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Abstract:
A dstructural flow for modeling of switched electrical
circuits by means of an example a switched DC/DC
converter will be presented. The modeling flow has a
minimal amount of hand calculations and is suitable for
script implementation in suitable mathematical computer
software such as Matlab or similar.

Switched Hamiltonian Differential  Algebraic
Equation models and Differential Equation models are
obtained which are suitable for analysis in the time
domain. Linear models, which can be transformed to the
frequency domain for analysis, are obtained from the
Hamiltonian models. The duty cycle will be included in
the input vector enabling the full system analysis
considering the system transfer functions audio
susceptibility, output impedance, and control, i.e., the
duty cycle to output voltage.

1 Introduction

For full understanding and control over the modeling
process of electrical circuits, analytical calculations by
hand are in many cases the best aternative. Is the
schematic simple, just to use Kirchhoff's laws, the
congtitute equations for the components, and some
algebra are enough. The result is a mode on a
Differential Equation form, DE-form. The more complex
the schematics get the more the algebra gets messy and
error prone. Non-linear switched networks add to the
complexity and have to be handled with care. As an
aternative for analytical calculations by hand, there are
different software for modeling and simulation available,
such as Spice or Simulink. Using software for modeling
and possibly numerical deriving of transfer functions
does not offer full insight and control of the modeling
process.

We suggest using a structural modeling technique,
Hamiltonian modeling based on graph theory and
passivity techniques [1], [2], [3]. Modeling of switched
networks as complementarity systems have been
addressed in [4]. These techniques have been used in [5]
for the design and proof of stability of a nonlinear
Hamiltonian observer applied to a switched network.
The chosen graph theoretical method of network analysis
does not use any transformation of certain network
configurations to fit the analysis that gives advantages
compared to the commonly used nod anaysis. We
believe that Hamiltonian modeling gives better
understanding of the circuit and the linear algebra is
suitable for script implementations in your choice of
mathematical computer program. The resulting model is
a mix of differential and algebraic equations, i.e., on a
Differentia Algebraic Equation DAE-form.
Transformations to a Hamiltonian DE-form and
traditional state space ABCD-form are also shown. The

switched models are only suitable for analysis in the
time domain. For frequency domain anaysis
approximate models has to be used. The models are
made time continues by state space averaging which was
aready introduced in [6], and the duty cycle can be
included in the input vector as in [7]. The time
continuous model can be linearized in the operation
point. This linearized model can be transformed into the
frequency domain for analysis. This makes it possible to
investigate simultaneously the systems different transfer
functions, the audio susceptibility, i.e., input voltage to
output voltage, the output impedance, and the control,
i.e., the duty cycle, to output voltage. The singular values
can aso be used for robustness analysis.

2  Application Example
We will use a standard buck converter, which is atypical

example of aswitched electrical system, shown in Figure
1
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Figure1. Buck converter with resistive load.

Theresistors, R;, Ry models the Rpsy, Of the switch-FET

and Sync-FET, respectively. When the transistors are
off, they are modeled as ideal switch off. Finite non-
linear resistances were treated in [5]. However, this is
not suitable for modeling of Mosfets, since the ratio in
resistance between the off and on state easily exceeds

10° . Hence, numerically ill-conditioned models will be
the result.

3 Structural Modeling of Switched Networks

We will use graph theory in order to obtain structural
modeling with relatively small amount of hand made
calculations. The result is a Hamiltonian model, which is
based on the energy flow in the circuit.

3.1  Graph theoretical concepts

Thefirst step is to draw a spanning-tree, which spans all
nodes in the schematic. Definitions of Graph theoretical
concepts can be found in [3]. In order to obtain a simple
model structure the voltage sources U and as many
capacitors C as possible should be tree branches. All
current sources | and as many as possible inductors L
should be links. Resistors could be placed in the tree
branches X or in the links Y. To express this



organization of the components in the tree branches and
links an index is formulated, that should be maximized.
Tregngex = Nireec + Niink L +2Nyreeu + 2Njink,

Where, Nyec is the number of capacitors in tree
branches, N, . is the number of inductors in links,
Nyreeu i the number of voltage sourcesin tree branches,
Njinc; is the number of current sources in links.

Sometimes we have to use an inductor as a tree branch,
|, in order to obtain a full spanning tree for al nodes,
and use a capacitor asalink, c, in order to exclude cycles
when choosing the spanning tree.

A direction is assigned to each branch that is the
same as the direction of the current, shown by arrows in
the graph. The direction of the voltage for each
component is chosen so the power is positive for passive
components. This means that when a voltage or a current
source delivers power, the power is negative.

3.2 Maodd of ageneral electrical network
A general €electrical network can be described by the
skew-symmetric equation system
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Kirchhoff’s current law in all nodes,
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We do aso need the constitutive equations for the
components
dg . du d di .
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where qisthe charge in the capacitor, and ¢ isthe
magnetic flux in the inductor.

The use of the introduced maximized index will
imply that some sub-matrices are zero, i.e.
Qxc =Qc =Qy =0. Since physical networks do not
contain cycles with only voltage sources and capacitors
or cut-sets with only current sources and inductances,
Quc =Q, =0. Thisyieldsthe simplified Q;,, matrix.

Qv 0 Qu Q
Qov Qe Qau Qq
0 0 Q. 0

QXY 0 QXL QXI

Qink =

3.3  Construction of the Spanning Treeand the
Cut-set and Cycle matrices

In the On-phase of our example circuit when the switch
FET is conducting and the sync FET is turned-off, the
simplified schematic is shown in Figure 2. The tree
branches are marked with solid arrows and the links with
broken arrows. The arrows direction is directed in the
positive direction of the current.
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Figure 2. On-phase schematic and spanning tree.

We redraw the graph with the chosen tree as shown in
Figure 3.

Figure 3. On-phase graph with chosen spanning tree.

The next step is to assign the cut-set matrix Q and cycle

matrix P . The cut-set matrices is derived by cutting the
spanning tree into two by cutting one tree branch at the
time, and investigate which links are connected between
the two different trees, as illustrated in Figure 4. The
direction of the branch determines what becomes Tree 1
and 2. Tree 2 is connected to the positive direction of the
branch that was cut. The links directed towards Tree 2,
will be assigned the value +1, and links directed
towards Tree 1 will be assigned the value —1. The links
inside each tree will be assigned the value O .

Figure4. Cut of abranch.

In Figure 5 we cut off branch R, . In this case will the
link L directed from Tree?2 to Tree 1 obtain the value
—1. Thelink current source | and thelink resistance R
will obtain thevalue +1.

(Tree 1) (Tre-—é—'t2)

Figure5. On-phasewith R, branch cut.



This procedure is repeated for each tree branch and the
values are assigned to the cut-set matrix. The following
order of tree branches and links is recommended,
U,C,I, X,Y,L,c 1 . Inthis example, we do not have any
inductors in tree branches or capacitors in links, c,l.
This yields the following structure in the cut-set matrix.
In Table 1, below the tree branches, U,C, X an identity
matrix is obtained and below thelinks Y, L, | isthe Q,,

matrix.
Tablel Q matrixintableformatin On-phase
Tree Branches(U,C, X) Links(Y,L,I)

UCR R R IR L I
10 0 0 00 U
01 0 0 01 c g
| Qo 00 1 0 0o R @
[Pon |J"ooo 1 0o RZE‘;
000 0 10 -1dRg
R
P, | L2
| <

The next step is to derive the cycle matrix P,,. We make
acyclefor each link with the order Y,L,| Tree branches
in the cycle and their sign are defined asin Figure 6. The
direction of the link define the direction of the cycle, tree
branches with the same direction yields the value +1,
tree branches with opposite directions yields the value
-1, and tree branches outside the cycle yieldsvalue O .

Figure 6. Definition of signsinacycle.

As an example, the cycle with the link L is shown in
Figure 7. The following values +1,-1,+1,—1,—1 are
obtained for the tree branches U, C, R, R, Ry
respectively.

Thetotal P matrix is shown in the lower part of the large
Table 2.
Table2 P, Qmatricesin tableformat in On-phase

U CRUR RIRL I
1 0 0 0 0i0 -10|U
01 0 0 0i1 -11|cC
001 0 0.0 -10R
: I Qon
00 0 1 00—10R2:(P Ij
0 00 0 1:i1 -1 1|R, "
0 -1 0 0 -1)1 0 0|R
[1 11 1 1Jo 1 0|L
0 -1 0 0 -0 0 1|1

Since, P, =-QJ, it is easy to check if we have
performed the work properly.

0 -1 0
0 -100 -1 1 -11
1111 1|=40-10
0 -100 -1 0 -10
1 -11

331 Off-Phase

The same work is performed for the off-phase, the
schematic with spanning tree are shown in Figure 8.
Notice, that U, R; is not used in the tree since the current

is zero in these components during this phase.
R L

Figure 8. Schematic in the Off-phase

The new spanning tree isredrawn in Figure 9.

Figure9. Spanning treein the off-phase.
The following Qq, and Py matrices are obtained. Note,
that the R, in the on-matrix and the R; in the off-matrix

have the same position.
Table3 P, QMatricesin tableformat in Off-phase

C R R RIR L I

1 0 0 01 -1 1]|C

0 1 0 0:i0 -1 0|R

0 0 1 0i0 -10|R (| Qg
0 0 0 11—11R4:[F3)ff |]
et s o

1 1 1 1:0 1 0|L

-1 0 0 -1i0 0 11

Hamiltonian Modeling

Now when the schematics structure is captured in the Q-,
and P-matricesit istime to use them.

4.1  Differential Algebraic Equation M odel

As an electro engineer, you probably are used to use the
inductor currents and capacitor voltages as dtates.
However, in Hamiltonian modeling we go back to the
physics, and use the physical quantities, q the chargein
the capacitors and the magnetic flux ¢ in the inductors.

This is however, not a big issue since the inductor flux
and current and the capacitor charge and voltage are
related as



Hence, the difference is only scaling of the states. The
inputs to our system are the voltage and current sources
and an output wis defined. The Hamiltonian differential
algebraic model is hence described by

~(x X X
|( J:JM‘{ J+Bu, w= BTM‘{ j+JDu,
VA VA VA

where
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The defined output w, makes it possible to calculate the
delivered power to the circuit as w'u. This is used in
[5], but we will not use it here. The matrices J,B are
given by the structure and originate from the Q- or P-
matrix. A matrix is Q,, defined by the sub matrix of
Qi With the rows indexed n and columns indexed m.
As an example sees Table 3, where Qg =[-1].The

component values are placed in the M-matrices, where
C,L,X,Y are diagona block matrices with the
respective component values. In our example the M-
matrices equals

cC o0
M onioft = )

0 L
YR 0 0 0 YR, 0O 0 O
Mo |0 ¥R 0 0 0 YR 0 0O
“o7l o 0 YR, Of ©fT 0 0 YR, O
0 0 0 R o 0 o0 R

4.2  Transformation to DE-form

The model in DAE form tells us how the energy flows
and dissipates in the system. However, in order to
simulate the system the algebraic equations have to be
eliminated. This is performed by solving the algebraic
equations and replaces them in the DAE equation
system, which yields a pure Differential Equation
system, DE-system.

R

+[ 0 _QXL] Clgy +[ 0 -Qx ](qu
T - T i
Qcy 0 L Quy 0 I

By solving the equation, we obtain the tree branch
voltages Xiy and link currents iy in the resistive

components.

(Xi><]:[x71 QXYJI [ 0 _QXLJ[CJQX j_'_( 0 -Qu ][qu
iy Q;y Y QL 0 L Qv 0 i

The full Hamiltonian DE-model can be described as

X=(Jp—Ry)Mx+(F-Gu
w=(F+G) M*x+(Jp + Ry u

where the different block matrices are defined as,

‘]A - [ 0 - QCYZTQXL - QCL} RA - [QCY RzngY 0 ]
QuZQly +Qh 0 0 QW RiQu

Z=-XQxyRpp: Ry = (Y + Q;v XQxy Tlr Ry = (X T Q><YY71Q>T<Y Tl

. =[ 0 -QuZ'Qy —Qu] G =(QCYRZZQEY 0 J
T AT . AT ' J
Qu.ZQuy +QuL 0 0 Qi RuiQxi
5 :[ 0 ~QZ"Qq ~Qu J R, :[%Y&m 0 ]
QuZQ)y +Qj, 0 0 Qi RuQx

i.e., not as simple and structured as in the DAE model.
However, this model can with preference be simulated
and used for accurate analysisin the time domain.

4.3  Traditional State Space ABCD-model

The Hamiltonian models use the charge and flux as
states. In electrical circuits we are often more interested
in the currents and voltages. Hence, a change of
variables solvesthis. The new states are

£=Mx

Thisyields the well-known state space ABCD-form
E=AE+Bu

y=Cé+Eu

However, the D is replaced with E since D in power
electronics is aready occupied by the duty cycle.
Henceforth, the variables C, Y, U, will change meaning
and are not component or source values. The A, and B
matrices are obtained from the Hamiltonian DE-form by
the following assignment.

A=M ;l(‘]A - RA)

B=MF-G)

By means of proper choice of C and E matrices any
branch voltage or current can be modeled as an output, y.

As an example if all voltages for al resistors, X and Y
should be the output, v, is shown below. We multiply the

link currents i, with resistors Y that yields the link
voltages.

co (1 OJ( XL Qu ]_1( 0o - QXLJ
= . .
0 Y Qu Y —Qcv 0
E- (1 OJ X7 Qy _l( 0 -Qy j
0 Y\QL Y -Q)y O

5 Linearization of the Switched M odel

For analysis and design in the frequency domain, alinear
model is required. A linear model can be obtained from
the switched ABCD-model. First, a time invariant model
can be obtained by state-space averaging, second, the
linear modél is obtained by linearization in the operation
point. We define the deviations from the operation point
as.

d=D+d{t), &t)==+&1), ut)=U-+a@), yt)=Y+t)
ie, the smal-signas d(t)&(t)de), y(t) are the
deviations from the DC-values D,E,U,Y , respectively.

5.1  State Space Time Averaged Model

The state space-time averaging is an averaging of the
different state space models for each phase with the
respect to the duty cycle D, [6].



Apc = DAy, +(1=D)Aysi  Cpc = DCoy + (1~ D)Cos
Boc = DBg, + (1_ D)Boff Epc =DEg, + (1_ D)Eoff
These matrices can be used for caculation of the
operation point. It is easy to solve for the operation point
since £=0 in the operation point.

0=¢=ApcE+BpcU Z=-Apc 'BpcU

Y =CpcE+EpcU Y:_(CDCADC_lBDC _EDC)J

5.2  Linearization in the Operation Point

The small-signal model is obtained in this section, where
we aso include the duty-cycle in the input vector. Thisis
not usually done in subject area of power electronics [6],
but is customary in traditional control theory. The
control and disturbance signals are placed in the input
vector, inour cased, Vi, , and I, thiswas donein [7].

We obtain the following model
E= NE() + B u,:(uj
§=CE(t)+EW d

where the matrices A,B,C’,E’are given by the

gradients in the operation point. Study the following
equations

F(EOW)= & =[0An + 1-d)ay [ +[dB, + b-d)B b
g(f(t), U’(t)) =y= [acon + (1_ c’ikoﬁ‘ ]f'l' [ann + (1_ c’i)Eoff L

The partial derivatives becomes
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, [ of ] of of
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3¢ | ct)-= ( )Cff uef(tt)_ DC
u'(t)=u’
, [og] Jdg g
E = == = =|E E
o’ | £t)-= {au ad} £t)== Eoc d]
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ere .
Eq = (Con — Cot )E + (Eon = p

This model can be transformed to the frequency domain

using traditional control theory tools.

wh

5.3  Sampling of the system

In mixed signal systems, e.g., digital controlled switched
power converters, we have a mix of systems, which are
naturally described using different transforms, i.e., the
Laplace- and the z-transform. Hence, you have a choice
of domain, s- or z-domain, in which you will do your
analysis and design. Working in the z-domain requires a
sampled model H(z)of the time continues plant model

H(s), or working in the s-domain requires a time
continues model R(s) of the time discrete regulator
R(z). The dual models or points of view are illustrated

in Figure 10. Working in the z-domain has many
advantages [8], e.g., the inherent delay in the digital
control is simply modeled by a sample delay, and the
sampling theorem is naturally built in the model, limiting
the frequency range to the Nyquist frequency, f¢/2.

Where f is the switching frequency for the power

converter.
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Figure 10. Continues control model versus a sampled
plant model.

Sampled Plant H(2)

2v

Assuming a piecewise constant input signal over the
sampling interval, T. i.e, u(t)=u(nT). The sampled
state-space model of the plant becomes

x(NT +T)=Fx(nT)+ Gu(nT)
y(nT)=C’x(nT)+ E'u(nT)

Wherethe F, G matrices are given by
T

F=e G= j.eA't B'dt .
0

This model can be transformed into the frequency
domain using the z-transform vyielding the system
transfer function

H(z)=C(d -F)'G+F’
6  Another Modeling Example

In order to show the efficiency of this structura
modeling flow, a more complex model of the buck
model is used and is shown in Figure 11. This model
includes, internal resistance in the voltage supply R, an

input filter R,C;, and a more complex load, which
consists of a wire resistance R;, two parallel load
capacitors with different ESR, C;,R;, and C,,R;.
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Figure 11. A more complex model of the buck converter



One of many possible graphs with maximum tree index
for the On-phase is shown in Figure 12.
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Figure 12. The directed graph in the On-phase.

The corresponding cut-set and cycle matricesis shown in
Table4. The rest of the linear agebra work is aready
performed ones and for al in a script. Only the
component values have to be determined. Hence, with
some experience a new model can be obtained within a
few minutes aimost no matter how complicated the
schematic is.

7  Conclusion

We have shown a structural flow for modeling of
switched electrical circuits, by means of an example
using a switched DC/DC converter. The modeling flow
has a minima amount of hand calculations and is
suitable for script implementation in mathematical
computer software. Switched Hamiltonian Differential
Algebraic Equation models and Differential Equation
models were obtained, which are suitable for analysisin
the time domain. Linear models, which can be
transformed to the frequency domain for analysis, were
obtained from the Hamiltonian models. The duty cycle
was included in the input vector enabling the full system
analysis considering audio susceptibility, output
impedance, and control to output voltage anayss.
Finally, a sampled system model was obtained which
enables open and closed loop analysisin the z-domain.
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