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UTILIZATION OF CANONICAL VARIABLES FOR
INTEGRATION OF SYSTEMS OF FIRST-ORDER

DIFFERENTIAL EQUATIONS
NAIL H. IBRAGIMOV

Department of Mathematics and Science,
Research Centre ALGA: Advances in Lie Group Analysis,

Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden

Abstract. Systems of two nonlinear ordinary differential of the first order admitting nonlinear
superpositions are investigated using Lie’s enumeration of group on the plane. It is shown that
the systems associated with two-dimensional Vessiot-Guldberg-Lie algebras can be integrated
by quadrature upon introducing Lie’s canonical variables. The knowledge of a symmetry group
of a system in question is not needed in this approach. The systems associated with three-
dimensional Vessiot-Guldberg-Lie algebras are classified into 13 standard forms 10 of which
are integrable by quadratures and three are reduced to Riccati equations. It is also shown
that canonical variables furnish a convenient tool for solving systems of two linear partial
differential equations of the first order.

Keywords: Two-dimensional Lie algebras L2, Standard forms of L2, Canonical variables,
Non-linear superposition, First-order linear partial differential equations.

1 Canonical variables for two-dimensional Lie algebras
Consider linearly independent first-order linear partial differential operators

X1 = ξ1(x, y)
∂

∂x
+ η1(x, y)

∂

∂y
, X2 = ξ2(x, y)

∂

∂x
+ η2(x, y)

∂

∂y
(1.1)

with two variables x, y. The commutator [X1, X2] of the operators (1.1) is a linear
partial differential operator defined by the formula

[X1, X2] = X1X2 −X2X1,

or equivalently

[X1, X2] =
(
X1(ξ2)−X2(ξ1)

) ∂

∂x
+
(
X1(η2)−X2(η1)

) ∂

∂y
· (1.2)

c© 2009 ALGA
c© 2009 N.H. Ibragimov
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2 Nail H. Ibragimov

The linear space L2 spanned by the operators (1.1) is a two-dimensional Lie if

[X1, X2] ∈ L2. (1.3)

In order to formulate the result on canonical variables in two-dimensional Lie al-
gebras, it is convenient to use, along with the commutator [X1, X2] of the operators
(1.1), their pseudo-scalar product

X1 ∨X2 = ξ1η2 − η1ξ2. (1.4)

Recall that the operators (1.1) are said to be linearly connected if the equation

λ1(x, y)X1 + λ2(x, y)X2 = 0

holds identically in x, y with certain functions λ1(x, y), λ2(x, y), not both zero.
A geometrical significance of the pseudo-scalar product is clarified by the follow-

ing statement: the operators (1.1) are linearly connected if and only if their pseudo-
scalar product (1.4) vanishes.

Lie’s method of integration of second-order ordinary differential equations by us-
ing their symmetries is based on existence of so-called canonical coordinates in two-
dimensional Lie algebras. These variables provide, for every L2, the simplest form
of its basis and therefore reduce a differential equation admitting L2, to an integrable
form. The basic statement is formulated as follows (for the proof, see[2], Chapter 18,
§1; see also [1], Section 12.2.2).

Theorem 1.1. Any two dimensional Lie algebra can be transformed, by a proper
choice of its basis and suitable variables t, u, to one and only one of the four non-
similar standard forms presented in the following table.

Table 1. Structure and standard forms of L2

Type Structure of L2 Standard form of L2

I [X1, X2] = 0, X1 ∨X2 6= 0 X1 =
∂

∂t
, X2 =

∂

∂u

II [X1, X2] = 0, X1 ∨X2 = 0 X1 =
∂

∂u
, X2 = t

∂

∂u

III [X1, X2] = X1, X1 ∨X2 6= 0 X1 =
∂

∂u
, X2 = t

∂

∂t
+ u

∂

∂u

IV [X1, X2] = X1, X1 ∨X2 = 0 X1 =
∂

∂u
, X2 = u

∂

∂u

2



Utilization of canonical variables for integration of systems of first-order equations 3

The variables t, u presented in Table 1 are called canonical variables. They are found,
for each type, by solving the following systems of first-order linear partial differential
equations:

Type I : X1(t) = 1, X2(t) = 0; X1(u) = 0, X2(u) = 1.

Type II : X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = t. (1.5)

Type III : X1(t) = 0, X2(t) = t; X1(u) = 1, X2(u) = u.

Type IV : X1(t) = 0, X2(t) = 0; X1(u) = 1, X2(u) = u.

2 Application to systems with nonlinear superposition

2.1 Integration of systems associated with L2

A method for integrating systems of ordinary differential equations admitting nonlinear
superpositions with two-dimensional associated Lie algebras L2 was suggested in [1],
Section 11.2.6. The result is formulated as follows.

Theorem 2.1. Consider a system of coupled nonlinear first-order ordinary differential
equations of the form

dx

dt
= T1(t) ξ

1
1(x, y) + T2(t) ξ

1
2(x, y),

dy

dt
= T1(t) ξ

2
1(x, y) + T2(t) ξ

2
2(x, y)

(2.1)

admitting a nonlinear superposition principle. Let the operators

X1 = ξ11(x, y)
∂

∂x
+ ξ21(x, y)

∂

∂y
, X2 = ξ12(x, y)

∂

∂x
+ ξ22(x, y)

∂

∂y
(2.2)

associated with the system (2.1) span a two-dimensional Lie algebra L2, i.e.

[X1, X2] = c1X1 + c2X2, c1, c2 = const.

Then Eqs. (2.1) can be solved by quadratures upon introducing canonical variables.

Proof. After a change of the variables x, y into new variables

x̃ = x̃(x, y), ỹ = ỹ(x, y) (2.3)

without changing t, the operators (2.2) will be transformed into the operators

X1 = ξ̃11(x̃, ỹ)
∂

∂x̃
+ ξ̃21(x̃, ỹ)

∂

∂ỹ
, X2 = ξ̃12(x̃, ỹ)

∂

∂x̃
+ ξ̃22(x̃, ỹ)

∂

∂ỹ
, (2.4)

3



4 Nail H. Ibragimov

where the vectors (ξ̃1α, ξ̃
2
α), α = 1, 2 are obtained from the vectors (ξ1α, ξ

2
α) by the

transformation law for contravariant vectors:

ξ̃1α =
∂x̃(x, y)

∂x
ξ1α +

∂x̃(x, y)

∂y
ξ2α ,

ξ̃2α =
∂ỹ(x, y)

∂x
ξ1α +

∂ỹ(x, y)

∂y
ξ2α ·

The derivative of (x, y) with respect to t obeys the same transformation law:

dx̃

dt
=
∂x̃(x, y)

∂x

dx

dt
+
∂x̃(x, y)

∂y

dy

dt
,

dỹ

dt
=
∂ỹ(x, y)

∂x

dx

dt
+
∂ỹ(x, y)

∂y

dy

dt
·

Therefore Eqs. (2.1) will be written in the form

dx̃

dt
= T1(t) ξ̃

1
1(x̃, ỹ) + T2(t) ξ̃

1
2(x̃, ỹ),

dỹ

dt
= T1(t) ξ̃

2
1(x̃, ỹ) + T2(t) ξ̃

2
2(x̃, ỹ)

(2.5)

with the same coefficients T1(t), T2(t) as those in the system (2.1).
To complete the proof, we chose for x̃, ỹ canonical variables mapping the operators

(2.2) to the standard forms from Table 1, and hence convert Eqs. (2.1) to the simple
integrable forms given in the following table, where x̃, ỹ are denoted again by x, y.

Table 2. Standard forms of operators (2.2) and systems (2.1)

Standard forms of operators (2.2) Standard forms of Eqs. (2.1)

I X1 =
∂

∂x
, X2 =

∂

∂y

dx

dt
= T1(t),

dy

dt
= T2(t)

II X1 =
∂

∂y
, X2 = x

∂

∂y

dx

dt
= 0,

dy

dt
= T1(t) + T2(t)x

III X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y

dx

dt
= T2(t)x,

dy

dt
= T1(t) + T2(t)y

IV X1 =
∂

∂y
, X2 = y

∂

∂y

dx

dt
= 0,

dy

dt
= T1(t) + T2(t)y

4



Utilization of canonical variables for integration of systems of first-order equations 5

Example 2.1. Let us apply the method to the following nonlinear system:

dx

dt
= xy2 − x

2t
,

dy

dt
= x2y − y

2t
· (2.6)

In this case we have Eqs. (2.1) with

T1(t) = 1, ξ11(x, y) = xy2, ξ21(x, y) = x2y,

T2(t) = −
1

2t
, ξ12(x, y) = x, ξ22(x, y) = y.

(2.7)

Hence, the operators (2.2) are written:

X1 = xy2
∂

∂x
+ x2y

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
· (2.8)

We have:

[X1, X2] = −2X1, X1 ∨X2 ≡ ξ1η2 − η1ξ2 = xy(y2 − x2) 6= 0.

Hence, the operators (2.8) span a two-dimensional Lie algebra of type III. Therefore
we can transform the operators (2.8) and Eqs. (2.6) to the form III from Table 2.

Let us find canonical variables x̃, ỹ for the first operator (2.8) by solving the equa-
tions

X1(x̃) = 0, X1(ỹ) = 1

in accordance with Eqs. (1.5) for Type III. These equations are written

xy2
∂x̃

∂x
+ x2y

∂x̃

∂y
= 0, xy2

∂ỹ

∂x
+ x2y

∂ỹ

∂y
= 1.

The characteristic equation
dx

y
− dy

x
= 0

for the equation X1(x̃) = 0 has the first integral x2 − y2 = const. Hence, x̃ is an
arbitrary function of x2 − y2. One can take it in the simplest form x̃ = x2 − y2.

Let us solve the equation X1(ỹ) = 1. Consider its characteristic system

dx

xy2
=

dy

x2y
= dỹ.

Using the integral given by the first equation of this system in the form x2 − y2 = a2,
we write the second equation dx/(xy2) = dỹ of the characteristic system in the form

dx

x(x2 − a2)
= dỹ

5



6 Nail H. Ibragimov

or

dỹ =
1

a2

[
1

2(x− a)
+

1

2(x+ a)
− 1

x

]
dx.

The resulting integral

ỹ − 1

a2

[
ln
√
x2 − a2 − ln |x|

]
= C

together with the integral x2−y2 = a2 provide the solution to the equationX1(ỹ) = 1 :

ỹ =
ln |y| − ln |x|
x2 − y2

+ F (x2 − y2).

Letting F = 0 and assuming that x, y are positive, we obtain the following variables:

x̃ = x2 − y2, ỹ =
ln y − lnx

x2 − y2
· (2.9)

One can verify that the variables (2.9) are the canonical variables required for our
algebra L2. Indeed, the operators (2.8) are written in the form of type III of Table 2 (up
to nonessential constant factors in X2):

X1 =
∂

∂ỹ
, X2 = 2

(
x̃
∂

∂x̃
− ỹ

∂

∂ỹ

)
.

These operators have the form (2.4) with

ξ̃11 = 0, ξ̃21 = 1, ξ̃12 = 2x̃, ξ̃22 = −2ỹ.
Substituting these expressions in (2.5) (or differentiating (2.9) with respect to t and us-
ing Eqs. (2.6)) we see that Eqs. (2.6) are written in the variables (2.9) as the following
simple linear equations:

dx̃

dt
= − x̃

t
,

dỹ

dt
= 1 +

ỹ

t
· (2.10)

Integration of Eqs. (2.10) yields:

x̃ =
C1

t
, ỹ = C2 t+ t ln t. (2.11)

Now we solve Eqs. (2.9) with respect to x and y :

x =

√
x̃

1− e2x̃ ỹ
, y =

√
x̃

e−2x̃ ỹ − 1
,

substitute here the solutions (2.11) and finally arrive at the following general solution
to the system of equations (2.6):

x =

√
k

t(1− ζ2)
, y = ζ

√
k

t(1− ζ2)
. (2.12)

Here ζ = Ctk, where C and k are arbitrary constants.

6



Utilization of canonical variables for integration of systems of first-order equations 7

2.2 Lie’s classification of L3

Lie showed that the basis X1, X2, X3 of any three-dimensional algebra of operators in
two variables can be mapped, by a complex change of variables, to one of the following
13 standard forms (see [2], Chapter 22; see also [1], Section 7.3.8).

Table 3. Standard forms of three-dimensional Lie algebras

A. The first derived algebra has the dimension three :

1) X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2

∂

∂x
+ y2

∂

∂y
,

2) X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = x2

∂

∂x
+ xy

∂

∂y
,

3) X1 =
∂

∂y
, X2 = y

∂

∂y
, X3 = y2

∂

∂y
·

B. The first derived algebra has the dimension two :

4) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ cy

∂

∂y
(c 6= 0, 6= 1),

5) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = (1− c)x

∂

∂x
+ y

∂

∂y
(c 6= 0, 6= 1),

6) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
,

7) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = y

∂

∂y
,

8) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = (x+ y)

∂

∂x
+ y

∂

∂y
,

9) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 =

∂

∂x
+ y

∂

∂y
·

C. The first derived algebra has the dimension one :

10) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
,

11) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
,

12) X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
·

D. The first derived algebra has the dimension zero :

13) X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = p(x)

∂

∂y
·

7



8 Nail H. Ibragimov

Remark 2.1. In 13), p(x) is any given function. Lie uses the algebras 1) and 2) also
in the following alternative forms:

1′) X1 =
∂

∂x
+ x

∂

∂y
, X2 = x

∂

∂x
+ 2y

∂

∂y
, X3 = (x2 − y)

∂

∂x
+ xy

∂

∂y
,

2′) X1 = x
∂

∂y
, X2 = x

∂

∂x
− y

∂

∂y
, X3 = y

∂

∂x
·

Recall that the derived algebra L′

3 of the Lie algebra L3 with a basis X1, X2, X3 is
the algebra spanned by the commutators [X1, X2], [X1, X3], [X2, X3]. The higher
derivatives are defined by induction, L′′

3 = (L′

3)
′, etc. A Lie algebra is solvable if its

derivative of a certain order vanishes. It is obvious that L3 is solvable if dimL′

3 ≤ 2
and not solvable if dimL′

3 = 3.

2.3 Integration of systems associated with L3

Using Lie’sa classification of three-dimensional algebras, I extend Theorem 2.1 from
Section 2.1 as follows.

Theorem 2.2. Consider a system of coupled nonlinear first-order ordinary differential
equations of the form

dx

dt
= T1(t) ξ

1
1(x, y) + T2(t) ξ

1
2(x, y) + T3(t) ξ

1
3(x, y),

dy

dt
= T1(t) ξ

2
1(x, y) + T2(t) ξ

2
2(x, y) + T3(t) ξ

1
3(x, y)

(2.13)

admitting a nonlinear superposition principle. Let the operators

X1 = ξ11(x, y)
∂

∂x
+ ξ21(x, y)

∂

∂y
,

X2 = ξ12(x, y)
∂

∂x
+ ξ22(x, y)

∂

∂y
,

X3 = ξ13(x, y)
∂

∂x
+ ξ23(x, y)

∂

∂y

(2.14)

associated with the system (2.13) span a three-dimensional Lie algebra L3. Then Eqs.
(2.13) can be solved by quadratures if the algebra L3 is solvable and reduced to inte-
gration of Riccati equations if L3 is not solvable.

Proof. We transform the Lie algebra L3 associated with the system (2.13) to an appro-
priate standard form given in Table 3 and map Eqs. (2.13) to the following forms.

8



Utilization of canonical variables for integration of systems of first-order equations 9

Table 4. Standard forms of Eqs. (2.13)

A. dimL′

3 = 3 :

1) ẋ = T1(t) + T2(t)x+ T3(t)x
2, ẏ = T1(t) + T2(t)y + T3(t)y

2;

2) ẋ = T1(t) + 2T2(t)x+ T3(t)x
2, ẏ = T2(t)y + T3(t)xy;

3) ẋ = 0, ẏ = T1(t) + T2(t)y + T3(t)y
2.

B. dimL′

3 = 2 :

4) ẋ = T1(t) + 2T2(t)x+ T3(t)x
2, ẏ = T2(t)y + T3(t)xy (c 6= 0, 6= 1);

5) ẋ = (1− c)T3(t)x (c 6= 0, 6= 1), ẏ = T1/t) + T2(t)x+ T3(t)y;

6) ẋ = T1(t) + T3(t)x, ẏ = T2(t) + T3(t)y;

7) ẋ = 0, ẏ = T1(t) + T2(t)x+ T3(t)y;

8) ẋ = T1(t) + T2(t)(x+ y), ẏ = T2(t) + T3(t)y;

9) ẋ = T3(t), ẏ = T1(t) + T2(t)x+ T3(t)y.

C. dimL′

3 = 1 :

10) ẋ = T1(t) + T3(t)x, ẏ = T2(t);

11) ẋ = T3(t)x, ẏ = T1(t) + T2(t)x+ T3(t)y;

12) ẋ = T1(t), ẏ = T2(t) + T3(t)x.

D. dimL′

3 = 0 :

13) ẋ = 0, ẏ = T1(t) + T2(t)x+ T3(t)p(x).

In this table, ẋ, ẏ are the derivatives of x, y with respect to t.
It is manifest that the systems of forms B, C and D can be solved by quadratures.

It is also obvious that the systems in A require integration of Riccati equations and, in
general, cannot be solved by quadratures. This completes the proof of the theorem.

Remark 2.2. The alternative forms in Remark 2.1 provide the following alternative
standard forms of Eqs. (2.13):

1′) ẋ = T1(t) + T2(t)x+ T3(t)(x
2 − 1), ẏ = T1(t)x+ 2T2(t)y + T3(t)xy;

2′) ẋ = T2(t)x+ T3(t)y, ẏ = T1(t)x− T2(t)y.

9



10 Nail H. Ibragimov

In certain particular cases the systems in A can be integrated either by quadratures
or in terms of special functions. The simplest case is T3(t) = 0. Then the equations
1) - 3) become easily solvable linear systems. Furthermore, if T1(t) = 0 the Riccati
equations in systems 1) - 3) can be linearized by a change of the dependent variables
(see [3], Chapter 1). Moreover, it is demonstrated in [3] that the Riccati equations in
systems 1), 3) can be linearized by a change of the dependent variables if

T3(t) = k[T2/t)− kT1(t)], k = const.

In the case of the system 2) this condition is replaced by T3(t) = k[2T2/t)− kT1(t)].
It is well known that if T3(t) 6= 0, one can transform the Riccati equations in

question to the equivalent form with T3(t) = −1, T2(t) = 0. Assuming that this
transformation has been done, let us consider, e.g., the system 2),

ẋ+ x2 = T1(t), ẏ + xy = 0. (2.15)

We set x = (ln |u|)′ and rewrite the first equation of this system in the form of a linear
second-order equation

u′′ = T1(t),

where u′ is the derivative of u with respect to t. The above equation can be solved in
terms of special function if T1(t) is a linear function. Indeed, let T1(t) = αt+β, α 6= 0.
Then our equation

u′′ = αt+ β

becomes the Airy equation
d2u

dτ 2
− τ u = 0

upon introducing the new independent variable

τ = α−2/3[αt+ β].

The general solution to the Airy equation is given by the linear combination

u = C1Ai(τ) + C2Bi(τ)

of the Airy functions

Ai(τ) =
1

π

∫
∞

0

cos
(
sτ +

1

3
s3
)
ds,

Bi(τ) =
1

π

∫
∞

0

[
exp

(
sτ − 1

3
s3
)
+ sin

(
sτ +

1

3
s3
)]
ds.

10
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Assuming that C1 6= 0 and introducing the new constant K1 = C2/C1 we obtain

x(t) =
d

dt
ln
∣∣Ai

(
α−2/3[αt+ β]

)
+K1Bi

(
α−2/3[αt+ β]

)∣∣. (2.16)

Now we substitute (2.16) in the second equation of the system (2.15) and obtain upon
integration:

y(t) = K2

{
Ai
(
α−2/3[αt+ β]

)
+K1Bi

(
α−2/3[αt+ β]

)}−1
. (2.17)

Thus, the solution of the system (2.15) with T1(t) = αt + β is given by the special
functions (2.16), (2.17).

Example 2.2. Consider the nonlinear system

dx

dt
= −T1(t) y earctan(y/x) + T2(t)x+ T3(t)y,

dy

dt
= T(t)x e

arctan(y/x) + T2(t)y − T3(t)x

(2.18)

with arbitrary coefficients T1(t), T2(t), T3(t). The operators (2.14) associated with Eqs.
(2.18) have the form

X1 = earctan(y/x)
(
x
∂

∂y
− y

∂

∂x

)
,

X2 = x
∂

∂x
+ y

∂

∂y
,

X3 = y
∂

∂x
− x

∂

∂y

(2.19)

and span a three-dimensional Lie algebra L3 with the following commutator relations:

[X1, X2] = 0, [X1, X3] = X1, [X2, X3] = 0. (2.20)

It follows that the derived algebra L′

3 has the dimension one, and hence our algebra
L3 belongs to the category C of Table 3. Specifically, comparison of the commutator
relations (2.20) with the commutators of the standard operators 10), 11) or 12) from
Table 3 shows that the operators (2.19) can be mapped by a change of variables (2.3)
either to 10) or to 11). However, it is easy to show that they cannot be mapped to the
form 11). Indeed, the change of variables (2.3) converts (2.19) to the form 11),

X1 =
∂

∂ỹ
, X2 = x̃

∂

∂ỹ
, X3 = x̃

∂

∂x̃
+ ỹ

∂

∂ỹ
,

11



12 Nail H. Ibragimov

if x̃ and ỹ solve the following over-determined systems:

X1(x̃) = 0, X1(ỹ) = 1,

X2(x̃) = 0, X2(ỹ) = x̃,

X3(x̃) = x̃, X3(ỹ) = ỹ,

where X1, X2, X3 are the operators (2.19). These equations are not compatible. For
example, the equations X1(x̃) = 0 and X3(x̃) = x̃ contradict each other because X1

differs from X3 by a non-vanishing factor only. For another reasoning, see the general
construction of similarity transformations given in [1], Section 7.3.7.

Let us find the change of variables (2.3) mapping (2.19) to the form 10),

X1 =
∂

∂x̃
, X2 =

∂

∂ỹ
, X3 = x̃

∂

∂x̃
· (2.21)

Now x̃ and ỹ should solve the following over-determined systems:

X1(x̃) = 1, X1(ỹ) = 0,

X2(x̃) = 0, X2(ỹ) = 1,

X3(x̃) = x̃, X3(ỹ) = 0.

Substituting the expressions (2.19) forX1, X2, X3 we write these equations in the form

x
∂x̃

∂y
− y

∂x̃

∂x
= e− arctan(y/x), x

∂ỹ

∂y
− y

∂ỹ

∂x
= 0,

x
∂x̃

∂x
+ y

∂x̃

∂y
= 0, x

∂ỹ

∂x
+ y

∂ỹ

∂y
= 1, (2.22)

x
∂x̃

∂y
− y

∂x̃

∂x
= x̃, x

∂ỹ

∂y
− y

∂ỹ

∂x
= 0.

Comparison of the first and third equations for x̃ yields x̃ = e− arctan(y/x). One can
readily verify that this function solves all three equations (2.22) for x̃. The equations
for ỹ are easy to solve and yield ỹ = ln

√
x2 + y2. Thus, the canonical variables

mapping the operators (2.19) to the standard form (2.21) are given by

x̃ = e− arctan(y/x), ỹ = ln
√
x2 + y2. (2.23)

In these variables Eqs. (2.18) are written in the integrable form 10) from Table 4:

dx̃

dt
= T1(t) + T3(t) x̃,

dỹ

dt
= T1(t). (2.24)

12



Utilization of canonical variables for integration of systems of first-order equations 13

3 Calculation of invariants using canonical variables
I will explain the essence of the approach by discussing the problem on invariants of a
linear representation of the two-parameter group composed by the homogeneous dila-
tions and rotations on the (x, y) plain. Namely, let us find the invariants J(x, y, u, v, w)
of the two-parameter group with the generators

X1 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ v

∂

∂v
+ kw

∂

∂w
,

X2 = y
∂

∂x
− x

∂

∂y
+ (v + αx+ βy)

∂

∂u
− (u+ γx+ δy)

∂

∂v
,

(3.1)

where k, α, β, γ, δ are any constants.

3.1 Computation in original variables
We have to solve the following system of linear homogeneous first-order partial differ-
ential equations:

X1(J) ≡ x
∂J

∂x
+ y

∂J

∂y
+ u

∂J

∂u
+ v

∂J

∂v
+ kw

∂J

∂w
= 0, (3.2)

X2(J) = y
∂J

∂x
− x

∂J

∂y
+ (v + αx+ βy)

∂J

∂u
− (u+ γx+ δy)

∂J

∂v
= 0. (3.3)

The integration of the characteristic system for Eq. (3.2),

dx

x
=
dy

y
=
du

u
=
dv

v
=
dw

kw
,

provides the following invariants for X1 :

λ =
y

x
, U =

u

x
, V =

v

x
, W =

w

xk
· (3.4)

Hence, the general solution to Eq. (3.2) has the form

J = J(λ, U, V,W ).

Therefore we write the action of the operatorX2 on functions depending on λ, U, V,W.
This action is obtained by the formula

X2 = X2(λ)
∂

∂λ
+X2(U)

∂

∂U
+X2(V )

∂

∂V
+X2(W )

∂

∂W
·

13



14 Nail H. Ibragimov

The reckoning yields:

X2(λ) = −(1 + λ2), X2(U) = V − λU + α + βλ,

X2(V ) = −(U + λV + γ + δλ), X2(W ) = −kλW,

and hence

X2 = −(1+λ2)
∂

∂λ
+(V −λU +α+βλ)

∂

∂U
− (U +λV + γ+ δλ)

∂

∂V
− kλW ∂

∂W
·

Now the characteristic system for Eq. (3.3) is written

− dλ

1 + λ2
=

dU

V − λU + α + βλ
= − dV

U + λV + γ + δλ
= − dW

kλW
·

Thus, we have arrived at the problem of integration of the following system of first-
order linear ordinary differential equations with variable coefficients:

dU

dλ
=

λ

1 + λ2
U − 1

1 + λ2
(V + α + βλ),

dV

dλ
=

λ

1 + λ2
V +

1

1 + λ2
(U + γ + δλ),

dW

dλ
=

kλ

1 + λ2
W.

(3.5)

3.2 Computation in canonical variables
First we compute the commutator (1.2) and the pseudoscalar product (1.4) of the op-
erators (3.1) and obtain:

[X1, X2] = 0, X1 ∨X2 = −(x2 + y2) 6= 0.

Therefore, according to Table 1, the operators (3.1) span a Lie algebra L2 of type I.
In order to find canonical variables for this algebra, we have to determine a change of
variables of the form (2.3),

x̃ = x̃(x, y), ỹ = ỹ(x, y),

by solving Eqs. (1.5) for type I,

X1(x̃) ≡ x
∂x̃

∂x
+ y

∂x̃

∂y
= 1, X2(x̃) ≡ y

∂x̃

∂x
− x

∂x̃

∂y
= 0; (3.6)

X1(ỹ) ≡ x
∂ỹ

∂x
+ y

∂ỹ

∂y
= 0, X2(ỹ) ≡ y

∂ỹ

∂x
− x

∂ỹx

∂y
= 1. (3.7)

14
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Writing the characteristic equation for the equation X2(x̃) = 0 from (3.6) in the form

xdx+ ydy = 0

we obtain the first integral
x2 + y2 = const.

Hence, the general solution to the equation X2(x̃) = 0 has the form

x̃ = x̃(r), where r =
√
x2 + y2.

We have:
X1(r) = x

∂r

∂x
+ y

∂y

∂y
= r,

and hence the restriction of X1 to functions depending only on r has the form

X1 = r
∂

∂r
·

Therefore the equation X1(x̃) = 1 from (3.6) is written

r
dx̃(r)

dr
= 1

and yields
x̃ = ln r ≡ ln

√
x2 + y2 .

Now we proceed likewise with Eqs. (3.7). Namely, starting with the equation
X1(ỹ) = 0 we conclude that

ỹ = ỹ(λ), where λ =
y

x
·

The reckoning shows that the restriction of X2 to functions depending only on λ has
the form (see also Section 3.1)

X2 = −(1 + λ2)
∂

∂λ
·

Therefore the equation X2(ỹ) = 1 from (3.7) is written

(1 + λ2)
dỹ(λ)

dλ
= −1

and yields
ỹ = − arctanλ ≡ − arctan

(y
x

)
.

15
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Thus, we have the following canonical variables:

x̃ = ln
√
x2 + y2 , ỹ = − arctan(y/x) . (3.8)

The inverse transformation to (3.8) is given by

x = ex̃ cos ỹ , y = −ex̃ sin ỹ . (3.9)

Using Eqs. (3.8) and (3.9) one can readily rewrite the operators (3.1) in the canonical
variables and obtain:

X1 =
∂

∂x̃
+ u

∂

∂u
+ v

∂

∂v
+ kw

∂

∂w
, (3.10)

X2 =
∂

∂ỹ
+
[
v + ex̃ (α cos ỹ − β sin ỹ)

] ∂
∂u
−
[
u+ ex̃ (γ cos ỹ − δ sin ỹ)

] ∂
∂v
·

Now the characteristic system for the equation X1(J) = 0 is written

du

u
=
dv

v
=
dw

kw
= dx̃

and provides the following invariants:

ỹ , U = u e−x̃ , V = v e−x̃ , W = w e−kx̃ . (3.11)

The second operator (3.10) is written in terms of the invariants (3.11) as follows:

X2 =
∂

∂ỹ
+
[
V + α cos ỹ − β sin ỹ

] ∂
∂U

−
[
U + γ cos ỹ − δ sin ỹ

] ∂
∂V

· (3.12)

The characteristic system for the equation X2(J) = 0 reduces to the following simple
system of non-homogeneous first-order linear equations:

dU

dỹ
= V + α cos ỹ − β sin ỹ,

dV

dỹ
= −U − γ cos ỹ + δ sin ỹ. (3.13)

It can be easily integrated by variation of parameters. I provide the solution when

δ = α, γ = −β, (3.14)

i.e. for the system

dU

dỹ
= V + α cos ỹ − β sin ỹ,

dV

dỹ
= −U + β cos ỹ + α sin ỹ. (3.15)

The general solution to Eqs. (3.15) has the form

U =

(
C1 +

β

2

)
cos ỹ +

(
C2 +

α

2

)
sin ỹ,

V =
(
C2 −

α

2

)
cos ỹ −

(
C1 −

β

2

)
sin ỹ.

(3.16)
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3.3 Summary
Let us summarize our results on invariants for the operators (3.1) in the case (3.14), i.e.
for the operators

X1 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ v

∂

∂v
+ kw

∂

∂w
,

X2 = y
∂

∂x
− x

∂

∂y
+ (v + αx+ βy)

∂

∂u
− (u− βx+ αy)

∂

∂v
·

(3.17)

Solving Eqs. (3.16) with respect to C1, C2 we obtain two first integrals

C1 = J1(ỹ, U, V ), C2 = J2(ỹ, U, V )

of the system (3.15). The functions J1 and J2 provide two functionally independent
invariants for the operators X1, X2. The third invariant J3 is W from Eqs. (3.11).

Eqs. (3.8) and (3.9) yield:

ex̃ =
√
x2 + y2 , cos ỹ = x e−x̃ , sin ỹ = −y e−x̃ . (3.18)

Substituting (3.18) in Eqs. (3.11), (3.16) and setting C1 = J1, C2 = J2,W = J3, we
obtain:

u =

(
J1 +

β

2

)
x−

(
J2 +

α

2

)
y ,

v =

(
J1 −

β

2

)
y +

(
J2 −

α

2

)
x ,

w = (x2 + y2)k/2 J3.

(3.19)

Solving Eqs. (3.19) with respect to J1, J2, J3 we finally obtain the following basis o
invariants for the operators (3.17):

J1 =
1

x2 + y2

(
xu+ yv + αxy − β

2
(x2 − y2)

)
,

J2 =
1

x2 + y2

(
xv − yu+ βxy +

α

2
(x2 − y2)

)
,

J3 = (x2 + y2)−k/2 w.

(3.20)

8 March 2009
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Abstract. The paper is devoted to the group analysis of equations of motion of two-dimensional
uniformly stratified rotating fluids used as a basic model in geophysical fluid dynamics. It is
shown that the nonlinear equations in question have a remarkable property to be self-adjoint.
This property is crucial for constructing conservation laws provided in the present paper. In-
variant solutions are constructed using certain symmetries. The invariant solutions are used for
defining internal wave beams..
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1 Introduction
We will apply Lie group analysis for investigating the system of nonlinear equations

∆ψt − gρx − fvz = ψx∆ψz − ψz∆ψx , (1.1)

vt + fψz = ψxvz − ψzvx , (1.2)

ρt +
N2

g
ψx = ψxρz − ψzρx (1.3)

used in geophysical fluid dynamics for investigating internal waves in uniformly strat-
ified incompressible fluids (oceans). In particular, the system (1.1)-(1.3) with f = 0
was used in [1] to study two non-unidirectional wave beams propagating and interact-
ing in stratified fluid. An exact solution of the same system, again in the case when

c© 2009 ALGA
c© 2009 N.H. Ibragimov and R.N. Ibragimov
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f = 0, was employed in [2] for investigating stability of a singe internal plane wave.
Weakly nonlinear effects in colliding of internal wave beams were investigated in [3],
[4] by using Eqs. (1.1)-(1.3) with f = 0. The system (1.1)-(1.3) with f 6= 0 was used
in [5] to model weakly nonlinear wave interactions governing the time behavior of the
oceanic energy spectrum.

In these equations ∆ is the two-dimensional Laplacian:

∆ = D2
x +D2

z , e.g. ∆ψt =
∂2ψt

∂x2
+
∂2ψt

∂z2
≡ Dt(∆ψ) ,

and g, f,N are constants. Namely, g is the gravitational acceleration, f is the Coriolis
parameter. The quantity N appears due to the density stratification of a fluid and is
constant under the linear stratification hypothesis.

We will show in what follows that the system of equations (1.1)-(1.3) is self-adjoint
(in the terminology of [6, 7]) and use this remarkable property of the system for calcu-
lating conservation laws associated with symmetry properties of the system (1.1)-(1.3).

In some calculations, e.g. in Sections 4.7, 4.5, 4.8 it is convenient to write Eqs.
(1.1)-(1.3) by using the Jacobians J(ψ, v) = ψxvz − ψzvx, etc., in the following form:

∆ψt − gρx − fvz = J(ψ,∆ψ), (1.4)

vt + fψz = J(ψ, v), (1.5)

ρt +
N2

g
ψx = J(ψ, ρ). (1.6)

2 Self-adjointness

2.1 Preliminaries
We will use the terminology and the following definitions from [6, 7] (see also [8]).

Let x = (x1, . . . , xn) be n independent variables, and u = (u1, . . . , um) be m
dependent variables. The partial derivatives of uα with respect to xi are denoted by
u(1) = {uα

i }, u(2) = {uα
ij}, . . . with

uα
i = Di(u

α), uα
ij = Di(u

α
j ) = DiDj(u

α), . . . ,

where Di is the operator of total differentiation with respect to xi :

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, . . . , n. (2.1)

Even though the operators Di are given by formal infinite sums, their action Di(f) is
well defined for functions f(x, u, u(1), . . .) depending on a finite number of the vari-
ables x, u, u(1), u(2), . . . The usual summation convention on repeated indices α and i
is assumed in expressions like Eq. (2.1).
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The variational derivatives (the Euler-Lagrange operator) are defined by

δ

δuα
=

∂

∂uα
+

∞∑

s=1

(−1)sDi1 · · ·Dis

∂

∂uα
i1···is

, α = 1, . . . ,m, (2.2)

where the summation over the repeated indices i1 . . . is runs from 1 to n.

Definition 2.1. The adjoint equations to nonlinear partial differential equations

Fα

(
x, u, . . . , u(s)

)
= 0, α = 1, . . . ,m, (2.3)

are given by (see also [9])

F ∗

α

(
x, u, µ, . . . , u(s), µ(s)

)
= 0, α = 1, . . . ,m, (2.4)

where µ = (µ1, . . . , µm) are new dependent variables, and F ∗

α are defined by

F ∗

α

(
x, u, µ, . . . , u(s), µ(s)

)
=
δ(µβFβ)

δuα
· (2.5)

In the case of linear equations, Definition 2.1 is equivalent to the classical definition
of the adjoint equation.

Consider the function

L = µβFβ

(
x, u, . . . , u(s)

)
(2.6)

involved in (2.5). Eqs. (2.3) and their adjoint equations (2.4) can be obtained from
(2.5) by taking the variational derivatives (2.2) with respect to the dependent variables
u and the similar variational derivatives with respect to the new dependent variables µ,

δ

δµα
=

∂

∂µα
+

∞∑

s=1

(−1)sDi1 · · ·Dis

∂

∂µα
i1···is

, α = 1, . . . ,m. (2.7)

Namely:

δL
δµα

= Fα

(
x, u, . . . , u(s)

)
, (2.8)

δL
δuα

= F ∗

α

(
x, u, µ, . . . , u(s), µ(s)

)
. (2.9)

This circumstance justifies the following definition.

Definition 2.2. The differential function (2.6) is called a formal Lagrangian for the
differential equations (2.3). For the sake of brevity, formal Lagrangians are also re-
ferred to as Lagrangians.
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If the variables u are known, the new variables µ are obtained by solving Eqs. (2.4)
which are, according to (2.5), linear partial differential equations (2.4) with respect to
µα. Using the existing terminology (see, e.g. [10]), we will call µα nonlocal variables.

Nonlocal variables can be excluded from physical quantities such as conservation
laws if Eqs. (2.3) are self-adjoint ([6]) or, in general, quasi-self-adjoint ([11]) in the
following sense.

Definition 2.3. Eqs, (2.3) are said to be self-adjoint if the system obtained from the
adjoint equations (2.4) by the substitution µ = u :

F ∗

α

(
x, u, u, . . . , u(s), u(s)

)
= 0, α = 1, . . . ,m, (2.10)

is equivalent to the original system (2.3), i.e.

F ∗

α

(
x, u, u, . . . , u(s), u(s)

)
= Φβ

αFβ

(
x, u, . . . , u(s)

)
, α = 1, . . . ,m,

with regular (in general, variable) coefficients Φβ
α.

Definition 2.4. Eqs, (2.3) are said to be quasi-self-adjoint if the system of adjoint
equations (2.4) becomes equivalent to the original system (2.3) upon the substitution

µ = h(u) (2.11)

with a certain function h(u) such that h′(u) 6= 0.

2.2 Adjoint system to Eqs. (1.1)-(1.3)
Let us apply the methods from Section 2.1 to Eqs. (1.1)-(1.3). In this case the formal
Lagrangian (2.6) for Eqs. (1.1)-(1.3) is written

L = ϕ
[
∆ψt − gρx − fvz − ψx∆ψz + ψz∆ψx

]

+ µ [vt + fψz − ψxvz + ψzvx] + r
[
ρt +

N2

g
ψx − ψxρz + ψzρx

]
,

(2.12)

where ϕ, µ and r are new dependent variables. The adjoint equations to Eqs. (1.1)-
(1.3) are obtained by taking the variational derivatives of L, namely:

δL
δψ

= 0,
δL
δv

= 0,
δL
δρ

= 0, (2.13)

where (see (2.2); see also Eqs. (3.6))
δ

δv
=

∂

∂v
−Dx

∂

∂vx
−Dz

∂

∂vz
,

δ

δρ
=

∂

∂ρ
−Dx

∂

∂ρx
−Dz

∂

∂ρz
,

δ

δψ
=

∂

∂ψ
−Dx

∂

∂ψx

−Dz
∂

∂ψz

+DxDt
∂

∂ψxt

+DzDt
∂

∂ψzt

+ · · · .
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Taking into account the special form (2.12) of L, we have:
δL
δψ

=−Dx
∂L
∂ψx

−Dz
∂L
∂ψz

− (D2
x +D2

z)
[
Dt

∂L
∂∆ψt

+Dx
∂L
∂∆ψx

+Dz
∂L
∂∆ψz

]

= Dx

(
ϕ∆ψz + µvz −

N2

g
r + rρz

)
−Dz (ϕ∆ψx + fµ+ µvx + rρx)

− (D2
x +D2

z)
[
Dt(ϕ) +Dx(ϕψz)−Dz(ϕψx)

]

= ϕx∆ψz − ϕz∆ψx + µxvz −
N2

g
rx + rxρz − fµz − µzvx − rzρx

−∆ϕt + 2
[
ϕxzψxx + ϕzzψxz − ϕxxψxz − ϕxzψzz

]
,

δL
δv

=−Dt
∂L
∂vt

−Dx
∂L
∂vx

−Dz
∂L
∂vz

= −µt − µxψz + fϕz + µzψx ,

δL
δρ

=−Dt
∂L
∂ρt

−Dx
∂L
∂ρx

−Dz
∂L
∂ρz

= −rt + gϕx − rxψz + rzψx .

Hence, the adjoint equations (2.13) can be written as follows:

∆ϕt +
N2

g
rx + fµz − ϕx∆ψz + ϕz∆ψx −Θ = 0, (2.14)

− µt − µxψz + fϕz + µzψx = 0, (2.15)

− rt + gϕx − rxψz + rzψx = 0, (2.16)

where

Θ = J(µ, v) + J(r, ρ) + 2
[
ϕxzψxx + ϕzzψxz − ϕxxψxz − ϕxzψzz

]
. (2.17)

2.3 Self-adjointness of Eqs. (1.1)-(1.3)
Theorem 2.1. Eqs. (1.1)-(1.3) are quasi-self-adjoint.

Proof. Looking for (2.11) in the form of a general scaling transformation, one can
readily obtain that after the transformation

ϕ = ψ, µ = −v, r = − g2

N2
ρ, (2.18)

the quantity Θ given by Eq. (2.17) vanishes. Therefore the adjoint equations (2.14)-
(2.16) become identical with Eqs. (1.1)-(1.3) after the substitution (2.18). Hence,
according to Definition 2.4, Eqs. (1.1)-(1.3) are quasi-self-adjoint. Since Eqs. (2.18)
are obtained just be simple scaling of the equations ϕ = ψ, µ = v, r = ρ required for
the self-adjointness, we will say that Eqs. (1.1)-(1.3) are self-adjoint.
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24 N.H. Ibragimov and R.N. Ibragimov

3 Conservation laws

3.1 General discussion of conservation equations
Along with the individual notation t, x, z for the the independent variables, and
v, ρ, ψ for the dependent variables, we will also use the index notation x1 = t, x2 =
x, x3 = z and u1 = v, u2 = ρ, u3 = ψ, respectively. We will write the conservation
laws both in the differential form

Dt(C
1) +Dx(C

2) +Dz(C
3) = 0 (3.1)

and the integral form
d

dt

∫ ∫
C1dxdz = 0, (3.2)

where the double integral in taken over the the (x, z) plane R
2. The equations (3.1)

and (3.2) provide a conservation law for Eqs. (1.1)-(1.3) if they hold for the solutions
of Eqs. (1.1)-(1.3). The vector C = (C1, C2, C3) satisfying the conservation equation
(3.1) is termed a conserved vector. Its component C1 is called the density of the con-
servation law due to Eq. (3.2). The two-dimensional vector (C 2, C3) defines the flux
of the conservation law.

The integral form (3.2) of a conservation law follows from the differential form
(3.1) provided that the solutions of Eqs. (1.1)-(1.3) vanish or rapidly decrease at the
infinity on R

2. Indeed, integrating Eq. (3.1) over an arbitrary region Ω ⊂ R
2 we have:

d

dt

∫ ∫

Ω

C1dxdz = −
∫ ∫

Ω

[
Dx(C

2) +Dz(C
3)
]
dxdz.

According to Green’s theorem, the integral on the right-hand side reduces to the inte-
gral along the boundary ∂Ω of Ω :

−
∫ ∫

Ω

[
Dx(C

2) +Dz(C
3)
]
dxdz =

∫

∂Ω

C3dx− C2dz,

and hence vanishes as Ω expands and becomes the plane R
2.

Remark 3.1. It is manifest from this discussion that one can ignore in C 1 “divergent
type” terms because they do not change the integral in the conservation equation (3.2).
Specifically if C1 evaluated on the solutions of Eqs. (1.1)-(1.3) has the form

C1 = C̃1 +Dx(h
2) +Dz(h

3) (3.3)

with some functions h2, h3, then the conservation equation (3.1) can be equivalently
rewritten in the form (see [12], Paper 1, Section 20.1)

Dt(C̃
1) +Dx(C̃

2) +Dz(C̃
3) = 0,
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where
C̃2 = C2 +Dt(h

2), C̃3 = C3 +Dt(h
3).

Accordingly, we have ∫ ∫
C1dxdz =

∫ ∫
C̃1dxdz,

and hence the integral conservation equation (3.2) provided by the conservation density
C1 of the form (3.3) coincides with that provided by the density C̃1.

In particular, if C̃1 = 0 the integral in Eq. (3.2) vanishes. This kind of conservation
laws are trivial from physical point of view. Therefore we single out physically useless
conservation laws by the following definition.

Definition 3.1. The conservation law is said to be trivial if its density C 1 evaluated on
the solutions of Eqs. (1.1)-(1.3) is the divergence,

C1 = Dx(h
2) +Dz(h

3).

The following statement ([13], Section 8.4.1; see also [7]) simplifies calculations
while dealing with conservation equations.

Lemma 3.1. A function F (v, ρ, ψ, vx, vz, ρx, ρz, ψx, ψz, ψxt, ψzt, . . .) is the divergence,

F = Dx(C
1) +Dz(C

2), (3.4)

if and only if satisfies the following equations:

δF

δv
= 0,

δF

δρ
= 0,

δF

δψ
= 0. (3.5)

Here the variational derivatives act on F as usual (see also Section 2.2):

δF

δv
=
∂F

∂v
−Dx

(
∂F

∂vx

)
−Dz

(
∂F

∂vz

)
,

δF

δρ
=
∂F

∂ρ
−Dx

(
∂F

∂ρx

)
−Dz

(
∂F

∂ρz

)
, (3.6)

δF

δψ
=
∂F

∂ψ
−Dx

(
∂F

∂ψx

)
−Dz

(
∂F

∂ψz

)
+DxDt

(
∂F

∂ψxt

)
+DzDt

(
∂F

∂ψzt

)
+ · · · .

Corollary 3.1. A function C1 is the density of a conservation law (3.1) if and only if
the function

F = Dt(C
1)
∣∣∣
(1.1)−(1.3)

(3.7)

satisfies Eqs. (3.5). Here |(1.1)−(1.3) means that the quantity Dt(C
1) is evaluated on the

solutions of Eqs. (1.1)-(1.3).
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In particular, Lemma 3.1 allows one to single out trivial conservation laws as fol-
lows.

Corollary 3.2. The conservation law (3.1) is trivial if and only if its density C 1 eval-
uated on the solutions of Eqs. (1.1)-(1.3), i.e. the quantity

C1
∗
= C1

∣∣
(1.1)−(1.3)

(3.8)

satisfies Eqs. (3.5),
δC1

∗

δv
= 0,

δC1
∗

δρ
= 0,

δC1
∗

δψ
= 0, (3.9)

on the solutions of Eqs. (1.1)-(1.3).

3.2 Variational derivatives of expressions with Jacobians
We will use in our calculations the following statement on the behaviour of certain
expressions with Jacobians under the action of the variational derivatives (3.6).

Proposition 3.1. The following equations hold:

δJ(ψ, v)

δv
= 0,

δJ(ψ, v)

δψ
= 0, (3.10)

δ[vJ(ψ, v)]

δv
= 0,

δ[vJ(ψ, v)]

δψ
= 0, (3.11)

δ[ρJ(ψ, ρ)]

δρ
= 0,

δ[ρJ(ψ, ρ)]

δψ
= 0, (3.12)

δJ(ψ,∆ψ)

δψ
= 0,

δ[ψJ(ψ,∆ψ)]

δψ
= 0. (3.13)

Proof. Let us verify that the first equation (3.10) holds. We have (see (3.6)):

δJ(ψ, v)

δv
=
δ(ψxvz − ψzvx)

δv
= −Dz(ψx) +Dx(ψz) = −ψxz + ψzx = 0.

Replacing v by ψ one obtains the second equation (3.10). Let us verify now that Eqs.
(3.11) are satisfied. We have:

δ[vJ(ψ, v)]

δv
=
δ[v(ψxvz − ψzvx)]

δv
=
∂[v(ψxvz − ψzvx)]

∂v
−Dz(vψx) +Dx(vψz)

= J(ψ, v)−Dz(vψx) +Dx(vψz) = J(ψ, v)− J(ψ, v)− vψxz + vψzx = 0
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and

δ[vJ(ψ, v)]

δψ
= −Dx(vvz) +Dz(vvx) = −vxvz − vvxz + vzvx + vvzx = 0.

Replacing v by ρ one obtains Eqs. (3.12). Eqs. (3.13) are derived likewise even though
they involve higher-order derivatives. We have:

δJ(ψ,∆ψ)

δψ
=
δ(ψx∆ψz − ψz∆ψx)

δψ
=
δ[ψx(ψxxz + ψzzz)− ψz(ψxxx + ψxzz)]

δψ

= −Dx(∆ψz) +Dz(∆ψx)−Dz(D
2
x +D2

z)(ψx) +Dx(D
2
x +D2

z)(ψz)

= −Dx(∆ψz) +Dz(∆ψx)−Dz(∆ψx) +Dx(∆ψz) = 0.

Derivation of the second equation (3.13) requires only a simple modification of the
previous calculations. Namely:

δ[ψJ(ψ,∆ψ)]

δψ
=
δ[ψ(ψx∆ψz − ψz∆ψx)]

δψ

= ψx∆ψz − ψz∆ψx −Dx(ψ∆ψz) +Dz(ψ∆ψx)−∆Dz(ψψx) + ∆Dx(ψψz)

= ψx∆ψz − ψz∆ψx − ψx∆ψz − ψ∆ψzx + ψz∆ψx + ψ∆ψxz

− 1

2
∆DzDx(ψ

2) +
1

2
∆DxDz(ψ

2) = 0.

3.3 Nonlocal conserved vectors
It has been demonstrated in [8, 7] that for any operator

X = ξi
∂

∂xi
+ ηα

∂

∂uα
(3.14)

admitted by the system (1.1)-(1.3), the quantities

C i = ξiL+W α
[ ∂L
∂uα

i

−Dj

( ∂L
∂uα

ij

)
+DjDk

( ∂L
∂uα

ijk

)]
(3.15)

+Dj

(
W α

) [ ∂L
∂uα

ij

−Dk

( ∂L
∂uα

ijk

)]
+DjDk

(
W α

)[ ∂L
∂uα

ijk

]
, i = 1, 2, 3,

define the components of a conserved vector for Eqs. (1.1)-(1.3) considered together
with the adjoint equations (2.14)-(2.16). Here

W α = ηα − ξjuα
j , α = 1, 2, 3. (3.16)
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The formula (3.15) is written by taking into account that the Lagrangian (2.12)
involves the derivatives up to third order. Moreover, noting that the Lagrangian (2.12)
vanishes on the solutions of Eqs. (1.1)-(1.3), we can drop the first term in (3.15) and
use the conserved vector in the abbreviated form

C i =W α
[ ∂L
∂uα

i

−Dj

( ∂L
∂uα

ij

)
+DjDk

( ∂L
∂uα

ijk

)]
(3.17)

+Dj

(
W α

) [ ∂L
∂uα

ij

−Dk

( ∂L
∂uα

ijk

)]
+DjDk

(
W α

) ∂L
∂uα

ijk

·

For computing the conserved vectors (3.17), the Lagrangian (2.12) containing the
mixed derivatives should be written in the symmetric form

L =
1

3
ϕ
[
ψtxx + ψxtx + ψxxt + ψtzz + ψztz + ψzzt − 3gρx − 3fvz

− ψx

(
ψzxx + ψxzx + ψxxz + 3ψzzz

)
+ ψz

(
3ψxxx + ψxzz + ψzxz + ψzzx

)]

+ µ [vt + fψz − ψxvz + ψzvx] + r
[
ρt +

N2

g
ψx − ψxρz + ψzρx

]
.

(3.18)

Since the Lagrangian L, and hence the components (3.17) of a conserved vector con-
tain the nonlocal variables ϕ, µ, r, we obtain in this way nonlocal conserved vectors.

3.4 Computation of nonlocal conserved vectors

The substitution of (3.18) in (3.17) yields:

C1 = W 1 ∂L
∂vt

+W 2 ∂L
∂ρt

+W 3

[
D2

x

(
∂L
∂ψtxx

)
+D2

z

(
∂L
∂ψtzz

)]

−
[
Dx(W

3)Dx

(
∂L
∂ψtxx

)
+Dz(W

3)Dz

(
∂L
∂ψtzz

)]
+D2

x(W
3)

∂L
∂ψtxx

+D2
z(W

3)
∂L
∂ψtzz

,

or

C1 = W 1 µ+W 2 r +
1

3
W 3

[
D2

x(ϕ) +D2
z(ϕ)

]
(3.19)

− 1

3

[
ϕxDx(W

3) + ϕzDz(W
3)
]
+

1

3
ϕ
[
D2

x(W
3) +D2

z(W
3)
]
.
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Furthermore, using the same procedure, we obtain:

C2 =W 1 ∂L
∂vx

+W 2 ∂L
∂ρx

+W 3

[
∂L
∂ψx

+D2
x

(
∂L
∂ψxxx

)
+D2

z

(
∂L
∂ψxzz

)

+DtDx

(
∂L
∂ψxtx

+
∂L
∂ψxxt

)
+DxDz

(
∂L
∂ψxxz

+
∂L
∂ψxzx

)]
−Dx(W

3)Dx

(
∂L
∂ψxxx

)

−Dt(W
3)Dx

(
∂L
∂ψxtx

)
−Dx(W

3)Dt

(
∂L
∂ψxxt

)
−Dz(W

3)Dz

(
∂L
∂ψxzz

)

−Dz(W
3)Dx

(
∂L
∂ψxzx

)
−Dx(W

3)Dz

(
∂L
∂ψxxz

)
+D2

x(W
3)

∂L
∂ψxxx

+D2
z(W

3)
∂L
∂ψxzz

+DtDx(W
3)

(
∂L
∂ψxtx

+
∂L
∂ψxxt

)
+DxDz(W

3)

(
∂L
∂ψxxz

+
∂L
∂ψxzx

)
,

or

C2 =W 1 µψz +W 2 (rψz − gϕ) +W 3
[
−∆ψz − µvz +

N2

g
r − rρz (3.20)

+D2
x(ϕψz) +

1

3
D2

z(ϕψz) +
2

3
ϕxt −

2

3
DxDz(ϕψx)

]

−Dx(W
3)
[
Dx(ϕψz) +

1

3
ϕt −

1

3
Dz(ϕψx)

]
− 1

3
Dt(W

3)ϕx

− 1

3
Dz(W

3)
[
Dz(ϕψz)−Dx(ϕψx)

]
+
[
D2

x(W
3) +

1

3
D2

z(W
3)
]
ϕψz

+
2

3
ϕDtDx(W

3)− 2

3
ϕψxDzDx(W

3).

Likewise we get

C3 = −W 1 (µψx + fϕ)−W 2 rψx +W 3
[
−∆ψx + (f + vx)µ+ rρx (3.21)

− 1

3
D2

x(ϕψx)−D2
z(ϕψx) +

1

3
D2

z(ϕψz) +
2

3
ϕxt +

2

3
DxDz(ϕψz)

]

+
1

3
Dx(W

3)
[
Dx(ϕψx)−Dz(ϕψz)

]
− 1

3
Dt(W

3)ϕz

−Dz(W
3)
[1
3
ϕt −Dz(ϕψx) +

1

3
Dx(ϕψz)

]

−
[1
3
D2

x(W
3) +D2

z(W
3)
]
ϕψx +

2

3
ϕDtDz(W

3) +
2

3
ϕψzDzDx(W

3).
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3.5 Local conserved vectors
The quantities (3.19)-(3.21) define a nonlocal conserved vector because they contain
the nonlocal variables ϕ, µ, r. In consequence, the conservation equation (3.1) requires
not only the basic equations (1.1)-(1.3), but also the adjoint equations (2.14)-(2.16).

However, we can eliminate the nonlocal variables using the self-adjointness of Eqs.
(1.1)-(1.3) thus transforming the nonlocal conserved vector into a local one. Namely,
we substitute in Eqs. (3.19)-(3.21) the expressions (2.18) for ϕ, µ, r :

ϕ = ψ, µ = −v, r = − g2

N2
ρ. (2.18)

Then the adjoint equations (2.14)-(2.16) are satisfied for any solutions of the basic
equations (1.1)-(1.3), and hence the quantities (3.19)-(3.21) satisfy the conservation
equation (3.1) on all solutions of Eqs. (1.1)-(1.3).

Let us apply the procedure to C1. We eliminate the nonlocal variables in (3.19) by
substituting there the expressions (2.18) and write C1 in the following form:

C1 = −vW 1 − g2

N2
ρW 2 +

1

3

[
W 3∆ψ − ψxDx

(
W 3

)
− ψzDz

(
W 3

)
+ ψ∆W 3

]
,

where
∆ψ = D2

x(ψ) +D2
z(ψ), ∆W 3 = D2

x

(
W 3

)
+D2

z

(
W 3

)
.

We further simplify the expression for C1 by using the identities

W 3D2
x(ψ) = Dx

[
W 3Dx(ψ)

]
− ψxDx

(
W 3

)
,

W 3D2
z(ψ) = Dz

[
W 3Dz(ψ)

]
− ψzDz

(
W 3

)

and
ψD2

x

(
W 3

)
= Dx

[
ψDx

(
W 3

)]
− ψxDx

(
W 3

)
,

ψ D2
z

(
W 3

)
= Dz

[
ψDz

(
W 3

)]
− ψzDz

(
W 3

)
.

Then we have:

C1 = −vW 1 − g2

N2
ρW 2 − ψxDx

(
W 3

)
− ψzDz

(
W 3

)
+

1

3
∆
(
ψW 3

)
. (3.22)

Dropping in (3.22) the divergent type term

1

3
∆
(
ψW 3

)
= Dx

[
1

3
Dx

(
ψW 3

)]
+Dz

[
1

3
Dz

(
ψW 3

)]

in accordance with Remark 3.1, we finally obtain:

C1 = −vW 1 − g2

N2
ρW 2 − ψxDx

(
W 3

)
− ψzDz

(
W 3

)
. (3.23)

We will not dwell on a similar modification of the expressions (3.20), (3.21) for the
components C2 and C3 of conserved vectors. We will see further in Section 4.5 that
they can be found by simpler calculations when a density C1 is known.
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4 Utilization of obvious symmetries

4.1 Introduction
Eqs. (1.1)-(1.3) do not contain the dependent and independent variables explicitly and
therefore they are invariant with respect to addition of arbitrary constants to all these
variables. It means that Eqs. (1.1)-(1.3) admit the one-parameter groups of translations
in all variables,

v̄ = v + a1, ρ̄ = ρ+ a2, ψ̄ = ψ + a3, t̄ = t+ a4, x̄ = x+ a5, z̄ = z + a6,

with the generators

X1 =
∂

∂v
, X2 =

∂

∂ρ
, X3 =

∂

∂ψ
, X4 =

∂

∂t
, X5 =

∂

∂x
, X6 =

∂

∂z
· (4.1)

One can also find by simple calculations the dilations (scaling transformations)

v̄ = av, ρ̄ = bρ, ψ̄ = cψ, t = αt̄, x = βx̄, z = βz̄ (4.2)

admitted by Eqs. (1.1)-(1.3). These transformations are defined near the identity trans-
formation if the parameters a, . . . , β are positive. The dilations of x and z are taken by
the same parameter β in order to keep invariant the Laplacian ∆. Let us find the param-
eters a, . . . , β from the invariance condition of Eqs. (1.1)-(1.3). The transformations
(4.2) change the derivatives involved in Eqs. (1.1)-(1.3) as follows:

v̄t̄ = aαvt, v̄x̄ = aβvx, v̄z̄ = aβvz,

ρ̄t̄ = bαρt, ρ̄x̄ = bβρx, ρ̄z̄ = bβρz, (4.3)

ψ̄t̄ = cαψt, ψ̄x̄ = cβψx, ψ̄z̄ = cβψz,

∆̄ψt̄ = cαβ2∆ψt, ∆̄ψx̄ = cβ3∆ψx, ∆̄ψz̄ = cβ3∆ψz,

where ∆̄ is the Laplacian written in the variables x̄, z̄. The invariance of Eqs. (1.1)-
(1.3) under the transformations (4.2) means that the following equations are satisfied:

∆̄ψ̄t̄ − gρ̄x̄ − fv̄z̄ − ψ̄x̄∆̄ψ̄z̄ + ψ̄z̄∆̄ψ̄x̄ = 0,

v̄t̄ + fψ̄z̄ − ψ̄x̄v̄z̄ + ψ̄z̄v̄x̄ = 0,

ρ̄t̄ +
N2

g
ψ̄x̄ − ψ̄x̄ρ̄z̄ + ψ̄z̄ρ̄x̄ = 0,

whenever Eqs.(1.1)-(1.3) hold. Substituting here the expressions (4.3) we have:

∆̄ψ̄t̄ − gρ̄x̄ − fv̄z̄ − ψ̄x̄∆̄ψ̄z̄ + ψ̄z̄∆̄ψ̄x̄ = cαβ2∆ψt − bβgρx − c2β4
(
ψx∆ψz − ψz∆ψx

)
,

v̄t̄ + fψ̄z̄ − ψ̄x̄v̄z̄ + ψ̄z̄v̄x̄ = aαvt + cβfψz − acβ2
(
ψxvz − ψzvx

)
,

ρ̄t̄ +
N2

g
ψ̄x̄ − ψ̄x̄ρ̄z̄ + ψ̄z̄ρ̄x̄ = bαρt + cβ

N2

g
ψx − bcβ2

(
ψxρz − ψzρx

)
.
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These equations show that the invariance of Eqs. (1.1)-(1.3) is guaranteed by the fol-
lowing six equations for five undetermined parameter a, b, c, α, β :

cαβ2 = bβ = c2β4, aα = cβ = acβ2, bα = cβ = bcβ2. (4.4)

It can be verified by simple calculations that Eqs. (4.4) yield

α = 1, b = a, c = a2, β =
1

a
,

where a is an arbitrary parameter. We substitute these values of the parameters in (4.2),
denote the positive parameter a by eã, drop the tilde and conclude that Eqs. (1.1)-(1.3)
admit the one-parameter non-uniform dilation group

t̄ = t, x̄ = xea, z̄ = zea, v̄ = vea, ρ̄ = ρea, ψ̄ = ψe2a

with the following generator:

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
· (4.5)

We will consider the operators (4.1)-(4.5) as obvious symmetries of Eqs. (1.1)-(1.3)
and will compute the local conservation laws provided by these symmetries.

4.2 Translation of v
For the operator X1 from (4.1) Eqs. (3.16) yield

W 1 = 1, W 2 = 0, W 3 = 0.

Substituting these expressions in Eq. (3.23) we obtain

C1 = −v.
In this case the equations (3.20) and (3.21) are also simple. They are written

C2 = uψz, C3 = −(uψx + fϕ)

and upon using Eqs. (2.18) yield:

C2 = −vψz, C3 = vψx − fψ.

Since any conserved vector is defined up to multiplication by an arbitrary constant, we
change the sign of C1, C2, C3 and obtain the following conserved vector:

C1 = v, C2 = vψz, C3 = fψ − vψx. (4.6)

We have:

Dt(C
1) +Dx(C

2) +Dz(C
3) = vt + vxψz + fψz − vzψx.

Hence, the conservation equation (3.1) coincides with Eq. (1.2).
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4.3 Translation of ρ
For the operator X2 from (4.1) Eqs. (3.16) yield

W 1 = 0, W 2 = 1, W 3 = 0.

Substituting these expressions in Eq. (3.23) we obtain

C1 = − g2

N2
ρ.

Furthermore, Eqs. (3.20), (3.21) and Eqs. (2.18) yield:

C2 = −gψ − g2

N2
ρψz, C3 =

g2

N2
ρψx.

Multiplying C1, C2, C3 by −N 2/g2 we arrive at the following conserved vector:

C1 = ρ, C2 =
N2

g
ψ + ρψz, C3 = −ρψx. (4.7)

One can readily verify that the conservation equation (3.1) for the vector (4.7) is also
satisfied. Namely, it coincides with Eq. (1.3).

4.4 Translation of ψ
For the operator X3 from (4.1) Eqs. (3.16) yield

W 1 = 0, W 2 = 0, W 3 = 1.

Substituting these expressions in Eq. (3.23) we obtain

C1 = 0.

Hence, the invariance of Eqs. (1.1)-(1.3) under the translation of ψ furnishes only a
trivial conservation law (see Definition 3.1).

4.5 Derivation of the flux of conserved vectors with known densi-
ties

We will show here how to find the components C2 and C3 of the conserved vector
(4.6) without using Eqs. (3.20), (3.21), provided that we know the conserved density
C1 = v.
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Let us first verify that C1 = v satisfies Corollary 3.1. In this case Dt(C
1) = vt,

and hence Eq. (3.7) yields

F = Dt(C
1)
∣∣∣
(1.1)−(1.3)

= J(ψ, v)− fψz. (4.8)

Using Proposition 3.1 we see that Eqs. (3.5) are satisfied:

δF

δv
=
δF

δρ
= 0,

δF

δψ
= Dz(f) = 0. (4.9)

Therefore Corollary 3.1 guarantees that F defined by Eq. (4.8) satisfies Eq. (3.4):

ψxvz − ψzvx − fψz = Dx(H
1) +Dz(H

2) (4.10)

with certain functions H1, H2.
In order to find H1, H2, we write

ψxvz − fψz = Dz(vψx − fψ)− vψxz, −ψzvx = Dx(−vψz) + vψzx

and obtain:
ψxvz − ψzvx − fψz = Dx(−vψz) +Dz(vψx − fψ).

Thus, H1 = −vψz, H
2 = vψx − fψ. Denoting C2 = −H1, C3 = −H2, i.e.

C1 = vψz, C2 = fψ − vψx,

and invoking Eq. (4.8), we write Eq. (4.10) in the form

Dt(C
1)
∣∣∣
(1.1)−(1.3)

+Dx(C
1) +Dz(C

2) = 0.

This is precisely the conservation equation (3.1) for the vector (4.6). Thus, we have
obtained the components C2, C3 of the conserved vector (4.6) without using Eqs.
(3.20), (3.21).

The components C2, C3 of the conserved vector (4.7) can be derived likewise.

4.6 Translation of x
For the operator X5 from (4.1) Eqs. (3.16) yield

W 1 = −vx, W 2 = −ρx, W 3 = −ψx.

Substituting these expressions in Eq. (3.23) we obtain

C1 = vvx +
g2

N2
ρρx + ψxψxx + ψzψxz = Dx

(
1

2
v2 +

1

2

g2

N2
ρ2 +

1

2
ψ2

x +
1

2
ψ2

z

)
.

Hence, the invariance of Eqs. (1.1)-(1.3) under the translation of x furnishes only a
trivial conservation law (see Definition 3.1). Similar calculations show that the invari-
ance under the translation of z provides also a trivial conservation law.
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4.7 Time translation
For the operator X4 from (4.1) Eqs. (3.16) yield

W 1 = −vt, W 2 = −ρt, W 3 = −ψt.

Substituting these expressions in Eq. (3.23) we obtain

C1 = vvt +
g2

N2
ρρt + ψxψxt + ψzψzt. (4.11)

Changing the last two terms of C1 by using the identity

ψxψxt + ψzψzt = Dx(ψψxt)− ψψxxt +Dz(ψψzt)− ψψzzt

= Dx(ψψxt) +Dz(ψψzt)− ψ∆ψt (4.12)

and dropping the divergent type terms, we rewrite C1 given by Eq. (4.11) in the form

C1 = vvt +
g2

N2
ρρt − ψ∆ψt. (4.13)

Let us clarify if the conservation law with the density (4.13) is trivial or non-trivial.
According to Definition 3.1, we have to evaluate the density (4.13) on the solutions
of Eqs. (1.1)-(1.3). In this case it is convenient to use Eqs. (1.1)-(1.3) in the form
(1.4)-(1.6) and replace Eq. (3.8) by

C1
∗
= C1

∣∣
(1.4)−(1.6)

.

Then we have

C1
∗
=
{
vJ(ψ, v) +

g2

N2
ρJ(ψ, ρ)− ψJ(ψ,∆ψ)

}
− fDz(vψ)− gDx(ρψ)

and Corollary 3.2 shows that the conservation law is trivial. Indeed, the last two terms
of C1

∗
have the divergent form. The expression in braces for C1

∗
satisfies Eqs. (3.9)

according to Proposition 3.1, and hence it also has the divergent form.
Thus, the invariance of Eqs. (1.1)-(1.3) under the time translation furnishes only a

trivial conservation law.

4.8 Use of the dilation. Conservation of energy
Consider the generator (4.5) of the dilation group,

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
·
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In this case the quantities (3.16) have the form

W 1 = v − xvx − zvz, W 2 = ρ− xρx − zρz, W 3 = 2ψ − xψx − zψz. (4.14)

The substitution of (4.14) in (3.23) yields:

C1 = −v2 + xvvx + zvvz +
g2

N2

(
−ρ2 + xρρx + zρρz

)

− ψ2
x + xψxψxx + zψxψxz − ψ2

z + xψzψxz + zψzψzz. (4.15)

We modify (4.15) by using the identities

xvvx + zvvz =
1

2
Dx

(
xv2

)
+

1

2
Dz

(
zv2

)
− v2,

xρρx + zρρz =
1

2
Dx

(
xρ2

)
+

1

2
Dz

(
zρ2

)
− ρ2,

xψxψxx + xψzψxz =
1

2
Dx

[
x
(
ψ2

x + ψ2
x

)]
− 1

2

(
ψ2

x + ψ2
x

)
,

zψxψxz + zψzψzz =
1

2
Dz

[
z
(
ψ2

x + ψ2
x

)]
− 1

2

(
ψ2

x + ψ2
x

)
.

Substituting these in (4.15) and dropping the divergent type terms we have:

C1 = −2
(
v2 +

g2

N2
ρ2 + |∇ψ|2

)
,

where
|∇ψ|2 = ψ2

x + ψ2
z .

Dividing C1 by the inessential coefficient (−2) we finally obtain the following conser-
vation law in the integral form (3.2):

d

dt

∫ ∫ [
v2 +

g2

N2
ρ2 + |∇ψ|2

]
dxdz = 0. (4.16)

Eq. (4.16) represents the conservation of the energy with the density

E = v2 +
g2

N2
ρ2 + |∇ψ|2. (4.17)

Let us find the components C2 and C3 of this conservation law written in the dif-
ferential form (3.1). We will use the procedure suggested in Section 4.5. Let us first
verify that E defined by Eq. (4.17) satisfies Corollary 3.1 for densities of conservation
laws. We have

Dt(E) = 2

(
vvt +

g2

N2
ρρt + ψxψxt + ψzψzt

)
. (4.18)
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Since the expression in the brackets in Eq. (4.18) is identical with (4.11) it can be
rewritten in the form (4.13), and hence satisfies Eqs. (3.5). Corollary 3.1 guarantees
that E is the density of a conservation law. It is manifest from Eq. (4.17) that this
conservation law is non-trivial.

According to Corollary 3.1, Dt(E) defined by Eq. (4.18) and evaluated on the
solutions of Eqs. (1.1)-(1.3) satisfies Eq. (3.4),

Dt(E)
∣∣∣
(1.1)−(1.3)

= Dx(H
1) +Dz(H

2), (4.19)

with certain functions H1, H2. In order to find H1, H2, we use Eq. (4.12),

2(ψxψxt + ψzψzt) = Dx(2ψψxt) +Dz(2ψψzt)− 2ψ∆ψt, (4.20)

and write:

2vvt = 2ψxvvz − ψzvvx − 2fvψz

= Dz(v
2ψx)−Dx(v

2ψz)− 2fDz(vψ) + 2fψvz, (4.21)

2
g2

N2
ρρt = 2

g2

N2

(
ψxρρz − ψzρρx

)
− 2gρψx

=
g2

N2

[
Dz(ρ

2ψx)−Dx(ρ
2ψz)

]
− 2gDx(ρψ) + 2gψρx, (4.22)

−2ψ∆ψt = −2gψρx − 2fψvz − 2ψψx∆ψz + 2ψψz∆ψx

= −2gψρx − 2fψvz −Dx

(
ψ2∆ψz

)
+Dz

(
ψ2∆ψx

)
. (4.23)

Substituting the expressions (4.21), (4.22) and (4.20), (4.23) in the right-hand side of
Eq. (4.18), we arrive at Eq. (4.19) with

H1 = −v2ψz −
g2

N2
ρ2ψz − 2gρψ + 2ψψxt − ψ2∆ψz,

H2 = v2ψx +
g2

N2
ρ2ψx − 2fvψ + 2ψψzt + ψ2∆ψx.

Thus, denoting C2 = −H1, C3 = −H2 we arrive at the following differential form
(3.1) of the conservation of energy for Eqs. (1.1)-(1.3):

Dt(E) +Dx(C
2) +Dx(C

3) = 0 (4.24)

with the density E given by Eq. (4.17) and the flux given by the equations

C2 = 2gρψ + v2ψz +
g2

N2
ρ2ψz − 2ψψxt + ψ2∆ψz,

C3 = 2fvψ − v2ψx −
g2

N2
ρ2ψx − 2ψψzt − ψ2∆ψx. (4.25)
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5 Invariant solutions

5.1 Invariant solution based on translation and dilation
Let us find the invariant solution based on the following two operators:

mX5 − kX6 = m
∂

∂x
− k

∂

∂z
(m, k = const.),

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
·

(5.1)

We first find their invariants J(t, x, z, v, ρ, ψ) by solving the equations

(mX5 − kX6)J = 0, X7J = 0. (5.2)

The characteristic equation kdx + mdz = 0 the first equation (5.2) yields that the
operator mX2 − kX3 has, along with t, v, ρ, ψ, the following invariant:

λ = kx+mz. (5.3)

Therefore we have to find the invariants J(t, λ, v, ρ, ψ) for the operator X4. To this
end, we write the action of X4 on the variables t, λ, v, ρ, ψ by the standard formula

X7 = X7(λ)
∂

∂λ
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ

and obtain

X7 = λ
∂

∂λ
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
· (5.4)

To solve the equationX7J(t, λ, v, ρ, ψ) = 0 for the invariants, we calculate the first
integrals for the characteristic system

dλ

λ
=
dv

v
=
dρ

ρ
=
dψ

2ψ

and see that a basis of invariants for the operators (5.1) is given by

t, V =
v

λ
, R =

ρ

λ
, φ =

ψ

λ2
·

Accordingly, we assign the invariants V,R, φ to be functions of the invariant t and
arrive at the following general form of the candidates for the invariant solutions:

v = λV (t), ρ = λR(t), ψ = λ2φ(t), λ = kx+mz. (5.5)

38



Group analysis of internal waves. I: Self-adjointness and conservation laws 39

In order to find the functions V (t), R(t), φ(t), we have to substitute the expressions
(5.5) in Eqs. (1.1)- (1.3).

We have:

ψt = λ2φ′(t), ψx = 2kλφ(t), ψz = 2mλφ(t),

∇2ψt = 2(k2 +m2)φ′(t), ∇2ψx = 0, ∇2ψz = 0,

ψxvz = 2kmλφ(t)V (t), ψzvx = 2kmλφ(t)V (t),

ψxρz = 2kmλφ(t)R(t), ψzρx = 2kmλφ(t)R(t).

Therefore Eqs. (1.1)- (1.3) yield the following system of first-order linear ordinary
differential equations:

2
(
k2 +m2

)
φ′ − gkR− fmV = 0,

λV ′ + 2fmλφ = 0,

λR′ + 2
kλ

g
N2φ = 0,

or

φ′ =
1

2
(
k2 +m2

)
(
gkR + fmV

)
, (5.6)

V ′ = −2fmφ, (5.7)

R′ = −2k
g
N2φ . (5.8)

Let us integrate Eqs. (5.6)-(5.8). Differentiating Eq. (5.6) and using Eqs. (5.7)-
(5.8), we obtain

φ′′ + ω2 φ = 0, (5.9)

where

ω2 =
k2N2 +m2f 2

k2 +m2
. (5.10)

The general solution of Eq. (5.9) is given by

φ(t) = C1 cos(ωt) + C2 sin(ωt), C1, C2 = const. (5.11)

Substituting (5.11) in Eqs. (5.7)-(5.8) and integrating, we obtain

V = C3 −
2fm

ω

[
C1 sin(ωt)− C2 cos(ωt)

]
,

R = C4 −
2k

gω
N2

[
C1 sin(ωt)− C2 cos(ωt)

]
.
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To determine the constants C3 and C4, we substitute in Eq. (5.6) the above expressions
for V,R and the expression (5.11) for φ and obtain

fmC3 + gkC4 = 0.

Thus, the solution to Eqs. (5.6)-(5.8) has the following form:

φ(t) = C1 cos(ωt) + C2 sin(ωt), (5.12)

V (t) =
2fm

ω

[
C2 cos(ωt)− C1 sin(ωt)

]
+ C3, (5.13)

R(t) =
2k

g ω
N2

[
C2 cos(ωt)− C1 sin(ωt)

]
− fm

gk
C3. (5.14)

Finally, substituting (5.12)-(5.14) in (5.5), we arrive at the following solution to the
system (1.1)-(1.3):

ρ =
2k

g ω
N2

[
C2 cos(ωt)− C1 sin(ωt)

]
λ− fm

gk
C3λ, (5.15)

v =
2fm

ω

[
C2 cos(ωt)− C1 sin(ωt)

]
λ+ C3λ, (5.16)

ψ =
[
C1 cos(ωt) + C2 sin(ωt)

]
λ2, (5.17)

where λ is given by (5.3), ω is defined by Eq. (5.10) and C1, C2, C3 are arbitrary
constants.

5.2 Generalized invariant solution and wave beams
It is natural to generalize the candidates (5.5) for the invariant solutions and look for
particular solutions of the system (1.1)-(1.3) in the following form of separated vari-
ables:

v = F (λ)V (t), ρ = α(λ)R(t), ψ = β(λ)φ(t), λ = kx+mz. (5.18)

The reckoning shows that then the right-hand sides of Eqs. (1.1)-(1.3) vanish and
Eqs. (1.1)-(1.3) become:

(
k2 +m2

)
β′′(λ)φ′(t)− gkα ′(λ)R(t)− fmF ′(λ)V (t) = 0, (5.19)

F (λ)V ′(t) + fmβ ′(λ)φ(t) = 0, (5.20)

α(λ)R′(t) +
kN2

g
β′(λ)φ(t) = 0. (5.21)
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Differentiating Eq. (5.19) with respect to t, using Eqs. (5.20)-(5.21) and dividing by
β′, we obtain

(
k2 +m2

)β′′

β′
φ′′ +

(
N2k2

α ′

α
+ f 2m2F

′

F

)
φ = 0.

Assuming that the ratios β ′′/β′ , α ′/α, F ′/F are proportional with constant coeffi-
cients and have one and the same sign, we arrive at an equation of the form (5.9). For
example, letting

β′′

β′
=
α ′

α
=
F ′

F
, (5.22)

we obtain Eq. (5.9). Then, according to (5.11), we can set in (5.18) φ(t) = cos(ωt)
and φ(t) = sin(ωt), i.e.

ψ = A(λ) cos(ωt) and ψ = B(λ) sin(ωt). (5.23)

For each function ψ given by (5.23) we determine the functions V (t), R(t) using
Eqs. (5.20), (5.21), (5.21), then take the linear combinations of the resulting functions
and arrive at the following form of the “generalized invariant solution” (5.18):

ψ = A(λ) cos(ωt) +B(λ) sin(ωt), (5.24)

v =
fm

ω
[B′(λ) cos(ωt)− A′(λ) sin(ωt)] + F (λ), (5.25)

ρ =
kN2

gω
[B′(λ) cos(ωt)− A′(λ) sin(ωt)] +H(λ), (5.26)

where ω is given by Eq. (5.10).
The reckoning shows that the functions (5.24)-(5.26) with arbitrary A(λ), B(λ)

solve Eqs. (1.1)-(1.3) provided that F (λ), H(λ) satisfy the following equation:

gkH ′(λ) + fmF ′(λ) = 0. (5.27)

One can readily verify that the invariant solution (5.15)-(5.17), which is a particular
case of (5.24)-(5.26), obeys the condition (5.27).

5.3 Energy of the generalized invariant solution
If we substitute in (4.17) the generalized invariant solution (see Eqs. (5.24)-(5.26))

ψ = A(λ) cos(ωt) +B(λ) sin(ωt), (5.28)

v =
fm

ω
[B′(λ) cos(ωt)− A′(λ) sin(ωt)] , (5.29)

ρ =
kN2

gω
[B′(λ) cos(ωt)− A′(λ) sin(ωt)] , (5.30)
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where

λ = kx+mz, ω2 =
k2N2 +m2f 2

k2 +m2
,

we obtain:
E = (k2 +m2)

[
A′ 2(λ) +B′ 2(λ)

]
.

Invoking that any conserved vector is defined up to multiplication by an arbitrary con-
stant, we divide the above expression for E by (k2 + m2) and obtain the following
energy:

E = A′ 2(λ) +B′ 2(λ). (5.31)

Since the energy density (5.31) depends only on λ = kx+mz, it is constant along
the straight line

kx+mz = const. (5.32)

Accordingly, the “local energy” (5.31) has one and the same value at points (x0, z0)
and (x1, z1) provided that

kx0 +mz0 = kx1 +mz1. (5.33)

The energy density (5.31) describes the local behavior of the solutions. Therefore
it is significant to understand its distribution on the (x, z) plane. Suppose that the
functions A(λ), B(λ) and their derivatives rapidly decrease as η →∞. If we take, as
an example, the functions

A(λ) =
a

1 + λ2
, B(λ) =

aλ

1 + λ2
, (5.34)

where a is a positive constant, then the energy density (5.31) of the wave beams has
the form

E =
a2

(1 + λ2)2
·

Hence, the energy is localized along the straight line (5.33). Therefore we can define a
wave beam through a point (x0, z0) as the totality of the points (x1, z1) satisfying Eq.
(5.33), i.e. identify it with the straight line (5.33).

6 February 2009
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Abstract. The maximal group of Lie point symmetries of a system of nonlinear equations
used in geophysical fluid dynamics is presented. The Lie algebra of this group is infinite-
dimensional and involves three arbitrary functions of time. The invariant solution under the
rotation and dilation is constructed. Qualitative analysis of the invariant solution is provided
and the energy of this solution is presented.
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1 Introduction
This is a continuation of the paper [1]. We present here the Lie algebra of the maximal
group of Lie point symmetries for system nonlinear equations

∆ψt − gρx − fvz = ψx∆ψz − ψz∆ψx , (1.1)

vt + fψz = ψxvz − ψzvx , (1.2)

ρt +
N2

g
ψx = ψxρz − ψzρx (1.3)

c© 2009 ALGA
c© 2009 N.H. Ibragimov, R.N. Ibragimov and V.F. Kovalev
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used in geophysical fluid dynamics, e.g. for investigating internal waves in uniformly
stratified incompressible fluids (oceans). Here g, f,N are constants and ∆ is the two-
dimensional Laplacian:

∆ = D2
x +D2

z ·

2 Symmetries

2.1 General case

The point symmetries of Eqs. (1.1)-(1.3) have been computed with the help of DIM-
SYM 2.3 package. The maximal admitted Lie point transformation group is infinite
for arbitrary constants f and N. If f 6= 0, the group is generated by the infinite-
dimensional Lie algebra spanned by the following operators:

X1 =
∂

∂v
, X2 =

∂

∂ρ
, X3 = a(t)

∂

∂ψ
, X4 =

∂

∂t
,

X5 = b(t)

[
∂

∂x
− f

∂

∂v

]
+ b′(t)z

∂

∂ψ
,

X6 = c(t)

[
∂

∂z
+
N2

g

∂

∂ρ

]
− c′(t)x

∂

∂ψ
,

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
,

X8 = t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
+ 3ψ

∂

∂ψ
− 2fx

∂

∂v
+ 2

N2

g
z
∂

∂ρ
,

X9 = z
∂

∂x
− x

∂

∂z
− 1

f

[
gρ+ (f 2 −N2)z

] ∂
∂v

+
1

g

[
fv + (f 2 −N2)x

] ∂
∂ρ
·

(2.1)

Here a(t), b(t) and c(t) are arbitrary functions of time t.

Remark 2.1. The presence of the arbitrary functions a(t), b(t), c(t) in the symmetry
Lie algebra is a characteristic property of incompressible fluids ([2], see also [3]).
Namely, the operator X3 generates the group transformation ψ̄ = ψ + ε3 a(t) of the
stream function ψ, where ε3 is the group parameter. The invariance of fluid flows
under this transformation is quite obvious because the velocity vector (ψz, v,−ψx) is
invariant under this transformation. The operators X5, X6 express the invariance under
the generalization x̄ = x + ε5 b(t), z̄ = z + ε6 c(t) of the coordinate translations and
the Galilean transformations. They provide a generalized relativity principle for the
Euler equations in terms of conservation laws (see [4], Section 25.3).
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2.2 The case f = 0

In order to include the special case f = 0, we multiply the operator X9 by the constant
f and consider the operator

X ′

9 = f
[
z
∂

∂x
− x

∂

∂z

]
−
[
gρ+ (f 2 −N2)z

] ∂
∂v

+
f

g

[
fv + (f 2 −N2)x

] ∂
∂ρ
·

Then we let f = 0 and obtain the operator

X ′

9 = −
[
gρ−N2 z

] ∂
∂v

admitted by Eqs. (1.1)-(1.3) with f = 0. The solution of the determining equations
shows that X ′

9 is a particular case of a more general symmetry involving an arbitrary
function of two variables. Namely, the system (1.1)-(1.3) with f = 0 admits the
infinite-dimensional Lie algebra spanned by the following operators:

X1 = h(v, gρ−N 2 z)
∂

∂v
, X2 =

∂

∂ρ
, X3 = a(t)

∂

∂ψ
, X4 =

∂

∂t
,

X5 = b(t)
∂

∂x
+ b′(t)z

∂

∂ψ
,

X6 = c(t)

[
∂

∂z
+
N2

g

∂

∂ρ

]
− c′(t)x

∂

∂ψ
,

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
,

X8 = t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
+ 3ψ

∂

∂ψ
+ 2

N2

g
z
∂

∂ρ
,

(2.2)

where h(v, gρ − N 2 z) is an arbitrary function of two variables. The operator X1 in
(2.1) is obtained from the operator X1 in (2.2) by taking h = 1.

3 Invariant solution based on rotations and dilations

3.1 The invariants

We will investigate here the invariant solutions with respect to the dilations and rota-
tions with the generators X7 and X9. Let us introduce the notation

v∗ = fv, u = gρ, α = f 2 −N2 (3.1)
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and write the operators X7, X9 in the form

X7 = x
∂

∂x
+ z

∂

∂z
+ u

∂

∂u
+ v∗

∂

∂v∗
+ 2ψ

∂

∂ψ
,

X9 = z
∂

∂x
− x

∂

∂z
+
(
v∗ + αx

) ∂
∂u
−
(
u+ α z

) ∂

∂v∗
·

(3.2)

The operators (3.2) coincide with the operators (3.17) from [5],

X1 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ v

∂

∂v
+ kw

∂

∂w
,

X2 = y
∂

∂x
− x

∂

∂y
+ (v + αx+ βy)

∂

∂u
− (u− βx+ αy)

∂

∂v
,

with k = 2 and β = 0 upon identifying v with v∗ and y with z. Hence, a basis of
invariants for the operators (3.2) contains the time t and the invariants (3.20) from [5]
which have now the form

J1 =
1

x2 + z2
(xu+ zv∗ + αxz) ,

J2 =
1

x2 + y2

(
xv∗ − zu+

α

2
(x2 − z2)

)
,

J3 =
ψ

x2 + y2
·

It is more convenient for our purposes to use, instead of these invariants, the equivalent
equations (3.19) from [5] which are written now as follows:

u = J1 x−
(
J2 +

α

2

)
z ,

v∗ = J1 z +
(
J2 −

α

2

)
x ,

ψ = (x2 + z2) J3.

(3.3)

3.2 Candidates for the invariant solution
Knowledge of a symmetry algebra allows one to obtain particular exact solutions to
differential equations in question. These kind of solutions were considered by S. Lie
[6]. They are known today as group invariant solutions (briefly invariant solutions) and
widely used in the modern literature, particularly in investigating nonlinear differential
equations.
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The general form of regular invariant solutions is obtained from Eqs. (3.3) by
setting

J1 = R(t), J2 = V (t), J3 = φ(t)

with undetermined functions R(t), V (t), φ(t). Invoking the notation (3.1) we arrive
at the following general form of candidates for the invariant solution with respect to
the dilations and rotations with the generators X7 and X9 from (2.1):

v =
1

f

[
R(t) z + V (t)x+

N2 − f 2

2
x

]
,

ρ =
1

g

[
R(t)x− V (t) z +

N2 − f 2

2
z

]
,

ψ = (x2 + z2)φ(t).

(3.4)

Remark 3.1. Solving the Lie equations for the operator X9 from (3.2) and using the
notation (3.1), one can verify that the operator X9 from (2.1),

X9 = z
∂

∂x
− x

∂

∂z
− 1

f

[
gρ+ (f 2 −N2)z

] ∂
∂v

+
1

g

[
fv + (f 2 −N2)x

] ∂
∂ρ

,

generates the following one-parameter transformation group with the parameter ε :

x̄ = x cos ε+ z sin ε, z̄ = z cos ε− x sin ε,

gρ̄ = gρ cos ε+ fv sin ε− (N 2 − f 2)x sin ε,

f v̄ = fv cos ε− gρ sin ε+ (N 2 − f 2) z sin ε,

t̄ = t, ψ̄ = ψ.

(3.5)

One can verify by inspection that the transformations (3.5) leave invariant Eqs. (3.4):

v̄ =
1

f

[
R(t) z̄ + V (t) x̄+

N2 − f 2

2
x̄

]
,

ρ̄ =
1

g

[
R(t) x̄− V (t) z̄ +

N2 − f 2

2
z̄

]
,

ψ̄ = (x̄2 + z̄2)φ(t).

3.3 Construction of the invariant solution
It remains to determine the functions R(t), V (t), φ(t) by substituting the expressions
(3.4) for ρ, v, ψ in Eqs. (1.1)-(1.3).
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Differentiating (3.4) we obtain:

vt =
1

f
[R′ z + V ′ x] , vx =

1

f

[
N2 − f 2

2
+ V

]
, vz =

1

f
R,

ρt =
1

g
[R′ x− V ′ z] , ρx =

1

g
R, ρz =

1

g

[
N2 − f 2

2
− V

]
, (3.6)

ψt = (x2 + z2)φ′, ψx = 2xφ, ψz = 2z φ, ∆ψt = 4φ′.

Substitution of (3.6) in Eqs. (1.1)-(1.3) yields:

2φ′ −R = 0, (3.7)

[V ′ − 2Rφ]x+ [R′ + 2V φ+ (N 2 + f 2)φ] z = 0, (3.8)

[R′ + 2V φ+ (N 2 + f 2)φ]x− [V ′ − 2Rφ] z = 0. (3.9)

Since V,R, φ depend only ont, Eq. (3.8) implies that

V ′ − 2Rφ = 0 (3.10)

and
R′ + 2V φ+ (N 2 + f 2)φ = 0. (3.11)

Eq. (3.9) is satisfied due to Eqs. (3.10), (3.11). Hence, Eqs. (1.1)-(1.3) are reduced to
Eqs. (3.7), (3.10), (3.11).

Let us write Eq. (3.7) in the form

R = 2φ′. (3.12)

Substitution of the expression for R into Eq. (3.10) yields V ′ = 4φφ′, whence upon
integration

V = 2φ2 + A, A = const. (3.13)

Finally, substituting Eqs. (3.12) and (3.13) in Eq. (3.11) we obtain the following
nonlinear second-order ordinary differential equation for φ(t) :

φ′′ + 2φ3 +

(
A+

f 2 +N2

2

)
φ = 0. (3.14)

Thus, we have arrived at the following result.
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Theorem 3.1. The solutions of the system (1.1)-(1.3) that are invariant with respect to
the dilations and rotations with the generators X7 and X9 from (2.1) are given by

v =
1

f

[(
2φ2(t) + A+

N2 − f 2

2

)
x+ 2φ′(t)z

]
,

ρ =
1

g

[
2φ′(t)x−

(
2φ2(t) + A− N2 − f 2

2

)
z

]
, (3.15)

ψ = (x2 + z2)φ(t),

where φ(t) is defined by the differential equation (3.14) and A is an arbitrary constant.

3.4 Qualitative analysis of the invariant solution
One can integrate Eq. (3.14) once, e.g., upon multiplying by 2φ′ and obtain

φ′2 + φ4 +

(
A+

f 2 +N2

2

)
φ2 = const. (3.16)

We will analyze the behavior of the solutions to Eq. (3.16) under the assumption that
the expression in the parentheses is a non-negative constant which we denote by K :

K = A+
f 2 +N2

2
, K ≥ 0, (3.17)

and write Eq. (3.16) in the form

φ′2 + φ4 +Kφ2 = B2, B = const., (3.18)

or solving for φ′ :
φ′ = ±

√
B2 − φ4 −Kφ2 . (3.19)

Note that φ(t) = 0 solves Eq. (3.14). Let us turn to Eq. (3.19). When φ is small,
i.e. close to the trivial solution φ(t) = 0, then

B2 − φ4 −Kφ2 ≈ B2

and hence φ′ is close to the constant value

φ′ ≈ ±B.

When φ(t) varies according to Eq. (3.14), then |φ ′| decreases since

B2 − φ4 −Kφ2 < B2
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when φ 6= 0. We obtain φ′ = 0 when φ(t) = C∗, where

C2
∗
=
−K +

√
B2 +K2

2
· (3.20)

If |φ| > |C∗|, then B2−φ4−Kφ2 < 0, and hence Eq. (3.19) does not have a solution.
We have arrived at the following significant results.

Theorem 3.2. Provided that the condition (3.17) holds, the solutions of Eq. (3.19) are
bounded oscillating functions φ(t) satisfying the condition

−C∗ ≤ φ(t) ≤ C∗, (3.21)

where C∗ is the positive constant defined by Eq. (3.20). In this notation, the invariant
solution (3.15) is written as follows:

v =
1

f

[(
2φ2(t) +K − f 2

)
x+ 2φ′(t)z

]
,

ρ =
1

g

[
2φ′(t)x−

(
2φ2(t) +K −N 2

)
z
]
, (3.22)

ψ = (x2 + z2)φ(t).

Remark 3.2. The invariance of the solution (3.15) with respect to rotations (rotational
symmetry) means that it has the same values on any circle

x2 + z2 = r2

with a given radius r. The invariance under dilations means that we can obtain the
solution at any circle just by stretching the radius r. According to Theorem 3.2, this
solution is given by bounded oscillating functions.

4 Energy of the rotationally symmetric solution
The conservation of energy for Eqs. (1.1)-(1.3) has the form [1]

d

dt

∫ ∫ [
v2 +

g2

N2
ρ2 + |∇ψ|2

]
dxdz = 0. (4.1)

Hence, the energy density is

E = v2 +
g2

N2
ρ2 + |∇ψ|2. (4.2)
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For the rotationally invariant solution (3.22) we have

|∇ψ|2 = 4(x2 + z2)φ2(t). (4.3)

Substituting the expression (4.3) and the expressions (3.22) of v and ρ in Eq. (4.2) we
obtain the following energy density for the invariant solution (3.22):

E =4

(
1

f 2
− 1

N2

)
(x2 − z2)

[
φ2(t) +K

]
φ2(t) +

(
f − K

f

)2

x2

+

(
N − K

N

)2

z2 + 4

(
1

f 2
− 1

N2

)
xz

[
2φ2(t) +K

]
φ′(t).

(4.4)
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1 Introduction

The maximal group of Lie point symmetries of the system

∆ψt − gρx − fvz = ψx∆ψz − ψz∆ψx , (1.1)

vt + fψz = ψxvz − ψzvx , (1.2)

ρt +
N2

g
ψx = ψxρz − ψzρx (1.3)

c© 2009 ALGA
c© 2009 N.H. Ibragimov and R.N. Ibragimov
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has been presented in [1]. It is generated by the infinite-dimensional Lie algebra
spanned by the following operators:

X1 =
∂

∂v
, X2 =

∂

∂ρ
, X3 = a(t)

∂

∂ψ
, X4 =

∂

∂t
,

X5 = b(t)

[
∂

∂x
− f

∂

∂v

]
+ b′(t)z

∂

∂ψ
,

X6 = c(t)

[
∂

∂z
+
N2

g

∂

∂ρ

]
− c′(t)x

∂

∂ψ
,

X7 = x
∂

∂x
+ z

∂

∂z
+ v

∂

∂v
+ ρ

∂

∂ρ
+ 2ψ

∂

∂ψ
,

X8 = t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
+ 3ψ

∂

∂ψ
− 2fx

∂

∂v
+ 2

N2

g
z
∂

∂ρ
,

X9 = z
∂

∂x
− x

∂

∂z
− 1

f

[
gρ+ (f 2 −N2)z

] ∂
∂v

+
1

g

[
fv + (f 2 −N2)x

] ∂
∂ρ
·

(1.4)

2 Conservation law provided by the semi-dilation
Consider the operator X8 from (1.4),

X8 = t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
+ 3ψ

∂

∂ψ
− 2fx

∂

∂v
+ 2

N2

g
z
∂

∂ρ
(2.1)

It generates the following one-parameter transformation group with the parameter ε :

t̄ = teε, x̄ = xe2ε, z̄ = ze2ε, ψ̄ = ψe3ε,

v̄ = v + fx
(
1− e2ε

)
, ρ̄ = ρ− N2

g

(
1− e2ε

)
.

(2.2)

Since some of variables, namely t, x, z and ψ are subjected to dilations while two other
variables transform otherwise, we call (2.2) the semi-dilation group. Let us construct
the conserved vector provided by this group.

2.1 Computation of the density of the conservation law
We will use the following formula for computing the density of conservation laws (see
Eq. (3.23) in [2])

C1 = −vW 1 − g2

N2
ρW 2 − ψxDx

(
W 3

)
− ψzDz

(
W 3

)
, (2.3)
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where (see Eq. (3.16) in [2])

W α = ηα − ξjuα
j , α = 1, 2, 3. (2.4)

These formulas are written using the notation t, x, z, v, ρ, ψ.
In the case of the operator (2.1) the quantities (2.4) are written:

W 1 = −2fx− tvt − 2xvx − 2zvz,

W 2 = 2
N2

g
z − tρt − 2xρx − 2zρz,

W 3 = 3ψ − tψt − 2xψx − 2zψz.

(2.5)

Substituting (2.5) in (2.4) we obtain upon simple calculations:

C1 = 2(fxv − gzρ)− |∇ψ|2 +
(
xDx + zDz

)(
v2 +

g2

N2
ρ2
)

(2.6)

+
(
xDx + zDz

)(
|∇ψ|2

)
+ t

[
vvt +

g2

N2
ρρt + ψxψxt + ψzψzt

]
.

We can drop the last term in (2.6) because it can be written in the divergent form upon
elimination of vt, ρ4 and ψt by using Eqs. (1.1)-(1.3). Indeed, it is shown in [2],
Section 4.6, that the expression in the square brackets (cf. Eq. (4.11) in [2]) evaluated
on the solutions of Eqs. (1.1)-(1.3) has the divergent form. Multiplication by t does
not violate this property. Then we use the identities

(
xDx + zDz

)(
v2 +

g2

N2
ρ2
)
= −2

(
v2 +

g2

N2
ρ2
)

+Dx

[
x
(
v2 +

g2

N2
ρ2
)]

+Dz

[
z
(
v2 +

g2

N2
ρ2
)]
,

(
xDx + zDz

)(
|∇ψ|2

)
= −2ψ|2 +Dx

[
x
(
|∇ψ|2

)]
+Dz

[
z
(
|∇ψ|2

)]
,

drop the divergent type terms and obtain the following conserved density:

C1 = 2

(
fxv − gzρ− 1

2
|∇ψ|2

)
− 2

(
v2 +

g2

N2
ρ2 + |∇ψ|2

)
. (2.7)

Finally we note that the last term in (2.7) is the energy density (see Eq. (4.17) in
[2]). Therefore we eliminate it and conclude that the invariance under the semi-dilation
with the generator (2.1) provides the conservation law with the density

P = fxv − gzρ− 1

2
|∇ψ|2. (2.8)
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2.2 Conserved vector
Let us find the components C2, C3 of the conserved vector with the density (2.8). We
will apply the procedure used in [2], Section 4.7. We have:

Dt(P ) = fxvt − gzρt − (ψxψxt + ψzψzt).

Using Eqs. (1.1)-(1.3), we obtain:

Dt(P )
∣∣∣
(1.1)−(1.3)

= −f 2xψz + fxψxvz − fxψzvx +N2zψx

− gzψxρz + gzψzρx −Dx(ψψxt)−Dz(ψψzt) + ψ∆ψt.

One can rewrite this equation, using Eq. (4.23) from [2], in the following form:

Dt(P )
∣∣∣
(1.1)−(1.3)

= Dx

(
N2zψ + fxψvz − gzψρz − ψψxt +

1

2
ψ2∆ψz

)

−Dz

(
f 2xψ + fxψvx − gzψρx + ψψzt +

1

2
ψ2∆ψx

)
.

Thus, the generator (2.1) provides the conservation law

Dt(P ) +Dx(C
2) +Dz(C

3 = 0

with the density P given by (2.8) and the flux given by the equations

C2 = −N 2zψ − fxψvz + gzψρz + ψψxt −
1

2
ψ2∆ψz,

C3 = f 2xψ + fxψvx − gzψρx + ψψzt +
1

2
ψ2∆ψx.

2.3 Conserved density P of the generalized invariant solution
If we substitute in (2.8) the generalized invariant solution (5.28)-(5.30) from [2],

ψ = A(λ) cos(ωt) +B(λ) sin(ωt),

v =
fm

ω

[
B′(λ) cos(ωt)− A′(λ) sin(ωt)

]
,

ρ =
kN2

gω

[
B′(λ) cos(ωt)− A′(λ) sin(ωt)

]
,

we obtain:

P =
1

ω
(f 2mx−N 2kz)

[
B′(λ) cos(ωt)− A′(λ) sin(ωt)

]

− k2 +m2

2

[
A′(λ) cos(ωt) +B ′(λ) sin(ωt)

]2
.
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3 Conservation law provided by the rotation
Taking the rotation generator X9 from (1.4) and proceedings as in Section 2 we obtain
the following conserved density:

Q = vρ+ fxρ− N2

g
zv. (3.1)

Writing Eqs. (1.1)-(1.3) by using the Jacobians J(ψ, v) = ψxvz − ψzvx, etc., we
have:

Dt(Q)
∣∣∣
(1.1)−(1.3)

= v

[
J(ψ, ρ)− N2

g
ψx

]
+ ρ [J(ψ, v)− fψz] (3.2)

+ fx

[
J(ψ, ρ)− N2

g
ψx

]
− N2

g
z [J(ψ, v)− fψz] .

The reckoning shows that

vJ(ψ, ρ) + ρJ(ψ, v) = Dz(vρψx)−Dx(vρψz),

xJ(ψ, ρ)− ρψz = Dz(xρψx)−Dx(xρψz),

zJ(ψ, v) + vψx = Dx(zvψz)−Dz(zvψx),

zψz − xψx = Dz(zψ)−Dx(xψ).

Substituting these expressions in Eq. (3.2) we conclude that the rotation generator X9

provides the conservation law

Dt(Q) +Dx(C
2) +Dz(C

3 = 0

with the density P given by (3.1) and the flux given by the equations

C2 =

[
vρ+ fxρ− N2

g
zv

]
ψz +

N2

g
fzψ,

C3 =

[
N2

g
zv − vρ− fxρ

]
ψx −

N2

g
fxψ.
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4 Summary of conservation laws
It has been demonstrated in [2] that the system of nonlinear equations (1.1)-(1.3) is self-
adjoint. This property of the system has been used for deriving local conservation laws
applying the method developed in [3] to the infinitesimal symmetries (1.4). Some of
the conservation laws associated with these symmetries are trivial, i.e. have vanishing
densities. But five conservation laws are nontrivial.

The nontrivial conservation laws obtained in [2] and in the present paper are sum-
marized below. For the convenience of the reader, we formulate them both in the
integral and differential forms.

4.1 Conservation laws in integral form

d

dt

∫ ∫
v dxdz = 0. (4.1)

d

dt

∫ ∫
ρ dxdz = 0. (4.2)

d

dt

∫ ∫ [
v2 +

g2

N2
ρ2 + |∇ψ|2

]
dxdz = 0. (4.3)

d

dt

∫ ∫ [
fxv − gzρ− 1

2
|∇ψ|2

]
dxdz = 0. (4.4)

d

dt

∫ ∫ [
vρ+ fxρ− N2

g
zv

]
dxdz = 0. (4.5)

4.2 Conservation laws in differential form

Dt(v) +Dx(vψz) +Dz(fψ − vψx) = 0. (4.1′)

Dt(ρ) +Dx

(
N2

g
ψ + ρψz

)
+Dz(−ρψx) = 0. (4.2′)
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Dt

(
v2 +

g2

N2
ρ2 + |∇ψ|2

)

+Dx

(
2gρψ + v2ψz +

g2

N2
ρ2ψz − 2ψψxt + ψ2∆ψz

)
(4.3′)

+Dz

(
2fvψ − v2ψx −

g2

N2
ρ2ψx − 2ψψzt − ψ2∆ψx

)
= 0.

Dt

(
fxv − gzρ− 1

2
|∇ψ|2

)

+Dx

(
−N2zψ − fxψvz + gzψρz + ψψxt −

1

2
ψ2∆ψz

)
(4.4′)

+Dz

(
f 2xψ + fxψvx − gzψρx + ψψzt +

1

2
ψ2∆ψx

)
= 0.

Dt

(
vρ+ fxρ− N2

g
zv

)

+Dx

([
vρ+ fxρ− N2

g
zv
]
ψz +

N2

g
fzψ

)
(4.5′)

+Dz

([N2

g
zv − vρ− fxρ

]
ψx −

N2

g
fxψ

)
= 0.

The conservation law (4.3) defines the energy of the system. It seems that the con-
servation laws (4.4) and (4.5), unlike (4.3), do not have direct analogies in mechanics
and should be investigated from point of view of their physical significance.
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1 Introduction

The simplest general method for integrating non-homogeneous linear ordinary differ-
ential equations of an arbitrary order is the method of variation of parameters. It was
first discovered by Jean Bernoulli for first-order equations in 1697 and later extended
by J.L. Lagrange to higher-order equations. Lagrange’s approach requires imposition
of additional restrictions on varied parameters. I give here an alternative approach.

Theorem 4.1 provides an explicit formula for the solution of an arbitrary initial
value problem for any linear first-order equation. Theorems 4.2 and 4.3 provide sim-
ilar formulas for equations of the second and third order, respectively, provided that
fundamental systems of solutions for the corresponding homogeneous equations are
known. These formulas are as simple for practical using as the formula for roots of
quadratic equations. Namely, the solutions to the Cauchy problem are obtained just by
inserting the coefficients of the differential equations in question and the initial data.

Of course, the integrals involved in the solutions may be difficult or, in general,
impossible to work out in terms of elementary functions. But this circumstance is
unessential. Anyhow, equations whose solutions can be expressed in terms of elemen-
tary functions are very rear and do not have a practical value. They appear mostly in
textbooks as simple illustrations of various methods.

c© 2009 ALGA
c© 2009 N.H. Ibragimov
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2 Traditional presentation

2.1 First-order equations
Jean Bernoulli noticed in 1697 that any non-homogeneous first-order linear ordinary
differential equation

y′ + P (x)y = Q(x) (2.1)

can be easily integrated by varying the parameter C in the general solution

y = Ce−
∫
Pdx (2.2)

of the homogeneous equation
y′ + P (x)y = 0. (2.3)

Namely, we replace the constant C in (2.2) by an undetermined function u(x) and look
for the solution of the non-homogeneous equation (2.1) in the form

y = u(x)e−
∫
Pdx. (2.4)

Substitution of (2.4) in Eq. (2.1) yields

u′(x) = Q(x) e
∫
Pdx, (2.5)

whence
u(x) =

∫
Q e

∫
Pdxdx+ C, C = const. (2.6)

Inserting the expression (2.6) for u(x) in (2.4) we obtain the general solution to the
non-homogeneous linear equation (2.1) given by two quadratures:

y = C e−
∫
Pdx + e−

∫
Pdx

∫
Q(x) e

∫
Pdxdx. (2.7)

Remark 2.1. Often the integrals in (2.7) cannot be worked out in terms of elementary
functions. This fact does not mean, however, that the method of variation of parameter
has disadvantages of its own. It only means that the general solution of the differential
equation in question cannot be expressed in terms of elementary functions.

2.2 Second-order equations
Some 90 years later Lagrange showed that Bernoulli’s method of variation of param-
eters can be extended to higher-order equations. Lagrange’s method of variation of
parameters allows one to integrate non-homogeneous linear ordinary differential equa-
tions of any order provided that one knows the fundamental set of solutions for the

64



Alternative presentation of Lagrange’s method of variation of parameters 65

corresponding homogeneous equation. Recall the common way of presentation of this
method, e.g., for second-order equations

y′′ + a(x)y′ + b(x)y = f(x). (2.8)

Let us assume that we know two linearly independent solutions y1 = y1(x), y2 = y2(x)
of the homogeneous equation

y′′ + a(x)y′ + b(x)y = 0. (2.9)

Then the general solution to Eq. (2.9) is given by

y = C1 y1 + C2 y2, C1, C2 = const. (2.10)

The essence of the method of variation of parameters is the same as in the case of first-
order equations. Namely, we replace the parameters C1, C2 by unknown functions
u1(x), u2(x) and seek the solution of the non-homogeneous equation (2.8) in the form

y = u1(x) y1 + u2(x) y2. (2.11)

Substituting (2.11) in Eq. (2.8) we will obtain only one equation for two unknown
functions u1(x) and u2(x). Furthermore, computing the derivative of (2.11),

y′ = u1 y
′

1 + u2 y
′

2 + y1 u
′

1 + y2 u
′

2, (2.12)

we see that y′′ will involve second derivatives of u1, u2. Therefore, the substitution
(2.11) in Eq. (2.8) leads to a single differential equation of the second order for two
unknowns u1 and u2. The common way to avoid this complication is to impose on
u1, u2 the following restriction:

y1 u
′

1 + y2 u
′

2 = 0. (2.13)

Then Eq. (2.12) reduces to
y′ = u1 y

′

1 + u2 y
′

2 (2.14)

and yields:
y′′ = u1 y

′′

1 + u2 y
′′

2 + y′1 u
′

1 + y′2 u
′

2. (2.15)

Substituting (2.15), (2.14) and (2.11) in Eq. (2.8) and invoking that the functions y1(x)
and y2(x) solve the homogeneous equation (2.8), we obtain

y′1 u
′

1 + y′2 u
′

2 = f(x). (2.16)

Since y1 = y1(x), y2 = y2(x) are known functions, (2.13) and (2.16) provide two
equations for determining two unknown functions u1 and u2 :

y1 u
′

1 + y2 u
′

2 = 0,

y′1 u
′

1 + y′2 u
′

2 = f(x).
(2.17)
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Solving the system (2.17) with respect to u′1, u
′

2 :

u′1 = −
y2 f(x)

W [y1, y2]
, u′2 =

y1 f(x)

W [y1, y2]
, (2.18)

and integrating we obtain

u1 = −
∫

y2 f(x)

W [y1, y2]
dx+ C1, u2 =

∫
y1 f(x)

W [y1, y2]
dx+ C2, (2.19)

where C1, C2 are arbitrary constants, and W [y1, y2] is the Wronskian:

W [y1, y2] =

∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣ = y1 y
′

2 − y2 y
′

1. (2.20)

Inserting (2.20) in (2.11) we obtain the general solution to Eq. (2.8):

y = C1 y1 + C2 y2 − y1

∫
y2 f(x)

W [y1, y2]
dx+ y2

∫
y1 f(x)

W [y1, y2]
dx. (2.21)

2.3 Remark
For an extension of the method to higher-order equations, it is useful to write the
system (2.17) in the vector form

MU = F, (2.22)

where M is the 2× 2 matrix, and U, F are the column vectors defined as follows:

M =

(
y1 y2
y′1 y′2

)
, U =

(
u′1
u′2

)
, F =

(
0

f(x)

)
. (2.23)

The determinant of M is the Wronskian (2.20),

detM = W [y1, y2].

Since the solutions y1(x), y2(x) are linearly independent, we have W [y1, y2] 6= 0.
Hence, the matrix M is invertible and has the following inverse:

M−1 =
1

W [y1, y2]

(
y′2 −y2
−y′1 y1

)
. (2.24)

Therefore the solution to Eq. (2.22) is given by

U =M−1F,
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or (
u′1
u′2

)
=

1

W [y1, y2]

(
−y2 f(x)
y1 f(x)

)
. (2.25)

In other words, we have arrived at Eqs. (2.18):

u′1 = −
y2 f(x)

W [y1, y2]
, u′2 =

y1 f(x)

[y1, y2]
.

Note that for computing the solution (2.25) to Eq. (2.22) we need only the last
column in the inverse matrix. Therefore we can write M−1 by keeping only the last
column:

M−1 =
1

W [y1, y2]

(
· · · −y2
· · · y1

)
. (2.26)

3 Alternative presentation
Imposition of the additional restriction (2.13) often becomes a stumbling block for
students who consider it as an artificial trick that one has to remember. For higher-order
equations the situation is more complicated. I give here an alternative presentation
of the method of variation of parameters which is free from this disadvantage of the
traditional presentation of the method.

3.1 Second-order equations
Let us rewrite the second-order equation (2.8) as the following non-homogeneous sys-
tem of two first-order linear equations for two dependent variables y, z :

y′ = z,

z′ + a(x) z + b(x) y = f(x).
(3.1)

Two linearly independent solutions

y1 = y1(x), y2 = y2(x)

of the homogeneous equation (2.9), taken together with

z1 = y′1(x), z2 = y′2(x),

provide two linearly independent solutions

Y1 =

(
y1
z1

)
, Y2 =

(
y2
z2

)
(3.2)
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of the homogeneous system

y′ = z,

z′ + a(x) z + b(x) y = 0.
(3.3)

The linear combination of (3.2)

Y = C1Y1 + C2Y2 =

(
C1 y1 + C2 y2
C1 z1 + C2 z2

)

furnishes the following general solution to the system (3.3):

y = C1 y1 + C2 y2,

z = C1 z1 + C2 z2.
(3.4)

Now we replace the parameters C1, C2 in (3.4) by u1(x), u2(x) and seek the
solution to the non-homogeneous system (3.1) in the form

y = u1(x) y1 + u2(x) y2,

z = u1(x) z1 + u2(x) z2.
(3.5)

Substitution of (3.5) in Eqs. (3.1) yields:

u1 y
′

1 + u2 y
′

2 + u′1 y1 + u′2 y2 = u1 z1 + u2 z2,

u1 z
′

1 + u2 z
′

2 + u′1 z1 + u′2 z2 + a(x)(u1 z1 + u2 z2)

+ b(x)(u1(x) y1 + u2(x) y2) = f(x),

or upon rearranging the terms:

u1 y
′

1 + u2 y
′

2 + u′1 y1 + u′2 y2 = u1 z1 + u2 z2, (3.6)

[z′1 + a(x) z1 + b(x) y1]u1 + [z′2 + a(x) z2 + b(x) y2]u2

+ u′1 z1 + u′2 z2 = f(x). (3.7)

Since (y1, z1) and (y2, z2) solve the homogeneous system (3.3), the terms in brackets
in Eq. (3.7) vanish and Eqs. (3.6)-(3.7) are written

u1 y
′

1 + u2 y
′

2 + u′1 y1 + u′2 y2 = u1 y
′

1 + u2 y
′

2,

u′1 z1 + u′2 z2 = f(x),

whence

y1 u
′

1 + y2 u
′

2 = 0,

y′1 u
′

1 + y′2 u
′

2 = f(x).
(3.8)

Thus, we have arrived at Eqs. (2.17) without imposing the restriction (2.13) a priori.
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3.2 Third-order equations
Let us rewrite the third-order equation

y′′′ + a(x)y′′ + b(x)y′ + c(x)y = f(x) (3.9)

as the system of three first-order linear equations for three dependent variables y, z, v :

y′ = z,

z′ = v,

v′ + a(x) v + b(x) z + c(x) y = f(x).

(3.10)

Three linearly independent solutions

y1 = y1(x), y2 = y2(x), y3 = y3(x)

of the homogeneous equation

y′′′ + a(x)y′′ + b(x)y′ + c(x)y = 0 (3.11)

taken together with

z1 = y′1(x), v1 = y′′1(x),

z2 = y′2(x), v2 = y′′2(x),

z3 = y′3(x), v3 = y′′3(x),

provide three linearly independent solutions

Y1 =



y1
z1
v1


 , Y2 =



y2
z2
v2


 , Y3 =



y3
z3
v3


 (3.12)

of the homogeneous system

y′ = z,

z′ = v,

v′ + a(x) v + b(x) z + c(x) y = 0.

(3.13)

The linear combination of (3.12)

Y = C1Y1 + C2Y2 + C3Y3 =



C1 y1 + C2 y2 + C3 y3
C1 z1 + C2 z2 + C3 z3
C1 v1 + C2 v2 + C3 v3
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furnishes the following general solution to the system (3.13):

y = C1 y1 + C2 y2 + C3 y3,

z = C1 z1 + C2 z2 + C3 z3,

v = C1 v1 + C2 v2 + C3 v3.

(3.14)

Now we follow the procedure used in the case of second-order equations. Namely,
we replace the parameters C1, C2, C3 in (3.13) by u1(x), u2(x), u3(x) and seek the
solution to the non-homogeneous system (3.10) in the form

y = u1(x) y1 + u2(x) y2 + u3(x) y3,

z = u1(x) z1 + u2(x) z2 + u3(x) z3,

v = u1(x) v1 + u2(x) v2 + u3(x) v3.

(3.15)

Substituting (3.15) in Eqs. (3.10) and rearranging the terms we obtain:

3∑

i=1

ui y
′

i +
3∑

i=1

yiu
′

i =
3∑

i=1

ui zi,

3∑

i=1

ui z
′

i +
3∑

i=1

ziu
′

i =
3∑

i=1

ui vi,

3∑

i=1

(
v′i + avi + bzi + cyi

)
ui +

3∑

i=1

viu
′

i = f(x).

(3.16)

Since (yi, zi, vi), i = 1, 2, 3, solve the homogeneous system (3.13), we have

y′i = zi, z′i = vi, v′i + avi + bzi + cyi = 0,

and hence Eqs. (3.16) are written:

3∑

i=1

yiu
′

i = 0,
3∑

i=1

ziu
′

i = 0,
3∑

i=1

viu
′

i = f(x).

Thus, we have arrived at the equations

y1 u
′

1 + y2 u
′

2 + y3 u
′

3 = 0,

y′1 u
′

1 + y′2 u
′

2 + y′3 u
′

3 = 0,

y′′1 u
′

1 + y′′2 u
′

2 + y′′3 u
′

3 = f(x).

(3.17)

In the traditional approach the first two equations (3.17) are imposed a priori.
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One can readily solve the system of linear equations (3.17) for u′1, u
′

2, u
′

3 proceed-
ing as in Section 2.3. Namely, we write the system (3.17) in the vector form

MU = F, (3.18)

where M is the 3× 3 matrix, and U, F are column vectors defined as follows:

M =



y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3


 , U =



u′1
u′2
u′3


 , F =




0
0

f(x)


 . (3.19)

The determinant of the matrix M is the Wronskian of y1, y2, y3 :

detM =W [y1, y2, y3] =

∣∣∣∣∣∣∣∣

y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
. (3.20)

Since the solutions y1(x), y2(x), y3(x) are linearly independent, we have

W [y1, y2, y3] 6= 0.

Hence, the matrix M is invertible. For our purposes, it suffices to write the inverse
matrix in the form (see, e.g., [1], Section 1.1.1)

M−1 =
1

W [y1, y2, y3]



· · · W [y2, y3]
· · · W [y3, y1]
· · · W [y1, y2]


 , (3.21)

where

W [yi, yk] =

∣∣∣∣∣
yi yk

y′i y′k

∣∣∣∣∣ = yiy
′

k − yky
′

i, i, k = 1, 2, 3. (3.22)

Accordingly, the solution to Eq. (3.18) is given by


u′1
u′2
u′3


 =

1

W [y1, y2, y3]



W [y2, y3]f(x)
W [y3, y1]f(x)
W [y1, y2]f(x)


 . (3.23)

In other words,

u′1 =
W [y2, y3]f(x)

W [y1, y2, y3]
, u′2 =

W [y3, y1]f(x)

W [y1, y2, y3]
, u′3 =

W [y1, y2]f(x)

W [y1, y2, y3]
,
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whence, upon integration:

u1 =

∫
W [y2, y3]f(x)

W [y1, y2, y3]
dx+ C1,

u2 =

∫
W [y3, y1]f(x)

W [y1, y2, y3]
dx+ C2, (3.24)

u3 =

∫
W [y1, y2]f(x)

W [y1, y2, y3]
dx+ C3,

Substituting (3.24) in the first equation (3.15) we obtain the general solution of the
non-homogeneous equation (3.9):

y = C1 y1 + C2 y2 + C3 y3 + y1

∫
W [y2, y3]f(x)

W [y1, y2, y3]
dx

+ y2

∫
W [y3, y1]f(x)

W [y1, y2, y3]
dx+ y3

∫
W [y1, y2]f(x)

W [y1, y2, y3]
dx. (3.25)

3.3 Higher-order equations
Consider an nth-order linear equation

y(n) + a1(x)y
(n−1) + . . .+ an−1(x)y

′ + an(x)y = f(x) (3.26)

with known linearly independent solutions y1(x), . . . , yn(x) of the homogeneous
equation. Proceeding as in Section 3.2, we obtain the equations similar to (3.17):

y1 u
′

1 + · · ·+ yn u
′

n = 0,

y′1 u
′

1 + · · ·+ y′n u
′

n = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·
y
(n−1)
1 u′1 + · · ·+ y(n−1)

n u′n = f(x).

(3.27)

Then we introduce the following matrix M and the vectors U, F :

M =




y1 · · · yn

y′1 · · · y′n

· · · · · · · · ·
y
(n−1)
1 · · · y

(n−1)
n



, U =




u′1

u′2

· · ·
u′n



, F =




0

0

· · ·
f(x)


 (3.28)

and write the system (3.27) in the vector form:

MU = F. (3.29)
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In order to solve Eq. (3.29), we have to find the inverse matrix to M and write it in the
form similar to (3.21).

Recall that the inverse to a matrix

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann


 (3.30)

with non-vanishing determinant |A| = detA has the form

A−1 =
1

|A|




A11 A21 · · · An1

A12 A22 · · · An2

· · · · · · · · · · · ·
A1n A2n · · · Ann


 , (3.31)

where Aij is the cofactor to the element aij of the matrix (3.30).
Applying the formula (3.31) to the matrix M given in (3.27) and invoking that the

determinant of the matrix M is the Wronskian

Wn[y1, y2, . . . , yn] =

∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′1 y′2 · · · y′n

· · · · · · · · · · · · · · · · · · · · · · · · ·

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣

, (3.32)

we obtain by keeping only the last column (cf. (2.26) and (3.21)):

M−1 =
1

Wn[y1, y2, . . . , yn]




· · · (−1)n−1Wn−1[y2, y3, . . . , yn]

· · · (−1)n−2Wn−1[y1, y3, . . . , yn]

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · Wn−1[y1, y2, . . . , yn−1]



. (3.33)

Accordingly, the solution to Eq. (3.29) is given by




u′1

u′2

· · ·
u′n




=
1

Wn[y1, y2, . . . , yn]




(−1)n−1Wn−1[y2, y3, . . . , yn] f(x)

(−1)n−1Wn−1[y1, y3, . . . , yn] f(x)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Wn−1[y1, y2, . . . , yn−1] f(x)



. (3.34)

73



74 Nail H. Ibragimov

Integrating (3.34), we obtain ui(x), i = 1, . . . , n, and hence the general solution

y =
n∑

i=1

ui(x)yi(x) (3.35)

of the non-homogeneous equation (3.26).

Example 3.1. Let us solve the fourth-order equation

d4y

dx4
− y = f(x) (3.36)

describing the phenomenon of “beating” of driving shafts due to the centrifugal force
(see [2], Section 2.3.3) in presence of an external force f(x) such as friction, etc. The
general solution of the homogeneous equation

y(4) − y = 0

is given by
y = C1e

x + C2e
−x + C3 cos x+ C4 sinx.

Hence, four linearly independent solutions of the homogeneous equation are

y1(x) = ex, y2(x) = e−x, y3(x) = cos x, y4(x) = sin x. (3.37)

In our case Eq. (3.34) is written



u′1

u′2

u′3

u′4




=
1

W4[y1, y2, y3, y4]




−W3[y2, y3, y4] f(x)

W3[y1, y3, y4] f(x)

−W3[y1, y2, y4] f(x)

W3[y1, y2, y3] f(x)



. (3.38)

The Wronskian (3.32) of the functions (3.37) has the form

W4[y1, y2, y3, y4] =

∣∣∣∣∣∣∣∣∣∣∣

ex e−x cos x sinx

ex − e−x − sinx cos x

ex e−x − cos x − sinx

ex − e−x sinx − cos x

∣∣∣∣∣∣∣∣∣∣∣

. (3.39)

Working out the determinant (3.39), one obtains

W4[y1, y2, y3, y4] = −8. (3.40)
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Let us compute the Wronskians W3 in (3.38). We have:

W3[y2, y3, y4] =

∣∣∣∣∣∣∣∣

e−x cos x sinx

−e−x − sinx cos x

e−x − cos x − sinx

∣∣∣∣∣∣∣∣
= 2 e−x. (3.41)

W3[y1, y3, y4] =

∣∣∣∣∣∣∣∣

ex cos x sin x

ex − sinx cosx

ex − cos x − sinx

∣∣∣∣∣∣∣∣
= 2 ex. (3.42)

W3[y1, y2, y4] =

∣∣∣∣∣∣∣∣

ex e−x sinx

ex − e−x cos x

ex e−x − sinx

∣∣∣∣∣∣∣∣
= 4 sin x. (3.43)

W3[y1, y2, y3] =

∣∣∣∣∣∣∣∣

ex e−x cos x

ex − e−x − sin x

ex e−x − cos x

∣∣∣∣∣∣∣∣
= 4 cos x. (3.44)

Substituting (3.40)-(3.44) in (3.38) an integrating, we have:




u1

u2

u3

u4




=




C1 +
1
4

∫
f(x) e−x dx

C2 − 1
4

∫
f(x) ex dx

C3 +
1
2

∫
f(x) sinx dx

C4 − 1
2

∫
f(x) cos x dx



.

Now the formula (3.35) gives the following general solution to Eq. (3.36):

y = y∗(x) + C1e
x + C2e

−x + C3 cosx+ C4 sin x,

where C1, . . . , C4 are arbitrary parameters and y∗(x) is a particular solution of Eq.
(3.36) defined by

y∗(x) =
1

4
ex
∫
f(x) e−x dx− 1

4
e−x

∫
f(x) ex dx

+
cos x

2

∫
f(x) sinx dx− sinx

2

∫
f(x) cos x dx.

(3.45)
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Let us verify that the function y∗(x) solves Eq. (3.36). The differentiation yields:

y′
∗
(x) =

1

4
ex
∫
f(x) e−x dx+

1

4
f(x) +

1

4
e−x

∫
f(x) ex dx− 1

4
f(x)

− sin x

2

∫
f(x) sinx dx+

1

2
f(x) cos x sin x

− cos x

2

∫
f(x) cos x dx− 1

2
f(x) sinx cos x.

Hence,

y′
∗
(x) =

1

4
ex
∫
f(x) e−x dx+

1

4
e−x

∫
f(x) ex dx

− sinx

2

∫
f(x) sinx dx− cos x

2

∫
f(x) cos x dx.

Differentiating further, we obtain likewise:

y′′
∗
(x) =

1

4
ex
∫
f(x) e−x dx− 1

4
e−x

∫
f(x) ex dx

− cos x

2

∫
f(x) sinx dx+

sin x

2

∫
f(x) cos x dx,

y′′′
∗
(x) =

1

4
ex
∫
f(x) e−x dx+

1

4
e−x

∫
f(x) ex dx

+
sinx

2

∫
f(x) sinx dx+

cos x

2

∫
f(x) cosx dx

and finally

y(4)
∗

(x) =
1

4
ex
∫
f(x) e−x dx− 1

4
e−x

∫
f(x) ex dx

+
cos x

2

∫
f(x) sinx dx− sinx

2

∫
f(x) cos x dx+ f(x)

y∗(x) + f(x).

Hence, Eq. (3.36) is satisfied: y(4)∗ (x)− y∗(x) = f(x).
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4 Solution of initial value problems
The integral representations of the general solutions obtained by the method of vari-
ation of parameters are very convenient for solving arbitrary initial value problems
(Cauchy’s problems). I will illustrate the statement using the solutions considered in
the previous sections.

4.1 First-order equations

Let us solve an arbitrary initial value problem for Eq. (2.1) at x = x0 :

y′ + P (x)y = Q(x), y(x0) = Y0, (4.1)

where x0 and Y0 are arbitrary constants. We will use the integral representation (2.7)
of the general solution:

y = C e−
∫
Pdx + e−

∫
Pdx

∫
Q(x) e

∫
Pdxdx, (2.7)

Recall that the function e−
∫
Pdx represents any solution of the homogeneous equa-

tions. We will chose for our convenience one of them, y1(x), which equals to 1 at
x = x0, namely

y1(x) = e
−

∫ x

x0
P (ξ)dξ

. (4.2)

Then Eq. (2.7) is written

y = C y1(x) + y1(x)

∫
Q(ξ)

y1(ξ)
dξ, (4.3)

where, according to (4.2),
1

y1(ξ)
= e

∫ ξ

x0
P (η)dη

. (4.4)

The second term in (4.3) is an unspecified particular solution to the non-homogeneous
equation. We can take any of them. We will chose the particular solution, y∗(x), which
vanishes at x = x0, namely

y∗(x) = y1(x)

∫ x

x0

Q(ξ)

y1(ξ)
dξ. (4.5)

Thus the general solution (2.7) of the non-homogeneous equation is written in the form

y = C y1(x) + y∗(x), (4.6)
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where the particular solution y1(x) of the homogeneous equation satisfies the initial
condition y1(x0) = 1 and the particular solution y∗(x) of the non-homogeneous equa-
tion satisfies the initial condition y∗(x0) = 0. Now we substitute (4.6) in the initial
condition of the problem (4.1) and obtain C = Y0.

Finally, substituting in Eq. (4.6) C = Y0 and invoking Eqs. (4.2), (4.4), (4.5), we
obtain the following result.

Theorem 4.1. The solution to the initial value problem (4.1) with arbitrary x0 and Y0
has the form

y(x) = Y0 e
−

∫ x

x0
P (ξ)dξ

+ e
−

∫ x

x0
P (ξ)dξ

∫ x

x0

Q(ξ)e
∫ ξ

x0
P (η)dη

dξ. (4.7)

4.2 Second-order equations
Let us solve an arbitrary initial value problem for Eq. (2.8) at x = x0 :

y′′ + a(x)y′ + b(x)y = f(x), y(x0) = Y0, y′(x0) = Y1, (4.8)

where x0, Y0 and Y1 are arbitrary constants.
Following the discussion of the initial value problem for the first-order equations,

we will specify the integral representation (2.21) of the general solution as follows:

y(x) = C1 y1(x) + C2 y2(x) + y∗(x). (4.9)

Here y∗(x) is a particular solution of the non-homogeneous equation (2.8) defined by

y∗(x) = −y1(x)
∫ x

x0

y2(ξ) f(ξ)

W [y1, y2](ξ)
dξ + y2(x)

∫ x

x0

y1(ξ) f(ξ)

W [y1, y2](ξ)
dξ, (4.10)

where W [y1, y2](ξ) = y1(ξ)y
′

2(ξ)− y2(ξ)y
′

1(ξ).

Lemma 4.1. The particular solution (4.10) satisfies the following initial conditions:

y∗(x0) = 0, y ′

∗
(x0) = 0. (4.11)

Proof. It is obvious from the definition (4.10) of y∗(x) that the first equation (4.11) is
satisfied. Let us verify the second equation. We have by differentiation:

y ′

∗
(x) = −y ′

1(x)

∫ x

x0

y2(ξ) f(ξ)

W [y1, y2](ξ)
dξ + y ′

2(x)

∫ x

x0

y1(ξ) f(ξ)

W [y1, y2](ξ)
dξ

− y1(x)
y2(x) f(x)

W [y1, y2](x)
+ y2(x)

y1(x) f(x)

W [y1, y2](x)
·
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Hence,

y ′

∗
(x) = −y ′

1(x)

∫ x

x0

y2(ξ) f(ξ)

W [y1, y2](ξ)
dξ + y ′

2(x)

∫ x

x0

y1(ξ) f(ξ)

W [y1, y2](ξ)
dξ. (4.12)

It is manifest from (4.12) that y ′

∗
(x0) = 0. This completes the proof.

Theorem 4.2. The solution to the initial value problem (4.8) with arbitrary x0, Y0 and
Y1 has the form

y(x) = C1 y1(x) + C2 y2(x)

− y1(x)

∫ x

x0

y2(ξ) f(ξ)

W [y1, y2](ξ)
dξ + y2(x)

∫ x

x0

y1(ξ) f(ξ)

W [y1, y2](ξ)
dξ, (4.13)

where C1, C2 are determined by solving the system of linear algebraic equations

C1 y1(x0) + C2 y2(x0) = Y0,

C1 y
′

1(x0) + C2 y
′

2(x0) = Y1.
(4.14)

Proof. We substitute the function y(x) defined by (4.9) and its derivative

y′(x) = C1 y
′

1(x) + C2 y
′

2(x) + y′
∗
(x)

in the initial conditions (4.8), use Eqs. (4.11) and see that the initial conditions lead to
Eqs. (4.14). This proves the theorem because the function (4.13) solves the differential
equation in the problem (4.8).

Remark 4.1. The system (4.14) can be solved at once, giving

C1 =
Y0 y

′

2(x0)− Y1 y2(x0)

W [y1, y2](x0)
,

C2 =
Y1 y1(x0)− Y0 y

′

1(x0)

W [y1, y2](x0)
·

(4.15)

4.3 Third-order equations
Let us solve an arbitrary initial value problem for Eq. (3.9) at x = x0 :

y′′′ + a(x)y′′ + b(x)y′ + c(x)y = f(x),

y(x0) = Y0, y′(x0) = Y1, y′′(x0) = Y2,
(4.16)

where x0, Y0, Y1 and Y2 are arbitrary constants.

79



80 Nail H. Ibragimov

Proceeding as in Section 4.2, we rewrite the formula (3.25) for the general solution
in the form

y(x) = C1 y1(x) + C2 y2(x) + C3 y3(x) + y∗(x), (4.17)

where y∗(x) is a particular solution of the non-homogeneous equation (3.9) defined by

y∗(x) = y1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ

+ y2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ. (4.18)

Lemma 4.2. The particular solution (4.18) satisfies the following initial conditions:

y∗(x0) = 0, y ′

∗
(x0) = 0, y ′′

∗
(x0) = 0. (4.19)

Proof. It is obvious from the definition (4.18) of y∗(x) that the first equation (4.19) is
satisfied. In order to verify the second equation (4.19), we differentiate (4.18):

y′
∗
(x) = y′1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y1(x)

W [y2, y3](x) f(x)

W [y1, y2, y3](x)

+ y′2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y2(x)

W [y3, y1](x) f(x)

W [y1, y2, y3](x)

+ y′3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y3(x)

W [y1, y2](x) f(x)

W [y1, y2, y3](x)
·

The reckoning shows that

y1(x)W [y2, y3](x) + y2(x)W [y3, y1](x) + y3(x)W [y1, y2](x) = 0.

Therefore

y′
∗
(x) = y′1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y′2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ

+ y′3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ. (4.20)

Another differentiation yields:

y′′
∗
(x) = y′′1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y′1(x)

W [y2, y3](x) f(x)

W [y1, y2, y3](x)

+ y′′2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y′2(x)

W [y3, y1](x) f(x)

W [y1, y2, y3](x)

+ y′′3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y′3(x)

W [y1, y2](x) f(x)

W [y1, y2, y3](x)
·
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The reckoning shows that

y′1(x)W [y2, y3](x) + y′2(x)W [y3, y1](x) + y′3(x)W [y1, y2](x) = 0.

Therefore

y′′
∗
(x) = y′′1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y′′2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ

+ y′′3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ. (4.21)

Eqs. (4.20), (4.21) yield that y′
∗
(x0) = 0, y′′

∗
(x0) = 0. This completes the proof.

Theorem 4.3. The solution to the initial value problem (4.16) with arbitrary x0, Y0, Y1
and Y3 has the form

y(x) = C1 y1(x) + C2 y2(x) + C3 y3(x) + y1(x)

∫ x

x0

W [y2, y3](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ

+ y2(x)

∫ x

x0

W [y3, y1](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ + y3(x)

∫ x

x0

W [y1, y2](ξ) f(ξ)

W [y1, y2, y3](ξ)
dξ, (4.22)

where C1, C2 are determined by solving the system of linear algebraic equations

C1 y1(x0) + C2 y2(x0) + C3 y3(x0) = Y0,

C1 y
′

1(x0) + C2 y
′

2(x0) + C3 y
′

3(x0) = Y1,

C1 y
′′

1(x0) + C2 y
′′

2(x0) + C3 y
′′

3(x0) = Y2.

(4.23)

The proof is similar to the proof of Theorem 4.2.
Higher-order linear equations can be treated likewise.

5 Examples
Theorem 4.1 provides the simple formula (4.7) for the solution of an arbitrary ini-
tial value problem for any linear first-order equation. This formula is as simple for
the practical use as the formula for roots of quadratic equations. The solution to the
Cauchy problem (4.1) is obtained just by inserting the coefficients P (x), Q(x) of the
differential equations in question and the initial data x0, Y0.

Theorems 4.2 and 4.3 play the same role for second-order and third-order equa-
tions, respectively, provided that fundamental systems of solutions for the correspond-
ing homogeneous equations are known.
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Of course, the integrals in (4.1), (4.13) and (4.22) may be difficult or impossible
(this is the general case) to work out in terms of elementary functions. But this circum-
stance is unessential. Anyhow, equations whose solutions can be expressed in terms
of elementary functions are very rear and do not have a practical value. They appear
mostly in textbooks as simple illustrations of various methods.

5.1 First-order equations
Example 5.1. Let us solve the Cauchy problem

y′ − 2xy = x3, y(1) = Y0. (5.1)

Here
P (x) = −2x, Q(x) = x3, x0 = 1,

and the solution formula (4.7) is written:

y(x) = Y0 e
∫ x

1
(2ξ)dξ + e

∫ x

1
(2ξ)dξ

∫ x

1

ξ3e−
∫ ξ

1
(2η)dη dξ,

or
y(x) = Y0 e

x2
−1 + ex

2
−1

∫ x

1

ξ3e1−ξ2

dξ. (5.2)

One can leave the solution in the integral form (5.2). But in this particular case the
integral can be easily worked out:

∫ x

1

ξ3e1−ξ2

dξ =
e

2

∫ x

1

ξ2e−ξ2

d(ξ2) = −1

2

(
1 + ξ2

)
e1−ξ2

∣∣∣∣
x

1

= 1− 1

2
(1 + x2) e1−x2

. (5.3)

Substituting (5.3) in (5.2) we obtain the solution to the problem (5.1) in elementary
functions:

y(x) = (1 + Y0) e
x2

−1 − 1

2

(
1 + x2

)
. (5.4)

Example 5.2. Let us solve the Cauchy problem

y′ − y cos x = x, y(0) = Y0. (5.5)

Here
P (x) = − cos x, Q(x) = x, x0 = 0,

and the solution formula (4.7) is written:

y(x) = Y0 e
∫ x

0
cos ξdξ + e

∫ x

0
cos ξdξ

∫ x

0

ξ e−
∫ ξ

0
cos ηdη dξ.
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Since
e
∫ x

0
cos ξdξ = esinx

we obtain the solution to the problem (5.5) containing one quadrature:

y(x) = Y0 e
sinx + esinx

∫ x

0

ξ e− sin ξdξ. (5.6)

5.2 Second-order equations

Example 5.3. Consider the Cauchy problem

y′′ + y = f(x),

y(x0) = Y0 , y′(x0) = Y1 .
(5.7)

The functions
y1(x) = cos x, y2(x) = sinx (5.8)

provide a fundamental system of solutions for the homogeneous equation y ′′ + y = 0
and have the Wronskian

W [y1, y2] = 1. (5.9)

Furthermore, Eqs. (4.15) yield

C1 = Y0 cos x0 − Y1 sin x0 ,

C2 = Y1 cos x0 + Y0 sinx0 .

Therefore

C1y1(x) + C2y2(x)

= Y0 cos x0 cos x− Y1 sinx0 cosx+ Y1 cos x0 sinx+ Y0 sinx0 sin x

= Y0 cos(x− x0) + Y1 sin(x− x0) . (5.10)

Substituting (5.8), (5.9) and (5.10) in the formula (4.13) we obtain the following solu-
tion to the problem (5.7):

y(x) = Y0 cos(x− x0) + Y1 sin(x− x0)

− cos x

∫ x

x0

f(ξ) sin ξ dξ + sin x

∫ x

x0

f(ξ) cos ξ dξ . (5.11)
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Exercise 5.1. Solve the Cauchy problem

y′′ + y = xn, (n = 1, 2, . . .),

y(x0) = Y0 , y′(x0) = Y1 .
(5.12)

Solution. Eq. (5.11) provides the following integral representation of solution to the
problem (5.12):

y(x) = Y0 cos(x− x0) + Y1 sin(x− x0)

− cos x

∫ x

x0

ξn sin ξ dξ + sinx

∫ x

x0

ξn cos ξ dξ . (5.13)

The solution (5.13) can be written in terms of elementary functions by using the well-
known integrals

∫
sin x dx = − cos x,

∫
cos x dx = sinx,

∫
x sin x dx = sin x− x cos x,

∫
x cos x dx = cos x+ x sin x

and the recursion formulae
∫
xn sin x dx = −xn cos x+ n

∫
xn−1 cos x dx,

∫
xn cos x dx = xn sinx− n

∫
xn−1 sinx dx.

Exercise 5.2. Solve the Cauchy problem

y′′ + y =
1

x+ 1
(x ≥ 0),

y(0) = Y0 , y′(0) = Y1 .

(5.14)

Solution. Substituting x0 = 0 and

f(x) =
1

x+ 1

in Eq. (5.11) we obtain the following solution to the problem (5.14):

y(x) = Y0 cos x+ Y1 sinx− cos x

∫ x

0

sin ξ

ξ + 1
dξ + sinx

∫ x

0

cos ξ

ξ + 1
dξ . (5.15)
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The integrals in (5.15) cannot be worked out in terms of elementary functions.
Nevertheless, one can readily verify that the function (5.15) satisfies the initial condi-
tions and the differential equation of the problem (5.14). The condition y(0) = Y0 is
obviously satisfied. The differentiation of (5.15) yields:

y′(x) =− Y0 sinx+ Y1 cos x+ sinx

∫ x

0

sin ξ

ξ + 1
dξ

− cos x sin x

x+ 1
+ cosx

∫ x

0

cos ξ

ξ + 1
dξ +

sin x cos x

x+ 1

= −Y0 sin x+ Y1 cos x+ sinx

∫ x

0

sin ξ

ξ + 1
dξ + cos x

∫ x

0

cos ξ

ξ + 1
dξ.

It is manifest from the above expression for y ′(x) that the condition y′(0) = Y1 is also
satisfied. Another differentiation yields:

y′′(x) =− Y0 cos x− Y1 sin x+ cos x

∫ x

0

sin ξ

ξ + 1
dξ

+
sin2 x

x+ 1
− sinx

∫ x

0

cos ξ

ξ + 1
dξ +

cos2 x

x+ 1

= −Y0 cosx− Y1 sinx+ cos x

∫ x

0

sin ξ

ξ + 1
dξ − sinx

∫ x

0

cos ξ

ξ + 1
dξ +

1

x+ 1

= − y +
1

x+ 1
·

Hence, the differential equation (5.14) is satisfied.

Example 5.4. Consider the Cauchy problem

x2y′′ + 3xy′ + y =
1

x
(x ≥ 1),

y(1) = Y0 , y′(1) = Y1 .

(5.16)

Solving the homogeneous equation, i.e. the Euler equation

x2y′′ + 3xy′ + y = 0,

we obtain the following fundamental system of solutions:

y1(x) =
1

x
, y2(x) =

lnx

x
· (5.17)
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Their Wronskian is
W [y1, y2](x) =

1

x3
· (5.18)

Eqs. (4.14) yield
C1 = Y0, C2 = Y0 + Y1. (5.19)

Now we write the differential equation of the problem (5.16) in the form (4.8),

y′′ +
3

x
y′ +

1

x2
y =

1

x3
, (5.20)

apply the formula (4.13) and, invoking Eqs. (5.17), (5.18), (5.19), obtain:

y(x) = Y0
1

x
+ (Y0 + Y1)

lnx

x
− 1

x

∫ x

1

ln ξ

ξ
dξ +

lnx

x

∫ x

1

1

ξ
dξ. (5.21)

The integrals can be worked out at once, giving
∫ x

1

ln ξ

ξ
dξ =

1

2

(
ln ξ

)2∣∣∣
x

1
=
(
lnx

)2
,

∫ x

1

1

ξ
dξ = ln ξ

∣∣∣
x

1
= lnx.

Substituting these expression in (5.21) we obtain the solution to the problem (5.16) in
elementary functions:

y(x) =
1

x

[
Y0 + (Y0 + Y1) ln x+

1

2

(
lnx

)2
]
. (5.22)

It is useful to verify by direct substitution that the function (5.22) satisfies the differen-
tial equation and the initial conditions of the problem (5.16).

Example 5.5. Let us solve the following Cauchy problem:

y′′ − y′ cos x+ y sinx = f(x),

y(0) = Y0 , y′(0) = Y1 .
(5.23)

First, we will find two linearly independent solutions (a fundamental system of solu-
tions) for the homogeneous equation

y′′ − y′ cos x+ y sin x = 0, (5.24)

noting that its order can be reduced. Indeed, it can be written in the form

(y′ − y cosx)′ = 0
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and integrated, giving
y′ − y cos x = K1 . (5.25)

One can easily integrate the first-order equation (5.25) and find the general solution

y = K2e
sinx +K1e

sinx

∫
e− sinxdx (5.26)

to Eq. (5.24) containing two arbitrary constants K1, K2 . Hence, one can take for a
fundamental system of solutions for Eq. (5.24) the following the functions:

y1(x) = esinx, y2(x) = esinx

∫ x

0

e− sin ξdξ. (5.27)

Let us find the Wronskian of the functions (5.27). We have:

y′1(x) = cos x esinx, y′2(x) = 1 + cosx esinx

∫ x

0

e− sin ξdξ,

and hence
W [y1, y2](x) = esinx. (5.28)

Eqs. (4.14) yield
C1 = Y0, C2 = Y1 − Y0.

Substituting now (5.27) and (5.28) in (4.13) we obtain the following solution to the
problem (5.23):

y(x) = Y1 esinx + (Y1 − Y0) e
sinx

∫ x

0

e− sin ξdξ

− esinx

∫ x

0

f(ξ)

[ ∫ ξ

0

e− sin ηdη

]
dξ + esinx

∫ x

0

e− sin ξdξ

∫ x

0

f(ξ) dξ. (5.29)

5.3 Third-order equations
Example 5.6. Let us solve the following Cauchy problem:

y′′′ − y′′ + y′ − y = f(x),

y(0) = Y0 , y′(0) = Y1 , y′′(0) = Y2 .
(5.30)

The characteristic polynomial for the homogeneous homogeneous equation

y′′′ − y′′ + y′ − y = 0 (5.31)

is written
λ3 − λ2 + λ− 1 = (λ− 1)(λ2 + 1)
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and has the roots λ1 = 1, λ2 = i, λ3 = −i. Consequently, a fundamental system of
solutions for Eq. (5.31) is provided by the functions

y1(x) = ex, y2(x) = cosx, y2(x) = sinx. (5.32)

Let us find the Wronskians (3.20) and (3.22). The reckoning yields

W [y1, y2, y3](x) =

∣∣∣∣∣∣

ex cos x sinx
ex − sin x cos x
ex − cos x − sinx

∣∣∣∣∣∣
= 2 ex (5.33)

and
W [y2, y3](x) = 1,

W [y3, y1](x) = ex(sinx− cos x),

W [y1, y2](x) = −ex(sinx+ cos x).

(5.34)

In the problem (5.30) we have x0 and Eqs. (4.23), (5.32) yield:

C1 + C2 = Y0, C1 + C3 = Y1, C1 − C2 = Y2,

whence

C1 =
1

2
(Y0 + Y2), C2 =

1

2
(Y0 − Y2), C3 =

1

2
(2Y1 − Y0 − Y2). (5.35)

Substituting (5.32)-(5.35) in (4.22) we obtain the following integral representation
of the solution to the problem (5.30):

y(x) =
1

2

[
(Y0 + Y2) e

x + (Y0 − Y2) cos x+ (2Y1 − Y0 − Y2) sinx

+ ex
∫ x

0

e−ξ f(ξ) dξ + cos x

∫ x

0

(sin ξ − cos ξ) f(ξ) dξ

− sin x

∫ x

0

(sin ξ + cos ξ) f(ξ) dξ

]
. (5.36)

Let us verify that (5.36) solves our problem. The first initial condition, y(0) = Y0,
is obviously satisfied. We differentiate (5.36):

y′(x) =
1

2

[
(Y0 + Y2) e

x − (Y0 − Y2) sinx+ (2Y1 − Y0 − Y2) cosx

+ ex
∫ x

0

e−ξ f(ξ) dξ − sin x

∫ x

0

(sin ξ − cos ξ) f(ξ) dξ

− cos x

∫ x

0

(sin ξ + cos ξ) f(ξ) dξ + f(x)

+ cos x(sin x− cos x) f(x)− sinx(sinx+ cos x) f(x)

]
,
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whence

y′(x) =
1

2

[
(Y0 + Y2) e

x − (Y0 − Y2) sin x+ (2Y1 − Y0 − Y2) cos x

+ ex
∫ x

0

e−ξ f(ξ) dξ − sinx

∫ x

0

(sin ξ − cos ξ) f(ξ) dξ

− cos x

∫ x

0

(sin ξ + cos ξ) f(ξ) dξ

]
. (5.37)

It is obvious now that y′(0) = Y1. We differentiate (5.37) again and proceed as above
to obtain:

y′′(x) =
1

2

[
(Y0 + Y2) e

x − (Y0 − Y2) cos x− (2Y1 − Y0 − Y2) sinx

+ ex
∫ x

0

e−ξ f(ξ) dξ − cosx

∫ x

0

(sin ξ − cos ξ) f(ξ) dξ

+ sinx

∫ x

0

(sin ξ + cos ξ) f(ξ) dξ

]
. (5.38)

One can easily see that y′′(0) = Y2. We differentiate again and obtain:

y′′′(x) =
1

2

[
(Y0 + Y2) e

x + (Y0 − Y2) sinx− (2Y1 − Y0 − Y2) cos x

+ ex
∫ x

0

e−ξ f(ξ) dξ + sin x

∫ x

0

(sin ξ − cos ξ) f(ξ) dξ

+ cos x

∫ x

0

(sin ξ + cos ξ) f(ξ) dξ

]
+ f(x). (5.39)

It follows from (5.36)-(5.39) that the differential equation (5.30) is satisfied.

For particular types of function f(x) the problem (5.30) may have the solution
given by elementary functions. For instance, for the problem (5.30) with f(x) = x one
can easily work out the integrals in (5.36) and obtain

y(x) = −(1+x)+ 1

2

[
(Y0+Y2+1) ex+(Y0−Y2+1) cos x+(2Y1−Y0−Y2+1) sin x

]
.
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Abstract. A nonlinear equation arising in metallurgical applications of Magnetohydrodynam-
ics is discussed. Lie group analysis reveals two exceptional values of the exponent playing a
significant role in the model. Self-adjointness and first integrals are investigated.

Keywords: Liquid metals, Metallurgy, Group analysis, Boundary-layer equation.

1 Introduction
The growing interest to theoretical investigations on applications of Magnetohydrody-
namics in the metallurgical industry in the 1970s have been motivated by possibilities
of using alternating magnetic fields in the processing of liquid metals when the high
quality of the product is required. For example, high frequency external magnetic fields
are widely used in the casting process in the steel industry in order to control a flow
of liquid metals and to generate internal stirring within the liquid phase. This allows
one to reach the required homogeneity of solidifying metals by eliminating blowholes
usually caused by escaping gases.

The reader can find a good discussion of the process from the physical point of
view in [1] (see also [2], Sections 1 and 4 on electromagnetic shaping and stirring). The
mathematical model suggested by H.K. Moffatt in [1] for describing the “skin effects”
in a thin surface layer of liquid metals near a sharp corner is thoroughly investigated
in the recent paper [3] from the point of view of existence of solutions. In both papers,
[1] and [3], the value m = −1/2 of the exponent m, playing the significant part in the
main equation (3.1), appears as a “critical value”.

The present paper is devoted to the group analysis of Moffatt’s model. The analysis
reveals two exceptional values, m = −1/2 and m = 3, of the exponent m. Namely, it
is shown that Eq. (3.1) is self-adjoint if m = −1/2; in this case a first integral is found
for Eq. (3.1). The second exceptional case m = 3 singles out the equation having
more symmetries than for all other values of m.

c© 2009 ALGA
c© 2009 N.H. Ibragimov
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2 Preliminaries

2.1 The Prandtl boundary-layer equations
The system of boundary layer equations for a planar steady flow of liquid with a con-
stant density ρ and a constant coefficient of the kinematic viscosity ν has the form

uux + vuy = νuyy −
1

ρ
px,

py = 0, ux + vy = 0.

(2.1)

It is known as the Prandtl equation. The flow is parallel to a flat plate and is directed
along the x axis in the Cartesian coordinates (x, y).

2.2 Invariance principle for boundary value problems
We will use a general principle for tackling boundary and/or initial value problems
for equations having certain symmetries. It was formulated in [4] (see also [5]) and
called an invariance principle. This principle states that if a differential equation has a
symmetry group G and if the initial (boundary) data, including the initial manifold, are
invariant under a subgroup H ⊂ G then one should seek the solution to the problem
among H-invariant solutions of the differential equation in question. The invariance
principle is applicable both to linear and nonlinear equations.

2.3 Adjoint equation to nonlinear equations and conserved
quantities associated with symmetries

These concepts have been employed in [6], Sections 2 and 3. We will apply them to a
third-order ordinary differential equation

f ′′′ + F (η, f, f ′, f ′′) = 0, (2.2)

where f and η are a dependent and independent variables, respectively, f ′ is the first
derivative of f with respect to η, etc. The adjoint equation to Eq. (2.2) is defined by

δL
δf

= 0 (2.3)

with
L = z

[
f ′′′ + F (η, f, f ′, f ′′)

]
, (2.4)

where z is a new dependent variable, and δ/δf is the variational derivative:

δ

δf
=

∂

∂f
−D

∂

∂f ′
+D2 ∂

∂f ′′
−D3 ∂

∂f ′′′
· (2.5)
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Here D is the total derivative with respect to η :

D =
∂

∂η
+ f ′

∂

∂f
+ f ′′

∂

∂f ′
+ f ′′′

∂

∂f ′′
+ · · · .

In particular, D3(z) = z′′′, and the left-hand side of the adjoint equation (2.3) is

δ

δf

{
z
[
f ′′′ + F (η, f, f ′, f ′′)

]}
= −z′′′ + z

∂F

∂f
−D

(
z
∂F

∂f ′

)
+D2

(
z
∂F

∂f ′′

)
. (2.6)

Eq. (2.2) is self-adjoint if the adjoint equation (2.3) becomes equivalent with Eq. (2.2)
after the substitution z = f. If the equivalence occurs upon the substitution z = h(f)
with a certain invertible function h(f), then Eq. (2.2) is said to be quasi-self-adjoint.

If an operator

X = ξ(η, f)
∂

∂η
+ Γ(η, f)

∂

∂f
(2.7)

is admitted by Eq. (2.2), i.e. if X is an infinitesimal symmetry for this equation, then

C = W
[ ∂L
∂f ′

−D
( ∂L
∂f ′′

)
+D2

( ∂L
∂f ′′′

)]

+D(W )
[ ∂L
∂f ′′

−D
( ∂L
∂f ′′′

)]
+D2(W )

∂L
∂f ′′′

, W = Γ− ξf ′,

(2.8)

is a conserved quantity for Eq. (2.2) considered together with the adjoint equation
(2.5). It is necessary to involve the adjoint equation (2.5) because the quantity (2.8)
contains the variable z and its derivatives. However, if Eq. (2.2) is self-adjoint or
quasi-self-adjoint, then one can eliminate z from Eq. (2.8) by substituting z = f or
z = h(f), respectively, and obtain conserved quantity (first integral) for Eq. (2.2)
considered without its adjoint equation.

3 Internal stirring of liquid metals by magnetic fields

3.1 Boundary-layer description of high Reynolds number flows
To describe the “skin effects” in a thin surface layer of high Reynolds number flows of
liquid metals placed in a high frequency magnetic field, Moffatt [1] suggested to use
the boundary layer equation

ψyψxy − ψxψyy = νψyyy (3.1)

for the stream function ψ(x, y). He assumes that there is no pressure gradient outside
the boundary layer and obtains the boundary conditions

ψ = 0, ψy = Axm on y = 0, (3.2)

ψy → 0 as y →∞. (3.3)
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Here ν, A, m = const. The physical meaning of the constants A and m shows that
the following conditions hold:

A > 0 when m+ 1 > 0, (3.4)

A < 0 when m+ 1 < 0. (3.5)

Remark 3.1. Eq. (3.1) is equivalent to the system (2.1) if px is negligible compare
with the other terms in the first equation in (2.1). Namely, upon introducing the stream
function ψ(x, y) defined by the equations u = ψy, v = ψx, the third equation in (2.1)
is satisfied identically, and the first equation in (2.1) takes the form (3.1).

3.2 Moffatt’s solution

Referring to “standard similarity arguments of boundary-layer theory” presented in [7],
Section 5.9, Moffatt states that upon letting

ψ =
(
ν|A|xm+1

)1/2

f(η) (3.6)

with

η =
(
ν−1|A|xm+1

)1/2

y (3.7)

the partial differential equation (3.1) reduces to the third-order ordinary differential
equation

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 = 0 (3.8)

The boundary conditions (3.2)-(3.3) yield:

f(0) = 0, f ′(∞) = 0 (3.9)

and

f ′(0) =

{
+1 in case (3.4),

−1 in case (3.5).
(3.10)

It is mentioned in [1], page 186, that

m = −1

2
(3.11)

is a critical value of the exponent m for existence of a solution to the problem (3.8)-
(3.9). One can find there also an interesting discussion of a physical significance of
this critical value of m.
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4 Application of the invariance principle

4.1 Scaling symmetries of the boundary-layer equation
Let us apply the invariance principle (see Section 2.2) to the initial value problem (3.1)-
(3.2). First we have to find appropriate symmetries of the differential equation (3.1).
It is manifest that Eq. (3.1) is invariant under translations of x, y and ψ. But these
translations change the initial data (3.2) and cannot be used in the invariance principle.
Therefore we will look for another type of symmetries that can be easily found, namely
scaling symmetries (called also dilations or similarity transformations). Taking them
in the form

x̄ = a x, ȳ = b y, ψ̄ = c ψ (4.1)

and writing the invariance condition for Eq. (3.1):

ψ̄ȳ ψ̄x̄ȳ − ψ̄x̄ ψ̄ȳȳ − νψ̄ȳȳȳ = λ
[
ψyψxy − ψxψyy − νψyyy

]
,

where λ is an undetermined constant coefficient, we obtain the following equations:

c2

ab2
=

c

b3
= λ.

Hence, the dilation (4.1) is admitted by Eq. (3.1) if the three parameters a, b, c are
connected by one equation

c

a
=

1

b
·

It means that Eq. (3.1) admits the group G of dilations (4.1) where two parameters,
e.g. a, b, are arbitrary, and the third parameter c is determined by the equation

c =
a

b
·

The generators of this two-parameter group G span the Lie algebra L2 with the basis

X1 = x
∂

∂x
+ ψ

∂

∂ψ
, X2 = y

∂

∂y
− ψ

∂

∂ψ
· (4.2)

4.2 Operator admitted by the initial data
Let us find the subgroup H ⊂ G leaving invariant the initial data (3.2). We write the
generator of H in the form X = αX1 + βX2 :

X = αx
∂

∂x
+ βy

∂

∂y
+ (α− β)ψ

∂

∂ψ
(4.3)
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and determine the constant coefficients α and β from the invariance conditions of the
initial data (3.2). It is manifest that the invariance test for the initial manifold y = 0,

X(y)
∣∣
y=0

= 0,

is satisfied. Hence the invariance of the initial data (3.2) is guaranteed by the equations

X̃(ψ)
∣∣∣
(3.2)

= 0, X̃(ψy − Axm)
∣∣∣
(3.2)

= 0, (4.4)

where

X̃ = αx
∂

∂x
+ (α− β)ψ

∂

∂ψ
+ (α− 2β)ψy

∂

∂ψy

(4.5)

is the restriction on y = 0 of the prolongation of the operator (4.3) to ψy. We have:

X̃(ψ) = (α− β)ψ, X̃(ψy − Axm) = (α− 2β)ψy −mαAxm. (4.6)

It follows from (4.6) that the first equation (4.4) is satisfied for any values of the pa-
rameters α, β. The second equation (4.4) is written

(α− 2β −mα)Axm = 0,

whence α − 2β − mα = 0. Letting α = 2, we obtain β = 1 − m and arrive at the
following generator (4.3):

X = 2x
∂

∂x
+ (1−m) y

∂

∂y
+ (m+ 1)ψ

∂

∂ψ
· (4.7)

4.3 Derivation of Moffatt’s solution
We find two functionally independent invariants of the subgroup H ⊂ G with the
generator (4.7) by computing two first integrals the characteristic system

dx

2x
=

dy

(1−m) y
=

dψ

(m+ 1)ψ

of the equation X(J) = 0. Writing the characteristic system in the form

dy

y
+
m− 1

2

dx

x
= 0,

dψ

ψ
− m+ 1

2

dx

x
= 0

we obtain two first integrals

y x(m−1)/2 = const., ψ x−(m+1)/2 = const.
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The left-hand sides of these first integrals can be multiplied by any non-vanishing
constants, k, l−1, and provide two independent invariants denoted here by η and J :

η = ky x(m−1)/2, J = l−1 ψ x−(m+1)/2. (4.8)

Letting J = f(η) we obtain the following form for the invariant solutions:

ψ = l x(m+1)/2 f(η). (4.9)

We begin by computing the derivatives of η defined in (4.8):

ηx =
k(m− 1)

2
y x(m−3)/2, ηy = k x(m−1)/2.

The differentiations of (4.9) yield:

ψx =
l

2
x(m−1)/2 [(m+ 1)f + (m− 1)ηf ′] , ψy = kl xm f ′, (4.10)

ψxy = klxm−1

[
mf ′ +

m− 1

2
ηf ′′

]
, ψyy = k2l x(3m−1)/2 f ′′, (4.11)

and
ψyyy = k3l x2m−1 f ′′′. (4.12)

Now we substitute the expressions (4.10)-(4.12) in Eq. (3.1). We have:

νψyyy + ψxψyy − ψyψxy = k2l2x2m−1

[
kν

l
f ′′′ +

m+ 1

2
ff ′′ −mf ′2

]
. (4.13)

Since k and l are arbitrary constants, we will take

l = kν (4.14)

and reduce Eq. (3.1) to the ordinary differential equation (3.8):

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 = 0. (4.15)

Let us turn now to the boundary conditions (3.2) and (3.3). Applying the first equation
in (3.2) and the condition (3.3) to (4.9) we obtain Eqs. (3.9):

f(0) = 0, f ′(∞) = 0. (4.16)

Substituting the expression for ψy from (4.10) in the second equation (3.2) and invok-
ing (4.14) we obtain

k2ν xm f ′(0) = Axm.
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This equation implies the equation

k2ν = |A| (4.17)

and Eq. (3.10):

f ′(0) =

{
+1 when m+ 1 > 0,

−1 when m+ 1 < 0.
(4.18)

Furthermore, Eqs. (4.17), (4.14) yield

k =
(
ν−1|A|

)1/2

, l =
(
ν|A|

)1/2

.

Finally, invoking (4.9) and (4.8), we conclude that the substitution

ψ =
(
ν|A|xm+1

)1/2

f(η) (4.19)

with
η =

(
ν−1|A|xm−1

)1/2

y (4.20)

reduces the partial differential equation (3.1) with the boundary conditions (3.2), (3.3)
to the ordinary differential equation (4.15) with the boundary conditions (4.16), (4.18).

Remark 4.1. The substitution of (3.6) with η defined by (3.7) and used in [1] and [3]
reduces Eq. (3.1) not to the ordinary differential equation (3.8) but yields

xf ′′′ +
m+ 1

2
ff ′′ − (m+ 1)f ′2 = 0.

This is due to the fact that η defined by (3.7) is not an invariant of the one-parameter
group with the generator (4.7).

5 Exceptional values of the exponent m

5.1 Self-adjointness in the casem = −1/2

Let us find the adjoint equation to Eq. (4.15). In this case Eq. (2.4) is written

L = z
[
f ′′′ +

m+ 1

2
ff ′′ −mf ′2

]
(5.1)

and Eq. (2.6) yields:
δL
δf

= −z′′′ + m+ 1

2
zf ′′ + 2mD(zf ′) +

m+ 1

2
D2(zf)

= −z′′′ + m+ 1

2
zf ′′ + 2m(zf ′′ + z′f ′) +

m+ 1

2
(zf ′′ + 2z′f ′ + fz′′)

= −z′′′ + (3m+ 1)zf ′′ +
m+ 1

2
fz′′ + (3m+ 1)z′f ′.
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Changing the sign in Eq. (2.3), we get the following the adjoint equation to Eq. (4.15):

z′′′ − (3m+ 1)zf ′′ − m+ 1

2
fz′′ − (3m+ 1)f ′z′ = 0. (5.2)

If we let z = f, Eq. (5.2) becomes

z′′′ −
(
3m+ 1 +

m+ 1

2

)
ff ′′ − (3m+ 1)f ′2 = 0.

Hence, Eq. (4.15) is self-adjoint if the following equations hold:

3m+ 1 +
m+ 1

2
= −m+ 1

2
, 3m+ 1 = m.

These two equations are identical and yield m = −1/2. Thus, we have proved the
following statement leading by another approach to the critical value (3.11) of the
exponent m.

Theorem 5.1. Eq. (4.15) is self-adjoint if and only if

m = −1

2
· (5.3)

Remark 5.1. The reckoning shows that the substitution z = h(f) does not provide
new cases when the adjoint equation (5.2) is equivalent with Eq. (4.15). Hence, there
are no quasi-self-adjoint equations (4.15) except the self-adjoint case (5.3).

5.2 First integral
Investigation of the determining equations shows that Eq. (4.15) with an arbitrary
exponent m has only the obvious translation and scaling symmetries provided by the
following two generators:

X1 =
∂

∂η
, X2 = η

∂

∂η
− f

∂

∂f
· (5.4)

Using these symmetries and conservation formula (2.8), one can calculate first
integrals for the self-adjoint equation (4.15) with m = −1/2, i.e. for the equation

f ′′′ +
1

4
ff ′′ +

1

2
f ′2 = 0. (5.5)

The reckoning shows that application of the formula (2.8) to the translation generator
X1 yields C = 0. Hence, X1 does not provide a nontrivial first integral. However the
operator X2 does. Namely, it provides the following first integral:

2f ′2 − f 2f ′ − 4ff ′′ = C. (5.6)
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5.3 Additional symmetry in the casem = 3

One can demonstrate by inspecting the determining equations that Eq. (4.15) has an
additional symmetry in the case

m = 3. (5.7)

Namely, the equation
f ′′′ + 2ff ′′ − 3f ′2 = 0 (5.8)

has, along with (5.4), the following symmetry:

X3 = η2
∂

∂η
+ (6− 2ηf)

∂

∂f
· (5.9)

The operatorX3 generates the projective transformation of η followed by a linear trans-
formation of f. Namely, upon solving the Lie equations, one obtains the following
transformation with the group parameter a :

η̄ =
η

1− aη
, f̄ = (1− aη)2f + 6a(1− aη). (5.10)

Thus, the Lie group analysis reveals two exceptional (critical) values of the expo-
nent m, namely, m = −1/2 and m = 3.

16 May 2009
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