduced to Hamming distance.
The inner distance measure ought to be chosen such that it minimizes the bound in the outer distance
measure.

Based on Elias’ sphere argument, but by allowing different inner distance measures, in Laksman et
al. (2010) the following theorem and lemma were proved.

Theorem 3.1 For any code C in Qn, we have the bound

dmin(C) � min
K∈[2,|C|]

min
δ

2t̃K(δ)fδ(ŷ)

K − 1
,

where

t̃K(δ) = min({t : K � �|C||Sδ,t|q−n	}),

fδ(y) =
∑K

j1=2

∑j1−1
j2=1 d(yj1 , yj2)∑K

j=1 δ(yj)

and
ŷ = argmaxy∈QK fδ(y).

Remark that y in the theorem has length K, not n. The vector y is not a codeword, but a ‘column’,
stemming from the construction in Berlekamp (1968) of forming a matrix of all codewords in a neigh-
bourhood of radius t̃K , where the codewords are rows, so that column i consists of the ith symbols from
the codewords in the critical sphere. Also, even though t̃K is a function not only of δ, but also of n,
|C| and Q, we usually omit those parameters as they are assumed to be fixed. The same is true for the
dependence fδ(ŷ) has on Q. We also remark that the minimum over t always exists since the sphere Sδ,t

is defined with an inclusive inequality.

Lemma 3.1 The bound in Theorem 3.1 is scale invariant in the distance measure δ, i.e. for any s > 0,
let λ(x) = sδ(x) for every x. Then

2t̃K(δ)fδ(ŷ)

K − 1
= 2t̃K(λ)fλ(ŷ)

K − 1

holds.

While both Theorem 3.1 and Lemma 3.1 in Laksman et al. (2010) were considered only for sym-
metric PSK and for squared Euclidean distance d, proofs for asymmetric PSK and general additive
translation-invariant d remain nearly identical. Note, however, that Theorem 3.1 does not in general
hold if the PSK signal set is not distance uniform.

In Nilsson & Lennerstad (2000, 2005), Nilsson et al. (2008) and Laksman et al. (2009a,b, 2010), the
idea of using an inner distance measure different from the outer distance measure has been developed.
Note that while some partial results from these papers may hold for a general outer distance measure,
they were all developed with the restriction to squared Euclidean distance as outer distance measure.
In Nilsson & Lennerstad (2000, 2005), particular inner distance measures which improved the Elias’
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8 of 23 E. LAKSMAN ET AL.

bound for some code parameters were presented, while in Nilsson et al. (2008) the idea of letting the
inner distance measure depend on K appeared, using symmetric 8-PSK to exemplify. How δ ought to
depend on K for symmetric 8-PSK was studied in Laksman et al. (2010), which in Laksman et al.
(2009b) was generalized to symmetric q-PSK. In Laksman et al. (2009a), it was shown that the work
in Laksman et al. (2010), somewhat limited by the method, gave the actual optimum, but this was only
for q = 8, and failed to extend to general q. This extension is provided in the present paper, besides the
generalizations to general outer distance measures and asymmetric PSK.

4. Results

Generalizations built upon Elias’ sphere argument have earlier been made for block codes over sym-
metric PSK with squared Euclidean distance, Nilsson & Lennerstad (2000, 2005), Nilsson et al. (2008)
and Laksman et al. (2009a,b, 2010). The main methods in this section are further generalizations built
on the generalizations previously made. In the present paper, the earlier generalizations are shown to
work for block codes over asymmetric PSK. Furthermore, it is shown that any additive and translation-
invariant outer distance measure can be used. The end of the section, however, deals explicitly with the
case where the outer distance measure is squared Euclidean distance.

Let ai(y) be the function counting the number of symbols equal to γi in a vector y. Now write fδ
from Theorem 3.1 as

fδ =
∑q−1

i=0

∑
j>i aiajd(γi, γj)∑q−1

i=0 aiδ(γi)
.

Rewriting the expression, using a0 = K −∑q−1
i=1 ai as a way of eliminating a0, we find that numerator

has the following coefficients:

coeff(ai) = Kd(γi),

coeff(a2
i ) = −d(γi) and

coeff(aiaj) = d(γi, γj) − (d(γi) + d(γj)), i |= j.

Now we may write

fδ = T1 + T2 + T3

D
with

T1 = K
q−1∑
i=1

aid(γi),

T2 = −
q−1∑
i=1

a2
i d(γi),

T3 =
q−1∑
i=1

∑
j>i

aiaj(d(γi, γj) − (d(γi) + d(γj))),

D =
q−1∑
i=1

aiδ(γi). (4.1)
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GENERALIZED UPPER BOUNDS ON THE MINIMUM DISTANCE OF PSK BLOCK CODES 9 of 23

Definition 4.1 Columns y which maximize fδ(y) for at least some δ will be called extremal columns.
A column y which maximizes fδ(y) for a particular δ will be called a critical column for that δ.

Note that which columns are extremal, and which column is critical for a particular δ, depends on
the outer distance measure, which we, however, assume to be fixed.

Theorem 4.1 Let y be a column such that T3(y) < 0, then y is not an extremal column.

Proof. Let Qy be the set of symbols in y except γ0. Let

m = arg max
{i:γi∈Qy}

(
d(γi)

δ(γi)

)
.

Let z be a column with a0(z) = K − 1 and am(z) = 1. As T3(z) = 0, it follows that

fδ(z) = T1 + T2

D
(z) = (K − 1)d(γm)

δ(γm)
.

As T3(y) < 0, it follows that

fδ(y) <
T1 + T2

D
(y) =

∑q−1
i=1 ai(y)(K − ai(y))d(γi)∑q−1

i=1 ai(y)δ(γi)
�
∑q−1

i=1 ai(y)(K − 1)d(γi)∑q−1
i=1 ai(y)δ(γi)

� (K − 1)d(γm)

δ(γm)
.

The last inequality follows from the left-hand side being a weighted average of several terms, where the
right-hand side is the largest of those terms. In total, we have shown that fδ(y) < fδ(z), so y cannot be
an extremal column. �

Finding the optimal inner distance measure is simplified a great deal when the outer distance mea-
sure is a metric, as shown by a corollary to Theorem 4.1.

Corollary 4.1 If the outer distance measure d is a metric, then an optimal inner distance measure δ

is the same as the outer distance measure.

Proof. If d is a metric, then T3 � 0. Following the proof of Theorem 4.1, we see that columns of the
form (i, 0, . . . , 0)� for all i are extremal, and for any δ one of these columns will be critical, even if other
extremal columns which may be simultaneously critical may exist. Since interest lies in the maximal
value of f , and not in extremal columns as such, the set of columns (i, 0, . . . , 0)� will be sufficient.

For any given δ, one of these columns will be ŷ in Theorem 3.1, so the bound is

min
K,δ

2t̃K(δ)

K − 1
max

i

(
(K − 1)

d(γi)

δ(γi)

)
= min

K,δ
2t̃K(δ) max

i

(
d(γi)

δ(γi)

)
.

Consider an inner distance measure δ0 with

m = arg max
i

(
d(γi)

δ0(γi)

)
.

Lemma 3.1 allows us to rescale δ0 so that δ0(γm) = d(γm). If δ0(γi) > d(γi) for some i, consider δ1

such that δ1(γi) = d(γi) and δ1(γj) = δ0(γj) for j |= i. Clearly, the bound resulting from using δ1 as inner
distance measure does not give a worse bound than using δ0 as inner distance measure. The process may
be repeated until we have an inner distance measure δ = d. �
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10 of 23 E. LAKSMAN ET AL.

When an optimal inner distance measure is known, Theorem 3.1 can be applied directly.
The last corollary applies to, e.g. Hamming metric

dH (γi, γj) =
{

0 if γi = γj,

1 if γi |= γj,

and to Lee metric

dL(γi, γj) = arcsin(d1(γi, γj)/2),

both of which are commonly used for determining performance of error-correcting codes. However,
for these distance measures other upper bounds are known. We recommend van Lint (1992) and Roth
(2006) for the Hamming metric and Quistorff (2006) for the Lee metric.

Note that it is enough for d to be a metric on Q for Corollary 4.1 to hold, there is no need for
d to be a metric on the whole interval (−π , π ]. For example, squared Euclidean distance is a metric
for symmetric 4-PSK, but not in general. Also, for p ∈ (0, 1], dp (from (2.1)) is a metric on the whole
interval (−π , π ]. It is possible to formulate a relation between the sizes of p which yield a metric and
the angle of the two symbols closest to zero.

Theorem 4.2 For p > 1, the distance measure dp from (2.1) is a metric on an asymmetric PSK signal-
set Q if and only if ∣∣∣∣sin

(
γi1 − γiq−1

2

)∣∣∣∣
p

�
∣∣∣sin

(γi1

2

)∣∣∣p +
∣∣∣sin

(γiq−1

2

)∣∣∣p , (4.2)

where γi1 and γiq−1 are the two smallest angles of Q, see Fig. 1(b).

Proof. Note that (4.2) is in fact the triangle inequality for three particular elements in Q. If we identify
it with Definition 2.1, we have x = γi1 , y = γ0, z = γiq−1 . By a rotational argument, we can choose y = γ0,
no matter which three elements we intend to ‘test’ the triangle inequality on.

Based on the observation that (4.2) is an instance of the triangle inequality, it is clear that dp is not a
metric if (4.2) is false.

For the other direction, we first note that if x and z have the same sign (note that |x|, |z| � π ), then
clearly ∣∣∣∣sin

(
x − z

2

)∣∣∣∣
p

�
∣∣∣sin

( x

2

)∣∣∣p +
∣∣∣sin

( z

2

)∣∣∣p . (4.3)

Hence, it is enough to show that (4.3) holds for all x ∈ [γi1 , π ] and z ∈ (−π , γiq−1 ]. With x and z in those
intervals, (4.3) can be written as

0 � sinp
( x

2

)
+ sinp

(−z

2

)
− sinp

(
x − z

2

)
.

It is an easy analytic exercise to show that the right-hand side is increasing with respect to x and decreas-
ing with respect to z, for x and z in the given intervals, so knowing that the inequality is true for the
minimum x and the maximum z is enough. Hence, dp must be a metric on Q when (4.2) is true. �

When the signal constellation comes from symmetric PSK, (4.2) can be rewritten in a much
cleaner form.
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Corollary 4.2 The distance measure dp from (2.1) is a metric on the symmetric PSK constellation Q
if and only if

p log2

(
sin(γi1)

sin(γi1/2)

)
� 1,

where γi1 is the smallest angle of Q, see Fig. 1(a).

Proof. The corollary is a matter of rewriting (4.2) with γi1 = −γiq−1 . �

For the next theorem—which helps in reducing the set of possibly extremal columns—denoting

a+(x) = (a1(x), . . . , aq−1(x))

and

N(x) = fδ(x)δ(x) =
q−1∑
i=0

∑
j>i

ai(x)aj(x)d(γi, γj)

will be helpful. The following theorem was presented in a less general setting already in Laksman et al.
(2010).

Theorem 4.3 If a column z is extremal, then

N(z)
δ(z)

�
∑m

i=1 uiN(yi)∑m
i=1 uiδ(yi)

, (4.4)

for all y1, y2, . . . , ym, for all m, such that for at least some v, ui ∈ Z+,

m∑
i=1

uia+(yi) = va+(z),

for all finite δ.

Note that the denominator will be the same on both sides in (4.4), at least once the left-hand side has
been extended by v, so δ will play no part in the evaluation of the inequality. Also the different T1-terms
will cancel, so the parameter K will disappear, and affect (4.4) only by limiting the number of symbols
different from γ0 in each column, so it is only a comparison of constants.

Proof. Assume that for some m, a set of columns y′
1, y′

2, . . . , y′
m exist such that for some v, ui in

Z+,
∑m

i=1 uia+(y′
i) = va+(z) and N(z)

∑
i uiδ(y′

i) − δ(z)
∑

i uiN(y′
i) < 0. Then for any δ, we must have

N(z)δ(y′
i) − δ(z)N(y′

i) < 0 for at least some i, which is the same as saying that z is not extremal. �

Let ŷ1, . . . , ŷc(K) be a list containing all extremal columns. It may also contain other columns, but
for computational purposes it is preferable if it does not. Note that this list may depend somewhat on K,
as the length of the columns is limited by K.

To be able to truly utilize the previous theorem, it would be good to have a set of extremal columns
to use for the further reduction. Let γi be a symbol in Q. We consider two cases, depending on whether
γi has an additive inverse in Q or not.
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Case 1: −γi /∈ Q. Consider now the inner distance measure δ defined by

δ(x) =

⎧⎪⎨
⎪⎩

0, x = γ0,

1, x = γi,

∞, otherwise.

This δ shows that an extremal column x with aj(x) = 0 for all j �∈ {0, i} exists. With this condition on x, it
can be seen that fδ is maximized if ai(x) = 1, as T1(x)/D(x) is constant with respect to ai(x), T2(x)/D(x)

is decreasing with respect to ai(x) and T3(x) = 0. Thus, if −γi /∈ Q, then (γi, 0, . . . , 0)� is an extremal
column.
Case 2: −γi ∈ Q. Consider now the inner distance measure δ defined by

δ(x) =

⎧⎪⎨
⎪⎩

0, x = γ0,

1, x = ±γi,

∞, otherwise.

(4.5)

This δ shows that an extremal column x with ak(x) = 0 for all k �∈ {0, i, j} exists, where γj = −γi. With
this condition on x, fδ must be maximized with respect to ai and aj. As T1/D is constant with respect
to ai and aj, the value of T1 causes no concern. Instead we observe that a2

i + a2
j � 2aiaj, with equality

when ai = aj, and that d(γi) = d(γj), so that

T2 + T3 � aiaj(d(γi, γj) − 2(d(γi) + d(γj))) = aiaj(d(2γi) − 4d(γi)).

This means that if d(2γi) > 4d(γi), then a column maximizing fδ yield ai + aj ∈ {K − 1, K} and |ai −
aj| � 1. Otherwise, ai and aj should be kept as small as possible, so that ai + aj ∈ {1, 2} and |ai − aj| � 1.

Case 2 indicates that for certain distance measures some extremal columns will contain zeroes in all
but at most two positions, whereas for other distance measures extremal columns consisting of at most
one zero exist.

Now follows a theorem which allows the optimization of δ, which is non-enumerable, to be calcu-
lated as a finite number of linear programming problems (LPPs). The idea of this theorem was used
in Laksman et al. (2009a), albeit in a far more restricted setting.

Theorem 4.4 The value of

min
δ∈Δ

2

K − 1
t̃K(δ) max

i∈[1,c(K)]
fδ(ŷi), (4.6)

where K � 2 is an integer and Δ is the set of additive translation-invariant distance measures, is the
same as the value of

min
i∈[1,c(K)]

min
δ∈Δi

2

K − 1
t̃K(δ)fδ(ŷi), (4.7)
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GENERALIZED UPPER BOUNDS ON THE MINIMUM DISTANCE OF PSK BLOCK CODES 13 of 23

where Δi is the set of additive translation-invariant distance measures which solves the LPP

max
δ

δ(ŷi)

s.t.
q−1∑
j=0

δ(γj) = Ai,

N(ŷi)δ(ŷj) − N(ŷj)δ(ŷi) � 0, j |= i,

where Ai is any positive constant.

Proof. For now, assume that for the δ which is the minimizing argument in (4.6), a critical column, i.e.
a column ŷi which maximizes fδ , is ŷ1.

We have

fδ(ŷi) = N(ŷi)

δ(ŷi)
.

By the lemma of scale invariance, Lemma 3.1, we see that to perform the δ-minimization in (4.6) we
should maximize δ(ŷ1) subject to the constraints

fδ(ŷ1) � fδ(ŷi) ∀i ∈ [2, c(K)],

which may also be expressed as

N(ŷ1)δ(ŷi) − N(ŷi)δ(ŷ1) � 0 ∀i ∈ [2, c(K)]. (4.8)

But to maximize δ(ŷi) under the conditions (4.8) is just an LPP.
We assumed that ŷ1 was a critical column, but we have to solve the LPP for any column being

critical, so to optimize the bound for a given K we must solve c(K) LPPs. For any fixed critical column,
we may choose the distance measure resulting in the lowest bound. To get the best bound possible, we
must try for each extremal column being critical, and pick the smallest one. This is expressed by the
minimization over i.

The condition
∑

j δ(γj) = Ai is just to fix the scaling, and can be added without loss of generality,
as the problem we wish to solve is invariant with respect to scaling. Without this condition, the feasible
region (when ŷi is an extremal column) would be unbounded and the solution to the LPPs would tend
to infinity.

Note that we get no real problem from the LPPs where columns ŷi which are not extremal are
included in our list, because the feasible region for such columns will be empty. �

Note that while the outer distance measure d does not appear explicitly in either Theorem 4.3 or 4.4,
it appears implicitly in both N(x) and in fδ(x), so both theorems are generalized with respect to the
shape of the noise.

Now a theorem reducing the bound from Theorem 3.1 is presented. The set of words is restricted to
those that are close to the radius of the sphere only, introducing a benevolent cancellation in at least one
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14 of 23 E. LAKSMAN ET AL.

case. For the theorem, we denote

BK(δ) = 2t̃K(δ) maxy fδ(ŷ)

K − 1
,

and observe that for any q, n, |C| and any K and δ, BK(δ) is a bound on the maximal minimum squared
Euclidean distance for a code with parameters q, n and |C|.

This improvement exploits cancellation in the differences and the fact that the bound is not depen-
dent on the block length.

Theorem 4.5 We have the bound
dmin(C) � max

(x,y)∈R
d(x, y),

where

R = {(r1, r2) ∈ Q∞ × Q∞ : t̃K(δ) − δ(γm) < δ(ri) � t̃K(δ), i = 1, 2 and d(r1, r2) � BK(δ)},
for γm such that δ(γm) = mini |= 0 δ(γi).

The theorem is an extension of in Nilsson & Lennerstad (2000, Theorem II.2), where the quan-
tity ad2

E(π/2) + bd2
E(π/4) was to be maximized constrained by the bound of the paper, similarly to

Theorem 4.5. The reformulation changed the quantity to ad2
E(π/2) + 2bd2

E(π/4), introducing a factor 2
in the second term. The basic idea is to demand that minimum distance can be written as the distance
between two codewords being sufficiently close to the edge of the critical sphere.

Before proving Theorem 4.5, an example of how it can be used is given.

Example 4.1 Consider the signal constellation of symmetric 8-PSK and d = d2
E. Let t and δ be such

that Sδ,t(0) contains only words consisting of zeros and at most two ±π/4’s. Obviously, δ(π/4) =
minγi |= 0 δ(γi), otherwise some other words would be included in the sphere. Also, t must be at least
2δ(π/4), implying that the set R described in Theorem 4.5 contains only all words with exactly two
±π/4’s and all other symbols zero. The only differences which can appear between two words in R are
2d2

E(π/2), d2
E(π/2) + 2d2

E(π/4), 4d2
E(π/4), d2

E(π/2), 2d2
E(π/4) and 0.

Assuming

4d2
E

(π

4

)
< d2

E

(π

2

)
+ d2

E

(π

4

)
� BK(δ) < d2

E

(π

2

)
+ 2d2

E

(π

4

)
,

we could conclude that the bound is as low as 4d2
E(π/4).

It is not guaranteed that the best bound is obtained by first minimizing BK(δ) with respect to K and
δ, as some other choice of K and δ may allow for better use of Theorem 4.5, but it is a reasonable way
to proceed in order to achieve a good bound.

Proof. A sequence of symbols x is in this proof called maximal if t̃K(δ) − δ(γm) < δ(x) � t̃K(δ), non-
maximal if δ(x) � t̃K(δ) − δ(γm), and not allowed if t̃K(δ) < δ(x). This theorem is possible since the
bound is independent on the block length, since the function fδ in Theorem 3.1 represents the worst
column in a matrix MW where the rows are the words in W . So we relax the constraint that a sequence of
symbols is limited to having n symbols. Instead we consider possibly infinite sequences. For each non-
maximal sequence in W , we add one column to the matrix with a non-zero symbol in the row of the non-
maximal sequence, so that the sequence is still allowed. This is possible, since at least δ(γm) always can
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GENERALIZED UPPER BOUNDS ON THE MINIMUM DISTANCE OF PSK BLOCK CODES 15 of 23

be added to a non-maximal sequence. All other entries in the column are zero. In the same way, columns
are added to the matrix until all sequences are maximal, whereafter we may continue to add as many
columns with only zeros as we like. This gives in the end a set W ′ and matrix MW ′ . Clearly, dmin(W) �
dmin(W ′), as the distance between two sequences in W ′ are never smaller than the distance between
the corresponding words in W . The theorem considers the maximum of all differences of maximal
sequences fulfilling the bound BK(δ), which bounds dmin(W ′) from above. The result follows. �

As a common assumption is that one operates under AWGN, it is reasonable to pay some additional
attention to the case with d2

E as outer distance measure. It turns out that a useful reformulation of fδ
is possible when d = d2

E. In particular, this reformulation permits a theorem for reducing the set of
extremal columns, not completely unlike that of Theorem 4.1.

We consider the expression for fδ given in (4.1) and simplify it by using d = d2
E, which allows writing

−(T2 + T3) as a sum of two squares. Note that as

2(sin2(θ − ϑ) − sin2(θ) − sin2(ϑ)) = −4 sin2(θ) sin2(ϑ) − sin(2θ) sin(2ϑ), (4.9)

for any θ and ϑ , we get

4T3 = −2
q−1∑
i=1

∑
j>i

aiaj(d
2
E(γi)d

2
E(γj) + 〈2(γi/2)〉〈2(γj/2)〉dE(2γi)dE(2γj))

= −2
q−1∑
i=1

∑
j>i

aiaj(d
2
E(γi)d

2
E(γj) + 〈γi〉〈γj〉dE(2γi)dE(2γj)).

Note that we may cancel the 2’s in the expression 〈2(θ/2)〉 only because the division comes first (the
operations are not associative in T). That division comes first follows from that the division is implicit
already in the first equation describing T3.

As a special case of (4.9), using θ = ϑ , the following equality:

−4 sin2(θ) = −4 sin4(θ) − sin2(2θ)

is obtained, and yields

4T2 = −
q−1∑
i=1

a2
i (d

4
E(γi) + d2

E(2γi)).

Now observe that

−
(

q−1∑
i=1

aid
2
E(γi)

)2

−
(

q−1∑
i=1

ai〈γi〉dE(2γi)

)2

= 4T2 − 2
q−1∑
i=1

∑
j>i

aiaj(d
2
E(γi)d

2
E(γj) + 〈γi〉〈γj〉dE(2γi)dE(2γj))

= 4(T2 + T3).
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Thus, we may write

fδ =
4T1 −

(∑q−1
i=1 aid2

E(γi)
)2

−
(∑q−1

i=1 ai〈γi〉dE(2γi)
)2

4D
.

Theorem 4.1 and the following theorem may appear to be similar, but they are independent.

Theorem 4.6 The condition
q−1∑
i=1

ai(x)d2
E(γi) = d2

E(x) � 4

holds for any extremal column x.

The theorem is a generalization of a result from Laksman et al. (2009b).

Proof. Assume that x is an extremal column such that

q−1∑
i=1

ai(x)d2
E(γi) > 4,

i.e. a δ exists such that x = argmaxyfδ(y). For such a δ, let γm be a symbol such that

d2
E(γm)

δ(γm)
� d2

E(γi)

δ(γi)
∀i ∈ [0, q − 1]. (4.10)

Then we have
d2

E(γm)

δ(γm)
�
∑q−1

i=1 bid2
E(γi)∑q−1

i=1 biδ(γi)
,

for any non-negative constants b1, . . . , bq−1 whereof at least one is positive, as the right-hand side can
be shown to be a weighted average of the quantities on the right-hand side of (4.10).

Now let y be a column such that am(y) = 1, a0(y) = K − 1, and thus ai(y) = 0 for all i /∈ {0, m}.
Calculation shows that

fδ(y) = (4K − 4)
d2

E(γm)

4δ(γm)
.

Next we will prove that fδ(x) < fδ(y), so x cannot be extremal. Form a bound on fδ(x) as

fδ(x) � fδ(x) +
(∑q−1

i=1 ai(x)〈γi〉dE(2γi)
)2

4
∑q−1

i=1 ai(x)δ(γi)

=
4K
∑q−1

i=1 ai(x)d2
E(γi) −

(∑q−1
i=1 ai(x)d2

E(γi)
)2

4
∑q−1

i=1 ai(x)δ(γi)

=
(

4K −
q−1∑
i=1

ai(x)d2
E(γi)

) ∑q−1
i=1 ai(x)d2

E(γi)

4
∑q−1

i=1 ai(x)δ(γi)
.
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But by assumption, we have

4K − 4 > 4K −
q−1∑
i=1

ai(x)d2
E(γi) and

d2
E(γm)

4δ(γm)
�
∑q−1

i=1 ai(x)d2
E(γi)

4
∑q−1

i=1 ai(x)δ(γi)
,

thus fδ(y) > fδ(x), which yields a contradiction. Hence, no extremal column x with d2
E(x) > 4

can exist. �

5. Codes

For uncoded communication, it is trivial to see that the symmetric version of PSK maximizes the min-
imum distance, but for coded communication it is not so. In Examples 5.1 and 5.2, block codes with
asymmetric PSK which are better than optimal block codes with symmetric PSK are presented. The
codes used in these examples are very small, and presented only to show that performance can for some
parameters be improved by use of asymmetric PSK rather than symmetric PSK. Longer and larger codes
for which it is better to use asymmetric PSK than symmetric PSK are given in Bali & Rajan (1998), but
those codes may be non-optimal.

For hard-decision decoding, a slight increase of minimum distance may not increase the error-
correcting capability of the code. For soft-decision decoding, however, the error-correcting capabil-
ity is arbitrarily close to half the minimum distance, so that any increase in minimum distance is
an improvement.

The improvement of code performance gained by an increased minimum distance can be measured
in terms of power saving for the transmitted signal. When using squared Euclidean distance (p = 2)
an increased minimum distance by a certain factor leads approximately to a power saving by the same
factor. For other distance measures of the form dp(γ ) an increased minimum distance still leads to power
saving but for p not equal to 2 the relation between increase of minimum distance and power saving is
not of the same simple form.

Example 5.1 Consider a PSK code with q = 8, n = 2 and |C| = 3. The best such code given symmetric
PSK and γi = 2π i/q is C = {(γ0, γ0), (γ3, γ6), (γ6, γ3)}, which results in d2

E min(C) ≈ 5.41. The best such
code given asymmetric PSK is obtained by using the same code, but with γi = 2π i/q only for even i,
and γi = 2π(i + 0.41)/q for odd i, which results in d2

E min(C) ≈ 5.79.
The columns ŷi = (γi, γ0, . . . , γ0)

�, for i = 1, . . . , 7 and ŷ8 = (γ1, γ6, γ0, . . . , γ0)
� are extremal. For

K = 2, also ŷ9 = (γ1, γ7)
� and ŷ10 = (γ2, γ7)

� are extremal. If K � 3, then ŷ9 = (γ1, γ7, γ7, γ0, . . . , γ0)
�

and ŷ10 = (γ2, γ7, γ7, γ0, . . . , γ0)
� are extremal.

With K = 2 and δ(ŷ8) critical, we get

δ(γ1) = 1.11, δ(γ2) = 2.68,

δ(γ3) = 3.79, δ(γ4) = 4.00,

δ(γ5) = 2.89, δ(γ6) = 2.68,

δ(γ7) = 0.89,

for A8 = 18.05. This yields the bound 7.58, which can also be obtained by some other inner distance
measures, and is the best bound attainable by this method.

That the code in the example is optimal within the set of codes over asymmetric PSK has been
verified by exhaustive search.
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Example 5.2 Consider a PSK code with q = 8, n = 2 and |C| = 4. The best such code given symmetric
PSK and γi = 2π i/q is C = {(γ0, γ0), (γ1, γ4), (γ4, γ1), (γ5, γ5)}, which results in d2

E min(C) ≈ 4.59. The
best such code given asymmetric PSK is obtained by using the same code, but with γi = 2π i/q only for
even i, and γi = 2π(i + 0.57)/q for odd i, which results in d2

E min(C) ≈ 5.33.
The columns ŷi = (γi, γ0, . . . , γ0)

�, for i = 1, . . . , 7 and ŷ8 = (γ1, γ6, γ0, . . . , γ0)
� are extremal.

For K = 2, also ŷ9 = (γ1, γ7)
� and ŷ10 = (γ2, γ7)

� are extremal. If K = 3, then ŷ9 = (γ1, γ7, γ7)
�

and ŷ10 = (γ2, γ7, γ7)
� are extremal. If K � 4, then ŷ9 = (γ1, γ7, γ7, γ7, γ0, . . . , γ0)

� and ŷ10 =
(γ2, γ7, γ7, γ7, γ0, . . . , γ0)

� are extremal.
With K = 2 and δ(ŷ8) critical, we get

δ(γ1) = 1.70, δ(γ2) = 2.18,

δ(γ3) = 3.89, δ(γ4) = 4.00,

δ(γ5) = 2.66, δ(γ6) = 2.18,

δ(γ7) = 0.48,

for A8 = 17.10. This yields the bound 5.33 which is the best bound possible, though, many other inner
distance measures result in the same bound.

That the code in this example is optimal within the set of codes over asymmetric PSK has been
verified by exhaustive search. That the code is optimal within the set of codes over asymmetric PSK
does not follow from its minimum distance meeting the bound, as this is only a bound for one particular
asymmetric PSK constellation.

Examples 5.3–5.7, based on multilevel codes (Imai & Hirakawa, 1977), consider symmetric q-PSK
and are intended to show how to apply the bound for large n, and to show instances where the bound
is tight with respect to d2

E. However, the inner distance measure used to prove this is the same one
presented already in Nilsson & Lennerstad (2000). In the following examples, we denote the symbols
γi = 2π i/q, i ∈ [0, q − 1].

Example 5.3 Consider q = 3a, where a � 2 is an integer. Then a code C with n = (3m + 1)/2, |C| =
an3n−m−1 and d2

E min = 4d2
E(γ1) exists, for any integer m � 2. It can be constructed as C = C1 + 3C2

where C1 is a ternary extended Hamming code and C2 is Z
n
a. The bound described in this work will be

used to show that for large enough m the code C has the highest d2
E min possible.

Consider the inner distance measure δ described in (4.5), with i = 1, and t = 2δ(γ1). These δ and
t do not necessarily yield the lowest bound possible initially, but by use of Theorem 4.5 they will be
sufficient. Theorem 4.5 gives that the bound must have the form (in order of size) 2d2

E(γ1), d2
E(γ2),

4d2
E(γ1), 2d2

E(γ1) + d2
E(γ2) or 2d2

E(γ2).
The chosen δ results in ŷ = (γ1, γq−1, γ0, γ0, . . . , γ0)

� and

fδ(ŷ) = 2Kd2
E(γ1) − d4

E(γ1)

2δ(γ1)
= 2(K − 2)d2

E(γ1) + d2
E(γ2)

2δ(γ1)
.

The bound becomes

2tfδ(ŷ)

K − 1
= 2d2

E + 2(K − 3)d2
E(γ1) + 2d2

E(γ2)

K − 1
.
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As d2
E(γ2) > 2d2

E(γ1) for q � 5, we see that for K � 4 the bound is less than 2d2
E(γ1) + d2

E(γ2), which is
enough to claim that it is 4d2

E(γ1). To show that C is optimal with respect to d2
E min, it now suffices to

show that K � 4.
The size of the critical sphere is |Sδ,t| =

∑2
i=0 2i

(n
i

)= 2n2 + 1. We have

K =
⌈ |Sδ,t||C|

qn

⌉
�
⌈

(3m + 1)2

2 × 3m+1

⌉
,

which is growing with respect to m. As m = 3 yields K = 4, we see that C is optimal if m � 3.

Example 5.4 Let q = 2a, where a � 3 is an integer. Then a code C with n = 2m, |C| = an2n−m−1 and
d2

E min = d2
E(γ2) exists, for any integer m � 2. It can be constructed as C = C1 + 2C2 where C1 is a

binary extended Hamming code and C2 is Z
n
a. The bound described in this work will be used to show

that C has the highest d2
E min possible.

Consider the inner distance measure δ described in (4.5), with i = 1, and t = δ(γ1). These δ and
t are not necessarily the best possible, but they will be sufficient. The size of the critical sphere is
|Sδ,t| =

∑1
i=0 2i

(n
i

)= 2n + 1. We have

K =
⌈ |Sδ,t||C|

qn

⌉
�
⌈

2m+1 + 1

2m+1

⌉
= 2.

The chosen δ results in ŷ = (γ1, γq−1, γ0, γ0, . . . , γ0)
� and

fδ(ŷ) = 2Kd2
E(γ1) − d4

E(γ1)

2δ(γ1)
.

The bound becomes
2tfδ(ŷ)

K − 1
= 2Kd2

E(γ1) − d4
E(γ1)

K − 1
,

which for K = 2 simplifies to d2
E(γ2).

Hence, C is optimal with respect to d2
E min.

Example 5.5 Consider q = 4a, where a � 2 is an integer. Then a code C with n = 2m, |C| = an22n−m−2

and d2
E min = 4d2

E(γ1) exists, for any integer m � 2. It can be constructed as C = C1 + 2C2 + 4C3 where
C1 is a binary extended Hamming code, C2 is a binary code with a parity check bit and C3 is Z

n
a. The

bound described in this work will be used to show that for large m the code C has the highest d2
E min

possible.
Proceed as in Example 5.3, including the choice of δ and t to show that K � 4 is sufficient.
The size of the critical sphere is |Sδ,t| =

∑2
i=0 2i

(n
i

)= 2n2 + 1. We have

K =
⌈ |Sδ,t||C|

qn

⌉
�
⌈

22m+1 + 1

2m+2

⌉
,

which is growing with respect to m. As m = 3 yields K = 4, we see that C is optimal if m � 3.

Example 5.6 Consider q = 4a, where a � 2 is an integer. Then a code C with n = 2m, |C| = an22n−2m−1

and d2
E min = 6d2

E(γ1) exists, for any even integer m � 4. It can be constructed as C = C1 + 2C2 + 4C3
where C1 is a binary extended Preparata code, C2 is a binary code with a parity check bit and C3 is Z

n
a.
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The bound described in this work will be used to show that for large m the code C has the highest d2
E min

possible.
Proceed as in Example 5.3, including the choice of δ, but let t = 3δ(γ1). With this value of t,

Theorem 4.5 gives that the bound must be one of the following values (given in order of size): 2d2
E(γ1),

d2
E(γ2), 4d2

E(γ1), 2d2
E(γ1) + d2

E(γ2), 6d2
E(γ1), 2d2

E(γ2), 4d2
E(γ1) + d2

E(γ2), 2d2
E(γ1) + 2d2

E(γ2), 3d2
E(γ2).

Note that the order of size here depends on q � 5. Using that q � 8, so that d2
E(γ2) � (2 + √

2)d2
E(γ1), it

can be seen that

fδ(ŷ) � (2 − √
2)(K − 2) + 1

2δ(γ1)
d2

E(γ2),

so that the bound (2tfδ(ŷ)/(K − 1)) is less than or equal to

3
(2 − √

2)(K − 2) + 1

K − 1
d2

E(γ2),

which is less than 2d2
E(γ2) when K � 7. Hence, whenever K � 7, the bound is 6d2

E(γ1).
The size of the critical sphere is |Sδ,t| =

∑3
i=0 2i

(n
i

)
� n3, with equality if and only if n = 3. We have

K =
⌈ |Sδ,t||C|

qn

⌉
≈
⌈

23m

22m+1

⌉
,

which is growing with respect to m. As m = 4 yields K = 8, we see that C is optimal if m � 4.

Example 5.7 Consider q = ap, where p � 5 is a prime and a is a positive integer. Then a code C
with n = pm − 1, |C| = anpn−(r−1)m−1 and d2

E min = 2rd2
E(γ1) exists, for m � 1 and r � (p − 1)/2, both

integers. It can be constructed as C = C1 + pC2 where C1 is a code from Roth & Siegel (1994) and
C2 = Z

n
a. Remark that the code C1 was originally developed to perform well with respect to the Lee-

metric. The bound described in this work will be used to show that for large enough m the code C has
the highest d2

E min possible.
In the case r = 2, assume m � 2 and proceed as in Example 5.3, including the choice of δ and t to

show that K � 4 is sufficient. The size of the critical sphere is again 2n2 + 1, and

K =
⌈

(2(pm − 1)2 + 1)

pm+1

⌉
>

⌈
p2m

pm+1

⌉
� p,

which is sufficient to claim K � 4, so that C is optimal with respect to d2
E min.

In the case r = 3, assume m � 2 and proceed as in Example 5.6, including the choice of δ and t to
show that K � 7 is sufficient. Note that r = 3 requires p � 7. The size of the critical sphere is again at
least n3, and

K =
⌈

(pm − 1)3

p2m+1

⌉
=
⌈

p3m(pm − 1)3

p3mp2m+1

⌉
�
(

pm − 1

pm

)3

p.

But pm � 49, so ((pm − 1)/pm)3 � 0.94, which multiplied by p is at least 6.58, so K � 7 is obtained.
Hence, C is optimal with respect to d2

E min.
In the general case, let δ be defined as in (4.5) with i = 1 and let t = rd2

E(γ1).
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To bound the size of the critical sphere from above, some preparation is necessary. First, note that
n = pm − 1 � (2r + 1)m − 1 > 4r2. Next, we will need(

n

r

)
�

nr − (r
2

)
nr−1

r!
. (5.1)

That this holds can be seen in the following manner: write
(n

r

)
as a polynomial in n. The denominator is

r!, while the numerator is n(n − 1) · · · (n − r + 1). When expanding this polynomial, we note that the
signs are alternating. Also, we will show that r2|ck| > |ck−1|, where ck is the coefficient of nk for any k.1

We see this by the following equation:

r2|ck| = r2
∑

i

p(i)
k = r

∑
i

r−1∑
j=0

p(i)
k >

∑
i

r−1∑
j=0

jp(i)
k >

∑
i

p(i)
k−1 = |ck−1|,

where p(i)
k for different i span over all products of r − k distinct integers from the interval [0, r − 1]. As

n > r2, we get |ck|nk > |ck−1|nk−1. Now (5.1) follows easily as(
n

r

)
=
∑

k cknk

r!
� crnr + cr−1nr−1

r!
= nr − (r

2

)
nr−1

r!
,

where the inequality follows from pairing adjacent terms.
Using (5.1), the size of the critical sphere can be estimated as

|Sδ,t| =
r∑

i=0

2i

(
n

i

)
� 2r

(
n

r

)
� 2r

r!

(
nr −

(
r

2

)
nr−1

)
.

Using that m � 2 and that only cases where r � 4 so that p � 11 need to be dealt with,

|Sδ,t| � 1.98r

r!

(
prm −

(
r

2

)
p(r−1)m

)
� 1.98r

r!
prm−2

(
p2 −

(
r

2

))

� 1.98r

r!
prm−2

(
(2r + 1)2 −

(
r

2

))
>

1.98r

(r − 1)!
prm−2(3r + 4).

We get

K �
⌈

1.98r(3r + 4)prm−2

(r − 1)!p(r−1)m+1

⌉
=
⌈

1.98r(3r + 4)pm−3

(r − 1)!

⌉
,

which is strictly increasing with respect to m, and K → ∞ when m → ∞ and r is fixed. The bound has
the form

2tfδ(ỹ)

K − 1
= 2(K − 1)d2

E(γ1) + (d2
E(γ2) − 2d2

E(γ2))

K − 1
r.

The bound quite clearly approaches 2rd2
E(γ1) from above as K approaches infinity, so for any fixed r,

the bound will be tight for large enough m.

1 In fact, |ck | are Sterling numbers of the first kind, the number of ways in which r distinct objects can be placed in r − k
cycles. The property shown for them here may be—and probably is—known.
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The code C is optimal with respect to d2
E min if m is large enough. For r = 2 and r = 3, we have seen

that m � 2 is sufficient.

6. Conclusion

We have considered Elias’ sphere argument for forming upper bounds on codes over distance uniform
signal constellations, taken an improvement of it developed for symmetric PSK with squared Euclidean
distance, and generalized the improvement to work also for asymmetric PSK and other additive and
translation-invariant distance measures.

Codes over asymmetric PSK may be interesting for applications since there are examples of code
parameters where codes over asymmetric PSK have higher minimum Euclidean distance than codes
over symmetric PSK, although the difference seem not to be large. The bound, as well as the proof of it,
is a generalization of a previous result for codes over symmetric PSK. The bound is formulated in terms
of extremal columns, but as the formulation is more general, less can be said about the extremal columns.
Nonetheless, results to help determining the extremal columns for given parameters are presented. The
results in the paper are general, valid for both symmetric PSK and asymmetric PSK block codes, and
most of the results can be applied for any additive and translation-invariant distance measure.

Noise in wireless communication is often assumed to be AWGN, which leads to the codeword
which has the least square Euclidean distance to the received signal being the codeword most likely
sent. Typically, the error-correcting codes used are created in order to give the best error-correcting
capability, i.e. the greatest minimum squared Euclidean distance, in relation to the amount of data that
has to be transmitted. If the noise follows a different distribution than AWGN, ML decoding is no longer
equivalent to finding the codeword or code sequence closest with respect to squared Euclidean distance
to the received signal. A different distribution of noise gives rise to a different distance measure to use
when measuring proximity between signals.

A method for forming upper bounds on minimum squared Euclidean distance for PSK block codes
has been generalized to work for other distances as well, and special consideration has been given to
the distances for which minimum distance decoding corresponds to ML-decoding when noise follows
generalized p-Gaussian density. Several classes of codes have by use of the bound been shown to be
optimal with respect to d2

E min within the set of block codes over symmetric PSK.
It is of general importance to understand the limits of minimum distance (with respect to a relevant

distance measure) for a code with certain parameters in order to maximize the potential for error cor-
rection and noise independence. This approach, based on an extended version of the Elias’ bound, has
the advantage of being independent of the structure of the code—a code is only assumed to be a subset
of the universe.

We consider the ease with which generalizations and extensions can be made, demonstrated by the
results of the paper, as an important virtue of the present approach.
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